

The G-BASE field database

Economic Minerals and Baseline Geochemistry Programme Internal Report IR/05/001

BRITISH GEOLOGICAL SURVEY

ECONOMIC MINERALS AND BASELINE GEOCHEMISTRY PROGRAMME INTERNAL REPORT IR/05/001

The G-BASE field database

T R Lister, D M A Flight, S E Brown, C C Johnson and A C Mackenzie

Contributor/editor

F M Fordyce

The National Grid and other Ordnance Survey data are used with the permission of the Controller of Her Majesty's Stationery Office. Ordnance Survey licence number Licence No:100017897/2005.

Keywords

G-BASE, fieldwork, data management, geochemistry.

Bibliographical reference

LISTER, T.R., FLIGHT, D.M.A., BROWN, S.E., JOHNSON, C.C. AND MACKENZIE, A.C.. 2005. The G-BASE field database. British Geological Survey Internal Report, IR/05/001. 84pp.

Copyright in materials derived from the British Geological Survey's work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail ipr@bgs.ac.uk You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract.

© NERC 2005. All rights reserved

BRITISH GEOLOGICAL SURVEY

The full range of Survey publications is available from the BGS Sales Desks at Nottingham, Edinburgh and London; see contact details below or shop online at www.geologyshop.com

The London Information Office also maintains a reference collection of BGS publications including maps for consultation.

The Survey publishes an annual catalogue of its maps and other publications; this catalogue is available from any of the BGS Sales Desks.

The British Geological Survey carries out the geological survey of Great Britain and Northern Ireland (the latter as an agency service for the government of Northern Ireland), and of the surrounding continental shelf, as well as its basic research projects. It also undertakes programmes of British technical aid in geology in developing countries as arranged by the Department for International Development and other agencies.

The British Geological Survey is a component body of the Natural Environment Research Council.

British Geological Survey offices

Keyworth, Nottingham NG12 5GG

© 0115-936 3241
 Fax 0115-936 3488
 e-mail: sales@bgs.ac.uk
 www.bgs.ac.uk
 Shop online at: www.geologyshop.com

Murchison House, West Mains Road, Edinburgh EH9 3LA

 The matrix
 <thThe matrix</th>
 The matrix
 The matr

London Information Office at the Natural History Museum (Earth Galleries), Exhibition Road, South Kensington, London SW7 2DE

Ŧ	020-7589 4090	Fax 020-7584 8270
Ŧ	020-7942 5344/45	email: bgslondon@bgs.ac.uk

Forde House, Park Five Business Centre, Harrier Way, Sowton, Exeter, Devon EX2 7HU

a 01392-445271 Fax 01392-445371

Geological Survey of Northern Ireland, Colby House, Stranmillis Court, Belfast, BT9 5BF ☎ 028-9038 8462 Fax 028-9038 8461

Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB

a 01491-838800 Fax 01491-692345

Sophia House, 28 Cathedral Road, Cardiff, CF11 9LJ 2 029–2066 0147 Fax 029–2066 0159

Parent Body

Natural Environment Research Council, Polaris House,
North Star Avenue, Swindon, Wiltshire SN2 1EU☎ 01793-411500Fax 01793-411501www.nerc.ac.uk

Acknowledgements

Procedures employed for the Geochemical Baseline Survey of the Environment (G-BASE) project have evolved over more than three decades and the authors acknowledge the contribution of staff throughout the lifetime of the project to the development of a system for the collation and storage of sample site information. Not least are the estimated nearly one thousand voluntary workers who have contributed to populating the field database for over more than 35 years.

Contents

Ac	know	ledgements	i
Co	ntent	S	i
Su	mma	ry	i
1	Intr	oduction	1
	1.1	Version Control	1
2	Fiel	d cards	2
	2.1	History of G-BASE field cards	2
	2.2	Versions of G-BASE cards 1981-2004	3
	2.3	Future developments	5
	2.4	Current field card	6
3	Fiel	d Database	
	3.1	Introduction	
	3.2	Current field database	
	3.3	Entering data into the Field Database	
	3.4	end of season Error checking the field database	
4	Tra	nsfer of field database into the Geochemistry Database	
	4.1	Introduction	
	4.2	Site and sample information transferred from field card	
	4.3	G-BASE bulk data loading application (LOADER)	
	4.4	Using LOADER	51
	4.5	Field data previously loaded	
Ар	pend	ix 1: Important Geochemistry Database Domain definitions	53
-	Soil	Texture	53
	Sam	ple Type	54
	Nun	nbering System	
Ар	pend	ix 2: MS Access Code for data entry forms	
	Drai	nage	
	Soil		

Appendix 3:	Example retrievals from the Geochemistry Database using field card
information	63
Appendix 4:	Field card to Database translations69
Appendix 5:	Summary of field data loaded to the Geochemistry Database between 1998
and 2004	71
References	74

FIGURES

Figure 1: Drainage site card (2005.2)7
Figure 2: Page one of drainage site coding information
Figure 3: Page two of drainage site coding information9
Figure 4: Soil site card (2005.1)
Figure 5: Page one of soil site coding information14
Figure 6: Page two of soil site coding information15
Figure 7: Strahler (1957) system for determining stream order19
Figure 8: Field database start-up screen
Figure 9: Stream sediment sample site data input form
Figure 10: Soil sample site data input form
Figure 11: Form for entering stream water field analyses
Figure 12: Stream water data input form for water monitor site40
Figure 13: Control sample data entry form
Figure 14: Control sample data entry form with sample type entered
Figure 15: Example screens for the entry of DUPA and DUPB samples
Figure 16: Example of field database printout (in MS Excel) used for checking
Figure 17: Figure summarising the subject areas in the Geochemistry Database to which field card columns are mapped
Figure 18: Opening option screen for the LOADER application51
Figure 19: Example 1 - query to download analyte data for G-BASE Lake District stream sediments
Figure 20: Example 1 - Crosstab Query using the Select Query created in the first part of the example
Figure 21: Example of a land use query using 'wildcard' characters

TABLES

Table 1: Field Procedure Protocol codes	1
Table 2: Summary of G-BASE field cards 1981-2005	6
Table 3: Table summarising instructions for completing a drainage site field card	10
Table 4: Table summarising instructions for completing a soil site field card	16
Table 5: Description of the "feel method" for soil textures	20
Table 6: Structure of the MS Access field database table Field2005	24
Table 7: Table "Contamination"	
Table 8: Table "Rocks2"	
Table 9: Table "Drift"	27
Table 10: Table "Land use"	27
Table 11: Table "Panmins"	27
Table 12: Example of Combo Box definitions for data field "landuse1"	
Table 13: Example of field data in EXCEL format ready for loading to the Geo Database	ochemistry 45
Table 14: Table showing the control sample codes entered in the field database	48
Table 15: Table showing code translations for soil texture	50
Table 16: Table showing translation of G-BASE colours to Munsell colour codes	50
Table 17: Domain table BGS_MTA_DOM_SOIL_TEXTURE - soil texture	53
Table 18: Domain table BGS_MTA_DOM_SAMPLE_TYPE - sample type	54
Table 19: Domain table BGS_MTA_DOM_NUMBERING_SYSTEM - sample system code	numbering 54
Table 20: Domain table BGS_MTA_DOM_CODE_VERSION - field card version cod	les55
Table 21: Listing of results produced by the select query in example 1	63
Table 22: Listing of part of the results produced by the crosstab query of Example 1	66
Table 23: Table of the most commonly used oxide conversion factors	66

PHOTOGRAPHS

Photograph 1: Portable IBM binary pu	unch card instrument tried in the early days of the project

Summary

Since the 1960s British Geological Survey (BGS) geochemists have routinely recorded site and sample information on field cards. The Geochemical Baseline Survey of the Environment (G-BASE) Project completes a field card for every site sampled and, from the 1980s onwards, field data have been entered into a field database as the samples were collected. In the 1990s a corporate Geochemistry Database was set up using ORACLE to encompass all geochemical data gathered throughout BGS for the UK landmass, including sample and site information. This required a standardisation of coding on field cards both within geochemical activities and in relation to the use of BGS codes, for example the description of rocks and minerals.

In order to load all the data from the G-BASE field cards it is necessary to coordinate the process from completing the card on location; inputting data into the field database, and to the concluding process of loading the field data to the BGS corporate Geochemistry Database. In the past there have been some incompatibilities between the field and corporate database so not all the field data were being captured into the Geochemistry Database.

This report describes new and revised protocols to be used throughout the process of G-BASE field data gathering and to populating the Geochemistry Database. It details the codes that are to be used and the translations that are necessary to transfer from the G-BASE format to Geochemistry Database format. The history of the use of field forms and field databases in G-BASE is described. This manual establishes a reference point in the field data gathering process from which future changes can be documented.

The report appendices list some of the more useful domain tables from the Geochemistry Database and give worked examples of how field information can be used to retrieve analytical results from the database.

1 Introduction

This report describes the Geochemical Baseline Survey of the Environment (G-BASE) field database that in its current form is based on a Microsoft Access relational database created for each yearly field campaign. The historical development of the G-BASE field database is discussed and significant changes in the reporting of site information during the lifetime of the project are documented.

The field database is merely the digital representation of the field cards completed at each site by the sample collectors. The field cards are therefore described in detail with an item-by-item guide to completing them.

Field data are transferred to the BGS Geochemistry Database, a corporate relational database stored in ORACLE (Coats, 2004 and Johnson et al, 2004). The procedure for doing this is described here. The transfer of the digital G-BASE field data into the BGS ORACLE database is a process that has not been as simple and straightforward as it should have been due to different coding systems in use and the absence of some domains in the Geochemistry Database necessary for storing all the field data. This report seeks to address some of the issues concerning the transfer of field data to the Geochemistry Database and make this task a simpler process. It is important that all G-BASE field observation are captured to the Geochemistry Database, something that has not been routinely done in the past.

1.1 VERSION CONTROL

A critical part of field data management is the control and documentation of protocols and code versions. This documentation is seen as a baseline from which future changes and modifications can be referenced. Important aspects of version control are:

a) *The field procedures protocol*. From 2003 all fieldwork protocols are documented in an internal BGS report as a G-BASE field procedures manual. Each field sampling campaign can be linked to a set of protocols by the field protocols code, a field that is completed on each field card and listed in the Geochemistry Database Domain table BGS_DIC_GBASE_SAMPLING_PROTOCOL (see Table 1).

CODE	TRANSLATION	DEFINED_AS
		Procedures carried out pre Flight & Lister (1998). For
		sampling protocols read respective regional
XX	Pre-1998 documentation	geochemical atlas
		Flight & Lister (1998) G-BASE Field Procedures
98	Flight & Lister (1998)	Manual Draft v2
		Johnson et al (2003) G-BASE Field Procedures
03	Johnson et al (2003)	Manual v1.1
		Johnson (2004) 2004 G-BASE Field Procedures
04	Johnson (2004)	Manual
		Johnson (2005) 2005 G-BASE Field Procedures
05	Johnson (2005)	Manual

 Table 1: Field Procedure Protocol codes

b) *The field card code version.* This is a description found on the bottom of G-BASE field cards and coded in the Geochemistry Database domain table (BGS_MTA_DOM_CODE_VERSION - see Appendix 1:). This is discussed in the next section. The field card version and the field database are linked and one should not be updated without the other.

It is the responsibility of the G-BASE data manager (or the nominated deputy) to maintain documentation of the protocols for data gathering and the codes used on the field cards and in the database. Until a revised version of this report is produced, updates should be documented and held on file by the data manager.

2 Field cards

2.1 HISTORY OF G-BASE FIELD CARDS

BGS geochemical survey field data has been documented on some type of form known as a "field card" since the late 1960s. For every sample collected, identified by a unique project code and sample number, a series of associated field observations have systematically been made, ranging from fundamental information such as grid reference and sample types to varied observations on site and sample conditions and attributes. Over the years the detailed layout of the field card has evolved as the number and types of observations recorded have changed and expanded. However, the aim of recording varied site/sample observational information in a systematic abbreviated form that can be readily translated into digital storage media, and may, thereafter, be used in geochemical interpretation has remained a fundamental part of the survey.

The historical management and reorganisations of geochemical surveying programmes within BGS make it difficult to identify the first field card specific to the precursors of the current G-BASE project; some sampling which contributed to publication of regional geochemical atlases and the preparation of regional geochemical datasets and databases was undertaken under the auspices of uranium exploration by the Atomic Energy Division and later the Radioactive and Rare Minerals Unit (RMMU). The history and format of all geochemical field cards from 1970-1992 is documented in a technical report by Harris et al (1993), which shows that from 1970 onwards, observations have been recorded on a pre-printed A6 size field card in a format which is still broadly followed today by G-BASE with space for a series of coded observations and additional freehand comments at the bottom/overleaf. The back of the G-BASE field cards has remained unprinted so as to allow additional freehand comments.

Harris and Coats (1992) also defined a "Code version" domain table for the Geochemistry Database (BGS_MTA_DOM_CODE_VERSION), that listed, defined and coded each field card code version up to and including 1992. An updated version of this table is given in Appendix 1:.

All known field cards relating to regional geochemical sampling undertaken for atlas production are currently stored in metal cabinets in room P006/7, in batches of 100, with each atlas area separated and labelled. The oldest cards (identifiable by date) that are stored here were completed in 1970 and are from the Sutherland and Shetland atlas areas.

Until 1983, the data recorded by hand in the field were transferred into digital form via Fortran computer punch cards. The observations recorded on the original field card were organised into a series of sub-cards because for each sample four or five 80 column computer punch cards were required to store the information. The G-BASE card has retained this legacy of organisation into five different printed sub-cards because it allows useful separation into different categories of

site and sample observations, and provides a simple numerical reference system for freehand comments.

G-BASE field cards have usually been printed with a title at the top and a label along the base or side which gives some indication of revision date. However, no systematic approach has been used in the labelling and no cross-reference made to an explanation of the observations and codes that have been changed/utilised. As a consequence it is difficult to identify the major changes that have taken place. Dates on cards have, historically, referred to reprints or revisions, and a version number (01) has been used only once in the last 30 years, in 2003. Although a printed version number, in addition to year, has been unnecessary as G-BASE has never in this period undertaken more than one revision of a field card in any given year.

With the publication of this report a systematic approach will be adopted to ensure that different versions of cards can be readily identified. From 2005 the year of revision is printed as a label on the card and guidance overlay and a version number added. To illustrate this, the label on the revised drainage field card for 2005 will read "G-BASE drainage card for 2005 version 2005.2". Until revised, any future reprints will have the same label.

It is important that changes made to the format of the card and the manner of recording observations are documented and can be referred to in future years by anyone wishing to use field observational data. Each revised version should therefore be coded and defined in the BGS_MTA_DOM_CODE_VERSION domain table of the Geochemistry Database; the numeric code can then be entered on the field database for each record, allowing information to be passed to future data users.

The translation and definition details in the domain table include a reference to this report where all changes and guidance for filling-in the 2005 GBASE cards are documented. For versions between 1991 and 2005, this report and other relevant documents are referenced where appropriate in the domain table. The following section briefly describes changes in G-BASE field cards from 1981 onwards and can be considered as an update to Harris et al 1993 who describe in detail the pre1981 versions.

2.2 VERSIONS OF G-BASE CARDS 1981-2004

The usage and revision of G-BASE cards from 1981 to present has been complicated by the collection of additional sample types, especially soils, and different sampling environments as the survey has progressed southwards over Britain, including numerous urban areas. The main changes in usage and revisions of field cards in this period are summarised in Table 2, where the Geochemistry Database code version is also identified. The changes are described in detail below and Geochemistry Database code versions are included in bold to identify each major revision.

Although, as reported in Harris et al, 1993, the same printed drainage field card (**81.1**) was used by G-BASE between 1981 and 1991, an important, undocumented, change took place from 1986 (Tyne-Tees atlas area) when soils were first incorporated as a regional geochemical sample type. The soil sampling procedure at this time consisted of collection of one depth soil from one auger hole in alternate km squares over parts of the atlas areas where drainage density was low.

The fundamentals of the soil sample observations were recorded in a systematic, abbreviated form on the reverse of the drainage card i.e. depth (cm or m), texture, colour and horizon. Texture and colour were identified using the schemes and abbreviations currently in use by G-BASE. Site observations were recorded in the appropriate positions on the front of the drainage card and the soil sample sites identified by the code S in the sample type box.

Cards with different printed date labels were used in 1986, 1987 and 1988 but no change was made to the format of the card. A major revision was undertaken in 1991, with the introduction of the "GSP DRAINAGE/SOIL" card (**91.1**) (GSP - Geochemical Survey Programme, the

previous name for the G-BASE project). Dedicated boxes were printed in sub-card 4 for recording soil colour, texture, horizon, depth (m) and clast lithology, for one soil sample per site. Codes used in-field were revised to match newly defined Geochemistry Database domain tables for contamination in card 1. Space for recording stream water pH, conductivity, bicarbonate, and fluoride were removed from card 1, while space for recording water temperature was added to card 3. Catchment litho-age and chrono-age were removed from card 3 and a new field added for site geology to be recorded like catchment geology using the BGS petmin code. The changes to the 1991 card were made with the objective that all observations/recordings could be translated for storage in fields available on the Geochemistry Database with entries that are defined in domain tables.

In 1993 this card was used for the first two urban soil sampling exercises in Wolverhampton and Stoke. At each site two soil samples were collected, a topsoil coded S on the card and a deeper soil coded SD. A differently numbered card (from the G-BASE random number lists) was used for the two samples from each site. Analytical information that Bob Lister holds digitally for these sites has been translated to use the standard G-BASE soil codes of A (topsoil) and S (depth soil) before loading to the Geochemistry Database.

From 1994, the G-BASE regional survey incorporated a more comprehensive soil sampling programme, and at each soil sample site a topsoil sample (A) was collected in addition to the depth sample (S). The "A" sample observations were recorded on the reverse of the card, thereby giving both samples from any site the same number. The 1991 G-BASE card continued to be used like this for G-BASE regional soil and sediment sampling (and the NI drainage surveys of 1994 - 1998) without change until 2003 when a revised drainage-only card was re-introduced and a new regional soil card introduced.

The main changes to the 2003 drainage card (**2003.1**) were: removal of soil data, removal of water temperature, addition of boxes for stream water pH (intended for site measurement), the inclusion of an expanded range of contaminant tick boxes and new methodology for recording site and catchment geology and stream clast lithology. Where previously the BGS Petmin codes or local GBASE abbreviations had been used, the new BGS Rock Classification Scheme (RCS) codes were used for recording site geology, catchment geology and stream clast lithology observations. It is of some concern, however that the RCS allows a much narrower division of rock types than the Petmin code and translations of existing field data held in the Geochemistry Database has reduced the detail that was originally recorded. The 2003 regional drainage card also saw the direct recording of land-use codes in the field using Geochemistry Database alphanumeric codes for the first time.

The new 2003 regional soil card (**2003.2**) provided printed spaces for recording of A & S sample details on the front of the card and introduced recording of slope at site and soil moisture content. Changes to the way site geology, catchment geology, clast lithology and land use were recorded on the drainage card were also incorporated into the soil card. The 2003 cards and guidance overlays are presented and described briefly in the 2004 G-BASE field procedures manual (Johnson, 2004)

Urban soil sampling undertaken as part of G-BASE, saw a number of versions of field cards and field codes used from 1993 onwards. Following the use of the 1991 drainage/soil card (**91.1**) for urban sampling in 1993, the first dedicated urban soil/water card was introduced in 1994 (**94.1**), which was radically different from G-BASE predecessors and was designed by Mick Strutt. All references to sub-card numbers were removed so field data comments could not be clearly referenced. Space was introduced for measurements of soil gases and all observations relating directly to stream sediments or heavy mineral concentrates were removed. Space was only provided for recording details of one soil sample per site and a second card was completed using the same sample number for the second soil sample. Soil sample and geological observations appeared to be made using standard G-BASE codes/abbreviations.

In 1995 a second, revised, version of the urban soil/water card (**95.1**) was used, again providing room to record only one soil sample per card, so two cards, both with the same sample number, were used for each site. Significant changes were made to the way field data was recorded on this card; land use appears to have been recorded directly using Geochemistry Database codes, Soil colour was recorded using Munsell colour codes and soil texture was recorded directly using Geochemistry Database one-character alphabetic codes. A printed space for recording drift was omitted and all bedrock/clast lithologies were recorded using the BGS Petmin code. Printed boxes for recording soil gas measurements were retained.

A version of the urban soil/water card with a printed 1996 date was used for urban soil/water sample collection in 1996 and 1997. The card, or codes used do not appear to have been revised form the 1995 version, with two similarly numbered cards used for recording the A & S samples from any given site. The status or location of digitally stored field data from urban sampling undertaken between 1993 and 1997 is at present unknown.

From 1998 until 2000 GBASE urban field data was recorded using the standard GSP 1991 drainage/soil card (**91.1**), with one card used for describing both samples from each site, and the adoption of standard G-BASE codes and abbreviations. In 2001 a revised G-BASE urban soil card (**2001.1**) was introduced which was used from 2001 to 2004. This card allowed both A and S soil details to be recorded on the front of the card. Other observations were recorded in standard G-BASE format and all reference to drainage samples removed from the printed card.

In preparation for the 2005 field season a major review, revision and rationalisation of the G-BASE field cards and guidance notes has been undertaken and a full guide to their usage prepared (see following section). Two field cards now exist for use, G-BASE regional drainage (2005.2) and G-BASE soil (2005.1) and are described in detail in the following sections. The soil card is designed for use in both urban and regional environments. New observations include mineralisation style in bedrock (where present), and in the case of soils, the recording of soil moisture and soil organic content for both A and S samples. Stream water pH and estimation of colloidal component in stream sediment sample have been removed. The guidance overlays have been revised and expanded lists of contaminants, land uses and rock types added, to aid the samplers in data recording. A field procedures protocol code, defined in the Geochemistry Database and cross-referenced to the G-BASE field procedures manual will be added to each record on the database, allowing future data users to identify clearly how the samples were collected and treated in the field.

2.3 FUTURE DEVELOPMENTS

As mentioned at the start of this section, field cards have been in use by geochemical mapping projects for more than 35 years. With the drive to implement more digital data capture in the field the BGS SIGMA project has been working with G-BASE to test out robust hand-held computers for field data entry (Scheib, 2005). The G-BASE project was issued with two SIGMA kits (SIGMA 1 and SIGMA 2) to be tested during the summer field campaign of 2004. The kits included an iPAQ (including a carrying case), Bluetooth GPS and digital camera.

The iPAQ has an Arcpad front end, which mimics the G-BASE soil and drainage field cards. The fields that need to be filled in by the samplers have drop down boxes, much the same as the G-BASE field database. The advantage of using the iPAQs is that field data cannot be omitted, as every field needs to be filled in before the data can be saved. The data can be downloaded to a laptop at the end of the day, saving valuable time typing the data into the MS Access database and avoiding transcription errors when entering the sample locations.

The initial problems in testing the iPAQs were generally due to lack of training. They are to be tested again in 2005, but with sufficient training they could prove to be a valuable addition to the G-BASE sampling equipment. Field cards will continue to be used for the foreseeable future, until the iPAQs prove to be reliable and robust in field conditions.

Year	Title of card	Label on card	GD	Comments and usage
			code	
1981	DRAINAGE	APPLIED GEOCHEMISTRY GROUP – INSTITUTE OF GEOLOGICAL SCIENCES 1981	81.1	From 1986 also used for soils although only specifically designed and printed for drainage on front; soil texture, colour, depth details given on reverse in standardised form. Depth soils (S) only collected. Used until 1991
1987	DRAINAGE	BGS 1987	81.1	Used for regional drainage and soils although only specifically designed & printed for drainage on front; soil texture, colour, depth details given on reverse in standardised form. Depth soils (S) only collected. Printed format not revised from above.
1988	DRAINAGE	APPLIED GEOCHEMISTRY GROUP – BRITISH GEOLOGICAL SURVEY 1988	81.1	Used for regional drainage and soils although only specifically designed and printed for drainage on front; soil texture, colour, depth details given on reverse in standardised form. Depth soils (S) only collected. Printed format not revised from above.
1991	GSP DRAINAGE/SOIL	APPLIED GEOCHEMISTRY GROUP BRITISH GEOLOGICAL SURVEY 1991	91.1	Significantly revised from above. First regional card to incorporate printed spaces for soil codes on front of card. Space only available for one soil sample (S). From 1994 when topsoils (sample type = A) collected the A details put on back in same standardised format. In 1993 used for urban sampling in Wolverhampton and Stoke when a separately numbered card was used for topsoils (sample type = S) and depth soils (sample type = SD) from same site. These sample types were non-standard and have never been used on field cards since. They have been translated to A & S on files held by Bob Lister. In 1998-2000 this card was used for urban soil sampling but in standard G-BASE style with A sample observations on back of card.
1994	URBAN SOIL/WATER	APPLIED GEOCHEMISTRY GROUP, BRITISH GEOLOGICAL SURVEY, 1994	94.1	First urban-only sampling card. Radically different from regional predecessors. No space for drift observations but soil gases Radon, CO2, methane included. Separate card filled for topsoil (A) and depth soil (S) but with same number. Uses standard G-BASE coded observations for soils.
1995	URBAN SOIL/WATER	M.H.Strutt, APPLIED GEOCHEMISTRY GROUP, BRITISH GEOLOGICAL SURVEY, 1995	95.1	Separate card filled for topsoil (A) & depth soil (S) but with same number. Uses different codes to standard GBASE for soil observations and possibly different sampling protocol.
1996	URBAN SOIL/WATER	M.H.Strutt, APPLIED GEOCHEMISTRY GROUP, BRITISH GEOLOGICAL SURVEY, 1996	95.1	Apparently identical to previous year's card. Used in 1996 and 1997.
2001	GBASE URBAN SOIL		2001.1	Revised urban soil card used 2001-2004. Uses standard G-BASE observational codes for data recording. Has pre- printed facility for A & S sample observations on front of card. Uses full GD codes for land use for first time, otherwise site observations are made using standard G-BASE field card codes.
2003	G-BASE REGIONAL DRAINAGE	G-BASE STREAM SEDIMENT FIELD CARD VERSION 01, MAY 2003	2003.1	Revised drainage-only card. Soil data removed, water temp removed, pH added. Expanded range of contamination tick-boxes. Site geology, catchment geology, stream clast lithilogy entered using BGS Rock Classification Scheme (RCS). Land use entered using GD codes from BGS.MTA_DOM_LANDUSE
2003	G-BASE REGIONAL SOIL	G-BASE SOIL FIELD CARD VERSION 01, MAY 2003	2003.2	New regional-only soil card.
2005	GBASE soil	2005 G-BASE URBAN/REGIONAL SOIL	2005.1	Combines urban and regional soil observations. Few new fields added and enhanced list of codes for rock names using Rock Classification Scheme, minerals. field procedures protocol and field card code version added to field database for each record. Card described in detail in this report
2005	GBASE regional drainage	2005 G-BASE REGIONAL DRAINAGE	2005.2	Revised regional drainage card. Enhanced list of codes for rock names using Rock Classification Scheme, minerals. Field procedures protocol and field card code version added to field database for each record. Card described in detail in this report

Table 2: Summary of G-BASE field cards 1981-2005

2.4 CURRENT FIELD CARD

2.4.1 Drainage site

The current drainage site field card is shown in Figure 1 along with the field codes to be used (Figure 2 and Figure 3). Instructions for filling each field are given in Table 3.

2.4.2 Soil site

The current field card for soil sites is shown in Figure 4 along with the field codes to be used (Figure 5 and Figure 6). Instructions for filling each field are given in Table 4.

G-BASE REGIONAL DRAINAGE

CARI	DС	ODE	S/	MPLE	NUME	3ER		PRO	FOCOL	TYP	E		EAS	TING					NOR	THIN	G						O/S	MAP		SCL	COL	ECT	ORS			
1	1		23			6	5	8	9	10	11	12	2 13					18	3 19						25		27		- 29	30	31					36
А																																				
	D	UPLIC	ATE S	AMPL	E			DAT	Ē					WEA	LAN	DUSE																	WAT	ER C	LR	
	0	ODE	S/	MPLE	NUME	BER		DAY	·	MON	ΛTΗ	YEA	R	50	-																4		CL	YE	BR	SS
	3	<u> </u>	38 39			42	-	44	—	<u> </u>		-	45	50	51	_	<u> </u>	. 	-	_	_	<u> </u>	+			62		—		66	-		69	<u> </u>		72
в																																				
CARI 2	D S	SITELO	CALI	Y DE	FAILS					10										20										30						36
	+							Γ				Γ	Γ										Τ							Γ						
	3	7							45										55										65							72
	Ē	<u> </u>							1														Т													
CAR		BS D	RIFT						SITE	GEO	LOGY									<u> </u>	CAT	СНМЕ	ENT G	EOL	DGY							<u> </u>	PAN	MIN	MIN	MIN
3	В	VR.						1	MAJ	OR					MIN	DR				1	MAJ	OR					MIN	DR				1	MIN	B/R	STY	CL
	1	2					7	1	9				13		15				19	9	21				25	1	27				31	1	33	34	35	36
	Г							1						1						1						1										
																				_																<u> </u>
CAR	DIS	EDIM	INT D	ATA																																
4	s	TM D	RN DF	N CL	ASTP	PTS	SED	COL	OUR	SED	COM	POSIT	ION			CON	TAMI	ΝΑΤΙΟ	NC																	
	0	RD T	P CC	N OF	BR	BL	GR	Lb-O	Db-B	LC	MC	HC	LO	MO	HO	A0	A1	A2	A3	A4	A5	A6	Α7	B0	B1	B2	B3	B4	C1	C2	D	E	F	G	Н	Ι
	1	2	3	4		6	7		9	10					15	16				20					25					30						36
	s	TREA		ST LIT	HOLO	GY		-	I	I		<u> </u>		<u> </u>	<u> </u>	· · ·		I			<u> </u>	<u> </u>	<u> </u>		<u> </u>	I	I	<u> </u>	I		I	<u> </u>	I			L
	3	7		40										50										60										70		72
	Г																																			
								<u> </u>	I	I		<u> </u>	-	I	<u> </u>	<u> </u>		I		-	<u> </u>	I	<u> </u>		I	I	I	<u> </u>	I		I		<u> </u>			L
CAR	DF	IELD	ATA (COMM	ENTS																															
5	1							-		10		-	-		-	-				20	-						-	-	-	30	-					36
	3	7												50										60										70		72
	Г																																			
1			-					-			1										-									1						1
	7	3					-	80	-	-	_	-	-	-	-	-	-	90	-	-	-	-	-	-	-		· · · ·	100	-		-	-	· · ·			108
	7.	3	+					80							-			90										100								108

G-BASE DRAINAGE CARD FOR 2005 Version 2005.2

Figure 1: Drainage site card (2005.2)

G-Base Regional drainage field card guidance overlay for card version 2005.2

SAMPLE TYPE (110-112) C Stream sediment P Panned Concentrate W Water EASTING (113-118) GPS I NORTHING (119-125) GPS I OS MAP NUMBER (127-129)	eading eading	CTORS (131-136) rs initials, person card first. Max 3 rs each COL (108-109) rk protocol number ies to field season	LANDUSE (151-166) AEBB Mature Coniferous Forest AEBA Recent Coniferous Forest AEAB Mature Deciduous Forest AEAA Recent Deciduous Forest ACOO Rough Grazing ABBO Heather Moor BDOO Arable BABO Pasture	WATER COLOUR (169-171) CL Clear YE Yellow BR Brown SUSPENDED SOLIDS (172) 1 Light 2 Moderate 3 Abundant						
Printed number on cover of fie MAP SCALE (130) 1 1:50,000 (1:50K) 2 1:25,000 (1:25K) 3 1:10,000 (1:10K)	d map WEATH 2 rain ho 4 rain ho 6 rain ho 7 rain ho 8 no rain	ER (150) eavy within 12 hours eavy within 24 hours eavy within 48 hours eavy 2-7 days n within a week	C000 Port areas and airfields DD00 Recreational DAC0 Urban Open Space E000 Industrial EAC0 Metal Manufacture EB00 Extractive	OBSERVED BEDROCK (301) Within 100m of site 0 No outcrop 1 Minor outcrop 2 Moderate outcrop 3 Abundant outcrop						
DRIFT (302-307)Drift types at site and in adjacent and upstream areasA1 Blown SandsA4 Raised BeachA5 EstuarineB2 AlluviumB3 Coarse GravelC1 SoilC2 MarshC3 Peat BogD1 Clay with FlintsD3 ScreeE0 GlacialE1 TillE2 MoraineE3 FluvioglacialF0 Made ground	SITE GEOLOGY (309-31 Enter in order of decreasin RCS codes overleaf. CATCHMENT GEOLOG (321-331) Enter in order of decreasin RCS codes overleaf PAN MINERALS (333) Enter 1 if minerals of inter minerals and describe abur weathering etc in field dat MINERALISED BEDRO Enter 1 if minerals of inter minerals and describe abur etc in field data comments	19) ng abundance using GY ng abundance using rest present. List indance, form, ta comments. CK (334) rest present. List indance, weathering S.	MINERALISATION STYLE IN BEDROCK (335) 1 Vein 2 Fault 3 Pod 4 Lens 5 Stratiform 6 Joint or fracture 7 Disseminated 9 Staining or coating MINERALISED CLASTS (336) Enter 1 if minerals of interest present in clasts. List minerals and describe abundance, style, weathering etc in field data comments.	DRAINAGE TY PE (402) 1 Seepage or spring 2 Ditch 3 Drains, land drains 4 Small stream <3m wide						

G-Base Regional drainage field card guidance overlay for card version 2005.2

CLAST I COLOUI OR Orar BR Brow	PRECIPITATES (404-406 <u>R ABUNDANCE</u> nge 1 light wn 2 Moderate	0	SITE AO A1 A2	CONTAMINATI Manufactured M Iron, steel wire Galvanized iron	ON (416-4 Ietal	36) E0 F0 F1	Rubber Chemical Paint		MINERAL ABBREVIATIONS (For use in description of pan minerals, clast mineralisation and bedrock mineralisation.)					
BL Blac	k 3 Heavy		A3	Copper					AsFe	Arsenopyrite	Mon	Monazite		
			A4	Lead	GO	Liqui	d effluent		Ba	Barvte	FeS	Pvrite		
			A5	Zinc	G1	Farm	effluent		Bom	Bornite	Pvir	Pyrrhotite		
SEDIME	INT COLOUR (407-409)		A6	Brass	G2	Dom	estic effluent		Cal	Calcite	Otz	Ouartz		
GR	Grey		A7	Aluminium	G3	Indus	trial effluent		Cass	Cassiterite	AsS	Realgar		
TR-O	Light Brown-orange								CuFe	Chalcopyrite	Tiox	Rutile		
DB-BL	Dark brown-black		BO	Ceramic	HO	Bulk	industrial waste		Cr	Chromite	Schee	Scheelite		
			B1	Pottery	H1	Meta	l mine tailings		HgS	Cinnabar	ZnS	Sphalerite		
SEDIME	ENT COMPOSITION		B2	Tiles	H2	Coal	tailings		Epi	Epidote	SbS	Stibnite		
(410-415	5)		B3	Bricks	H3	Chin	a clay tailings		Fluor	Fluorite	Tour	Tourmaline		
LC I	Low clay		B4	Glazed China	H4	Slag	(furnace waste)		PbS	Galena	Wolf	Wolfram		
MC I	Moderate clay					U			Gt	Gamet	Zr	Zircon		
HC I	High clay		C0	Glass	10	Agro	-chemicals		Au	Gold	Coal	Coal		
52 m. 200			C1	Clear glass	I1	Fertil	izer		Hem	Hematite				
LO I	Low organics		C2	Coloured glass	12	Lime			11m	Ilmenite				
MO I	Moderate organics		DO	Plastic					Mag	Magnetite				
HO I	High organics		D1	Fertilizer sack					MoS	Molybdenite				
ROCK C	LASSIFICATION SCHEM	IE (RC	S) F	or use in recordin	g SITE GE	OLOGY	, CATCHMENT	GE	OLOGY	í and CLAST LI	THOLOGY			
IGRU	Igneous rock	BA	Basa	alt	SR	Sedime	entary rock	CI	ILK	Chalk	METR	Metamorphic		
DOLR	Dolerite	GB	Gab	bro	CONG	Congle	omerate	LN	AST	Limestone	QZITE	Quartzite		
LMPY	Lamprophyre	MR	Maf	ic Rock	SDST	Sandst	one	DI	SD	Dolomite seds	PSAMM	Psammite		
PGGN	Pegmatite (granite)	DUN	Dun	ite	FAREN	Feldsp	athic arenite	FE	ST	Ironstone	PEL	Pelite		
PPHY	Porphyry	PDT	Peri	dotite	SLST	Siltston	ne	AC	GATE	Agate	PEPH Pe	lite (Phyllitic)		
FELS	Felsite	SEPI	TE S	erpentinite	MDST	Mudst	one	CI	IRT	Chert	SLTE	Slate		
GN	Granite	AGG	Agg	lomerate	OILS	Oil shale			.NT	Flint	MARBLE	Marble		
GD	Granodiorite	TUFE	7 Tuf	E	CLAY	Clay			YPS	Gypsum				
DI	Diorite	ASH	Ash	(tephn)	CALSST	Marl		AN	VHY	Anhydrite				
RY	Rhyolite							CC	DAL	Coal	SCH	Schist		
AND	Andesite							CI	MDST	Carbonaceous	GNSS	Gneiss		
DA	Dacite									mudstone	MYL	M ylonite		

Figure 3: Page two of drainage site coding information

Table 3: Table summarising instructions for completing a drainage site field card (for card version 2005.2)

Card No.	Box No	Detail of Entry
1	01-06	Sample Number, comprising 2 figure numeric Atlas Code and 4 figure sample number. Should always be pre-numbered and therefore not entered at site.
1	08-09	Field Procedures protocol, a two digit code specify the fieldwork protocols being used
1	10-12	Sample Types collected at site. Entered at site using appropriate single-digit alphabetic codes as per guidance overlay.
1	13-18	Easting. Exact 6 figure British National Grid (BNG) easting of drainage sample collection location transcribed at site from GPS reading.
1	19-25	Northing. Exact 6/7 figure (BNG) northing of drainage sample collection location transcribed at site from GPS reading. Normally in UK, excepting Orkney and Shetland, box 19 represents a leading 0 which need not be recorded at site and which is not be displayed by GPS.
	27-29	OS Map Number. Entered at site using the OS published map number on the field map.
1	30	Map Scale. Scale of OS map used in field, entered at site using a code as per guidance overlay
1	31-36	Collectors. The initials of samplers, entered at site, using 2 or 3 characters each as appropriate. Boxes 31-33 should always give the initials of the sampler who is filling-in the field card while boxes 34-36 give the initials of the sampler undertaking the sieving and panning.
1	37-42	Duplicate Sample Number. Will appear pre-numbered at one site in every 100 and indicates that the samplers should collect a duplicate field sample. The number will be different to that in boxes 1-6, but will be constructed in a similar way with a two digit atlas code and a 4 digit sample number. A second field card will have been issued, next in sequence, with the duplicate sample number in boxes 01-06. This card should be used to make detailed sample and site observations specifically relating to the second or duplicate sample.
1	44-49	Date. Entered at site in DDMMYY format.
1	50	Weather. Entered at site using codes as per guidance overlay to give an indication of recent rainfall pattern.
1	51-66	Land Use. Entered at site using 4 digit alphanumeric codes as per guidance overlay. Boxes 51-66 allow for entry of 4 codes representing different land uses adjacent to and upstream of site, up to a distance of approximately 300m from the site. They should be entered in order of prominence. Any additional land-uses should be recorded in card 5, Field Data Comments.
1	69-71	Water Colour. Entered at site after brief visual examination of a sample of stream water held up to light in clean, clear plastic bag. The water colour should normally be categorised as "clear" (box 69), "yellow" (box 70) or "brown" (box 71), with a "1" entered in the appropriate box. Any exceptional water colours should be recorded in card 5, Field Data Comments.
1	72	Suspended Solids. Entered at site, using 1-digit code as per guidance overlay, after brief visual examination of a sample of stream water held up to light in clean, clear plastic bag.

Card No	Box No	Detail of Entry
2	01-72	Site Locality details. Entered at site to give a clear written description of the sample site location. Should enable the site to be readily relocated on foot using only map and compass, without the aid of a GPS. The stream should firstly be identified using it's name (as on field map) where possible or in relation to a fixed feature on the ground that is marked or named on map. Secondly the distance upstream or downstream of a fixed feature readily identifiable on map and ground, and which the stream intercepts, should be given. E.g. Bob's Burn, 80m upstream of B140. In relatively featureless terrain, or ambiguous locations a compass bearing from a fixed point readily identifiable on map and ground should be given, and the stream order & direction of stream flow included. e.g. 2^{nd} S draining 1st order stream W of Johnson's Hill, 60m upstrm confl 2^{nd} E bank trib, $800m/077^{\circ}$ from Brown's Hall Farm. Tributaries are always counted in downstream direction, the headwater confluence being the first. Clear standardised abbreviations should be used. Any overspill from boxes 01-72 should be entered in card 5 or on the reverse of the field card as necessary.
Card No	Box No	Detail of Entry
3	01	Observed Bedrock. Entered at site using 1 digit code as per guidance overlay, after site inspection to give indication of abundance of outcrop within 100m of site.
3	02-07	Drift Type. Entered at site using 2 digit alphanumeric codes as per guidance overlay, after inspection of site and upstream area, up to a distance of approximately 300m from the site. Information taken from geological map may be used on return to field base to confirm descriptions. The order of observations is in order of prominence. Any further observations should recorded in card 5, Field Data Comments.
3	09-13 15-19	Site Geology. Entered at site if outcrop is present within 100m (i.e. if box $301 <> 1$) based on visual inspection and using Rock Classification Scheme codes as per guidance overlay. The dominant lithology should be recorded first and, thereafter, in order of decreasing abundance. Overspill should be should recorded in card 5, Field Data Comments. Samplers should be encouraged to make further geological observations of outcrop that may influence geochemistry eg colour, minerals present etc in card 5.
3	21-25 27-31	Catchment Geology. Entered at site (if possible) after noting outcrop in upstream area, (<i>normally up to 2 km</i> ,) using Rock Classification Scheme codes as per guidance overlay. Information taken from geological map may be added on return to field base. The dominant lithology in the catchment should be recorded first and thereafter in order of decreasing abundance. Overspill should be should recorded in card 5, Field Data Comments.
3	33	Pan Minerals. Entered at site after careful visual inspection (eye and hand lens) of final volume panned concentrate sample, using a "1" to indicate that heavy minerals of economic or geological interest are present. Left blank if none present. Where this box is filled the sampler must then give details of the minerals present in the Field Data Comments using mineral name abbreviations as per guidance overlay, and an indication of abundance, grain size, form and weathering state where possible. e.g 3 coarse rounded grains Au (1pprox 1mm), mod coarse fresh FeS, 2 grains weathered PbS (0.5mm), trace fine Zr.
3	34	Mineralised Bedrock. Entered at site after careful visual inspection (and use of hammer) of outcrop within 100m, using a "1" to indicate that minerals of economic or geological interest is present. Left blank if none present. If this box is filled then the following box, 335-mineralisation style, must be filled and details given in field data comments, noting minerals present, abundance etc., as above. Mineralised bedrock observed between sites, but not within 100m should be described in Field data comments, noting the location relative to site. Such occurrences may be relative to more than 1 site.
3	35	Mineralisation Style. Entered at site after careful visual inspection (and use of hammer) of outcrop within 100m, using a 1 digit code as per guidance overlay to indicate style.
3	36	Mineralised Clasts. Entered at site after careful visual inspection (and use of hammer) of clasts at site and in area directly up and downstream, using a "1" to indicate that mineralisation of economic or geological interest is present. Left blank if none present. Where this box is filled the sampler must give details in

		Field Data comments, indicating minerals present, style of mineralisation and abundance. Eg 1 large qtz clast containing 2mm thick vein Pbs or numerous shale clasts containing disseminated Fes.
Card No	Box No	Detail of Entry
4	01	Stream Order. Entered on site using combination of map and in-field observation. 1 digit reflecting Strahler's system of stream order classification (see Figure 7)
4	02	Drainage Type. Entered at site, after inspection, using one digit numeric code as per guidance overlay.
4	03	Drainage Condition. Entered at site, after inspection, using one digit numeric code as per guidance overlay.
4	04-06	Clast Precipitates. Entered at site, after careful examination of clasts. Box 04 represents orange coatings, box 05 represents brown and box 06 represents black. In each box a 1-digit code of 1,2 or 3(as per guidance overlay) should be entered where appropriate. Where clast precipitate coatings are absent the box(es) should be left blank. One, two or all three boxes may contain entries, or all may be left blank if appropriate.
4	07-09	Sediment Colour. Entered at site after visual examination of homogenized $-150 \mu m$ sediment prior to bagging-up. Sediment colour should normally be categorised as "grey" (box 07), "light brown-orange" (box 08) or "dark brown-black" (box 09), with a "1" entered in the appropriate box. Any exceptional sediment colours should be recorded in card 5, Field Data Comments. See guidance overlay for clarification of abbreviations printed over top of each box.
4	10-15	Sediment Composition. Entered at site based on visual inspection of stream sediment during digging, sieving and homogenisation. Boxes 10-12 represent low, medium or high clay, respectively and the appropriate box should be marked with "1". Boxes 10-12 represent low, medium or high organics, respectively and the appropriate box should be marked overlay for clarification of abbreviations printed over top of each box.
4	16-36	Site Contamination. Entered at site based on visual inspection of site and upstream area of at least 100m. Should also include any contamination encountered during digging, sieving or in heavy mineral concentrate. Each box represents a different category of contamination which should be marked with "1" if observed. Numerous boxes may be filled at each site. An individual manufactured item that is present may comprise different categories of contaminant type, all of which should be noted. See guidance overlay for clarification of contamination code printed over top of each box. Further details of each contaminant should be given in card 5, Field Data Comments, including, location, size and abundance of each contaminant. Eg two car batteries 40m upstream, 3 grains lead shot in pan.
4	37-72	Stream Clast Lithology. Entered at site after careful visual observation at site, upstream of site and during digging and sieving. Use abbreviated rock type names from Rock Classification Scheme as per guidance overlay. Rock types should be entered in order of decreasing abundance. A space should be left between each entry. Any overspill or further description should be entered in card 5, Field Data Comments.
Card No	Box No	Detail of Entry
5	01 onwards inc. back of field card	Field Data Comments. Entered at site. Card 5 allows samplers to add further information relating to coded observations in cards 1-4. Where contamination and pan, clast, bedrock minerals are observed further details must be given here. To allow unambiguous digital data entry, each observation should be preceded by the numeric identification of the coded observation to which it relates. e.g.331 2 rounded grains Au, Indicates that the observation relates to Card 3, box 31 (pan minerals). Often the comments will exceed the space available in card 5 and are necessarily continued on the unprinted back of the card.

G-BASE SOIL

CARD	COD	E	SAM	PLE N	NUMB	ER		PROTO	COL	TYPE		EAST	ING					NOR	THING	3						O/S I	MAP		SCL	COL	LECT	DRS			
1	1	2	3			6	1	8	9	10	11	12					17	18						24	1	26		28	29	30					35
							1																		1										
A																																			
	DUP	LICAT	E SA	MPLE]	DATE						WEA	LAND) USE											DRIF	Т							SLP
	COD	E	SAM	PLE N	NUMB	ER]	DAY		MON	TH	YEAF	5																						
	36	37	38			41]	43	_				48	49	50	_									_	61	62	_		_		67			70
							1																										1		
В																																			
CARD	SITE	LOC/	LITY	DET	AILS																														
2	1									10										20										30					35
	36									45										55										65					70
CARD	OBS	MIN	MIN	MIN	MAP	PED (SITE (GEOLO	DGY						CON	TAMI	NATIO	DN																	
3	B/R	B/R	STY	CL	MAJ	OR				MINC	DR				A0	A1	A2	A3	A4	A5	A6	A7	B0	B1	B2	B3	B4	C1	C2	D	E	F	G	Н	
	1	2	3	4	5				9	10				14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
										L																									1
CARD	SOIL	DAT/	1	-						_																									
4	DEP	ГН		COL	OUR	TEXT	TURE			H2O	ORG		SOIL	CLAS	T LITI	HOLO	GΥ																		
	1		3	4	5	6			9	10	11		13		15					20					25					30					35
A		r																																	
	DEP	ГΗ		COL	OUR	TEXT	FURE			H2O	ORG		SOIL	CLAS	T LITI	HOLO	GΥ																		
	36		38	39	40	41			44	45	46		48		50					55					60					65					70
																												I							1
S		ſ																																	
CARD	FIEL	D DA'	ГА СС	OMME	INTS																														
5	1									10										20										30					35
																																			i
41 50 60													70					70																	
																																			1

G-BASE SOIL CARD FOR 2005 Version 2005.1

Figure 4: Soil site card (2005.1)

G-BASE soil field card guidance overlay for card version 2005.1

SAMPLE TY PE (110-111) A Surface Soil S Profile soil	WEATHER (149) 2 rain heavy within 12 hours 4 rain heavy within 24 hours 6 rain heavy within 48 hours	LAND USE (150-1 AEBB Mature Con AEBA Recent Con AEAB Mature Dec	161) iferous Forest iferous Forest iduous Forest	EADO EAEO EAFO	Engineering, manufacturing, shipbuilding Vehicle manufacture Metal goods manufacture (not specified elsewhere)
COLLECTORS (130-135) Collectors initials, person filling in card first. Max 3 characters each	7 rain heavy 2-7 days 8 no rain within a week EASTING (112-117) GPS reading NORTHING (119-124) GPS reading	AEAA Recent Dec AC00 Rough Graz ABB0 Heather Mo BD00 Arable BAB0 Pasture	iduous Forest zing xor	EAGO I EAHO I EAIO I EAJO (EAKO I	Precision instruments manufacture, jewellery Textile manufacture Leather manufacture, leather goods, fur Clothing manufacture Food manufacture, drink, tobacco
A SOIL TEXTURE (406 – 409) S SOIL TEXTURE (441 – 444) SAND Sand	A SOIL COLOUR (404 – 405) S SOIL COLOUR (439 – 440)	CB00 Port areas a CB00 Major roads CD00 Railways DD00 Recreationa DAC0 Urban Oper	nd aurields s al n Space	EALO EAMO EANO EBOO EBAO	Wood manufacture and cork Paper manufacturing industries Other manufacturing industries Extractive Quarry, mine (non metalliferous, non coal)
SIL TSiltCLAYClaySACLSandy clayCLSAClayey sandSICLSilty clay	BL Black DB Dark brown LB Light brown RE Red OR Orange	DACA Urban open DACB Urban open DAA0 Commercia DC00 Caravan/Ca E000 Industrial	i space tended but unproductive i space cleared, derelict al and residential imp site	EBBO EBCO ECOO ECAO ECBO	Quarry, mme, coal, lignite Quarry, mine, metalliferous Tips Domestic urban wastes Industrial waste tip Utilizia
SASI Sandy silt SISA Silty sand OS MAP NUMBER (126-128) Printed number on cover of field	SA SI Sandy silt SISA Silty sand OS MAP NUMBER (126-128) Drinted numbers of seven of field must PROTOCOL (108-109)		ng of non metalliferous xlucts other than coal nd allied trades ufacture	Water treatment works Gas works Electrical generation plant	
MAP SCALE (129) 1 1:50,000 (1: 50K) 2 1:20,000 (1: 25K) 3 1:10,000 (1: 10K)	Fieldwork protocol number that applies to field season		MINERALISED CLASTS (3 Enter 1 if minerals of interest clasts. List minerals and descr abundance, style, weathering of data comments.	04) present in ibe etc in field	MINERALISED BEDROCK (302) Enter 1 if minerals of interest present. List minerals and describe abundance,
OBSERVED BEDROCK (301) Within 100m of site 0 No outcrop 1 Minor outcrop 2 Moderate outcrop	A SOIL DEPTH (401 – 403 Depth to base of surface soi S SOIL DEPTH (436 – 438 Depth to base of profile soil	i) I sample in metres) sample in metres	MAPPED SITE GEOLOGY (Enter in order of decreasing al using RCS codes overleaf.	305-314) bundance	MINERALISATION STYLE IN BEDROCK (203)
3 Abundant outcrop A SOIL MOISTURE CONTENT S SOIL MOISTURE CONTENT 1 Dry 2 Damp 3 Waterlogged	(410) (445) A SOIL ORGANIC CO S SOIL ORGANIC CO 1 Low 2 Moderate 3 High	DNTENT (411) DNTENT (446)	SLOPE (170) 1 Hill top 2 Gentle slope (5-0 3 Steep slope (>20 4 Foot slope base of 5 Valley floor 6 Hollows with ma 7 Level field, floor	20%) %) of valley si arsh or bog d plain	ide 1 Vein 2 Fault 3 Pod 4 Lens 5 Stratiform 6 Joint or fracture 7 Disseminated 9 Staining or coating

Figure 5: Page one of soil site coding information

G-BASE soil field card guidance overlay for card version 2005.1

· · · · · · · · · · · · · · · · · · ·										
DRIFT (162-167)	SITE	CONTAMINATION (315-33	5)] [MINE	RAL ABBREVIAT	IONS	
Drift types at site and in	A0	Manufactured Metal		EO	Rubber		(For us	e in description of	pan minera	als, clast
adjacent and upstream	A1	Iron, steel wire		FO	Chemical		minera	lisation and bedroo	k minerali	sation.)
areas	A2	Galvanized iron		F1	Paint					
	A3	Copper					AsFeS	Arsenopyrite	Mon	Monazite
A1 Blown Sands	A4	Lead	GO	Liqui	d effluent		Ba	Barvte	FeS	Pvrite
A4 Raised Beach	A5	Zinc	G1	Farm	effluent		Born	Bornite	Pvrr	Pynhotite
AS Estuanne BO Alluminum	A6	Brass	G2	Dom	estic effluent		Cal	Calcite	Ótz	Ouartz
B3 Corre Gravel	A7	Aluminium	G3	Indus	trial effluent		Cass	Cassiterite	AsS	Realgar
C1 Soil	/						CuFeS	Chalcopyrite	Tiox	Rutile
C2 Marsh	BO	Ceramic	HO	Bulk	industrial waste		Cr	Chromite	Schee	Scheelite
C3 Peat Bog	BI	Potterv	HI	Meta	mine tailings		HøS	Cinnabar	ZnS	Sphalerite
D1 Clay with Flints	B2	Tiles	H2	Coal	tailings		Eni	Enidote	SPS	Stibnite
D3 Scree	B2	Bricks	112	Chin	alay tailings		Fluor	Epicote	Tour	Tourmaline
E0 Glacial	BA	Glazed China	113 ЦИ	Slag	furnace waster)		DPC	Colono	Wolf	Wolfreen
E1 Till	04	Giazeu Giina	114	Slag			C+	Carnat	7.	Zimon
E2 Moraine	0	Class	10	٨	chomicals		GL A	Cold	Cool	Cool
E3 Fluvioglacial		Glass Class alass	10	Agio	-chemicais		Au	Gold	COAL	COal
F0 Made ground		Clear glass	11	Fertu	izer		Hem	Hematite		
	C2	Coloured glass	12	Lime			llm	limenite		
	DO	Plastic					Mag	Magnetite		
	D1	Fertilizer sack					MoS	Molybdenite		

ROCK CLASSIFICATION SCHEME (RCS) For use in recording MAPPED SITE GEOLOGY and A & S SOIL CLAST LITHOLOGY

IGRU	Igneous rock	BA	Basalt	SR	Sedimentary rock	CHLK	Chalk	METR	Metamorphic
DOLR	Dolerite	GB	Gabbro	CONG	Conglomerate	LMST	Limestone	QZITE	Quartzite
LMPY	Lamprophyre	MR	Mafic Rock	SDST	Sandstone	DL SD	Dolomite seds	PSAMM	Psammite
PGGN	Pegmatite (granite)	DUN	Dunite	FAREN	Feldspathic arenite	FEST	Ironstone	PEL	Pelite
PPHY	Porphyry	PDT	Peridotite	SLST	Siltstone	AGAT	E Agate	PEPH Pelite	(Phyllitic)
FELS	Felsite	SEPIT	FE Serpentinite	MDST	Mudstone	CHRT	Chert	SLTE	Slate
GN	Granite	AGG	Agglomerate	OILS	Oil shale	FLNT	Flint	MARBLE	Marble
GD	Granodiorite	TUFF	Tuff	CLAY	Clay	GYPS	Gypsum		
DI	Diorite	ASH	Ash (tephra)	CALSST	Marl	ANHY	Anhydrite		
RY	Rhyolite		-			COAL	Coal	SCH	Schist
AND	Andesite					CMDS	T Carbonaceous	GNSS	Gneiss
DA	Dacite						mudstone	MYL	Mylonite

Table 4: Table summarising instructions for completing a soil site field card (for card version 2005.1)

Card No	Box No	Detail of Entry
1	01-06	Sample Number, comprising 2 figure numeric Atlas Code and 4 figure sample number. Should always be pre-numbered and therefore not entered at site.
1	08-09	Field Procedures protocol, a two digit code specify the fieldwork protocols being used
1	10-11	Sample Types collected at site. Entered at site using appropriate single-digit alphabetic codes as per guidance overlay.
1	12-17	Easting. Exact 6 figure British National Grid (BNG) easting of drainage sample collection location transcribed at site from GPS reading.
1	18-24	Northing. Exact 6/7 figure (BNG) northing of drainage sample collection location transcribed at site from GPS reading. Normally in UK, excepting Orkney and Shetland, box 18 represents a leading 0 which need not be recorded at site and which is not be displayed by GPS.
1	26-28	OS Map Number. Entered at site using the OS published map number on the field map.
1	29	Map Scale. Scale of OS map used in field, entered at site using a code as per guidance overlay.
1	30-35	Collectors. The initials of samplers, entered at site, using 2 or 3 characters each as appropriate. Boxes 31-33 should always give the initials of the sampler who is filling-in the field card while boxes 34-36 give the initials of the sampler undertaking the augering.
1	36-41	Duplicate Sample Number. Will appear pre-numbered at one site in every 100 (1 in 50 for urban areas) and indicates that the samplers should collect a duplicate field sample. The number will be different to that in boxes 1-6, but will be constructed in a similar way with a two digit atlas code and a 4 digit sample number. A second field card will have been issued, next in sequence, with the duplicate sample number in boxes 01-06. This card should be used to make detailed sample and site observations specifically relating to the second or duplicate sample.
1	43-48	Date. Entered at site in DDMMYY format.
1	49	Weather. Entered at site using codes as per guidance overlay to give an indication of recent rainfall pattern.
1	50-61	Land Use. Entered at site using 4 digit alphanumeric codes as per guidance overlay. Boxes 50-61 allow for entry of 4 codes representing different land uses, up to a distance of approximately 300m from the site. They should be entered in order of prominence. Any additional land-uses should be recorded in card 5, Field Data Comments.
1	62-67	Drift Type. Entered at site using 2 digit alphanumeric codes as per guidance overlay, after inspection of site and adjacent area up to a distance of approximately 300m from the site. Information taken from geological map may be used on return to field base to confirm descriptions. The order of observations is in order of prominence. Any further observations should recorded in card 5, Field Data Comments.
1	70	Slope at sample site. Entered at site using 1-digit code as per guidance overlay.
Card No	Box No	Detail of Entry
2	01-70	Site Locality Details. Entered at site to give a clear written description of the sample site location which should enable the site to be readily relocated on foot using only map and compass, without the aid of a GPS. Use 2 compass bearings (and distances) from fixed features readily identifiable on the ground and on the map. e.g 300m/077° from Brown's Hall Farm 460m/154° from Great Breward church. The two compass bearings should be approximately

		perpendicular. Clear standardised abbreviations should be used. Any overspill from boxes 01-72 should be entered in card 5 or on the reverse of the field card as necessary.
Card No	Box No	Detail of Entry
3	01	Observed Bedrock. Entered at site using 1 digit code as per guidance overlay, after site inspection to give indication of abundance of outcrop within 100m of site.
3	02	Mineralised Bedrock. Entered at site after careful visual inspection (and use of hammer) of outcrop within 100m, using a "1" to indicate that minerals of economic or geological interest are present. Left blank if none present. If this box is filled then the following box, 303 -mineralisation style, must be filled and details given in field data comments, noting minerals present, abundance etc., as above. Mineralised bedrock observed between sites, but not within 100m should be described in Field data comments, noting the location relative to site. Such occurrences may relate to more than 1 site.
3	03	Mineralisation Style. Entered at site after careful visual inspection (and use of hammer) of outcrop within 100m, using a 1 digit code as per guidance overlay to indicate style.
3	04	Mineralised Clasts. Entered at site after careful visual inspection (and use of hammer) of clasts at site and in adjacent area, using a "1" to indicate that mineralisation of economic or geological interest is present. Left blank if none present. Where this box is filled the sampler must give details in Field Data comments, indicating minerals present, style of mineralisation and abundance. e.g. 1 large qtz clast containing 2mm thick vein PbS or numerous shale clasts containing disseminated FeS.
3	05-14	Mapped Site Geology. Entered from geological map using Rock Classification Scheme codes as per guidance overlay. Entered at site if outcrop is present within 100m (see box 3/01). The dominant lithology should be recorded first and, thereafter, in order of decreasing abundance. Overspill should be should recorded in card 5, Field Data Comments. Samplers should be encouraged to make further geological observations of outcrop that may influence geochemistry e.g. colour, minerals present etc in card 5.
3	15-35	Contamination. Entered at site based on visual inspection of site and adjacent area of at least 100m. Should also include any contamination encountered in sample during augering. Each box (15-35) represents a different category of contamination which should be marked with "1" if observed. Numerous boxes may be filled at each site. An individual manufactured item that is present may comprise different categories of contaminant type, all of which should be noted. See guidance overlay for clarification of contamination code printed over top of each box. Further details of each contaminant should be given in box 5, Field Data Comments, including, location, size and abundance of each contaminant.
Card No	Box No	Detail of Entry
4	01-03	Depth of Soil Sample A (topsoil) in metres. Measurement in metres from ground surface to bottom of sampling interval – should include any depth of root zone material removed prior to augering. Normally 0.20 or 0.15m. A decimal point is included on the field card.
4	04-05	Colour of Soil Sample A. Entered at site, after visual examination of augered material, using code as per guidance overlay.
4	06-09	Texture of Soil Sample A. Entered at site, after using the "feel method" (Brady and Weil (1999)- see Table 5)) using code as per guidance overlay.
4	10	Moisture content of Soil Sample A. Entered at site after visual and manual examination of augered hole and sample.
4	11	Organic content of Soil Sample A. Entered at site, after visual and manual examination of augered material, using code as per guidance overlay.

4	13-35	Soil Clast Lithology in sample A. Entered at site after careful visual observation at site, area directly adjacent to site and during augering. Use abbreviated rock type names from Rock Classification Scheme as per guidance overlay. Rock types should be entered in order of decreasing abundance. Any overspill or further description should be entered in card 5, Field Data Comments.
4	36-38	Depth of Soil Sample S (subsurface-soil) in metres. Measured in metres from ground surface to bottom of sampling interval – should include any depth of root zone material removed prior to augering. Normally 0.50m but may vary due to encountering bedrock at shallow depth. Where peat cover is present every attempt should be made to penetrate this and collect mineral soil, thus depth may be substantially greater than 0.5m. A decimal point is included on the field card.
4	39-40	Colour of Soil Sample S. Entered at site, after visual examination of augered material, using code as per guidance overlay.
4	41-44	Texture of Soil Sample S. Entered at site, after using the "feel method" (Brady and Weil (1999) - see Table 5) using code as per guidance overlay.
4	45	Moisture Content of Soil Sample S. Entered at site after visual and manual examination of augered hole and sample.
4	46	Organic Content of Soil Sample S. Entered at site, after visual and manual examination of augered material, using code as per guidance overlay.
4	48-70	Soil Clast Lithology in Sample S. Entered at site after careful visual observation of augered material. Use abbreviated rock type names from Rock Classification Scheme as per guidance overlay. Rock types should be entered in order of decreasing abundance with a space left between each entry. Any overspill or further description should be entered in card 5, Field Data Comments.
Card No	Box No	Detail of Entry
5	01	Field Data Comments. Entered at site. Card 5 allows samplers to add further information relating to coded observations in cards 1-4. Where contamination
	onwards	and pan, clast, bedrock minerals are observed further details must be given here. To allow unambiguous digital data entry, each observation should be preceded by the numeric identification of the coded observation to which it relates, e.g. 331 2 rounded grains Au, Indicates that the observation relates to
	inc. back	Card 3, box 31 (pan minerals).
	of field card	Often the comments will exceed the space available in card 5 and should be continued on the unprinted back of the card.

Figure 7: Strahler (1957) system for determining stream order

In order to compare streams within and among drainage areas a hierarchy of streams is determined. According to the Strahler system of stream ordering the end tributaries are designated as first order streams. Two first-order streams merge to form a second-order stream segment; two second-order streams join, forming a third-order and so on. It takes at least two streams of any given order joining to form a stream of the next higher order.

SOIL TEXTURE	CODE	DESCRIPTION
Sand	SAND	Soil consisting mostly of coarse and fine sand, and containing so little clay that it is loose when dry and not sticky when wet. Soil will not cohere into a ball, falls apart.
Silty Sand	SISA	Soil in which the sand fraction is still quite obvious, which moulds readily when sufficiently moist, but in most cases does not stick appreciably to the fingers. Ribbons do not form easily. Feels gritty.
Sandy Clay	SACL	The soil is plastic and sticky when moistened sufficiently, but the sand fraction is still an obvious feature as grittiness is the dominant feel. Forms ribbons longer than 5cm.
Sandy Silt	SASI	Soil in which the fractions are so blended that it moulds readily when sufficiently moist, and sticks to the fingers to some extent. It can, with difficulty, be moulded into ribbons no more than 2.5cm long.
Clay	CLAY	The soil is plastic and sticky when moistened sufficiently and gives a polished surface on rubbing. Capable of being moulded when moist into any shape and taking clear fingerprints.
Silty Clay	SICL	Soil which is composed almost entirely of very fine material but in which the smooth soapy feel prominent. Can form ribbons longer than 5 cm.
Silt	SILT	Soil in which the smooth, soapy feel of silt is dominant. Can form ribbons between 2.5cm and 5cm long.

Table 5: Description of the "feel method" for soil textures (based on Brady and Weil, 1999)

3 Field Database

3.1 INTRODUCTION

Since 1986, field observations recorded on G-BASE drainage and soil field cards have been transferred and stored digitally on computer. In the first instance, Philips PC2000 computers were used, with data being entered using 'Cardbox'TM software. This coincided with the final year of sample collection on the Borders-Farne area (Southern Scotland atlas), and the commencement of sampling of the Tyne-Tees area. Field card data for all Borders samples collected before 1986 were entered retrospectively. Prior to the introduction of in-field digital data capture, all completed field data cards were returned, at the end of the field sampling campaign, to the Survey's offices, where data were manually encoded on binary punch-cards. A trial of a portable punch card machine (see Photograph 1) for one field season was not successful and this method of recording data, although used on some overseas BGS mapping projects, was not adopted by G-BASE.

As the field database developed, a wider range of site parameters were incorporated and dBase IITM was used as the field database software package. In the late 1980s and throughout the early to mid 1990s, computing facilities within the BGS Geochemistry Group were based upon Apple Macintosh machines, and for this reason the database migrated to the Macintosh platform, using the FoxBASE+/MacTM relational database software. Apple Workbook computers were introduced as the standard G-BASE field laptops in the early 1990s, and remained in use until 1997. Data were transferred from the card to the field database at the team's base usually within a day of sample collection, a procedure which continues to this present day. This ensures that any problems with the data recording can be dealt with by the samplers during the time of field work.

Following the BGS corporate policy to use PC rather than Apple computers, G-BASE developed a completely new field database to run on a PC using MicroSoft Windows. Designed using MicroSoft Access 98TM and running on laptop PCs, the prototype database entitled Stream98, was used for field data card capture during the summer of 1998. Similar field databases where also developed at this time for BGS's international geochemical mapping projects (Johnson et al, 2001).

An on-screen version of the field cards, allowing data input to be undertaken in a similar manner to the completion of a field card at site was designed within MS Access, using the 'Create Forms Wizard'. Wherever possible, the input data were restricted to selective definitions, stored in tables within the database. Acceptable codes for input fields are accessed by means of drop-down lists.

Based on this design, a similar MS Access database was developed for digital data from urban areas. The urban field database was first used in 1998 for Peterborough and Corby. Since these initial areas, modified versions of the regional database have been used in urban areas for soil only entry and including a more extensive range of land uses. The soil card version described by this report no longer make the distinction between urban and rural soils and similarly there is no longer any different form of field database for urban areas.

Photograph 1: Portable IBM binary punch card instrument tried in the early days of the project

3.2 CURRENT FIELD DATABASE

The current October 2004 version of the database is a modification of that used in the 2004 summer campaign and includes a wider range of field observations and improved data entry. Using MS Access2000TM software, the database is compatible with the G-BASE field data cards 2005 version. The structure of the main field data table is shown in Table 6 and each field has a brief description of the data type to be entered into it. The code associated with the drainage form (Form_Sedi2005) and soil form (Form_Soil2005) is listed in Appendix 2:.

Data are entered into the database table, which is a single table for both drainage and soil sites, via input forms, which are custom designed to mimic the field cards. The majority of data, which can be entered into each field, are restricted to the content of linked tables and pull-down menus. Examples of these data tables are shown in Table 7 to Table 11. By restricting the input of data in this way, only accepted codes may be entered into the database. This greatly increases database integrity and removes the possibility of erroneous data being entered due to typographic mistakes. Table 12 shows the Combo Box definitions for data entry field *landuse*1. By selecting 'Yes' to 'Limit To List', only data contained in data table *Land Use* (Table 10) are acceptable entries in this field.

Other quality control steps have been built into the data entry process. These prevent duplicate sample site numbers from being entered, and will flag up any sample sites whose National Grid References (NGR) location lie outside the area of the sampling campaign boundaries. These routines are included in the form code listed in Appendix 2:.

▦	Field2005 : Table		
	Field Name	Data Type	Description
•	Project_Code	Number	Two digit code unique to individual Project Area
	Site Number	Number	Four digit site number. Prefixed by Project Code gives unique sample identifier
	Protocol	Text	GBASE sampling protocol used
- 3	Card Version	Text	GBASE field data card used
	Duplicate	Yes/No	Indicates whether a field duplicate was collected
	Samp_C	Text	Indicates whether a sediment sample was collected
	Samp_P	Text	Indicates whether a panned heavy mineral concentrate was collected
	Samp_W	Text	Indicates whether water samples were collected
	Samp_A	Text	Indicates whether a surface soil sample was collected
	Samp_S	Text	Indicates whether a sub-surface soil sample was collected
	Samp_STD	Text	Indicates whether a sample is for control purposes
	Easting	Number	BNG East
	Northing	Number	BNG North
	Ref_map	Number	OS map number
	Map_Scale	Text	Scale of OS map
- 3	Collectors	Text	Collectors initials. Card writer first
	Date	Date/Time	Date of sample collection
	Dup_sample	Number	If field duplicate collected, number of duplicate sample
	Stm_order	Text	Stream order - Strahler's system
	Drain_type	Text	Drainage type
	Drain_cond	Text	Drainage condition
	Weather	Text	Weather conditions
	PPT_orange	Text	Indicates presence of orange precipitates on stream clasts
	PPT_brown	Text	Indicates presence of brown precipitates on stream clasts
	PPT_black	Text	Indicates presence of black precipitates on stream clasts
	Sed_colour	Text	Colour of sediment
	Sed_clay	Text	Indicates clay content of sediment
	Sed_organic	Text	Indicates organic content of sediment
	Contam1	Text	Contamination observed at site which may affect sample and/or contamination within sample
	Contam2	Text	Contamination observed at site which may affect sample and/or contamination within sample
	Contam3	Text	Contamination observed at site which may affect sample and/or contamination within sample
12	Contam4	Text	Contamination observed at site which may affect sample and/or contamination within sample
	Contam5	Text	Contamination observed at site which may affect sample and/or contamination within sample
	Contam6	Text	Contamination observed at site which may affect sample and/or contamination within sample
	Contam7	Text	Contamination observed at site which may affect sample and/or contamination within sample
2	Contam8	Text	Contamination observed at site which may affect sample and/or contamination within sample
	Contam9	Text	Contamination observed at site which may affect sample and/or contamination within sample
	Land_use1	Text	Predominant land use(s) at site
	Land_use2	Text	Predominant land use(s) at site
	Land_use3	Text	Predominant land use(s) at site
_	Clast1	Text	Clasts observed in stream
	Clast2	Text	Clasts observed in stream
	Clast3	Text	Clasts observed in stream
-	Clast4	Text	Clasts observed in stream
-	Clast5	Text	Clasts observed in stream
_		Text	Clasts observed in stream
		Text	Clasts observed in stream
-	Clasto Deducati	Text	Clasts observed in stream
-	Bedrock Deiftet	Text	Indicates presence and amount of bedrock at or very near to site Declarging the severe at site or influencing site
-	Drift1	Toxt	Predominant unit cover at site or influencing site
	Drift2	Text	Predominant drift cover at site or influencing site
2.1	Unit(3	Text	Predominant drift cover at site or influencing site

Table 6: Structure of the MS Access field database table Field2005

Ⅲ	Field2005 : Table		
	Field Name	Data Type	Description
)	Drift4	Text	Predominant drift cover at site or influencing site
1000	Slope	Text	Indicates angle of slope of soil sample site
	Site geol1	Text	If outcrop present, indicates the rock type, as observed by samplers - sediment sites only
	Site geol2	Text	If outcrop present, indicates the rock type, as observed by samplers - sediment sites only
	Cat geol1	Text	If no outcrop present, indicates the rock type as shown on geology map - sediment sites only
	Cat geol2	Text	If no outcrop present, indicates the rock type as shown on geology map - sediment sites only
	Map geol1	Text	Indicates the rock type as shown on geology map - soil sites only
	Map geol2	Text	Indicates the rock type as shown on geology map - soil sites only
	Pan min1	Text	Observed mineral(s) in panned concentrate
	Pan min2	Text	Observed mineral(s) in panned concentrate
	Pan min3	Text	Observed mineral(s) in panned concentrate
	Pan min4	Text	Observed mineral(s) in panned concentrate
	Pan min5	Text	Observed mineral(s) in panned concentrate
	Pan min6	Text	Observed mineral(s) in panned concentrate
1	Min bed1	Text	Observed mineral(s) in bedrock
	Min_bed2	Text	Observed mineral(s) in bedrock
	Min bed3	Text	Observed mineral(s) in bedrock
	Min_clast1	Text	Observed mineral(s) in clasts
1	Min_clast2	Text	Observed mineral(s) in clasts
	Min_clast3	Text	Observed mineral(s) in clasts
	Minbed Style	Text	Style of mineralisation in bedrock
	Wat colour	Text	Stream water colour
1	Susp solid	Text	Indicates presence of suspended solid material in stream water
	SoilA colour	Text	Colour of surface soil
	SoilS colour	Text	Colour of sub-surface soil
	SoilA text	Text	Texture of surface soil
	Depth_A	Text	Depth to base of surface soil sample
	Depth_S	Text	Depth to base of sub-surface soil sample
	Organic_A	Text	Indicates abundance of organic material in surface soil sample
	Organic_S	Text	Indicates abundance of organic material in sub-surface soil sample
	A_clast1	Text	Clasts observed in surface soil sample
	A_clast2	Text	Clasts observed in surface soil sample
	A_clast3	Text	Clasts observed in surface soil sample
	A_clast4	Text	Clasts observed in surface soil sample
100	A_clast5	Text	Clasts observed in surface soil sample
	A_clast6	Text	Clasts observed in surface soil sample
	S_clast1	Text	Clasts observed in sub-surface soil sample
	S_clast2	Text	Clasts observed in sub-surface soil sample
	S_clast3	Text	Clasts observed in sub-surface soil sample
	S_clast4	Text	Clasts observed in sub-surface soil sample
	S_clast5	Text	Clasts observed in sub-surface soil sample
1	S_clast6	Text	Clasts observed in sub-surface soil sample
	A_moist	Text	Indicates moisture content of surface soil sample
	S_moist	Text	Indicates moisture content of sub-surface soil sample
	pH	Number	pH of stream water
	Conduct	Number	Conductivity of stream water
•	Tot_alkali	Number	Total alkalinity of stream water
	Bicarb	Number	Calculated bicarbonate content of stream water
	Monitor	Yes/No	Indicates whether water sample is from a monitor site
1	Monitor Site	Text	If water sample is from monitor site, defines monitor site sample ID
	Comments	Text	Additional information relevant to sample

 Table 6 (cont): Structure of the MS Access field database table Field2005

⊞ C	🖩 Contamination : Table 📃 📕				
	Code	Description	*		
•	AD	METAL	1000		
	A1	Iron / Steel Wire			
	A2	Galvanised Iron			
	AЗ	Copper			
	A4	Lead			
,	A5	Zinc			
	A6	Brass			
	A7	Aluminium			
	B0	CERAMICS			
	B1	Pottery			
	B2	Tiles			
	B3	Bricks			
	B4	Glazed China			
	CO	GLASS			
	C1	Clear Glass			
	C2	Coloured Glass			
	DO	PLASTICS	-		
	D1	Fertiliser Sack			
	EO	RUBBER			
	FO	CHEMICAL			
	F1	Paint			
	G0	LIQUID EFFLUENT			
	G1	Farm Effluent			
	G2	Domestic Effluent			
	G3	Industrial Effluent			
	HO	BULK INDUSTRIAL WASTE			
	H1	Metal Mine Tailings			
	H2	Coal Tailings			
	HЗ	China Clay Tailings			
	H4	Slag (Furnace Waste)			
	10	AGRO-CHEMICALS			
	11	Fertilisers			
	12	Lime			
•					
Rec	Record: 14 4 34 > > > > > > > > > > > > > > > > >				

Table 7: Table "Contamination"

III Rocks2 : Table					
-	Rock_Name	RCS_code			
•	Agate	AGATE			
	Agglomerate	AGG			
	Andesite	AND			
	Anhydrite	ANHY			
2000	Ash	ASH			
	Basalt	BA			
	Breccia	BREC			
	Marl	CALSST			
2	Chalk	CHLK			
-	Chert	CHRT			
	Clay	CLAY			
	Carbonaceous Mudetone				
2000	Carbonaceous Mudstone				
<u></u>	Coal Shale	COAL			
1. 1.	Conglemente	COLORE			
10 11	Dooito	DA			
20 10	Dacite	DA			
	Dionte				
10 10		DL			
1	Dolerite	DULR			
20 -	Dunite				
-	Feldspathic Arenite	FAREN			
	Felsite	FELS			
5 3	Ironstone	FEST			
	Flint	FLNT			
	Gabbro	GB			
	Granodiorite	GD			
2 - 2	Granite	GN			
	Gneiss	GNSS			
	Gypsum	GYPS			
	Hornfels	HNFELS			
	Igneous Rock	IGRU			
	Lamprophyre	LMPY			
	Limestone	LMST			
	Marble	MARBLE			
	Mudstone	MDST			
	Metamorphic Rock	METR			
	Mylonite	MYLO			
	Oil Shale	OILS			
	Peridotite	PDT			
	Pelite	PEL 🗕			
	Pegmatite (Granite)	PGGN			
	Porphry	PPHY			
	Psammite	PSAMM			
2.5	Quartzite	QZITE			
	Rhyolite	RY			
	Schist	SCH			
	Sandstone	SDST			
2. 3	Serpentinite	SEPITE			
	Siltstone	SLST			
	Slate	SLTE			
	Sedimentary Rock	SB			
•	Tuff				
-					
I RE	scoru; 14 1 52 1	F F T UI 52			

Table 8: Table "Rocks2"
	Description	Code	
	Blown Sands	<u>A1</u>	>
	Raised Beach	A4	
	Estuarine	A5	- 12
	Alluvium (Terrace Deposits)	B2	
	Coarse Gravel	B3	
	Soil	C1	
1	Marsh	C2	
	Peat Bog	C3	
1	Clay with Flints	D1	
	Scree	D3	
	Glacial	E0	- 12
1	Till	E1	
1	Moraine	E2	
	Fluvioglacial	E3	
	Made Ground (Undifferentiated)	FO	- 12
Ľ			*

Table 9: Table "Drift"

	Code	Description
•	ABBO	Heather Moor
	AC00	Rough Grazing
	AEAA	Recent Deciduous Forest
	AEAB	Mature Deciduous Forest
	AEBA	Recent Coniferous Forest
	AEBB	Mature Coniferous Forest
	BABO	Pasture
	BDOO	Arable
	C000	Port areas And Airfields
	DACO	Urban Open Space
	DDOO	Recreational
1	E000	Industrial
	EACO	Metal Manufacture
	EBOO	Extractive
*		

Table 10: Table "Land use"

Code	parent	Translation	Definition
7A11	7A10	Gold	Gold
7B11	7B10	Pyrite	Pyrite, Pyrites or Iron Pyrites
7B13	7B10	Pyrrhotite	Pyrrhotite
7B16	7B10	Bornite	Bornite
7B17	7B10	Chalcopyrite	Chalcopyrite
7B41	7840	Galena	Galena
7B42	7B40	Sphalerite	Sphalerite
7B51	7850	Cinnabar	Cinnabar
7B61	7860	Realgar	Realgar
7B64	7B64	Arsenopyrite	Arsenopyrite
7B67	7860	Stibnite	Stibnite
7B71	7870	Molybdenite	Molybdenite
7D11	7D10	Quartz	Quartz, Amethyst, Citrine, Rock Crystal
7D12	7D10	Magnetite	Magnetite
7D31	7D30	Hematite	Hematite
7D51	7D50	Cassiterite	Cassiterite
7D52	7D50	Rutile	Rutile
7DH1	7DH0	Chromite	Chromite
7E11	7E10	Ilmenite	Ilmenite
7F52	7F50	Fluorite	Fluorite
7H13	7H10	Calcite	Calcite
7114	7110	Baryte	Baryte
7J14	7J10	Monazite	Monazite
7L63	7L60	Wolframite	Wolframite
7L64	7L60	Scheelite	Scheelite
7P00	7000	Mica	Mica
7000	7,000	Epidote	Epidote
7Q10	7,000	Olivine	Olivine
7Q40	7,000	Garnet	Garnet
7T26	7T20	Zircon	Zircon or Hyacinth
7V4D	7\/40	Tourmaline	Tourmaline or Schorl

Table 11: Table "Panmins"

😭 Comb	Combo Box: landuse1							
Format	Data	Event	Other	All				
Name			. landu:	se1				
Control	Source		. Land_	use1				
Format .			 					
Decimal	Places		. Auto					
Input Ma	ask							
Row Sou	irce Type		. Table,	/Query				
Row Sou	urce		. SELEC	T DISTINC	ROW [Land Use].[Co	ode], [Land Use	e].[Description] F	ROM [Land Use];
Column	Count		2					
Column	Heads		. No					
Column	Widths		. 1.06c	m;6cm				
Bound C	olumn		. 1					
List Row	s		15					
List Widt	:h		. 7cm					
Status B	ar Text .							
Limit To	List		, Yes					<u>*</u>
Auto Ex	pand		. Yes					
Default	Value		64 J.					
Validatio	n Rule		a (
Validatio	n Text							
Visible .			. Yes					
Display 1	When		. Alway	s				
Enabled			Yes					
Locked .			. No					
Allow Au	toCorrect		Yes					
Tab Stop			. Yes					
Tab Inde	вх		, 14					
Left			. 0.414	cm				
Тор			4.58c	m				
Width .			. 1.393	cm				
Height .			0.466	cm				
Back Sty	/le		, Norma	əl				
Back Col	lor		. 16777	215				
Special B	Effect		Sunke	n				
Border S	ityle		Solid					
Border C	Color		0					
Border V	Vidth		, Hairlin	e				
Fore Col	lor		. 0					
Font Na	me		MS Sa	ns Serif				
Font Size	e		8					
Foot We	iaht		Norma	al				

Table 12: Example of Combo Box definitions for data field "landuse1"

3.3 ENTERING DATA INTO THE FIELD DATABASE

The field database is populated at the field base on a portable PC. Data are usually transferred from field cards the day after sample collection so any problems with the field cards can be resolved with the sample collectors immediately after samples were collected.

The database is loaded by clicking the shortcut on the PC desktop. An autorun macro loads up the following screen (Figure 8).

Figure 8: Field database start-up screen

3.3.1 Add sediment site data

On selecting the "Add Sediment Site Data" option an empty version of the input form (Figure 9) will appear. Nearly all the entries required on the form are selected by drop down lists which are activated by clicking on the little down arrow to the right of each data entry box. The user will be guided from box to box starting on the first row and progressing from left to right. If the user tries to exit to the next record before all required fields are entered then a warning message will be displayed. Fields are described in more detail in Table 3.

- i. *Project* automatically filled with the default number
- ii. *Site* enter 4 digit number. If number has been entered before then a request will be made to re-enter the number
- iii. *Duplicate* If the site is a duplicate site this box should be completed by clicking on it. A box will then appear for the "Dup Site" which should be completed as above. Duplicate forms are then completed as normal cards (see also Section 3.3.4).

5	sedi2005	: Form	
	7	GBASE Stream Sediment Sample Site Data Input Form	GBASE Drainage Card 2005
	Project	Site Duplicate DupSite Sediment Pan Water Easting Northing OSMap MapScale Collectors Date Weather	
	44	9999 C P V 567890 300000 142 1 TRL/SEB 5/11/2004 8 -	•
	Pre	dominant Land Uses Water Colour Suspended Solids in Water Observed Bedrock Drift Influencing Site	New record
	AEAA		STOP
		Site Geology Catchment Geology Observed Panned Minerals	
			Close Form
	Mineralis	sation in Bedrock Style Mineralisation in Clasts Stream Order Drain Type Condition Qtz • • • 1 • Cal • • • 2 • 4 • 4 • 0 Grange Brown Black Colour 2 • 4 • 4 • 1 • 2 • 1 • 3 • LB-•	Clay Organics
		Observed Site Contamination Stream Clast Lithology	
	ANY OTH	HER INFORMATION RELEVANT TO SITE AND/OR SAMPLE	
F	ecord:	6 ▶ ▶1 ▶* of 6	

Figure 9: Stream sediment sample site data input form

- iv. *Sediment* select from list as shown
- v. **Pan** select from list as shown
- vi. *Water* select from list as shown
- vii. Easting and Northing completed as six digit numbers. Values lying outside the area predefined in the Easting and Northing field properties in the database will be rejected. The database manager will define these validation limits when preparing the database before the fieldwork commences

Sediment

Ŧ

- viii. OS Map select from list as shown. The database manager will prepare this list for the field area being sampled so only the map sheets that will be used in the field campaign are shown
 - ix. *Map Scale* select from list as shown

lap Map Scale Collectors	
Norwich & The Broads	7
Peterborough	ł
Ely & Wisbech	ł
Thetford & Diss	ł
Cambridge & Newmarket	
Bury St Edmunds	1
Saxmundham	ł
	ap Map Scale Collectors

- x. *Collectors* entered as collector 1 initials, forward slash, collector 2 initials, e.g. TRL/SEB or NB/CCJ
- xi. Date format is forced into entry as dd-mm-yr
- xii. Weather select from list as shown

xiii. Predominant Land Uses - select from list as shown. Up to three land uses allowed given in order of prominence

	Pre	dominant Land Uses	Water Colour
			·
-	ABBO	Heather Moor	
-	AC00	Rough Grazing	
	AEAA	Recent Deciduous Forest	9
	AEAB	Mature Deciduous Forest	
	AEBA	Recent Coniferous Forest	
	AEBB	Mature Coniferous Forest	
	BABO	Pasture	
	BD00	Arable	ati
Ľ	C000	Port areas And Airfields	
Π	DACO	Urban Open Space	
	DD00	Recreational	
	E000	Industrial	
Г	EACO	Metal Manufacture	
	EB00	Extractive	

Pan

Water

Water

w

- xiv. Water Colour select from list as shown. A very restricted list of water colours are allowed
- xv. Suspended Solids in Water select from list as shown

Sus	pended	Solids in Water	Ť
			t
	0	Absent	
0055	1	Light	$\left \right $
JV	23	Moderate High	ł

٧	/ater C	Colour	Su
	BR CL	Browr	n
Ca	YE	Yellov	٧

xvi. **Observed Bedrock** - select from list as shown

	*	
0 1 2 3	No outo Minor o Modera Abunda	te outcrop nt outcrop
	D-0t-lattice	united City

- xvii. Drift Influencing Site select from list as shown. Four types of drift may be entered ordered in level of prominence
- ٠ -* A1 Blown Sands A4 **Raised Beach** A5 Estuarine Alluvium (Terrace Deposits) B2 **B**3 Coarse Gravel C1 Soil C2 Marsh C3 Peat Bog Clay with Flints D1 D3 Scree EO Glacial E1 Till E2 Moraine S E3 Fluvioglacial FO Made Ground (Undifferentiated)
- xviii. Site Geology select from list as shown. Major site geology in first box, minor geology in second box
- Site Geology Catch --AGATE Agate . AGG Agglomerate AND Andesite ANHY Anhydrite ASH Ash BA Basalt BREC Breccia CALSST Marl Ubserved Site
- xix. Catchment Geology as per Site Geology
- xx. Observed Panned Minerals select from list as shown. Up to six boxes to complete in order of abundance

	Observed Panned Minerals						
-			I				
AsFeS	7864	Arsenopyrite					
Ba	7114	Baryte	100				
Born	7B16	Bornite					
Cal	7H13	Calcite					
Cass	7D51	Cassiterite					
CuFeS	7B17	Chalcopyrite					
Cr	7DH1	Chromite					
HgS	7851	Cinnabar	-				

- xxi. Mineralisation in bedrock select as shown from list. Up to three boxes to complete listed in
 - order of prominence. Details of the lithology associated with the mineralisation are given in the comments field. It is a deficiency of the field card/database that the mineralisation is not formally associated with a lithology. When the Geochemistry Database is populated, to satisfy the requirement that the mineralisation must be associated with a lithology, then the RSC term ROCK should be used.
- xxii. *Style* select as shown. Described for main mineralisation. Other mineralisation to be described in comments box

Mineralisation in Bedrock				le	Mineralisa
· ·	*	*		*	-
AsFeS	7B64	Arsenop	yrite		
Ba	7114	Baryte			
Born	7B16	Bornite			
Cal	7H13	Calcite			H
Cass	7D51	Cassiteri	te		
CuFeS	7B17	Chalcop	yrite		Ľ
Cr	7DH1	Chromite			
HaS	7851	Cinnaba	г		-

Mineralisation in Clasts		Stream Order	Drain 1	
·	-	¥	-	
AsFeS	7B64	Arsenopy	rite	
Ba	7114	Baryte	Barvte	
Born	7B16 Bornite			_
Cal	7H13	13 Calcite		
Cass	7D51	Cassiterit	e	
CuFeS	7B17	Chalcopy	rite	
Cr	7DH1	Chromite		
HaS	7851	Cinnabar		-

Dra	in Type Condition	Stream
Г		Orange
1	Seepage or Spring	F
2	Ditch	
3	Drains - Land Drains	etc.
4	Small Stream < 3m wi	de 🔒
5	Stream 3-10m wide	
6	Small River 10-33m v	vide
7	Large River >33m wi	de 📘
8	Estuary	- H

Con	dition	Stream C	Stream Clast Precipitates			Sediment Compos		
			Brown	Black	Colour	Clay		
1	Dry - N	Dry - No visible surface drainage						
2	Ponde	Ponded with dry sections						
3	Low flo	Low flow - stream bed not covered by running water				water		
4	Moder	Moderate flow - stream boulders visible only						
5	Strong	Strong flow - large boulders visible only						
6	Chann	Channel filled from bank to bank						
7	Overflo	Overflow - stream banks burst						
8	Spate							

- xxiii. *Mineralisation in Clasts* select as shown from list. Up to three minerals can be entered in order of prominence. Style for mineralisation in clasts is not entered here but in the Geochemistry Database is assigned as "undifferentiated clast mineralisation". Similarly the mineralisation is not associated with any of the clast lithologies. On transfer to the Geochemistry Database this will be assigned as "ROCK" lithology.
- xxiv. *Stream Order* select as shown from list

xxv. Drain Type - select as shown from list

xxvi. *Condition* - select as shown from list

xxvii. Stream Clast Precipitates - select from list as shown. For each of the three possible colours an abundance has to be selected

Sediment Composition

Clay

Grey

*

Organics

Dark Brown / Black

Light Brown / Orange

+

Colour

DB-BL

GY

LB-O

Ψ.

- xxviii. Sediment Composition: Colour select from list as shown. There is a very restricted range of colours from which a value must be selected
 - xxix. Sediment Composition: Clay select from list as shown
 - xxx. Sediment Composition: Organics select from list as shown
 - xxxi. Observed Site Contamination select from list as shown. Zero to nine boxes can be completed. Filled in order of abundance

- xxxii. Stream Clast Lithology select from list as shown. Eight boxes available to be listed in order of prominence
- xxxiii. Comments the last box on the form is the comments box into which free text (up to 255 characters) can be entered. Remember to include any comments written on the back of the field card.

A completed form is shown in Figure 9.

	Str	Stream Clast Precipitates						
	Ora	ange	Brown	BI	ack			
		+			-			
		Abse	ent					
	1	Ligh	t					
ast	2	Mod	erate					
	3	Hea	vy	тг	_			
1.1		1						

Stream Clast Lithology						
-						
AGATE	Agate	-				
AGG	Agglomerate					
AND	Andesite					
ANHY	Anhydrite					
ASH	Ash					
BA	Basalt					
BREC	Breccia					
CALSST	Marl	-				

3.3.2 Add soil site data

On selecting the "Add Soil Site Data" option an empty version of the input form (Figure 10) will appear. Nearly all the entries required on the form are selected by drop down lists which are activated by clicking on the little down arrow to the right of each data entry box. The user will be guided from box to box starting on the first row and progressing from left to right. If the user tries to exit to the next record before all required fields are entered Fields are described in more detail in Table 4.

- i. *Project* automatically filled with the default number
- ii. *Site* enter 4 digit number. If number has been entered before then a request will be made to re-enter the number
- iii. Duplicate If the site is a duplicate site this box should be completed by clicking on it. A box will then appear for the "Dup Site" which should be completed as above. Duplicate forms are then completed as normal cards

e Surface Profile

-

А

Eas

99

-

Surface Soil

(see also Section 3.3.4).

- iv. Surface select from list as shown
- v. *Profile* select from list as shown
- vi. *Easting and Northing* completed as six digit numbers. Values lying outside area predefined in the Easting and Northing field properties in the database will be rejected. The database manager will define these validation limits when preparing the database before the fieldwork commences
- vii. **OS Map** select from list as shown. The database manager will prepare this list for the field area being sampled so only the map sheets that will be used in the field campaign are shown
- viii. Map Scale select from list as shown

OS M	Iap Map Scale Collectors	[
		Г
134	Norwich & The Broads	
142	Peterborough	
143	Ely & Wisbech	h
144	Thetford & Diss	F
154	Cambridge & Newmarket	
155	Bury St Edmunds	
156	Saxmundham	
1003	Crycal annoa minorais	

Profile Easting Nort

Profile Soil

999999

99

-

- ix. *Collectors* entered as collector 1 initials, forward slash, collector 2 initials, e.g. TRL/SEB or NB/CCJ
- x. Date format is forced into entry as dd-mm-yr
- xi. Weather select from list as shown

Wea	ather	1.11	r.
	•		
1	Rair	n heavy within 12 ho	urs
4	Rair	n heavy within 24 ho	urs
6	Rair	n heavy within 48 ho	urs
7	Rair	n heavy 2-7 days	
8	Nor	rain within 1 week	

xii. *Predominant Land Uses* select from list as shown. Up to three land uses allowed given in order of prominence

	Pre	dominant Land Uses	Drift Influencing Site	
				-
	DACA	Urban Open Space Tended Bu	at Unproductive	-
	DACB	Urban Open Space Cleared, D	erelict	
	DC00	Caravan/Camp Site		
	DD00	Recreational		
	E000	Industrial		
	EA00	Manufacturing		H
	EAA0	Treatment of Non Metalliferous	Mining Products Other Than Coal	
Г	EABO	Chemical And Allied Trades		F
	EACO	Metal Manufacture		
	EADO	Engineering Manufacture Shipt	buildig And Electrical Goods	
	EAE0	Vehicle Manufacture		
эþ	EAFO	Metal Goods Manufacture Not	Elsewhere Specified	- P

🖼 Soil2005 : Form	
GBASE Soil Sample Site Data Input Form	GBASE Soil Card 2005
1 loget one pupped p	
Predominant Land Uses Drift Influencing Site Slope Image: Comparison of the state	•
Observed Bedrock Mineralisation in Bedrock Mineralisation Styles Mineralisation in Clasts Mapped Site Geology	New record
	<u> </u>
Observed Site Contamination	
	Close Form
Surface Depth Colour Texture Water Content Organics Surface Soil Clast Lithology	
Soil Sample Information	
Profile Soil Depth Colour Texture Water Content Organics Profile Soil Clast Lithology	
ANY OTHER COMMENTS RELEVANT TO SAMPLE AND/OR SITE.	
Record: 14 4 6 + +1 +* of 6	

Figure 10: Soil sample site data input form

xiii. Drift Influencing Site - select from list as shown. Four types of drift may be entered ordered in level of prominence

Observed Bedrock

0

1

2

3

*

No outcrop

Minor outcrop

Moderate outcrop

Abundant outcrop

Mineralisation in -

•

0

xiv. *Slope* - select from list as shown

xv. **Observed Bedrock** - select from list as shown

xvi. Mineralisation in Bedrock - select from list shown minerals occurring. Up to three boxes available listing in order of prominence. If there are more than three minerals than the comment field should be used. Details of the lithology associated with the mineralisation are given in the comments field. It is a deficiency of the field card/database that the mineralisation is not formally associated with a lithology. When the Geochemistry Database is populated, to satisfy the requirement that the mineralisation must be associated with a lithology, then the RSC term

ROCK should be used.

xvii. Mineralisation Style - select as shown. Described for main mineralisation. Other mineralisation to be described in comments box

Mineralisa	Mineralisation in Bedrock		Mineralisation Style		
•	•	-		*	
AsFeS	7B64	Arsenop	yrite		-
O Ba	7114	Baryte		1	
Born	7B16	Bornite		-	
Cal	7H13	Calcite			-
Cass	7D51	Cassiteri	ite		F
CuFeS	7B17	Chalcop	yrite		
el Cr	7DH1	Chromite			hic
HgS	7851	Cinnaba	r		-E

Mineralisa	tion Stylee	Mineralis	ation in
	*	-	*
1 2 3 4 5 ater C 6 7 8 9	None Vein Fault Pod Lens Stratiform Joint or fra Disseminat Alluvial Staining or	cture ed coating	

xviii. Mineralisation in Clasts - select as shown from list. Style for mineralisation in clasts is not entered here but in the Geochemistry Database is "undifferentiated assigned as clast mineralisation". Similarly the mineralisation is not associated with any of the clast lithologies. On transfer to the Geochemistry Database this will be assigned as "ROCK" lithology.

Mineralisa	Mineralisation in Clasts			Mapped Site Geolo		
+	-	*		-		
AsFeS	7B64	Arseno	pyrite		- A	
Ba	7114	Baryte	-			
Born	7B16	Bornite				
Cal	7H13	Calcite	Calcite			
Cass	7D51	Cassite	rite			
CuFeS	7B17	Chalco	pyrite			
Cr	7DH1	Chromit	te			
HgS	7851	Cinnab	ar			
*			-	*	*	

*

Observed Site Contamination

-

-

•

nten

tenl

Π

.

Agate

Agglomerate

Andesite

Anhydrite

Ash

Basalt

Marl *

-

PLASTICS

RUBBER

Paint

CHEMICAL

Farm Effluent

Fertiliser Sack

LIQUID EFFLUENT

Domestic Effluent

DO

D1

FO

F1

GO G1

G2

e EO

Breccia

Mapped Site Geology

+

AGATE

AGG

AND

ASH

BREC

CALSST

BA

nil

ANHY

xix. Mapped Site Geology - select as shown from list. There are two boxes for site geology, the first box should be for the major occurrence

xx. Observed Site Contamination - select from list as shown. Zero to nine boxes can be completed. Filled in order of abundance

- xxi. Surface Soil Sample Information: Depth select from list as shown. Dept to base of sample in metres.
- xxii. Surface Soil Sample Information: Colour select from list as shown. There is a very restricted range of colours from which a value must be selected. These colours are translated into Munsell colour codes when transferred to the Geochemistry Database.

Colo	ur Textu	re
	-	-
BL	Black	
DB	Dark Brown	n 占
GR	Green	
GY	Grey	
LB	Light Brown	n 📘
OR	Orange	
RE	Red	
YE	Yellow	

New record

	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		Texture	Water Conte
XX111.	Surface Soil Sample Information: Texture - select from	n list as shown		
			CLAY	Clay
			CLSA	Clayey Sand
			SACL	Sandy Clay
			SAND	Sand
			SASI	Sandy Silt
			SICL	Silty Clay
			SILT	Silt
			SISA	Silty Sand

- xxiv. Surface Soil Sample Information: Water Content select from list as shown
- xxv. *Surface Soil Sample Information: Organics* select from list as shown
- Water Content Organics T
 Dry 2
 Damp Wa 3
 Waterlogged

 xxvi. Surface Soil Sample Information: Surface Soil Clast Lithology - select from list as shown.
 Provision for up to six lithologies to be entered in order abundance

Surface Soil Clast Lithology								
-	•	-	-					
AGATE	Agate							
AGG	Agglomerate							
AND	Andesite		plogy					
ANHY	Anhydrite							
ASH	Ash							
BA	Basalt		5					
BREC	Breccia							
CALSST	Marl		-					

- xxvii. *Profile Soil Sample Information* entered as per surface soil sample information described above.
- xxxiv. *Comments* the last box on the form is the comments box into which free text (up to characters) can be entered. Remember to include any comments written on the back of the field card.

3.3.3 Add water data

Results from field base determinations of pH, conductivity and total alkalinity on the stream water samples are added using this menu option. These are transferred from the field water data notebook and will include the daily water monitor site sample. Data are indexed first on date, then on site number to facilitate ease of entry. A filter selects only site numbers where a 'W' has

been entered to indicate that a water sample was collected from that site. An example entry form is given in Figure 11. If a particular water sample is from a water Monitor Site, the 'Monitor Site' checkbox on the input screen must be clicked to bring up the data entry field for the Monitor Site Sample ID (shown on Figure 12).

Stre	am Water	Data Inp	out Form	GBA. 200	5E 15
Project	Site Number 5623	Sample Type	Collection date	•04 •	
рН	Conductivity	Total Alkal	inity Monitor Sil	e 🗆 Next red	cord
				Close F	orm

Figure 11: Form for entering stream water field analyses

Strea Project 44 PH 7.00	am Water Site Number 5623 Conductivity 250.0	Data Input F Sample Type Collec W 2 Total Alkalinity 130.0	Form ction date 6/11/2004 Monitor Site IV MA1	GBASE 2005	
				Close Form	

Figure 12: Stream water data input form for water monitor site

3.3.4 Add control samples

Within each batch of 100 samples, two numbers are allocated to G-BASE reference materials (coded as STD), and a further two numbers to laboratory splits, or sub-samples, of each field duplicate pair (coded SSA and SSB). Two sample numbers are also allocated to blank water samples (BW), inserted for quality control purposes during analysis of field water samples. This information is entered by selecting the 'Add Control Samples' option from the main menu (Figure 8) which opens the dialogue screen shown in Figure 13.

Figure 13: Control sample data entry form

Where the control sample type is either SSA or SSB, the type of the original sample must also be entered. In the case of soils, this is simply 'A' ('S' samples are not routinely analysed). In the case of sediments, this is 'C' and 'W' (see Figure 14) (unless the sample is from a dry site, in which case only 'C' applies).

E Control : Form
Control Sample Data Entry Form Project Site Control Sample Type Soil SS Sediment SS Water SS 44 5689 SSA SSA Image: Control Sample Type Soil SS Sediment SS Water SS 44 5689 SSA Image: Control Sample Type Soil SS Sediment SS Water SS 44 5689 SSA Image: Control Sample Type Soil SS Sediment SS Water SS 44 5689 SSA Image: Control Sample Type Image: Control Sample Type Image: Control Sample Type Mail Mail Mail Mail Mail Mail Mail Mail
Record: 14 4 15 + + + of 15

Figure 14: Control sample data entry form with sample type entered

In order to quantify the relative amount of error associated with sampling, sample preparation and analysis, a duplicate pair of field samples is routinely collected within each batch of 100 samples. During the entry of normal sample sites (drainage or soil), a field duplicate is recorded by clicking on the 'Duplicate' check box. This action activates data entry boxes to record the duplicate type (DUPA or DUPB) and the duplicate sample site number (Figure 15). On moving to the following field after entering the duplicate sample site number, the 'Dup Site' data field boxes are deactivated and become hidden once more.

88 S	edi2005	: Form								
		GE	ASE	Stre	am S	edir	nent	t San	nple	Site
	Project	Site	Duplicate	Dup Site	Sedimen	Pan	Water	Easting	Northina	OS Mar
	44	4569		DUPA				999999	999999	
	📰 Sed	i2005 :	Form							
	0	[GBA	SE S	trear	n Se	dim	ent S	amp	le Site
		<u></u>		2000						
	P I	roject	Site Dup 4512	licate Du	µpSite Se UPB <u>▼</u> [ediment	Pan \	Vater E	asting No 199999 S	orthing OS Ma 999999
		Prec	lominant La	nd Uses	4569	ter Colour	Susper	nded Solids	in Water	Observed Be
	Ī	_	-			•]			

Figure 15: Example screens for the entry of DUPA and DUPB samples

3.4 END OF SEASON ERROR CHECKING THE FIELD DATABASE

At the end of each field season, two to three days (depending on the length of field season) are put aside for the voluntary workers (VWs) and team leaders to check that the information on the field cards, field database and map stable base is correct.

There are 2 distinct phases in checking the database:

- Cross checking that the sample points have been plotted in the correct place on the stable base map using the information on the field cards
- Checking that the information on the first line of the field card is correct within the database

3.4.1 Cross checking the stable base

Each pair of VWs is issued with a batch of 100 field cards to check. All cards in a batch will be either soil or drainage samples. One VW will read out the coarse grid reference from the field card, the second then locates the grid square and will read out the sample number in that square. If this is incorrect this can be changed on the stable base map immediately. The VW checking the stable base will then read out the fine grid reference of the sample (with the help of a Knox Protractor) and the VW with the field cards will check that this is correct within 20 m. If the point has been incorrectly plotted it is repositioned in the correct location. When the batch of 100 cards has been checked, the pair will be issued with the next batch of 100 field cards and swap roles.

3.4.2 Checking the field database

To check the field database against the field cards, the team leader will print out the information shown in Figure 16 to match up with each batch of 100 field cards. Each pair of VWs is then issued with the printout and the corresponding batch of 100 field cards. One VW will read out the top row of information from the card, the other VW will check that this information matches the database. Any discrepancies between the cards and database will be resolved immediately and corrections to be made to the database will be marked on the printout. The team leader or an experienced voluntary worker will make any changes to the actual database.

	Microsol	ft Exce	el - Bookt													- 🗙
	<u>File Edit</u>	⊻iew	Insert Forma	it <u>T</u> ools <u>D</u>	ata S-PLUS	Window H	elp								-	8 ×
	i 🖉 🔛	A	a 🖪 🖤	ta 🛍 🕯	ο 🖌 🍓 Σ	f× ⊉↓	11 🖸 🖓	» Arial		• 10 • I	3 <i>I</i> U	E = =	1	% 💷	- 🕭 - <u>A</u>	- »
	D13	-	=					12								
	A	< T	В	С	D	E	F	G	Н	1	J	K	L	M	N	-
1	Project	Code	Site_Numbe	er Duplica	te Samp_O	Samp_	P Samp_W	Samp_A	Samp_S	Samp_STD	Easting	Northing	Ref_map	Collectors	Date	
2		45	5	0 FALS	E			A	S		636419	263317	15	6 LAB/MRK	25/08/2004	
3		45	5	1 FALS	E			A	S		640692	259136	15	6 tb/dem	27/08/2004	
4		45	5	2 FALS	E			A	S		642278	255555	15	6 dem mrk	30/08/2004	
5		45	5	3 FALS	E			A	S		642508	257867	15	6 tb/dem	27/08/2004	
6		45	5	4 FALS	E			A	S		638424	259613	15	6 dem/tb	27/08/2004	
7		45	i	5 FALS	E			A	S		632432	247345	16	9 tb jt	30/08/2004	
8		45	5	6 FALS	E			A	S		638441	251401	15	6 skp smk	30/08/2004	
9		45	i .	7 FALS	E			A	S		646343	259239	15	6 dm/skp	27/08/2004	
10		45	i	8 FALS	E			A	S		633315	246544	16	9 jt tb	30/08/2004	
11		45	5	9 FALS	E			A	S		635151	250393	15	6 jt tb	30/08/2004	
12		45	i 1	0 FALS	E			A	S		617901	238095	16	9 SKP/JT	31/08/2004	
13		45	5 1	1 FALS	E			A	S		617288	240110	16	9 SKP/JT	31/08/2004	
14		45	5 1	2 FALS	E			A	S		640857	255382	15	6 dem mrk	30/08/2004	
15		45	5 1	3 FALS	E			A	S		623611	248765	16	9 jt/dem	28/08/2004	
16		45	5 1	4 FALS	E			A	S		641447	250676	15	6 skp smk	30/08/2004	
17		45	5 1	5 FALS	E			A	S		638292	257149	15	6 lab/pad	27/08/2004	
18		45	5 1	6 FALS	E			A	S		643449	252333	15	6 mrk/smk	27/08/2004	
19		45	5 1	7 FALS	E			A	S		645069	252715	15	6 smk/mrk	27/08/2004	
20		44	L 1	8 FALS	E			A	S		635481	256867	15	6 TB/PAD	26/08/2004	
21		45	i 1	9 FALS	Ê			A	S		638692	255393	15	6 lab/pad	27/08/2004	
22		45	5 2	0 FALS	E			A	S		632858	251711	15	6 pad dm		
23		45	5 2	1 FALS	E			A	S		632107	245116	16	9 pad/mrk	28/08/2004	
24		45	5 2	2 FALS	E					STD						
25		45	5 2	3 FALS	E			A	S		625968	246445	16	9 lab/skp	28/08/2004	
26		45	5 2	4 FALS	E			A	S		636233	249149	16	9 JT/TB	30/08/2004	
27		45	5 2	5 FALS	E			A	S		635453	246501	16	9 tb jt	30/08/2004	
28		45	5 2	6 FALS	E			A	S		639258	256873	15	6 pad/lab	27/08/2004	
29		45	5 2	7 FALS	E			A	S		644223	253813	15	6 dem mrk	30/08/2004	
30		45	5 2	8 FALS	E			A	S		637831	254343	15	6 lab/pad	27/08/2004	
31		45	i 2	9 FALS	E			A	S		631202	252315	15	6 pad dm	30/08/2004	
32		45	i 3	0 FALS	E			A	S		633292	258344	15	6 kjg lab	30/08/2004	
33		45	i E	1 FALS	E			A	S		643152	254842	15	6 dem mrk	30/08/2004	
34		45	i B	2 FALS	E			A	S		632509	259505	15	6 KJG/SMK	26/08/2004	
35	L	45	il 2	3 FALS	F			A	S		634625	251465	15	mh han A	30/08/2004	
•	< > > > > > > > > > > > > > > > > > > >	Sheet	t1 / Sheet2 /	(Sheet3 /						•	1					
Rea	ady													1	JUM	

Figure 16: Example of field database printout (in MS Excel) used for checking

4 Transfer of field database into the Geochemistry Database

4.1 INTRODUCTION

Since the Geochemistry Database became active in the 1990s the role of transferring the field data from the G-BASE field database to the corporate ORACLE database has been shared by the G-BASE data manager and the Geochemistry Database manager (Bob Lister and Alan Mackenzie, respectively). Other geochemical data, principally that from the Mineral Reconnaissance Programme (MRP), has been loaded by Sue Hobbs. The transfer of G-BASE field data from one database to another has not been a high priority or resourced sufficiently, and much of the field data carefully collected by G-BASE remains unloaded. This manual seeks to establish protocols to address problems experienced during the past ten years of loading G-BASE field data. These include:

- the absence of a written protocol for the entire procedure from field card to the Geochemistry Database
- no clear statement of who is responsible for doing what in the process
- inadequacies in the Geochemistry Database for loading useful site and sample information from G-BASE field cards
- ad hoc use of undocumented "dummy fields" in the Geochemistry Database
- changes in corporate coding that have been introduced without considering the impact on the G-BASE codes
- failure to correctly translate simple codes used by G-BASE to more complex coding systems used by the Geochemistry Database
- reluctance to use ORACLE databases by G-BASE and BGS staff who have not had sufficient training or knowledge of accessing BGS ORACLE databases

This report does not seek to correct errors that already exist in the Geochemistry Database. That needs to be done during a more comprehensive audit and quality assessment of the database. The report hopes to establish a more systematic approach to the loading of field data from 2005 onwards so we can be confident as to the quality of site and sample information held in the database. Furthermore it is also important to establish the principal that the recording of field data by student samplers has to be done in a way that is efficient and simple for the samplers. The coding of field cards should not be driven solely by the requirements of the Geochemistry Database. However, to achieve this, data managers must establish and document satisfactory translations of codes to transfer data from the field database to the Geochemistry Database.

The unique sample ID in the Geochemistry Database is a combination of the **Numbering System**, **Project**, **Siteno**, **Sample Type** and **Duplicate** columns (see Appendix 1: for domain definitions), though in G-BASE the **Duplicate** field is redundant as duplicate samples from the same site have a different site number. In addition to these fields every unique sample ID should also be geographically referenced with **Easting** and **Northing**. These six columns are therefore the minimum compulsory requirement for entry into the Geochemistry Database from the G-BASE field database (the **Numbering System** is implicit and always equals 4 for G-BASE samples). Whilst it is a rule that no G-BASE chemical results are loaded to the Geochemistry Database without being geographically referenced, it must be noted that some non-

geographically referenced geochemical data from non-G-BASE sources already exists in the database. With the transfer of raw analytical data direct from the laboratories to the Geochemistry Database via the BGS Laboratory Information Management System (LIMS), it has now also become necessary to load "field" data information for control samples, some of which will not have geographical coordinates.

Site and sample information from the field cards are used to interpret results and certain fields can be very useful for grouping data (e.g. by land use) or retrieving samples of interest (e.g. all samples in which gold was observed in the panned concentrate). Example retrievals from the Geochemistry Database using field card information are given in Appendix 3:.

Information required on the field cards has been developed over more than 35 years and is useful otherwise it would not be recorded. It is therefore desirable that as much of the field card information as possible be transferred into the Geochemistry Database. It is also recommended that from 2005 onwards the field cards are routinely scanned so the entire card is available digitally for the geochemist to use in interpretation. Currently, digital methods of field data entry are under development (see Section 2.3) but it is envisaged that field cards will continue to be used as the definitive hardcopy record of a sampled site.

Figure 17: Figure summarising the subject areas in the Geochemistry Database to which field card columns are mapped

Fieldname	e.g. row 1	e.g. row 2	Comments
PROJECT_CODE	42	42	
SITE NUMBER	1	2	
SAMPLING_PROTOCOL			
CODE VERSION			
DUPLICATE	FALSE	FALSE	
SAMP C	C	C	
SAMP P	P	P	
SAMP W	W	W	
SAMP A			
SAMP S			
SAMP STD			
	423310	424020	
NORTHING	338200	339140	
	128	128	
MAP SCALE	120	120	field database to translate 1 to 50
	sc/ic	IC/SC	
DATE	17/06/1997	17/06/1997	
	17,00,1331	17,00,1337	
STM ORDER	3	3	
	3	3	
	4	4	
WEATHER	4	4	
	3	4	
	1	1	
	1	1	
SED_COLOUR	LD-U	LD-U	
SED_CLAT	1	1	
SED_ORGANIC	2		
CONTAMO	AT	ВЗ	
	B0		
CONTAMS			
CONTAMS			
	D 4 D 6	D 4 D 6	
LAND_USE1	BABU	BABU	
LAND_USE2	AEAA	AC00	
LAND_USE3	ODOT	ODOT	
CLASI1	SUSI	SUSI	
CLAST2		MDST	
CLASI3		QZIIE	
GLASIA			
CLASI5	MDST		
CLASI6			
CLASI7			
CLAST8			
BEDROCK	1	1	
DRIFT1	C1	C1	
DRIFT2		E1	
DRIFT3			
DRIFT4			

continued...

Table 13: Example of field data in EXCEL format ready for loading to the Geochemistry Database

(Note that the columns and rows have been transposed to fit on the page. For loading into the database using the LOADER application this file would be called field_data.xls)

Fieldname	e.g. row 1	e.g. row 2	Comments
RELIEF			
SITE_GEOL1			
SITE_GEOL2			
CAT_GEOL1	3D00	3D00	always taken from map
CAT_GEOL2	3S00	3S00	always taken from map
MAP GEOL1			always taken from map for soils
MAP GEOL2			always taken from map soils
PAN MIN1	7D31	7E11	
PAN MIN2	7T26	7T26	
PAN MIN3	7E11	7B41	
PAN MIN4			
PAN MIN5			
PAN MIN6			
MIN BED1		7D11	
MIN BED2		7011	
MIN BED3			
MIN_CLAST1			
MIN_CLAST3			
MINED STYLE			
	v	v	
	1	1	
	1	1	
A_CLAST1			
A_CLASTS			
A_CLASTS			
A_CLASIO			
S_CLASTI			
S_CLAST2			
S_CLAST3			
S_CLAST4			
S_CLASIS			
S_CLASI6			
	7.07	7.00	
рн	7.87	7.99	
	563	550	
IUI_ALKALI	147	135	
BICARB			= 101_ALKALI * 0.8303
COMMENTS	168 BARBED	167 RED BF	free text

Table 13 continued...

4.2 SITE AND SAMPLE INFORMATION TRANSFERRED FROM FIELD CARD

A diagrammatic representation of the information transferred from the field cards is given in Figure 17. Harris and Coats (1992) divide the complex Geochemistry Database into a number of subject areas - Locations; Location Descriptions; Samples; Sample Descriptions; Batch and Sample Information; and Analyte Determinations. A comprehensive list of all fields and their translation to Geochemistry Database columns is given in Appendix 4:. The detailed site description is not transferred to the Geochemistry Database.

As information is transferred from field card to field database, from field database to EXCEL spreadsheet and from EXCEL spreadsheet to the Geochemistry Database via the LOADER program there are a number of translations and additions that are carried out. These changes are as follows:

4.2.1 Transfer from field card to field database

The field database is not a digital replica of the field card columns. This is because space on the A5 field card is limited so entries that may apply to only a very small percentage of sites (e.g. observed mineralisation) are accommodated in the free text comments box rather than having dedicated columns. Extra fields are therefore generated in the field database which are not on the field card. The inputting of field cards into the field database is discussed in Section 3.3 and this describes how additional fields in the field database are derived from information recorded on the field card.

4.2.2 Transfer from field database to MS EXCEL Spreadsheet

Before the field database is exported to an MS EXCEL spreadsheet the MS Access database is subjected to a number of checking procedures described in Section 3.4.2. Water analyses (pH, conductivity and total alkalinity) carried out at the field database are added to the database from the "water chemistry book". These data represent additional information not recorded on the field cards.

4.2.3 Reformatting MS EXCEL Spreadsheet for LOADER application

An EXCEL spreadsheet example of a reformatted field database (including two rows of data) is given in Table 13 (though note that rows and columns have been transposed to fit the table on the page). Field data for loading into the Geochemistry Database needs to be in the form of a MS Excel spreadsheet called **field_data.xls** and having one or more of the columns that are listed in Table 13 and Appendix 4:. It is the responsibility of the G-BASE data manager or their deputy to prepare the Excel spreadsheet for data transfer. Columns do not have to be in any particular order but it is most important that for the LOADER application to work **the column headings must be exactly as given.** When drainage site information is being added the "Bicarb" field is added to the field data. This is derived from the "Tot_alkali" field and is equal to (Tot-alkali x 0.8303).

It should be noted that the field data transfer procedure now includes the loading control sample information to the Geochemistry Database. In the Excel spreadsheet for transferring data there will be three fields. DUPLICATE, SAMP_STD and REL_SAMP. The first has either a TRUE or FALSE value, it's a bit obsolete but is in the field database and will maintain a consistency with past loaded field data. SAMP_STD will have one of the codes given in Table 14. DUPC, SSC, DUPD and SSD are extra control samples used in urban soil sampling.

DUPA	Duplicate A (original sample)
DUPB	Duplicate B (collected at same site as Dup A)
DUPC	Duplicate C (original sample)
DUPD	Duplicate D (collected at same site as Dup C)
SSA	Subsample A (laboratory replicate of DUPA)
SSB	Subsample B (laboratory replicate of DUPB)
SSC	Subsample C (laboratory replicate of DUPC)
SSD	Subsample D (laboratory replicate of DUPD)
STD	Secondary ref. material (SRM) for A,S,C and W
BW	Blank water used only for W

Table 14: Table showing the control sample codes entered in the field database

The related sample number field (REL_SAMP) was previously called Dup_Sample but has changed its name because it should also include information about subsample number pairs. The REL_SAMP field will contain an integer site number of the related sample i.e DUPA will contain the site number of DUPB, DUPB will contain the sample number of DUPA; SSA will contain the sample number of DUPA; SSB will contain the sample number of DUPB; DUPC will contain the sample number of DUPD, DUPD will contain the sample number of DUPC; SSC will contain the sample number of DUPC; SSD will contain the sample number of DUPD. The REL_SAMP will be empty for STD and BW.

It will be important that the G-BASE data manager maintains a table indexing which standards correspond to which site numbers, in the case of water the standard will be different from the sediment standard, even though the sample number will be the same.

4.3 G-BASE BULK DATA LOADING APPLICATION (LOADER)

4.3.1 Introduction

G-BASE field data can be loaded using the LOADER application written by Alan Mackenzie (Mackenzie, 2002). The LOADER is a 16 Mbyte MS Access 2000 application that replaces the previous data loader program that was introduced in 1994 (Patel and Mackenzie, 1994). The original complex application used ORACLE SQLFORMS v4.5 and ran on a UNIX system. It was used for ten years but simpler MS Access applications have now made it obsolete, particularly as the need to load variously formatted text files of MRP data no longer exists. LOADER is a more specific data loading program designed to load G-BASE and GSUE field and analytical data whereas the initial application had broader application in that it allowed any geochemical data to be added. LOADER will load standard G-BASE sample types, i.e. soils, stream sediments, waters and panned concentrates. However, it can also be used to load non-G-BASE field card data, for these sample types if the data have been correctly formatted.

4.3.2 Requirements

LOADER is available for any member of the G-BASE team to use. However, loading data to the Geochemistry Database should only be done with the approval of the Geochemistry Database manager. In order to use LOADER the user requires the MS Access application *load_geochm.mdb* with ODBC (Open Database Connectivity) installed, including setting up an ORACLE data source called "kk". The user must have an ORACLE ID and password, and have select and insert ORACLE privileges on the Geochemistry Database tables and the copies of them in the 'acma' schema. Permissions to access directories in which files are located and MS Access permissions also have to be correctly set. This complexity of requirements will mean that an ORACLE and MS Access expert is required to set up the application on your PC before you can commence work.

Data are loaded from imported MS EXCEL files, one for field card data and one for chemical analyses. They do not need to be loaded at the same time, as analytical data does not require field card data to have been loaded to the database and vice versa. This account is concerned only with the loading of the field card data.

The LOADER application when run will first check to see if the sample site information has already been loaded. Only sample sites **not** previously loaded will be appended. The application cannot be used to modify existing records. Any existing data that needs replacing will have to be deleted from the Geochemistry Database first.

4.3.3 LOADER Design

The design of LOADER relies on a series of queries, run within a macro that load data to temporary tables in MS Access, and from here they are transferred to the Geochemistry Database after a series of checks. LOADER relies on a large number of predefined MS Access queries and hence requires the column names of data to be loaded which must be consistent with those expected by the query.

Within the application there are a number of procedures that are executed to convert or translate fields from the field database into correctly coded fields for the Geochemistry Database:

<u>Profile soil site number</u>. Historically G-BASE has numbered soils collected at a single location in a different way to the MRP numbered soils. According to the database design samples collected down an auger hole are not from the same site as although the x and y coordinates will be the same (for a vertical hole), the z (height) coordinate will be different. For logistical and quality control reasons it is far easier for G-BASE to assign a single site number to the A

(surface) and S (profile) soils. In order to comply with the Geochemistry Database design the profile (S) soils have to be renumbered when entered into the database. The LOADER program automatically adds 50 000 to the S sample site number. This soil site number renumbering should not be confused with the renumbering process described by Coats (2004) in which errors in MRP soil sample numbering required 10 000 to be added to some of the MRP soil numbers in order to maintain the uniqueness of site numbers.

<u>Translation of G-BASE soil texture codes to Geochemistry Database texture codes</u>. Soil textures in G-BASE are described by a series of simple codes listed in Table 5. The Geochemistry Database uses a different more complex system of codes and these are given in Appendix 1: (domain table **BGS_MTA_DOM_SOIL_TEXTURE**). The LOADER program translates the codes according to those listed in Table 15.

_ G_BASE TEXTURE _	GEOCHEM_TEXTURE
CLAY	К
SAND	A
SASI	D
SILT	1
SICL	Μ
SISA	С
SACL	J

	Table 1	5: Ta	ble show	wing co	ode tra	nslations	for	soil	texture
--	---------	-------	----------	---------	---------	-----------	-----	------	---------

<u>Translation of colour codes</u>. G-BASE uses a very simple system of colour descriptions for the various types of sample media. Describing colour is a very complex process and is very subjective according to lighting conditions and "wetness" of sample. G-BASE sample descriptions only allow a few colours to be used in descriptions and these need to be translated into a Munsell colour code, which is actually made up of four components - hue, color, value and chroma. The translations applied in the LOADER program are listed in Table 16. The field database should not include any colours other than those listed.

G-BASE field	G-BASE colour code	MUNSELL_ HUE	MUNSELL_ COLOR	MUNSELL_ VALUE	MUNSELL_ CHROMA
Sed colour	GY	0	Ν	5	0
	LB-O	10	YR	5	8
	DB-BL	10	YR	2	2
Wat colour	BR	7.5	YR	5	3
	YE	5	Y	8	8
	CL	0	Ν	0	0
SoilA_colour & SoilS_colour	BL	0	Ν	2.5	0
	DB	7.5	YR	3	3
	LB	7.5	YR	6	3
	RE	10	R	5	8
	OR	10	YR	6	8
	YE	5	Y	8	8
	GR	5	G	6	2
	GY	0	Ν	5	0

Table 16: Table showing translation of G-BASE colours to Munsell colour codes

<u>Abundances.</u> The Geochemistry Database uses numbers to indicate relative abundance, 1 being more abundant than 2 which is more abundant than 3 and so on. G-BASE also uses the numbers 1, 2 and 3 to indicate abundance but 3 is used to indicate abundant/heavy whilst 1 indicates light/none. For the following fields the LOADER program reverses the G-BASE codes, ie.

replaces 1 with 3 and 3 with 1: PPT_orange, PPT_brown; PPT_black; Sed_clay; Sed_organic, Organic_A and Organic_S.

4.4 USING LOADER

Once the data has been reformatted into the format required for using LOADER (see section 4.2.3) the program can be used to load site and sample information to the database. On opening the MS Access application (**load_geochem.mdb**) an auto-run macro will present the user with an option screen like that shown in Figure 18. A help button is present to give the user guidance.

GBASE_LOADING : Form		
GBASE	DATA LOADING FACILITY	Help
E	DEFAULT FIELD CARD VALU	JES
LOCATION Grid Derivation Knox protractor Grid Accuracy 10m Area code CATH SEDIMENTS Sampling method Panning mesh_size_passed(MicroM) 150 mesh_size_not_passed(MicroM Active_fixed? Active sedimer	GENERAL COLOUR_METHOD Colour names COLOUR_STATE Undifferentiat numbering_system: 4. confidentiality 4. WATER Sampling method Bottling	PANNED SEDIMENT mesh_size_passed (MicroM) 2000 mesh_size_not_passed (MicroM) 150 SOILS Sampling method Hand Augering ▼ mesh_size_not_passed (MicroM) 150 mesh_size_passed_s_soils(MicroM) 150 mesh_size_passed_a_soils(MicroM) 150 mesh_size_passed_a_soils(MicroM) 2000
Load GBASE field card data to temp geochemistry database transfer field card data from temp to geochem	View valid codes + column name View loading logfile	s Load GBASE analysis results data to geochemistry database
Record: 1 / 1 / 1 / 1	I	

Figure 18: Opening option screen for the LOADER application

The user will be prompted for an ORACLE ID and password.

It can be noted from the screen that there are a number of implicit fields that are requested by the use of drop down lists. These should be completed for the sample media types that are being loaded. A summary of the field data names and the Geochemistry Database tables to which they are loaded to is given in Appendix 4:.

The first step is to import the field data into the MS Access application from an EXCEL file called field_data.xls that has the same columns as those given in Table 13. This is done by clicking the "Load GBASE field....." button at which point the user will be prompted to give the path and filename for the field data to be imported. This must be a MS EXCEL file in the format described previously having correctly named column headings and residing in the same directory as the LOADER application. The minimum number of columns required are the **Project_code**, **Site_Number** and at least one of the sample type fields (i.e. **Samp_***).

Clicking the "Load G-BASE field card data....." button will then instigate a number of procedures. The records imported will be checked against existing data in the Geochemistry Database to see if data have already been loaded and basic tests on the data are done to make sure the minimum field information has been provided so loading does not break any integrity constraints (e.g. primary key duplication) in the dataset.

Data are transferred to a temporary, empty copy of the geochemistry database and LOADER then checks data values. LOADER only gives an error message to show the table, column and the code in the column that have errors but does not show which rows in the G-BASE data file are wrong. If errors are found during loading the data are not appended to the Geochemistry Database. The G-BASE data manager must correct errors in the MS EXCEL spreadsheet before resubmitting to the LOADER application.

Finally, by clicking on "transfer field card data from the temp..." button data are then appended to the main database. This stage would be done by the Database Manager.

Once all data has been loaded, a log is stored in the *loading_log* Access data table of how many rows were loaded to which table. This log is accessible from the main form.

4.5 FIELD DATA PREVIOUSLY LOADED

G-BASE field data that have been loaded between 1998 and 2004 are summarised in Appendix 5:. This information is derived from an ORACLE query.

Appendix 1: Important Geochemistry Database Domain definitions

SOIL TEXTURE

CODE	TRANSLATION	DEFINED_AS
		Soil consisting mostly of coarse and fine sand, and containing so little
		clay that it is loose when dry and not sticky at all when wet. When rubbed it leaves no film
A	Sand	on the fingers.
		Consisting mostly of sand but with sufficient clay to give slight
		plasticity and cohesion when very moist. Leaves a slight film of fine materials on the
В	Loamy sand	fingers when rubbed.
		Soil in which the sand fraction is still quite obvious, which
		moulds readily when sufficiently moist but in most cases does not stick appreciably to the
С	Sandy loam	fingers. Threads do not form easily.
		Soil in which the fractions are so blended that it moulds readily when
		sufficiently moist, and sticks to the fingers to some extent. It can with difficulty be moulded
		into threads but will not bend into
D	Loam	a small ring.
		Soil that is moderately plastic without being very sticky, and in
E	Silt loam	which the smooth soapy feel of the silt is the main feature.
		Soils containing sufficient clay to be distinctly sticky
F	Sandy clay loam	when moist, but in which the sand fraction is still an obvious feature.
		The soil is distinctly sticky when sufficiently moist, and the
G	Clay loam	presence of sand fractions can only be detected with care.
		This contains quite subordinate amounts of sand, but
		sufficient silt to confer something of a smooth soapy feel. It is less sticky than silty clay or
Н	Silty clay loam	clay loam.
I	Silt	Soil in which the smooth, soapy feel of silt is dominant.
		The soil is plastic and sticky when moistened sufficiently, but
		the sand fraction is still an obvious feature. Clay and sand are dominant, and the
		intermediate grades of silt and very fine
J	Sandy clay	sand are less apparent.
		The soil is plastic and sticky when moistened sufficiently and gives a polished surface on
		rubbing.
		When moist the soil can be rolled into threads. With care a small proportion of sand can
K	Medium clay	be detected.
		Extremely sticky and plastic soil, capable of being moulded when
L	Heavy clay	moist into any shape and taking clear fingerprints.
		Soil which is composed almost entirely of very fine material but in which the smooth soapy
		feel of the silt
М	Silty clay	fraction modifies to some extent the stickiness of the of the clay.
N	Boulders	Most particles in the soil are boulders (>200 mm)
0	Cobbles	Most particles in the soil are <200 mm but >60 mm
Р	Gravel	Most particles in the soil are <60 mm but >2 mm

Table 17: Domain table BGS_MTA_DOM_SOIL_TEXTURE - soil texture

SAMPLE TYPE

CODE	TRANSLATION	DEFINED_AS
А	G-BASE surface soils sample	G-BASE soil from standard depth of 5-20 cm
С	Stream Sediment	Stream Sediment
D	Drill core	Drill core.
ш	Mineral	Mineral.
F	Float sediment (Fines)	Float sediment (Fines).
G	Gas	Gas.
Н	Panned Rock	Panned Rock
J	Marine sediment	Marine sediment.
М	Drill mud (Sludge)	Drill mud (Sludge).
Ν	Panned sludge	Panned sludge.
Ρ	Panned stream sediment	Panned stream sediment.
R	Rock	Rock.
S	Soil	Shallow overburden altered by soil forming processes.
Т	Deep overburden	Deep overburden unaltered by soil forming processes (often a till in northern Britain).
U	Panned overburden or soil	Panned overburden or soil.
V	Vegetation	Vegetation.
W	Water	Water.
Z	Mine Waste	Tailings etc

Table 18: Domain table BGS_MTA_DOM_SAMPLE_TYPE - sample type

NUMBERING SYSTEM

CODE	TRANSLATION	DEFINED_AS
1	Min Pet	
2	Bio Strat	
3	MRP	Mineral Reconnaissance Programme
4	GBASE	Geochemical Baseline Survey of the Environment
5	Environmental surveys	

Table 19: Domain table BGS_MTA_DOM_NUMBERING_SYSTEM - sample numbering system code

CODE	TRANSLATION	DEFINED_AS
	0 0	Code of pre 1970s Geochemical field card.
	-1 mine waste card	
70	0.1 1970	Code, before translation into the database, compatable with the 1970.1 Geochemical field card.
70	0.2 1970	Code, before translation into the database, compatable with the 1970.2 Geochemical field card.
70	0.3 1970	Code, before translation into the database, compatable with the 1970.3 Geochemical field card.
71	1.1 1971	Code, before translation into the database, compatable with the 1971.1 Geochemical field card.
72	2.1 1972	Code, before translation into the database, compatable with the 1972.1 Geochemical field card.
74	4.1 1974	Code, before translation into the database, compatable with the 1974.1 Geochemical field card.
75	5.1 1975	Code, before translation into the database, compatable with the 1975.1 Geochemical field card.
76	6.1 1976	Code, before translation into the database, compatable with the 1976.1 Geochemical field card.
		Code, before translation into the database, compatable with the 1981.1 Geochemical field card. Used for RGRP drainage &
8	1.1 1981RGRP drainage	soil until 1991. Ref Lister et al 2005; Harris et al, 1992
87	7.1 1987	Code, before translation into the database, compatable with the 1987.1 Geochemical field card.
88	3.1 1988	Code, before translation into the database, compatable with the 1988.1 Geochemical field card.
89	9.1 1989	Code, before translation into the database, compatable with the 1989.1 Geochemical field card.
90	0.1 1990	Code, before translation into the database, compatable with the 1990.1 Geochemical field card.
90	0.2 1990	Code, before translation into the database, compatable with the 1990.2 Geochemical field card.
90	0.3 1990	Code, before translation into the database, compatable with the 1990.3 Geochemical field card.
90	0.4 1990	Code, before translation into the database, compatable with the 1990.4 Geochemical field card.
		Code, before translation into the database, compatable with the 1991.1 Geochemical field card. Ref: Harris et al, 1992;
9	1.1 1991GSP Drainage/soil	Lister et al 2005
9	1.2 1991	Code, before translation into the database, compatable with the 1991.2 Geochemical field card.
9	1.5 1991	Code, before translation into the database, was compatable with the 1991.5 Geochemical field card.
94	4.1 1994 GSP urban soil/water	Code, before translation into the database, compatable with the 1994.1 Geochemical field card. Ref: Lister et al 2005
95	5.1 1995 GSP urban soil/water	Code, before translation into the database, compatable with the 1995.1 Geochemical field card. Ref: Lister et al 2005
2001	1.1 2001 GBASE urban soil	Code, before translation into the database, compatable with the 2001.1 Geochemical field card. Ref: Lister et al, 2005;
2003	3.1 2003 GBASE regional drainage	Code, before translation into the database, compatable with the 2003.1 Geochemical field card. Ref: Lister et al 2005;
2003	3.2 2003 GBASE regional soil	Code, before translation into the database, compatable with the 2003.2 Geochemical field card. Ref: Lister et al 2005;
		Code, before translation into the database, compatable with the 2005.1 Geochemical field card. Ref: Lister et al 2005;
2005	5.1 2005 GBASE urban/regional soil	Johnson, 2005
		Code, before translation into the database, compatable with the 2005.2 Geochemical field card. Ref: Lister et al 2005;
2005	5.2 2005 GBASE regional drainage	Johnson, 2005

Table 20: Domain table BGS_MTA_DOM_CODE_VERSION - field card version codes

Appendix 2: MS Access Code for data entry forms

DRAINAGE

Form_Sedi2005 (Code)

```
Option Compare Database 'use database order for comparisons
Private Sub Dupsite_Enter()
If Me![Sitenumber] = 9999 Then
GoTo Duffnumber
Else
GoTo Skipduff
End If
Duffnumber:
MsgBox "Site Number is entered as default. Please enter new Site Number"
Me![Sitenumber].SetFocus
Skipduff:
End Sub
Private Sub Form_Load()
'set the duplicate field number box to be invisible'
        Me![Dup_sample].Visible = False
End Sub
Private Sub Dupsite_AfterUpdate()
    If Me![Dupsite] = True Then
    Me![Dup_sample].Visible = True
    Me![Dup_sample].SetFocus
    End If
    If Me![Dupsite] = False Then
    Me![Dup_sample].Visible = False
    Me![Dup_sample].Value = Me![Dup_sample].DefaultValue
    End If
End Sub
Private Sub Form_Open(Cancel As Integer)
DoCmd.GoToRecord A_FORM, "sedi2004", A_NEWREC
```

End Sub

Private Sub northbox_Enter() If Me![Eastbox] < 530000 Or Me![Eastbox] > 655000 Then GoTo Duffeast Else GoTo Skipeast End If Duffeast: MsgBox "Easting is outwith acceptable range. Please re-enter" Me![Eastbox].SetFocus Skipeast: End Sub Private Sub refmap_Enter() If Me![Northbox] < 260000 Or Me![Northbox] > 300000 Then GoTo Duffnorth Else GoTo Skipnorth End If Duffnorth: MsgBox "Northing is outwith acceptable range. Please re-enter" Me![Northbox].SetFocus Skipnorth: End Sub Private Sub refmap_GotFocus() SendKeys "^(')", True End Sub Private Sub sampdate_GotFocus() SendKeys "^(')", True End Sub Private Sub project_code_GotFocus() SendKeys "^(')", True End Sub Private Sub Command230_Click() On Error GoTo Err_Command230_Click

```
DoCmd.Close
Exit_Command230_Click:
    Exit Sub
Err_Command230_Click:
    MsgBox Err.Description
    Resume Exit_Command230_Click
End Sub
Private Sub Gonextbutton_Click()
On Error GoTo ErrHandler
DoCmd.GoToRecord , , acNext
Me![projectcode].SetFocus
GoTo SkipHandler
ErrHandler:
MsgBox "This Site Number already exists in the database. Please verify and
re-enter"
Err.Clear
Me![Sitenumber].SetFocus
SkipHandler:
Exit_Gonextbutton_Click:
    Exit Sub
On Error Resume Next
End Sub
SOIL
```

Form_Soil2005 (Code)

Option Compare Database Option Explicit

Private Sub Dupsite_Enter()
If Me![Sitenumber] = 9999 Then
GoTo Duffnumber
Else
GoTo Skipduff
End If
Duffnumber:
MsgBox "Site Number is entered as default. Please enter new Site Number"
Me![Sitenumber].SetFocus

```
Skipduff:
End Sub
Private Sub Exitsoilform_Click()
On Error GoTo Err_Command230_Click
    DoCmd.Close
Exit_Command230_Click:
    Exit Sub
Err_Command230_Click:
    MsgBox Err.Description
    Resume Exit_Command230_Click
End Sub
Private Sub Form_Load()
'set the duplicate field number box to be invisible'
        Me![Dup_sample].Visible = False
End Sub
Private Sub Dupsite_AfterUpdate()
    If Me![Dupsite] = True Then
    Me![Dup_sample].Visible = True
    Me![Dup_sample].SetFocus
    End If
    If Me![Dupsite] = False Then
    Me![Dup_sample].Visible = False
    Me![Dup_sample].Value = Me![Dup_sample].DefaultValue
    End If
End Sub
Private Sub Form_Open(Cancel As Integer)
DoCmd.GoToRecord A_FORM, "soil2004", A_NEWREC
End Sub
Private Sub Gonextbutton_Click()
On Error GoTo ErrHandler
DoCmd.GoToRecord , , acNext
Me![projectcode].SetFocus
GoTo SkipHandler
ErrHandler:
MsgBox "This Site Number already exists in the database. Please verify and
re-enter"
Err.Clear
Me![Sitenumber].SetFocus
SkipHandler:
```

Exit_Gonextbutton_Click: Exit Sub On Error Resume Next End Sub Private Sub northbox_Enter() If Me![Eastbox] < 530000 Or Me![Eastbox] > 655000 Then GoTo Duffeast Else GoTo Skipeast End If Duffeast: MsgBox "Easting is outwith acceptable range. Please re-enter" Me![Eastbox].SetFocus Skipeast: End Sub Private Sub refmap_Enter() If Me![Northbox] < 260000 Or Me![Northbox] > 300000 Then GoTo Duffnorth Else GoTo Skipnorth End If Duffnorth: MsgBox "Northing is outwith acceptable range. Please re-enter" Me![Northbox].SetFocus Skipnorth: End Sub Private Sub refmap_GotFocus() SendKeys "^(')", True End Sub Private Sub sampdate_GotFocus() SendKeys "^(')", True End Sub Private Sub project_code_GotFocus() SendKeys "^(')", True End Sub
Appendix 3: Example retrievals from the Geochemistry Database using field card information

The Geochemistry Database has many ORACLE tables with similar fields and many tables that contain the same fields. A user unfamiliar to the Geochemistry Database will need to ask the question "where do I find?". The first example shows how to download analytical results. Subsequent examples show how field database information can be used in selective criteria. The discussions below assume the user has the skills to construct a Query in MS Access.

1. How do I retrieve all the G-BASE stream sediment samples with Easting, Northing, and analytical results for the Lake District Atlas area?

a) Firstly create a query in MS Access to down load the stream sediment data from the G-BASE project for the Lake District atlas area. This is shown in Figure 19. The BGS.DTA_DRAINAGE_SITES and BGS.DTA_ANALYTE_DETERMINATIONS tables are linked and the following selection criteria applied: NUMBERING_SYSTEM = 4 (for G-BASE samples); SAMPLE_TYPE = "C" for stream sediments; and ATLAS = "LAKE" for Lake District. The results are given in Table 21.

NUMBERIN G_SYSTEM	PROJECT	SITENO	SAMPLE_ TYPE	ATLAS	EASTING	NORTHING	METHOD	ANALYTE	ABUNDANC E	QUALI FIER
4	30	208	С	LAKE	399100	565670	DCOES	Ag	0	
4	30	208	С	LAKE	399100	565670	DCOES	Al	53534.8	
4	30	208	С	LAKE	399100	565670	DCOES	В	49	
4	30	208	С	LAKE	399100	565670	DCOES	Ba	615.402	
4	30	208	С	LAKE	399100	565670	DCOES	Be	1.3	
4	30	208	С	LAKE	399100	565670	DCOES	Bi	0	
4	30	208	С	LAKE	399100	565670	DCOES	Са	32215.74278	
4	30	208	С	LAKE	399100	565670	DCOES	Cd	0.4	
4	30	208	С	LAKE	399100	565670	DCOES	Ce	0	
4	30	208	С	LAKE	399100	565670	DCOES	Co	28.0751	
4	30	208	С	LAKE	399100	565670	DCOES	Cr	151.0051	
4	30	208	С	LAKE	399100	565670	DCOES	Cu	14.4361	
4	30	208	С	LAKE	399100	565670	DCOES	Fe	31629.05705	
4	30	208	С	LAKE	399100	565670	DCOES	Ga	9.00854	
4	30	208	С	LAKE	399100	565670	DCOES	K	14446.31364	

Table 21: Listing of results produced by the select query in example 1

b) This query produces a very large data table listing each analyte (element) determination for each site on a separate row. An example of the first few records is given above. Note that a sample may have been determined by several different methods. The abundances are not yet rounded to a sensible number of decimal places as original data have been levelled by a correction factor in the database. There is also a "qualifier" field which should contain information about the 'correctness' of the abundance value, e.g. < to indicate less than detection. This field has not been utilised much in the past but will be populated following a recent audit of the database which highlighted the problem of listing less than detection values as 0. In order to produce a more readable table, samples should be represented by a single row with column headings. This can be done by using a 'Crosstab Query' based on the 'Select Query' used above.

Figure 19: Example 1 - query to download analyte data for G-BASE Lake District stream sediments

🖉 Microsoft /	Access							_ 8 ×
<u> </u>	Eile Edit View Insert Query Iools Window Help							
🔲 🕶	<i>⊕</i> <u>0</u> , ♥ X ¤	a 🗈 💅 🗠 🔳	• ! °= Σ	- 🖻 🏠 🗄	🕽 ⁄a • 🝳 •			
			N					
- Wor	kshon · Datahase		43					
📰 qryQues	stion_1a_Crosstab :	Crosstab Query						
		qryQue	stion_1a					<u> </u>
		NUMBER	RING_SYSTEM	_				L
		PROJEC	т					
		SAMPLE	TYPE					
		ATLAS	-					
		EASTIN	G					
		METHO	D					
		ANALYT	E					
		QUALIF	IER	ᅴ				
		1.						-
•								Þ
Field: Table:	PROJECT	SITENO	SAMPLE_TYPE	EASTING gryOuestion 1a	NORTHING	ANALYTE grvQuestion_1a	ABUNDANCE	SITENO
Total:	Group By	Group By	Group By	Group By	Group By	Group By	First	Where
Crosstab: Sort:	Row Heading	Row Heading	Row Heading	Row Heading	Row Heading	Column Heading	Value	
Criteria:								Between 200 And 300
or:								
								•

Figure 20: Example 1 - Crosstab Query using the Select Query created in the first part of the example

c) To create the Crosstab query select 'create a query in design view" and add the query created in step one to the top window and create the query as shown in Figure 20. An example of part of the selected data is listed below in Table 22 (exported to Excel). Note that element concentrations (all listed in mg/kg) have not yet been formatted to the correct number of decimal places. Elements usually quoted in G-BASE as percentage oxide (e.g. Al and Ca) will need converting to oxide concentrations. Conversion factors for commonly used oxides are given in Table 23.

ROJEC	SITENO	PLE_T	EASTING	NORTHING	Ag	AI	As	В	Ва	Be	Bi	Са
30	208	С	399100	565670	0	53534.8		49	615.402	1.3	0	32215.74278
32	201	С	377940	540650	0	197951.8	10	66	351.9972	2.2	0	2117.145713
32	202	С	367210	555340	0	102414.41		80	648.1124	1.7	0	2117.145713
32	203	С	368030	546050	0	88924.9	10	88	1002.762	2.2	0	3183.814022
32	204	С	375370	535770	1.5	96806.99		104	330.4772	3.1	0.5	12180.92932
32	205	С	375910	536300	0.2	64802.5	20	96	408.81	2.9	1	15334.55737
32	207	С	376780	533270	0	73213.6	5	71	345.9716	1.5	0	2117.145713
32	208	С	367120	544520	0	95114.2		66	646.3908	2.4	0	4250.482331
32	209	С	378110	541530	0.8	71520.8	20	64	264.1956	2.1	0	2673.668309
32	210	С	373310	550520	0	80513.8	15	78	777.2324	2	0	3183.814022
32	211	С	367330	544910	0	108021.8	10	63	463.0404	1.9	0	2673.668309
32	212	С	368690	546590	0	68135.2		69	828.8804	2.2	0	6337.442066
32	213	С	368900	546700	0	59142.2	15	64	711.8116	2.3	0.5	6893.964662

Table 22: Listing of part of the results produced by the crosstab query of Example 1

Element	Oxide	Conversion Factor
Al	AI2O3	1.889
Ca	CaO	1.399
Fe	Fe2O3	1.430
К	K2O	1.205
Mg	MgO	1.658
Mn	MnO	1.291
Na	Na2O	1.348
Р	P2O5	2.291
Ti	TiO2	1.668

Table 23: Table of the most commonly used oxide conversion factors

2. How do I select G-BASE samples?

Use the field NUMBERING_SYSTEM which can be found in the site tables (BGS_DTA_DRAINAGE_SITES, BGS_DTA_NORMAL_SITES, or BORE_SITES). The codes for the numbering system are found in the domain table BGS_MTA_DOM_NUMBERING_SYSTEM (see Appendix 1:) and for G-BASE the code is 4.

3. How do I know if the data I want to assess are confidential?

There is a field called CONFIDENTIALITY which is defined in the domain table BGS_MTA_DOM_CONFIDENTIALITY and is found in the sites tables listed above and the BGS_DTA_ BATCHES table. Confidential data are coded with a 4 or 5 in this field. These codes are somewhat outdated and would not fit within the current BGS IPR scheme. A review of

geochemistry data confidentiality is recommended. The default value, if assigned, is usually 4 (confidential). Any doubts about data confidentially should be referred to the Geochemistry Database Manager.

4. How do I select a particular type of sample?

The sample type is defined as a single character code and keyfield SAMPLE_TYPE in the BGS_DTA_ANALYTE_DETERMINATIONS, BGS_DTA_PROJECT_BATCHES, and several other data tables and is defined by the domain table BGS_MTA_DOM_ SAMPLE_TYPE. Retrieval is usually done on the BGS_DTA_ ANALYTE_DETERMINATIONS table as shown in the example in example 1.

5. How do I select data for a specified geographical area?

The EASTING and NORTHING fields of the site tables are used for retrieval where the full metre grid reference should be used. For polygon areas ArcView can be employed to select samples from predefined polygonal areas such as local authority or lithological boundaries. If the geographical area corresponds to a geochemical atlas area then the "atlas" field from BGS.DTA_DRAINAGE_SITES can be used for retrieval.

6. When I download analytical results why do I get several different analyses for the same sample

Some of the samples loaded in the Geochemistry Database may have been analysed by several different analytical methods and if you do not specify a particular method then results for all methods will be retrieved. It is necessary, if this is the case, to specify a selection criteria for the method used. The METHOD is a keyfield in the BGS_DTA_ANALYTE_DETERMINATIONS table and codes are defined in the BGS_MTA_DOM_ANALYSIS_METHOD table. For example, if only analyses done by optical emission spectroscopy are required then the code "OES" in the METHOD field should be used for retrieval.

7. Where do I find sample pH?

For waters this is considered as a property and can be found in the PH field of the BGS_DTA_ WATERS table along with conductivity and other water properties. Unfortunately, there is no way of indicating in the database how the pH determination was done (e.g. on site with pH stick or in fieldbase with pH meter). Soil pH results can be found in the BGS_DTA_ OVERBURDENS table where it is listed as a property. Loss-on-ignition, which for G-BASE samples is requested at the same time as soil pH determinations, is considered as a method ("LOI450") and is found in the BGS_DTA_ ANALYTE_DETERMINATIONS table.

8. How do I retrieve samples associated with a particular land use?

Land use is information entered on geochemistry field slips and this would generally be more accurate and up-to-date than land use maps that may be available. LANDUSE is a field in found in the BGS_DTA_ LANDUSE database table and defined in the domain table BGS_MTA_DOM_LANDUSE. Land use codes are hierarchical so "wildcard" characters can be used to search for more general grouping. For example, to list all surface soils from G-BASE associated with woodlands (which may be classified as deciduous, mixed, coniferous etc.) use "A*" as criteria for land use. The query for this example is shown in Figure 21.

📾 qry_GBASE_Surface Soils_Woodland : Select Query							
	BG5_DTA_LAND * NUMBERING_SYST PROJECT SITENO CATCHMENT_SITE TYPE ABUNDANCE DATE_ENTERED USER_ENTERED DUMMY1 DUMMY2	BGS_DTA_ANALYTE_DETERMINA * NUMBERING_SYSTEM PROJECT SITENO SAMPLE_TYPE DUPLICATE LAB BATCH_ID METHOD ANALYTE DATE_ENTERED USER_ENTERED USER_ENTERED					
Field: Table: Sort: Show: Criteria: or:	NUMBERING_SYSTE BGS_DTA_ANALYTE 4	PROJECT BGS_DTA_ANALYTE	SITENO BGS_DTA	ANALYTE	SAMPLE_TYPE BGS_DTA_ANALYTE ////////////////////////////////////	TYPE BGS_DTA_LAN	DUSE

Figure 21: Example of a land use query using 'wildcard' characters

9. How do I retrieve samples associated with contamination?

Twenty columns are available on the G-BASE field cards to record site contamination which becomes nine fields of coded information (often supported by free text comments in the field database). In the Geochemistry Database codes are translated to conform with entries in the domain table BGS_MTA_DOM_ CONTAMINANT. A simple select query on the BGS_DTA_ CONTAMINANTS table can identify the samples of a particular sample type that are associated with contamination (use 'Is not null' in the contaminant field). A crosstab query is needed to list on a single row all the different contamination associated with a particular sample.

10. How do I retrieve samples associated with a particular lithology?

Geochemical sample field forms record the geology at site and of the catchment area. This is recorded by student collectors who would usually take the geology from the published geological map. Classifying drainage or overburden samples by a lithological code is probably best done using the Arc GIS interface to the Geochemistry Database and using GIS functionality to intersect sample sites with the BGS digital geology map polygons.

11. How do I get a list of samples collected by a particular sampler?

The sample collector is a field (COLLECTOR) in the BGS_DTA_ DRAINAGE_SITES and BGS_DTA_ NORMAL_SITES tables. Sampling is usually done in pairs and the samplers initials are entered in the COLLECTOR field, i.e. there is usually more than one person identified in this field. For example, to select all the samples collected by CCJ, then the select criteria should be "*CCJ*". Note that it is standard G-BASE procedure for the form filler's initials to be recorded first and the collector's initials second. From 2003 onwards sampler IDs are recorded in the annual field campaign report.

Appendix 4: Field card to Database translations

Field Card fields for				
transfer to GD	Data Type	Size	GD column name and conditional arguments	GD tables fields are loaded to
Draiget Code	Toxt	0		
Site Number	Integer	16		ALL TABLES THAT HAVE A PROJECT COLUMN
Sampling Protocol	Text	5	ISAMPLING PROTOCOL	DTA NORMAL SITES DTA DRAINAGE SITES
Code Version	Number	6.2	CODE VERSION	DTA NORMAL SITES DTA DRAINAGE SITES
Duplicate			None	
Samp_C	Text	1	SAMPLE TYPE	DTA SEDIMENTS
Samp_P	Text	1	SAMPLE_TYPE	DTA_PANS
Samp_W	Text	1	SAMPLE_TYPE	DTA_WATERS
Samp_A	Text	1	SAMPLE_TYPE	DTA_OVERBURDENS
Samp_S	Text	1	SAMPLE_TYPE	DTA_OVERBURDENS
Samp_Std	Text	4	SAMP_STD	DTA_SEDIMENTS, DTA_WATERS, DTA_OVERBURDENS
Easting	Double	8	Easting	DTA_NORMAL_SITES,DTA_DRAINAGE_SITES
Northing	Double	8	Northing	DTA_NORMAL_SITES,DTA_DRAINAGE_SITES
Ref_map	Double	8	MAP_SHEET	DTA_NORMAL_SITES,DTA_DRAINAGE_SITES
Map_Scale	Integer	5	MAP_SCALE	DTA_NORMAL_SITES,DTA_DRAINAGE_SITES
Collectors	Text	100	Collectors	DTA_NORMAL_SITES,DTA_DRAINAGE_SITES
Date	Date/Time	8	DATE_VISITED	DTA_NORMAL_SITES,DTA_DRAINAGE_SITES
Rel_Samp	Integer	5	REL_SAMP	DTA_SEDIMENTS, DTA_WATERS, DTA_OVERBURDENS
Stm_order	Integer	2	STREAM_ORDER	DTA_DRAINAGE_SITES
Drain_type	Integer	4	DRAINAGE_ITPE	DTA_DRAINAGE_SITES
Weather	Integer	4		DTA_DRAINAGE_SITES
PPT orange	Integer	4	ICOLOLIR (as 'OR') abundance if ([ont_orange]=3.1 [ont_orange]=1.3)	DTA_DRAINAGE_SITES
PPT_brown	Integer	4	COLOUR (as 'BR') abundance if ([ppt_orange]=3,1[ppt_orange]=1,3)	DTA_SEDIMENT_PPT
PPT black	Integer	4	COLOUR (as 'BK'), abundance if ([ppt_block]=3.1 [ppt_block]=1.3)	DTA SEDIMENT PPT
Sed colour	Text	5	Munsell Colour Columns	DTA SEDIMENTS
Sed clay	Text	5	CLAY, abundance= if([SED_CLAY]=3.1.[SED_CLAY]=1.3)	DTA SEDIMENTS
Sed_organic	Text	5	ORGANIC abundance= if ([SED_ORGANIC]=3,1,[SED_ORGANIC]=1,3)	DTA SEDIMENTS
Contam1	Text	6	CONTAMINANT relative abundance 1	DTA_SITE_CONTAMINANTS
Contam2	Text	6	CONTAMINANT relative abundance 2	DTA_SITE_CONTAMINANTS
Contam3	Text	6	CONTAMINANT relative abundance 3	DTA_SITE_CONTAMINANTS
Contam4	Text	6	CONTAMINANT relative abundance 4	DTA_SITE_CONTAMINANTS
Contam5	Text	6	CONTAMINANT relative abundance 5	DTA_SITE_CONTAMINANTS
Contam6	Text	6	CONTAMINANT relative abundance 6	DTA_SITE_CONTAMINANTS
Contam7	Text	6	CONTAMINANT relative abundance 7	DTA_SITE_CONTAMINANTS
Contam8	Text	6	CONTAMINANT relative abundance 8	DTA_SITE_CONTAMINANTS
Contam9	Text	6	CONTAMINANT relative abundance 9	DTA_SITE_CONTAMINANTS
Land_use1	Text	6	TYPE . sets catchment_site='5', abundance='1	DIA_LANDUSES
Land_usez	Text	6	TYPE . sets catchment_site=5, abundance=2	DIA_LANDUSES
Clast1	Text	6	TYPE sets calcriment_site=5, abundance=5	DTA_LANDUSES
Clast?	Text	6	TYPE sets abundance-2	
Clast3	Text	6	TYPE sets abundance=3	
Clast4	Text	6	TYPE sets abundance=4	
Clast5	Text	6	TYPE, sets abundance=5	DTA CLASTS
Clast6	Text	6	TYPE. sets abundance=6	DTA CLASTS
Clast7	Text	6	TYPE. sets abundance=7	DTA CLASTS
Clast8	Text	6	TYPE. sets abundance=8	DTA_CLASTS
Bedrock	Text	6	VISIBLE_BEDROCK	DTA_NORMAL_SITES,DTA_DRAINAGE_SITES
Drift1	Text	255	TYPE. sets abundance=1 catchment_site='S'	DTA_DRIFTS
Drift2	Text	6	TYPE. sets abundance=2 catchment_site='S'	DTA_DRIFTS
Drift3	Text	6	TYPE. sets abundance=3 catchment_site='S'	DTA_DRIFTS
Drift4	Text	6	TYPE. sets abundance=4 catchment_site='S'	DTA_DRIFTS
Relief	Integer	1	RELIEF	DTA_NORMAL_SITES,DTA_DRAINAGE_SITES
Site_geol1	Text	6	TYPE. sets abundance=1 catchment_site='S'	DTA_GEOLOGYS
Site_geol2	Text	6	TYPE. sets abundance=2 catchment_site='S'	DTA_GEOLOGYS
Cat_geori	Text	6	TYPE. sets abundance=1 catchment_site='C'	DIA_GEOLOGYS
Cat_geol2	Text	6	TYPE. sets abundance=2 catchment_site='C	DIA_GEOLOGYS
Pan_min1	Text	C	TYPE, sets abundance=1	DTA_WINERALS#
Pan_min2	Text	C	TYPE. sets abundance=2	DTA_WINERALS#
Pan min4	Text	6	TYPE sets abundance-1	DTA_MINERALS#
Pan min5	Text	6	TYPE sets abundance-5	DTA_MINERALS#
Pan min6	Text	6	TYPE sets abundance=6	DTA_MINERALS#
Min bed1	Text	6	TYPE sets abundance=1	DTA BEDROCK MINERALISATION
Min bed2	Text	6	TYPE, sets abundance=2	DTA BEDROCK MINERALISATION
Min bed3	Text	6	TYPE, sets abundance=3	DTA BEDROCK MINERALISATION
 Min_clast1	Text	6	TYPE. sets abundance=1	DTA CLASTS MINERALISATION
Min_clast2	Text	6	TYPE. sets abundance=2	DTA_CLASTS_MINERALISATION
Min_clast3	Text	6	TYPE. sets abundance=3	DTA_CLASTS_MINERALISATION
Minbed_Style	Text	1	MINERALISATION_STYLE Default = 0 (undifferientated)	DTA_BEDROCK_MINERALISATION
Wat_colour	Text	6	Munsell Colour Columns	DTA_WATERS
Susp_solid	Text	6	SUSPENDED_SOLIDS	DTA_WATERS
SoilA_colour	Text	6	Munsell Colour Columns	DTA_OVERBURDENS

Field Card fields for	Data Type	Loading	GD column name and conditional arguments	GD tables fields are loaded to
	Text	6		
SoilA_text	Text	6	TEXTURE	DTA HORIZONS
SoilS text	Text	6	TEXTURE	DTA HORIZONS
Depth A	Text	6	BOTTOM DEPTH*	DTA NORMAL SITES
Depth S	Text	6	BOTTOM DEPTH*	DTA NORMAL SITES
Organic_A	Number	1	ORGANIC_CONTENT	DTA OVERBURDENS
Organic_S	Number	1	ORGANIC_CONTENT	DTA_OVERBURDENS
A_clast1	Text	6	TYPE. sets abundance=1	DTA_CLASTS
A_clast2	Text	6	TYPE. sets abundance=2	DTA_CLASTS
A_clast3	Text	6	TYPE. sets abundance=3	DTA_CLASTS
A_clast4	Text	6	TYPE. sets abundance=4	DTA_CLASTS
A_clast5	Text	6	TYPE. sets abundance=5	DTA_CLASTS
A_clast6	Text	6	TYPE. sets abundance=6	DTA_CLASTS
S_clast1	Text	6	TYPE. sets abundance=1	DTA_CLASTS
S_clast2	Text	6	TYPE. sets abundance=2	DTA_CLASTS
S_clast3	Text	6	TYPE. sets abundance=3	DTA_CLASTS
S_clast4	Text	6	TYPE. sets abundance=4	DTA_CLASTS
S_clast5	Text	6	TYPE. sets abundance=5	DTA_CLASTS
S_clast6	Text	6	TYPE. sets abundance=6	DTA_CLASTS
A_moist	Text	6	SOIL_MOISTURE	DTA_OVERBURDENS
S_moist	Text	6	SOIL_MOISTURE	DTA_OVERBURDENS
Ph [@]	Number	6,2	PH (recorded to 1 dec place e.g. 7.2)	DTA_WATERS
Conduct [@]	Number	5	Conduct	DTA_WATERS
Bicarb	Double	8	BICARBONATE	DTA_WATERS
Comments	Text	255	COMMENTS	DTA_NORMAL_SITES,DTA_DRAINAGE_SITES

\$ = Default from loading screen

a botation for the botang sectors
 # = where samp_p is not null
 @=entered in field database but not on field card
 a duplicate is indicated by 1,2,3 etc non duplicates as +
 * Top_depth is derived by subtracting 0.15m

Implicit fields entered during loading program

Field Card fields for transfer		CD tables fields are loaded to	Defeult
to GD	GD column name	GD tables fields are loaded to	Default
NUMBERING_SYSTEM	NUMBERING_SYSTEM	ALL TABLES THAT HAVE A NUMBERING_SYSTEM COL	4
COLOUR_METHOD	COLOUR_METHOD	DTA_SEDIMENTS	
SAMPLING_METHOD	SAMPLING_METHOD	DTA_SEDIMENTS,DTA_WATERS,DTA_OVERBURDENS	
MESH_SIZE_PASSED	MESH_SIZE_PASSED	DTA_OVERBURDENS	
MESH_SIZE_NOT_PASSED	MESH_SIZE_NOT_PASSED	DTA_OVERBURDENS	
GRID_DERIVATION	GRID_DERIVATION	DTA_NORMAL_SITES,DTA_DRAINAGE_SITES	
GRID_ACCURACY	GRID_ACCURACY	DTA_NORMAL_SITES,DTA_DRAINAGE_SITES	
ATLAS	ATLAS	DTA_NORMAL_SITES,DTA_DRAINAGE_SITES	
ACTIVE_FIXED	ACTIVE_FIXED	DTA_SEDIMENTS	
COLOUR_STATE	COLOUR_STATE	DTA_SEDIMENTS,DTA_WATERS,DTA_OVERBURDENS	
HORIZON_type	TYPE	DTA_HORIZONS	U
CONFIDENTIALITY	CONFIDENTIALITY	DTA_NORMAL_SITES,DTA_DRAINAGE_SITES	4

Appendix 5: Summary of field data loaded to the Geochemistry Database between 1998 and 2004

ATLAS	INFO TYPE	COUNT_ROWS
ARGL	drainage sites	10328
BORD	drainage landuses	8187
BORD	drainage minerals	81
BORD	drainage sites	11118
CARD	soil contaminants	1222
CARD	soil clasts	1603
CARD	soil drifts	821
CARD	soil geologys	821
	soil horizons	821
	soil landuses	1181
	soil landuses	1222
	soil sites	821
CATH	drainage sites	1007
	drainage minerals	44
	drainage sites	8327
	soil contaminants	17
CORB	soil clasts	574
CORB	soil drifts	208
CORB		160
CORB	soil Janduses	100
CORB	soil landuses	140
CORB		140
	soil contaminante	200
		1144
	soil drifte	F16
		510
	soli geologys	332
		020
		202
		552
	SUII SILES	332
	drainage sites	7 3 3 4
		1600
	soir contaminants	1023
	soil drifte	2109
		017
	soil geologys	1222
	soil landusos	501
		1623
		017
	drainago sitos	4308
		4300
	drainage minerale	13743
	drainage ninerais	6106
	soil contaminante	0400 111
	soil claste	770
	soil drifte	//9
		431
	soil horizone	434 644
		044 ววอ
	soil landuses	220 ///1
	soil sites	/141
	drainage sites	5267
	soil sites	2060
MANS	soil contaminants	2000 587
MANS	soil claste	207 275
MANS	son diasis	575 515
MANS		515
MANS	soil horizone	776
		110

ATLAS	INFO TYPE	COUNT_ROWS
MANS	soil landuses	287
MANS	soil landuses	587
MANS	soil sites	517
MOBU	drainage minerals	22
MOBU	drainage sites	4600
NOTT	soil contaminants	840
NOTT	soil clasts	2980
NOTT	soil drifts	1296
NOTT	soil geologys	1297
NOTT	soil horizons	1297
NOTT	soil landuses	653
NOTT	soil landuses	840
NOTT	soil sites	1295
ORKN	drainage sites	775
PETE	soil contaminants	61
PETE	soil clasts	1103
PETE	soil drifts	382
PETE	soil geologys	351
PETE	soil landuses	61
PETE	soil landuses	292
PETE	soil sites	549
SCUN	soil contaminants	251
SCUN	soil clasts	773
SCUN	soil drifts	382
SCUN	soil geologys	380
SCUN	soil horizons	392
SCUN	soil landuses	251
SCUN	soil landuses	494
SCUN	soil sites	392
SHET	drainage sites	2588
STOK	soil contaminants	1343
STOK	soil clasts	2770
STOK	soil drifts	1504
STOK	soil horizons	1508
STOK	soil landuses	1343
STOK	soil landuses	2005
STOK	soil sites	1508
SUTH	drainage sites	2938
SWAN	soil contaminants	1093
SWAN	soil clasts	1971
SWAN	soil drifts	1027
SWAN	soil geologys	978
SWAN	soil horizons	1042
SWAN	soil landuses	1093
SWAN	soil landuses	1449
SWAN	soil sites	1040
TELF	soil contaminants	942
TELF	soil clasts	1412
TELF	soil drifts	593
TELF	soil geologys	593
TELF	soil horizons	593
TELF	soil landuses	812
TELF	soil landuses	942
TELF	soil sites	593
TYFH	drainage sites	5813
TYNE	drainage contaminants	4833
TYNE	drainage drifts	1

ATLAS	INFO TYPE	COUNT_ROWS
TYNE	drainage geologys	221
TYNE	drainage landuses	4833
TYNE	drainage landuses	6662
TYNE	drainage sites	4309
TYNE	soil landuses	2142
TYNE	soil sites	2056
WALE	drainage sites	15929
WALE	soil sites	2408
WOLV	soil contaminants	673
WOLV	soil clasts	185
WOLV	soil drifts	711
WOLV	soil geologys	16
WOLV	soil horizons	695
WOLV	soil landuses	673
WOLV	soil landuses	802
WOLV	soil sites	695
YORK	soil contaminants	521
YORK	soil clasts	61
YORK	soil drifts	384
YORK	soil geologys	384
YORK	soil horizons	384
YORK	soil landuses	440
YORK	soil landuses	521
YORK	soil sites	385

References

Most of the references listed below are held in the Library of the British Geological Survey at Keyworth, Nottingham. Copies of the references may be purchased from the Library subject to the current copyright legislation.

BRADY, N, C, and WEIL, R, R. 1999. *The Nature and Properties of Soils*. (New Jersey: Prentice Hall.)

COATS, J S. 2004. The BGS Geochemistry Database: history, design and current usage. *British Geological Survey*, Internal Report Series IR/04/033.

FLIGHT, D, and LISTER, T R. 1998. G-BASE Field Procedures Manual. *British Geological Survey*, Technical Report WP/98/XX, Applied Geochemistry.

HARRIS, J R, and COATS, J S. 1992. Geochemistry database: data analysis and proposed design. *British Geological Survey Technical Report*, WF/92/5.

HARRIS, J R, NICHOLSON, C J, and COATS, J S. 1993. Geochemistry Database Report 6: Standardisation of geochemical field cards 1970-1992. *British Geological Survey*, Technical Report WP/93/20R.

JOHNSON, C C. 2004. 2004 G-BASE Field Procedures Manual. *British Geological Survey, Keyworth, UK*, Internal Report No. IR/04/134.

JOHNSON, C C. In Prep. 2005 G-BASE Field Procedures Manual. *British Geological Survey, Keyworth, UK*, Internal Report No. IR/05/xxx.

JOHNSON, C C, BROWN, S E, and LISTER, T R. 2003. G-BASE Field Procedures Manual version 1.1. *British Geological Survey, Keyworth, UK*, Internal Report No. IR/03/096N.

JOHNSON, C C, COATS, J S, BREWARD, N, ANDER, E L, and MACKENZIE, A C. 2004. Geochemical data as a standard reference data set for the SIGMA project. *British Geological Survey*, BGS Internal Report Number IR/04/026.

JOHNSON, C C, FLIGHT, D M A, LISTER, T R, and STRUTT, M H. 2001. La rapport final pour les travaux de recherches géologique pour la realisation de cinq cartes géochimique au 1/100 000 dans le domaine de l'Anti-Atlas (Maroc). *British Geological Survey Confidential Internal Report prepared for the Moroccan Ministry of Mines and Energy*, Commissioned Report Series, No.CR/01/031.

MACKENZIE, A C. 2002. GBASE bulk data loading application (LOADER). *British Geological Survey*, Unpublished note.

PATEL, D, and MACKENZIE, A C. 1994. Geochemistry Database Report No. 8: Data loading subsystem. *British Geological Survey Technical Report*, WP/94/12R.

SCHEIB, A.J. 2005. G-BASE Trials of SIGMA Field Data Capture; Feedback and recommendations. *British Geological Survey*, BGS Internal Report Number IR/05/015.

STRAHLER, A N. 1957. Quantitative analysis of watershed geomorphology. *Transactions of American Geophysical Union*, Vol. 38, 913-920.