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Accumulating evidence supports that physical exercise (EX) is the most 
effective non-pharmacological strategy to improve brain health. EX prevents 
cognitive decline associated with age and decreases the risk of developing 
neurodegenerative diseases and psychiatric disorders. These positive effects of 
EX can be attributed to an increase in neurogenesis and neuroplastic processes, 
leading to learning and memory improvement. At the molecular level, there is a 
solid consensus to involve the neurotrophin brain-derived neurotrophic factor 
(BDNF) as the crucial molecule for positive EX effects on the brain. However, even 
though EX incontestably leads to beneficial processes through BDNF expression, 
cellular sources and molecular mechanisms underlying EX-induced cerebral BDNF 
overproduction are still being elucidated. In this context, the present review offers 
a summary of the different molecular mechanisms involved in brain’s response 
to EX, with a specific focus on BDNF. It aims to provide a cohesive overview 
of the three main mechanisms leading to EX-induced brain BDNF production: 
the neuronal-dependent overexpression, the elevation of cerebral blood flow 
(hemodynamic hypothesis), and the exerkine signaling emanating from peripheral 
tissues (humoral response). By shedding light on these intricate pathways, this 
review seeks to contribute to the ongoing elucidation of the relationship between 
EX and cerebral BDNF expression, offering valuable insights into the potential 
therapeutic implications for brain health enhancement.
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1. Introduction

Physical exercise (EX) is the most efficient non-pharmacological strategy to improve health 
and prevent pathologies. Being physically active reduces not only the risk of developing 
cardiovascular, metabolic and chronic diseases but also brain disorders. Indeed, numerous 
studies reported the beneficial effects of EX across a lifespan on cognitive functions and 
neuroplastic mechanisms (Voss et al., 2011). EX reduces the prevalence and incidence of stroke, 
neurodegenerative diseases (e.g., Alzheimer’s, Parkinson’s diseases [AD, PD]) and mental 
disorders such as depression, schizophrenia and addiction (Dunn et al., 2005; Sofi et al., 2011; 
Paillard et al., 2015; Xu et al., 2023). Accumulating evidence supports that EX improves learning, 
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memory, executive functions, attention in children (Chaddock et al., 
2010; de Greeff et al., 2018) and adulthoods (Colcombe et al., 2006; 
Erickson et al., 2011; Sofi et al., 2011; Ludyga et al., 2020; Cheval et al., 
2023). Moreover, EX has been linked to a decrease in stress and 
anxiety, as well as an improvement in emotional stability and sleep 
quality resulting in improved psychological well-being (Mandolesi 
et al., 2018).

In more details, the positive effects of EX on the brain may 
be  explained by an increase in hippocampal neurogenesis, an 
enhancement of long-term potentiation (LTP) and the regulation 
of synaptic plasticity (van Praag et al., 1999; Farmer et al., 2004; 
Cefis et al., 2019). It has also been demonstrated that EX induces 
cerebral angiogenesis by increasing the density and sprouting of 
new capillaries from pre-existing vessels (Black et al., 1990; Ding 
et al., 2004). From animal and human studies, there is a consensus 
involving the neurotrophin brain-derived neurotrophic factor 
(BDNF) as responsible for the positive effects of EX on the brain. 
This neurotrophin is widely produced in the brain, where it plays a 
crucial role in neurogenesis, synaptic plasticity, angiogenesis and 
exerts neuroprotective effects (Korte et al., 1995; Bartoletti et al., 
2002; Kim et al., 2004). The crucial role of BDNF is unquestionable 
since in animal studies, anti-BDNF strategies negate EX-associated 
cognitive benefits (Vaynman et al., 2003, 2004; Liu et al., 2008), 
while in humans, the val66met polymorphism (single nucleotide 
polymorphism in bdnf gene corresponding to a valine-to-
methionine substitution), which is associated with a defect in 
activity-dependent regulated secretion, attenuates the cognitive 
advantage of EX (Egan et al., 2003; Erickson et al., 2012; Hopkins 
et al., 2012). The synergic interrelation between neuronal activity 
and synaptic plasticity designates BDNF as an ideal mediator of 
cellular and molecular mechanisms underlying cognitive and 
memory improvements induced by EX. However, even though 
BDNF involvement is incontestable, molecular mechanisms 
underlying EX-induced cerebral BDNF overproduction are not 
entirely delineated.

In this context, this review aims to provide a comprehensive 
overview of scientific evidence on the different molecular 
mechanisms explaining how EX leads to cerebral BDNF 
upregulation. It is important to underscore that within the context 
of this review, the term “EX” has been utilized inclusively, 
encompassing a wide range of physical activities, irrespective of their 
specific type, duration, or intensity while these factors influence the 
cerebral expression of BDNF (Walsh et  al., 2020; Fernandez-
Rodriguez et  al., 2022). After a brief description of BDNF 
metabolism and signaling pathways, this manuscript will focus on 
the different mechanisms responsible for EX-induced cerebral 
BDNF production. Hence, the increase in neuronal expression 
through activity-dependent mechanisms, the contribution of 
endothelial cells through cerebral blood flow (CBF) elevation 
(hemodynamic hypothesis) and the recent mechanisms involving 
humoral factors (exerkines) originating from peripheral tissues will 
be detailed and provided in Figure 1A. A better comprehension of 
the molecular mechanisms that lead to cerebral BDNF upregulation 
is required, not only because it could help to promote exercise 
prescription for brain health, but also since the modulation of these 
mechanisms could be an attractive possibility for the prevention and 
treatment of various brain pathologies.

2. BDNF: the key mediator of 
EX-induced cerebral plasticity

2.1. Localization and cellular expression

Initially discovered in the porcine brain by Barde et al. (1982), 
BDNF is a member of the neurotrophic factor family expressed by the 
neurons of the central nervous system (CNS) predominantly in the 
cortex and hippocampus (Ernfors et al., 1990; Hofer et al., 1990). In 
addition to neurons, many cells have been shown to express BDNF in 
the brain, such as astrocytes, microglia (Dougherty et  al., 2000), 
pericytes (Ishitsuka et al., 2012) and endothelial cells (Leventhal et al., 
1999; Nakahashi et al., 2000). Cerebral endothelial cells (CEC) are 
particularly noteworthy, as they synthesize 50 times more BDNF than 
primary cortical neuron cultures (Guo et al., 2008). Consistently, data 
reported that the in vivo removal of cerebral endothelium using a 
detergent (3-[(3-cholamidopropyl) dimethylammonio]-1-propane 
sulphonate, CHAPS), halved the cerebral BDNF content (Monnier 
et al., 2017b). Contrary to what its name may suggest, BDNF is also 
expressed in the cardiovascular system (heart, vessels) (Timmusk 
et al., 1993; Meuchel et al., 2011; Quirie et al., 2012; Prigent-Tessier 
et al., 2013), lungs, thymus, spleen (Aid et al., 2007), skeletal muscles 
(Cefis et al., 2022), and blood (Rosenfeld et al., 1995).

2.2. Metabolism and secretion

BDNF is initially synthesized in the endoplasmic reticulum as a 
precursor form, the pre-pro-BDNF that is subsequently transformed 
into pro-BDNF by the removal of the signal peptide. After N-terminal 
glycosylation of the N123 residue in the pro-domain, pro-BDNF is 
then either proteolytically cleaved intracellularly (i.e., by furin and 
pro-protein convertase 7 in Golgi but also by pro-protein convertase 
1/3 in secretion vesicles) or extracellularly (i.e., by tissue plasminogen 
activator [tPA]/plasmin and matrix metalloproteinases) in mature 
BDNF (Mowla et  al., 2001). Of note, extracellular processing of 
pro-BDNF is still a matter of debate since evidence came from in vitro 
studies using tagged pro-BDNF that do not reflect physiological 
conditions (Pang et al., 2004; Nagappan et al., 2009). BDNF is then 
secreted by either a constitutive or a regulated pathway, the latter 
involving the interaction of the pro-domain with the sortilin receptor 
(Chen et al., 2005). According to Aid and colleague’s data, bdnf gene 
consists in a common 3′ exon that encodes the entire pro-BDNF 
protein and at least eight 5′ non-coding exons (exons I-VIII). Each 5′ 
non-coding exon is spliced into the coding exon that encodes a similar 
BDNF protein product (Aid et al., 2007). Thus, the gene encoding for 
BDNF protein leads to multiple transcripts according to the use of 
alternative promoters and of the different splicing and polyadenylation 
sites. Although the significance of this complex organization is still 
obscure, it could afford for a distinct tissue-specific expression and 
regulation under specific physiological conditions (Timmusk et al., 
1993; Aid et  al., 2007). Concerning neuronal activity-dependent 
regulation of BDNF transcription, exons I and IV have been shown to 
be the most upregulated (Tao et al., 1998; Pruunsild et al., 2011; Zheng 
et  al., 2011). Besides, promoters I- and IV-dependent bdnf 
transcription are both increased in response to EX (Intlekofer et al., 
2013; Luft et al., 2022).
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2.3. BDNF receptors and signaling 
pathways

BDNF acts through two different plasma membrane receptors, the 
tropomyosin-related kinase B (TrkB) receptor and pan75 neurotrophin 
receptor (p75NTR), the affinity being much higher for TrkB than p75NTR 
(Chao, 2003) with its positive action being attributed to TrkB 
activation only. Conversely, the p75NTR is the preferential receptor for 
pro-BDNF and its activation mainly leads to the activation of 
pro-apoptotic pathway (Friedman, 2000; Beattie et al., 2002). These 
data showed the yin and yang effects of this neurotrophin and 
highlighted the importance of the balance between the two forms for 
the proper functioning of BDNF (for review Lu et  al., 2005). In 
neurons, TrkB receptors include the full-length (FL) form with a 
tyrosine kinase domain and the truncated forms (T1, T2, T3) devoid 
of the kinase domains (Stoilov et al., 2002; Fenner, 2012). All these 
isoforms share the same extracellular pattern and binding affinity for 
BDNF. The binding of BDNF to the TrkB-FL receptor induces its 
dimerization and auto-phosphorylation of different tyrosine residues 
at the cytoplasmic domain leading to the activation of three major 
signaling pathways involving the phospholipase Cγ (PLC-γ), the 
phosphatidylinositol-3 kinase (PI3K) and the mitogen-activated 
protein kinase (MAPK) pathways that trigger neurite outgrowth, cell 
differentiation, neuronal survival and synaptic plasticity (Huang and 
Reichardt, 2003; Reichardt, 2006; Fenner, 2012). For the major 
truncated form, it has been shown that when TrkB-FL and -T1 are 

co-expressed, TrkB-T1 can repress the TrkB-FL signaling (Fenner, 
2012). Furthermore, BDNF binding to TrkB-T1 could induce both its 
own signalization (Rose et al., 2003), internalization and/or release 
(Alderson et  al., 2000). Of note, also poorly documented, TrkB 
expression is not restricted to neurons but also expressed in different 
cells of the neurovascular unit such as endothelial cells (TrkB-FL and 
truncated) (Kim et al., 2004; Pedard et al., 2017) and astrocytes which 
in addition to p75NTR (Rudge et al., 1994), expressed almost exclusively 
the truncated isoform, TrkB-T1 (Rose et al., 2003).

2.4. Cerebral cells overexpressing BDNF in 
response to EX

The cerebral cells responding to EX by an increase of cerebral 
BDNF expression are illustrated and summarized in Figure 1B.

2.4.1. Neuronal expression
As an immediate-early gene, transcription of new BDNF mRNA 

occurs rapidly without the requirement of new protein synthesis in a 
process involving post-translational modification of pre-existing 
transcription factors. Using in situ hybridization, Neeper et al. (1995) 
were the first to report that voluntary wheel running increases BDNF 
mRNA in hippocampal and cortical neurons of rats. Since this initial 
finding, many studies have confirmed this discovery using different 
types, intensities and durations of EX (Oliff et al., 1998; Berchtold 

FIGURE 1

Mechanisms underlying EX-induced brain BDNF overproduction and cerebral BDNF-expressing cells in response to EX. (A) Cerebral BDNF increase in 
response to EX is thought to be driven by three main mechanisms: the increase in neuronal activity, the elevation of CBF and the release of exerkines 
from peripheral tissues. The brain detects EX through central motor control and afferent feedback which trigger an increase in neuronal activity 
involving neurotransmitter signaling and Ca2+ influx. In addition, EX leads to an increase in hemodynamic response subsequent to the cardiac output 
augmentation resulting in elevated cerebral blood flow and an increase in fluid shear stress. Of note, CBF elevation is also contingent upon neuronal 
coupling. Finally, peripheral tissues such as the liver and the skeletal muscle perceive EX and release exerkines into the bloodstream, capable of 
signaling to the brain and inducing cerebral BDNF increase. (B) BDNF overexpression in response to EX is not limited to neuronal cells. Studies indicate 
that BDNF overexpression is induced in endothelial cells and oligodendrocytes, while the involvement of microglia and astrocytes as potential sources 
of BDNF in response to EX requires further investigation. Created with BioRender.com.
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et al., 2005; Griffin et al., 2009; Cefis et al., 2019; Pedard et al., 2019). 
The mechanism regulating bdnf gene expression is intriguing since 
synaptic activation regulates the neuronal synthesis and secretion of 
BDNF, which in turn modifies synaptic morphology and efficacy (Poo, 
2001). This review only focuses on biological mechanisms induced by 
EX that led to transcriptional upregulation.

2.4.2. Endothelial expression
Initial investigations on endothelial BDNF expression have 

demonstrated its constitutive synthesis, release and regulation 
(Leventhal et al., 1999) by both peripheral (Nakahashi et al., 2000) and 
CEC (Bayas et al., 2002; Takeo et al., 2003) in culture. Secreted BDNF 
is bioactive since it exerts a neuroprotective effect by promoting 
neuronal growth and survival (Guo et al., 2008). In vivo studies have 
shown the presence of BDNF in the vascular endothelium both at 
peripheral and cerebral levels, with a significant part of cerebral BDNF 
corresponding to BDNF expressed by the cerebral endothelium 
(Monnier et  al., 2017b; Cefis et  al., 2020; Totoson et  al., 2021). 
Moreover, endothelial BDNF expression was significantly higher after 
EX in the aorta, vein and cerebral microvessel fractions (Monnier 
et al., 2017a; Cefis et al., 2020). Conversely, pathologies associated with 
endothelial dysfunction, such as diabetes (Navaratna et al., 2011), 
cerebral ischemia (Bejot et al., 2011), high blood pressure (Monnier 
et al., 2017b) or rheumatoid arthritis (Pedard et al., 2017) decrease 
cerebral BDNF expression.

2.4.3. Glial cells expression
The question of whether astrocytes serve as a source of BDNF in 

response to EX remains to be clarified. Research has demonstrated 
that EX stimulates astrocyte proliferation (Uda et al., 2006), as well as 
morphological changes in an AD mouse model (Rodriguez et al., 
2013). In addition, studies have suggested that astrocytes 
overexpressing BDNF can promote hippocampal neurogenesis 
(Quesseveur et al., 2013) and their own remodeling (Holt et al., 2019). 
Besides, EX was reported to elongate astrocytic projections in the 
dentate gyrus and to increase TrkB expression in GFAP-positive cells 
(Fahimi et al., 2017) while in a PD mouse model, Palasz et al. (2019) 
showed that treadmill training protects neurons through increase in 
astrocyte-derived BDNF. Given the central role of these cells in 
maintaining CNS homeostasis, in modulating synaptic transmission 
and their function as gatekeepers of the blood–brain barrier (BBB) (Li 
et al., 2021), the observed astrocytic BDNF–TrkB expression following 
EX may reflect a complex interplay between endothelial and neuronal 
cells, with astrocytes acting as a bridge, as we  propose in the 
hemodynamic hypothesis section. Further investigation is needed to 
unravel the intricacies of astrocytic involvement in EX-induced 
cerebral BDNF production.

In addition to astrocytes, EX has been reported to promote 
oligodendrogenesis (For review, Guo et  al., 2020). After EX, 
oligodendrocyte proliferation has been observed in spinal cord and 
hippocampus of healthy mice (Krityakiarana et al., 2010; Matsumoto 
et al., 2011) and in various diseases models including multiple sclerosis 
(Guo et  al., 2020) or chronic cerebral hypoperfusion (Jiang et  al., 
2017). In addition, oligodendrocytes modulate synaptic transmission 
through the secretion of BDNF (Jang et  al., 2019). Consistently, 
glutamate transmission and vesicular release were decreased in a 
model of mice with conditional deletion for BDNF in oligodendrocytes 
while these effects were offsetted with the application of BDNF or 

TrkB agonist (7,8-DHF). Taken together, these data suggest that 
oligodendrocytes are involved as a cellular source in EX-induced 
cerebral BDNF expression.

Concerning microglial cells, EX has been shown to modulate 
microglial activation. Thus, Mee-Inta et al. (2019) have highlighted the 
regulatory effect of EX on microglial activation, leading to an increase 
in anti-inflammatory factors and a decrease in pro-inflammatory 
factors. Additionally, in a mouse model of AD submitted to long-term 
EX, microglial activation was decreased in cerebral cortex and 
hippocampus, accompanied by an increase of BDNF-positive cells 
(Xiong et al., 2015). While there is evidence suggesting that microglia 
can produce BDNF (Madinier et al., 2009) and that microglia promote 
learning and memory through BDNF signaling (Parkhurst et  al., 
2013), a recent article suggests that BDNF expressed by microglia is 
not produced in sufficient amount to modulate neuronal function 
(Honey et al., 2022). Therefore, further investigations are needed to 
fully elucidate the involvement of microglia in the cellular expression 
of BDNF in response to EX.

3. Cerebral mechanisms involved in 
EX-increased BDNF production

All the mechanisms described in sections a-e are summarized in 
Figure 2.

3.1. Calcium influx-induced neuronal 
activity

Neuronal activity-regulated gene expression has been proposed to 
be a key mediator for experience-dependent changes in the nervous 
system (Katz and Shatz, 1996). From initial studies showing that EX, 
from the central motor control to the afferent feedback, induced 
electrical activity and sustained hippocampal activation (Vanderwolf, 
1969; Czurko et  al., 1999), the mechanism by which EX induces 
neuronal BDNF synthesis has been well investigated. From electrical 
to chemical level, Ca2+ influx is critical in transmitting depolarization 
status and triggering synaptic activity. Thus, using physiologically 
relevant stimulation patterns of hippocampal neurons, Balkowiec and 
Katz (2002) showed that BDNF production needed not only Ca2+ 
influx but also mobilization from intracellular Ca2+ stores. Once 
initiated, Ca2+-dependent signaling cascades trigger activity-induced 
changes in gene expression and protein synthesis (Ghosh and 
Greenberg, 1995). Using the induction of BDNF mRNA, West et al. 
(2001) have shown how Ca2+ induces neuronal gene expression. 
Membrane depolarization and neurotransmitter binding lead to 
ligand-gated and voltage-gated Ca2+ channels (L-VGCC) at the cell 
membrane, triggering the influx of extracellular Ca2+ into the cell. In 
terms of ligand-gated channels responsible for Ca2+ entry into neurons 
after EX, different mechanisms have been proposed involving 
preponderantly glutamatergic transmission through α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-
d-aspartate-type (NMDA) receptors (Kitamura et al., 2003; Vaynman 
et  al., 2003; Nishijima et  al., 2012). As stated above, promoter 
IV-dependent bdnf transcription, one of the main promoters driving 
neuronal activity-dependent BDNF expression, is the most thoroughly 
investigated (Tao et al., 2002). Using a mouse model with impaired 
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activity-dependent bdnf expression through mutagenesis, Hong et al. 
(2008) revealed the existence of three Ca2+-responsive elements 
(CaREs) able to drive activity-dependent induction of promoter 
IV. Among the three DNA sequences that are cooperatively recruited 
for Ca2+-induced bdnf promoter IV expression, Tao et al. (2002) have 
shown that Ca2+-response factor (CaRF) is a regulator of activity-
dependent bdnf gene expression through CaRE1 and that the 
transcriptional activity of CaRF is dependent on Ca2+ influx in a 
neuron selective manner. CaRE3 has also received specific attention. 
Indeed, once bounds by CREB (cAMP response element-binding 
protein), this latter is phosphorylated on serine 133 (Ma et al., 2014) 
and then induces BDNF transcription (Tao et al., 1998; Shen et al., 
2001). Multiple Ca2+-dependent mechanisms have been proposed to 
be responsible for CREB phosphorylation at the upstream steps of 
CREB activation. These mechanisms included the Ca2+-sensitive 
adenylate cyclase/PKA (Shen et  al., 2001), the Ca2+/calmodulin-
activated kinase (CAMK) (Sun et al., 1994; Bito et al., 1996), Ras/
MAPK (Wu et al., 2001) and the redox signaling (Radak et al., 2016) 
systems. Since BDNF has been shown to subsequently interact with 
NMDA receptors, CAMK and MAPK (Vaynman et al., 2003; Nakata 
and Nakamura, 2007), EX-induced changes in neuronal activity-
dependent gene induction may use BDNF itself as a perpetuating loop.

3.2. Other neurotransmitter signaling

In addition to glutamate, signaling from cholinergic, 
noradrenergic and serotoninergic transmitters are involved in cerebral 
bdnf gene expression (Garcia et al., 2003; Ivy et al., 2003; Chen et al., 
2007). The cortical acetylcholine (ACh) content is increased in rats 
following a short period of walking, suggesting that ACh is released 
even at low-intensity of EX (Kurosawa et  al., 1993). Conversely, 
cholinergic transmission impairment is associated with a 
downregulation of the hippocampal BDNF pathway in rats submitted 
to Morris Water Maze training that could be reversed by galantamine, 
a selective ACh esterase inhibitor (Gil-Bea et al., 2011). Interestingly, 
the blockade of noradrenergic signaling blunts the EX-effect on bdnf 
gene transcription (Garcia et al., 2003; Ivy et al., 2003) and is reversed 
when animals received reboxetine, a selective noradrenalin reuptake 
inhibitor (Russo-Neustadt et al., 2004). Mechanistically, the binding 
of noradrenalin to adrenergic receptor activates the phosphorylation 
cascades and induces BDNF expression in hippocampal neurons 
(Chen et  al., 2007). Dopamine (DA) has also been reported to 
be upregulated by EX and to induce an increase in serum Ca2+ levels, 
which can enhance DA synthesis in the brain (Sutoo and Akiyama, 
2003). There is evidence showing that DA receptor activation leads to 

FIGURE 2

Neuronal mechanisms involved in EX-induced BDNF increase. From the central motor control to the afferent feedback, EX induces an increase in 
neuronal activity and the release of neurotransmitters leading to the upregulation of bdnf gene expression. The modulation of neuronal activity is 
primarily promoted by the elevation of Ca2+ influx through membrane L-VGCC. In addition to membrane depolarization, glutamatergic transmission 
mediated by AMPA and NMDA receptors plays a preponderant role in this process. Additionally, signaling from dopaminergic, noradrenergic and 
serotoninergic transmitters contributes to the upregulation of neuronal bdnf expression through D1-like receptor (D1-R), βadrenergic receptor (βA-R), 
and serotonin receptor (5HT-R), respectively. Conversely, GABA negatively affects hippocampal BDNF expression via GABAA receptors. Multiple Ca2+-
dependent mechanisms have been proposed as responsible for CREB phosphorylation including Ca2+-sensitive adenylate cyclase/PKA, Ca2+/CAMK, 
Ras/MAPK and the redox signaling. Another mechanism leading to neuronal BDNF expression is associated with the activation of neuronal PGC-1α/
FNDC5/Irisin pathway. Finally, epigenetics mechanisms involving HAT, DNMT, HDAC activities and miRNA, particularly mi138 were demonstrated. 
Created with BioRender.com.
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BDNF expression probably through D1-like receptor activation 
(Kuppers and Beyer, 2001; Williams and Undieh, 2009). In addition, 
serotonin (5-HT) signaling may also be involved in EX-induced bdnf 
expression but to a lesser extent since 5-HT2A/C blockade minimally 
altered EX-induced BDNF mRNA activation (Ivy et al., 2003; Russo-
Neustadt et al., 2004). Finally, gamma-aminobutyric acid (GABA), the 
primary inhibitory neurotransmitter of the CNS, has been shown to 
decrease hippocampal BDNF expression and to impair learning and 
memory (Kim et  al., 2012) while bicuculline, a GABAA receptor 
antagonist, enhances memory consolidation by increasing 
hippocampal BDNF levels (Kim et  al., 2012). Interestingly, the 
anxiolytic effect of a 3-week running protocol in mice was blocked by 
the infusion of bicuculline in the ventral hippocampus. These 
observed results suggest that GABAergic transmission in the 
hippocampus, in response to EX, may play an important role in 
dampening excitatory circuits that might otherwise trigger an anxious 
response. These findings demonstrate a complex and finely tuned 
adaptation (Schoenfeld et al., 2013).

3.3. Cerebral PGC-1α/FNDC5/irisin pathway

Primarily discovered as a secreted factor from skeletal muscle, 
irisin is regulated by the peroxisome proliferator activator receptor γ 
coactivator-1α (PGC-1α) pathway, cleaved from fibronectin type III 
domain-containing protein 5 (FNDC5) and released in blood 
circulation (Bostrom et  al., 2012). In addition to its peripheral 
expression, FNDC5/irisin is also produced in different brain regions 
(Dun et al., 2013) and Wrann et al. (2013) were the first showing that 
EX increases hippocampal BDNF expression through the PGC-1α/
FNDC5 pathway. Indeed, the authors reported that the knockdown of 
PGC-1α reduced FNDC5 expression in the brain. Using primary 
cortical neurons, forced expression of FNDC5 increases BDNF levels 
whereas RNA interference directed against FNDC5 reduces its 
expression. Consistent with these findings, another study in mice has 
reported that the val66met polymorphism is associated with reduced 
expression of brain FNDC5 and BDNF following EX (Ieraci et al., 
2016). Additionally, in an AD mouse model, hippocampal 
neurogenesis and cognition are improved by EX through both FNDC5 
and BDNF upregulation (Choi et  al., 2018). Interestingly, data 
reported that the exposition of ex vivo human cortical slices to 
recombinant irisin leads to the activation of the cAMP–PKA–CREB 
memory pathway (Lourenco et al., 2019).

3.4. Epigenetic mechanisms

Among epigenetic mechanisms, DNA methylation and histone 
modifications through methylation or acetylation are the most studied 
processes affecting gene expression. Numerous studies have shown 
that EX can act as an epigenetic modulator of brain plasticity and 
cognition influencing the activity of enzymes responsible for 
methylation (DNA methyltransferase, DNMT), histone acetylation 
(histone acetyltransferase, HAT) or deacetylation (histone deacetylase, 
HDAC). Thus, various studies have demonstrated that different 
models of EX lead to the modulation of HAT, DNMT, and HDAC 
activities at BDNF promoters (Gomez-Pinilla et al., 2011; Intlekofer 
et al., 2013; Sleiman et al., 2016). These changes ultimately result in an 

increase in bdnf gene transcription associated with cognitive 
improvement. For example, the research conducted by Gomez-Pinilla 
et  al. (2011) demonstrated that EX has the capability to decrease 
methylation of CpG sites. This reduction occurs through the 
dissociation of methyl-CpG-binding protein 2 due to its 
phosphorylation, leading to enhanced bdnf transcription (Gomez-
Pinilla et al., 2011). Additionally, Ionescu-Tucker et al. (2021) have 
recently highlighted that EX counteracts with the repressive histone 
modification trimethylated histone 3, lysine 9 (H3K9me3) at bdnf 
promoter, increasing BDNF expression in aged mice. Additionally, 
evidence suggests the role of small non-coding mRNAs on 
transcriptional gene silencing. Using transgenic mice in which Dicer 
which plays a pivotal role in the initiation of RNA silencing was 
inactivated, the overall decrease in hippocampal miRNAs was 
associated with a higher BDNF level leading to learning and memory 
improvements (Konopka et al., 2010). Using profiling array data, the 
authors identified two miRNAs (miRNA-138 and miRNA-384-5p) 
that potentially target BDNF mRNA. miRNA-138 was shown to act 
specifically on sirtuin 1 (SIRT-1), which regulates the acetylation 
status of PGC-1α responsible for bdnf gene expression through 
FNDC5 as stated in the preceding paragraph (Li et al., 2020). On the 
other hand, it has been reported that EX increases hippocampal 
SIRT-1 activity that downregulated miRNA-134 known to repress the 
translation of CREB and consequently that of BDNF (Gao et al., 2010). 
Other miRNAs have been proposed as regulators of BDNF (Varendi 
et al., 2014) and it has been reported that EX modifies the levels of 
many miRNAs in the brain (Cosin-Tomas et al., 2014; Pan-Vazquez 
et al., 2015). However, whether EX modulates miRNAs that directly 
affect cerebral bdnf gene expression requires further clarification.

3.5. Hemodynamic hypothesis: 
involvement of cerebral blood flow

EX is known to increase CBF in sensorimotor region and areas 
involved in cognitive capacities such as the prefrontal cortex, 
hippocampus and amygdala (Nishijima and Soya, 2006; Endo et al., 
2013; Matsukawa et al., 2015). Considering the established synthesis 
of tPA by endothelial cells and its release into the bloodstream in 
response to different stimuli, including EX (Ding et  al., 2011), a 
hypothetical mechanism can be proposed. Specifically, the elevation 
of CBF and the subsequent increase in fluid shear stress (FSS) induced 
by EX may result in an increase in tPA activity, which could then 
influence BDNF processing by cleaving pro-BDNF into its mature 
form through the conversion of plasminogen into active protease 
plasmin. Alternatively, tPA by facilitating neuronal NMDA receptors 
activation (Nicole et al., 2001; Anfray et al., 2020), could trigger Ca2+ 
influx and bdnf gene expression as stated in a precedent section. This 
notion is supported by the findings of Ding, Ying, and Gomez-Pinilla 
et al. (2011), who demonstrated that tPA-blocking strategies effectively 
abolished the increase in both pro- and mature BDNF in rat 
hippocampus, as well as the effect of EX on TrkB signaling and 
synaptic plasticity. The hypothesis that tPA produced by endothelial 
cells in response to FSS-related EX plays a key role in BDNF processing 
is plausible, particularly in light of evidence showing that blood tPA 
can cross the BBB via low-density lipoprotein receptor-related protein 
(LRP)-mediated transcytosis (Benchenane et al., 2005). Furthermore, 
considering the expression of NMDA and LRP receptors by 
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endothelial cells (Hogan-Cann et al., 2019; Lu et al., 2019; Anfray 
et al., 2020), it is conceivable to postulate that tPA may function as an 
autocrine molecule, triggering the production of BDNF within these 
cells. To investigate these different hypotheses, the implementation of 
an endothelial tPA knockout (KO) model subjected to EX could 
provide valuable insights.

Strong evidence in favor of the hemodynamic hypothesis is also 
provided when strategies to reduce CBF were applied. One-week daily 
EX in rats with unilateral carotid occlusion (irreversible clamping) did 
not increase cortical BDNF levels in ipsilateral compared to exercised 
rats without carotid occlusion (Banoujaafar et  al., 2014). 
Mechanistically, EX induces elevation of CBF, increases FSS which in 
turn stimulates endothelial nitric oxide synthase (eNOS) and the 
subsequent production of endothelial NO (Rubanyi et  al., 1986). 
Interestingly, pharmacological inhibition of NO production by 
L-NAME (N-nitro-L-arginine methyl ester) (Chen et  al., 2006) 
prevents the enhancement of BDNF mRNA occurring with EX while 
genetic deletion of eNOS abolishes the positive effects of EX on 
ischemic stroke (Endres et  al., 2003). Accordingly, using an 
FSS-dependent increase in endothelial NO production, data 
demonstrate in Human umbilical vein endothelial cells subjected to 
different flows that endothelial BDNF expression was proportional to 
shear stress intensity (Prigent-Tessier et al., 2013). The hypothesis of 
NO regulation is also supported by a strong correlation, in cerebral 
microvessels, between BDNF protein levels and the activated form of 
eNOS (p-eNOS) phosphorylated at serine 1,177. Additionally, a 
positive association was also found between the elevation of p-eNOS 
and p-TrkB activation, in response to EX (Cefis et al., 2020). Besides, 
Monnier et  al. (2017b) have shown that exposure of cerebral 
microvessel-enriched fractions or hippocampus sections from 
spontaneous hypertensive rats (SHR) to slow-releasing NO donor 
(glycerol trinitrate) increased endothelial BDNF production. 
Importantly, FSS-related EX-dependent response was prevented by 
TrkB inhibition (Wang et al., 2018). Collectively, these data and the 
one showing that NO controls t-PA release by human endothelial cells 
(Giannarelli et al., 2007) provide strong arguments suggesting that NO 
may be the intermediate between FSS and endothelial BDNF synthesis 
and maturation at the cerebral level.

Finally, the precise role of endothelial BDNF in the brain remains 
speculative, but there is compelling evidence suggesting its 
involvement in cerebral vessel vasodilation (Santhanam et al., 2010; 
Bordy et  al., 2020), cerebral angiogenesis (Kim et  al., 2004) and 
neuroplastic processes (Marie et al., 2018). The presence of endothelial 
TrkB-FL receptors suggests that endothelial BDNF may exert an 
autocrine effect by promoting NO production, which could then 
diffuse from endothelial cells to neurons, enhancing LTP and 
neuroplasticity (Hopper and Garthwaite, 2006). Alternatively, 
endothelium-derived BDNF may directly bind to neuronal TrkB-FL 
receptors and trigger neuroplastic pathways. The proximity between 
synapses and capillaries supports this hypothesis, although it still 
needs to be demonstrated. Finally, as mentioned above, endothelial 
BDNF may promote neuroplasticity through an astrocyte-dependent 
mechanism. Astrocytes have been implicated in the recycling of 
extracellular BDNF proteins, suggesting their involvement in 
facilitating BDNF availability. Two potential mechanisms can 
be  proposed in this regard. A first mechanism may involve 
internalization of pro-BDNF through p75NTR -dependent endocytosis 
which is subsequently re-secreted by astrocytes in its mature form 

(Bergami et al., 2008; Vignoli et al., 2016). The second mechanism 
implies BDNF release by CEC into the perivascular space. The nearby 
astrocytes end-feet able to internalize it through TrkB-T1 receptor 
could then transfer BDNF to neighboring neurons via transcytosis or 
a related mechanism. Recent research by Han et al. (2021) showing in 
astrocyte recycling, the re-secretion of TrkB-endocytic BDNF 
substantiates this theory. Consequently, the released BDNF from 
astrocytes into the extracellular space could bind to neuronal TrkB-FL 
triggering neuroplastic signaling pathway. Ultimately, the utilization 
of molecular strategies aimed at specifically inhibiting endothelial 
BDNF could serve as a potent tool to elucidate its precise role, 
especially in the context of neuroplasticity. All mechanisms proposed 
in the present section are summarized in Figure 3.

4. Peripheral mechanisms involved in 
EX-induced BDNF increase

In the present section, our focus lies on elucidating the various 
humoral factors that have the potential to modulate brain BDNF levels 
in the context of liver- or muscle-brain crosstalk after EX. All 
mechanisms described in the following sections are summarized in 
Figure 4. We have assigned these factors into liver- or muscle-brain 
sections based on preliminary findings and their prominent expression 
in these organs. However, it should be  emphasized that several 
molecules which will be  expounded upon herein are known to 
be produced and secreted by various sources including the brain. In 
addition, while we have focused on molecules produced by the liver 
(Figure 4A) and skeletal muscle (Figure 4B), it should be noted that 
EX results in adaptations of many organ systems including adipose 
tissue and bone which could also contribute to the humoral pathway.

4.1. Liver-brain crosstalk

4.1.1. β-hydroxybutyrate
The ketone bodies acetoacetate and β-hydroxybutyrate (β-HB) 

serve as fuel substrates that are upregulated in metabolic changes such 
as caloric restriction (Lin et al., 2015), ketogenic diets, fasting and EX 
(Sleiman et al., 2016; Evans et al., 2017). It has been reported that 
β-HB can cross the BBB and function as a signaling molecule 
promoting BDNF expression after EX (Sleiman et al., 2016). Indeed, 
these authors demonstrated that hippocampal β-HB contents were 
significantly increased in mice after 30 days of voluntary wheel 
running. Furthermore, exposing both cortical neuron cultures and 
mice hippocampus slices to β-HB led to an overexpression of bdnf 
gene. In vivo, intraventricular administration of β-HB in mice induced 
a significant increase in hippocampal bdnf gene expression. 
Consistently, a positive correlation between plasmatic β-HB levels and 
hippocampal BDNF contents was highlighted in mice after 6 weeks of 
voluntary running (Marosi et al., 2016). Interestingly, in the absence 
of EX, a similar increase in hippocampal BDNF was observed after in 
vivo β-HB administration in mice with normal diet (Hu et al., 2018) 
while infusion of β-HB attenuates motor deficits in mouse models of 
Huntington’s disease and protects neurons in models of AD and PD 
(Kashiwaya et al., 2000). Additionally, a ketogenic diet seems to play 
neuroprotective roles during cerebral ischemia, neurodegenerative 
diseases and enhanced memory processes in aged mice (Suzuki et al., 
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2002; Gano et al., 2014; Paoli et al., 2014; Newman et al., 2017). At the 
molecular level, β-HB acts directly on bdnf gene promoter by HDAC 
inhibition. Indeed, β-HB exposure of cultured primary neurons 
decreases HDAC 2/3 activity on the bdnf promoter. Besides, the 
inactivation of HDAC3 by BRD3308 (an inhibitor) or short hairpin 
RNA strategy, increases bdnf transcript expression (Sleiman 
et al., 2016).

4.1.2. Insulin like growth factor 1
Structurally related to pro-insulin, Insulin like growth factor 1 

(IGF-1) is a polypeptide hormone primarily identified in the liver, 
which can be transported to other tissues and act as an important 
mediator of body growth and tissue remodelling (Laron, 2001). 
Although bone and skeletal muscle can produce IGF-1 (Yakar et al., 
2010), the major peripheral source of IGF-1 is believed to be the liver 
as demonstrated by a 75% decrease in plasma concentration in liver-
specific IGF-1 deficient mice (Yakar et al., 1999). IGF-1 is involved not 
only in the growth and development of the brain during early life, but 
also in its maintenance and plasticity. Once secreted in the systemic 
circulation, IGF-1 can cross the BBB (Pan and Kastin, 2000) by 
binding to IGF-1 receptors in a mechanism driven by neuronal 
activity (Trejo et al., 2001; Nishijima et al., 2010). Data indicated that 

IGF-1 mediates neurogenesis (Ding et  al., 2006), synaptogenesis 
(O'Kusky et  al., 2000), vessels growth (Lopez-Lopez et  al., 2004), 
neuroprotection and neuroplasticity (Ding et  al., 2006). In rats, 
intracarotid injection of IGF-1 induced BDNF mRNA expression in 
the hippocampus (Carro et  al., 2000). In addition, the specific 
inhibition of IGF-1 receptors in the hippocampus using latex 
microbeads containing alphaIR3 antibody in trained rats, prevented 
EX-induced enhancement in memory recall and significantly 
decreased both pro-BDNF and BDNF expressions (Ding et al., 2006). 
Similarly, using antiserum raised against IGF-1, Chen and Russo-
Neustadt (2007) reported that the blockade of the uptake of peripheral 
IGF-1 reversed the increase in BDNF mRNA and protein expressions 
elicited by EX.

4.1.3. Fibroblast growth factor 21
Using liver specific Fibroblast growth factor 21 (FGF21) knockout 

mice, Markan et al. (2014) demonstrated that FGF21 is preferentially 
expressed in the liver. FGF21 functions as a metabolic regulator 
(Kharitonenkov et al., 2005) capable of preventing insulin resistance, 
increasing fatty acid oxidation (Badman et al., 2007) and weight loss 
in obese animal models (Jimenez et al., 2018) and humans (Gaich 
et al., 2013). EX induces an increase in FGF21 expression in mice and 

FIGURE 3

Hemodynamic hypothesis: involvement of cerebral blood flow in EX-induced BDNF increase. EX induces an increase in CBF, leading to elevated FSS. 
This mechanical stimulation triggers the activation of eNOS through its phosphorylation, resulting in the production of NO. The released NO has the 
potential to diffuse from endothelial cells to neurons, initiating neuronal BDNF expression. Additionally, endothelial NO has been demonstrated to 
induce BDNF expression in endothelial cells themselves. Endothelium-derived BDNF may directly bind to neuronal TrkB-FL receptors thus activating 
neuroplastic pathways. The proximity between synapses and capillaries supports this hypothesis. Alternatively, endothelium-derived BDNF could act in 
an autocrine manner, amplifying the NO response through endothelial TrkB-FL receptors. In parallel, astrocytes, through their nearby end-feet, might 
internalize either BDNF or pro-BDNF through their TrkB-T1 or p75NTR receptors, respectively. Subsequently, they could re-secrete BDNF which might 
be transferred to neighboring neurons. Finally, the elevation of CBF and subsequent NO production could trigger tPA release. tPA has the potential to 
cross the BBB via LRP-mediated transcytosis. It could then facilitate neuronal NMDA receptor activation or influence the processing of pro-BDNF to 
BDNF, through the conversion of plasminogen into plasmin. Alternatively, tPA might facilitate endothelial NMDA receptor activation which could 
potentially contribute to endothelial BDNF expression. Created with BioRender.com.
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humans (Kim et al., 2013) which seems to be dependent on the rise in 
glucagon-to-insulin ratio since prevention of this increase during EX 
blunts EX-induced increase in FGF21 (Hansen et  al., 2016). In 
addition to its beneficial effects on the whole body, FGF21 may also 
exert positive effects on cognition in response to EX. In this regard, 
FGF21 has been shown to enter the brain (Hsuchou et al., 2007), to 
improve cognition by restoring synaptic plasticity in obese-insulin-
resistant male rats (Sa-Nguanmoo et  al., 2016) and to 
be  neuroprotective in a mouse model of aging (Yu et  al., 2015). 
Moreover, data have shown that the intraperitoneal administration of 

FGF21  in aged mice was associated with activation of the AMPK 
pathway associated with an increase in cerebral BDNF levels and a 
significant improvement in Morris water maze assessment (Kang 
et al., 2020).

4.1.4. Glycosylphosphatidylinositol–specific 
phospholipase D1 (Gpld1)

Recently, using an elegant plasma transfer strategy, Horowitz et al. 
(2020) showed that plasma obtained from both aged and mature 
exercised mice could alleviate hippocampal impairments when 

FIGURE 4

Peripheral mechanisms involved in EX-induced BDNF increase. Many organs respond to EX through the release of exerkines. Among them, the liver 
and the skeletal muscle have received particular attention and several exerkines originating from these organs have the potential to influence brain 
BDNF expression. (A) In response to EX, the liver secretes exerkines named hepatokines. Studies have reported that β-HB can cross the BBB and 
function as a signaling molecule promoting hippocampal BDNF expression by HDAC inhibition. In addition, IGF-1 can cross the BBB through IGF-1 
receptor binding. Inhibition of IGF-1 signaling through blocking antibodies prevented EX-induced hippocampal BDNF expression. FGF-21 is also 
secreted by the liver in response to EX, can enter the brain and improve cognition possibly through an increase in brain BDNF expression since 
intraperitoneal administration of FGF-21 was associated with BDNF upregulation in aged mice. Recent research has unveiled Gpld1 as a newly 
discovered hepatokine that appears to correlate with cognitive performance in mice undergoing EX. Moreover, overexpression of Gpld1 in the liver has 
been associated with a significant rise in hippocampal BDNF expression and an enhancement of neurogenesis. Although Gpld1 does not cross the 
BBB, data suggest that this enzyme may be involved in coagulation as well as in the complement system cascades of molecules downstream of GPI-
anchored substrate. (B) Several molecules named myokines are secreted by skeletal muscles in response to EX and have been shown to promote brain 
BDNF expression. Lactate that is significantly produced and released during EX can cross the BBB via MCT transporters. The pharmacological blockade 
of MCT in mice submitted to EX abolished hippocampal bdnf gene expression while intraperitoneal administration of lactate elicited a hippocampal 
BDNF increase comparable to that observed in trained mice. Lactate effect on hippocampal bdnf gene expression is thought to be dependent on the 
potentiation of NMDA glutamatergic transmission and upregulation of SIRT-1 activity fostering the PGC-1α/FNDC5/BDNF pathway. The myokine CTSB 
is also released by skeletal muscle during EX though an AMPK-dependent mechanism. In vivo experiments provide evidence that CTSB can cross the 
BBB and elicit BDNF expression while EX in CTSB KO mice failed to enhance neurogenesis and improve spatial memory. Although the role of skeletal 
muscle as a source of blood BDNF remains a topic of debate, recent studies using NMES as a model of muscle contraction seem to support this 
hypothesis. The BBB crossing of circulating BDNF is uncertain but exosomal transport might be involved. Additionally, peripheral delivery of BDNF has 
been shown to induce neurogenesis and increase hippocampal BDNF levels. During muscle contraction, the increased calcium signaling enhances 
PGC-1α activation which leads to an increase in FNDC5, a transmembrane protein that is cleaved during EX and released in the bloodstream as irisin. 
Data reported that irisin could cross or signal at the BBB, potentially via its recently discovered binding to activated integrin αVβ5 receptors. In an AD 
mice model, peripheral delivery of FNDC5/irisin rescued memory impairment and synaptic plasticity deficits through mechanisms dependent on 
cerebral BDNF. Conversely, the blockade of peripheral FNDC5/irisin attenuates the effect of EX on LTP and memory tests. PGC-1α activation during EX 
also stimulates the expression of KAT enzymes within skeletal muscle. This enzyme catalyzes the conversion of KYN, a neurotoxic metabolite that can 
cross the BBB and lead to depression to KYNA which is unable to cross the BBB. Mice with muscle-specific overexpression of PGC-1α were resilient to 
stress-induced depression and did not display decreased hippocampal bdnf gene expression while peripheral KYN administration induced depressive 
behavior in wild-type but not in transgenic animals. This last mechanism illustrates the crosstalk between peripheral organs, as KYN is a metabolite of 
tryptophan produced in the liver. Created with BioRender.com.
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transferred to naïve aged mice. Among the 12 factors that were found 
to be increased in trained mice, the authors focused on Gpld1. They 
confirmed that this enzyme was predominantly expressed in the liver 
(Maguire and Gossner, 1995) and that liver Gpld1 expression was 
increased after EX whereas no change was observed in muscle and 
hippocampus. Furthermore, Gpld1 plasma contents were significantly 
enhanced by EX in both mature and aged mice with a significant 
correlation between liver-derived Gpld1 and cognitive performances 
in the radial arm water-maze. In addition, they reported that liver 
overexpression of Gpld1 was associated with a significant increase in 
hippocampal BDNF expression and an enhancement of neurogenesis 
markers in the dentate gyrus. These cellular and molecular changes 
were consistent with an improvement of cognitive function since these 
mice showed better spatial and recognition memory (Horowitz et al., 
2020). Although the precise mechanism underlying the connection 
between this Glycosylphosphatidylinositol (GPI) hydrolyzing enzyme 
and the improvement of hippocampal-dependent learning and 
memory is not fully delineated by the authors, Horowitz and 
colleagues reported using a catalytically inactive mutant, that the 
enzymatic activity was necessary for its effects. The authors suggest 
that this enzyme may be involved in coagulation, as well as in the 
complement system cascades of molecules downstream of 
GPI-anchored substrate. Accordingly, in a similar experimental design 
using plasma transfer from exercising mice, complement and 
coagulation factor such as clusterin, largely produced by hepatocytes, 
was recently reported to reduce hippocampal inflammation and 
promote neurogenesis and cognition although BDNF expression was 
not assessed in this study (De Miguel et al., 2021).

4.2. Muscle-brain crosstalk

Over an extended period, the term “exercise factor” served to 
depict molecules originating from contracting muscles, potentially 
orchestrating metabolic and physiological effects on central or 
peripheral organs. Among these factors, cytokines were the first 
reported in the literature (Sprenger et al., 1992) and it was through 
studies showing that muscle IL-6 can act as a humoral factor operating 
in an autocrine, paracrine, or endocrine manner that the neologism 
“myokines” was introduced (Pedersen et al., 2003). Although it would 
have been logical to initiate this muscle-brain crosstalk section with a 
paragraph dedicated to cytokines, the evidence of a direct impact of 
these molecules on cerebral BDNF production remains inconclusive 
despite it has been demonstrated that IL-6 can cross the BBB (Banks 
et  al., 1994). The same lack of direct evidence exists for IL-10 or 
TNF-α even though studies have reported a similar pattern of 
variation with BDNF in the hippocampus (Noga et al., 2007; Cabral-
Santos et al., 2016; Jahangiri et al., 2019). In contrast, several myokines 
have been identified, bolstered by compelling scientific rationale, 
establishing a causative link to brain BDNF expression.

4.2.1. Lactate
Lactate is a metabolite largely produced during EX and mainly 

released from skeletal muscles. Lactate can cross the BBB via 
monocarboxylate transporters (MCT) binding on neurogliovascular 
unit (including astrocytes, neurons, endothelial cells and pericytes) 
(Proia et al., 2016) and participate to neuroplastic processes such as 
neurogenesis (Lev-Vachnish et  al., 2019), neuronal excitability 

(Skwarzynska et al., 2023) and LTP (Suzuki et al., 2011). Recently, 
lactate has been identified as an appealing candidate for inducing 
cerebral BDNF expression in response to EX. Interestingly, using 
intraperitoneal infusion of the lactate MCT inhibitor (AR-C155858) 
in mice submitted to voluntary EX, El Hayek et  al. (2019) 
demonstrated that hippocampal bdnf gene expression was completely 
abolished. Conversely, intraperitoneal administration of lactate in 
mice elicited a hippocampal BDNF increase similar to that obtained 
in trained mice. The authors also reported that the improvement in 
learning/memory performance was dependent on BDNF as 
co-administration of lactate and a TrkB antagonist (CEP701) 
prevented this effect. Although the interaction between lactate and 
cerebral BDNF levels is not fully elucidated, some mechanisms have 
been proposed [For review (Muller et  al., 2020)]. Firstly, lactate 
promoted plasticity-related gene expressions (bdnf, Arc, Zif268 and 
c-fos) in neuronal cultures of mouse neocortex by potentiating 
neuronal NMDA glutamatergic transmission (Yang et  al., 2014). 
Secondly, peripheral administration of lactate induced SIRT-1 activity, 
thereby fostering the cerebral PGC-1α/FNDC5/BDNF pathway (El 
Hayek et  al., 2019). Conversely, inhibition of SIRT-1 with sirtinol 
administration or RNA interference impeded both hippocampal bdnf 
gene induction and the lactate- and EX-mediated improvement of 
learning/memory (El Hayek et al., 2019).

4.2.2. PGC-1α pathways

4.2.2.1. FNDC5/irisin
Recent research has provided compelling evidence suggesting that 

the activation of the PGC-1α FNDC5/irisin pathway in skeletal 
muscles is also involved in EX-induced cerebral plasticity (Lourenco 
et al., 2019). Using AD mice models, the authors demonstrated that 
FNDC5 adenovirus delivery through the tail vein or intra-
cerebrovascular injection of FNDC5 rescued memory impairment 
and synaptic plasticity mechanisms dependent on cerebral 
BDNF. Conversely, the blockade of peripheral FNDC5/irisin 
attenuates the effect of EX on LTP and memory tests. Although this 
blockade was not directly linked to a decrease in brain BDNF 
expression in this study, these data support the role of peripheral 
FNDC5/irisin on physiological memory process. In this regard, in the 
context of hypertension, EX-induced enhanced BDNF expression was 
reported to be dependent on peripheral but not central FNDC5 (Wang 
et al., 2019). Furthermore, based on the premise that irisin is secreted 
by the skeletal muscle, Islam et al. (2021) have provided evidence that 
irisin can cross the BBB. Indeed, through the injection of fluorescently 
labeled irisin into the bloodstream of mice and subsequent confocal 
microscopy analysis, the authors successfully detected the distribution 
of labeled irisin within the cerebral region. Then, they have shown that 
peripheral delivery of irisin improved learning and memory in young 
and old mice and significantly reduced the buildup of beta-amyloid 
plaques in a mouse model of AD. Collectively, these findings support 
the hypothesis that FNDC5/irisin may cross the BBB or induce 
another factor that triggers cerebral BDNF expression, possibly 
through CREB activation, as previously stated. Accordingly, a very 
recent study reported that irisin binds to activated integrin αVβ5 
receptors, which are abundantly expressed on brain endothelial cells 
(Mu et al., 2023). However, while FNDC5/irisin appears as a very 
attractive myokine, it is important to note that the detection of this 
hormone by commercial antibodies reveals an important 
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cross-reactivity (Albrecht et al., 2015). Besides, the translatability of 
the studies from animals to humans may encounter a major pitfall 
since the transcription pattern of fndc5 gene is not conserved from 
rodent to human resulting in very low translation efficiency (Raschke 
et al., 2013; Albrecht et al., 2020).

4.2.2.2. Kynurenine to kynurenic acid pathway
Another PGC-1α dependent mechanism involves the conversion 

of Kynurenine (KYN) to kynurenic acid (KYNA). Indeed, tryptophan, 
primarily derived from the liver, is metabolized to KYN through 
indolamine-2,3-dioxygenase (IDO) (Martin et al., 2020). Interestingly, 
KYN has been reported to cross the BBB whereas KYNA cannot 
(Fukui et al., 1991) and was shown to be neurotoxic (Sundaram et al., 
2020) leading to depression and neurodegenerative disorders (Myint 
et al., 2007). Conversely, KYNA which is produced from KYN via 
muscle kynurenine aminotransferases (KAT) activity (Schwarcz et al., 
2012), is neuroprotective (Foster et  al., 1984) and cognitive 
performance were positively associated with KYNA concentrations in 
plasma of AD patients (Gulaj et al., 2010). Therefore, maintaining a 
well-balanced ratio between these two metabolites appears to 
be  crucial. Following EX, the activation of the PGC-1α pathway 
stimulates the expression of KAT enzymes within skeletal muscle. 
Consequently, data also reported that EX increases plasma KYNA 
levels both in rodents (Agudelo et al., 2014) and humans (Lewis et al., 
2010) while an increase in KYN was shown in a model of stress-
induced depression (Agudelo et al., 2014). Interestingly, mice with 
muscle-specific overexpression of PGC-1α were resilient to stress-
induced depression compared to wild-type littermates and did not 
exhibit decreased hippocampal bdnf gene expression while peripheral 
KYN administration induced depressive behavior in wild-type but not 
in transgenic animals (Agudelo et al., 2014). Consistent with these 
results, in a murine model of PD, IDO inhibition was associated with 
reduced oxidative stress, lower impairment in coordination and 
locomotion and restoration of striatal BDNF levels (Sodhi et al., 2021). 
Collectively, these data emphasize the importance of muscle KYN-to-
KYNA conversion in facilitating BDNF-induced cognitive 
improvement after EX.

4.2.3. Cathepsin-B
Cathepsin-B (CTSB), a lysosomal cysteine protease ubiquitously 

expressed was identified in 2016 as a myokine by Moon et al. (2016). 
Using proteomic analysis of the culture media from L6 myoblast cells 
treated with the AMPK agonist 5-aminoimidazole-4-carboxamide 
ribonucleotide (AICAR) to mimic the effects of EX, the authors 
reported an increase in CTSB. To validate CTSB as a candidate 
myokine, they further showed that the rise in plasma CTSB levels in 
voluntary running mice was concomitant with an increase in CTSB 
mRNA and protein expressions in gastrocnemius muscles after 
30 days. In addition, similar increases in CTSB plasma levels were 
observed in Rhesus monkeys and humans after four months of 
treadmill running. To delineate the underlying mechanisms, Moon 
et  al. (2016) conducted studies in CTSB KO mice showing that 
compared to wild-type control mice, EX in CTSB KO mice failed to 
enhance neurogenesis and improve spatial memory. Additionally, 
intravenous injection of CTSB in CTSB KO mice led to a significant 
increase in CTSB levels in the blood and brain tissues, indicating that 
CTSB can cross the BBB. Interestingly, these authors demonstrated 
that recombinant CTSB administration induced the increase in both 

doublecortin and BDNF mRNA levels in adult hippocampal 
progenitor cells. These data are consistent with a previous study 
showing in contrast that inhibition of cathepsins B and L reduced 
kainate-induced BDNF mRNA expression in cultured hippocampal 
slices (Bednarski et al., 1998). Although these data support a causative 
link between CTSB and cerebral BDNF expressions, the complex 
interplay between them should be interpreted considering the origin 
of CTSB and the specific physiological context. Indeed, recent studies 
have suggested that microglia-derived CTSB may be a key driver in 
inflammatory brain diseases and aging (Nakanishi, 2020) while 
genetic CTSB deletion prevented cognitive impairments, reduced 
amyloid peptides, brain damage and pro-inflammatory factors, in 
animal models of traumatic brain injury, AD and aging (Hook 
et al., 2022).

4.2.4. BDNF as a myokine?
BDNF is produced in skeletal muscle by various cell types, including 

myofibers, satellite cells, motoneurons and endothelial cells (Mousavi and 
Jasmin, 2006; Matthews et al., 2009; Cefis et al., 2022). BDNF has been 
found to play an important role in muscle growth, function, regeneration 
(Mousavi and Jasmin, 2006; Clow and Jasmin, 2010) and metabolism 
(Matthews et al., 2009; Yang et al., 2019). In response to EX, a significant 
increase in BDNF mRNA and/or protein levels has been observed in 
skeletal muscles (Cuppini et al., 2007; Ogborn and Gardiner, 2010; Yu 
et  al., 2017). According to the definition of myokines, BDNF could 
be classified as one (Matthews et al., 2009; Yang et al., 2019). However, 
whether it may be tempting to believe that skeletal muscle could be a 
primary source of circulating BDNF levels remains a subject of debate. 
Although the muscle cells produce BDNF, the precise mechanism of its 
release into the bloodstream remains uncertain, and there is supportive 
evidence from various studies indicating that circulating BDNF 
predominantly originates from the brain (Rasmussen et al., 2009). Thus, 
using prolonged EX, Rasmussen and collaborators demonstrated in 
Human that the increase in circulating BDNF originated from the brain, 
as evidenced by the difference between plasmatic BDNF from arterial and 
jugular origins (Rasmussen et al., 2009). Besides, in skeletal muscle, a 
study using electroporation to overproduce BDNF in mice failed to 
increase circulating BDNF levels, suggesting that muscle derived-BDNF 
may act only in an auto/paracrine manner (Matthews et  al., 2009). 
However, recent evidences have shown that neuromuscular electric 
stimulation (NMES) increases circulating BDNF levels both in humans 
(Miyamoto et al., 2018; Kimura et al., 2019) and animals (Fulgenzi et al., 
2020). Additionally, it has been recently demonstrated for the first time 
that human myocytes produced and secreted biologically active BDNF 
(Fulgenzi et al., 2020). These outcomes reinforce the idea that skeletal 
muscle could be a potential source of circulating BDNF in humans and 
animals, but a further question still needs to be clarified: Is BDNF released 
from the skeletal muscle into bloodstream can directly interact with 
the brain?

To address this question, particular attention should be provided 
to extracellular vesicles, especially exosomes. Based on the provided 
references, BDNF can be transported within exosomes, (Yuan et al., 
2017; Gelle et  al., 2021) and it has been observed that muscle 
contraction induced their release (Watanabe et  al., 2022). At the 
cerebral level, it was recently suggested that BDNF transported in 
exosomes could allow sustained and specific release of BDNF in the 
brain (Yuan et al., 2017), a mechanism that could potentially extend 
to BDNF derived from skeletal muscle. In addition, the transport by 
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exosomes offers a considerable advantage since exosomes can cross 
the BBB (Yuan et  al., 2017; D'Anca et  al., 2019). Indeed, at the 
peripheral level, exosomes could allow BDNF, which has a short half-
life, to evade the catabolic processes. Finally, even if modulation of 
neuroplasticity by skeletal muscle-derived BDNF has yet to 
be demonstrated, peripheral delivery of BDNF has been shown to 
induce neurogenesis and increase BDNF levels in hippocampus, 
leading to antidepressant and anxiolytic effects in mice (Schmidt and 
Duman, 2010). Taken together, these findings support the hypothesis 
that muscle-derived BDNF, may cross the BBB and positively act in 
the brain following EX. Further in vivo studies are needed to provide 
more conclusive evidence in support of this hypothesis.

5. Conclusion and future directions

As the most downstream factor mediating EX-induced brain 
health, manipulating BDNF content in the brain has emerged as a 
promising strategy for mitigating cognitive deficits, addressing 
neurodegenerative disorders, counteracting age-related cognitive 
impairment, and promoting overall brain health. EX has been 
identified as a potent and robust non-pharmacological intervention 
for enhancing cognitive function and limiting cognitive deficits 
through increased brain BDNF levels. Recent research has shed light 
on two additional pathways, namely hemodynamic and humoral, 
which complement the well-established role of neuronal activity in 
modulating brain BDNF levels. Notably, these pathways offer more 
feasible and achievable pharmacological strategies for intensifying 
brain BDNF expression compared to the neuronal activity pathway, as 
they circumvent the challenges of drug delivery across the BBB and 
potential drug-related side effects on neurotransmission.

However, the question of the relative contribution of each of these 
mechanisms to the beneficial effects of EX-induced brain BDNF 
increase remains complex and challenging to answer definitively. It is 
hypothesized that each pathway plays an essential role, as strategies 
that dampen any of these mechanisms individually have been shown 
to result in defective BDNF expression associated with cognitive 
impairment. It is plausible that these distinct mechanisms exist to offer 
a differential and persistent age-dependent temporal response, or to 
compensate for the deficiencies of one pathway with the others. 
Moreover, evidence suggests that these mechanisms are intricately 
interconnected, as neuronal activation is coupled with CBF regulation, 
and irisin, one of the well-studied humoral factors, has been found to 
modulate both vasorelaxation and neuronal activity. To understand 
the contributive part of the different pathways involved, employing 
transgenic mice with selective endothelial deletion of tPA or BDNF 
could provide valuable insights into the neuroplastic consequences of 
the hemodynamic pathway. Similarly, conducting studies that 
compare NMES to conventional models of EX would enable the 
isolation of the humoral muscle-brain crosstalk from the broader 
whole-body response. Indeed, this strategy would overcome an 
experimental bias as current studies investigating the muscle-brain 
dialogue are conducted following conventional protocols which 
engender a pre-dialogue between peripheral tissues that are also 
responsive to EX. The conversion of KYN into KYNA or the 
production of irisin by adipose tissue are some examples.

In conclusion, manipulating brain BDNF content through 
non-pharmacological interventions such as EX has emerged as a 

promising strategy to enhance cognitive function and mitigate 
cognitive deficits. Recent findings on hemodynamic and humoral 
pathways provide additional insights into the mechanisms 
through which EX induces brain BDNF overproduction. Further 
research is warranted to better understand the contribution of 
each pathway to the beneficial effects of EX on brain health and 
cognitive function. In addition, due to a wide range of EX types 
and the complexity of their classification, it is crucial to keep in 
mind that the contribution of the pathways described could 
be contingent upon EX type (e.g., resistance, aerobic), duration, 
intensity, frequency. Although this aspect has not been addressed 
in the manuscript, we encourage readers to consider this remark. 
Altogether, the findings on hemodynamic and humoral pathways 
will undoubtedly have implications for clinicians aiming to 
promote EX interventions or for scientists seeking to develop 
alternative strategies to mimic EX effects, particularly in 
populations who may face challenges with regular EX adherence. 
By unraveling the intricate interplay of these mechanisms, the 
scientific community can unlock the full potential of brain BDNF 
modulation for cognitive health and neuroprotection in various 
clinical and research settings.
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