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Patients with Parkinson’s disease (PD) exhibit distinct abnormal postures, including

neck-down, stooped postures, and Pisa syndrome, collectively termed “abnormal

posture” henceforth. In the previous study, when assuming an upright stance,

patients with PD exhibit heightened instability in contrast to healthy individuals

with disturbance, implying that abnormal postures serve as compensatory

mechanisms tomitigate sway during static standing. However, limited studies have

explored the relationship between abnormal posture and sway in the context

of static standing. Increased muscle tone (i.e., constant muscle activity against

the gravity) has been proposed as an underlying reason for abnormal postures.

Therefore, this study aimed to investigate the following hypothesis: abnormal

posture with increased muscle tone leads to a smaller sway compared with that in

other postures, including normal upright standing, under the sway minimization

criterion. To investigate the hypothesis, we assessed the sway in multiple

postures, which is determined by joint angles, including cases with bended hip

joints. Our approach involved conducting forward dynamics simulations using a

computational model comprising amusculoskeletal model and a neural controller

model. The neural controller model proposed integrates two types of control

mechanisms: feedforward control (representing muscle tone as a vector) and

feedback control using proprioceptive and vestibular sensory information. An

optimization was performed to determine the posture of the musculoskeletal

model and the accompanied parameters of the neural controller model for each

of the given muscle tone vector to minimize sway. The optimized postures to

minimize sway for the optimal muscle tone vector of patients with PD were

compared to the actual postures observed in these patients. The results revealed

that on average, the joint-angle di�erences between these postures was <4◦,

which was less than one-tenth of the typical joint range of motion. These results
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suggest that patients with PD exhibit less sway in the abnormal posture than in

other postures. Thus, adopting an abnormal posture with increased muscle tone

can potentially serve as a valid strategy for minimizing sway in patients with PD.

KEYWORDS

Parkinson’s disease, abnormal posture, computational model, musculoskeletal model,

neural controller model

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder that

primarily affects patients aged >60 years. The incidence of PD

increases alongside the aging population (Van Den Eeden et al.,

2003; Poewe et al., 2017). The motor symptoms of PD encompass

rigidity and postural instability (Balestrino and Schapira, 2020),

with the former being linked to increased muscle tone, which is

continuous muscle activity against gravitational forces (Doherty

et al., 2011; Ivanenko and Gurfinkel, 2018).

Patients with PD exhibit a distinct abnormal posture during

standing, typified by conditions such as neck-down and stooped

postures and Pisa syndrome (Doherty et al., 2011). These postures

often cause back pain and compromise lung capacity, exerting a

substantial influence on overall quality of life of patients (Bloch

et al., 2006; Doherty et al., 2011). Moreover, these abnormal

postures vary among patients with PD, presenting a range

of postural configurations collectively categorized as abnormal

posture. The pathology underlying these abnormal postures

remains ambiguous, prompting the formulation of multiple

hypotheses. One prevailing hypothesis points toward rigidity

(Doherty et al., 2011). Studies investigating the interplay between

the truncal muscles and motor symptoms have reported that

hypertonia within the truncal muscles could potentially contribute

to postural deficits (Wright et al., 2007). Additionally, studies have

shown that lidocaine administration to the external oblique muscle

ameliorates abnormal postures, thereby implying that dystonia

within the truncal flexor muscles plays a role in the emergence

of these abnormal postures (Furusawa et al., 2015). These results

underscore a conceivable connection between abnormal posture

and increased muscle tone.

Notably, a relationship between abnormal postures and

postural sway during standing has also been reported. Bloem et

al. proposed that an abnormal posture serves as a compensatory

mechanism to avert backward falls by stabilizing the standing

posture against foot rotation, such as toe lifting (Bloem et al.,

1999). Dietz et al. examined the sway of patients with PD standing

on a treadmill who were subjected to anteroposterior sinusoidal

movement and reported that the patients exhibited increased sway

in upright postures compared with the control subjects, and the

upper body of the former failed to adequately adapt to the imposed

vibration (Dietz et al., 1993). Conversely, Jacobs et al. observed

a reduction in the stability margin [i.e., the difference between

the center of mass (CoM) and center of pressure (CoP)] when

healthy individuals assumed an abnormal posture, suggesting that

individuals who adopt an abnormal posture are more prone to

falls when exposed to disturbances (Jacobs et al., 2005). This is

inconsistent with the idea that abnormal posture compensates

for fall prevention (Jacobs et al., 2005). However, in light of the

aforementioned experiments conducted by Dietz et al., it was

determined that under perturbed conditions, patients with PD in

an upright posture exhibit greater sway than healthy individuals

standing in an upright posture (Dietz et al., 1993). Thus, patients

with PDmay be able to stand with less sway in an abnormal posture

than in an upright posture.

Minimizing sway is one of the objectives of human postural

control during static standing. To achieve this, one approach

involves adjusting the positions of the CoP and CoM to remain

within the base of support (Massion et al., 2004; Horak, 2006).

However, even when the position of the CoM is within the base of

support, a high CoM velocity can lead to instability and potential

falling. Therefore, CoM velocity is equally important to keeping

the CoM within the base of support to maintain balance while

standing (Pai and Patton, 1997). Based on these findings, in the

case of patients with PD exhibiting increased muscle tone, sway

in abnormal postures (particularly CoM velocity) may be less

pronounced than in other postures. However, studies regarding

abnormal postures and sway during static standing are limited, and

the aforementioned studies only focused on abnormal posture and

sway under disturbance.

Given that patients with PD often display abnormal postures

even in the absence of external perturbation while static standing,

it is important to uncover the relationship between such abnormal

postures and postural sway during static standing to understand

abnormal postures in depth and apply corrective measures.

Hence, this study aimed to scrutinize the hypotheses concerning

the association between abnormal postures and postural sway

during static standing. As previously noted, existing research

has hinted at a connection between abnormal posture, increased

muscle tone, and postural sway (Dietz et al., 1993; Bloem et al.,

1999; Jacobs et al., 2005; Doherty et al., 2011). Therefore, this

study examined the following hypothesis: abnormal posture with

increased muscle tone leads to smaller sway compared with that in

other postures, including normal upright standing, under the sway

minimization criterion.

2. Methods

2.1. Overview

To assess the abovementioned hypothesis, it is essential to

evaluate the extent of postural sway across diverse standing

postures determined via the combinations of joint angles in
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the presence of increased muscle tone. Herein, we performed

forward dynamics simulations involving a computational model

encompassing a musculoskeletal model representing the human

body and a neural controller model responsible for regulating the

musculoskeletal model while also representing muscle tone. This

model enables the determination of postural sway magnitude for

various given sets of parameters, including overall body muscle

tone, posture of the musculoskeletal model (joint angle), and

parameters of the neural controller model.

While muscle tone might be elevated in patients with PD, the

precise measurement of comprehensive whole-body muscle tone in

such patients is challenging. To tackle this concern, the concept of

muscle tone vector is introduced, which represents the muscle tone

across the entire body, to accomplish the study objective through

the following approaches:

(1) We calculated the muscle tone vector for each patient with PD

so that the simulated posture and sway could reproduce the

experimental posture and sway.

(2) We compared the simulated postures at the calculated muscle

tone vectors with the experimental postures.

2.2. Problem setting

2.2.1. Tasks
Herein, we focused on the abnormal postures and postural

sways observed in patients with PD during static standing.

Consequently, the objective assigned to the computational

model is to maintain a static standing posture for 5 s.

Scaling and forward dynamics simulations were performed on

the musculoskeletal simulators, OpenSim (Delp et al., 2007;

Seth et al., 2018) and SCONE (Hyfydy) (Geijtenbeek, 2019,

2021).

2.2.2. Attempts
We made the following assumptions about human

postural control.

• One of the objectives of human postural control is minimizing

of the CoM velocity during static standing.

The aims of human postural control encompass the

manipulation of both the positions of the CoM and CoP to

ensure that they are within the base of support (Massion et al.,

2004; Horak, 2006). Studies have highlighted the significance

of the position and velocity of CoM as an escalation in the

velocity poses a challenge to maintaining equilibrium (Pai

and Patton, 1997). Furthermore, it has been proposed that

among the CoM position, velocity, and acceleration utilized

for stabilizing human postures during static standing, CoM

velocity is the most precise indicator (Jeka et al., 2004).

This perspective underscores the vital role of CoM velocity

within postural control in static standing. Accordingly, the

objectives of human postural control include maintaining the

CoM position within the base of support and minimizing the

CoM velocity.

2.3. Computational model

This section delineates the computational model utilized in the

present study. An overview of the model is depicted in Figure 1.

Further details concerning the computational model can be found

in our previous publication (Omura et al., 2022).

2.3.1. Musculoskeletal model
We utilized a musculoskeletal model encompassing 21 degrees

of freedom (DOF) and 94 muscles, as proposed in our study,

to represent the human body (Omura et al., 2022). Typical

abnormal postures among patients with PD encompass hip and

knee flexion, while severely abnormal posture also includes neck

flexion (Doherty et al., 2011). In conjunction with these DOFs,

the musculoskeletal model incorporates joint DOF for the back

and ankles. The musculoskeletal model with these joint DOF

can reproduce the abnormal postures of patients with PD. The

musculoskeletal model was scaled to the motion capture data

described below.

2.3.2. Neural controller model
The neural controller model proposed in our study was used

to control the musculoskeletal model (Omura et al., 2022). In

the previous study, this neural controller model was utilized to

replicate human postural sway, and the reproduced sway was valid

as that of humans (Omura et al., 2022). The neural controller model

comprises an FF control mechanism to model muscle tones and

an FB control mechanism employing proprioceptive and vestibular

information and accounts for time delays as well. These control

mechanisms were implemented based on the reticulospinal and

vestibulospinal tracts, which are important for human postural

control (Takakusaki, 2017; Omura et al., 2022). The FB controller

operates with a time delay owing to multiple sources of delay,

including synaptic andmuscle-activation dynamics as well as signal

transmission along sensory fibers (τfb). The summation of time

delay is up to 120 ms (Zajac, 1989; Winters, 1995; Masani et al.,

2006). The output of the neural controller model directed to the

ith muscle is expressed as follows (Jiang et al., 2016; Omura et al.,

2022).

ui = uff,i + ufb,i (1)

ufb,i = ufb,prop,i + ufb,ves,i (2)

ufb,prop = Kp,i

LMT
i (t − τfb)− LMT

i,0

LMT
i,0

+Kd,i

L̇MT
i (t − τfb)− L̇MT

i,0

Vmax
(3)

ufb,ves,i = sigKves,ieves (4)

uff,i and ufb,i are the FF and FB outputs to the ith muscle,

respectively. ufb,prop,i and ufb,ves,i are the FB outputs using

proprioceptive and vestibular information to the ith muscle,

respectively. Kp,i and Kd,i are the FB gains of the ith muscle,

respectively. Kves,i is the vector of the FB gain vector of the ith
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FIGURE 1

Computational model (Omura et al., 2022). It comprises musculoskeletal and neural controller models involving feedforward control, feedback

control, and time delay. uff(t), ufb(t), and u(t) are vectors representing the signals of the FF and FB controls and their sum for all the muscles at t

seconds, respectively. Kp, Kd, and Kves are the FB gains. LMT(t) and L̇
MT

(t) are the muscle length and stretch rate at t seconds, respectively, with

subscript 0 representing the initial value. eves is a vector representing vestibular sensory information. sig is 1 for an extensor muscle and −1 for a flexor

muscle, providing an excitatory signal to the extensor and an inhibitory signal to the flexor. a(t) is the muscle activity at t seconds.

muscle, respectively. LMT
i and L̇MT

i are the length and lengthening

speed of the ith muscle. LMT
i,0 and L̇MT

i,0 are the initial muscle length

and lengthening speed of the ith muscle. τfb is the time delay due

to the signal transmission along sensory fibers (τfb = 40ms). The

sig outputs an excitatory signal to the extensors and an inhibitory

signal to the flexors by being 1 for extensors and−1 for flexors. eves
is the vector that represents the deviations of vestibular information

from the target values.

Let uff, a vector with uff,i in Equation (1) as each element, be a

muscle tone vector. The muscle tone vector can have various values

even for the same posture. ‖uff‖
2, the square of the norm of the

muscle tone vector, represents the index of the height of the muscle

tone of the whole body, which was obtained from the previous

study for comparison (Jiang et al., 2016). A large value of this index

indicates a high muscle tone throughout the body. ufb, prop,i is the

output of the FB control using the muscle length and lengthening

speed of the musculoskeletal model as the FB information to the

ith muscle. ufb, prop,i is the difference from the initial value of

each FB information (LMT
i,0 and L̇MT

i,0 , which are the initial muscle

length and lengthening speed of the ith muscle, respectively)

multiplied by the FB gains, as shown in Equation (3). ufb, ves, i
is the output of the FB control using the position information

(position, angle, velocity, angular velocity, acceleration, and

angular acceleration) of the head of the musculoskeletal model

as the FB information. Moreover, ufb, ves, i is the difference from

the target value of each FB information multiplied by the FB

gains, as expressed in Equation (3). See our previous papers for

details (Omura et al., 2022).

2.4. Posture calculation

This section outlines the approach employed to identify

postures using a computational model. Specifically, our approach

encompasses the following steps: (i) calculating candidates for

muscle tone vectors with varying norms corresponding to the

postures of patients with PD and (ii) for each candidate of muscle

tone vector, determining the posture of the musculoskeletal model

and parameters of the neural controller model. These parameters

are calculated to ensure a static standing with minimal sway,

which was accomplished through an optimization method. The

methodological overview is visually depicted in Figure 2.

The optimization method employed was the covariance matrix

adaptation evolution strategy (CMA-ES), according to the previous

study (Jiang et al., 2016). This method can be used to find postures

with less noticeable swaying at different muscle tone vectors.

2.4.1. Measurement of the posture of patients
with PD

We utilized marker data derived from the standing posture of

patients with PD measured via a motion capture system.
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FIGURE 2

Flowchart of the entire method. The left part of the figure shows the outline of the entire method of the data of one participant. (A) Outline of the

muscle tone vector estimation. (B) Outline of the parameter adjustment procedure. The blue part shows the procedure for the feedback gain

adjustment, and the red part shows the procedure for the posture (target posture) adjustment.

The analysis included eight patients with PD (4 men and 4

women, aged 66.9 ± 8.4 years). Participant information is present

in Table 1. We attached 31 or 59 markers to the entire body of

the participants. The measurements were conducted during static

standing for 5 s using a motion capture system (6-camera, Oqus

3+/Oqus 5+, Qualisys, Gothenburg, Sweden). One trial involved

the patient standing static for 5 s. Each participant performed this

trial twice or thrice. The studies involving human participants were

reviewed and approved by the Ethics Committee at the National

Center of Neurology and Psychiatry (A2019-126). The patients

provided their written informed consent to participate in this study.

We analyzed the first trial with no measurement defects among the

two or three trials. Additionally, in the analysis of static standing,

the measurement data of the initial 4 s of the entire 5 s were

considered owing to some deficiencies in the last 1 s, such as

movement exhibited by several participants. In the case of Sub3,

themarker positionmeasurements were incomplete during the first

0.25 s, thereby necessitating the exclusion of this segment from

our analysis.

To scale the musculoskeletal model, a set of 23 or 27 marker

data points was employed. These markers encompassed the

anterior and posterior superior iliac spines, greater trochanter,

medial and lateral femoral epicondyles, medial and lateral malleoli,

calcanei, 1st and 5th metatarsal heads, acromion processes, head,

C7 vertebrae, TH12, episternum, and xiphoid process of the

sternum. To scale the musculoskeletal model for each patient, the
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TABLE 1 Data obtained from patients with PD.

Participants Age H&Y scale UPDRS part III

Sub1 72 3 26

Sub2 79 3 21

Sub3 66 3 24

Sub4 65 2 48

Sub5 73 2 19

Sub6 69 2 26

Sub7 53 2 17

Sub8 58 2 28

postures of the patients were replicated using a 2 s duration of

marker data. This choice of a 2 s for scaling was motivated by

the potential for error escalation if the posture lacked stability

and encompassed swaying. For scaling and reproduction, we used

the scaling and inverse kinematics (IK) tools of OpenSim (Delp

et al., 2007; Seth et al., 2018). Scaling was executed by adapting the

distances betweenmarkers on themusculoskeletal model according

to the corresponding markers on patients with PD. The subsequent

computation of body weight relied on the ideal body weight

calculations (BMI: 22) (Tokunaga et al., 1991) based on the height

derived from the scaling outcome. Employing IK alongside marker

data, the joint angles of the musculoskeletal model were computed.

This ensured congruence between every marker on the model and

their corresponding counterparts in patients with PD. By adopting

this methodology, the sway exhibited by each patient with PD was

reproduced on the musculoskeletal model.

The posture replicated through IK involved issues related to

ground contact due to disparities between the marker positions

within the musculoskeletal model and those observed in patients

with PD. This discrepancy led to instances where the model’s

feet appeared to hover or were embedded within the floor. These

challenges had adverse implications; for instance, they precipitated

occurrences where the musculoskeletal model either collapsed or

instantly emerged at the onset of forward dynamics simulations.

Consequently, the joint angles of the lower limbs were adjusted

via an optimization method to rectify the ground contact issue

between the feet and the floor of the posture reproduced by IK. The

following evaluation function sought to minimize alterations in the

CoM position of the feet to obtain an appropriate posture. The

optimization method employed for this purpose was the CMA-ES,

akin to its application in the adjustment of the posture and FB gains

within the neural controller model, which has been elaborated upon

subsequently. CMA-ES is an effective evolution strategy for non-

linear and non-convex functions that do not require derivatives

(Hansen, 2016). Therefore, CMA-ES was employed to adjust the

posture and FB gains, which are non-linear and have derivatives

that are difficult to calculate.

Jpos = wforceJforce + wCOMposJCOMpos + wfeetvelJfeetvel (5)

Jforce =

∫ 0.1

0
(|fr(t)− fr(0)| + |fl(t)− fl(0)|)dt (6)

JCOMpos = |xCOM,l − xCOM,exp,l| + |xCOM,r − xCOM,exp,r| (7)

Jfeetvel = (

∫ 0.1

0
|vankle,r(t)| + |vankle,l(t)| + |vsubtalar,r(t)|

+ |vsubtalar,l(t)|)dt (8)

Jforce is a term that evaluates the magnitude of the floor

reaction force. f (t) denotes the floor reaction force in t seconds.

The subscripts r and l denote the right and left foot, respectively.

JCOMpos is a term that evaluates the CoM position relative to the

foot. xCOM and xCOM,exp denote the CoM position relative to the

foot at 0 s and the CoM position relative to the foot as reproduced

by IK, respectively. Jfeetvel is a term that evaluates the angular

velocity of the joints around the foot. vankle(t) and vsubtalar(t)

denote the angular velocities of the ankle and subtalar joints in t

seconds, respectively.

2.4.2. Calculation of candidates for muscle tone
vector

To determine the candidates of the muscle tone vector

associated with the measured posture of each patient with PD, we

first aligned the posture of the musculoskeletal model to replicate

that of the patient. The candidates for the muscle tone vector

were derived using a musculoskeletal model, scaled to the posture

of a patient with PD. The procedural framework is depicted in

Figure 2A. Muscle tone indicates constant muscle activity and is

independent of time delay. Therefore, the experimental posture was

set to the posture of the musculoskeletal model and the posture

was maintained for 5 s under the condition without time delay and

with FB control only, based on previous studies (Jiang et al., 2016).

From these results, the average muscle activity of eachmuscle in the

second half was calculated as the muscle tone. The muscle tone was

obtained using the following equation (Jiang et al., 2016):

uff,i =

∫ t2
t1
ai(t)dt

t2 − t1
(9)

uff,i denotes the muscle tone in the ith muscle. ai(t) denotes the

muscle activity of the ith muscle in t seconds. t1 and t2 are 3 and 5

s, respectively, based on the previous study (Jiang et al., 2016). The

muscle tone vector is given in the following equation:

uff =

[

uff,1 uff,2 · · · uff,94

]

(10)

The muscle tone vectors that could maintain the standing

posture for 5 s for each given posture were not unique and different

muscle tone vectors could do the same job depending on the

values of FB gains used for the simulations. Furthermore, the

muscle tone vectors procured might not necessarily ensure the

model’s ability to maintain a standing posture under circumstances

involving time delays. Moreover, the task of measuring muscle tone

throughout the entire body of actual patients with PD presents

inherent challenges. Therefore, multiple muscle tone vectors need

to be calculated as candidates, from which we can narrow down a

list of muscle tone vectors to the “optimal” one.
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To calculate candidates for muscle tone vector, the given FB

gains were determined via the CMA-ES. It is possible to calculate

muscle tone vectors that have different values by incorporating the

cosine similarity with the already calculated muscle tone vectors

into the evaluation function. To calculate the muscle tone vector

with arbitrary ‖uff‖
2, a term evaluating ‖uff‖

2 is added to the

evaluation function. In addition, two terms for evaluating falls and

the CoM velocity based on assumptions were incorporated. Thus,

the evaluation function is expressed as follows:

Jmt = wfallJfall + wcomJcom + wcosJcos + wuff
Juff (11)

Jfall =
1

Tfail
(Tsimu − Tfail) (12)

Jcom =

∫

(vcom, x(t)
2 + vcom, y(t)

2 + vcom, z(t)
2)dt

Tfall
(13)

Jcos =
1

n

n
∑

i=1

ai · b

‖ai‖‖b‖
(14)

Juff = ‖b‖2 − α (15)

wuff =

{

1 (|Juff | < 0.5)

1000 (|Juff | ≥ 0.5)
(16)

Jfall is a term that evaluates the time to fall. Tfail and Tsimu

denote the time to fall and the simulation time (5 s), respectively.

Jcom is a term that evaluates the CoM velocity. vcom,x(t), vcom,y(t),

and vcom,z(t) denote the CoM velocities in the x, y, and z axes

in t seconds, respectively. Jcos is a term that evaluates the cosine

similarity. n denotes the number of muscle tone vectors calculated

so far. ai denotes the ith calculated muscle tone vector. b denotes

the muscle tone vector to be calculated. Juff is a term that

evaluates ‖uff‖
2 of the muscle tone vector. α denotes ‖uff‖

2 of the

muscle tone vector to be calculated. wfall,wcom,wuff and wcos are

50,000,000, 5,000, 1,000, and 0.1, respectively, based on previous

research, to search for solutions that do not fall and reduce the CoM

speed preferentially (Kaminishi et al., 2019). wuff was considered

according to Equation (16), and the value of the term to evaluate the

cosine similarity relatively increased when the muscle tone vector

was calculated to ensure that the difference between the specified

value and ‖uff‖
2 was< 0.5. Consequently, muscle tone vectors with

varying cosine similarities can be preferentially searched when the

condition of ‖uff‖
2 is fulfilled.

In a previous study employing a comparable computational

model, muscle tone vectors were computed to achieve equidistant

values of ‖uff‖
2. The resulting muscle tone vectors were then

compared with the experimental results of healthy individuals.

This analysis unveiled that the muscle tone vector corresponding

to ‖uff‖
2 = 2.07 yielded muscle activity most akin to that of

healthy individuals in the upright stance (Jiang et al., 2016). Herein,

muscle tone vectors were calculated for ‖uff‖
2 values exceeding

‖uff‖
2 = 2.07. Through the adjustment of α in Equation 15,

specifically setting it at 2, 4, 6, and 8, the computation encompassed

the derivation ofmuscle tone vectors with ‖uff‖
2 values lying within

a range of ±0.5 from these designated magnitudes. To calculate

muscle tone vectors with multiple directions, we repeatedly

computed the muscle tone vector until n = 6 at Equation (14)

empirically (Figure 2A).

2.4.3. FB gains and posture calculation
Using the candidates of muscle tone vectors in the postures

of patients with PD that were calculated in the previous section,

we searched for a posture in which the musculoskeletal model

can maintain a standing posture with minimal sway under

conditions with a time delay. To achieve this, the parameters of

the computational model were adjusted using the optimization

method. The procedure is shown in Figure 2B. The target

parameters are the FB gains and posture (target posture for FB

control). We utilized the posture data of a patient with Parkinson’s

Disease as the starting point. From there, we used forward

dynamics simulation to recreate sway and evaluated the recreated

sway by adjusting the parameters accordingly. The FB gains were

adjusted to maintain the standing posture despite time delays, and

the posture of the musculoskeletal model was modified to find

a posture with less sway. CMA-ES was used as the optimization

method. The evaluation function is expressed as the following

function that evaluates the CoM velocity based on the assumption.

Jparam = wfallJfall + wcomJcom (17)

The FB gains encompass a total of 280 parameters, while

posture involves 21 parameters in total. Simultaneously adjusting

these parameters would lead to an expansive solution space owing

to their high count.

To navigate this challenge, these parameters are alternately

adjusted by tuning the FB gain and posture. The optimization

method seeks to find the optimal values for these parameters. In the

FB gain optimization, the optimal value of the evaluation function

is denoted as J1, whereas in the optimization of the posture, it

is denoted as J2. Each optimization iteration continues until J1
becomes < J2 during FB gain optimization or until J2 becomes <

J1 during posture optimization.

We adjusted the parameters for each muscle tone vector that

was calculated. To evaluate the posture and sway, we used the

muscle tone vector with the smallest evaluation in each ‖uff‖
2. This

resulted in obtaining simulation results with optimized parameters

for 32 conditions, which included 8 participants and 4 muscle tone

vectors each.

2.5. Evaluation

The resulting posture and sway from the simulation using

the optimized parameters were evaluated using the following

procedure. The procedures correspond to the approach (1) and (2)

in Section 2.1..

(1) We selected the muscle tone vector for each patient with PD

so that the simulated posture and sway could reproduce the

experimental posture and sway.
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(2) We compared the simulated postures at the calculated muscle

tone vectors with the experimental postures.

To assess and compare the standing posture and sway as

described in (2.5), several metrics were calculated: (a) mean

difference across all joint angles, (b) difference in the mean CoM

velocity, and (c) standard deviation of all the joint angles. The

evaluation of differences in the standing posture was quantitatively

performed via (a), while (b) and (c) were employed to evaluate

sway. The difference in the mean CoM velocity indicated by metric

(b) was used to assess sway, grounded in certain assumptions.

However, (b) might be inadequate to gauge the sway of individual

body parts such as in cases where two body parts sway in opposing

phases. Consequently, (c) was introduced to evaluate the sway of

each specific body part.

As these metrics possess distinct units, each value was

standardized using the T-score. The aggregate of squared T-scores

was employed as an indicator of posture and sway. The muscle tone

vector that yields the smallest index value for the combined posture

and sway evaluation can be deemed the most optimal. Herein, we

considered it as the muscle tone vector for the patients with PD,

established through the optimizationmethod. During step (2.5), we

used (a) to compare the standing posture at the selectedmuscle tone

vector with the experimental posture.

3. Results

3.1. Posture adjustment

Figure 3 shows the patient postures reproduced from the

measured marker data using IK along with the outcomes of the

posture adjustment process described in 2.5. Notably, Subs 1 and

4 exhibited pronounced trunk flexion. For detailed variations in

joint angles before and after posture adjustment, please refer to the

Appendix in Supplementary material.

3.2. Parameter adjustment

For each participant, six potential candidates were computed

formuscle tone vectors corresponding to α = 2, 4, 6, and 8. In other

words, we could calculate the candidates for muscle tone vectors

with distinct elements using cosine similarities.

For every muscle tone vector, the parameters were adjusted

according to Section 2.4.3. Consequently, across all ‖uff‖
2 values for

each participant, the musculoskeletal model was able to maintain

the standing posture for a minimum of 5 s employing at least

one muscle tone vector. This suggests that the posture and FB

gain necessary for maintaining a standing posture with time

delays can be determined through parameter adjustment using the

optimization method.

3.3. Muscle tones

The index for assessing posture and sway, as detailed in Section

2.5, was computed for each ‖uff‖
2 condition. The indices to

evaluate posture and sway under each condition are depicted in

Figure 4. Among the participants, the muscle tone vectors yielding

the smallest index were ‖uff‖
2 = 4 for Sub2, ‖uff‖

2 = 6 for Subs1,

4, 6, 7, and 8, and ‖uff‖
2 = 8 for Subs3 and 5. These results indicate

that the postural sway in these muscle tone vectors closely matches

the experimental results. In other words, the posture and sway

observed in these muscle tone vectors were the most representative

of actual patients with PD. Previous studies utilizing computational

models (Jiang et al., 2016) have suggested that a muscle tone vector

with ‖uff‖2 = 2.07 is most fitting for healthy subjects. Notably,

‖uff‖2 = 4, 6, 8 exceed ‖uff‖2 = 2.07. Consequently, within the set

of calculated muscle tone vectors (‖uff‖2 = 2, 4, 6, 8), the muscle

tone vector with a larger ‖uff‖
2 than that of healthy individuals

yielded the most suitable posture and sway for patients with PD.

These outcomes are consistent with the observation that muscle

tone is elevated in patients with PD compared with that in healthy

individuals (Burleigh et al., 1995).

3.4. Comparing postures

Figure 5 demonstrates the posture at the muscle tone vector

corresponding to the minimum index for evaluating posture and

sway in Figure 4, juxtaposed with the posture from experimental

FIGURE 3

The abnormal posture of each participant before and after postural adjustment. Di�erent postures are represented for each participant.
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FIGURE 4

Index to evaluate the posture and sway under each condition. ‖uff‖
2 is a measure of the muscle tone vector. In each condition, the di�erences in the

mean CoM velocities, standard deviations of the joint angles, and mean T-score of the di�erences in the joint angles are shown in di�erent colors.

results. This depiction presents postures within the sagittal and

frontal planes. The simulation result with optimized parameters

represents the average standing posture from 1 to 4 s.

Furthermore, Table 2 provides mean values ± standard

deviation (SD) of the joint angle differences for these postures.

The comparison of these postures revealed that the mean joint-

angle difference was <4◦ in all the participants except Sub4 where

it was 5.2◦. Calculating the mean + 2SD corresponding to a 95%

confidence interval under the assumption of a normal distribution

of joint angle differences revealed a mean + 2SD of 5.5◦ for Sub1

and 8.8◦ for Sub4.

To summarize, a quantitative assessment of posture differences

using joint angles (Table 2) displayed a mean difference of <4◦ in

all the participants except Sub4. Additionally, the mean difference

+2SD was <4◦ for all the subjects except Sub1 and Sub4.

Subsequently, a comparison was conducted between the joint angle

differences and range of motion. A characteristic abnormal posture

of patients with PD often involves flexed knees and hips (Doherty

et al., 2011). Consequently, the discrepancy in joint angle and range

of motion was compared in the sagittal plane for the knee and

lumbar joints, as representative examples. Themaximumdifference

in joint angle was 5.2◦ for the knee joint and 5.0◦ for the lumbar

joint, except for in Sub4 (Appendix in Supplementary material).

The ranges of motion for the knee and lumbar joints were

approximately 130◦ and 90◦, respectively (Roach and Miles, 1991;

Dvořák et al., 1995). In essence, the joint angle difference stood at

merely 4.0% of the range of motion for the knee joint and 5.6% of

that for the lumbar joint. Consequently, even in comparison to the

range of motion, the joint angle difference between the simulation

results and experimental outcomes using optimized parameters

remained at < 1/10 of the joint motion range.

4. Discussion

We selected the muscle tone vectors identified in Section 3.3 as

the ones responsible for actuating the joints of patients with PD,

and proceeded to compare the resulting postures. As detailed in

Section 3.4, the mean differences in the joint angles between the

postures optimized to minimize sway and the postures of patients

with PD were ≤ 1/10 of the range of joint motion. This outcome

indicates that the extent of sway is smaller in the abnormal posture

than in other postures.

Conversely, the mean + 2SD of the joint angle exceeded 4◦

only in Sub1 and Sub4. These variations are likely attributable to

differences in disease severity among the patients. For instance,

Sub1 exhibited the longest disease duration and a Hoehn & Yahr

(H&Y) scale score of 3. Similarly, Sub4 exhibited the highest

Unified Parkinson’s Disease Rating Scale (UPDRS) Part III score

compared with those of the other participants, as indicated in

Table 1. These observations point to greater overall PD severity

in Sub1 and more severe motor symptoms in Sub4 compared
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FIGURE 5

Comparison of the standing posture in the simulation results obtained using optimized parameters and the posture in the experiment results at the

muscle tone vector where the index to evaluate the posture and sway in each participant was the smallest. The simulation result shows the average

posture in 1–4 s. (A) Sagittal plane posture, and (B) frontal plane posture.

with that in the other participants. Furthermore, as illustrated

in Figure 3, Subs 1 and 4 demonstrated more pronounced

abnormal postures than the other participants. Reportedly, patients

with advanced PD might experience alterations in soft tissue,

muscles, and even the spinal cord, potentially leading to more

pronounced postural deformities (Doherty et al., 2011). Thus,

it is conceivable that, for Subs 1 and 4, maintaining a specific

posture for an extended period could have contributed to skeletal

deformation, thereby hindering their ability to assume different

postures. The omission of skeletal deformation as a consideration

in our study might have influenced the disparity between the

experimental results and the simulation outcomes obtained with

optimized parameters.

Herein, we calculated multiple muscle tone vectors based on

the observed experimental postures. Additionally, the FB gains

and postures of our computational model were adjusted using

an optimization method for various muscle tone vectors. This

adjustment allowed the musculoskeletal model to sustain the

standing posture, and we sought to identify a posture with reduced

sway starting from the experimental posture. By comparing the

simulation results achieved using the optimized parameters to the

experimental outcomes, we found that the muscle tone vectors
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TABLE 2 The mean value of all the joint-angle di�erences between the

simulation results with optimized parameters and the experimental

results at the muscle tone vector where the index to evaluate the posture

and sway was the smallest ± standard deviations.

Participants ‖uff‖
2 Means of joints di�erence [deg]

Sub1 6 2.7± 1.4

Sub2 4 1.4± 0.2

Sub3 8 2.5± 0.4

Sub4 8 5.2± 1.8

Sub5 8 2.6± 0.4

Sub6 6 0.9± 0.4

Sub7 8 2.2± 1.1

Sub8 6 1.8± 0.3

‖uff‖
2 represents the index of the muscle tone vector.

with ‖uff‖
2 values surpassing those of healthy participants yielded

the closest resemblance to the experimental data. In essence, the

posture and sway achieved through these larger ‖uff‖
2 muscle tone

vectors best replicate the characteristics of patients with PD. This

observation aligns with prior research that highlights increased

muscle tone among patients with PD compared with their healthy

individuals (Burleigh et al., 1995). Furthermore, the disparities in

joint angles between the optimized postures (which minimized

sway) at these muscle tone vectors and the experimental postures

were < 1/10 of the joint range of motion. These findings suggest

that patients with PDwho exhibit increasedmuscle tone experience

reduced sway in their abnormal postures compared with other

stances. Consequently, to effectively mitigate sway in the postural

control of patients with PD, it might be crucial to maintain an

abnormal posture with their increased muscle tone across the

entire body. Therefore, the hypothesis of abnormal posture with an

increasedmuscle tone leading to a smaller sway compared with that

in other postures, including normal upright standing, under the

sway minimization criterion may be effective for postural control

in patients with PD.

Prior research has indicated variations in muscle tone among

different patients, with some exhibiting higher muscle tone while

others exhibiting lower muscle tone levels (Horak et al., 1992;

Yamamoto et al., 2011). The findings of our study revealed that in

all the participants, the muscle tone observed was generally higher

than that in healthy individuals. Therefore, the results of this study

may represent a strategy for patients with higher muscle tone. As

mentioned in the Introduction section, prior experiments involving

lidocaine administration to the external oblique muscle reported

improvements in abnormal postures (Furusawa et al., 2015). In

the same experiment, as the tilt of the tilt table approached 90◦,

abnormal posture became more pronounced alongside an increase

in muscle tone (Furusawa et al., 2015). In addition, a model-

based categorization of patients with PD revealed that the strategies

they employ differ based on ankle flexibility, which is closely

associated with muscle tone levels (Suzuki et al., 2020). Therefore,

patients with lower muscle tone may not exhibit abnormal postures

as prominently.

4.1. Limitation

Herein, we computed muscle tone vectors based on measured

abnormal postures and used an optimization method to determine

postures that minimized sway compared with other postures. As a

result, the postures to minimize sway corresponded to abnormal

postures. Therefore, the muscle tone vectors calculated for patients

with PD in this study reflect abnormal postures. The precise

reasons for the differences in muscle tone vectors between patients

with PD and healthy individuals were not addressed within this

study. Additional research into alterations in muscle tone vectors

is warranted.

As previously mentioned, musculoskeletal anomalies have

been associated with abnormal posture, particularly in patients

with advanced or late-stage PD (Doherty et al., 2011). Herein,

we replicated the postures of patients with PD using a

musculoskeletal model. However, considering musculoskeletal

deformities in patients who exhibited such postures was not

feasible within our study. Gathering comprehensive skeletal system

data for each participant to accurately simulate such deformities

poses significant challenges. Nevertheless, a more comprehensive

exploration of abnormal posture, especially in patients with

later-stage of PD, could be achieved by focusing on established

musculoskeletal deformities and conducting simulations based on

these assumptions.

We focused on the static standing posture and did not delve

into dynamic posture control, such as walking or walking initiation.

Previous research has suggested that abnormal posture functions

as a compensatory mechanism to enhance CoM movement at

the beginning of walking (Jacobs et al., 2005). Investigating the

influence of these postures on dynamic postural control would

be valuable, and simulations involving actions such as walking

initiation could provide further insights into abnormal postures.

We formulated the evaluation function in this study based

on the assumption that minimizing the CoM velocity is essential

during human standing posture control. However, other evaluation

functions such as energy and muscle activity minimization

are also considered in human posture control, but we did

not use them in this study. Nevertheless, considering fall

prevention, the reduction of CoM velocity is crucial, thereby

making the evaluation function we used suitable for exploring

our hypothesis.

Considering that abnormal postures occur because of increased

muscle tone, it may be possible that the higher muscle tone

leads to more abnormal postures. However, abnormal postures

can manifest in diverse ways, encompassing factors such as

foot width and body leaning. Consequently, defining the extent

of postural abnormalities either qualitatively or quantitatively

is challenging.

4.2. Conclusions and future perspectives

Herein, we examined the following hypothesis on abnormal

posture during static standing: abnormal posture with increased

muscle tone leads to smaller sway compared with that in

other postures, including normal upright standing, under the
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sway minimization criterion. We used a computational model

comprising musculoskeletal and neural controller models to

test the proposed hypothesis. The norm of the muscle tone

vector that could reproduce the most appropriate experimental

posture and sway for patients with PD was larger than that

for healthy individuals, consistent with the increased muscle

tone in patients with PD. The average difference in the joint

angles between the experimental posture and the posture to

minimize sway was <4◦ except for one participant. The results

of the computational model suggested that patients with PD

with increased muscle tone display less sway in abnormal

postures than in other postures. These findings suggest that

once the muscle tone of patients with PD becomes that at an

anterior leaning posture, they need to maintain an abnormal

posture because their sway is greater in other postures compared

with that in the abnormal posture. Given the importance of

sway reduction in human postural control, it may be desirable

to maintain abnormal postures more than the other postures

and it may be necessary to alter muscle tone to change the

standing posture. Therefore, the hypothesis described in this

study is considered valid. In future studies, we intend to use

the computational model used in this study to explore the

interplay between walking initiation, disturbances, and abnormal

posture. Additionally, we aim to delve into the connection between

dopamine, the underlying cause of PD, and the parameters of the

computational model.
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