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Introduction: Predicting ventricular arrhythmia Torsade de Pointes (TdP)
caused by drug-induced cardiotoxicity is essential in drug development.
Several studies used single biomarkers such as qNet and Repolarization
Abnormality (RA) in a single cardiac cell model to evaluate TdP risk.
However, a single biomarker may not encompass the full range of factors
contributing to TdP risk, leading to divergent TdP risk prediction outcomes,
mainly when evaluated using unseen data. We addressed this issue by utilizing
multi-in silico features from a population of human ventricular cell models
that could capture a representation of the underlying mechanisms
contributing to TdP risk to provide a more reliable assessment of drug-
induced cardiotoxicity.

Method: We generated a virtual population of human ventricular cell models
using a modified O’Hara-Rudy model, allowing inter-individual variation. IC50

and Hill coefficients from 67 drugs were used as input to simulate drug effects
on cardiac cells. Fourteen features (dVmdt repol, dVm

dt max, Vmpeak, Vmresting, APDtri,
APD90, APD50, Capeak, Cadiastole, Catri, CaD90, CaD50, qNet, qInward) could be
generated from the simulation and used as input to several machine learning
models, including k-nearest neighbor (KNN), Random Forest (RF), XGBoost,
and Artificial Neural Networks (ANN). Optimization of the machine learning
model was performed using a grid search to select the best parameter of the
proposedmodel. We applied five-fold cross-validation while training themodel
with 42 drugs and evaluated the model’s performance with test data from 25
drugs.

Result: The proposed ANN model showed the highest performance in predicting
the TdP risk of drugs by providing an accuracy of 0.923 (0.908–0.937), sensitivity
of 0.926 (0.909–0.942), specificity of 0.921 (0.906–0.935), and AUC score of
0.964 (0.954–0.975).

Discussion and conclusion: According to the performance results, combining the
electrophysiological model including inter-individual variation and optimization
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of machine learning showed good generalization ability when evaluated
using the unseen dataset and produced a reliable drug-induced TdP risk
prediction system.
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explainable AI

1 Introduction

Torsades de Pointes (TdP) is a prevalent fatal arrhythmia
symptom and a key indicator of sudden cardiac death events
(Gintant, 2008; Frommeyer and Eckardt, 2016). Drug-induced
TdP is one of the most common causes of drug withdrawal from
the market (Gintant, 2008). Therefore, assessing drug-induced TdP
is a critical issue in drug development. The International Council for
Harmonization (ICH) has established guidelines (Cavero and
Crumb, 2005) for assessing TdP risk caused by drugs. These
guidelines, namely the S7B nonclinical evaluation and the
E14 clinical evaluation guidelines, focus on two specific markers.
Onemarker is the in vitro block of the hERG (human Ether-à-go-go-
Related Gene) channel, which indicates the rapidly activating
delayed rectifier potassium current (IKr). The other marker is the
prolongation of the QTc interval observed during clinical studies
(FDA, 2005; EMEA, 2006). However, following these conventional
guidelines necessitates extensive testing, leading to high sensitivity
but low specificity in classifying drug risk (Colatsky et al., 2016).
Consequently, even if the drugs do not present a Torsades de Pointes
(TdP), they were subjected to strict regulations, revoked from the
market, and dismissed in development (Llopis-Lorente et al., 2020).
To address these issues, the FDA revised the guidelines for drug
development by launching Comprehensive in-vitro Proarrhythmia
Assay (CiPA) studies. Through in silico simulation, the CiPA group
conducted the comprehensive evaluation of drug response in
multiple ion channels, contrasting with a single assay evaluation
that only uses the hERG channel (Crumb et al., 2016; Kun-Hee et al.,
2018).

Several studies developed a drug testing system based on CiPA
guidelines to classify TdP risk levels of drugs. Dutta et al. (2017)
developed an in silico model based on the O’Hara-Rudy (ORD)
human ventricular myocyte model (O’Hara et al., 2011). The
proposed model by Dutta et al. (2017) optimized the ion channel
maximal conductivities constant values of IKs, ICaL, IKr , INaL, and IK1
to 1.870, 1.007, 1.013, 2.661, and 1.698, respectively. Furthermore, it
enabled evaluating the drug responses simulated in silico models
similar to those obtained in vitro. They used qNet (the total amount
of net charge transferred through 6 channels- INaL, ICaL, IKr, Ito, IK1,
and IKs) as features for classifying cardiotoxicity risk groups.

In addition to studies examining drug toxicity using single-cell
models, several researchers attempted to evaluate TdP risk of drugs
using 1D (line), 2D (tissue), and 3D (whole heart) models. As
reported in review studies, Hwang et al. (2020) and Romero et al.
(2018) analyzed the effects of 84 compounds on the QT interval by
using pseudo-ECG from a 1D model. The authors proposed a novel
torsagenic metric of a compound defined as the drug concentration
yielding the 10% prolongation of APD and QT interval divided by
the maximal effective free therapeutic concentration (EFTPCmax).

Furthermore, research proposed by Polak et al. (2018) also utilized
the pseudo-ECG from 1D simulation under 96 reference
compounds to predict TdP risk of drugs in combination with
several machine learning algorithms. The authors found that the
decision tree was the best algorithm that could predict correctly 89%
of reference drugs and 10 out of 12 validation drugs. In addition,
studies using 2D simulations (Luo et al., 2017a; Luo et al., 2017b;
Kubo et al., 2017) and 3D simulations (Hwang et al., 2019; Okada
et al., 2015; Okada et al., 2018) examined simulated electrical wave
propagation and ECG under the effects of various drugs to evaluate
the TdP risk of drugs. However, despite promising results and
findings from 1D, 2D, and 3D simulation studies, the analysis
may require a substantial computational cost.

Li et al. (2019) proposed assessing the drug-induced TdP risk
level into high-risk and low-risk using qNet as an input for a logistic
regression model. This involved modifying the ORD model Dutta
et al. (2017) proposed by adding hERG dynamics to generate qNet.
Specifically, their research demonstrated that including hERG
dynamic characteristics for classifying the TdP risk level of a
drug improved the AUC compared with those not including
hERG dynamic characteristics. The AUC of ROC1 (predicting
the probability of low risk) was 0.901 and AUC of ROC2
(predicting the probability of high risk) was 0.988 when using
the dynamic hERG model. In contrast, the AUC of ROC1 was
0.86 and AUC of ROC2 was 0.856 without the dynamic hERGmodel
(Li et al., 2019). However, there are limited number of experimental
data for dynamic hERG in vitro experiment and the data processing
requires high computational complexity especially for dynamic
hERG parameter estimation from in vitro data (Yoo et al., 2021).

The other studies proposed by Parikh et al. (2017) used the Early
After Depolarization (EAD) metrics to evaluate drug-induced TdP
risk. However, using EAD as a biomarker to predict TdP risk could
be inferior to qNet metrics. EADs are very dependent on the
ventricular cardiomyocyte model, which may have contributed to
the poor performance, indicating the need to evaluate EADs using
coupled cells or tissue models. Passini et al. (2017) used
repolarization abnormalities (RAs) to indicate EAD. The
prediction of TdP risk using RAs yielded 96% accuracy in
simulation employing a population of 1,213 human ventricular
control models with random ionic current changes. The
simulation revealed that using RA in the virtual human
population model provided a wider biological variety, leading to
higher accuracy than a single model that only provided an accuracy
of 59%.

Furthermore, Zhou et al. (2020) conducted blinded in silico drug
trials using the optimized virtual human cell population proposed by
Passini et al. to investigate the reliability of TdP risk prediction based
on two independent sources. They used two datasets for evaluating
the TdP risk prediction performance. Dataset I comprised
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30 compounds, encompassing data on IC50 and Hill coefficients for
seven distinct ionic currents: INa, INaL, Ito (the transient outward
potassium current), IKr, IKs, IK1 (the inward rectifier potassium
current), and ICal (Crumb et al., 2016). On the other hand,
Dataset II encompassed 55 compounds, yet it only contained
data on IC50 and Hill coefficients for a subset of three ion
channels: INa, IKr, and ICal. The performance result obtained the
highest accuracy of 83% using Dataset I and 80% using Dataset II.
Their results confirmed that in silico simulations using an optimized
population of human ventricular models are helpful tools for
providing high-throughput TdP risk prediction.

Meanwhile, several researchers used multi-input features
instead of a single biomarker to assess drug-induced TdP risk
based on machine learning approaches. Polak et al. (2018)
proposed a new methodology to estimate drug-induced TdP risk
using APD90, APD50, pseudo-ECG signals, QRS width, QT interval,
early repolarization time, and late repolarization time as in silico
biomarkers feature extraction. Furthermore, they applied several
machine learning algorithms: random forest, support vector
machine (SVM), and decision tree. They reported the best
classification accuracy of 89% using the empirical decision tree.

Parikh et al. (2017) used the inhibition rate of ion channels
calculated through in vitro experiments as feature inputs into several
classifier algorithms: logistic regression, support vector machines,
and natural network model. Their study reported that the
classification accuracy for each algorithm was 85%, 85%, and
86%, respectively. Meanwhile, Lancaster and Sobie. (2016)
reported a high-performance AUC score of 0.962 using APD50

and Ca2+ as input of the SVM classification model. According to
the simulation results, TdP risk was influenced by drug-induced
changes to both the AP and intracellular Ca2+. Moreover, their study
claimed that a measurement of Ca2+ dynamics and the diastolic
intracellular Ca2+ provides the additional information necessary to
classify the toxicity of drugs.

Furthermore, Yoo et al. (2021) used 28 of the drugs released by
CiPA. They predicted their toxicity using nine in silico features
(dVmdt max, APDresting, APD90, APD50, Caresting, CaD90, CaD50, qNet,
qInward) as input to the ANN model. They obtained the highest
AUC score of 0.92 for the high-risk group, 0.83 for the intermediate-
risk group, and 0.98 for the low-risk group. According to the results,
the ANN model performed well in classifying TdP risk. However,
the model has not been validated using a different dataset with more
compounds.

In the studies mentioned earlier using single-cell simulations,
researchers commonly used the action potential morphology
characteristics such as EADs based on repolarization abnormality
(RA) or charge characteristics such as qNet from the ORD in silico
model, which is highly correlated with the proarrhythmic risk level.
Nevertheless, the univariate analysis using a single biomarker for TdP
risk of drug assessment may not have sufficient generalization ability
and lead to less robust predictions, such as in the study reported by
Passini et al. (2017) using a single cardiac cell model that only provided
an accuracy of 59% when using RA as a single biomarker.

Several studies proved that machine learning models could
simultaneously leverage multiple biomarkers and other relevant
features to make predictions. By considering a diverse range of
information, they can capture complex relationships and
interactions among variables, leading to improved predictive

accuracy compared to relying on a single biomarker. However,
the previous studies generated in silico features in a single cardiac
model without considering inter-individual features that will be
more reliable in evaluating the generalization ability of machine
learning models. Moreover, the previous studies did not show the
contribution of each feature to the performance of TdP risk
assessment, which is very important for further analysis in drug
development.

This study addresses unresolved issues in previous studies by
combining the cardiac electrophysiological model including inter-
individual variability and optimized machine learning models with
grid search and explainable AI. We utilized 14 in silico features
(dVmdt repol, dVmdt max, Vmpeak, Vmresting, APDtri, APD90, APD50, Capeak,
Cadiastole, Catri, CaD90, CaD50, qNet, qInward) generated from the
simulation of drugs effect in a population of human ventricular
cardiac cell models as input to several machine learning models,
including k-nearest neighbour (KNN), Random Forest (RF),
XGBoost, and Artificial Neural Network (ANN). The optimization
of the machine learning model was conducted using a grid search
method for hyperparameter tuning automatically to provide the best
parameters of the machine learning models. The models will be
evaluated using the unseen dataset by analyzing evaluation metric
performance, including accuracy, sensitivity, specificity, and AUC
score. Furthermore, the contribution of each feature to the system
performance will be demonstrated based on SHapley Additive
exPlanations (SHAP) values of explainable AI (XAI). Therefore,
the comprehensive approach in predicting the TdP risk of drugs
based on in silico simulation with machine learning has the potential
to be applied to drug development in the pharmaceutical industry.

2 Methods

This study proposes a machine learning approach to evaluate
drug-induced TdP risk based on a cardiac electrophysiological
model including inter-individual variability to generate a control
population of human ventricular cell models. The block diagram
of the proposed method consisted of four main stages (Figure 1),
which are the design of the population of human ventricular cell
models, in silico simulation to generate in silico features, drug’s
TdP risk prediction using several machine learning models, and
evaluating the contribution of each feature to the prediction
performance based on SHAP value of XAI.

2.1 Model of cardiac cell and drug’s effects

We used the O’Hara Rudy ventricular cell model modified by
Dutta et al. (2017) to determine the drug’s effect on myocardial ionic
channels. The membrane potential (Vm) of myocardial cells can be
calculated using the formula represented by Eq. 1.

dVm
dt

� − 1
Cm

Itotal + Istim( ) (1)

where Itotal is the sum of transmembrane ionic currents that consist of
sodium current (INa), transient outward potassium current (Ito), late
sodium current (INaL), L-type calcium current (ICaL), sodium current
through L-type calcium channel (ICaNa), potassium current through
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L-type calcium channel (ICaK), rapid delayed rectifier potassium current
(IKr), slow delayed rectifier potassium current (IKs), inward rectifier
potassium current (IK1), sodium-calcium exchange current (INaCa),
sodium-potassium ATPase current (INaK), background currents
(INab, ICab, IKb), and sarcolemma calcium pump current (IpCa).
Meanwhile, Istim is the current induced by an external stimulus. Cm

is the cell membrane capacitance set at 1.0μF for the experiment in this
study (O’Hara et al., 2011).

We utilized the model of drug effects based on the study from
Mirams et al. (2011) that was inspired by the work of Hill. (1910). The
inhibition effects of the drug on the ion channel could be modeled
through a conduction-block formulation as expressed by Eq. 2.

inhibition effect � 1

1 + IC50
D| |( )h (2)

where the IC50 represents the concentration of 50% inhibition of
ionic current, [D] represents the dosage of drugs, and h represents
the Hill coefficient. The inhibition of the drug is assumed to affect
multiple ion channels such as CaL, K1, Ks, Na, NaL, to, and Kr or
hERG. Finally, the ion channel’s conductance under the drug effect
could be expressed as shown in Eq. 3.

gi � gcontrol,i 1 − inhibition effect( ) (3)
where the gi is the maximum conductance of ion channel i under
drug effect and gcontrol,i is the maximum conductance of ion channel
i without drug.

2.2 In silico simulation

In silico simulation of the drug’s effect was conducted to
generate in silico features. The IC50 and Hill coefficient were
used in this study provided by Passini et al. (2017). The drug
effects are simulated using various concentrations for each drug
namely 1, 5, and 10. Initially, the cell’s voltage profile is simulated
without adding drugs for 1,000 stimulations with a cycle length of
2,000 ms to reach the steady state condition. After that, drug effects
were applied for 1,000 stimulations with the same cycle length.
Following Chang et al. (2017a), the AP with the highest
repolarization slope (dVmdt repol) within the last 250 stimulations is
selected to generate in silico features. The illustration for AP and
Ca profiles is shown in Figure 2. For AP beat that fully repolarized,
the search of dVm

dt repol is between 30%–90% repolarization; within
30% to the end of beat for AP beat that repolarises to 30% but not
90%, or between the peak of AP to the end of a cycle for AP beat
that cannot repolarise by 30%. In silico features that we collected
consist of the maximum rate of change of membrane potential
during repolarization (dVmdt repol), maximum membrane potential
rate (dVmdt max), peak of action potential (Vmpeak), resting value of
membrane potential (Vmresting), action potential duration from
peak to 90% and 50% repolarization (APD90 and APD50), APDtri

(APD90-APD50), peak of calcium intracellular concentration
(Capeak), diastolic intracellular calcium concentration (Cadiastole),
calcium duration from peak to 90% and 50% repolarization (CaD90

and CaD50), Catri (CaD90-CaD50), qNet, and qInward. Following

FIGURE 1
A general block diagram of the proposedmethod consisting of four main stages: design of the population of human ventricular cell models, in silico
simulation to generate in silico features, drug’s TdP risk prediction using several machine learning models, and evaluation the system performance.
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Dutta et al. (2017), the qNet was defined as the total ionic charge
during AP from six ion channels as shown in Eq. 4:

qNet � ∫BCL

0
IKr + ICaL + Ito + INaL + IKs + IK1( )dt (4)

Furthermore, the qInward, as studied by Li et al. (2019), was
defined as shown in Eq. 5:

qInward � 1
2

∫BCL

0
INaL,drugdt

∫BCL

0
INaL,controldt

+ ∫BCL

0
ICaL,drugdt

∫BCL

0
ICaL,controldt

⎛⎝ ⎞⎠ (5)

2.3 Machine learning optimisation with grid
search

Grid search is a commonly used technique in machine learning for
optimizing hyperparameters. It systematically explores all possible
combinations of hyperparameter values by creating a grid
configuration (Elgeldawi et al., 2021; Gressling, 2021; Belete and
Huchaiah, 2022). Each combination is trained and evaluated using a
validation set to assess its performance. The goal is to identify the
hyperparameter values that yield the best performance. While grid
search effectively finds the best hyperparameters, it becomes
inefficient when dealing with high-dimensional hyperparameter
spaces. As hyperparameters and their potential values increase, the
number of evaluations required grows exponentially. Specifically, if
there are k parameters with n distinct values, the complexity of the
grid search is expected to increase at a rate of O(nk). To address this issue,
it is essential to carefully constrain the hyperparameter search space to
improve the efficiency of grid search as an optimization approach
(Elgeldawi et al., 2021). Limiting the range of possible hyperparameter
values can make the grid search process more focused and
computationally manageable.

This study used four classifier algorithms: KNN, XGBoost, RF,
and ANN. Our study’s selection of these classifier models was driven
by their specific strengths and suitability for our research objectives
(Supplementary Table S4 Supplementary Material). KNN is a non-
parametric algorithm characterized by its ability to operate without
making assumptions about the underlying data distribution
(Sha’abani et al., 2020). It is particularly suitable for situations
where the data distribution is not explicitly known or may
exhibit non-standard characteristics. XGBoost employs a boosting
technique to improve model performance sequentially by correcting
errors (Hendrawan et al., 2022; Arif Ali et al., 2023). It has
robustness in handling linear and non-linear relationships,
including missing data (Hendrawan et al., 2022; Arif Ali et al.,
2023). RF combines multiple decision trees to improve overall
prediction accuracy and reduce overfitting (Belgiu and Drăguţ,
2016). Moreover, RF is less sensitive to outliers and noise in the
data (Parmar et al., 2019). ANN has the advantage of exploring
complex, non-linear patterns and hierarchical features in the dataset
(Hamzah and Mohamed, 2020). ANN can be adapted to various
problem domains through adjustments in architecture and
hyperparameters (Hamzah and Mohamed, 2020; Tuan Hoang
et al., 2021). By using these individual algorithms separately, we
aimed to contrast their performance and applicability, offering a
holistic evaluation of their suitability for predicting drug-induced
TdP risk.

Figure 3A presents the algorithm of the k-nearest neighbor (KNN)
classifier algorithm employed in this study. In this approach, the training
data underwent a projection into a multidimensional space, where each
dimension denoted the in silico features obtained from the training data
(Uddin et al., 2022; Fuadah et al., 2023). The training process
encompassed the storage of feature vectors and associated labels.
Meanwhile, during the prediction phase, the unlabeled testing data
were labeled based on their proximity to the k nearest neighbors.
Distances between feature vector positions in the training and testing

FIGURE 2
(A) The illustration of in silico features in AP profile consisted of APD90 , APD50, APDtri , dVmdt repol , dVmdt max , Vmpeak , Vmresting; (B) Ca profile consisted of
CaD90 , CaD50, Catri , Capeak , Cadiastole .
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data were computed using distance metrics within the multidimensional
space, such as Euclidean, Chebyshev, and Minkowski. The prediction of
the drug’s TdP risk is accomplished throughmajority voting based on the
labels of the k-nearest neighbors. The optimization of the KNN model
involved hyperparameter tuning utilizing the grid search method. The
grid search method facilitated the selection of the best parameter values
and the optimal k value from a range of options (k � 1, 3, 5, 7, ..., 31), as
well as the appropriate distance metric, including Euclidean, Minkowski,
and Chebyshev, throughout the optimization process.

The Extreme Gradient Boosting (XGBoost) classification
algorithm is an enhanced method based on gradient-boosting
decision trees, which efficiently constructs boosted trees and
operates in parallel (Chen and Guestrin, 2016; Ibrahem Ahmed
Osman et al., 2021; Montomoli et al., 2021; Tarwidi et al., 2023).
Figure 3B illustrates a topology representation of the XGBoost
classification process, where K represents the number of decision
trees and fkXi denotes the input function in the kth decision tree.

During training, the model continuously calculates node losses
to identify leaf nodes with the most significant losses. XGBoost adds
new decision trees by iteratively splitting input features. The

objective of adding a new decision tree in XGBoost is to learn a
new function, f k(X, θk), which complements the previous
predictions. Once the training is completed and K decision trees
are generated, each feature prediction sample corresponds to a leaf
node in each decision tree, and each leaf node has an associated
score. The scores from each tree are summed to obtain the final
predicted value for that sample.

In this study, the XGBoost classification training model employs
an ensemble of (50,100,150, and 200) decision trees. The complexity
of the model increases with a higher number of decision trees.We set
the options’ max depth parameter range (3, 5, 7, and 11).
Additionally, the learning rate was also evaluated from 0.0001 to
0.1. The grid search method determined all the optimal tuning
parameters used in this study.

The structure of the random forest (RF) classifier is shown in
Figure 3C. RF comprises a group of decision tree classifier
algorithms, which offer superior performance compared to using
a single decision tree (Stavropoulos et al., 2020; Suhail et al., 2020;
Xia, 2020). Random Forests combines two well-known classification
tree approaches: boosting and bagging. It introduces an additional

FIGURE 3
The schematic diagram of classifier models; (A) The diagram of the k-nearest neighbor classifier algorithm; (B) The topology of the XGBoost
classifier algorithm; (C) The topology of the RF classifier algorithm. (D) The architecture of the artificial neural network algorithm.
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layer of randomness to the bagging technique. Both methods have
distinct characteristics: boosting relies on the previous trees,
assigning extra weight to misclassified points by earlier
predictors, and making predictions based on weighted voting. On
the other hand, bagging constructs each tree independently using a
bootstrap sample of the dataset and makes predictions based on a
simple majority vote.

RF incorporates two new strategies: Firstly, each tree is built
using a different bootstrap sample of the data. Secondly, the
splitting is performed at each node in the tree using the best
predictor from a randomly selected subset of predictors rather
than considering all variables as in standard trees. As a result, RF
significantly modifies and improves upon the bagging approach
by creating a diverse collection of uncorrelated trees and
averaging their predictions.

In the classification process, all trees contribute by casting votes
for their respective classes, and RF assigns the input to the class with
the majority votes. The grid search technique identifies the optimal
number of trees (50, 100, 150, and 200) and the best criterion (gini
and entropy) that yields the highest performance outcome for the RF
classifier.

An artificial neural network (ANN) is a fully connected
architecture composed of three layers: input, hidden, and
output layers (Shanbehzadeh et al., 2022; Pantic et al., 2023),
as shown in Figure 3D. The input layer is responsible for
receiving data from external sources. In this study, the input
to the ANN architecture consisted of 14 in silico features. The
hidden layers are responsible for processing the input from the
preceding layer and transmitting the computed results to the
output nodes. Specifically, the ANN utilized in this study
incorporated one hidden layer comprising 14 nodes. The
parametric rectified linear unit (PReLU) activation function
was employed in the hidden layers, and a sigmoid activation
function was utilized in the output layer to predict the TdP risk of
drugs.

A grid search technique was employed to optimize the
performance of the ANN model. The grid search aimed to
identify the optimal choice of optimizer among Adam, Nadam,
SGD, and RMSprop optimizers. Additionally, the grid search
determined the optimal learning rate from 0.0001 to 0.1, yielding
the highest performance for the ANN architecture.

2.4 Explainable AI for machine learning

Explainable AI, particularly in the context of machine learning,
plays a crucial role in understanding the underlying factors driving
predictions. In this study, we leveraged SHAP values to assess
features’ importance in machine learning predictions. This
approach is based on the concept of Shapley values from game
theory, which was initially used to allocate rewards among players in
a cooperative game (Lundberg et al., 2020). In the context of model
interpretation, by calculating the SHAP values for each input
feature, we gained insights into the contribution of individual
features to the overall prediction.

In calculating SHAP values, the procedure initiates by establishing
a baseline prediction, which is frequently determined by utilizing the
model’s mean prediction over the entire dataset (Štrumbelj and

Kononenko, 2014). The process involves systematically examining
the impact of each feature by comparing the model’s prediction when
including a particular feature and when excluding a particular feature.
This difference reveals the extent to which a feature contributes to the
prediction. Shapley values assign a credit to each feature based on its
individual and collective impact on the prediction, ensuring that the
contributions sum up correctly. Mathematically, the SHAP value (ϕ)
for feature i on instance x is expressed as Eq. 6.

∅i x( ) � ∑
S⊆N\ i{ }

S| |! N| | − S| | − 1( )!
N| |! f xs ∪ i{ }( ) − f xs( )[ ] (6)

Where N is the set of features, S is a subset of N excluding feature
i, xs is the instance x with only the features included in S set.
Meanwhile, f is the model’s prediction function.

2.5 Evaluation of system performace

In measuring evaluation metrics including accuracy, sensitivity,
and specificity, we have to measure the true positive (TP), the true
negative (TN), the false positive (FP), and the false negative (FN). TP
represents a situation in which the model correctly predicts the high
TdP risk as a high TdP risk. TN represents a situation in which no
TdP risk is predicted as no TdP risk (Sharma et al., 2022). FP is when
no TdP risk is wrongly predicted as high TdP risk, while the FN is
when high TdP risk is incorrectly predicted as no TdP risk. In
addition, we calculated accuracies, sensitivity, and specificity using
Eqs 7–9, respectively.

Accuracy � TP + TN
TP + TN + FP + FN

(7)

Sensitivity � TP
TP + FN

(8)

Specificity � TN
TN + FP

(9)

In addition, this research also reported the area under the curve
(AUC) score to assesses the classifier’s ability in distinguish between
different classes. The AUC scored obtained by measuring the area
under Receiver Operating Characteristic (ROC) curve that plotted
two metrics including true positive rate (sensitivity) and false
positive rate (1 − Specificity).

3 Result

3.1 Features generated from in silico
simulations

In predicting the drug-induced TdP risk based on an
electrophysiological model including inter-individual variability,
we utilized 14 in silico features generated from in silico
simulation of 67 drugs effect in 1,151 healthy control individuals.
We provided the train and test set manually by adjusting 42 drugs as
train set and 25 drugs as test set as shown in Table 1. The drugs were
already categorized according to the TdP risk, which consists of
39 drugs of high TdP risk class and 28 drugs of no TdP risk class
(Passini et al., 2017).
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TABLE 1 The list of train and test drugs with EFPTCmax value.

Proarrhythmic risk level Train drugs Test drugs

Name EFTPCmax (µM) Name EFTPCmax (µM)

High TdP-risk Amiodarone I 0.155 Moxifloxacin I 10.96

Amiodarone II 0.155 Moxifloxacin II 10.96

Astemizole 0.0003 Moxifloxacin III 10.96

Bepridil I 0.035 Pimozide 0.0005

Bepridil II 0.035 Procainamide 54.18

Bepridil III 0.035 Quinidine 3.237

Chloropromazine I 0.038 Quinidine1 3.237

Chloropromazine II 0.038 Sotalol I 14.69

Cilostazol 0.128 Sotalol II 14.69

Cisapride I 0.003 Sparfloxacin I 1.766

Cisapride II 0.003 Sparfloxacin II 1.766

Disopyramide 0.742 Terfenadine I 0.009

Dofetilide I 0.0021 Terfenadine II 0.009

Dofetilide II 0.0021 Terodiline 0.145

Dofetilide III 0.0021 Thioridazine 0.98

Donepezil 0.007

Droperidol 0.016

Flecainide I 0.752

Flecainide II 0.752

Flecainide III 0.752

Halofantrine 0.172

Haloperidol 0.004

Ibutilide 0.14

Methadone 0.507

No TdP-risk BaCl2 1 Nisoldipine 0.0001

Ceftriaxone 23.17 Nitrendipine 0.003

Diazepam 0.029 Pentobarbital 5.171

Diltiazem I 0.1275 Phenytoin 4.36

Diltiazem II 0.1275 Primidone 20.6

Duloxetine 0.016 Piperacillin 114

Lamivudine 19.54 Raltegravir 7

Lidocaine I 2.6 Ribavirin 27.88

Lidocaine II 2.6 Sitagliptin 0.442

Linezolid 59.11 Telbivudine 19.72

Loratadine 0.0004

Mexiletine I 2.5

Mexiletine II 2.5

(Continued on following page)
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Furthermore, we performed a correlation analysis between 14 in
silico features to know which features highly correlated with one
another. According to the correlation heatmap between features, as
shown in Supplementary Figure S1 (Supplementary Material), the
highest correlation value showed between CaD50 and CaD90 with a
correlation value of 0.77, followed by APD50 and APD90 with a
correlation of 0.75, and Cadiastole and Vmresting with a correlation value
of 0.74. However, there are no features that have correlation values
between one another greater than 0.8 that are commonly used as a
threshold for feature selection (Cunningham et al., 2021; Taylor, 1990;
Zampieri et al., 2008). Therefore, we used 14 in silico features for
predicting drug-induced TdP risk. We applied Z-score normalization
to preprocess these features before using them as input to themachine
learning models (Al-Faiz et al., 2018; Raju et al., 2020).

Figure 4 shows the 14 features from in silico simulations under
various drug concentrations. Some features varied mainly in a narrow
region, with only a few samples filling a more comprehensive range of
data. For example, from the AP features, only dVm

dt max and Vmpeak

showed a relatively wider distribution of data than other features. Most
features from AP shape had some outlier samples with much larger or
smaller values than most of the data samples, making the distribution
plot look narrower. Furthermore, from the calcium dynamics features,
Catri features showed a considerably narrow data distribution with the
majority of data samples distributed primarily on the range of Catri at
400–500ms while some outlier samples produced values more than
1750ms. In addition, from the ionic charge features, the qInward yielded
a narrow data distribution, with the majority of the data samples located
around 0.5–1.5, while the qNet resulted in a significantly wider data
distribution compared to qInward.

The distribution of training and testing drugs showed changes
when various drug concentrations were deployed. Some features
such as APD90, APD50,CaD90, CaD50, Catri, and qNet yielded
shifted, wider data distribution when higher drug concentrations
were applied mainly for high TdP-risk drugs. Among these features,
only qNet produced data distribution that shifted towards negative
values, i.e., more samples produced smaller or negative qNet values
when higher drug concentrations were administered. However, in
contrast, the features generated under no TdP-risk drugs showed
minimal changes when higher drug concentrations were applied.

3.2 Drugs induced TdP risk evaluation result

This study appliedfive-fold cross-validationwith a grid searchmethod
to train 42 drugs using several machine learning models, including KNN,

XGBoost, RF, and ANN. The grid search method provided the best
hyperparameter setting to generate the best model of each machine
learning model. Furthermore, the best model from each machine
learning model was evaluated using the unseen dataset of 25 drugs,
which consisted of 15 drugs of high TdP risk and 10 drugs of No TdP risk.

Our prediction models utilized simulations that observed the
effect of drugs according to drug concentration variations at 1, 5, and
10 times EFTPCmax. Table 2 shows the performance in predicting
drugs that induced TdP risk in 1, 5, and 10 × EFTPCmax
concentrations using machine learning models. The highest
performance for several machine learning models was provided
at 10 × EFTPCmax. Among the several machine learning models in
this study, the ANNmodel provided the best prediction of the drug’s
TdP risk at 10 × EFTPCmax, followed by RF, XGBoost, and KNN.

We applied a grid search method for hyperparameter tuning
automatically to select the best parameter of each classifiermodel. The
grid search method selected the Adam optimizer with a learning rate
of 0.001, 1,000 epochs, and a batch size 256 as the optimal parameter
configuration for the ANN classifier model. Therefore, these
parameters were employed to train the ANN model. Furthermore,
for the RFmodel, the grid search selected entropy as the best criterion,
with 100 trees as the optimal parameter of the RF model. For the
XGBoost model, the grid search method determined 50 trees as the
optimal number of estimators with three as maximum depth and
learning rate 0.0001. Meanwhile, for the KNN algorithm, the grid
search approach selected the Euclidean distance with a value of k =
1 as the best parameter for the KNN algorithm.

Furthermore, we have evaluated the model performance from each
fold in five-fold cross-validation using the unseen dataset. The ANN
model achieved the highest prediction performance with a 95%
confidence interval when evaluated on the test data by obtaining an
accuracy of 0.923 (0.908–0.937), sensitivity of 0.926 (0.909–0.942),
specificity of 0.921 (0.906–0.935), and AUC score of 0.964
(0.954–0.975). The RF model prediction performance on test data
obtained an accuracy of 0.918 (0.917–0.919), sensitivity of 0.940
(0.939–0.941), specificity of 0.888 (0.887–0.888), and AUC score of
0.972 (0.971–0.973).In addition, the XGboost model provided the
highest performance on test data at 10 × EFTPCmax with an
accuracy of 0.904 (0.901–0.907), sensitivity of 0.892 (0.886–0.899),
specificity of 0.909 (0.903–0.914), and AUC score of 0.903
(0.902–0.905). Meanwhile, for the KNN algorithm, the highest
classification performance at 5 × EFTPCmax. The best prediction
obtained accuracy of 0.876 (0.872–0.882), sensitivity of 0.873
(0.864–0.881), specificity of 0.882 (0.881–0.884), and AUC score of
0.878 (0.874–0.881).

TABLE 1 (Continued) The list of train and test drugs with EFPTCmax value.

Proarrhythmic risk level Train drugs Test drugs

Name EFTPCmax (µM) Name EFTPCmax (µM)

Mibefradil I 0.012

Mibefradil II 0.012

Mitoxantrone 0.225

Nifedipine 0.008

Nimodipine 0.001
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We investigated a dataset with 14 features, including dVm
dt repol,

dVm
dt max, Vmpeak, Vmresting, APDtri, APD90, APD50, Capeak, Cadiastole,
Catri, CaD90, CaD50, qNet, qInward. We used four classifier models:

KNN, XGBoost, RF, and ANN, and conducted feature importance
analysis using SHAP values to assess each feature’s contribution to
the model’s predictions. As shown in Figure 5, the importance of

FIGURE 4
Features resulted from in silico simulations under 3 drug concentrations (1 × EFTPCmax, 5 × EFTPCmax, and 10 × EFTPCmax). Panel 1 represents the
features obtained from AP profile, Panel 2 from calcium dynamics, and Panel 3 from ionic charge. The color represents the TdP-risk label of the drugs
used in simulations.
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features can vary depending on the classifier model. We observed
some similarities and differences by comparing the feature
importance across the different classifier models. For instance,
qInward, APD90, APD50, and dVm

dt repol consistently emerged as
essential features in all classifier models. Interestingly, certain
features displayed varying levels of importance across the models.
This disparity suggests that different classifier models emphasize
different feature importance.

Initially, we examined the feature importance rankings provided
by the SHAP values for each classifier model using all 14 features.
Subsequently, we conducted additional experiments by removing
certain features that did not exhibit significant contributions in the
SHAP value analysis. We analyzed the contribution of each feature
based on SHAP value for all machine learning models. We
considered five different groups of features: the top 3, the top 6,
the top 9, the top 11, and all 14 features as input to the classifier
models. The top 3 features include qInward, dVm

dt repol, and APD50.
The top 6 features include qInward, dVm

dt repol, APD50, APD90,
dVm
dt max, and Capeak. The top 9 features include qInward, dVm

dt repol,
APD50, APD90, dVm

dt max, Capeak, Catri, CaD90, and qNet. The
11 features including qInward, dVm

dt repol, APD50, APD90, dVm
dt max,

Capeak, Catri, CaD90, qNet, CaD90, and APDtri. However, our
results indicated that removing certain features did not lead to
significant differences in the performance of the classifier models.
The models exhibited similar predictive performance and overall
accuracy despite excluding features that did not demonstrate
substantial contributions in the SHAP value analysis. This
finding suggests that the excluded features may not have played a
crucial role in the models’ decision-making processes. Table 3
compares the performance metrics achieved by the classifier
models using the complete set of 14 features and the reduced
sets of features. The metrics evaluated include accuracy,
sensitivity, specificity, and AUC score with a 95% confidence
interval. Notably, we observed that the performance of the ANN,
RF, and XGBoost classifier models remained convergence for all
feature groups with no statistically significant differences.

Meanwhile, the KNN classifier model provided a smaller
classification performance than other machine learning models.

As shown in Table 3, the ANN model provided the highest
performance using 14 In silico features and still provided a good
performance when only using 3 in silico features by providing an
accuracy of 0.901 (0.898–0.903), sensitivity of 0.939 (0.937–0.940),
specificity of 0.873 (0.870–0.875), and AUC score of 0.967
(0.966–0.968). However, removing several features in some cases
leads to high sensitivity but low specificity or high specificity but low
sensitivity. Based on the performance results using 3 in silico
features, the higher sensitivity value compared to specificity value
indicated that the model can predict high TdP risk, but is
missclassified in predicting no TdP risk as high risk. Meanwhile,
using 14 in silico features provided the highest sensitivity and
specificity that show the model’s good capability in predicting
both high TdP risk and no TdP risk.

Furthermore, we also evaluated the performance of machine
learning models using the qNet feature proposed by Li et al. (2019)
and APD50 with Cadiastole proposed by Lancaster and Sobbie. (2016)
The performance of machine learning models in predicting high and
no TdP risk using qNet and APD50 with Cadiastole is reported in
Table 4. In predicting high and no TdP risk, all classifier models
showed promissing results using APD50 and Cadiastole as features
with the highest performance provided by ANN model with an
accuracy of 0.890 (0.882–0.897), sensitivity of 0.895 (0.887–0.902),
specificity of 0.886 (0.879–0.893), and AUC score of 0.951
(0.944–0.957). Nevertheless, the performance decreased when
only using qNet feature. The XGBoost and RF, model showed
the similar classification performance as the ANN model that
obtained an accuracy of 0.762 (0.761–0.763), sensitivity of 0.761
(0.760–0.762), specificity of 0.763 (0.762–0.764), and AUC score of
0.843 (0.842–0.844). In contrast, the KNN model obtained the
lowest performance compared to others classifier models. This
shows that using univariate feature could not capture the
complete discriminatory factors contributing to the TdP risk of
drugs compared to utilizing multiple in silico features.

TABLE 2 Drugs-induced TdP risk evaluation result with a 95% confidence interval according to EFTPCmax variation using several machine learning models.

Model EFTPCmax Accuracy Sensitivity Specificity AUC

KNN 1 × EFTPCmax 0.862 (0.856–0.867) 0.867 (0.861–0.873) 0.853 (0.831–0.874) 0.86 (0.852–0.869)

5 × EFTPCmax 0.876 (0.872–0.882) 0.873 (0.864–0.881) 0.882 (0.881–0.884) 0.878 (0.874–0.881)

10 × EFTPCmax 0.875 (0.873–0.878) 0.87 (0.867–0.873) 0.884 (0.882–0.885) 0.876 (0.874–0.878)

XGBoost 1 × EFTPCmax 0.805 (0.804–0.806) 0.756 (0.719–0.793) 0.861 (0.845–0.877) 0.798 (0.788–0.808)

5 × EFTPCmax 0.871 (0.868–0.874) 0.858 (0.850–0.865) 0.884 (0.878–0.889) 0.871 (0.870–0.871)

10 × EFTPCmax 0.904 (0.901–0.907) 0.892 (0.886–0.899) 0.909 (0.903–0.914) 0.903 (0.902–0.905)

RF 1 × EFTPCmax 0.818 (0.817–0.819) 0.857 (0.856–0.857) 0.760 (0.759–0.762) 0.908 (0.907–0.908)

5 × EFTPCmax 0.888 (0.887–0.889) 0.898 (0.897–0.899) 0.872 (0.871–0.875) 0.955 (0.954–0.956)

10 × EFTPCmax 0.918 (0.917–0.919) 0.940 (0.939–0.941) 0.888 (0.887–0.888) 0.972 (0.971–0.973)

ANN 1 × EFTPCmax 0.827 (0.825–0.828) 0.885 (0.882–0.888) 0.788 (0.784–0.792) 0.889 (0.888–0.889)

5 × EFTPCmax 0.899 (0.898–0.90) 0.938 (0.926–0.950) 0.873 (0.864–0.881) 0.947 (0.946–0.949)

10 × EFTPCmax 0.923 (0.908–0.937) 0.926 (0.909–0.942) 0.921 (0.906–0.935) 0.964 (0.954–0.975)

The bold values mean the highest performance obtained.
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According to the performance results, the proposed method
using 14 in silico features withmachine learning models obtained the
highest performance in predicting high and no TdP risk of drugs.
For further analysis, since CiPA categorized the TdP risk level of the
drug into three categories, we also evaluated the performance of the
proposed method in predicting high, intermediate, and low TdP risk
as shown in Table 5. However, the proposed method could not
optimally predict the TdP risk of drugs, especially due to the
imbalanced class of the dataset between the high, intermediate,
and low-risk categories of drugs (Supplementary Table S3.
Supplementary Material).

The classification performance of three classes TdP risk of drugs
provided the highest performance using 14 in silico features as input
to the classifier models. The ANN model obtained an accuracy of
0.852 (0.846–0.857), sensitivity of 0.762 (0.758–0.766), specificity of
0.888 (0.886–0.889), and AUC score of 0.911 (0.907–0.914). The low
sensitivity and high specificity indicated the model misclassified
high and intermediate TdP risk as no TdP risk but most of no TdP
risk classified correctly as no TdP risk. Therefore, for the overall
performance, the model provided high accuracy and AUC score that

showed the good capabilities of the model in differentiating between
classes.

Furthermore, the RF model provided an accuracy of 0.835
(0.831–0.839), sensitivity of 0.705 (0.697–0.714), specificity of
0.869 (0.866–0.872), and AUC score of 0.905 (0.904–0.906). The
XGBoost model provided the classification performance with an
accuracy of 0.798 (0.785–0.810), sensitivity of 0.650 (0.620–0.679),
specificity of 0.841 (0.829–0.854), and AUC score of 0.883
(0.867–0.899). Meanwhile, the KNN model obtained the lowest
classification performance with an accuracy of 0.762
(0.761–0.763), sensitivity of 0.607 (0.606–0.608), specificity of
0.816 (0.815–0.817), and AUC score of 0.711 (0.710–0.712). In
contrast with using 14 in silico features as input to the machine
learning models for multiclass classification, utilizing qNet, or
APD50 with Cadiastole as features lead to decreasing classification
performance of high, intermediate, and low TdP risk of drugs. It
became evident that using only one or two features was insufficient
in capturing the comprehensive set of factors contributing to the
TdP risk of drugs when contrasted with the utilization of all 14 in
silico features.

FIGURE 5
Features importance plot based on mean SHAP value in several classifier models. (A) The sum of mean SHAP value for KNN model; (B) The sum of
mean SHAP value for XGBoost model; (C) The sum of mean SHAP value for RF model; and (D) The sum of mean SHAP value for ANN model.
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TABLE 3 The comparison performance of machine learning models in predicting TdP risk of drug according to several features importance group based on mean
SHAP value for each feature in classifier models.

Features Model Accuracy Sensitivity Specificity AUC

3 Features KNN 0.849 (0.848–0.849) 0.853 (0.852–0.853) 0.843 (0.842–0.844) 0.848 (0.847–0.848)

XGBoost 0.884 (0.883–0.885) 0.897 (0.897–0.898) 0.874 (0.873–0.874) 0.886 (0.885–0.887)

RF 0.896 (0.895–0.897) 0.899 (0.899–0.90) 0.891 (0.890–0.893) 0.958 (0.957–0.959)

ANN 0.901 (0.898–0.903) 0.939 (0.937–0.940) 0.873 (0.870–0.875) 0.967 (0.966–0.968)

6 Features KNN 0.853 (0.847–0.857) 0.876 (0.875–0.877) 0.819 (0.807–0.830) 0.848 (0.842–0.854)

XGBoost 0.90 (0.897–0.903) 0.897 (0.884–0.910) 0.904 (0.877–0.930) 0.898 (0.894–0.902)

RF 0.916 (0.915–0.916) 0.934 (0.933–0.935) 0.891 (0.889–0.892) 0.969 (0.968–0.969)

ANN 0.913 (0.902–0.925) 0.921 (0.917–0.924) 0.908 (0.890–0.926) 0.96 (0.95–0.97)

9 Features KNN 0.877 (0.876–0.880) 0.88 (0.878–0.882) 0.875 (0.873–0.877) 0.877 (0.875–0.879)

XGBoost 0.90 (0.897–0.903) 0.897 (0.884–0.910) 0.904 (0.877–0.930) 0.898 (0.894–0.902)

RF 0.917 (0.916–0.918) 0.937 (0.936–0.938) 0.889 (0.888–0.891) 0.970 (0.969–0.971)

ANN 0.912 (0.91–0.913) 0.909 (0.899–0.919) 0.915 (0.909–0.922) 0.961 (0.959–0.964)

11 Features KNN 0.879 (0.878–0.880) 0.881 (0.880–0.882) 0.876 (0.874–0.877) 0.878 (0.877–0.979)

XGBoost 0.90 (0.889–0.912) 0.91 (0.899–0.923) 0.885 (0.879–0.891) 0.899 (0.887–0.908)

RF 0.919 (0.918–0.920) 0.942 (0.941–0.943) 0.887 (0.885–0.889) 0.972 (0.971–0.972)

ANN 0.913 (0.911–0.915) 0.903 (0.895–0.911) 0.920 (0.913–0.927) 0.963 (0.960–0.965)

14 Features KNN 0.875 (0.873–0.878) 0.87 (0.867–0.873) 0.884 (0.882–0.885) 0.876 (0.874–0.878)

XGBoost 0.904 (0.902–0.906) 0.912 (0.905–0.920) 0.893 (0.883–0.920) 0.903 (0.902–0.905)

RF 0.918 (0.917–0.919) 0.940 (0.939–0.941) 0.888 (0.887–0.888) 0.972 (0.971–0.973)

ANN1 0.923 (0.908–0.937) 0.926 (0.909–0.942) 0.921 (0.906–0.935) 0.964 (0.954–0.975)

The bold values mean the highest performance obtained.

TABLE 4 The comparison performance ofmachine learningmodels using qNet feature, APD50 & Cadiastole features, and 14 in silico features in predicting high and no
TdP risk of drugs.

Model Features Accuracy Sensitivity Specificity AUC

KNN qNet 0.544 (0.538–0.549) 0.220 (0.210–0.239) 0.998 (0.997–0.998) 0.609 (0.605–0.615)

APD50& Cadiastole 0.875 (0.873–0.878) 0.870 (0.867–0.873) 0.884 (0.882–0.885) 0.876 (0.874–0.878)

14 In Silico Features 0.896 (0.895–0.897) 0.899 (0.898–0.90) 0.891 (0.890–0.893) 0.958 (0.957–0.959)

XGBoost qNet 0.761 (0.760–0.762) 0.773 (0.763–0.783) 0.754 (0.744–0.764) 0.763 (0.762–0.764)

APD50& Cadiastole 0.850 (0.848–0.852) 0.823 (0.796–0.850) 0.864 (0.831–0.897) 0.844 (0.842–0.846)

14 In Silico Features 0.904 (0.902–0.906) 0.912 (0.905–0.920) 0.893 (0.883–0.920) 0.903 (0.902–0.904)

RF qNet 0.762 (0.761–0.763) 0.752 (0.748–0.757) 0.775 (0.768–0.781) 0.843 (0.842–0.844)

APD50& Cadiastole 0.831 (0.830–0.832) 0.873 (0.871–0.875) 0.772 (0.771–0.773) 0.911 (0.910–0.912)

14 In Silico Features 0.918 (0.917–0.919) 0.940 (0.939–0.941) 0.888 (0.887–0.889) 0.972 (0.971–0.973)

ANN qNet 0.762 (0.761–0.763) 0.761 (0.760–0.762) 0.763 (0.762–0.764) 0.843 (0.842–0.844)

APD50& Cadiastole 0.890 (0.882–0.897) 0.895 (0.887–0.902) 0.886 (0.879–0.893) 0.951 (0.944–0.957)

14 In Silico Features 0.923 (0.908–0.937) 0.926 (0.909–0.942) 0.921 (0.906–0.935) 0.964 (0.954–0.975)

The bold values mean the highest performance obtained.
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4 Discussion

The findings of this study contribute to the ongoing efforts to
improve the prediction of drug-induced TdP risk by combining an
electrophysiological model including inter-individual variability
with optimized machine learning algorithms. The results
demonstrate the potential of utilizing 14 in silico features
derived from a human ventricular cardiac cell model population
to accurately predict TdP risk using several machine learning
models.

Previous studies have primarily relied on single in silico
biomarkers such as qNet and Repolarization Abnormality (RA)
in a single cardiac cell model. These biomarkers have shown a high
correlation with TdP risk. However, their prediction ability may be
limited because single biomarkers only encompass part of the factors
contributing to TdP risk. Analysis with a single in silico biomarker as
the input feature could result in feature thresholds to differentiate
TdP risk of drugs like the one proposed by (Li et al., 2019) that
suggested qNet as the TdPmetric. By incorporating multiple in silico
features, our approach could capture a representation of the
underlying mechanisms contributing to TdP risk, and a more
comprehensive assessment of cardiac electrophysiology can be
achieved. Furthermore, since the classification of TdP risk of
drugs using the proposed machine learning algorithm considered
multiple inputs and complex machine learning structure, the model
did not consider feature thresholds as the discriminant of TdP risk of
drugs.

In addition, single biomarkers may fail to capture the
interactions between different factors. Cardiac electrophysiology
is a highly interconnected system where alterations in one aspect
can affect numerous others. Considering only a single biomarker,
the interdependencies and complex relationships between different
biomarkers need to be adequately addressed. This limitation can
result in an oversimplified view of drug-induced TdP risk,
potentially leading to inaccurate predictions.

Furthermore, this study incorporates inter-individual variability
through a population of human ventricular models. The study
proposed by Passini et al. (2017) that used a population of
human ventricular models for 49 drugs reported an accuracy of
96%, sensitivity of 100%, and specificity of 92% using RAs in
calculating the TdP score. Meanwhile, using APD90 in calculating
the TdP score, the prediction performance obtained an accuracy of
80%, sensitivity of 96%, and specificity of 64%. The virtual human
population model resulted in a broader range of biological
variations, leading to superior accuracy compared to a single
model. However, their proposed model still needed to evaluate
the proposed approach using the unseen dataset to evaluate the
robustness and generalization ability of the proposed method.

Zhou et al. (2020) performed blinded in silico drug trials,
employing the optimized virtual human cell population proposed
by Passini et al. (2017) to assess the dependability of the drug’s TdP
risk prediction from two different sets of drugs. The highest accuracy
achieved was 83% with dataset I and 80% with dataset II. These
results substantiate the effectiveness of in silico simulations utilizing
an optimized population of human ventricular models as valuable
resources for facilitating high-throughput TdP risk prediction.
Therefore, we adopted their approach by incorporating inter-
individual variability in generating a control population of the
human ventricular model. We combined the electrophysiological
model with several machine learning models to improve drug-
induced TdP risk prediction performance, especially when
evaluating the unseen dataset.

The study highlights the significance of considering drug
concentration (EFTPCmax) in predicting TdP risk. As shown in
Table 2, various drug concentrations affected the prediction of each
machine-learning model. The rationale behind using different
variations of drug concentration, which are 1 × EFTPCmax, 5 ×
EFTPCmax, and 10 × EFTPCmax for predicting drug-induced TdP
risk using a machine learning model lies in the consideration of
different potential impact on drug-induced cardiac effects. Based on

TABLE 5 The comparison performance of machine learning models using qNet feature, APD50 & Cadiastole features, and 14 in silico features in predicting high,
intermediate, and no TdP risk of drugs.

Model Features Accuracy Sensitivity Specificity AUC

KNN qNet 0.608 (0.606–0.609) 0.403 (0.401–0.406) 0.702 (0.701–0.704) 0.562 (0.559–0.565)

APD50& Cadiastole 0.747 (0.741–0.753) 0.582 (0.576–0.588) 0.809 (0.806–0.812) 0.758 (0.746–0.769)

14 In Silico Features 0.762 (0.761–0.763) 0.607 (0.606–0.608) 0.816 (0.815–0.817) 0.711 (0.710–0.712)

XGBoost qNet 0.718 (0.717–0.719) 0.515 (0.514–0.516) 0.775 (0.774–0.776) 0.702 (0.701–0.703)

APD50& Cadiastole 0.789 (0.784–0.796) 0.627 (0.621–0.632) 0.804 (0.834–0.841) 0.804 (0.799–0.809)

14 In Silico Features 0.798 (0.785–0.810) 0.650 (0.620–0.679) 0.841 (0.829–0.854) 0.883 (0.867–0.899)

RF qNet 0.718 (0.717–0.719) 0.515 (0.514–0.516) 0.775 (0.774–0.776) 0.703 (0.702–0.70)

APD50& Cadiastole 0.790 (0.789–0.791) 0.616 (0.615–0.617) 0.834 (0.833–0.835) 0.794 (0.793–0.795)

14 In Silico Features 0.835 (0.831–0.839) 0.705 (0.697–0.714) 0.869 (0.866–0.872) 0.905 (0.904–0.906)

ANN qNet 0.719 (0.718–0.720) 0.517 (0.515–0.519) 0.776 (0.775–0.777) 0.705 (0.704–0.706)

APD50& Cadiastole 0.790 (0.788–0.791) 0.620 (0.616–0.625) 0.835 (0.833–0.836) 0.801 (0.799–0.803)

14 In Silico Features 0.852 (0.846–0.857) 0.762 (0.758–0.766) 0.888 (0.886–0.889) 0.911 (0.907–0.914)

The bold values mean the highest performance obtained.
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the prediction performance under several drug concentrations, in
general, 10 × EFTPCmax provided the highest performance
compared to 5 × EFTPCmax and 1 × EFTPCmax for most
machine learning models. At 10 × EFTPCmax, the prediction
performance of the machine learning model, especially the ANN,
provided the highest performance with no significant gap for
sensitivity and specificity. These results indicated that at 10 ×
EFTPCmax provided balanced performance, reliable prediction
and good generalization ability of unseen datasets in predicting
high TdP and no TdP risk.

Meanwhile, the performance of machine learning prediction at
5 × EFTPCmax and 1 × EFTPCmax mostly leads to high sensitivity
but low specificity, which indicates the model is more accurate in
predicting high TdP risk instead of no TdP risk. In addition, several
results at 5 × EFTPCmax and 1 × EFTPCmax show high specificity
but low sensitivity, indicating that the model is more accurate in
predicting no TdP risk than high TdP risk. Therefore, we used 10 ×
EFTPCmax for analysis of the contribution of each feature based on
SHAP value of XAI.

The previous studies conducted by Passini et al. (2017) and
Zhou et al. (2020) have predominantly relied on the biomarker 100 ×
EFTPCmax for predicting TdP risk. However, in this study, we
observed that good prediction performance could be achieved by
considering the biomarker at a lower value of 10 × EFTPCmax. The
result is in line with the findings of Passini et al. (2017), which also
demonstrates the advantage of considering a lower biomarker value,
specifically at 10 × EFTPCmax, in predicting TdP risk. Considering a
lower biomarker value can capture relevant information at an earlier
stage of drug exposure, potentially enabling the identification of TdP
risk at an earlier time. This early detection is crucial for timely
intervention and preventing adverse cardiac events.

The comparison of different machine learning models revealed
that the ANNmodel best predicted TdP risk of the unseen dataset at
10 × EFTPCmax. The prediction performance obtained an accuracy
of 0.923 (0.908–0.937), sensitivity of 0.926 (0.909–0.942), specificity
of 0.921 (0.906–0.935), and AUC score of 0.964 (0.954–0.975). This
finding suggests that the ANN model effectively captures the
complex relationships between the in silico features and TdP risk,
leading to more accurate predictions. The ANN model provided
high sensitivity and specificity, indicating the proposed model’s
ability to predict high TdP and no TdP risk. It is also supported
by the high AUC score that indicates the model has a high true
positive rate (sensitivity) and a low false positive rate (1-specificity).
The highest AUC score indicates a robust and reliable predictive
model for distinguishing between high TdP and no TdP instances.

In this study, we have also evaluated the classification
performance of machine learning to predict high, intermediate,
and no TdP risk groups. The classification performance for
binary and three-class classification analyses showed valuable
insights into the predictive capabilities of machine learning
models in assessing TdP risk among drugs. The ANN model
exhibited commendable performance in binary classification, with
ANN classification performance outperforming the other classifier
performance. These models demonstrated high accuracy, sensitivity,
specificity, and AUC scores, underscoring their efficacy in
distinguishing between high and no TdP risk drugs. Conversely,
for more complex three-class classification, the ANN model also
provides comparable performance of accuracy and AUC scores,

indicating its potential for categorizing compounds into high,
intermediate, and low TdP risk groups. However, the challenge
of imbalanced classes affected sensitivity, particularly in the
intermediate risk category.

RF and XGBoost exhibited good performance for predicting
high and no TdP risk, but their ability to identify drug risk categories
correctly decreased for classifying high, intermediate, and no TdP
risk. On the other hand, KNN, which performed reasonably well in
binary classification, showed a decline in its performance when
dealing with multiple risk categories. These results underscore the
need for specialized approaches to address the complexities of multi-
class classification and emphasize the promise of advanced machine
learning models in enhancing drug-induced TdP risk assessments.

In addition, this study also applied XAI to show the contribution
of each feature to predict drug-induced TdP risk based on SHAP
value. The results from feature importance in Figure 5 showed that
qInward, APD90, APD50, and dVm

dt repol were the important features
for classifying drug toxicity. The results were in alignment with
previous studies (Obiol-Pardo et al., 2011; Chang et al., 2017b;
Romero et al., 2018; Llopis-Lorente et al., 2020; Jeong, Qashri
Mahardika et al., 2022). Jeong et al. (2022) examined the
qInward variability and showed that it was superior to other in
silico features for classifying the TdP risk of drugs. Moreover,
Romero et al. (2018) and Llopis-Lorente et al. (2020) showed
other features related to APD, such as the ratio of drug
concentrations leading to 10% prolongation of APD90, (Tx-APD)
over the EFTPCmax showed good performance of classifying
torsadogenic compounds. In addition, the study from Chang
et al. (2017b) utilized the dVm

dt repol feature to filter the AP beat for
calculating the in silico features. The highest dVm

dt repol indicated the
most affected AP beat by the drug that could cause AP prolongation
or even EAD. Therefore it could be possible that dVmdt repol became an
important feature for classifying the TdP risk of drugs.

This study addresses several limitations of previous research by
considering inter-individual variability through a population of human
ventricular models. The current approach reflects the human
population’s heterogeneity and improves the predictions’
generalizability. Additionally, using optimized machine learning
models through grid search hyperparameter tuning enhances the
accuracy and robustness of the predictions. Moreover, the SHAP
value based on XAI showed the contribution of each feature to the
prediction performance. Our findings emphasize the need to consider
carefully the feature set in machine learning studies. By selecting an
appropriate subset of features, we can achieve comparable model
performance while reducing the dimensionality of the data.

Albeit the promising results shown in this study, some
limitations must be considered. First, this study only examined
one cardiac cell model, whereas another cellular model, such as the
one proposed by Tomek et al. (2019) could also be used for cardiac
drug toxicity evaluation. According to this model, the ORD model
inherits several inconsistencies when compared to experimental
data, including higher AP than experimental data during the
plateau stage, limited agreement to experimental observation for
the dynamics of accommodation of the APD to heart rate
acceleration, and simulation results of sodium current block that
demonstrate an inotropic effect that increases the calcium transient
amplitude. To address several ORD model limitations, Tomek et al.
(2019) suggested some changes, namely in reformulating ICaL and
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reevaluating IKr. Imposing several cell models into in silico
simulation might provide more insight into the reliability of the
machine learning model to predict the TdP risk of compounds.
Furthermore, the drugs reported a high performance in predicting
high and no TdP risk. However, the performance for three class
classification (high, intermediate, and no TdP risk of drugs) still
needs improvement. Therefore, incorporating more drug datasets in
the training and testing stage for machine learning models to
perform multiclass classification could be an essential step in
future research.

Another possible approach is the multiscale drug toxicity
evaluation simulation that incorporates whole-heart simulations
to predict a more realistic outcome. However, incorporating the
drug effects of several drug samples on various individuals (by
imposing the inter-individual variability mechanism) into whole-
heart simulation may require a significantly higher
computational cost tha single-cell simulations. For example,
one whole heart simulation may consist of hundred of
thousands of computational nodes (or cells) and millions of
elements, such as the one utilized by Qauli et al. (2022) to
verify the efficacy of the mexiletine for treatment of patients
with A1656D mutation or the one used by Okada et al. (2015;
2018) that included hundred of millions of nodes for the whole-
heart and human torso finite element model to generate virtual
ECG. Applying simulation protocol as in Section 2.2 to the whole-
heart simulations may be impractical because one whole-heart
simulation may take much longer than a single-cell simulation
depending on the number of nodes and elements within the finite
element utilized in the model. However, multi-cell models such as
1D fiber and 2D tissue models may be feasible to combine with
multi-drug and inter-individual variability in silico assessment as
they consist of much smaller number of nodes compared to 3D
heart simulations.

In conclusion, combining an electrophysiological model with
optimized machine learning algorithms predicts drug-induced TdP
risk accurately. The findings of this study provide valuable insights
into developing more robust and comprehensive approaches to
assess cardiotoxicity during drug development. Further
refinement and validation of these models could greatly benefit
the pharmaceutical industry by enabling early identification of
potential drug-induced TdP risk.
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