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Fibrosis is a common pathological process that must take place for multiple
chronic liver diseases to develop into cirrhosis and liver cancer. Liver fibrosis (LF) is
regulated by various cytokines and signaling pathways in its occurrence and
development. Ferroptosis is an important mode of cell death caused by iron-
dependent oxidative damage and is regulated by iron metabolism and lipid
peroxidation signaling pathways. In recent years, numerous studies have
shown that ferroptosis is closely related to LF. As the main material secreted
by the extracellular matrix, hepatic stellate cells (HSCs) are a general concern in
the development of LF. Therefore, targeting HSC ferroptosis against LF is crucial.
This review describes the current status of treating LF by inducing HSC ferroptosis
that would aid studies in better understanding the current knowledge on
ferroptosis in HSCs and the future research direction in this field.
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1 Introduction

The liver is an essential digestive organ for the human body. If its function is impaired, it will
affect the normal metabolism of the human body (Roehlen et al., 2020). Liver fibrosis (LF) is a
pathological phenomenon that causes the accumulation of the extracellular matrix (ECM) due to
persistent and repeated liver damage (Bertheloot et al., 2021). It is mainly characterized by the
excessive accumulation of the ECM (such as collagen, fibronectin, and laminin) in the liver,
triggering a persistent wound-healing response associated with various injuries (such as chronic
viral and chemical hepatitis, genetic and metabolic diseases, and autoimmune diseases) (Wu and
Zern, 2000; Iredale, 2003). Hepatic stellate cells (HSCs) play a crucial role in the development,
progression, and reversal of hepatic fibrosis (Trivedi et al., 2021; Park et al., 2019). HSCs are also
called vitamin A storage cells, lipid cells, stromal cells, fat storage cells, or Ito cells (Senoo et al.,
2010). Under normal conditions, HSCs are mainly distributed around the hepatic sinusoids,
representing approximately 8%–14% of the hepatocytes (Kumar et al., 2018), and are placed in a
dormant state (Garbuzenko, 2022). The main function of HSCs is to store vitamin A and fat and
to provide energy reserve and metabolic functions for the liver (Hong et al., 2018). However,
under chronic liver injury and inflammation (Li et al., 2021; Heymann et al., 2016), HSCs are
activated and change from dormant to active fibroblasts (Trivedi et al., 2021). When the liver is
damaged, the HSC phenotype changes, or they are converted into fibroblasts by activating α-
smooth muscle actin (Trivedi et al., 2021), promoting the secretion of collagen (Khomich et al.,
2019). Fibroblasts secrete matrices, such as smooth muscle actin, type I and III collagen fibers,
fibronectin, thrombin-sensitive protein-1, and proteoglycans, and produce lysyl oxidase (LOX),
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lysyl oxidase-like protein (LOXL), and transglutaminase with HSCs to
mediate the cross-linking of collagen (Cannito et al., 2017; Schnabel
et al., 2004; Perepelyuk et al., 2013; Vallet et al., 2019). When the injury
stimuli persist, HSCs are continuously activated and transform into
fibroblasts, which destroy the balance of the liver sinus, leading to
excessive accumulation and deposition of the ECM in the Disse space.
When the liver is damaged, changes in the HSC phenotype aggravate
liver fibrosis, leading to the formation of liver scar tissue (Lackner et al.,
2019). The progression of fibrosis seriously affects liver function and
may eventually lead to cirrhosis, liver failure, and even the development
of liver cancer (Chen et al., 2020b).

In recent years, ferroptosis has received much attention in the
medical field as a new form of cell death. Ferroptosis is an iron
ion-dependent form of cell death, which includes the
accumulation of iron ions, the accumulation of ROS, and lipid
peroxidation (Chen et al., 2020a; Pan et al., 2021) (Figure 1). Iron
plays a key role in ferroptosis and promotes oxygen-free radicals
and lipid peroxidation. Iron overload is an important factor in
ferroptosis, and intracellular iron regulatory proteins regulate
intracellular iron content (Chen et al., 2023). Iron-based
autophagy is stable by regulating intracellular iron content
(Hou et al., 2016). Excessive phagocytosis of ferritin leads to
cell death and the onset of disease. NCOA4 associates with
ferritin and regulates the phagocytic process of ferritin. The
downregulation of ATG5 and ATG7 was able to inhibit
ferroptosis, reduce the levels of free irons and lipid peroxides,
and increase the content of glutathione (Hou et al., 2016). Iron
content is associated with the occurrence of ferroptosis, and the
inhibition of autophagy and the decreased expression of the
NCOA4 gene induce the development of ferroptosis (Hou
et al., 2016; Mancias et al., 2015). Autophagy-related genes are
also factors that regulate the development of ferroptosis (Gao
et al., 2016). The injury of lipid peroxidation is one of the causes
of ferroptosis and is triggered by oxidative stress. ROS attacks on
biofilms cause damage, but the normal liver has an antioxidant
system to consume reactive oxygen species. ACSL4 catalyzes the
conversion of long-chain fatty acids into lipid acyl-coenzymes
and plays a key role in oxidative stress (Yuan et al., 2016). AA and
AdA and A-CoA and AdA-CoA esteracetyl-CoA, forming AA/
AdA-PE, lead to the destruction of membrane structure and
promote ferroptosis (Valerian et al., 2016; Doll et al., 2017; Kuang
et al., 2020). The inhibition of system xc reduces GSH levels and
affects the function of GPX 4 (Du et al., 2022). GPX 4 is a key
regulator of regulating ferroptosis for resolving lipid peroxides
(Brigelius-Flohe et al., 2013). The FSP1-CoQ10-NAD(P)H
pathway, as an independent parallel system, cooperates to
prevent phospholipid peroxidation and ferroptosis of GSH-
GPX4 (Bersuker et al., 2019; Doll et al., 2019). The GCH1/
BH4/DHFR pathway and DHODH pathway are also key
pathways for resistance to ferroptosis (Kraft et al., 2020; Mao
et al., 2021). Nrf 2 is a transcription factor regulating the redox
balance that suppresses the development of ferroptosis (Tsai
et al., 2020; Sun et al., 2016). The p62-Keap1-Nrf 2 pathway
was also able to inhibit the development of ferroptosis (Tsai et al.,
2020; Sun et al., 2016; Sun et al., 2020). Elevated iron levels are a
common feature of all these profibrotic diseases, suggesting that
iron load may aggravate the degree of LF and promote disease
progression. Excessive intracellular Fe accumulation can produce

hydroxyl groups and peroxy radicals through oxidation
reactions, promote polylipid peroxidation, and eventually lead
to ferroptosis (Gaschler and Stockwell, 2017). In addition, HSCs
are also an important part of LF, so ferroptosis plays an
important role in hepatic stellate cell activation and LF
progression. Understanding the mechanisms of ferroptosis
that target HSC death and developing targeted therapeutic
approaches have great potential for improving the therapeutic
efficacy of LF.

This review summarizes the pathogenesis and progression of
ferroptosis in LF, explores the specific mechanism of action of
HSCs in ferroptosis, summarizes the role of HSCs in intervention
with LF through the ferroptosis pathway, and illustrates the
effectiveness of treating ferroptosis in LF through HSCs.
Therefore, our review aims to reveal the pathways and targets
of HSCs targeting ferroptosis to treat liver fibrosis, thus allowing
researchers to have a more complete understanding of HSCs and
providing another insight by targeting HSC ferroptosis to treat
liver fibrosis.

2 HSCs and ferroptosis in liver fibrosis

2.1 Ferroptosis in liver fibrosis

Since the first study reported the role of ferroptosis in LF (Sui
et al., 2018), evidence of ferroptosis in the pathogenesis of LF has
increased. In recent years, many clinical studies have found that
severe pathological iron overload symptoms are often observed in LF
patients, suggesting that pathological iron overload may play a
critical role in the progression of LF. Yang et al. (2020) observed
a significant increase in Fe2 + and also in the expression of GPX 4,
TRF, and SLC7A11 proteins in the kidneys of fibrotic mice. TRF
deficiency is an autosomal recessive metabolic disorder with low
expression of TRF associated with severe anemia, hepatic iron
overload, and fibrosis. Yu et al. (2020) reported that mice fed a
high-iron diet showed iron accumulation in multiple organs with
liver injury and LF. However, the involvement of SLC39A14 genes in
TRF knockout mice, intracellular Fe2 + transport in the liver, and
TRF-specific TRF and SLC39A14 double knockout mice
demonstrate that hepatic TRF deficiency could induce cellular
ferroptosis to induce LF. However, the involvement of the
SLC39A14 gene in intracellular Fe2 + transport was further
clarified in TRF knockout mice and in TRF-specific TRF and
SLC39A14 double knockout mice, demonstrating that hepatic
TRF deficiency induced ferroptosis to induce LF. Solute carrier
family 39 member 14 (SLC39A14) is a key protein that causes
non-transferrin-bound iron accumulation in hepatocytes in the
absence of transferrin, and knockdown of SLC39A14 is able to
completely reverse the LF caused by non-transferrin-bound iron
deposition in hepatocytes. In the Bama mini-pig model of excessive
iron-induced myocardial fibrosis, the amount of iron deposition was
positively correlated with the degree of myocardial fibrosis (Yu et al.,
2020). Solute carrier family 39 member 14 (SLC39A14) is a key
protein causing non-transferrin-bound iron accumulation in
hepatocytes in the absence of transferrin, and knockdown of
SLC39A14 is able to completely reverse LF due to non-
transferrin-bound iron deposition in hepatocytes.
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2.2 Ferroptosis in HSCs

A number of basic studies have shown that static HSCs do not
express the transferrin receptor, while activated HSCs overexpress the
transferrin receptor (Karvar et al., 2020). The transferrin receptor has a
strong affinity for extracellular free iron and transports iron into
activated HSCs via the endocytic pathway. Activated HSC
intracellular iron can produce large amounts of free radicals through
the Fenton response and induce the expression of inflammatory
cytokines. These stimulators can continuously activate HSCs through
autocrine or paracrine pathways. This pathological circulation may lead
to a substantial accumulation of iron in the activated HSCs (Bridle et al.,
2003; Ruddell et al., 2009; Yang et al., 2020). ELAV-like RNA-binding
protein 1 (ELAVL1) (Zhang et al., 2018), bromodomain-containing
protein 7 (BRD7) (Zhang et al., 2020b), ZFP36 ring finger protein
(ZFP36) (Zhang et al., 2020a), and tripartite motif-containing protein 26
(TRIM26) (Zhu et al., 2021a) have been implicated in regulating
ferroptosis of HSCs. Embryonic lethal abnormal vision, such as
1/human antigen R (ELAVL1/HuR), also plays a key role in promoting
ferroptosis in LF cells. The upregulation of ELAVL1/HuR can induce
ferroptosis in hematopoietic stem cells by stabilizing the expression of
autophagy-related protein Beclin-1, promote the degradation of TRF,
and release Fe2 +, leading to the imbalance of iron metabolism (Zhang
et al., 2018). BRD7 has the ability to act as a ferroptosis inducer targeting
HSCs (Zhang et al., 2020b). Another study showed that direct binding of
BRD7 promotes p53 mitochondrial translocation, subsequently forming
a complex with solute carrier family member 2,528 (SLC25A28) and

enhancing its activity, causing excessive deposition of p53mitochondrial
translocation. Zhang et al. (2020b) further reported a critical role of the
BRD7-p53-SLC25A28 axis in regulating ferroptosis in HSCs, with
system Xc-inhibition, GPX4 inhibition, and GSH depletion mediated
by BRD7 upregulation triggerring p53 mitochondrial translocation
through direct binding to the N-terminal trans-activated structural
domain, which exacerbates mitochondrial iron accumulation, electron
transport chain hyperfunction, lipid peroxidation, and ultimately, iron-
dependent ferroptosis. Zhang et al. (2020a) showed that the RNA-
binding protein ZFP36 prevents ferroptosis by regulating the autophagy
signaling pathway in HSCs. ZFP36 is an RNA-binding protein that
disrupts autophagy-related 16-like 1 (ATG16L1) mRNA, thereby
suppresses macroautophagy/autophagy activation and mediates
ferroptosis resistance. TRIM26 is downregulated in the fibrotic tissue
of liver tissue, and the overexpression of TRIM26 accelerates the
degradation of lipid proteins by mediating SLC7A11 ubiquitination,
promotes lipid peroxidation accumulation, and ultimately, leads to the
death of ferritin in activated HSCs (Zhu et al., 2021a). In addition, N6-
methyladenosine (m6A) modification is also associated with ferroptosis
in liver HSCs, and FTO overexpression leads to the downregulation of
m6A modification, which may damage autophagy and ferroptosis
events. The m6A modification of BECN1 mRNA was significantly
upregulated compared with other autophagy-related genes.
YTHDF1 is a key reader protein for BECN1 mRNA stability, and
the YTH domain extends the half-life of BECN1 mRNA, thereby
activating autophagy and ultimately leading to ferroptosis in HSCs
(Shen et al., 2021).

FIGURE 1
Ferroptosismechanisms. Ferroptosis is mainly caused by the ironmetabolic pathway (orange line), GSH function (green line), lipid peroxidation (blue
line), and VDAC pathway (purple line); regulation of ferroptosis by the ferroxidase inhibitory protein 1-coenzyme Q10 is shown by the pink line. After iron
overload, free Fe2 + can form hydroxyl radicals through the Fenton reaction, promoting lipid ROS leading to ferroptosis, and excessive iron accumulation
can also lead to ferroptosis. Massive exploitation of VDAC channels leads to mitochondrial hyperpolarization, increased ROS accumulation,
ferroptosis. GSH levels reduced, leading to reduced antioxidant levels; it can lead to the accumulation of reactive oxygen species. Lipid metabolism leads
to lipid peroxidation through a series of reactions.
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HSCs and hepatocytes play an important role in the physiological
function of the liver, but few studies have reported the role of hepatocyte
ferroptosis in the development of liver fibrosis. As liver parenchyma
cells, liver cells have the largest number in the liver. Continuous

hepatocyte injury and death can induce chronic inflammation and
activation of HSCs, which is one of the initiations of the development of
liver fibrosis (Gautheron et al., 2020). Iron overload is a driver of
ferroptosis induction in hepatocytes, increasing the risk of developing

TABLE 1 Molecular signals involved in ferroptosis and liver fibrosis.

Target Effect on HSC
ferroptosis

Impact
on LF

Mechanism Disease model Quotation

NCOA4 Restrain Relieve Releasing iron ions, cause iron overload HSC-T6 cells Zheng et al.
(2022)

HO-1 Induction Relieve It promotes the accumulation of iron and lipid
peroxides

CCL4-LF rat model Sui et al. (2018)

p53 Induction Relieve P53-dependent ferroptosis CCL4-LF mouse model Wang et al.
(2019)

IRP2 Induction Relieve Promoting iron overload CCL4-LF mouse model Li et al. (2020)

NCOA4 Induction Relieve Activation of autophagy and upregulation of
NCOA4

CCL4-LF rats model Zhang et al.
(2021)

ELAVL1 Induction Relieve It promotes autophagic ferritin degradation CCL4-LF mouse model Zhang et al., 2018

GPX4 Restrain Relieve GPX 4 was downregulated and COX-2 was
upregulated

C57BL/6 male mice Luo et al., 2022

HO-1 Induction Relieve Upregulates HO-1 to induce ferroptosis and
alleviate liver fibrosis

LX-2 cell Luo et al. (2022)

GPX4 Restrain Relieve Inhibiting GPX4 CCL4-LF mouse model Huang et al.
(2022)

TFR Induction Relieve Adding TFR and DMT1 HSC-T6 Huang et al.
(2022)

HO-1 Induction Relieve Inhibition of HO-1 and activation of Nrf2 Iron overload-induced
mouse model

Wu et al. (2021)

ZFP36 Induction Relieve Downregulaton of ZFP36, activation of
phagocytoferrin, and induction of ferroptosis

BDL-LF mouse model Zhang et al.
(2020a)

FPN Induction Relieve Inducing FPN-dependent ferroptosis in HSC CCL-induced male C57BL/
6 mice

Li et al. (2022)

HIF-1α Induction Relieve Ferroptosis was induced through the HIF-1α/
SLC7A11 pathway

CCL4-LF mouse model Yuan et al.
(2022a)

SLC7A11 Induction Relieve Accumulation of lipid reactive oxygen species NA Kuo et al. (2020)

BECN1 Restrain Relieve BECN1 delivery promotes xCT/GPX4-
mediated ferroptosis of hematopoietic stem

cells

CCL4-LF mouse model Tan et al. (2022)

SLC7A11 Restrain Relieve Inhibition of ferroptosis by increasing the
expression of SLC7A11 and the Nrf2/HO-1/

GPX4 signaling pathway

Diabetic mouse model Song et al. (2022)

BRD7-p53-
SLC25A28 axis

Induction Relieve It promotes p53 mitochondrial translocation BDL-LF mouse model Zhang et al.
(2020b)

SOCS1/p53/SLC7A11 Restrain Relieve Consumption of SLC7A11, GPX4, and GSH
and accumulation of iron, ROS, and MDA

HSC-T6 cells Liu et al. (2022)

Gpx4,SLC7A11 Restrain Relieve Dan attenuates LPS-induced HSC activation
during liver fibrosis by regulating ferroptosis

in LX-2 and T6 cells

LX-2 and T6 cells Wang et al.
(2023)

XCT-GSH-GPX4 Induction Relieve Affecting XCT-GSH-GPX 4 antioxidant
signaling

HSC-T6 cells Yuan et al.
(2022b)

HO-1, heme oxygenase-1; CCl4-LF, carbon tetrachloride-induced liver fibrosis; BDL-LF, bile duct ligation-induced liver fibrosis; MCD-NASH, methionine- and choline-deficient feed-feeding-

induced non-alcoholic steatohepatitis; HFD-NAFLD, high-fat diet-induced non-alcoholic fatty liver disease; IRP2, iron regulatory protein 2; NCOA4, nuclear receptor coactivator protein 4;

ELAVL1, ELAV-like protein 1; m6A, N6-methyladenosine; FGF21, fibroblast growth factor 21; ZFP36, human zinc finger protein 36; TRIM26, triplex motif-containing 26; xCT, cystine/

glutamate reverse transport system; SLC7A11, solute carrier family 7 member 11; HIF-1α, hypoxia-inducible factor 1α; ENO3, enolase 3; BRD7, bromodomain-containing protein 7.
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TABLE 2 Drugs and small molecules target HSCs ferroptosis to alleviate liver fibrosis.

Drugs Target Effect on HSC
ferroptosis

Mechanism Disease model Quotation

Artesunate NA Induction Ferritin phagocytosis is triggered CCL4-LF mouse model Kong et al. (2019)

Curcumol NCOA4 Induction Releasing iron ions and causing iron
overload

HSC-T6 cells Zheng et al. (2022)

Magnesium
isoglycyrrhizinate

HO-1 Induction It promotes the accumulation of iron
and lipid peroxides

CCL4-LF rats model Sui et al. (2018)

Artemether p53 Induction P53-dependent ferroptosis CCL4-LF mouse model Wang et al. (2019)

Artemether IRP2 Induction Promotes iron overload CCL4-LF mouse model Li et al. (2020)

Dihydroartemisinin NCOA4 Induction Activation of autophagy and the
upregulation of NCOA4

CCL4-LF rat model Zhang et al. (2021)

Sorafenib ELAVL1 Induction It promotes autophagic ferritin
degradation

CCL4-LF mouse model Zhang et al. (2018)

Celastrol GPX4 Induction GPX 4 was downregulated and COX-
2 was upregulated

C57BL/6 male mice Luo et al. (2022)

Celastrol HO-1 Induction Upregulating HO-1 to induce
ferroptosis and alleviate liver fibrosis

LX-2 cell Luo et al. (2022)

Isoliquiritigenin GPX4 Induction Inhibiting GPX4 CCL4-LF mouse model Huang et al. (2022)

Isoliquiritigenin TFR Induction Adding TFR and DMT1 HSC-T6 Huang et al. (2022)

Doxofylline NA Induction Increase in iron and ROS levels in
HSCs

CCL4-LF mouse model Xu et al. (2023)

Recombinant FGF21 HO-1 Induction Inhibition of HO-1 and activation of
Nrf2

Iron overload-induced
mouse model

Wu et al. (2021)

Sorafenib, erastin, or RSL3 ZFP36 Induction Downregulation of ZFP36, activation
of phagocytoferrin, and induction of

ferroptosis

BDL-LF mouse model Zhang et al. (2020a)

Ellagic acid FPN Induction Inducing FPN-dependent ferroptosis
in HSCs

CCL-induced male C57BL/
6 mice

Li et al. (2022)

Sorafenib HIF-1α Induction Ferroptosis was induced through the
HIF-1α/SLC7A11 pathway

CCL4-LF mouse model Yuan et al. (2022a)

Chrysophanol SLC7A11 Induction Accumulation of lipid reactive oxygen
species

NA Kuo et al. (2020)

Wild bitter melon extract NA Induction Reactive oxygen species accumulation NA Ho et al. (2021)

Berberine NA Induction Autophagic lysosomal pathway is
impaired, and cellular ROS
production is increased

CCL4-LF mouse model/
TAA-LF mouse model

Tan et al. (2022)

MSC-ex BECN1 Induction BECN1 delivery promotes xCT/
GPX4-mediated ferroptosis of HSCs

CCL4-LF mouse model Tan et al. (2022)

Erastin or sorafenib BRD7-p53-
SLC25A28 axis

Induction It promote sp53 mitochondrial
translocation

BDL-LF mouse model Zhang et al. (2020b)

Wogonoside SOCS1/P53/
SLC7A11

Induction Consumption of SLC7A11, GPX4,
and GSH and accumulation of iron,

ROS, and MDA

HSC-T6 cells Liu et al. (2022)

Decursin GPX4 Induction Decursin promoted ferroptosis in
activated HSCs in vitro by declining

Gpx4 and GSH levels

CCL4-LF mouse model Que et al. (2022)

Danshensu Gpx4,SLC7A11 Induction Dan attenuates LPS-induced HSC
activation during liver fibrosis by
regulating ferroptosis in LX-2 and

T6 cells

LX-2 and T6 cells Wang et al. (2023)

(Continued on following page)

Frontiers in Molecular Biosciences frontiersin.org05

Tang et al. 10.3389/fmolb.2023.1258870

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1258870


liver fibrosis and cirrhosis. This excessive iron accumulation enhances
ferroptosis in hepatocytes by inducing heme oxygenase-1 (HO-1)
expression, which contributes to the progression of liver fibrosis,
accompanied by the upregulation of FGF21 protein levels in vitro
and in vivo (Wu et al., 2021). After iron overload induced ferroptosis,
they release ROS and proinflammatory factors, transmit risk signals to
surrounding cells including inflammatory cells and HSCs, and induce
chronic inflammation and directly or indirectly induce the activation
and proliferation of HSCs (Gautheron et al., 2020). Collagen synthesis
after the activation of HSCs, ECM deposition, liver remodeling, and
ultimately, fibrosis increased.

In the db/dbmouse model of type 2 diabetes, the increased levels of
TGF- β, collagen I, and collagen III in hepatocytes indicate a greater
degree of hepatic fibrosis (Song et al., 2022). Ferroptosis activation was
observed in hepatocytes; inhibition of GPX 4/GSH or impaired GSH
synthesis increased ROS production (Yu et al., 2017); The
Downregulation of SOD and upregulation of MDA, 4-HNE, and
NOX4 increased the TfR1 expression, reduced the FPN 1
expression, and downregulated the SLC7A11 and Nrf 2/HO-1/
GPX4 signaling pathways (Song et al., 2022). Liraglutide suppresses
hepatocyte ferroptosis and LF by increasing hepatic SLC7A11 and Nrf
2/HO-1/GPX 4 signaling expression. In addition, it reduces high
glucose-induced LIP levels and intracellular lipid ROS levels in vitro,
which is speculated to play a key role in reducing iron accumulation,
oxidative damage, and ferroptosis (Song et al., 2022). Taken together,
these findings suggest that the induction of ferroptosis in hepatocytes
may be involved in the pathogenesis of liver fibrosis and can
simultaneously promote liver fibrosis progression. However, the
exact function of hepatocyte ferroptosis in the development and

pathogenesis of liver fibrosis remains poorly understood. The
molecular mechanisms regulating ferroptosis in hepatocytes remain
largely unknown and require further investigation.

HSC activation is considered to be the core link of liver fibrosis,
but it does not play an independent role in liver fibrosis and is
regulated by the interaction network of hepatocytes and other non-
parenchymal cells. It is crucial for the development and treatment of
liver fibrosis to understand the difference of ferroptosis between
HSCs and hepatocytes. Although these two cell classes play distinct
roles in iron metabolism, their functions are tightly linked and
interact. Therefore, further studies could reveal more detailed
ferroptosis mechanisms between HSCs and hepatocytes,
contributing to a comprehensive understanding of the pathway
biology of liver disease and proposing more effective therapeutic
strategies.

3 Mechanism and potential targets for
targeting HSC ferroptosis to treat liver
fibrosis

Antifibrotic treatments can be classified as drugs that mediate their
antifibrotic effects through hepatocyte protection, inhibition of HSC
activation (Bansal et al., 2019), and fibrotic scar evolution or
immunomodulation (Schuppan et al., 2018; Bansal et al., 2019).
However, despite numerous preclinical and clinical trials, no
antifibrotic drugs have been approved by the Food and Drug
Administration (FDA), and the only curative treatment option
available for patients with advanced cirrhosis is liver transplantation

TABLE 2 (Continued) Drugs and small molecules target HSCs ferroptosis to alleviate liver fibrosis.

Drugs Target Effect on HSC
ferroptosis

Mechanism Disease model Quotation

Acrylamide XCT-GSH-GPX4 Induction AA induces episodes of ferroptosis by
affecting XCT-GSH-

GPX4 antioxidant signaling

HSC-T6 cells Yuan et al. (2022b)

BECN1 mRNA NA Induction Activation of autophagy LX-2 and T6 cells Shen et al. (2021)

m6A BECN1 mRNA induction Triggering autophagy activation by
stabilizing BECN1 mRNA

LX-2 and T6 cells Shen et al. (2021)

ATG5 plasmid and
NCOA4 plasmid

NA Induction Promoting effects of DHA effects on
HSC ferroptosis

CCL4-LF rat model Zhang et al. (2021)

GSK2656157 NA Induction Enhancing the sensitivity of HSCs to
sorafini

CCL4-LF rat model Jiang (2022)

NaAsO2 NA Induction Elevated iron ion levels LX-2 cell Dilina and
Armametty, 2023

ZFP36 siRNA NA Induction Suphibiting the overexpression of
ZFP36, triggering autophagy

activation, leading to ferroptosis in
HSCs

HSC-T6 cells Zhang et al. (2020a)

ATG16L1 mRNA NA Induction Activation of autophagic ferritin,
leading to ferroptosis of HSCs

HSC-T6 cells Zhang et al. (2020a)

GRh 2 IRF1 Induction Leading to the inhibition of SLC7A11,
thus resulting in HSC ferroptosis

CCL4-LF rats model Lang et al. (2023)

HO-1, heme oxygenase-1; CCl4-LF, carbon tetrachloride-induced liver fibrosis; IRP2, iron regulatory protein 2; BDL-LF, bile duct ligation-induced liver fibrosis; HIF-1α, hypoxia-inducible
factor 1α; SLC7A11, solute carrier family 7 member 11; IRP2, iron regulatory protein 2; NCOA4, nuclear receptor-assisted activator protein 4; ELAVL1, ELAV-like protein 1; ZFP36, human

zinc finger protein 36; RSL3, GSH, peroxidase 4 inhibitor; BECN1, benzyl chloride 1; TAA-LF, thioacetamide-induced liver fibrosis; SLC25A28, solute carrier family 25 member 28; NA, not

applicable.
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(Neong et al., 2019). As the involvement of ferroptosis in the
mechanism of LF has been studied, ferroptosis-based treatment of
LF is a promising direction for future research. However, ferroptosis
have both beneficial and detrimental effects on the progression of LF
that need to be treated rationally. We can better understand the
regulation of iron metabolism, lipid peroxidation, and oxidative
stress by the inhibition of HSCs through ferroptosis.

3.1 Regulation of ferroptosis based on iron
metabolism to intervene in liver fibrosis

The effects of disorders of iron metabolism are significant and
can effectively influence the course of LF by regulating iron levels or
by influencing the occurrence of ferritinophagy and, thus, regulating
the outcome of cellular ferroptosis.

3.1.1 Induction of ferroptosis regulates liver fibrosis
The role of ferritinophagy in LF has both advantages and

disadvantages. On the one hand, it can lead to intracellular iron
accumulation through ferritin autophagy, thereby reducing iron
stores, causing an imbalance in intracellular iron homeostasis,
triggering a signaling cascade to induce ferroptosis, causing the
death of activated HSCs, and ultimately slowing down LF.

In recent years, several natural products and drugs have been
effective in inducing ferroptosis by inducing ferritinophagy. Kong et al.
(2019) found that artesunate could upregulate the expression of the vital
ferritin phagocytosis marker LC3, which leads to ferritin autophagy in
activated HSCs through the NCOA4-mediated autophagic pathway,
thereby increasing the level of unstable iron in cells. The specific
mechanism is the artesunate-induced co-localization of the
ferroptosis marker GPX4, cyclooxygenase2 (Ptgs2) with the fibrosis
marker α-SMA and the massive release of iron ions and excessive lipid

FIGURE 2
Reverse of liver fibrosis by inducing ferroptosis by bioactivated compounds in HSCs. Chrysophanol, liraglutide, wogonoside, danshensu relieve liver
fibrosis by inhibiting SLC7A11 to induce ferroptosis. Artemether, wogonoside, erastin, or sorafenib relieve liver fibrosis by acting on p53 to induce
ferroptosis, which is involved in regulating ferroptosis via systemic XC. Dihydroartemisinin and curcumol targeting acts on NCOA4, induces ferroptosis,
and alleviates liver fibrosis. ATG5 plasmid and NCOA4 plasmid are able to promote the induction of iron death by dihydroartemisinin. Solafennib
induced ferroptosis in HIF-1α through the HIF-1α/SLC7A11 pathway. GSK2656157 can promote solafennib to induce ferroptosis in HSCs. Acrylamide,
danshensu, isoliquiritigenin, decursin, and celastrol inhibit GPX 4, thereby inducing ferroptosis in HSCs to alleviate liver fibrosis. Sorafenib, erastin, and
RSL3 ZFP36 siRNA relieve liver fibrosis by acting on ZFP36 to induce ferroptosis. ATG16L1 mRNA can activate the autophagic ferritin, leading to the
ferroptosis of HSCs. Artemether induced ferroptosis in HSCs to relieve liver fibrosis by upregulating IRTF2. Isoliquiritigenin induced ferroptosis in HSCs to
relieve liver fibrosis by inhibiting TFR. Ellagic acid downregulates FPN 1 to induce ferroptosis and relieve liver fibrosis. BECN1 mRNA promotes the
activation of autophagy to induce ferroptosis in HSCs. m6A induces ferroptosis in HSCs by stabilizing BECN1 mRNA to trigger autophagy activation.
NaAsO2 can increase the level of iron ions to induce the iron death of HSCs.
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peroxidation to the point of loss of antioxidant capacity, which in turn
induces ferroptosis to attenuate LF. Zheng et al. (2022) showed that
curcumol promotes autophagy in HSCs, mediates the degradation of
NCOA4 and FTH 1 complexes to release iron ions, leading to iron
overload, and induces ferroptosis to treat LF. Sui et al. (2018) reported
that magnesium isoglycyrrhizinate reduced liver injury and LF scar
formation by inducing ferroptosis inHSCs, and itsmechanism of action
was to promote iron enrichment and induce cellular ferroptosis by
upregulating heme oxygenase-1 (HO-1) in HSCs and inhibiting its
downstream target genes TF, TFR1, and FTH1. Wang et al. (2019)
found that artemether (ART) induced ferroptosis in HSCs and did not
affect normal liver cells. ART treatment increased the levels of iron,
ROS, malondialdehyde (MDA), and 4-hydroxynonenal (4-HNE) and
decreased the GSH and NADPH levels. ART-treated HSCs lead to
cellular iron accumulation and ROS production, leading to cellular
ferroptosis. ART can also occur through the p53-induced HSC
ferroptosis. In addition, another study showed that the IRP 2-iron-
ROS axis is required for ART. ART inhibits IRP2 ubiquitination and
increases the iron content in HSCs, allowing IRP 2 to accumulate in
HSCs and produce ROS, leading to the ferroptosis of cells (Li et al.,
2020). Zhang et al. (2021) found that DHA was associated with
ferroptosis and autophagy activation, and dihydroartemisinin (DHA)
could inhibit the recombinant human platelet-derived growth factor-BB
(PDGF-BB)-induced activation of HSCs. ATG5 siRNA and
NCOA4 siRNA can inhibit DHA-mediated autophagy and
ferroptosis, and ATG5 plasmid and NCOA4 plasmid can enhance
the promoting effect of DHA effects on ferroptosis. Meanwhile, the N6-
methyladenosine (m6A) modification is important for the activation of
autophagy by DHA (Shen et al., 2022). DHA can inhibit the expression
of demethylase FTO in HSCs, resulting in the increased level of m6A
modification in HSCs. Furthermore, the level of m6A modification of
BECN1 mRNA was significantly upregulated in DHA-induced HSC
ferroptosis. The specific inhibition of m6A modification in HSCs can
weaken DHA to induce HSC ferroptosis, so m6A can regulate the
interventionmechanism of DHA (Shen et al., 2022). Zhang et al. (2018)
found that ferroptosis induced by the ferroptosis inducers sorafenib and
elastin-targeted induction of HSC ferroptosis, the RNA-binding protein
embryonic lethal abnormal vision-like 1/human antigen R (ELAVL1/
HuR) expression, can be significantly increased by inhibiting the
ubiquitin-proteasome pathway, induce ferroptosis in HSCs, and
relieve LF. Meanwhile, studies have shown that the inhibition of the
activation of PERK signaling by GSK2656157 may enhance the
sensitivity of HSCs to sorafini, thus enhancing the sorafini-induced
ferroptosis of HSCs and subsequently alleviating liver fibrosis in mice
(Jiang, 2022). Dilina and Armametty (Dilina and Armametty, 2023)
found that the NaAsO2 caused the LX-2 iron ion level to increase to
promote the occurrence of ferroptosis.

3.1.2 Reducing iron overload in HSCs to slow down
liver fibrosis

Activated HSCs are considered the major cellular source of
ECM-secreting myofibroblasts for driving LF (Kowdley, 2004).
Therefore, the inhibition of iron metabolism imbalance and excess
iron accumulation in HSCs may slow down the development of LF.
Yu et al. (2020) showed that using a hepatocyte Trf-LKO mouse
model, a high-iron diet increased susceptibility to iron liver
fibrosis. Their further treatment of Trf-LKO mice revealed that
ferrostatin-1 rescued liver fibrosis. Furthermore, SLC39A14 was

found to participate in intracellular Fe2 transport, implying that
hepatic TRF deficiency can cause liver fibrosis. Huang et al. (2022)
reported that isoliquiritigenin (ISL) relieved LF by inducing HSC
ferroptosis through repressing GPX4 expression and increasing the
expression of TFR and DMT1, thus producing a large number of
ROS. Doxofylline (DOX) induced a significant increase in iron and
ROS levels in HSCs, induced ferroptosis, and may be a promising
anti-LF agent (Xu et al., 2023). Moreover, an RNA-binding
protein, ZFP36/TTP (ZFP36 nomenclature protein), exhibits a
mechanism to inhibit ferritinophagy. Erastin- and sorafenib-
inducible ubiquitin ligase FBXW 7 and RSL3 reduced
ZFP36 protein expression to construct a ZFP36 plasmid that
can specifically bind to the (uuauuuuuuu) 3′-UTR autophagy-
related 16 like 1 (ATG16L1) mRNA, increasing
ATG16L1 instability and then inhibiting the activation of
autophagy, resulting in reduced autophagic ferritin degradation,
ultimately leading to ferroptosis (Zhang et al., 2020a).
ZFP36 siRNA also inhibited ZFP 36 overexpression, thereby
promoting iron death of HSCs. Zhang et al. (2020a) showed
that the RNA-binding protein ZFP36 prevents ferroptosis by
regulating the autophagic signaling pathway in HSCs. Li et al.
(2022) revealed that the ellagic acid-induced reduction in plasma
membrane FPN consistently resulted in intracellular ferritin
accumulation and further increased ROS levels in activated
HSCs, indicating that intracellular ROS is the ultimate cause of
ferroptosis.

3.2 Regulation of ferroptosis based on lipid
peroxidation intervenes in liver fibrosis

The currently identified mechanisms of ferroptosis regulation
based on lipid peroxidation mainly target systemic lipid
peroxidation and lead to lipid peroxidation by inhibiting GSH
production and, thus, GPX4 activity and ROS accumulation (Yu
et al., 2021). Zhu et al. (2021a) reported that TRIM26 was
downregulated in fibrotic liver tissues and that the
overexpression of TRIM26 accelerates the degradation of this
protein by mediating SLC7A11 ubiquitination, promoting lipid
peroxidation and, ultimately, leading to the death of activated
HSC iron, suggesting that mediating SLC7A11 may promote
HSC ferroptosis.

Du K et al. (2021) showed that inhibiting xCT/SLC7A11 could
inhibit the process of HSC transdifferentiation and intracellular
GSH synthesis, thus inducing HSC ferroptosis and reducing LF.
Sorafenib-triggered HSC ferroptosis is accompanied by the
reduction in SLC7A11 and HIF-1 α proteins. Furthermore, the
investigators found that reduced HIF-1α and SLC7A11 in HSC-
T6 cells led to sorafenib-induced cellular ferroptosis and reduced
ECM. Conversely, increasing the expression of HIF-1α and
SLC7A11 suppressed ferroptosis in HSCs and attenuates the
antifibrotic effects of sorafenib (Yuan et al., 2022a). Lang et al.,
(2023) found that GRh 2 upregulates IRF1 expression, leading to the
inhibition of SLC7A11, thus resulting in ferroptosis and inactivation
of HSCs. GRh2 improves liver fibrosis by enhancing HSC ferroptosis
and suppressing hepatic inflammation. Therefore, targeting the
downregulation of SLC7A11-induced HSC ferroptosis may be a
new way to treat LF.
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However, there is a problem that we may overlook, that is, lipid
peroxidation itself is one of the causative factors of LF, and too much
emphasis is placed on inducing lipid peroxidation in HSCs, which leads
to ferroptosis and thenHSCdeath, to alleviate LF. This strategy is over the
top, so some researchers have started investigating the inhibition of lipid
peroxidation. It was demonstrated that tβ4 specifically binds to G-actin
and regulates actin polymerization, thereby promoting vascular
regeneration, wound healing, and hair follicle regeneration (Kim et al.,
2016). Zhu et al. (2021b) found that Tβ4 protects hepatocytes by
inhibiting the GPX4-mediated ferroptosis pathway and also protects
hepatocytes by upregulating GPX4 expression to inhibit ferroptosis,
thereby reducing oxidative stress and lipid peroxidation in the liver,
which further reduces the recruitment of hepatic inflammatory factors
and activation of apoptotic signaling pathways.Moreover, treatment with
Fer-1, a ferroptosis inhibitor, increased the protective effect of Tβ4, while
elastin, a ferroptosis inducer, attenuated the protective effect of Tβ4.

3.3 Subsection regulation of ferroptosis
based on oxidative stress intervention in liver
fibrosis

GPX4 is one of the critical targets in the regulation of
ferroptosis. GPX 4 reduces hydroperoxidized phospholipids and
fatty acids and protects against LPO-mediated oxidative stress, and
inhibition of GPX 4 activity can accumulate through LPO at the
cell membrane and induce cellular ferroptosis (Huang et al., 2023).
Kuo et al. (2020) found that chrysophanol inhibited HSC
activation, reduced SLC7A11, increased ROS levels, and
promoted ferroptosis and endoplasmic reticulum stress
activation, especially HBx-mediated inhibition of cell death
through HBx-induced HSC activation of the GPX4 pathway
and HPX4-independent pathway through GPX4 activation.
Chrysophanol may exert an effect on activated HSCSs, induce
ferroptosis, and prevent LF. Wild bitter melon (WM) treatment
induces ROS accumulation and HSC death by enhancing
endoplasmic reticulum stress and triggering ferroptosis in LPS-
activated HSCs, suggesting that WM treatment has antifibrotic
effects on LPS-activated HSCs (Ho et al., 2021). Luo et al. (2021)
reported that celastrol could regulate the expression levels of
GPX4 and COX-2 in different cells, suggesting its effects on the
induction of ferroptosis. ISL promotes ferroptosis in HSCs by
increasing MDA content and inhibiting GPX4 expression (Li et al.,
2022). Decurin also could promote ferroptosis of HSCs by
decreasing the levels of Gpx 4 and GSH (Que et al., 2022).

Yi et al. (2021) found that BBR causes autophagy inhibition in
hematopoietic stem cells, enhances ROS and oxidative stress,
promotes ferritin degradation, and increases the risk of redox-
active iron accumulation and ROS increasing from the Fenton
response. The Fenton response triggers lipid peroxidation and
glutathione depletion, leading to ferroptosis and alleviating LF
symptoms; in conclusion, BBR attenuates LF by inducing
ferroredox-activated ROS-mediated ferroptosis of HSCs. Tan
et al. (2022) recently revealed that human umbilical cord
mesenchymal stem cells (hucMSCs) and their secreted exosomes
(MSC-ex) can deliver BECN1 proteins to HSCs to increase their
BECN1 expression and subsequently inhibit SLC7A11/xCT
transcription in the nucleus. Reduced SLC7A11/xCT led to

cysteine deficiency and reduced GSH in HSCs, which resulted in
reduced GPX4 and the onset of ferroptosis.

3.4Multitargeted regulation of ferroptosis to
intervene in liver fibrosis

Based on the complex regulatory mechanisms of ferroptosis,
multitargeted interventions are emerging as promising therapeutic
strategies for LF. Exosomes are extracellular vesicles that contain
proteins, DNA, and RNA of the cells that produce them and have
also been found in recent years to have a vital role in the progression
of LF (Dai et al., 2019; Kalluri et al., 2020). Transferrin receptor
(TFRC) is a glycoprotein that can import iron, and silencing TFRC
decreases total intracellular iron levels (Gammella et al., 2017).
Exosomal miR-222 from HBV-infected hepatocytes promotes LF
by inhibiting TFRC- and TFRC-induced HSC ferroptosis (Zhang
et al., 2023).

Wogonoside (WG) improves LF through SOCS1/p53/
SLC7A11 pathways to trigger the increase in SLC7A11, leading to
the depletion of GPX 4 and GSH and an excess of ROS, finally inducing
iron cell apoptosis in HSCs and inhibiting its activation during LF (Liu
et al., 2022). Danshensu ameliorated LF by attenuating LPS-induced
HSC activation by decreasing the expression of collagen I, CTGF, Gpx
4, SLC7A11, and LCN 2, and increasing the accumulation of lipid ROS
(Wang et al., 2023). XCT-GSH-GPX 4 is an antioxidant signaling
pathway. XCT consists of light-chain SLC7A11 and heavy-chain
SCL3A2, which is a transmembrane amino acid transporter that
participates in GSH synthesis through cystine uptake and glutamate
excretion and promotes intracellular GSH synthesis (Yuan et al.,
2022b). In acrylamide-induced infected cells, GPX4 and XCT
expressions were decreased, and COX2 and GSH expressions were
increased in HSC-T6 cells. Acrylamide-induced VDAC1 ensures
mitochondrial integrity, regulated transport of substances and ions,
and ROS production. This suggests that the induction of HSC
ferroptosis by acrylamide is due to XCT-GSH-GPX4 antioxidant
signaling and mitochondrial dysfunction (especially mtROS
production) (Yuan et al., 2022b). Zhang et al. (2020b) found
BRD7 upregulation, mitochondrial translocation of p53, a
combination of SLC25A28 and p53, and ferroptosis induction in
HSCs in patients with advanced hepatocellular carcinoma fibrosis
treated with sorafenib. Concurrently, the HSC-specific blockade of
the BRD7-p53-SLC25A28 axis abolished the erastin-induced HSC
ferroptosis.

As a new therapeutic modality, ferroptosis has been confirmed
to play an important role in multiple systemic diseases. By targeting
HSCs, we can induce the occurrence of ferroptosis. In treating LF, we
summarize the current targets of ferroptosis in HSCs in Table 1 and
drugs, small molecules target HSCs ferroptosis to treat liver fibrosis
in Table 2. We describe the mechanism of targeting ferroptosis in
HSCs in Figure 2. In the future, more mechanisms can be studied
through HSCs, and relevant targeted drugs can be developed;
therefore, targeting HSC ferroptosis is expected to be an
important target for the treatment of LF, which is a key to
inhibit iron metabolism, lipid peroxidation, and regulation of
oxidative stress.

The specific mechanism of LF ferroptosis has not been fully
clarified; more detailed signal transduction pathway is still in further

Frontiers in Molecular Biosciences frontiersin.org09

Tang et al. 10.3389/fmolb.2023.1258870

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1258870


exploration. Many studies are still in the cell or animal experimental
stage because of the lack of large samples, multicenter clinical
randomized controlled studies, and evidence; we still need to
conduct a more comprehensive and in-depth study to further
explore the relationship between ferroptosis and LF. For targeting
HSCs to treat LF, there is still a transformation gap; therefore,
researchers should convert putative targets into effective clinical
drugs. For disease treatment based on ferroptosis, induced
ferroptosis may have the dual effect of injury and treatment, and
according to the disease background, related treatment is needed to
limit the occurrence of side effects. For the occurrence of ferroptosis
mechanism development, new targeted drugs to regulate the
occurrence of cell ferroptosis in different disease types is
expected to become the new trend of disease treatment in the future.

4 Summary and outlook

Since the concept of ferroptosis was introduced, it has become the
most sought-after form of regulated cell death. In this review, we
summarize recent studies based on ironmetabolism, lipid peroxidation,
and oxidative stress that regulate the occurrence of ferroptosis and, thus,
affect the development and progression of LF. Althoughmore andmore
studies have been reported, the molecular mechanisms and signaling
pathways of ferroptosis in the process of LF are not very clear. For
example, (1) current studies suggest that elevated levels of iron ions and
lipid peroxidation are necessary for the occurrence of ferroptosis, but
there is evidence that elevated levels of iron ions and lipid peroxidation
are not at all beneficial to the progression of LF, as they may have some
impact on other normal hepatocytes and the intrahepatic cellular
environment. All current studies on regulating LF progression by
ferroptosis have escaped the classical model of ferroptosis, namely,
the traditional GPX4/ACSL4 model (Doll et al., 2017). In recent years,
Liu et al. (2022) identified a newmechanism of ferroptosis mediated by
p53 that is different from the classical model of ferroptosis. However,
this research has yet to be integrated into the field of LF. We do not yet
know the specific effect of ferroptosis induced by the new mechanism
on LF. It remains to be explored whether the new mechanism could be
used to find a way to target ferroptosis and remove activated HSCs
without affecting other normal hepatocytes. (2) Unlike ferroptosis
treatment for hepatocellular carcinoma, which has long been used in
clinical practice, clinical studies targeting ferroptosis for LF have not yet
been reported. We hope that someone will shed more light on the
specific mechanisms of ferroptosis execution in the future. A
fundamental question is how to induce ferroptosis in cells, which is
the key to the final clinical application of targeted ferroptosis therapy for
LF. (3) There are no specific markers of ferroptosis in the organism, and
specific reference indicators can be found in the future, which could
provide a basis for future clinical diagnosis. In conclusion, continuous

exploration of the ferroptosis mechanism and targeting ferroptosis may
be a promising treatment strategy for LF and provide a good reference
for treating ferroptosis in other diseases.
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