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Abstract. Short-term sea ice predictability is challenging de-
spite recent advancements in sea ice modelling and new ob-
servations of sea ice deformation that capture small-scale
features (open leads and ridges) at the kilometre scale. A new
method for assimilation of satellite-derived sea ice deforma-
tion into numerical sea ice models is presented. Ice deforma-
tion provided by the Copernicus Marine Service is computed
from sea ice drift derived from synthetic aperture radar at a
high spatio-temporal resolution. We show that high values of
ice deformation can be interpreted as reduced ice concentra-
tion or increased ice damage – i.e. scalar variables respon-
sible for ice strength in brittle or visco-plastic sea ice dy-
namical models. This method is tested as a proof of concept
with the neXt-generation Sea Ice Model (neXtSIM), where
the assimilation scheme uses a data insertion approach and
forecasting with one member. We obtain statistics of assim-
ilation impact over a long test period with many realisations
starting from different initial times. Assimilation and fore-
casting experiments are run on synthetic and real observa-
tions in January 2021 and show increased accuracy of defor-
mation prediction for the first 3–4 d. Similar conclusions are
obtained using both brittle and visco-plastic rheologies im-
plemented in neXtSIM. Thus, the forecasts improve due to
the update of sea ice mechanical properties rather than the
exact rheological formulation.

It is demonstrated that the assimilated information can be
extrapolated in space – gaps in spatially discontinuous satel-
lite observations of deformation are filled with a realistic pat-
tern of ice cracks, confirmed by later satellite observations.
The limitations and usefulness of the proposed assimilation
approach are discussed in a context of ensemble forecasts.

Pathways to estimate intrinsic predictability of sea ice defor-
mation are proposed.

1 Introduction

Sea ice in the Arctic is continuously drifting and deforming
under the influence of atmospheric winds and ocean currents
(Sverdrup, 1950; Colony and Thorndike, 1984; Rampal et al.,
2009). In summer, when ice concentration is low and ice ex-
tent is small, the sea ice is mostly in free drift – the speed and
direction of the drift are dominated by the atmospheric and
ocean drag forces and by the Coriolis force. In contrast, in
winter, the sea ice covers almost the entire Arctic ocean and
its adjacent seas, forming a rigid and nearly continuous solid
plate. As a consequence, sea ice does not drift freely any-
more but instead exhibits an intermittent drift with localised
deformation. First, under increasing external forcing, the un-
damaged ice deforms primarily as an elastic material. Inter-
nal stresses gradually accumulate in the material until a fail-
ure criterion is reached, which corresponds to a limit when
sea ice fractures, and then the ice starts deforming along the
multiple narrow and elongated cracks and does so until these
later refreeze or when the load (winds and currents) on the
ice changes. The location, density, and orientation of these
cracks greatly control the overall and individual motion of
the resulting ice pieces, from small floes (∼ 10 m) to large
plates (∼ 100 km).

Under divergent ice motion, these cracks become open
leads, significantly increasing ocean–air heat and mass ex-
change and modifying local atmospheric boundary layers
and ocean mixed layers (Olason et al., 2021). Open leads are
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also key both for marine fauna survival and for facilitating
ship navigation. Under convergent or shear motions, sea ice
ridges are formed along the cracks. Ridge sails and keels af-
fect the drag by winds and currents. At the same time, ridged
ice significantly impedes navigation in the Arctic (Lindsay
and Stern, 2003).

Given the importance of sea ice fracturing for air–sea–ice
interface processes, marine life, and navigation, its accurate
monitoring and forecasting is in great demand. Observations
of cracks can be performed using satellite remote sensing by
retrieval of high-resolution sea ice drift from synthetic aper-
ture radar (SAR) data and the computation of sea ice defor-
mation components (Kwok et al., 1990). The RADARSAT
Geophysical Processor System (RGPS) dataset was the first
attempt to systematically observe sea ice drift and derive sea
ice deformation at a high spatial resolution (10 km) and with
high frequency (3 d) over a long period of time (the winters
from 1996–2016) (Kwok, 1998). An operational SAR-based
sea ice drift and deformation product is currently provided by
the Copernicus Marine Services (Saldo, 2020). It is derived
from Sentinel-1 C-band SAR data at 12 h and 10 km resolu-
tions. The cracks appear on satellite-derived ice deformation
products as narrow (10–30 km, depending on resolution of
satellite data) and long (up to 1000 km) lineaments and are
also called linear kinematic features (LKFs) (Kwok, 2001).

To address the challenge of realistic simulation and fore-
casting of sea ice dynamics, the next-generation sea ice
model (neXtSIM, Bouillon and Rampal, 2015; Rampal et al.,
2016) was developed based on elasto-brittle sea ice rheol-
ogy (Girard et al., 2011). The spatio-temporal scaling prop-
erties of ice deformation are simulated correctly by neXtSIM
(Rampal et al., 2019), and the distribution of cracks looks
very realistic (Olason et al., 2022). In a recent model inter-
comparison paper (Bouchat et al., 2022), neXtSIM results
ranked among the best for simulating the observed probabil-
ity distribution, spatial distribution, and fractal properties of
sea ice deformation. Analysis of spatial and temporal scal-
ing (Fig. 13 in Bouchat et al., 2022) shows that the spatial
structure function of neXtSIM matches the RGPS observa-
tions very well, whereas the temporal one is overestimated
by 3 %–5 %, probably indicating some overestimation of the
intermittency by neXtSIM. In the aforementioned studies,
neXtSIM was run with a similar setup: the dynamic equa-
tions were solved on a triangular mesh with 10 km resolution
using a finite-element method.

Despite the recent advances in the sea ice modelling, the
exact timing and spatial distribution (including orientation,
width, length, and angle of fracture) of strong deformation
zones, or LKFs, are not yet predicted precisely. Moreover,
there are many sources of uncertainty in LKF forecasting that
require additional research, including uncertainties in atmo-
spheric and ocean forcing, rheology and model parameteri-
sation, model numerics, initial conditions for sea ice states,
and observing network and data assimilation. Mohammadi-
Aragh et al. (2018) evaluated the potential predictability of

LKFs using an ensemble of sea ice models all using a visco-
plastic rheology, but the practical predictability remains un-
known.

The primary goal of our research is, therefore, to improve
the skill in predicting LKFs by assimilating novel satellite
observations of sea ice deformation. Our secondary goal is to
quantify the practical predictability of LKFs by the neXtSIM
model when combined with satellite observations via data
assimilation (DA) and the study factors affecting it.

Several methodological and technical challenges with as-
similating sea ice deformation into a model are worth men-
tioning here. First, the direct-insertion method operates in the
model state space. However, the observed deformation is not
a model prognostic variable so an operator is used to convert
deformation to the model variables. This operator is an in-
verse of the observation operators used in data assimilation
since it maps from the observation space back to the state
space. There is also no guarantee that updated model vari-
ables will remain accurate during a forecast. For example,
the ice drift is a model variable, but it is strongly depen-
dent on external forcing, and increments from assimilation
will only survive for a short period of time. Second, the ob-
served cracks are very localised in space and time, which
poses challenges in modelling their covariance structure for
data assimilation methods such as 3DVar (Lorenc, 1986). An
ensemble Kalman filter (EnKF) (Evensen, 2003) is poten-
tially a good solution due to the fact that it estimates a flow-
dependent covariance structure from an ensemble of model
runs. However, the current ensemble data assimilation frame-
work for neXtSIM (Cheng et al., 2020) is not ready to assim-
ilate deformation yet. Therefore, and also as a proof of con-
cept, we present here a first attempt to assimilate sea ice de-
formation into neXtSIM using a simple direct-data-insertion
scheme (Stanev and Schulz-Stellenfleth, 2014), and we per-
form a sensitivity analysis that is useful for demonstration of
the approach.

The concept of sea ice deformation assimilation is pre-
sented in Sect. 2, followed by a detailed description of satel-
lite observations of deformation and the methodology for as-
similation and running forecasting experiments in Sect. 3.
The results are presented and discussed in Sects. 4 and 5.

2 Link between observed ice deformation and model
state

The central idea in our assimilation approach is that the ice
in the model should become weaker – in a mechanical sense
– where high deformation is observed. In the current con-
text, we simulate sea ice weakness evolution according to
the brittle Bingham–Maxwell (BBM) rheology (see Olason
et al., 2022, for details on how this rheology is implemented
into neXtSIM). BBM belongs to a family of brittle rhe-
ologies, with earlier variations being the elasto-brittle (EB)
(Girard et al., 2011) and the Maxwell elasto-brittle (MEB)
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(Dansereau et al., 2016). Two regimes are distinguished in
the BBM: the undamaged pack ice can have small elastic
(reversible) deformations; in the cracks the deformation is
visco-elastic (partly permanent and partly reversible) and can
become quite high (e.g. several percent per day over a spatial
scale of about 10 km). The BBM stress evolution equation is
written as follows:

σ̇ = EK : ε̇−
σ

λ

(
1+ P̃ +

λḋ

1− d

)
, (1)

where σ is the internal stress tensor, E is the ice elasticity,
K : ε̇ is the stiffness tensor, λ= η/E is the viscous relaxation
time, P̃ is a generalised friction term, and d is the ice damage
(with d = 0 being completely undamaged ice).

Elasticity and viscosity are functions of the model state
variables damage (d) and sea ice concentration (A):

E = E0(1− d)e−C(1−A), (2)

η = η0(1− d)αe−αC(1−A), (3)

where E0 and η0 are the undamaged elasticity and viscos-
ity, and α > 1 is a constant. It should be noted that there are
two ice categories in the model: young ice, which is formed
during water freezing, and older ice, which is formed after
young ice exceeds a threshold in thickness (Rampal et al.,
2019). Only the older ice concentration (referred to as A) is
used in the rheological equations.
P̃ contains the effects of the friction element and is defined

as follows:

P̃ =


Pmax
σn

for σn <−Pmax,

−1 for −Pmax < σn < 0,
0 for σn > 0.

(4)

The friction element is active when damaged ice is converg-
ing (i.e. when the normal stress σn < 0); when σn <−Pmax,
the frictional forces can no longer balance the convergence,
and the ice starts to ridge. This threshold is defined as fol-
lows:

Pmax = Ph
3/2e−C(1−A), (5)

where P is a constant scaling parameter for the ridging
threshold to parameterise Pmax following the results of Hop-
kins (1998), and h is thickness.

Equations (2), (3), and (5) show that increasing damage
(d) will decrease viscosity, while decreasing concentration
(A) will both decrease viscosity and shift the threshold Pmax
so that the ice transitions from the elastic to the viscous
regime and allows larger deformations without a significant
increase in internal stress.

We use an empirical function to convert the observed de-
formation to model variables so that the update can take place
in the model state space. The observed model variables dam-
age do and concentration of older ice Ao are derived from the

observed deformation εo using the following experimental
formulations:

do =H
′

d(εo), (6)
Ao =H

′

A(εo), (7)

where H ′d and H ′A are inverse observational operators (see
Sect. 3.3 and Appendix A).

3 Data and methods

3.1 Satellite observations of sea ice deformation

We used the sea ice drift and deformation dataset from
Copernicus Marine Services (Saldo, 2020) acquired in Jan-
uary 2021. The dataset comprises gridded products derived
from Sentinel-1 synthetic aperture radar (SAR) images, with
10 km spatial resolution. Ice drift is computed from pairs of
images separated by approximately 24 h, and the product is
delivered every 12 h. The spatial coverage of the product is ir-
regular – the east Siberian, Laptev, and Kara seas and the po-
lar gap (north of 87◦ N) are never covered, while other Arctic
regions are observed at least once nearly every 24 h.

3.2 Simulation experiment setup

The model is run using a 900 s time step on a triangular mesh
with 10 km spatial resolution covering the Arctic Ocean and
adjacent seas north of 65◦ N. The model is forced with the
latest version (Cycle 45r1) of the Integrated Forecast Sys-
tem European Center for Medium-Range Weather Forecasts
(ECMWF) (Owens and Hewson, 2018) and the TOPAZ4
(Sakov et al., 2012) ocean-forcing fields (currents, sea sur-
face temperature, sea surface salinity).

Experiments start from 1 December 2020 (t0) and last for
2 months. Let x denote the model state variables (e.g. con-
centration, damage, drift), xt0 is the initial condition, and
Mtn→tn+1 is the non-linear model (neXtSIM) to propagate
state from time tn to tn+1.

Let y denote the observations (ice deformation rate), which
are related to the model state variables through yt =H(xt ),
where H is the observation operator. Real satellite observa-
tions yo

t are available throughout the test period. Although the
deformation rate is derived from sea ice drift derived from
RADARSAT-2 SAR images, we call them observations of
deformation as opposed to simulations of deformation, as in
neXtSIM.

In the first experiment, a verifying truth run is generated:

xtr
t =Mt0→t (xt0). (8)

The period before 1 January 2021 is used as a spin-up time,
the data from xtr

t are not used, and time t1 denotes the 1 Jan-
uary 2021. Then four sets of 10 d forecasts are initialised and
run every day in January 2021 so that each set has 31 fore-
casts (see scheme in Fig. 1).
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1. Forecasts initiated from truth.

xT
t1→t
=Mt1→t (x

tr
t1
)+ψ t (9)

In the above equation,ψ t is a random noise added to the
model operator due to uncertainties in model numerics
that cause the forecast run to differ from the truth run.
These forecasts are evaluated by computing the error in
observation space:

εTδt =
〈
H(xTt→t+δt )−H(x

tr
t→t+δt )

〉
, (10)

where 〈·〉 denotes averaging over the different
forecasts starting from t1, t2, . . ., tn, i.e.

〈
εTt→t+δt

〉
=∑tn

t=t1
εTt→t+δt , which is then plotted with respect to lead

time δt .

2. Forecasts without data assimilation.

xt1→t =Mt1→t (xt1)+ψ t (11)

The first forecast is initiated from t0, and subsequent
forecasts are initiated from the outputs of the previous
forecasts. The forecasts initiated during the spin-up pe-
riod are not used. The forecasts after 1 January are eval-
uated against truth,

εBt =H(xt )−H(x
tr
t ), (12)

and against real observations,

εOt =H(xt )− yo
t . (13)

During the spin-up period, εBt grows and reaches its sat-
uration level εB , which we consider to be the climato-
logical level for this error. Since the forecasts without
data assimilation do not see real data, the error εOt av-
eraged over 1 month (εO ) can also be considered to be
the climatological level.

3. Forecasts with assimilation of synthetic data.

xas
ti→t
=Mti→t (x

as
ti
)+ψ t (14)

In the above equation, i denotes days in January 2021
(e.g. 1 January, 2 January, 3 January), and xas

ti
is the

analysis of synthetic observations from the truth run
and the forecasts without assimilation performed at ti :
xas
ti
=A(xti ,ytrti ;H

′,w). In the assimilation scheme in
this paper, we use the inverse operator H ′ to compute
model state (concentration and damage) from the ob-
served deformation; xt =H ′(yt ) (see Eqs. 6 and 7 for
how H ′ is constructed) and w are the tuning parameters
(see Eqs. 22 for how A is constructed). These forecasts
are evaluated with the following:

εSδt =
〈
H(xast→t+δt )− ytrt+δt

〉
. (15)

4. Forecasts with assimilation of real satellite data.

xar
ti
=A(xti ,y

o
ti
;H ′,w)

xar
ti→t
=Mti→t (x

ar
ti
)+ψ t (16)

The above is evaluated with

εAδt =
〈
H(xar

t→t+δt )− yo
t+δt

〉
. (17)

It should be noted that, for assimilation, the deformation
is computed from observations of drift at tn−1→ tn, and
the model is initialised from the analysis at time tn.
Then the forecast is compared with deformation com-
puted at tn→ tn+1 (corresponding to lead time δt = 1),
tn+1→ tn+2 (δt = 2), etc. Thus, the error of the fore-
cast εAtn→tn+1

is independent from observations used in
assimilation yo

tn−1→tn
(the same holds for εSδt ).

Definition of predictability

Predictability is defined as the time at which a forecast error
reaches a background level (Zhang et al., 2019). Since the
errors of the forecasts without assimilation εB and εO are at
their respective saturation levels, we assume that they are the
background levels for the forecasts with assimilation. There-
fore, in a perfect-model scenario (forecast with initialisation
from truth) the intrinsic predictability is the time δt when
εTδt ≈ εB . The practical predictability is the time δt when
εSδt ≈ εB . Similarly, in the case of assimilation of real obser-
vations, the practical predictability is time δt when εAδt ≈ εO .

Our previous experiments (Williams et al., 2021) showed
that assimilation of concentration does not significantly af-
fect the accuracy of sea ice drift forecast. In that sense, the
reference forecasts without DA (xt1→t ) are almost equal to
the forecasts with assimilation of concentration, and the er-
ror εA helps to evaluate the general improvement due to the
DA system.

3.3 Inverse observational operator

The inverse observational operator H ′ is a function to com-
pute a model state variable from observations: x=H ′(y).
Since reliable simultaneous observations of concentration
and deformation at scales of 1 d and 10 km are not avail-
able, and since damage is not an observable variable, we
cannot use an empirical inverse operator. In other words,
H ′ 6=H ′o, where H ′ is the inverse operator in question, and
H ′o is the empirical inverse operator between the observed
total sea ice concentration (xo) and sea ice deformation (yo):
xo
=H ′o(y

o). Ultimately, the purpose of the inverse opera-
tor is not to describe a physically realistic process (i.e. lin-
ear decrease of concentration due to divergence) but to min-
imise the error of the deformation forecast: Efn = yo

n − yn =

yo
n−H ◦M◦A◦H ′(yo

n−1), whereH is the forward operator
to compute deformation from ice drift, M is the numerical
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Figure 1. Scheme of experiments (a) and scheme of errors (b). The truth run is shown by the solid blue line, and observations are shown
by the solid red line. The forecasts initiated from the truth are shown by dashed blue line, those without assimilation are shown by the solid
green line, those with assimilation of synthetic observations are shown by the dashed green line, and those with assimilation of real satellite
observations are shown by the dashed red line. Grey lines show the spin-up period for the truth and the no-DA forecasts. On the scheme of
errors, the lines are coloured as follows: red – evaluation against satellite observations, green – evaluation against synthetic observations, blue
– evaluation against the truth run. Solid lines show climatological level, and dashed lines show average over forecasts. Vertical lines PT , PS ,
and PA indicate potential predictability, practical predictability for synthetic DA, and practical predictability for real DA, correspondingly.

model to forecast ice drift, and A is the assimilation of the
inverse operator applied to the observed total deformation at
the previous time step.

In our experiments, the deformation is computed in each
model mesh element by integrating ice drift velocities simu-
lated in the truth run over a period of 24 h (tn−1→ tn):

ytn = εtn =H(xtn−1→tn). (18)

ThenH ′ is applied to ytn for computing damage and concen-
tration, and the results are compared to the simulated damage
and concentration in the corresponding elements at the end of
this period (tn). The initial values ofH ′ parameters are found
by minimisation:

H ′ = argmin
H ′

(
30∑
n=1

[
H ′(ytn−1→tn)− xtn

]2)
, (19)

where n denotes day number in the truth run.
The total deformation (εtot, m−1) is used as a predictor

for damage and concentration under the assumption that all
deformation events (convergence, divergence, and shear) in-
dicate the presence of weaker ice that may continue to be de-
formed. Ice weakness is simulated in neXtSIM by decreased
concentration or increased damage (see Eqs. 2 and 3). Ob-
servation of any deformation components (including conver-
gence) is interpreted in the assimilation procedure as an in-
crease in ice weakness and, therefore, a decrease in concen-
tration or an increase in damage. Since A and d are the com-
ponents of sea ice strength, and since the total deformation is

a good proxy for the presence of weak ice, we suggest build-
ing the inverse operator H ′ on the assumption that A and d
are related to the total deformation. It should be emphasised
that only the older ice fraction A is updated in the assimi-
lation procedure, and the total ice concentration remains the
same.

The inverse operators for damage and concentration have
the following form (for further details, see Appendix A):

H ′d(εtot)= 1− 10k2+k3log10(εtot)− k1, (20)
H ′A(εtot)= 1− a1εtot. (21)

3.4 Data assimilation method

We update the damage and concentration variables in the
model according to the observed deformation using a simple
direct-data-insertion approach as a proof of concept for DA
(Stanev and Schulz-Stellenfleth, 2014). The updated state
variable is computed as a weighted average of the forecasted
variable (x) and the variable computed from the observed de-
formation (xo

=H ′(yo)):

xa = wxo
+ (1−w)x, (22)

where w is the weight applied to observations.
As defined here, the weight can be interpreted as the pre-

cision (the inverse of the uncertainty) of the observed vari-
able relative to the modelled variable. In variational assim-
ilation schemes the uncertainties are characterised by error
co-variance matrices, while here we assume no correlation
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structure between variables and only characterise the relative
precision (signal-to-noise ratio of observation-to-model vari-
able error variances) as a single weight. However, we still
allow this weight to be individually specified for different
variables and also to be spatially varying, giving some more
flexibility to the update scheme. Also, we note that we as-
sume that the model variables are spatially uncorrelated and
that the variable on each model mesh point can be updated
independently. Since sea ice deformation is accommodated
along nearly 1D geometrical features (i.e. fractures), correla-
tion can only usually be seen along the fracture, and so the
assumption of low spatial correlations in all other directions
is reasonable.

We parameterise the weights as follows:

w = wvW, (23)

where wv is a variable-specific weight (either wd or wa), and
W is a weight that is dependent on observed deformation:

W =

{
1, if ε > εmin,

0, otherwise
, (24)

where εmin is a threshold for total deformation found in sen-
sitivity experiments. It is known that low values of deforma-
tion have higher uncertainty (Dierking et al., 2020) so it is
sensible to update model variables only when the observed
deformation exceeds the threshold value. This threshold lo-
calises the impact of assimilating observed deformation to
only be effective in the vicinity of ice cracks.

The variable dependency is tested by setting the weightwd
or wa to 0, i.e. letting the assimilation update either damage
or concentration or both to see the impact of the update.

3.5 Sensitivity experiments

The list of parameters tested in the sensitivity experiments is
provided in Table 1. The values for a1 and εmin were tested
within reasonable ranges, i.e. the expected decrease of con-
centration due to ice deformation given the observable ranges
of deformation.

Over 64 experiments were run using the following algo-
rithm:

– Choose assimilation parameters from a predefined
space and save in a configuration file.

– Run a series of 31 forecasts in January 2021 with these
parameters.

– Evaluate each forecast by comparing simulated and ob-
served deformations.

– Average the evaluated quality metrics over the month.

All combinations of parameter values (except for ineffective
ones, e.g. wc = 0 and wd = 0) were tested.

The effect of assimilation on the prediction skill is evalu-
ated by comparison of the simulated and observed total de-
formation fields as this is crucial information for safe navi-
gation. The forecasts are evaluated using two quality metrics:
area of maximum cross-correlation (hereafter referred to as
AMCC) and difference in the probability distributions of total
deformation (KS).
AMCC is computed as the area where the maximum cross-

correlation (MCC; see Appendix B for details) is above 0.35,
normalised by the total area of available satellite observa-
tions. AMCC indicates the level of spatial collocation of fore-
cast LKFs to observations at a relatively fine spatial scale
(1–2 pixels, 10–20 km). Unlike the LKF evaluation metrics
suggested in Hutter et al. (2019), which compare only sta-
tistical properties of LKFs (number, density, length, orien-
tation, etc.), the MCC-based metric estimates co-alignment
of individual LKFs on model simulations and satellite ob-
servations. It is also thought to be more sensitive to LKFs
with low deformation magnitude as no threshold is applied
for their detection.

KS is the difference between the cumulative distribution
functions of εtot computed using the Kolmogorov–Smirnov
test (Smirnov, 1939) and indicates the correspondence of the
magnitude of the predicted deformation to observations on a
pan-Arctic scale.

4 Results

4.1 Impact on fields of concentration and damage

Figure 2 shows example fields of sea ice deformation com-
puted from ice drift between 15 and 16 January 2021 and
also the corresponding damage and concentration fields com-
puted during the assimilation procedure using the following
values: εmin = 0.02, wd = 1, wc = 1, and a1 = 0.9. White
gaps on the field of deformation (Fig. 2a) show areas without
satellite data coverage. The white gaps on the reconstructed
concentration and damage maps are also due to application
of the εmin threshold – values of εtot below that threshold are
not used in the assimilation.

The range of the reconstructed concentration corresponds
well to the simulated one. Only the largest cracks with defor-
mations above 0.3 d−1 have concentrations below 0.7, while
the other cracks have realistic values of concentrations in the
range of 0.9–1 if compared, for example, to the AMSR2 sea
ice concentration product from the Ocean and Sea Ice Satel-
lite Application Facility (EUMETSAT, 2021). The pattern of
LKFs, exhibited as reduced concentrations, in general looks
to be similar to the simulated field, but the exact position is,
of course, different. It also seems that there are more recon-
structed LKFs than simulated ones. This can be explained by
the fact that the simulated concentration only decreases in
the case of divergence, whereas the reconstructed LKFs are
a function of total deformation.

The Cryosphere, 17, 4223–4240, 2023 https://doi.org/10.5194/tc-17-4223-2023



A. Korosov et al.: Deformation predictability 4229

Table 1. Tested parameters of sea ice deformation assimilation scheme.

Parameter Description Eq. Tested values

a1 Coefficient for computing sea ice concentration from deformation [% d] (21) 0.1, 0.5, 0.9, 1.2, 1.5, 2
wd Weight of damage assimilation (23) 0, 0.5, 1
wa Weight of concentration assimilation (23) 0, 0.5, 1
εmin Threshold of total deformation for applying assimilation [d−1] (24) 0.02, 0.1

Similar conclusions can be drawn regarding the damage
fields. The only observed difference is that the simulated
damage is so spatially heterogeneous that contributions from
the observed damage are difficult to spot in the analysis field.

4.2 Impact of assimilation on deformation fields

The impact of assimilation is demonstrated by a comparison
of deformation fields from a 3 d forecast without DA (Fig. 3,
first column), from observations (Fig. 3, second column), and
from a forecast with DA (Fig. 3, third column). The assim-
ilation was performed on 16 January (see Fig. 2 for corre-
sponding fields of damage and concentration). The fourth
column shows the MCC computed between the observation
and the forecast with DA, where insignificant correlations are
masked with white colour. In the fifth column, the increase
of MCC (MCCIncrease =MCCDA−MCCNO DA) is shown as
an indication of areas where DA improved the location of the
LKFs.

Figure 3 clearly shows that the field of deformation pre-
dicted without DA is different from the observations in terms
of location, sharpness, and orientation of cracks, as well as
in terms of the deformation magnitude. The first day after
assimilation, the field of predicted deformation is substan-
tially different from the no-DA run. Visually, the positions
of some cracks correspond well to the observations, which is
supported by high values of correlation (the average correla-
tion is 0.7 – see Fig. 3, fourth column), and MCC is higher in
the DA forecast in most of the observed areas (the Beaufort,
Chuckhi, and Lincoln seas). On the second day, while both
forecasts start to look more similar, the MCC with observa-
tions is still high in many areas, but an increase of MCC is
visible only in parts of the Beaufort Sea. On the third day,
the improvement which is likely introduced by DA is obvi-
ous only in the central Arctic at the intersection of two large
cracks crossing the entire ocean.

The impact of the assimilation on the areas outside of the
satellite data coverage can be illustrated with two examples
with assimilation of real (Fig. 4) and synthetic (Fig. 5) data.
These observations were assimilated in a limited area (indi-
cated by grey colour in the respective figures) on 22 January,
and the forecast was compared to observations (area-limited
satellite observations or pan-Arctic synthetic observations)
on 23 January. Visual comparisons of forecasts and observa-
tions, as well as the maps of MCC increase, show that the

correlation improved not only in the area covered by the as-
similated observations but also outside of it, although to a
lesser degree.

4.3 Practical predictability

The errors εTδt , εB , εO , εSδt , and εAδt (see Eqs. 10, 12, 13, 15,
17, correspondingly) were computed for each forecast and
averaged over 31 forecasts. The errors with lead time (shown
on Fig. 6) evolve as expected (as in Fig. 1) – the forecast ini-
tiated from the truth run has the lowest error, which grows
slower than those from the other forecasts. The error εTδt does
not reach the background level εB , and we can conclude that
the intrinsic predictability is larger than 10 d. In forecasts
with assimilation of synthetic data the forecast error is ini-
tially larger and reaches the background on the fourth day,
whereas in forecasts with assimilation of satellite observa-
tions the error already reaches the background level by the
third day. Thus, we can say that practical predictability is
4 and 3 d when assimilating synthetic and real observations
(respectively).

4.4 Sensitivity to assimilation parameters

The results of the sensitivity experiments are summarised in
Fig. 7, where the dependence of forecast error (presented as
1−AMCC and KS) on values of the assimilation parameters
is presented for the first 3 d of the forecasts. The results show
that the forecast error is very sensitive to the a1 and wc pa-
rameters and is somewhat sensitive to the εmin parameter but
has almost no sensitivity to thewd parameter. In other words,
assimilation of damage has little impact on forecast error,
whereas assimilation of concentration plays a big role.

With a1 = 0 or wc = 0, the 1−AMCC error is the high-
est, and increasing a1 or wc leads to a decrease in this error,
indicating that the stronger the inserted reduction of concen-
tration, the large the correlation between forecasts and obser-
vations. However, if the concentration is modified too much
during the assimilation (a1 > 1 and wc > 0.5) the forecast
deformation increases in magnitude by too much, and the KS
error also starts to grow fast. The forecasts with lead times of
1 d are most impacted, but similar dependencies are also vis-
ible in forecasts with lead times of 2 and 3 d.

Increasing the εmin parameter leads to a slow increase of
both the 1−AMCC and KS errors, particularly on the first
day of forecast. It can be concluded that, when εmin = 0.1,
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Figure 2. (a) Sea ice deformation (d−1) computed from observed sea ice drift between 15 and 16 January 2021. (b, e) Sea ice concentration
and damage reconstructed from the observed deformation using Eqs. (20) and (21). (c, f) Concentration and damage simulated by neXtSIM
on 16 January. Panels (d) and (g) are the analysis (Eq. 22) without further integration.

Figure 3. Maps of sea ice total deformation (d−1) and their comparison. Column 1: forecast without DA; column 2: observations; column 3:
forecast with DA; column 4: MCC between observations and forecast with DA; column 5: increase of MCC due to DA.
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Figure 4. Maps of observed (a) and simulated (b) deformation on 23 January 2021 and increase of maximum cross-correlation due to DA (c).
The grey area in panels (a) and (c) shows the extent of data assimilated on 22 January 2021.

Figure 5. Same as Fig. 4 but for synthetic observations.

Figure 6. Evolution of errors of the forecasts. Line styles and
colouring correspond to Fig. 1, and the filled area shows 1 standard
deviation.

even very spatially localised assimilation quite considerably
impacts the fields of deformation: the quality is only slightly
lower than in the forecasts with εmin = 0.02.

For selecting the best parameters, we plot their values
against the quality metrics 1−AMCC and KS in Fig. 8 for
each individual experiment. These scatterplots show the fol-
lowing:

– The quality metric 1−AMCC is inversely proportional
to KS; i.e. with higher correlations, the differences in
the probability distributions of the total deformation are
also larger.

– εmin = 0.02 provides better results in almost all experi-
ments.

– wd has no impact on the metrics.

– wc = 1 provides the best results when a1 is 0.9 or 1.2.

– A decrease in wc can be somewhat compensated for by
an increase in a1, but the results are still worse than with
wc = 1.
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Figure 7. Dependence of the errors (1−AMCC and KS) on the assimilation parameters. The coloured bars show averages over all experiments,
and vertical black lines show 1 standard deviation. Colours denote different lead times.

Based on these results, the best parameter choice for our
configuration appears to be as follows: εmin = 0.02, wd = 1,
wc = 1, and a1 = 0.9.

5 Discussions

5.1 Theoretical and practical usefulness

We present a proof of concept of the assimilation of satellite-
derived sea ice deformation which increases the accuracy of
deformation prediction for the first 3–4 d. The approach we
used to update the model fields is relatively simple – the con-
centration and/or damage are computed from the observed
sea ice deformation and inserted into the simulated fields us-
ing weighted averaging. Our study demonstrates in practice
that information contained in the observed deformation fields
can be used for the initialisation of model state variables and
shows the timescales over which the forecast of deforma-
tion can be improved. Our experiments illustrate that even if
data insertion is spatially limited by satellite observations (or
even very localised in high-deformation zones), it can realis-
tically extrapolate the deformation pattern by connecting the
elements of linear kinematic features in accordance with re-
sults from a simple uniaxial-loading experiment using visco-
plastic rheology (Ringeisen et al., 2019). Finally, the relative
importance of the assimilation parameters (e.g. a1 vs. εmin)
and, as explained below, the relative importance of the model
state variables are revealed.

The experiments, in which we minimised the difference
between simulations and observations by tuning the param-
eters in a grid search, can be interpreted as an optimisation
of the DA hyperparameters. These parameters can be asso-
ciated with uncertainties in observed deformation, which are
either spatially constant (a1, wc, and wd) or spatially vary-
ing (εmin). These uncertainties can be related to the diagonal
terms in the error covariance matrices used in more sophisti-

cated EnKF and 4DVar methods. However, the uncertainties
of the model concentration and damage are either not known
or not taken into account. Further study is needed to derive
a full covariance matrix, especially the off-diagonal terms
depicting cross-variable relations. Knowledge of this obvi-
ous weakness in the presented approach paves the road for
the planning of future experiments: an ensemble of neXtSIM
runs (with perturbed forcing) should be used for evaluating
uncertainties in the model variables, detecting the covariance
between the observed deformation and the model state (not
just damage and concentration), and eventually updating the
model state using state-of-the-art DA techniques.

5.2 Impact of damage and concentration assimilation

As indicated in Olason et al. (2022), neXtSIM is a damage
propagation sea ice model, and damage is used for chang-
ing elasticity and viscosity. So why is it that we cannot see
the impact of damage assimilation in our experiments? We
believe there are two major reasons for that. First, both the
inverse operators H ′d and H ′A assume linear dependence on
the observed total deformation (see Eqs. 20, 21); however,
stiffness is reduced linearly with damage and exponentially
with concentration (see Eqs. 2, 3). Therefore, for a similar in-
crement in the observed deformation, the impact on stiffness
is larger through concentration than through damage.

The second reason is that the damage acts in the model
at much smaller timescales than our observations of sea
ice deformation. Damage can increase from 0 to 1 in just
a few model steps before it eventually starts to decay due
to a thermodynamical healing mechanism. The increase of
damage takes only a few minutes of simulated time, during
which apparent sea ice elasticity and viscosity are propor-
tionally decreased, and large-scale and permanent deforma-
tion is allowed, accompanied by sea ice internal-stress relax-
ation. The available observations of deformation are taken on
timescales of 24 h and cannot detect such rapid processes.
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Figure 8. Results of individual sensitivity experiments as scatterplots of 1−AMCC error on x axis and KS error on y axis, with discrete
values of parameters shown by colour (with a corresponding discrete colour bar). The red circle in panel a1 shows the points with the lowest
1−AMCC and KS metrics that were selected as the best parameters.

The hypothesis that concentration and damage act on dif-
ferent timescales was tested in an idealised twin experiment:
an initially intact ice field (d = 0 andA= 1 everywhere) was
broken up along realistic LKFs. In one experiment, the ele-
ments in the LKFs were initiated by reducing the concentra-
tion to 0.65 and by increasing the damage to 1 in another one.
The evolution of damage and concentration in several thou-
sand elements with broken-up and intact ice was studied (see
Fig. 9).

The study shows that, in the case where LKFs are initi-
ated by reduced concentration (Fig. 9a), the situation is quite
simple: the concentration of ice in the unbroken elements is
stably high, and in the broken elements, it is first low and
then stably increases due to freezing (and convergence).

For the second experiment (Fig. 9b), the situation is quite
different: in the initially unbroken elements, the average
damage remains relatively low (0.7–0.85), but damage vari-
ations are very large, with standard deviations reaching 0.2.
This happens because, in some unbroken elements that sur-
round the initiated cracks, the internal stress exceeds the
Mohr–Coulomb envelope, and damage increases up to 1 on
very short timescales (few time steps). Further, a cascade of
damage events occurs in the neighbouring elements of these
newly broken elements. The probability of breakup (damage
increase) is higher in directions of high internal stress. Thus,
the information about the initiated damage is almost instantly
forgotten – it is masked by many newly damaged elements.

Large-scale observations of deformation at an hourly fre-
quency could probably be used to test our hypothesis of how
damage propagates in reality and to illustrate whether or not
the assimilation of damage indeed leads to a more accurate
deformation field on small timescales. However, we assim-
ilate and validate against daily observations that show only
long-term memory in ice weakness, expressed in reduced ice
concentration.

5.3 Experiments with mEVP rheology

To test the feasibility of improving sea ice deformation fore-
casts with visco-plastic models, two additional experiments
were run with the modified elasto-visco-plastic rheology

(mEVP, Bouillon et al., 2013) that has been implemented
in neXtSIM (Olason et al., 2022). In these experiments, we
reduced the fraction of older ice (A) as this is the variable
that affects the sea ice strength (P = P ∗he−C(1−A), Hibler,
1979). In one experiment, a1 (Eq. 21) was set to 0.9, and in
the other one, it was set to 2, with εmin = 0.02 and wc = 1 in
both experiments. The model with the mEVP rheology was
run with the default parameters described by Olason et al.
(2022).

Comparing Figs. 3 and 10, one can notice that the mEVP-
based forecasts without assimilation are smoother and that
the magnitude of total deformation is lower, which agrees
well with the findings of Olason et al. (2022). On the first
day after assimilation (Fig. 10, upper row) sharp features ap-
pear in the places where the LKFs were assimilated. Some
of the features correspond well to the observations, which
is reflected in the high values on the MCCDA map. The
area where the correlation with observations in the fore-
cast with DA is better than without DA (pink colour on the
MCCDA−MCCNODA map) is similar to the area in the BBM-
based experiments (Fig. 3). On the second and third days af-
ter assimilation (second and third rows in Fig. 10) the impact
of assimilation becomes weaker: the sharp features gradually
become smoother and disappear, and both the correlation and
the area with DA impact decrease.

Looking at the average growth of forecast error (Fig. 11
compares experiments with assimilation or real observations
using the BBM and mEVP rheologies), we can see that the
error is nearly the same on the first day, but for the mEVP
experiments, it grows faster, reaches a higher value (≈ 0.9),
and saturates later. With a1 = 2, the error grows somewhat
slower but reaches a similar saturation level. We conclude
that the assimilation of satellite-derived deformation through
the reduction of concentration improves LKF forecasts in
both brittle and visco-plastic models. With a similar setup
(i.e. spatial resolution equals 10 km, Lagrangian advection
scheme, finite-element integration method), the model based
on a visco-plastic rheology produces forecasts with a higher
error.
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Figure 9. Mean and standard deviation of concentration (a) and damage (b) in experiment with breaking ice resulting from a reduction
in concentration (a) and damage (b). Red lines show the average for broken elements, and blue lines show the average for the unbroken
elements (background).

Figure 10. Same as Fig. 3 but with mEVP rheology experiment (a1 = 0.9).

5.4 Towards an evaluation of short-term sea ice
predictability

How predictable sea ice features are at kilometre and daily
scales still remains an open question. Mohammadi-Aragh
et al. (2018) gives a first estimate of the potential predictabil-
ity of LKFs to be 4–8 d using MITgcm ensemble runs per-
turbed with atmospheric conditions from the ECMWF En-
semble Prediction System. They also found that additional
perturbations in the initial sea ice thickness do not contribute
significantly to the forecast error growth in LKFs. The cur-
rent study provides a new predictability estimate in a differ-

ent context. Our results show that the deterministic forecast
of LKFs gains prediction skill for 3–4 d after assimilating
deformation observations, indicating the clear impact of im-
proving the accuracy of sea ice initial conditions.

More generally, in real-world applications, the prediction
skill of sea ice LKFs depends on several sources of un-
certainty in the system (listed below); thus, further studies
are needed to address each of them and to build a com-
plete picture of the current prediction skill of sea ice at daily
timescales and of the room for future improvements.
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Figure 11. Evolution of errors of forecasts based on the BBM (red
lines) and mEVP (grey and black lines) rheologies. EVP1 denotes
the experiment with a1 = 0.9, and EVP2 denotes the experiment
with a2 = 2. Other notations correspond to Fig. 6.

– Uncertainties in atmospheric and ocean forcing. The
accuracy of contemporary atmospheric and ocean fore-
casts is quite high (Zhang et al., 2019; Xie et al.,
2017). Nevertheless, while forcing the ice model with
slightly inaccurate wind fields or ocean currents may
only slightly change the ice drift pattern, the ice de-
formation, being a spatial derivative, will be affected
more. Surface wind variability is an important source of
sea ice uncertainties (Rabatel et al., 2018; Cheng et al.,
2020). A recent study showed that increasing the ac-
curacy (resolution) of atmospheric boundary conditions
improves the representation of extreme sea ice breakup
events in the neXtSIM during the passage of polar cy-
clones (Rheinlænder et al., 2022). More comprehensive
studies are needed to evaluate the impact of external-
forcing uncertainties on sea ice LKF forecasts at daily
timescales.

– Rheology and model parameterisation. Uncertainties in
rheological parameters were shown to be another er-
ror source for sea ice forecasts (Urrego-Blanco et al.,
2016; Cheng et al., 2020). The BBM rheology (Ola-
son et al., 2022) was implemented in neXtSIM quite
recently to replace the previous Maxwell elasto-brittle
rheology of Dansereau et al. (2016). It was only cali-
brated by comparing statistical properties of sea ice de-
formation derived from the RGPS observation dataset
(Kwok et al., 1990) and large-scale sea ice thickness and
drift time series, and it has not yet been tuned for pre-
dicting the exact position of cracks in the sea ice cover,
which may impact the predictability we obtain in this
study. Tuning of the BBM rheology regarding the speed
of damage propagation, modifying the constitutive re-
lation, or improving the numerical implementation of
the co-evolution of stress, damage, and concentration
could improve the practical predictability of LKFs. The
mEVP rheology could also be further tuned by chang-

ing the number of sub-cycles or by adding a damage
parameter (e.g. as in Savard and Tremblay, 2023).

– Model numerics. In neXtSIM, the model equations are
derived and solved on a triangular mesh that deforms
with the ice motion in a pure Lagrangian approach. In
addition to the physics of the rheological model, this
Lagrangian approach may contribute to improving the
localisation of cracks in space and time. However, in
this framework, a remeshing procedure is used when
the mesh becomes too distorted in order to replace too-
skewed triangles with nearly isosceles triangles. After
the remeshing procedure, the model variables are inter-
polated from the old to the new mesh using a conserva-
tive interpolation via supermesh construction. This re-
sults in a diffusion of the model fields and likely impacts
the predictive skill of the model. Ongoing work of im-
plementing the BBM rheology in an Eulerian version of
the neXtSIM model using a discontinuous Galerkin ad-
vection scheme will allow us to study the impact of the
use of a fixed Eulerian grid compared to the use of a La-
grangian mesh on the efficiency of the data assimilation
method and sea ice deformation predictability.

– Initial conditions for sea ice states. The impact of un-
certainties in initial conditions can be revisited using
neXtSIM with the new BBM rheology. Future stud-
ies could run ensembles of neXtSIM simulations with
perturbations of ice thickness (mean or distribution),
concentration, damage, and ice-type variables to assess
the propagation of errors between variables and across
scales and to evaluate their impact on predictability.

– Observation network and data assimilation. In practice,
the choice of DA method and the availability of observa-
tions will also impact the accuracy of initial conditions
and therefore impact the predictability. In this study, we
made a first attempt to assimilate deformation derived
from the operationally available sea ice drift product
from the Copernicus Marine Services, which provides
information at daily timescales for sea ice features. Fu-
ture studies can assess how observations on different
scales (e.g. with higher spatial and temporal resolutions)
impact the predictability. Also, DA performance can be
further improved in future studies using more sophisti-
cated methods to further improve the accuracy in initial
conditions.

6 Conclusions

The presented method for the assimilation of satellite-derived
sea ice deformation into a sea ice model efficiently inserts
information about where the ice is mechanically weak and
improves forecasts of ice deformation for the first 3–4 d. De-
spite using a relatively simple data insertion approach, the
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spatially discontinuous satellite observations of deformation
are extrapolated by the model, connecting the elements of
linear kinematic features in a realistic manner. The main idea
behind the proposed method is to relate local sea ice weak-
ness to local reduced ice concentration and increased ice
damage, which are computed as functions of observed ice de-
formation. Notably, this approach was tested with both BBM
and mEVP rheologies implemented in neXtSIM; therefore,
our results can be generalised to both visco-plastic and brit-
tle frameworks that are used by a wide community of sea ice
modellers. The experiments with the parameters of the DA
scheme show that updating concentration substantially im-
proves predictive skills on the synoptic scale, whereas updat-
ing damage has an effect only on timescales of a few hours,
which is difficult to confirm by satellite observations. It is an-
ticipated that an update of the ice damage with more frequent
observations will play a bigger role in increasing the accu-
racy of the short-range forecasts. The presented approach can
already be used in operational forecasting systems for im-
proving deterministic forecasts, or it can be developed fur-
ther and integrated into a variational assimilation approach
based on ensemble runs.

Appendix A: Inverse observational operators and
quality metrics

A1 Inverse observational operator for damage H ′
d

The operator H ′d (Eq. 20) is established from the following
considerations. A true relationship between deformation and
model variables is multivariate and involves nonlinear depen-
dencies on the external forcing: for example, even fully dam-
aged ice will not deform without winds or currents. Satellite
observations and previous studies with the neXtSIM model
show that the values of ice deformation follow a log-normal
distribution (Marsan et al., 2004; Rampal et al., 2019). Our
simulations (Fig. A1, A) show that a linear relationship can
be established between damage and total deformation in log-
log space, i.e.

log10(k1+ 1− d)= k2+ k3log10(εtot), (A1)

where k2 and k3 are linear regression coefficients, and k1 is a
small offset to prevent damage from getting too close to 1 (a
critical value that damage should never reach in progressive
damage models; Amitrano et al., 1999).

The coefficients k1, k2, and k3 are found empirically fol-
lowing two steps. First, both the damage (d) and the sim-
ulated deformation (εtot) are taken from the truth run, and
the preliminary parameters are found by the minimisation in
Eq. (19). The scatterplots in Fig. A1 and B compare the simu-
lated damage (in log10(1−d) space) with the damage recon-
structed from the simulated εtot using the inverse operator,
showing reasonable agreement despite the aforementioned
factors. The maps in Fig. A2 compare the simulated defor-

Table A1. Parameters of H ′
d

operator after two steps of tuning.

k1 k2 k3

do
1 0.05 −2.7 −0.9
do

2 0.01 −3 −1.2

mation, simulated damage, and damage reconstructed from
simulated deformation using H ′d and show good agreement
for large values of damage. In the range of low deformations,
we note, however, that the agreement is not as good.

In the second step, the deformation is taken from satellite
observations (εo

tot), and damage is derived by the inverse op-
erator using the preliminary coefficients do

1 =H
′

d(ε
o
tot). Com-

parison of the probability distribution functions (PDFs) of
the simulated damage (d, blue area in Fig. A3) and the re-
constructed damage (do

1 , red line in Fig. A3) shows devia-
tions of PDFs due to the initial differences between the sim-
ulated and observed frequency distributions of deformation
that result from varying integration times of satellite obser-
vations, noise in observations, and uncertainties in simulated
ice drift. The coefficients k1, k2, and k3 are updated in a
semi-automatic multivariate minimisation of the difference
between the PDFs, and do

2 is computed using the updatedH ′d
(black line in Fig. A3). Values of the H ′d parameters after the
two steps are given in Table A1, which shows that the his-
togram fitting changes the values only marginally.

A2 Inverse observational operator for concentration
H ′
A

The simpler form of operator H ′A (Eq. 21) can be justified
by the fact that the decrease in concentration purely due to
divergence can be given by an integral of the divergence rate
(εdiv) over time; therefore, the coefficient a1 relates to the
integration time. However, in Eq. (21), the concentration of
older sea ice is a function of εtot assuming that ice breaks and
becomes weaker due to convergence, divergence, and shear.
Therefore, Eq. (21) is not a strict relation, and the parameter
a1 is derived empirically in the sensitivity experiments. An
optimal value of a1 is selected to keep both quality metrics
AMCC and KS as low as possible (see Sect. 4.4 and Fig. 8).
Note that, unlike Eq. (19), the optimisation is performed here
in the space of observed and simulated total deformation:
max
H ′
(AMCC(εtot,ε

o
tot)).

The comparison of simulated deformation, simulated con-
centration, and reconstructed concentration is provided in
scatterplots (Fig. A4) and on maps (Fig. A5). The overall
agreement between simulated and reconstructed concentra-
tions is good, but the simulated concentration is low only in
areas where the divergence is high, whereas the reconstructed
concentration is also lower in the areas with strong conver-
gence or shear and represents weaker sea ice.
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Figure A1. Comparison of simulated total deformation εtot, simulated damage d , and damage reconstructed from simulated deformation dr

using Eq. (20). The black line in panel (b) shows the one-to-one relation. Colours show density of points. Values of reconstructed damage
below 0.5 (high log10 (1−d ′)) are not shown in panel (b).

Figure A2. Comparison of maps of simulated total deformation εtot, simulated damage d , and damage reconstructed from simulated defor-
mation dr for 5 January 2020.

Figure A3. Comparison of probability density functions of simu-
lated damage (d) and damage reconstructed from Copernicus Ma-
rine Services (CMEMS) observations of deformation using the first
(do

1 ) and the second (do
2 ) sets of coefficients for H ′

d
.

A3 Using maximum cross-correlation for comparing
deformation fields

The satellite-derived sea ice deformation field is a rasterised
product with a size of 900×900 pixels and with a spatial res-
olution of 10 km. The simulated sea ice deformation is com-
puted on the model triangular mesh using contour integrals of
the ice drift velocity (for details of deformation computation
see, e.g. Rampal et al., 2016). Then the deformation field is
rasterised – it is resampled from the model mesh to the grid of
the satellite observations using a nearest-neighbour method.
Comparison between the two gridded deformation products
(e.g. derived from satellite observation and obtained from
a simulation) is performed by computing maximum cross-
correlation (Brunelli, 2009) as explained below.

The grid of the tested product is split into smaller square
matrices of size N ×N pixels (called the template), and the
grid of the reference product is split into slightly larger matri-
ces (with sizeK×K pixels, referred to as the image) with the
same geographic location of the centre of the corresponding
matrices. The cross-correlation matrix (CCM) between the
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Figure A4. Comparison of simulated total deformation εtot, simulated concentration A, and concentration reconstructed from simulated
deformation Ar using Eq. (21). The black line in panel (b) shows the one-to-one relation.

Figure A5. Maps of simulated divergence εdiv, concentration A, and concentration reconstructed from simulated total deformation Ar for
5 January 2020. The map of total deformation used for reconstruction of Ar is shown in Fig. A2a.

template and the image is computed as follows (see also the
scheme in Fig. A6):

R(x,y)=
∑
x′,y′ (T

′(x′,y′) · I′(x+ x′,y+ y′))√∑
x′,y′T′(x′,y′)2 ·

∑
x′,y′ I′(x+ x′,y+ y′)2

T′(x,y′)= T(x′,y′)− 1/(w ·h)
∑
x′′,y′′

T(x′′,y′′)

I′(x,y′)= I(x′,y′)− 1/(w ·h)
∑
x′′,y′′

I(x′′,y′′), (A2)

where T is the template, and I is the quantised image; x′ and
y′ are column and row coordinates of the centre of the image,
and x and y are column and row coordinates of the CCM.

The maximum value from the CCM is used as a mea-
sure of similarity between the template and the image. The
difference between the size of the template and the image
((K −N)/2) defines the tolerance of the geographical mis-
placement of the tested and reference deformation fields. In
our case, we used a template with a size of K = 30 pixels
and an image with a size of N = 36 pixels, meaning that a
misplacement of 30 km was tolerated.

Figure A6. Scheme of computing the maximum cross-correlation.

Data availability. TOPAZ4 ocean-forcing data and sea ice defor-
mation data are publicly available at the Copernicus Marine Ser-
vices portal:

– https://doi.org/10.48670/moi-00001 (Copernicus Marine Ser-
vice, 2023a),

– https://doi.org/10.48670/moi-00135 (Copernicus Marine Ser-
vice, 2023b).
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ECMWF atmospheric-forcing data are available on the ECMWF
website: https://www.ecmwf.int/en/forecasts/datasets (last access:
5 October 2023; Owens and Hewson, 2018).

neXtSIM code used in the present paper is not publicly available.
The forecasts are available upon request.
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