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Abstract 
 

The choice of similarity measure (SM) plays an important role in distinguishing between objects. Similarity measure of 

Pythagorean fuzzy sets (PFSs) is very useful and effective in discriminating between different Pythagorean fuzzy sets. Therefore, 

in this paper, we suggest a new similarity measure for PFSs based on converting the PFSs into their lower, upper and middle 

fuzzy sets (FSs) to calculate their degree of similarity. We construct an axiomatic definition for a new SM of PFSs. Furthermore, 

we put forward a new way to express the similarity measure of PFSs to show its competency, reliability and applicability. For 

establishing reasonability and usefulness of the proposed methods, we present several practical examples related to pattern 

recognition and multicriteria decision making problems. Finally, we construct an algorithm for Portuguese of interactive and 

multiple attributes decision making (TODIM) method based on the proposed similarity measures, for handling complex 

multicriteria decision making problems related to day to day life. Our final results show that the suggested method is reasonable, 

reliable and useful in managing different complex decision making problems in the context of Pythagorean fuzzy sets as the 

domain. 
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1. Introduction  
 

 The concept of fuzzy sets was first proposed by 

Zadeh (1965). With widespread use in various fields, fuzzy 

sets not only provide us a broad opportunity to measure 

uncertainties in more powerful and logical way, but also are a 

meaningful way to represent vague concepts in natural 

language. It is known that most systems based on crisp set 

theory or two-valued logic are somehow difficult for handling 

imprecise and vague information. In this sense, fuzzy sets can 

be used and provide solutions to more real world problems. 

Furthermore, to treat more imprecise and vague information in 

daily life, various applications and extensions of fuzzy sets 

have been demonstrated, such as multi attribute decision 

making (MADM) which is a significant branch and plays an 

important role in human activities (Garg, 2017; Zeng et al., 

 
2018). Recently, many tools have been introduced for 

representing and communicating uncertainty. For example, 

Zadeh (1965) introduced the fuzzy set (FS). The theory of 

fuzzy sets has received lots of attention over many years, but 

the weakness of FS is that it just has a membership degree 

(MD) and ignores unsure data in real DM problems. To 

overcome this disadvantage of FS, Atanassov (1986) gave the 

amazing concept of intuitionistic fuzzy sets (IFSs), with the 

characterization of membership degree (MD) and non-

membership degree (NMD) and the degree of hesitancy.  

Thus, IFSs are more powerful and capable than fuzzy sets. 

The condition of IFSs state that the sum of MD and NMD is 

always less than or equal to 1. However, there exist 

circumstances where the sum of MD and NMD is more than 

one. To overcome this disadvantage, the new generalization of 

IFSs called Pythagorean fuzzy sets (PFSs) was introduced by 

Yager (2013), Yager and Abbasov (2013), and Pythagorean 

membership grades in multicriteria decision making by Yager 

(2013). The range of PFSs is much wider than that of the IFSs, 

in which the sum of the square of MD and NMD is restricted 
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to less than or equal to 1. For example, (0.6, 0.7) represents a 

situation in which both IFSs cannot evaluate the attribute 

value of (0.6, 0.7) because 0.6 + 0.7 > 1 and (0.6)2+ (0.7)2< 1, 

respectively. Therefore, we can say that PFSs are more 

powerful and rigorous than IFSs in handling incomplete 

information related to daily life. Fuzzy sets have many 

applications in almost all fields, such as clustering, image 

processing, mathematical programming, fuzzy control, pattern 

recognition, water quality, engineering, medical diagnosis, 

business management, decision making, data mining, etc. 

Application of fuzzy sets in soil science, fuzzy logic, fuzzy 

measurements and fuzzy decisions is given by Mcbratney and 

Odeh (1997), and an application of fuzzy set theory to 

inventory control models is suggested by Gen et al. (1997). 

The possible and necessary inclusion of intuitionistic fuzzy 

sets is given by Grzegorzewski (2011). Image enhancement 

using fuzzy sets is proposed by Pal and King (1980). The 

similarity measures based on lower, upper and middle fuzzy 

sets corresponding to PFSs, provides us a new way to 

construct similarity measures between PFSs.  On the basis of 

numerical analysis results, we find that our new construction 

can handle amicably different problems related to daily life, 

especially problems involving pattern recognition and 

multicriteria decision making processes.  As a whole, our 

proposed construction method for similarity measures 

between PFSs can provide a more effective way for measuring 

similarity degrees between PFSs. Similarity measure is a 

significant instrument to determine the degree of SMs 

between two objects. Kaufman, and Rousseeuw (1990) 

introduced a few models to present traditional similarity 

measures with applications in various leveled group 

investigations. Different similarity measures between FSs 

have been introduced. Dengfeng, and Chuntian (2002) 

introduced a few SMs between IFSs utilized in design 

recognition. Liang, and Shi (2003) proposed similarity 

measures between IFSs and furthermore present the 

connections between these measures with applications to 

design recognition, as given by Mitchell (2003). Deciphered 

IFSs as ensembles of ordered FSs from the statistical 

perspective to exchange techniques was suggested by 

Dengfeng, and Chuntian (2002). Liang, and Shi (2019) 

utilized numerical comparisons to demonstrate that their 

suggested SMs are more reliable than those of Dengfeng, and 

Chuntian (2002). Hung, and Yang (2004) expressed a few 

SMs between IFSs dependent on Hausdorff distance, which 

are very much utilized with linguistic variables. Xu, and Chen 

(2008) gave comparisons of distance and SMs between IFSs. 

Pythagorean fuzzy sets are used in a variety of applications in 

almost all fields, including pattern recognition, multicriteria 

decision making, engineering, medical diagnosis, business 

management, clustering etc. A similarity measure for 

constrained Pythagorean fuzzy sets (CPFSs) is presented by 

Pan et al. (2021) who suggested a complex distance measure 

of PFS and applied it to pattern recognition. Yang, and 

Hussain (2019) suggested distance and SM between hesitant 

fuzzy sets and applied it to clustering. Li, and Lu (2019) 

suggested many new distance and SM between PFSs with 

applications and provided the concept of normalized 

Hamming and Hausdorff distances. Fuzzy entropy for 

Pythagorean fuzzy sets with application to multicriterion 

decision making was coined by Yang, and Hussain (2018). 

Many distance and similarity measure of PFSs with 

applications are discussed in this literature Hussain, and Yang 

(2019), Li, and Lu (2019), Peng, and Garg, (2019), Verma, 

and Merijo (2019) and Zhao, and Chen (2019). Similarity 

Measures for New Hybrid Models: mF Sets and mF Soft Sets 

were suggested by Akram, and Waseem (2019). A hybrid 

method for complex Pythagorean fuzzy decision making, 

Mathematical Problems in Engineering, was put forwarded by 

Akram et al. (2021). Minimum spanning tree hierarchical 

clustering algorithm: A new Pythagorean fuzzy similarity 

measure for the analysis of functional brain networks was 

given by Habib et al. (2022). A new outranking method for 

multicriteria decision making with complex Pythagorean 

fuzzy information has been reported (Akram et al., 2022). 

Belief and plausibility measures on Pythagorean fuzzy sets 

and their applications with BPI-VIKOR were proposed by 

Hussain et al. (2022). An integrated ELECTRE-I approach for 

risk evaluation with hesitant Pythagorean fuzzy information 

was proposed by Akram et al. (2022). The similarity measure 

between two PFSs is very useful to indicate the degree of 

resemblance between two objects.  Generally, information 

systems in PFSs are carried out by the lower, upper and 

middle fuzzy sets. In this manuscript, we put forward a new 

construction for similarity measures between PFSs based on 

lower, upper and middle fuzzy sets with the objective to 

develop useful and reasonable similarity measures between 

PFSs. We have utilized TODIM methods because the decision 

making outcome is determined by computing the degree of 

gain or loss of an alternative relative to the rest, to better 

reflect the behavioral preference of the decision makers. 

The rest of the manuscript is arranged as follows. 

Section 2 consists of some basic preliminaries about PFSs. In 

Section 3, we introduce a new type of similarity measures 

between PFSs based on the lower, upper and center FSs. In 

Section 4, we show the performance of our proposed 

similarity measures using different examples. In section 5, we 

use the Pythagorean fuzzy TODIM method to manage a 

problem involving multicriteria decision making.  At the end, 

conclusions are conveyed in Section 6. 

 

2. Preliminaries 
 

The basic concepts of IFS and PFS are respectively given in following section. 

Definition 1. An intuitionistic fuzzy set (IFS) S in X is defined by (Atanassov, 1999), as an object of the following form as, 
 

     , , : ,i i i iS S
S x x x x X  

 
where    : 0,1 ,iS

x X   denotes the degree of  membership of 
ix S  and    : 0,1 ,iS

x X  denotes the degree of non- 

membership of 
ix S  and    0 1.i iS S

x x    The degree of non - determinacy of  IFS S  is symbolized by the following 

relation        1 .i i iS S S
x x x      
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Definition 2. A Pythagorean fuzzy set PFS G in X is given by (Yager, & Abbasov, 2013) as 
 

    , , :i G i G i iG x x x x X   , 

where    : 0,1 ,G ix X   represents the degree of membership and    : 0,1 ,G ix X   represents the degree of 

membership. For every 
ix B  with the condition that  

   2 20 1.G i G ix x     

 

Definition 3. (Atanassov, 1999). For all  ,P PFSs X  the following expression is termed as Pythagorean index of the 

element 
ix G   

      2 21 ,G i G i G ix x x       It is obvious that   20 1,G ix  .ix X 
 

 

Definition 4. Let P1, P2 and P3 are three PFSs on X. A similarity SMS(G, H) is mapped as,      :  0,1S PFSs X PFSs X   

have the following operations 

   1 0 , 1;S S G H   

   2 , 1 ;S S G H if G H   

     3 , , ;S S G H S H G  

         4 , , , , ;S S G H S G I and S H I S G I if G H I   

   5 , 0 .S S G H if G X and H or G and H X    
 

 

Definition 5. (Peng et al., 2017) If G and H be two PFSs on X the following operations can be defined as follows:
 

      1 , , : ;c

i G i G i iG x x x x X    

         2 , ;i G i H i G i H iG H iff x X x x and x x         

         3 , ;i G i H i G i H iG H iff x X x x and x x       

 
            4 , , , , ;i G i H i G i H iG H x min x x max x x    

 

            5 , , , , .i G i H i G i H iG H x max x x min x x      

 

3. Construction of New Similarity Measures 
 

In this section, we construct some new and useful similarity measures between two PFSs. We use similar ideas to 

Hwang, and Yang (2013) and define some similarity measures on PFSs based on lower, upper and middle Pythagorean fuzzy set. 

Let us take a PFS     , , : ,i G i G i iG x x x x X   we first define the lower, upper and middle Pythagorean fuzzy sets with 

reference to Gregorszewsk, (2011), Hwang, and Yang (2013). Assume that the lower, upper and middle Pythagorean fuzzy sets 

are denoted by GL, GU, and GM respectively as follows: 
 

        2, , : , ;L L L L

i G i G i i G i G iG x x x x X x x       

            2 2 2, , : , 1 ;U U U U

i G i G i i G i G i G i G iG x x x x X x x x x            

    
   2 21

, : , .
2

G i G iM M M

i G i i G i

x x
G x x x X x

 
 

 
    

First, we extend the similarity measures between IFSs (Hwang & Yang, 2013) to the similarity measures between Pythagorean 

fuzzy sets as follows: 
 

          2 2 2 2

1

1
, 1

2

n

C G i G i H i H ii
S G H x x x x

n
   


      (1) 

 

          2 2 2 2

1

1
, 1

2

n

H G i H i G i H ii
S G H x x x x

n
   


      (2) 

 

          

        

2 2 2 2

1

2 2 2 2

1

1
, 1

4

1

4

n

L G i G i H i H ii

n

G i H i G i H ii

S G H x x x x
n

x x x x
n

   

   





    

   





 
(3) 
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      2
2 2

1

1
, 1

2

n

O G i H ii
S G H x x

n
 


  

 (4) 

 

 
1

1
S , 1 ( ) m ( )

n
p

p
DC G Hp

i

G H m i i
n 

  
 

(5) 

 

where     2 2( ) 1 / 2G G i G im i x x      and     2 2m ( ) 1 / 2H H i H ii x x    1 .P   

 

      2 21
, , ,

2
HFS G H G H G H     

(6) 

 

where            2 2 2 2 2 2

1 1

1 1
, 1 and , 1

pn n
p

p p
G i H i G i H ip p

i i

G H x x G H x x
n n

     
 

        

 

   
1

1
, 1 ( ) ( )

pn
p p

e tGH fGHp
i

S G H i i
n

 


  
 

 
(7) 

 

where    2 2( ) / 2tGH G i H ii x x   
 
and      2 2( ) 1 1 / 2fGH G i H ii x x      1 P    

 

      1 2

1

1
, 1 (8)

n
p p
s s i s ip

i

S G H Q x Q x
n 

  
  

(8) 

 

     1 1 1 / 2s i G i H iQ x m x m x  ,      2 2 2 / 2,s i G i H iQ x m x m x    2

1( ) ( ) / 2G G i Gm i x m i  ,

 2( ) ( ) 1 ( ) / 2,G G Gm i m i i     2

1( ) ( ) / 2H H im i i m x B
,  2

2m ( ) m ( ) 1 ( ) / 2H B Gi i i   .

 
      2 21

, , ,
2

HB vS G H G H G H    

(9) 

 

where      2 2 2

1

1
, 1

n
p

p
G i H ip

i

G H x x
n

  


    and       2 2 2

1

1
, 1

n
p

p
G i H ip

i

G H x x
n

  


    

 

Next, we extend the above defined similarity measures Equations (1) - (9) between two PFSs G and H to the similarity 

measures between two PFSs G and H based on below, above and center (bac) fuzzy sets respectively as follows: 
 

         

       

2 2 2 2

1

2 2 2 2

1
, 1

3

1

2

n

lumc G i H i G i H i

i

G i H i G i H i

S G H x x x x
n

x x x x

   

   



    

   

  
(10) 

 

         

       

2 2 2 2

1

2 2 2 2

1
, 1

3

1

2

n

lumH G i H i G i H i

i

G i H i G i H i

S G H x x x x
n

x x x x

   

   



    

   

  
(11) 

 

         

       

2 2 2 2

1

2 2 2 2

1
, 1

3

1

2

n

lumL G i H i G i H i

i

G i H i G i H i

S G H x x x x
n

x x x x

   

   



    

  

  
(12) 

 

         

       

2
2

2 2 2 2

1 1

2

2 2 2 2

1

1 1 1
, 1

3

1

4

n n

lumO G i H i G i H i

i i

n

G i H i G i H i

i

S G H x x x x
n n

x x x x
n

   

   

 




    




   



 



 

(13) 
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         

       

2 2 2 2

1 1

2 2 2 2

1

1 1 1
, 1

3

1

2

p pn n

p p
lumDC G i H i G i H i

i i

pn

p
G i H i G i H ip

i

S G H x x x x
n n

x x x x
n

   

   

 




    




   



 



 

(14) 

 

         

       

2 2 2 2

1 1

2 2 2 2

1

1 1 1
, 1

3

1

2

p pn n

p p
lumHB G i H i G i H i

i i

pn

p
G i H i G i H ip

i

S G H x x x x
n n

x x x x
n

   

   

 




    




   



 



 

(15) 

 

         

       

2 2 2 2

1 1

2 2 2 2

1

1 1 1
, 1

3

1

2

p pn n
p p p

leum G i H i G i H i

i i

pn

p
G i H i G i H ip

i

S G H x x x x
n n

x x x x
n

   

   

 




    




   



 



 

(16) 

 

         

       

2 2 2 2

1 1

2 2 2 2

1

1 1 1
, 1

3

1

2

p pn n
p p p

lsum G i H i G i H i

i i

pn

p
G i H i G i H ip

i

S G H x x x x
n n

x x x x
n

   

   

 




    




   



 



 

(17) 

 

         

       

2 2 2 2

1 1

2 2 2 2

1

1 2 2
, 1

3 3 3

1
(18)

3

p pn n
p p

p p p
lhum G i H i G i H ip p

i i

pn

p
G i H i H i G ip

i

S G H x x x x
n n

x x x x
n

   

   

 




    





    



 



 

(18) 

 

To show the reasonability and usefulness of our proposed similarity measures in Equations (10) – (18), we put forward the 

following examples. 

 

4. Demonstration of Results and Application 
 

In the following section, we present some practical examples related to pattern recognition and multicriteria decision 

making to show reasonability and practicality of our proposed similarity measures in Equations (10) – (18) as follows: 

 

Example 1. Let G and H be two PFSs as expressed in Table 1.  

 
      Table 1.   Similarities of PFSs calculated using Equations (1) - (9). 

 

           
           

0.7,  0.7 0.6 ,0.5 0.2 ,0.5 0.6 ,0.6 0.6,  0.4 0.3,0.4

0.8 ,0.4 0.8,  0.4 0.4 ,0.6 0.9 ,0.2 0.5 ,0.7 0.2,0.2

0.7200 0.7050 0.7950 0.6150 0.9800 0.9650

0.6000 0.8025 0.8475 0.4425 0.9150 0.9325

1

0.8799 0.9527 0.980

2 3 4 5 6

c

L

H

G

H

S

S

S 7 0.7964 0.8851 0.9843

0.6534 0.7825 0.8611 0.5487 0.6610 0.8749

0.76 0.815 0.995 0.615 0.78 0.965

0.72 0.82 0.9 0.62 0.78 0.9

0.73 0

00 0 0 0 00 0

00 00 000 00 00 00

00 0.82 0.9 00 000 0.62 0.780 00 00

00 0 00

0.92

0.73 0.196 0.72 0

O

DC

p

s

HB

p

s

S

S

S

S

S .62 0.81 0.97

0.88 0.

00 00 00

00 00 096 0.96 0.97 0.90 00 06 0.60 002p

hS
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Table 1, reflects the calculation of suggested similarity measures using Equations (1) - (9). The numerical results show the 

reasonability of our proposed methods of calculating similarities between PFSs. Next, we utilized our newly constructed 

similarity measures in Equations (10) - (18) based on lower upper and middle fuzzy sets to calculate similarity measures between 

PFSs. 

 

Examples 2. Let G and H be two PFSs as in the Table 2.  

 
  Table 2.   Similarities of PFSs calculated using Equations (10) - (18). 

 

           
           

0.7,  0.7 0.6 ,0.5 0.2 ,0.5 0.6 ,0.6 0.6,  0.4 0.3,0.4

0.8 ,0.4 0.8,  0.4 0.4 ,0.6 0.9 ,0.2 0.5 ,0.7 0.2,0.2

0.73 0.82 0.92 0.62 0.78 0.92

0.73 0.82 0.92 0.62 0.78 0.92

0.73 0.82 0.92 0.62 0.

1 2 3

78 0.92

0

4

.

5 6

lumc

lumH

lumL

lumO

G

H

S

S

S

S 73 0.82 0.92 0.62 0.78 0.92

0.73 0.82 0.92 0.62 0.78 0.92

0.73 0.82 0.92 0.62 0.78 0.92

0.73 0.82 0.92 0.62 0.78 0.92

0.73 0.82 0.92 0.62 0.78 0.92

0.95 0.74 0.85 0.950.82 0.91

lumDC

lumHB

p

leum

p

lsum

p

lhum

S

S

S

S

S

 

 

From the numerical simulations of Table 2, it is clear that the newly constructed similarity measures in Equations (10) - (18) 

based on lower, upper and middle fuzzy sets are reasonable and appropriate. In the following subsection, we apply our proposed 

similarity measures in Equations (10) – (18) to handling problems related to pattern recognition. 

 

4.1 Application to pattern recognition 
 

In this subsection, we particularly use our similarity measures in Equations (10) – (18) in an application to pattern 

recognition. We utilize the law of maximum similarity between two PFSs to measure the similarity between two PFSs. 

 

Example 3. Let G1 and G2  be two given patterns in PFSs in finite universe of discourse X. 
 

     1 2 ,  0.70,  0.70    ,  0.80,  0 30 ..andG x G x   

We have a sample Q which is expressed by the PFSs 
 

    ,  0.70,  0.50Q x  

The objective is to recognize the sample Q with one of the given patterns G1 and G2, using the principle of maximum degree of 

similarity between two PFSs the procedure of transmission Q to Gm is 
 

  ,
1 2

,PFS m PFS i
i

S arg max S G Q
 

  

Utilizing the proposed similarity measures in Equations (10) – (18) between PFSs, we have the following ,   1,  2  iG i and Q . 

The calculation of similarity measures in Equations (10) – (18) are given as follows: 

 

,   1,  2  iG i and Q . The calculation of similarity measures in Equations (1) - (18) are given as follows 
 

 1, 0.88C G QS  ,  2 , 0.896CS G Q  ,  1, 0.64lumCS G Q  ,  2 , 0.86lumCS G Q  ,

 
 1, 0.88HS G Q  ,  2 , 0.86HS G Q  ,  1, 0.64lumHS G Q  ,  2 , 0.86lumHS G Q  ,

 
 1, 0.88LS G Q  ,  2 , 0.86LS G Q  ,  1, 0.88lumLS G Q  ,  2 , 0.86lumLS G Q  ,

 
 0 1, 0.65S G Q  ,  2 , 0.86OS G Q  ,  1, 0.99lumOS G Q  ,  2 , 0.86lumOS G Q  ,

 
 1, 0.88DcS G Q  ,  2 , 0.86DCS G Q  ,  1, 0.88lumDCS G Q  ,  2 , 0.86lumDCS G Q  ,

 
 1, 0.88HBS G Q  ,  2 , 0.86HBS G Q  ,  1, 0.88lumHBS G Q  ,  2 , 0.86lumHBS G Q  ,

 
 1, 0.88p

eS G Q  ,  2 , 0.86P

eS G Q  ,  1, 0.88p

lumeS G Q  ,  2 , 0.86P

lumeS G Q  ,

 
 1, 0.79p

sS G Q  ,  2 , 0.86P

SS G Q  ,  1, 0.88p

lumSS G Q  ,  2 , 0.86P

lumSS G Q  ,

 
 1, 0.93p

hS G Q  ,  2 , 0.99P

hS G Q  ,  1, 0.95p

lumhS G Q  ,  2 , 0.92P

lumhS G Q  . 
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Intuitively, we expect that Q should belong to the pattern G1. The above numerically computed results shows that the sample Q 

belongs to the pattern G1 according to the principle of maximum degree of similarity between PFSs. Most of the similarity 

measures agree expect for a few conflicts with negligible error. This might the result of poor approximation. So we can conclude 

that the sample Q belongs to the pattern G1 according to the principle of maximum degree of similarity between PFSs. 

Next, we propose Pythagorean fuzzy TODIM to apply our proposed similarity measure in an application to daily life 

matters containing complex multicriteria decision making.  

 

5. Pythagorean Fuzzy TODIM 
 

Step 1. The Pythagorean fuzzy decision matrix with respect to alternatives , 1,2,3,...,iH i m  to the criteria 

, 1,2,3,...,jC j n  is given as follows: 

 

1 2

1 11 12 1

2 21 22 2

1 2

/ . . .

. . .

. . .

. . . . .

. . . . .

. . . . .

. . .

i j n

j

j

ij m n

m i i ij

H C C C C

H r r r

H r r r

R r

H r r r


 

 
Step 2. The transform of the decision matrix to the normalized Pythagorean decision matrix as follows: 
 

 
 

for beneficialattribute

for cost attribute

ij

cij m n
ij

r
L l

r


  

  
Step 3. Calculation of the relative weights of criteria by following formula 

/ ,jr j rw w w 0 1jrw 
 

: 1,2,3,..., 0 1r j jrw max w j n and w     
 

Step 4. Calculate the dominance degree of each alternative
iH over each alternative

tH with respect to the criterion 

by
jC  using, 

 

 

 

1

1

,

, 0

,
1

rj ij tj

ij tjn

jr

j

j i t ij tj

n

rj ij tj

j

ij tj

jr

w d I I
if I I

w

H H if I I

w d I I

if I I
w










 





 



 







 

Step 5. Calculate the overall dominance degree of 
iH  over each alternative 

tH  using 

   
1

, ,
n

i t j i t

j

H H H H 


  

where  ,i tH H denotes the measurement of dominance of alternative 
iH over alternative 

tH  

Step 6. Derive the overall value of each alternative 
iH  by using  

   

   

1 1

1 1

, ,

, ,

n m

i t i t
i

i i

i m m

i t i t
i i

i i

H H min H H

max H H min H H

 



 

 

 

 
  

 
   

   
   

 

 

 

Clearly, 0 1,i  and we select the greater value of i  and consider this as better alternative 
iH . Thus, one can choose the 

appropriate alternative, in accordance with a descending order of the overall values of all the alternatives. 

Step 7. Find the best alternatives according to the given values. 
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Example 4. (Application in vehicle selection)  

Consider a customer who wants to purchase a new car. Assume four types of cars as alternative candidates Aj (j= 1, 2, 3, 4) 

available in the market. The customer considers the following four criteria before buying a new car: 

1 2 3 4   : : :, ,  :, .C Economical to operate C rice C Reliable C apaciC ousP  

We noticed that C2 is a cost attribute while the other three are benefit attributes. The evaluated values of alternatives Ai over 

criteria are given in the decision making Table 3. 
  

Table 3.

 

Pythagorean fuzzy decision matrix 
 

       
       
       
       

1 2 3 4

1

2

3

4

0.60,0.70 0.70,0.30 0.50,0.40 0.60,0.60

0.50,0.50 0.60,0.50 0.40,0.30 0.40,0.70

0.80,0.20 0.80,0.30 0.40,0.60 0.80,0.40

0.70,0.50 0.70,0.70 0.70,0.20 0.50,0.60

C C C C

A

A

A

A

0 

 

As D2 is a cost attribute we have to find the complement of C2 for normalizing the decision matrix, and it is given in Table 4. 

 
Table 4. The normalized decision matrix 
 

       
       
       
       

1 2 3 4

1

2

3

4

0.60,0.70 0.30,0.70 0.50,0.40 0.60,0.60

0.50,0.50 0.50,0.60 0.40,0.30 0.40,0.70

0.80,0.20 0.30,0.80 0.40,0.60 0.80,0.40

0.70,0.50 0.70,0.70 0.70,0.20 0.50,0.60

C C C C

A

A

A

A

 

 

 

Assume that the weights are known, so we denote these four criteria as Cj where j=1, 2, 3, 4 and their respective weight vector is 

represented by w = (0.40, 0.30, 020, 0.10).  

Step 3. Since w1 is maximum over all other weights, with C1 the reference criterion and the weight wr = 0.4, the relative 

weights of all the given criteria Cj (j=1, 2, 3, 4) are 
 

  ,  1,  2,  3,  4r jmax w jw  
 

1 2 3 40.4 / 0.4 1, 0.2 / 0.4 0.5, 0.1/ 0.4 0.25, 0.3 / 0.4 0.75r r r rw w ww         

1

1 0.75 0.5 0.25 2.5
n

jr

i

w 


       

Step 4. Calculation of the degree of dominance by using 
 

         2 2 2 2

1

1
, | |

n

G i H i G i H i

i

d G H x x x x
n

    


    

 1 ,x tA A  x, y 1,2,3,4
 

The calculated values are given in Tables 5, 6, 7, and 8 respectively. 

The overall dominance degree of Ai is summarized in Table 9.  

The overall value of dominance degree of 
iA  over each alternative 

tA  can be found as

 

   

   

1 1

1 1

, ,

, , )

n m

x t i x t

i i

i m m

i x t i x t

i i

A A min A A

max A A min A A

 



 

 

 

 
  

 
 

 
 

 

 
 

 
 1

3.1506 6.0942

7.528 6.09
0.6787

42
, 

 


 

 
 2

6.0942 6.0942

7.528 6.0942
0

  





  

 
 3

7.528 6.0942

7.528 6.0942
    1,

 






 
 4

5.9042 6.0942

7.528 6.0942
  0.88







 

. 

The final ranking is given in Table 10. From Table 10, we conclude that the final descending rank order is 
 

3 4 1 2A A A A
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From the above ranking of alternatives, it is clear 

that the alternative A3 is considered the best among all 

available four alternatives. The ranking of alternatives Ai is in 

descending order based on the overall value εi of each 

alternative .iH  
The alternative Ai having the highest overall 

value is selected as the best alternative. Hence, the alternative 

A3 is considered the best alternative.
  

Table 5. The matrix for criteria C1

 

 

1 2 3 4

1

2

3

4

0.0000 0.6000 0.4500 0.3098

0.3098 0.0000 0.3900 0.3200

1.0600 0.9800 0.0000 0.7200

0.7700 0.7700 0.2890 0.0000

A A A A

A

A

A

A

 

  
 

 

 
Table 6. The matrix for criteria C2 
 

1 2 3 4

1

2

3

4

0.0000 0.8940 0.3460 0.5656

0.3577 0.0000 0.4730 1.3856

0.7500 1.183 0.0000 1.4140

0.6066 1.0900 1.4140 0.0000

A A A A

A

A

A

A

 

  

 
 

 

 

Table 7. The matrix for criteria C3 
 

1 2 3 4

1

2

3

4

0.0000 0.9480 1.4140 0.1690

0.3794 0.0000 0.6570 0.7260

0.5656 0.6570 0.0000 0.7260

1.4140 1.8160 1.8160 0.0000

A A A A

A

A

A

A



  

  

 

 

  

Table 8. The matrix for criteria C4 
 

1 2 3 4

1

2

3

4

0.8660 0.3860 0.6550

32650 0.5059 0.

0.0000

0.0000

0 0 0.

2633

0.966 1.264 1.140

0.2422 0.

000

658

0 0

0 0 0.0.45 006 0 0

A A A A

A

A

A

A



  

 

 

 

 

Table 9. The overall dominance degree 
 

 1 2 3 4

1

1

2

3

4

,

0.0000 3.3080 0.2320 0.3894 3.1506

1.3734 0.0000 2.0259 2.6949 6.0942

2.2104 2.7700 0.0000 2.5480 7.5280

1.3352 4.3340 0.235 0.0000 5.9042

n

y x t

i

A A A A A A

A

A

A

A






   


 

 

6. Conclusions 
 

Various information measures are suggested in the 

literature but still there is space to improve or modify them, 

and to create new ones. Adopting similarity measures between 

PFSs based on lower, middle and upper fuzzy sets, we provide 

a novel way of constructing similarity measures between 

PFSs. The new type of similarity measures between PFSs is 

based on converting the PFSs into their lower, upper and 

middle fuzzy sets (FSs) to calculate the degree of similarity 

very effectively and usefully. On the basis of numerical 

analysis results, we found that our novel construction provides 

very useful and reasonable results. Applications of our 

proposed methods related to pattern recognition and 

multicriteria decision making show the usefulness and 

practical applicability of the proposed methods. Finally, 

Pythagorean fuzzy TODIM method based on our proposed 

similarity measures was constructed to handle complex 

problems related to daily life. Holistically, our suggested 

measures between PFSs can provide a more reasonable and 

effective way of calculating degree of similarity between 

PFSs. 

 

7. Future Direction 
 

In the future, we will consider clustering objects in 

uncertain and ambiguous environments using our proposed 

new construction method for similarity measures between 

PFSs. 
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