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Despite the important role of bitter taste for the rejection of potentially harmful
food sources, birds have long been suspected to exhibit inferior bitter tasting
abilities. Although more recent reports on the bitter recognition spectra of several
bird species have cast doubt about the validity of this assumption, the bitter taste
of avian species is still an understudied field. Previously, we reported the bitter
activation profiles of three zebra finch receptors Tas2r5, -r6, and –r7, which
represent orthologs of a single chicken bitter taste receptor, Tas2r1. In order to get
a better understanding of the bitter tasting capabilities of zebra finches, we
selected another Tas2r gene of this species that is similar to another chicken
Tas2r. Using functional calcium mobilization experiments, we screened zebra
finch Tas2r1 with 72 bitter compounds and observed responses for 7 substances.
Interestingly, all but one of the newly identified bitter agonists were different from
those previously identified for Tas2r5, -r6, and –r7 suggesting that the newly
investigated receptor fills important gaps in the zebra finch bitter recognition
profile. The most potent bitter agonist found in our study is cucurbitacin I, a highly
toxic natural bitter substance. We conclude that zebra finch exhibits an exquisitely
developed bitter taste with pronounced cucurbitacin I sensitivity suggesting a
prominent ecological role of this compound for zebra finch.
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1 Introduction

The sense of taste in animals is required to guide food selection towards nutritive
and non-toxic food items (Behrens and Meyerhof, 2018). In general, the vertebrate
taste system is equipped with receptive proteins for sweet, salty, umami (the taste of
L-amino acids, in case of human mostly L-Glu), sour and bitter (Chaudhari and Roper,
2021). Sour and salty tastes are mediated by the ion channels otopetrin-1 (Tu et al.,
2018; Teng et al., 2019; Zhang et al., 2019) and, as a likely candidate sensor, ENaC
[(Chandrashekar et al., 2010), but cf. (Bigiani, 2020; Lossow et al., 2020; Vandenbeuch
and Kinnamon, 2020)]. The remaining taste modalities, sweet, umami and bitter are
transduced by G protein-coupled receptors (GPCR) of the taste 1 receptor and taste
2 receptor families [gene symbols: TAS1R1-3 in human, Tas1r1-3 in mouse, other
species frequently T1R; TAS2R (number), Tas2r (number), T2R (number)] (Behrens
and Meyerhof, 2016). The three taste 1 receptor genes form 2 different heteromers
constituting the sweet taste receptor, which consists of TAS1R2 and TAS1R3 subunits
and the umami taste receptors with a TAS1R1/TAS1R3 composition (Hoon et al., 1999;
Max et al., 2001; Montmayeur et al., 2001; Nelson et al., 2001; Li et al., 2002; Nelson
et al., 2002). The bitter taste receptors constitute the taste 2 receptor family, which
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differs grossly in size between species, ranging from 0 to more
than 100 (Behrens and Meyerhof, 2018). The various taste
receptor genes are expressed in the oral cavity in specialized
cells, which are combined to taste buds (Chaudhari and Roper,
2021). Apart from the oral cavity, taste receptor gene expression
has been reported in numerous non-gustatory tissues such as
the gastrointestinal tract and the respiratory system (Wang
et al., 2020; Martens et al., 2021; Behrens and Lang, 2022).
Although in general five basic taste modalities act in concert to
assess the nutritional quality of food, a considerable number of
animals have lost some taste modalities (Antinucci and Risso,
2017). A well known example is the pseudogenization of the
sweet taste receptor in all bird species, although several bird
clades with a high demand for sweet tasting nutritional
resources such as nectar, achieved the subsequent
modification of the umami taste receptor for sweet
compound detection (Baldwin et al., 2014; Toda et al., 2021;
Cockburn et al., 2022). In the past, it was believed that birds
possess an inferior sense of taste, an assumption that was
supported by the loss of the sweet tasting ability as well as a
small number of bitter taste receptors (Niknafs and Roura,
2018). However, the demonstration of re-gained detection of
sweet substances (Baldwin et al., 2014), the finding that the
bitter taste receptor repertoires of birds are not generally small
as some birds possess a number of intact bitter taste receptor
genes matching that of mammals (Davis et al., 2010) and the
demonstration that even small bitter taste receptor repertoires
can compensate their low number by extraordinary tuning
breadths (Behrens et al., 2014), has caused some re-thinking.
The first demonstration of profound bitter tasting capabilities in
birds was achieved by the functional expression and bitter
compound profiling of chicken, turkey and zebra finch bitter
taste receptors (Behrens et al., 2014). Despite the low number of
only three functional chicken bitter taste receptors, about half of
all bitter compounds known to activate human TAS2Rs are
detected by the three chicken bitter taste receptors, since each of
them responds to a large array of bitter compounds. Similarly,
the 2 turkey receptors were found to be broadly tuned,
suggesting that a low number of bitter taste receptors alone
is not an indication for inferior bitter taste. The same study
investigated of in total seven zebra finch Tas2rs the functional
properties of three zebra finch Tas2rs that are relatively recent
paralogs of chicken Tas2r1. It turned out that the 3 zebra finch
receptors each recognize a smaller number of bitter substances
compared to the single chicken Tas2r, the Tas2r1, and in fact all
three zebra finch receptors together detect as many bitter
compounds as the single chicken Tas2r1 (Behrens et al.,
2014). Thus, an expanded Tas2r repertoire may allow the
development of more specialized receptors. To investigate if
the lower tuning breadth of zebra finch Tas2rs might represent a
general feature for birds with an elevated number of putatively
intact bitter taste receptor genes or if this observation is only
true for rather recently evolved paralogs, we screened another
zebra finch receptor from a phylogenetically distant branch, the
zebra finch Tas2r1. Next, we compared our screening results
with chicken, turkey and other zebra finch receptors to assess
similarities and differences.

2 Materials and methods

2.1 Chemicals

Absinthin and Parthenolide were available from previous
studies (Brockhoff et al., 2007). Other reagents were purchased as
follows: Amarogentin from ChromaDex; Limonin from Apin
Chemical; Quassin from CPS Chemie and all other bitter tastants
from Sigma-Aldrich.

2.2 Database mining and construction of the
Tas2r phylogenetic tree

Database mining has been described in a previous study
(Behrens et al., 2014). The phylogenetic tree was generated by
the Maximum-Likelihood method. The amino acid sequences of
the 7 zebra finch bitter taste receptors, the 3 chicken Tas2rs, the
2 turkey Tas2rs, and a turtle (Pelodiscus sinensis) bitter taste receptor
serving as outgroup were aligned using MAFFT version 7.

2.3 Cloning of zebra finch Tas2r cDNA

The cDNA of zebra finch tgTas2r1 was synthesized by MWG
Operon and subcloned into vector pcDNA5FRT (Invitrogen).
Sequence analysis to verify the integrity of constructs was done
by double stranded Sanger sequencing (MWG Eurofins).

2.4 Immunocytochemistry

The immunocytochemical staining experiment was mainly done
as published previously (Behrens et al., 2021; Ziegler and Behrens,
2021). Briefly, HEK 293T-Gα16gust44 cells grown on poly-D-lysine-
coated glass cover slips were transiently transfected with expression
constructs coding for zebra finch Tas2r1, -r5, -r6, and –r7. For a
negative control, empty expression vector was transfected. On the
next day, cells were washed with 37°C warm PBS and fixated with
icecold methanol and acetone (1:1, v/v). After washing with PBS at
room temperature and blocking buffer (PBS, 5% normal horse
serum, 0.5% Triton X-100) treatment, mouse anti-HSV was
added at a dilution of 1:15,000 in modified blocking buffer (PBS,
5% normal horse serum, 0.2% Triton X-100). Following thorough
rinses with PBS at room temperature, anti-mouse Alexa
Fluor488 diluted 1:2,000 in modified blocking buffer was applied
for 1 h to facilitate detection of the C-terminally added hsv-epitope.
After additional rinses with PBS, cellular nuclei were stained with
DAPI, cells were rinsed again with PBS and, finally deionized H2O
and embedded in Dako mounting medium. Confocal laser scanning
microscopy (Zeiss LSM 780) was used to obtain images.

2.5 Screening of bitter compounds

The construct of Tas2r1 was transiently transfected in HEK
293T cells stably expressing the G protein chimera Gα16gust44

Frontiers in Physiology frontiersin.org02

Kumar et al. 10.3389/fphys.2023.1233711

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1233711


(Ueda et al., 2003) using Lipofectamine 2000 (Invitrogen) according to
themanufacturer’s protocol. HEK 293T-Gα16gust44 cells were cultured
in DMEM supplemented with 10% fetal calf serum (FCS) and
glutamine. For cultivation of transfected cells as well as functional
calcium imaging analyses, the protocols were described previously
(Behrens et al., 2021; Lang et al., 2022a; Lang et al., 2022b). The
chemicals used for the screening, which was performed between
2014 and 2015, were selected based on chemical diversity from a
compound library of substances known to taste bitter to humans.
Almost all bitter compounds that were previously tested on bird and
frog receptors (41 of 46) (Behrens et al., 2014) were included and
expanded by a set of additional compounds. Two different dilutions of
test substances in C1-buffer were applied to the cells. Firstly, the highest
applicable compound concentration (based on solubility and/or the
highest concentration not leading to receptor-independent calcium
signals) used previously (Meyerhof et al., 2010; Lossow et al., 2016).
Secondly, a 10-fold lower concentration. Calcium signals of
Tas2r1 transfected cells and empty vector (negative control)
transfected cells were recorded and compared.

2.6 Recording and calculations

Cells were seeded, transfected, and stimulated as described for the
screening procedure. For the determination of the dose-response
relationship of tgTas2r1 with cucurbitacin I, the averaged signal
amplitudes were plotted against the logarithm of the compound
concentrations. Calculation and plotting was done using SigmaPlot
software as published before (Behrens et al., 2021; Lang et al., 2022a;
Lang et al., 2022b).

3 Results

In contrast to the previously investigated 3 zebra finch tgTas2rs,
tgTas2r5, -r6, and –r7, which share a clade with chicken ggTas2r1,

zebra finch receptor tgTas2r1 does not belong to these closely related
receptor clusters (Figure 1). Instead, tgTas2r1 is a representative of a
separate clade, which may be the ortholog of ggTas2r7. This makes
this receptor highly interesting for functional studies.

To confirm the expression of tgTas2r1, we performed
immunocytochemical staining experiments to visualize epitope-
tagged receptor proteins along with cell nuclei. For comparisons,
we included constructs coding for the previously characterized zebra
finch receptors tgTas2r5, -r6, and –r7 (Behrens et al., 2014) and as a
negative control empty vector (=mock) transfected cells (Figure 2).

The immunocytochemical experiment confirmed the successful
expression of tgTas2r1 in HEK 293T-Gα16gust44 cells. The
apparent expression rate reached by transient transfection with
tgTas2r1 is 7.9% ± 1.6%, which is lower than the rates observed
for tgTas2r5, -r6, and –r7. Nevertheless, the clear detection of
receptor tgTas2r1 in the cell line allowed the functional screening
as the next step.

Using a functional heterologous expression assay, we screened
tgTas2r1 with in total 72 substances of our bitter compound library.
We observed receptor responses of tgTas2r1-expressing HEK 293T-
Gα16gust44 cells with 7 bitter compounds (Figure 3). The newly
identified 7 activators of the previously orphan receptor
tgTas2r1 were further assessed for the relative fluorescence
changes (ΔF/F) induced by the agonists at two different
concentrations (Figure 4A).

The substance cucurbitacin I resulted in the highest signal
amplitudes, whereas absinthin, amarogentin, colchicine,
erythromycin and limonin resulted in considerably lower signal
amplitudes. Denatonium benzoate activated tgTas2r1 only slightly.
In order to investigate the cucurbitacin I responsiveness of
tgTas2r1 in more detail, we monitored a full dose-response
relationship (Figure 4B). Due to substantial receptor-independent
artefacts at cucurbitacin I concentration above 0.3 mM (cf. plot of
empty vector transfected cell signals), we were not able to deduce an
EC50-concentration. The threshold concentration (defined as the
lowest concentration of receptor expressing cells exhibiting

FIGURE 1
Phylogenetic tree of zebra finch, chicken, and turkey Tas2r. The treewas generated by theMaximum-Likelihoodmethod. The amino acid sequences
of the 7 zebra finch bitter taste receptors (tgTas2r1-7), the 3 chicken Tas2rs (ggTas2r1, -r2, -r7), the 2 turkey Tas2rs (mgTas2r3 and –r4), and a turtle bitter
taste receptor serving as outgroup (Tas2r11 from Pelodiscus sinensis) were aligned using MAFFT version 7. The scale bar at the bottom indicates the
phylogenetic distance of peptide sequences. The node numbers represent branch support. Blue, Tas2r1 deorphaned here; asterisks, previously
deorphaned Tas2rs.
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statistically significant different fluorescence changes compared to
identically treated empty vector transfected cells) was 0.0009 mM
for cucurbitacin I.

The response rate of tgTas2r1 with 7 activators among the
screened 72 substances (~10%) suggests that this receptor
belongs to the group with intermediate tuning breadths. The
majority of compounds that were screened positive represent
natural bitter compounds. Two of the natural new agonists,
cucurbitacin I and colchicine, are quite powerful toxins targeting
cytoskeletal structures of cells (Wang et al., 2017; Angelidis et al.,
2018) which is in good agreement with the function of bitter taste
receptors as warning sensors.

Interestingly, the agonist profile discovered for tgTas2r1 shows
nearly no overlap with previously identified activators for tgTas2r5,

-r6, and –r7, thus increasing the coverage of potentially harmful
bitter substances in the habitat of zebra finch (Table 1). With four
common agonists, tgTas2r1 exhibits the largest overlap with the
agonist spectrum of chicken ggTas2r7, a very broadly tuned
generalist receptor. A similar extent of agonist overlap is
observed between tgTas2r1 and turkey mgTas2r3, although this
agonist set is not identical to the overlap between tgTas2r1 and
ggTas2r7.

3 Discussion

In the present manuscript, we characterized the activation
profile of the zebra finch bitter taste receptor Tas2r1. Unlike the
previously examined receptors Tas2r5, -r6, and –r7 that are
orthologs of chicken Tas2r1 (Behrens et al., 2014), the zebra
finch Tas2r1 belongs to a different branch of bird Tas2rs
othologous to chicken Tas2r7 and turkey Tas2r3 (Figure 1). Our
data show that tgTas2r1 clearly complements the bitter agonist
spectrum of zebra finch (Table 1). Of the 7 substances identified,
only a single, denatonium benzoate, is also activating other already
investigated tgTas2rs. Of the 29 bitter activators summarized in table
1, 23 activate at least one chicken receptor, 19 activate turkey Tas2rs,
and 15 activate zebra finch receptors. Hence, even though chicken
and turkey possess fewer functional bitter taste receptors, they cover
a broader bitter agonist spectrum. This may be due to zebra finch
lacking representatives in the chicken Tas2r2/turkey Tas2r4 clade
(Behrens et al., 2014) and (Figure 1), or the gap in the zebra finch
bitter recognition spectrum might also be covered by the 3 tgTas2rs
not investigated at present.

Despite its broad tuning for chemically diverse agonists,
tgTas2r1 seems to be rather selective. Whereas the sesquiterpene
lactone absinthin activates the receptor, the other sesquiterpene
lactones included in the screening, parthenolide and picrotoxinin,
exhibited no agonistic properties. Of the screened alkaloids, only
colchicine induced responses. Moreover, all identified agonists belong
to different chemical classes. The, by far, most pronounced response
of tgTas2r1 was observed with the substance cucurbitacin I (Figures 3,
4). The apparent potency and efficacy of this ligand suggests an
important role of this and related compounds in the ecology of zebra
finch. Cucurbitacins are toxic compounds mostly found in plants of
the cucurbitaceae family which include also well known edible
varieties such as cucumber, zucchini and pumpkin (Kaushik et al.,
2015). Birds can get in contact with cucurbitacins either directly by
feeding on the plants or indirectly by insects, mostly beetles,
sequestrating cucurbitacins as defense from predators (Rowell-
Rahier et al., 1995; Gillespie et al., 2003). Although data on
cucurbitacin sensitivity of birds are scarce, it was shown that
European starlings, which belong to the same order of passerine
birds like zebra finches, strongly avoid this compound class (Mason
and Turpin, 1990). This observation is likely predictive also for an
avoidance behavior of zebra finch, which has been shown to possess
taste buds within the oral cavity (Heidweiller and Zweers, 1990).
Another interesting observation made in chicken is the increase of
bitter taste receptor gene expression by perinatal administration of
bitter substances such as quinine (Cheled-Shoval et al., 2014). This
may allow birds to adjust their bitter taste sensitivity to the occurrence
of particular bitter plants in their individual habitats.

FIGURE 2
Immunocytochemistry of tgTas2r expression after transient
transfection. Expression of tgTas2r1 in Gα16gust44 cells was
monitored by confocal laser scanning microscopy using an antiserum
against the hsv-epitope attached to the receptor C-terminus
(green) and DAPI to visualize nuclei (blue). For comparison also
expression constructs coding for tgTas2r5, -r6, and –r7 were
analyzed. The specificity of receptor detection is demonstrated by the
lack of green signals in identically treated empty vector transfected
cells (mock). The constructs used for transient transfection and the
determined expression rates (in % ± SD) are labeled in the
corresponding panels. The average expression rates were based on
the counting of 479–521 cells (nuclei) from 3 representative images by
3 independent persons. Scale bars are shown in the upper and bottom
right panels.
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FIGURE 3
Fluorescence traces of tgTas2r1 expressing cells stimulated with bitter activators. The tgTas2r1 expression construct was transiently transfected in
HEK 293T-Gα16gust44 cells and challenged with 72 compounds of a bitter compound library. The fluorescence traces of compounds eliciting responses
(blue traces) are shown together with the corresponding substance concentrations. The traces were averaged from one representative experiment
performed in duplicate wells. Empty vector transfected and identically treated cells were used as negative controls (gray traces). Scale bar, bottom
right.

FIGURE 4
Functional screening of zebra finch bitter taste receptor tgTas2r1. tgTas2r1 was transiently transfected in HEK 293T-Gα16gust44 cells and screened
with in total 72 natural and synthetic bitter compounds by calcium imaging. (A) Each compound resulting in the stimulation of a tgTas2r1 in a prescreening
was tested in two different concentrations. The responses upon stimulation with the maximal concentration not leading to unspecific cellular responses,
are shown by gray bars. The black bar representing lower concentration of compounds (1:10 dilution). The y-axis shows the relative fluorescence
changes (ΔF/F ± SD), and the x-axis is labeled with activating bitter compounds. (B) Dose-response relationship of tgTas2r1 with cucurbitacin I. The data
are derived from two independent experiments each performed with 8 technical replicates for each concentration of receptor transfected and
4 corresponding technical replicates for empty vector transfected cells. The relative changes in fluorescence of receptor expressing cells (ΔF/F ± SEM,
black circles, solid line) did not show clear signal saturation at concentrations (≤0.3 mM) with absent or tolerable receptor-independent artefact signals
(cf. empty vector control, open circles, broken line). The asterisk indicates the threshold concentration defined as the lowest concentration at which
receptor-transfected cells show a significant higher signal (p < 0.05) than empty vector transfected cells.
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TABLE 1 Activation of avian Tas2rs by bitter substances.

No. Receptor
substance

tgTas2r1 tgTas2r5 tgTas2r6 tgTas2r7 ggTas2r1 ggTas2r2 ggTas2r7 mgTas2r3 mgTas2r4

1 Absinthin

2 Amarogentin

3 Andrographolide

4 Azathioprine

5 Caffeine

6 Camphor

7 Carisoprodol

8 Chloramphenicol

9 Chloroquine

10 Chlorpheniramine

11 Colchicine

12 Coumarin

13 Cucurbitacin I

14 Cycloheximide

15 Denatoniumbenzoate

16 Diphenhydramin

17 Diphenidol

18 Erythromycin

19 Gingkolide A

20 Limonin

21 Nicotin

(Continued on following page)
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Depending on the plant, the plant part ingested and some
seasonal variations, cucurbitacin levels can be considerable. For
example, the plant Trichosanthes cucumerina L., used for
traditional medicine in India, contains between 1.7 and 37 mg/kg
of total curcurbitacines which equals roughly 3–70 μmol/kg (Attard
et al., 2011). As we observed a threshold concentration as low as
0.9 µM with cucurbitacin I, it appears safe to assume that zebra finch
are well equipped to recognize cucurbitacins at biologically relevant
concentrations. The rather low cucurbitacin I LD50-concentration of
5 mg/kg body weight observed for mice (Gry et al., 2006) would
translate to 1.6 g of the fruits containing the highest cucurbitacin
concentration for zebra finch, which weigh only about 12 g. This
suggests the necessity for sensitive aversive reactions in zebra finch.

In summary, our data confirm that, based on Tas2r function,
birds do not exhibit inferior bitter taste abilities and that bitter taste
perception, as in almost all other vertebrate species, fulfills a key role
for their survival.
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