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Currently, control against bovine respiratory disease (BRD) primarily consists 
of mass administration of an antimicrobial upon arrival to facility, termed 
“metaphylaxis.” The objective of this study was to determine the influence 
of six different antimicrobials used as metaphylaxis on the whole blood host 
transcriptome in healthy steers upon and following arrival to the feedlot. One 
hundred and five steers were stratified by arrival body weight (BW = 247 ± 28 kg) 
and randomly and equally allocated to one of seven treatments: negative 
control (NC), ceftiofur (CEFT), enrofloxacin (ENRO), florfenicol (FLOR), 
oxytetracycline (OXYT), tildipirosin (TILD), or tulathromycin (TULA). On day 0, 
whole blood samples and BW were collected prior to a one-time administration 
of the assigned antimicrobial. Blood samples were collected again on days 3, 
7, 14, 21, and 56. A subset of cattle (n  = 6) per treatment group were selected 
randomly for RNA sequencing across all time points. Isolated RNA was 
sequenced (NovaSeq 6,000; ~35 M paired-end reads/sample), where sequenced 
reads were processed with ARS-UCD1.3 reference-guided assembly (HISAT2/
StringTie2). Differential expression analysis comparing treatment groups to NC 
was performed with glmmSeq (FDR ≤ 0.05) and edgeR (FDR ≤  0.1). Functional 
enrichment was performed with KOBAS-i (FDR ≤ 0.05). When compared only 
to NC, unique differentially expressed genes (DEGs) found within both edgeR 
and glmmSeq were identified for CEFT (n  = 526), ENRO (n  = 340), FLOR (n  = 56), 
OXYT (n  = 111), TILD (n  = 3,001), and TULA (n  = 87). At day 3, CEFT, TILD, and OXYT 
shared multiple functional enrichment pathways related to T-cell receptor 
signaling and FcεRI-mediated NF-kappa beta (kB) activation. On day 7, Class 
I  major histocompatibility complex (MHC)-mediated antigen presentation 
pathways were enriched in ENRO and CEFT groups, and CEFT and FLOR had 
DEGs that affected IL-17 signaling pathways. There were no shared pathways 
or Gene Ontology (GO) terms among treatments at day 14, but TULA had 
19 pathways and eight GO terms enriched related to NF- κβ activation, and 
interleukin/interferon signaling. Pathways related to cytokine signaling were 
enriched by TILD on day 21. Our research demonstrates immunomodulation 
and potential secondary therapeutic mechanisms induced by antimicrobials 
commonly used for metaphylaxis, providing insight into the beneficial anti-
inflammatory properties antimicrobials possess.
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1. Introduction

Bovine respiratory disease (BRD) is a multifactorial disease 
complex that has been identified as the cause of approximately 75% 
of morbidity and over 50% of mortality in the feedlot industry (1, 
2). The pathogenesis of BRD culminates from the interactions 
between stressors and environmental risk factors, viral and bacterial 
pathogens, and the host immunological response (3). Due to the 
structure of the beef cattle marketing system, calves are exposed 
to multiple stressors at once, which can result in host 
immunosuppression. A viral infection allows for pathogenic 
bacteria to induce a secondary infection, contributing to the 
development of BRD (4). Moreover, current BRD diagnosis in the 
field is subjective, based on visual assessment of clinical signs 
associated with BRD, and has previously been shown to have poor 
sensitivity (5, 6). As such, metaphylaxis, or the mass administration 
of injectable antimicrobials upon facility arrival, is an effective 
method of controlling BRD (7). With the rise of antimicrobial 
resistance (AMR), exploring mechanisms of how drugs influence 
host immunological responses is imperative to understanding how 
they remain efficacious (8). Examining the host whole blood 
transcriptome and differential gene expression provides insight to 
novel genomic mechanisms associated with immune response to 
antimicrobial administration.

RNA sequencing (RNA-Seq) produces quantitative and qualitative 
data regarding RNA in a biologic sample. It accomplishes this by 
combining high-throughput sequencing methodology with 
computational analysis to quantify transcripts in an RNA extraction 
(9). This technology can be used to identify transcribed genes within 
a cell or tissue, genomic activity at a particular time, and associated 
mechanisms being up- or downregulated over time. RNA-Seq has 
been used to examine development of BRD in multiple tissues against 
different pathogens, differences between sick versus healthy cattle, 
identification of potential biomarkers for BRD, and antimicrobial 
resistance genes among various bacteria (10–15). However, RNA-Seq 
has not been used to specifically investigate the impact of antimicrobial 
administration on the host immunological response through the 
whole blood transcriptome.

Therefore, the objective of this study was to evaluate the effect of 
six different antimicrobials used for metaphylaxis on the host whole 
blood transcriptome of healthy steers upon and following arrival to 
the feedlot. The findings of this study may provide a foundation for 
future research into secondary mechanisms identified as potential 
therapeutic opportunities for BRD.

2. Materials and methods

Animal procedures were approved by the West Texas A&M 
University (WTAMU) Institutional Animal Care and Use Committee 
before study initiation (IACUC protocol #2022.03.002). This research 

was conducted from May 2022 to July 2022 at the WTAMU Research 
Feedlot, near Canyon, TX. This study was carried out in accordance 
with Animal Research: Reporting of In Vivo Experiments (ARRIVE) 
guidelines (16).

2.1. Arrival processing

A total of 105 crossbred steers (243 ± 23.9 kg) were acquired from 
a local grow yard facility in the panhandle of Texas. Previous health 
history records indicated that all cattle received tildipirosin (Zuprevo, 
Merck Animal Health, Madison, NJ), a trenbolone acetate and 
estradiol implant (Revalor-G implant, Merck Animal Health, 
Madison, NJ), an antiparasitic drug (Dectomax, Zoetis, Parsippany-
Troy Hills, NJ), an IBR/BRSV/PI3 vaccine (Nasalgen, Merck Animal 
Health, Madison, NJ), Synanthic oral dewormer (Boehringer 
Ingelheim, Ridgefield, CT), a Titanium 5 vaccine for IBR, BVD Types 
I and II, PI3, and BRSV (Elanco Animal Health, Greenfield, IN), and 
a Bovilis Vision vaccine (Merck Animal Health, Madison, NJ) at label 
dosing during the start of their backgrounding period, 45 days prior 
to arrival at the WTAMU Research Feedlot. Prior to animal arrival 
and every sample collection day, the squeeze chute scale used in this 
study was validated by placing 45.54 kg (50-lb certified steel weights) 
on each side of the chute at a time until a total of 454 kg was validated. 
Upon arrival (day −1), individual body weight (BW) was recorded. 
Additionally, cattle were given identification ear tags and were 
confirmed to be negative for persistent infection with bovine viral 
diarrhea virus (BVDV) via ear notch antigen capture ELISA (PI; 
Cattle Stats, Oklahoma City, OK). Steers were placed in a single 
124.8 m2 pen together overnight with ad libitum access to water, a 
starter diet of 0.5% of their arrival BW, and coastal Bermuda grass hay 
at 0.5% arrival BW.

On day 0, individual BW were collected again and averaged 
with day −1 BW to determine initial BW. Whole blood samples 
were collected via jugular venipuncture into PAXgene Blood RNA 
tubes (QIAGEN, Germantown, MD) prior to a one-time 
administration of the assigned treatment at day 0. Nasopharyngeal 
swabs and fecal samples were also collected on day 0. Blood, BW, 
and nasopharyngeal swabs were collected again on days 3, 7, 14, 21, 
and 56, with fecal samples collected on days 21 and 56; 
nasopharyngeal swabs and fecal samples were collected for a 
separate study. Cattle were evaluated daily for bovine respiratory 
disease (BRD), or other signs of clinical disease, by a trained 
observer and assigned a clinical illness score for BRD (CIS: 0 to 4 
scale). A CIS of 0 is described as a “normal” animal showing no 
clinical signs of illness. A CIS of 1 indicated “mild BRD” with 
elevated respiratory rate, mild-to-moderate anorexia, mild 
depressed attitude, and a shallow, dry cough when viewed at a 
distance. A CIS of 2 indicated a “moderate BRD” steer with a gaunt 
appearance, possible nasal and/or ocular discharge, mild-to-
moderate muscle weakness and depressed attitude, and a persistent 
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shallow, dry cough. A steer assigned a CIS of 3 was considered 
“severe BRD” with labored breathing, purulent nasal and/or ocular 
discharge, productive coughing, loss of alertness, and severe 
depression. A CIS of 4 was deemed “moribund” that was 
unresponsive upon human approach, recumbent and unwilling to 
rise when approached, showed evidence of moderate-to-severe 
dehydration, and marked anorexia. Any steer deemed a CIS of a 1 
or 2 was pulled and treated if the rectal temp recorded was ≥40° 
C. A steer with a CIS of 3 or 4 was treated regardless of rectal temp 
recorded. If a steer was assigned a CIS of 4 and deemed unlikely to 
clinically recover by an on-site veterinarian, it was euthanized via 
AMVA-approved methods. If a steer was pulled but not treated, it 
was returned to its treatment pen. However, if a steer was pulled 
and treated, a blood sample, nasopharyngeal swab, and fecal sample 
were taken before removing the animal from trial. No cattle were 
pulled nor treated for clinical disease after their initial 
administration of treatment at any time throughout this 56-day trial.

2.2. Treatments and experimental design

The BWs collected on day −1 were used to randomly allocate 
cattle to experimental treatments with equal weights via Excel 
RANDBETWEEN function (Microsoft, Redmond, WA). Within 
each treatment pen, there were 15 individuals total. In the pens 
receiving antibiotics, ten individuals were randomly selected for the 
administration of antimicrobial treatment and five received no 
antimicrobial treatment, serving as sentinel controls within each 
treatment pen. Cattle within pens were randomly selected using a 
random number generator in Excel, selecting the five lowest values 
as sentinel controls via RANDBETWEEN function. This experiment 
consisted of seven treatment groups evaluated over a 56-day 
receiving period: (1) negative control, no antimicrobial 
administration (NC), (2) ceftiofur administered subcutaneously at 
the base of the ear at a dosage of 6.6 mg CE/kg BW (EXCEDE Sterile 
Suspension, Zoetis, Parsippany-Troy Hills, NJ) (CEFT), (3) 
enrofloxacin administered subcutaneously in the neck at a dosage 
of 12.5 mg/kg BW (Baytril 100, Elanco Animal Health, Greenfield, 
IN) (ENRO), (4) florfenicol administered subcutaneously in the 
neck at a dosage of 40 mg/kg BW (NUFLOR Injectable Solution, 
Merck Animal Health, Madison, NJ), (5) oxytetracycline 
administered subcutaneously in the neck at a dosage of 4.1 mg/kg 
BW (Noromycin 300 LA, Lenexa, KS) (OXYT), (6) tildipirosin 
administered subcutaneously in the neck at a dosage of 6.2 mg/kg 
BW (Zuprevo, Merck Animal Health, Madison, NJ) (TILD), (7) 
tulathromycin administered subcutaneously in the neck at a dosage 
of 2.5 mg/kg BW (DRAXXIN Injectable Solution, Zoetis, 
Parsippany-Troy Hills, NJ) (TULA). All treatments were 
administered one time per label dosing and administration at day 
0, following Beef Quality Assurance guidelines. To minimize 
interference between treatments, an empty pen was left between 
treatment groups to eliminate nose-to-nose contact. Following 
treatment allocation and sampling on day 0, the NC cattle were 
processed first followed by ENRO, FLOR, TULA, TILD, CEFT, and 
OXYT every sampling day. The sampling order of treatment groups 
was consistent throughout this trial. The chute, tub, and holding 
pens were physically cleaned with soap and brushes, then 
disinfected with Virkon S (Lanxess AG, Cologne, Germany) per 

label instructions between sampling each treatment group across all 
timepoints following day 0.

2.3. Housing and management

Steers were housed in soil-surfaced pens with 20.8 meters2 of 
space allowance. The linear bunk space per  animal was 50.6 
centimeters, and the cattle were fed the same starter diet throughout 
the entire 56-day trial. Cattle were fed once daily at approximately 
1,000 h, and feed bunks were visually evaluated twice daily at 0630 and 
2,130 h to determine adjustments to feed offering. Feed bunks were 
managed according to standard operating procedure at the WTAMU 
Research Feedlot, with a goal of little to no feed remaining at 0630 the 
following morning. Feed samples were collected twice weekly for dry 
matter (DM) determination and a diet composite was taken every 
2 weeks for nutrient composition analysis at a commercial laboratory 
(Servi-tech Labs, Amarillo, TX; Supplementary File S1). Orts were 
collected, weighed, and analyzed for DM determination in a forced-air 
oven at 40.5° C for 24 h and used to adjust DM intake.

2.4. Sample collection and RNA extraction

On days 0, 3, 7, 14, 21, and 56, blood samples were collected into 
PAXgene RNA Blood Tubes (QIAGEN, Germantown, MD) and 
placed on ice packs at approximately 4° C for transportation to the 
Texas A&M University Veterinary Education, Research, and Outreach 
laboratory (Canyon, TX) where they were frozen at −80° C until 
RNA extractions were performed. From the total pool of 630 samples, 
a subset (n = 252) was selected for RNA extraction and sequencing. 
For subset selection, six random animals were chosen from each 
treatment pen over all six timepoints, with the exclusion of sentinel 
controls due to budgetary constraints. The PAXgene Blood miRNA 
Kit (QIAGEN, Germantown, MD) was used in conjunction with 
automated processing via a QIAcube Connect device (QIAGEN, 
Germantown, MD) to isolate total RNA from all samples according 
to manufacturer protocol. Following isolation, RNA quantity (mean 
RNA yield = 2864.9 ± 1319.5 ng) and quality (mean RIN = 8.4 ± 0.7) 
were measured via a Qubit Flex Fluorometer (Thermo Fisher 
Scientific, Waltham, MA) and TapeStation 4,200 (Agilent 
Technologies, Santa Clara, CA), respectively. Complete metadata 
table, including breed identity based on visual inspection (Btau: Bos 
taurus; Ind: Bos indicus), for each individual sample is found in 
Supplementary File S2.

2.5. RNA sequencing and bioinformatic 
processing

Library preparation was performed with the Stranded mRNA 
Library Kit (Illumina, San Diego, CA) per manufacturer’s instruction, 
with 150 bp paired-end sequencing (2×150) performed with a 
NovaSeq 6,000 S4 v1.7+ (Illumina, San Diego, CA; S4 reagent kit, 
v1.5) across three lanes at the North Texas Genome Center (NTGC, 
Arlington, TX); sequencing resulted in a median of 34.1 ± 5.6 M 
paired-end reads per sample. Following sample demultiplexing via 
bcl2fastq2 v2.20, raw sequenced reads were quality assessed with 
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FastQC v0.11.91 and MultiQC v1.12 (17). Reads were subsequently 
trimmed for ambiguous base calling, retained Illumina adaptors, and 
minimum read lengths with Trimmomatic v0.39 (18) (mean 
retainment: 99.486%; σ = 0.003%) using the following parameters: 
“ILLUMINACLIP:TruSeq3.fa:2:30:10:2:TRUE,” “SLIDINGWINDOW: 
4:20,” “MINLEN:28,” “LEADING:3,” and “TRAILING:3.” Following 
read quality assessment and trimming, retained trimmed reads were 
mapped and indexed to the Bos taurus reference assembly 
ARS-UCD1.3 via HISAT2 v2.21 (19) with default parameters. 
Sequence Alignment Map (.sam) files generated from HISAT2 
alignments were converted to Binary Alignment Map (.bam) files via 
Samtools v1.14 (20), with default parameters, prior to transcript 
assembly. Transcript assembly and relative gene-level expression 
estimation was performed via StringTie2 v2.2.0 (21), with default 
parameters and workflow described by Pertea and colleagues (22). 
Following merged Gene Transfer Format (.gtf) file generation of 
expression estimates for each sample, post-processing for the 
appending of ambiguous gene-level identifications (“MSTRG” tags) 
was performed with a custom Perl script provided by Pertea.2 Raw 
gene-level count matrices for each sample were generated with the 
Python3 script prepDE.py3 (22), selecting for an average read length 
(“– 1”) of 150 and all other parameters set to default. All raw 
sequencing data and curated metadata produced by this study are 
available at the National Center for Biotechnology Information Gene 
Expression Omnibus (NCBI-GEO) under the accession 
number GSE225025.

2.6. Differential gene expression analysis

Raw gene counts generated for each sample were processed and 
analyzed in RStudio v2022.02.3 + 492 with the Bioconductor package 
edgeR v3.40.2 (23, 24). All analyses were performed as treatment 
groups versus NC (CEFT vs. NC, ENRO vs. NC, etc.) across all six 
timepoints. The ComBat_seq function in the sva package v3.46.0 was 
used to adjust for batch effects, in the form of sequencing lanes, using 
an empirical Bayes framework in the raw gene counts (25); this was 
applied to all sequencing libraries at the same time. Raw counts were 
processed and filtered using the filterByExpr function in the edgeR 
package as described by Chen et al. (26), utilizing gene counts-per-
million (CPM) of 0.2 across a minimum of 12 samples. Library 
normalization was performed with the trimmed means of M-values 
method (TMM) (27). Differentially expressed genes (DEGs) were 
identified through pairwise comparison of NC and each treatment 
group using likelihood ratio testing (glmLRT) where DEGs were 
considered significant with a false discovery rate (FDR) of ≤0.1. 
Specifically, all edgeR analyses were performed within each time 
point (ex. Day 0, Day 3, etc.) between each treatment group versus 
the negative control group (ex. CEFT vs. NC, ENRO vs. NC, etc.). 
The package glmmSeq v.0.2.0 was used to investigate changes in gene 
expression between treatment groups (28). In this generalized linear 
mixed model, timepoint, group and the interaction of 
timepoint:group were analyzed as fixed effects with breed and animal 

1 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

2 https://gist.github.com/gpertea/b83f1b32435e166afa92a2d388527f4b

ID included as random effects. Heatmapping was performed using 
the R package pheatmap v1.0.12,3 utilizing data-centered and 
normalized z-scores from log2CPM TMM-normalized gene counts; 
Ward’s minimum variance method was used with calculated 
Spearman correlation coefficients, further grouped through k-means 
clustering, and Minkowski distances for clustering dissimilarities by 
row (gene) and column (sample), respectively. The list of DEGs found 
in the glmmSeq and edgeR models were compared in Excel, and 
DEGs identified through group-level comparisons which were shared 
between the lists at each timepoint were identified using a conditional 
formatting rule that highlighted duplicate DEGs between the lists of 
genes from glmmSeq and edgeR. The matching DEGs were then 
annotated using the National Center for Biotechnology (NCBI) gene 
database using the bovine and human reference genomes to annotate 
“LOCI” genes when required. Functional enrichment was performed 
on the resulting lists of shared DEGs at each timepoint found 
between the two analyses (glmmSeq and edgeR).

2.7. Downstream analysis of DEGs

Pathway analysis and Gene Ontology (GO) were performed using 
KOBAS-intelligence v.3.0 (29). Overrepresentation analysis used 
hypergeometric distribution and Fisher’s exact testing to evaluate 
whether the gene symbols entered were overrepresented in a specific 
functional gene set. Pathway databases utilized were KEGG and 
Reactome (30, 31). Benjamini-Hochberg procedure was used for 
multiple hypothesis correction, and the FDR cutoff for significance 
was 0.05 (32). GO terms consist of biological processes, molecular 
functions, and cellular components that the identified DEGs enriched. 
Specifically, functional enrichment analyses were conducted in two 
parts for each treatment group: first by DEGs identified through 
group-level comparisons (i.e., shared genes between glmmSeq (group) 
and edgeR glmLRT pairwise testing) and, second, by those DEGs 
identified by glmmSeq timepoint:group interactions. Additionally, 
principal component analysis (PCA) was conducted with the 
Bioconductor package PCAtools v.2.10.0.4 Metadata components for 
PCA correlational analysis included average daily gain (ADG), animal 
ID, timepoint of sample collection, and treatment group. Intervene 
was used to compute pairwise intersections and plot-associated 
metrics as correlation plots for DEGs of each treatment group at every 
timepoint (33).

3. Results

3.1. Identification of DEGs

A total of 13,890 uniquely identified genes were differentially 
expressed across treatment groups and timepoints, 4,602 of which 
were identified as differentially expressed with both edgeR and 
glmmSeq (Table 1; Supplementary File S3). A heatmap was generated 
to visualize expression patterns across all 252 samples (Figure  1). 

3 https://cran.r-project.org/package=pheatmap

4 https://github.com/kevinblighe/PCAtools
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Hierarchical clustering of samples based on expression patterns of 
DEGs clustered samples by timepoints with days 0, 3, and 7 as the 
most similar on the right and days 14, 21, and 56 grouping on the left 
of the map. There was no clear hierarchical clustering of 
treatment groups.

3.2. Principal component analysis

Using the Elbow method and Horn’s parallel analysis (34, 35), the 
first 12 principal components were chosen, accounting for 47% of the 
variance in the data as seen in Figure 2. The first principal component 
(PC) explained 17.9% of the variance and included the strongest and 
most significant correlation, which was with time (r = 0.67, FDR < 0.01) 
as shown in the Eigencorplot (Figure 3). PC2, which accounted for 
6.14% of variance, was negatively correlated with time (r = −0.16, 
FDR < 0.05). Additionally, PC3 and PC5 were correlated with time as 
well, but in opposite directions (r = 0.22, r = −0.24, FDR < 0.01, 
respectively). The only PCs significantly and negatively correlated to 
treatment groups were PC11 (r = −0.31, FDR < 0.01) and PC12 
(r = −0.4, FDR < 0.01), respectively. These two PCs were also the only 
components with correlations with animal ID (r = −0.16, r = −0.38, 
FDR < 0.05). A biplot of time across all 252 samples demonstrated the 
clustering of samples by timepoint as seen by the ellipses in Figure 4.

3.3. Pairwise intersections

Pair-wise intersections of the number of DEGs shared between 
pairs of antimicrobial treatments at each timepoint, excluding day 0, 
are shown in Figure 5. There was no shared gene expression between 
any paired treatment combinations at day 14, day 21, and day 56. At 
day 3, there were minimal similarities in gene expression shared 
between tildipirosin and ceftiofur with between 107 and 214 DEGs 
shared (Supplementary File S3).

3.4. Gene ontology and pathway 
enrichment analyses

When compared only to NC, unique DEGs were identified for 
CEFT (n = 526), ENRO (n = 340), FLOR (n = 56), OXYT (n = 111), 
TILD (n = 3,001), and TULA (n = 87). At day 0, there were no 
identifiable functional enrichment terms (Tables 2, 3). At day 3, in 
comparison to NC, there were 44 pathways and 49 GO terms that 
were enriched for CEFT DEGs (n = 411). For ENRO, 58 DEGs 
enriched for two pathways and six GO terms at day 3. There were 
28 unique DEGs for FLOR that did not enrich any pathways or GO 
terms at day 3. For OXYT, 93 DEGs were identified with 67 
pathways and 33 GO terms enriched. With the greatest number of 

TABLE 1 Number of DEGs identified for each treatment group at each timepoint.

Timepoint CEFT ENRO FLOR OXYT TILD TULA

Day 3 411 58 28 93 1,074 0

Day 7 33 301 8 10 86 1

Day 14 29 2 7 1 116 32

Day 21 104 1 5 3 2,107 63

Day 56 1 2 3 9 13 1

FIGURE 1

Heatmap of nine clusters of differentially expressed genes identified at all timepoints across all 252 samples. Expression patterns are shown using 
hierarchical clustering of genes in the rows and samples in the columns. Timepoint and treatment group are shown above the heat map under the 
hierarchical tree to identify the sample in each column. Gene-wise variation was standardized using z-score statistics. Color scale (yellow-to-purple) 
represents gene expression levels per sample; yellow and purple colors indicate increased expression and decreased expression, respectively. Note 
that gene hierarchical clustering of gene expression profiles segregates timepoints and treatment groups.
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DEGs identified overall, there were 1,074 unique DEGs identified 
for TILD with a total of 146 pathways and 170 GO terms enriched 
at day 3. There were no DEGs found for TULA shared between 
edgeR and glmmSeq analyses at day 3. CEFT, TILD, and OXYT 
shared multiple functional enrichment pathways related to FcεRI-
mediated NF-kB activation and T-cell receptor signaling, which 
were downregulated in these three treatment groups compared to 
NC at day 3 as seen in Figures  6, 7, respectively. For the latter 
pathway, CEFT shared genes with OXYT and TILD that were 
downregulated which included RPS27A and TAB2, respectively. 
Genes uniquely identified for CEFT for T-cell receptor signaling 
included TAB2, RPS27A, ITK, MALT1, and SKP1. For this pathway, 
OXYT had two genes matching CEFT’s of the five that were 
downregulated: ITK, RPS27A, PRKCQ, ZAP70, and CD3G. Genes 
downregulated in the TILD cattle included TAB2, NFKBIA, CUL1, 
CHUK, PAG1, BCL10, and NCK1. OXYT and TILD shared one 
gene, NFATC2, related to Th17 cell differentiation at day 3 as seen 
in Figure 8. Complete findings of functional enrichment analyses at 
day 3 are found in Supplementary File S4.

In comparison to NC cattle at day 7, CEFT had 33 DEGs that 
enriched 31 pathways and seven GO terms. With the greatest number 
of DEGs identified at this timepoint, ENRO had 301 unique DEGs 
with 42 pathways and 116 GO terms enhanced. There was a decrease 
in DEGs in FLOR with eight uniquely identified genes that enriched 
six pathways and 100 GO terms. Similarly, OXYT had 10 DEGs that 
enriched six pathways and only 24 terms at day 7. For TILD, 86 DEGs 
were found that enriched nine pathways and one GO term, which was 
the positive regulation of T-cell apoptotic process. There were not 
enough DEGs (n = 1) shared between edgeR and glmmSeq results to 
perform functional enrichment on TULA at day 7. At this timepoint, 
ENRO and CEFT enriched for Class I  major histocompatibility 
complex (MHC) mediated antigen processing and presentation 
pathways (Figure 9), while CEFT and FLOR had DEGs that affected 
IL-17 signaling pathways (Figure 10). For the pathway related to Class 
I  MHC, DEGs identified for CEFT, FBXO9 and SKP1, were 
downregulated while DEGs for ENRO (TRIP12, HECTD1, ASB7, 
KLHL42, HERC3, RNF6, and CUL1) were upregulated. Similarly, 
DEGs for CEFT were downregulated compared to upregulated DEGs 
for FLOR related to an IL-17 signaling pathway. CEFT genes included 
CXCL8 and TNFAIP3, and one DEG was identified for FLOR in 
relation to this pathway, CEBPB. Complete findings of functional 
enrichment analyses at day 7 are found in Supplementary File S5.

At day 14, there were 29 unique DEGs identified for CEFT with 
seven and 15 pathways and GO terms enriched, respectively. There 
were not enough DEGs (n = 2) shared between edgeR and glmmSeq 
analyses for ENRO at day 14 to perform functional enrichment. For 
FLOR, seven DEGs that enriched for seven pathways and 83 GO terms 
were identified. There were not enough DEGs (n = 1) identified at day 
14 for OXYT to perform functional enrichment. TILD had 116 unique 
DEGs that enriched four pathways and five GO terms at this 
timepoint. For TULA, 32 DEGs were identified, and the most 
pathways at 232 and 86 terms were enriched. No shared pathways 
between treatments were identified. There were 19 pathways and eight 
GO terms enriched for TULA related to NF- κβ activation, and 
interleukin and interferon signaling. Three genes were enriched for 
these pathways and included RPS27A, IFNG, and CD48. See Figure 11. 

FIGURE 2

Screeplot of principle components 1:12 explaining 47.5% of the 
variance within the dataset. The Elbow and Horn’s parallel analysis 
methods were used to determine the optimum number of 
components to retain.

FIGURE 3

Spearman’s correlation coefficients associated with metadata components for the first 12 PCs. Each animal’s average daily gain (ADG) over the course 
of the trial, time, treatment group (Group), and individual animal tag number (ID) were aspects that possessed significant association with one or more 
PCs.
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Complete findings of functional enrichment analyses at day 14 are 
found in Supplementary File S6.

When compared to NC, 104 unique DEGs were identified for 
CEFT at day 21, and they enriched for one Reactome pathway and one 
GO term. There were not enough DEGs (n = 1) shared between edgeR 
and glmmSeq for ENRO at day 21 to perform functional enrichment. 
FLOR had five DEGs that enriched for 132 pathways and 53 GO terms 

at this timepoint. OXYT had three DEGs identified, but they could not 
be annotated to perform functional enrichment. Once again, with the 
largest number of DEGs, 2,107 genes were identified for TILD and 
enriched for 162 pathways and 185 GO terms. TULA had 63 unique 
DEGs in common between edgeR and glmmSeq that enriched eight 
pathways and four GO terms. There were no shared pathways between 
any treatment groups. At day 21, TILD had 13 enriched pathways 

FIGURE 4

Biplot of PC1:PC2 of time across all 252 samples. The ellipses are colored by timepoint as indicated by the legend. Clustering by each timepoint can 
be seen, indicating time played an important role in explaining the variance within this dataset.

FIGURE 5

Pairwise intersections between the number of DEGs found for every treatment group at each timepoint. Color scale (green-to-blue) shows the 
number of DEGs in common between treatment groups; green and blue represents decreased number of overlapping DEGs and increased number of 
overlapping DEGs, respectively.
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related to cytokine signaling in the immune system as shown in 
Figure 12. Complete findings of functional enrichment analyses at day 
21 are found in Supplementary File S7.

At day 56, CEFT and ENRO did not have enough DEGs (n = 1, 
n = 2, respectively) to perform functional enrichment. However, FLOR 
had three DEGs that enriched for 127 pathways and 53 GO terms. 
There were nine DEGs for OXYT that enriched 23 pathways and 35 
GO terms. For TILD, there were 13 DEGs shared between analyses 
that coded for nine pathways and 36 GO terms. TULA only had one 
DEG identified that did not enrich any pathways or terms. There were 
no specific pathways shared among treatment groups at this timepoint. 
Complete findings of functional enrichment analyses at day 56 are 
found in Supplementary File S8.

For timepoint:group interactions, unique DEGs (FDR ≤ 0.05) 
were found for CEFT (n = 339), ENRO (n = 257), FLOR (n = 319), 
OXYT (n = 236), TILD (n = 373), and TULA (n = 276) 
(Supplementary File S3). Functional enrichment was performed for 
each timepoint:group comparison. There were 14 pathways and 32 
GO terms for CEFT, primarily related to cell scavenging, cell surface 
activity and reception, ion binding and transport, and sarcomere and 
myosin activity. For ENRO, there were 6 pathways and 13 GO terms 
enriched, including the upregulation synthesis of prostaglandins and 
thromboxanes, chloride and calcium channel/cell membrane activity, 
and cell membrane synapse and depolarization. For FLOR, there were 
2 pathways and 15 GO terms, related to lipopolysaccharide binding, 
hydrogen peroxide biosynthesis, collagen and intermediate filament 
organization, and defense against gram-negative bacteria. For OXYT, 
there was enrichment for only 1 pathway and 3 GO terms, of which 
were relatively non-specific and unrelated to immunomodulation. For 
TILD, there were 4 pathways and 14 GO terms enriched, related to the 
positive regulation of neutrophil chemotaxis, extracellular matrix 
structure and receptor interaction, and autophagy. For TULA, no 
pathways were enriched, and there were 11 GO terms, which 
corresponded with carbohydrate binding, ion transport and binding, 
extracellular matrix structure, and defense response against gram-
positive bacterium. Complete findings of functional enrichment 
analyses for timepoint:group interactions for all treatments across all 
timepoints are found in Supplementary File S9.

4. Discussion

Previous research has sufficiently employed the use of 
transcriptomics and RNA-Seq in the exploration of predictive 
biomarkers for BRD, the pathogens involved in development of this 
disease, and the presence of antimicrobial resistance genes (ARGs) of 
the bacterial pathogens associated with BRD. Trials utilizing tissue 
samples such as lung, lymph nodes, and tonsils have demonstrated 
how each viral and bacterial agent acts as a pathogen, causing clinical 
disease (11, 12). More recently, the whole blood transcriptome has 
been investigated for potential predictive molecules, protective 
immunological mechanisms, and regulatory patterns of BRD in beef 
cattle (13, 14, 36, 37). Whole genome sequencing has also been used 
to examine bacterial transcriptome profiles and identify ARGs and the 
drug classifications of which species have developed resistance (10, 38, 
39). Although the findings mentioned above are pertinent to attempt 
to understand BRD and involved pathogens, there is a lack of 
transcriptome research examining the relationship between 
antimicrobials and their effects on the host immunological response. 
Identifying mechanisms and potential secondary properties of 
antimicrobials is important to understanding how drugs maintain 
efficacy despite the rise of AMR.

In this study, we identified 34,267 DEGs associated by day (i.e., 
time) and 1,800 DEGs associated with the interaction of group and 
day in glmmSeq (Supplementary File S3). Based on hierarchical 
clustering of total gene expression across all samples (Figure 1), time 
was a major component in driving discernible gene expression 
patterns; days 0, 3 and 7 clustered while days 14, 21, and 56 shared 
more similar gene expression patterns. The biplot of PC1:PC2 also 
demonstrated the importance of time within this dataset as seen by 
the clustering of the ellipses by timepoint (Figure 4). Time is shown to 
biologically factor in the development of the immune system, where 
progression of the immune systems in calves occurs in small steps 
from conception to maturity at approximately 6 months after birth 
(40). The cells associated with innate immunity, such as neutrophils, 
macrophages, and natural killer cells, are influenced by age and time. 
While neutrophil counts may be  higher in neonatal calves, their 
phagocytic abilities are reduced compared to older calves, as are 

TABLE 2 Number of enriched pathways identified for each treatment group at each timepoint.

Timepoint CEFT ENRO FLOR OXYT TILD TULA

Day 3 44 2 0 67 146 0

Day 7 31 42 6 6 9 0

Day 14 7 0 7 0 4 232

Day 21 1 0 132 0 162 8

Day 56 0 0 127 23 9 0

TABLE 3 Number of gene ontology terms identified for each treatment group at each timepoint.

Timepoint CEFT ENRO FLOR OXYT TILD TULA

Day 3 49 6 0 33 170 0

Day 7 7 116 100 24 1 0

Day 14 15 0 83 0 5 86

Day 21 1 0 53 0 185 4

Day 56 0 0 53 35 36 0
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FIGURE 6

FcεRI-mediated NF- κβ activation gene expression for CEFT, OXYT, and TILD. (A) Trended normalized averages calculated from log10 transformed gene 
expression over time of RSP27A for CEFT. (B) Trended normalized averages calculated from log10 transformed gene expression over time of RSP27A for 
OXYT. (C) Trended normalized averages calculated from log10 transformed gene expression over time of TAB2 for CEFT. (D) Trended normalized 
averages calculated from log10 transformed gene expression over time of TAB2 for TILD. The dots represent the average gene expression level at that 
timepoint, and the bars represent the standard error of gene expression found at each timepoint in each group. NC is represented by the black lines.

FIGURE 7

T-cell receptor signaling gene expression for CEFT, OXYT, and TILD. (A) Trended normalized averages calculated from log10 transformed gene 
expression over time of ITK for CEFT. (B) Trended normalized averages calculated from log10 transformed gene expression over time of ITK for OXYT. 
(C) Trended normalized averages calculated from log10 transformed gene expression over time of TAB2 for CEFT. (D) Trended normalized averages 
calculated from log10 transformed gene expression over time of TAB2 for TILD. The dots represent the average gene expression level at that timepoint, 
and the bars represent the standard error of gene expression found at each timepoint in each group. NC is represented by the black lines.
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macrophages (41). Neutrophil activity increases to adult levels by 
5 months of age (40). When calves enter feedlots at lower weights and 
younger ages, they are predisposed to BRD, largely due to the fact their 
immune system is not always fully developed. In cattle, most of the 
immune system maturity is seen between five and 8 months of age. 
While this does not mean that young calves are not capable of 
responding to antigens, the response may be weaker and thus, easier 
for pathogens to overcome (42). With the addition of novel pathogens, 
their immune systems fail to produce a sufficient response to protect 
them from developing BRD upon arrival to a stocker or feedlot facility 
(42). Previous research suggests that peak clinical signs of disease 
occur 7 to 14 days after peak exposure to viral and bacterial pathogens 
(3, 43, 44). There are other factors that potentially explain the effect 
time had on this dataset, such as physiological stress and acclimation. 
The effect physiological stress can have on a calf ’s immune system can 
lead to prolonged activation of the hypothalamus-pituitary–adrenal 
(HPA) axis, suppressing the immune system and increasing 
susceptibility to disease (45). Additionally, acclimation to a new 
environment and exposure to novel pathogens is a hypothesis to 
consider. In response to this acclimation, many calves’ immune 
systems are unable to mount an appropriate response. Therefore, time 
plays an important role in host immunological response to 
antimicrobials administered metaphylactically.

In the present study, we  identified 4,602 DEGs across the six 
antimicrobials administered (Supplementary File S3; Table  1). 
Regarding functional enrichment of these DEGs 
(Supplementary Files S4–S8), the major functions found across 
treatments included cytokine signaling and T-cell receptor signaling 

pathways. There was no hierarchical clustering by treatment group 
(Figure  1) and no correlations between groups as shown by the 
pairwise intersection plots (Figure 5), suggesting each antimicrobial 
acts through various mechanisms controlled by different DEGs. At 
day 3, FcεRI-mediated NF- κβ activation pathways were enriched for 
CEFT, OXYT, and TILD. As supported by previous literature, ceftiofur 
and oxytetracycline inhibited NF- κβ activation by reducing the 
translocation of NF- κβ from the cytoplasm to the nucleus and via 
phosphorylation, respectively (46, 47). CEFT and OXYT had one 
DEG in common to regulate this pathway even though they affect 
NF- κβ through different mechanisms: RPS27A. To our knowledge, 
there is no published literature regarding tildipirosin’s downregulation 
of FcεRI-mediated NF- κβ activation. However, clarithromycin has 
been reported to inhibit NF- κβ activation in human peripheral blood 
mononuclear cells and pulmonary epithelial cells (48). TILD and 
CEFT share a DEG (TAB2) that enriches this pathway (Figure 6). It is 
inappropriate to assume that they use the same mechanism though 
due to the lack of published literature regarding tildipirosin’s effect on 
FcεRI-mediated NF- κβ activation.

Downregulation of T-cell receptor signaling also occurred at day 
3 by CEFT, OXYT, and TILD. The influence of ceftiofur on T-cells and 
B-cells has been investigated in chicks, and it was found that the 
percentages of both types of cells were decreased (49). A change in the 
specific T-cell type ratio was also observed with decreased percentages 
of CD4+ CD8− cells (49). A study conducted by Platania et al. (50) 
demonstrated that oxytetracycline reduced the proliferative response 
of T lymphocytes through an in vivo model of autoimmune disease 
related to glucocorticoid-induced tumor necrosis factor 

FIGURE 8

Th17 cell differentiation gene expression for OXYT and TILD. (A) Trended normalized averages calculated from log10 transformed gene expression over 
time of CD3G for OXYT. (B) Trended normalized averages calculated from log10 transformed gene expression over time of NFATC2 for OXYT. 
(C) Trended normalized averages calculated from log10 transformed gene expression over time of JAK1 for TILD. (D) Trended normalized averages 
calculated from log10 transformed gene expression over time of NFATC2 for TILD. The dots represent the average gene expression level at that 
timepoint, and the bars represent the standard error of gene expression found at each timepoint in each group. NC is represented by the black lines.

https://doi.org/10.3389/fvets.2023.1272940
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Bigelow et al. 10.3389/fvets.2023.1272940

Frontiers in Veterinary Science 11 frontiersin.org

receptor-related gene (GITR; TNFSRF18) in mice. While tildipirosin 
was not specifically mentioned, another macrolide (rapamycin) was 
reported to interfere with signal transduction pathways required for 
T-cell activation and growth in various species such as mice, pigs, and 
monkeys (50). The inhibitory effects of rapamycin on T-cell activation 
were mediated through the formation of pharmacologically active 
complexes with members of a family of intracellular receptors that are 
signaling proteins required for T-cell antigen receptor 
engagement (50).

The final pathway enriched among multiple treatments at day 3 is 
related to T-helper (Th) 17 cell differentiation. OXYT and TILD have 
one DEG in common for this pathway out of four and seven genes, 
respectively (NFATC2). While, to our knowledge, there is no 
published literature regarding oxytetracycline and Th17 cell 
differentiation, there has been a report of another tetracycline: 
minocycline. Minocycline treatment in mice reduced the production 
of interleukin (IL)-17, and a positive correlation between 
glucocorticoid-induced tumor necrosis factor receptor-related gene 
(GITRL) signaling and Th17 induction has been reported in previous 
literature (51, 52). Tang and colleagues (52) demonstrated that IL-17 
production and Th17 differentiation was triggered by GITLR 
intracellular signaling. Similarly, there was no previous research for 
tildipirosin’s effect on Th17 differentiation. However, clarithromycin, 
another macrolide, was investigated when treating mice infected with 
macrolide antibiotic-resistant Streptococcus pneumoniae (53). 
Clarithromycin administration impaired the frequency and number 
of Th17 cells within the lungs of infected mice. Although the cattle 
treated in the current trial were healthy, metaphylaxis is applied to 

cattle at high risk of developing BRD. Therefore, previous literature 
investigating antimicrobials and their interactions with bacterial or 
viral pathogens is highly relevant to understand the importance of 
mechanisms found by this study.

Class I MHC mediated antigen processing and presentation was 
a pathway enriched by CEFT and ENRO on day 7, but the drugs 
regulated the DEGs in opposite directions. Ceftiofur downregulated 
two genes while enrofloxacin upregulated seven. Another third-
generation cephalosporin, ceftriaxone, has been reported to affect 
antigen presentation by binding directly to the immunogenic peptide 
embedded in MHC or to cell surface proteins, preventing necessary 
processing before the presentation (54, 55). This could potentially 
be the mechanism behind the downregulation of genes in the CEFT 
cattle. The genes upregulated by enrofloxacin were all related to 
ubiquitination and proteasome degradation, which play a central role 
in generating class I MHC antigens. Intracellular foreign or deviated 
host proteins are cleaved into peptide fragments so they can be loaded 
on to class I MHC molecules and presented to cytotoxic T-cells (56).

Similarly, the DEGs enriching the pathway for IL-17 signaling 
were downregulated in CEFT and upregulated in FLOR cattle. No 
DEGs were shared between the two independent comparisons, 
suggesting different genomic processes were in use to regulate IL-17. 
Interleukin-17 is a key cytokine that links T-cell activation to 
neutrophil mobilization and activation, and IL-17 mediates innate 
immunity to pathogens or contribute to the pathogenesis of 
inflammatory disease (57). In previous literature, cefazolin, a first-
generation cephalosporin antibiotic, was shown to interact with IL-15-
dependent TNF-α and IL-17 synthesis (58). Cefazolin reduced 

FIGURE 9

Class I MHC mediated antigen processing and presentation gene expression for CEFT and ENRO. (A) Trended normalized averages calculated from 
log10 transformed gene expression over time of SKP1 for CEFT. (B) Trended normalized averages calculated from log10 transformed gene expression 
over time of HERC3 for ENRO. (C) Trended normalized averages calculated from log10 transformed gene expression over time of KLHL42 for ENRO. 
(D) Trended normalized averages calculated from log10 transformed gene expression over time of RNF6 for ENRO. The dots represent the average 
gene expression level at that timepoint, and the bars represent the standard error of gene expression found at each timepoint in each group. NC is 
represented by the black lines.
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FIGURE 10

IL-17 signaling gene expression for CEFT and FLOR. (A) Trended normalized averages calculated from log10 transformed gene expression over time of 
CXCL8 for CEFT. (B) Trended normalized averages calculated from log10 transformed gene expression over time of TNFAIP3 for CEFT. (C) Trended 
normalized averages calculated from log10 transformed gene expression over time of CEBPB for FLOR. The dots represent the average gene expression 
level at that timepoint, and the bars represent the standard error of gene expression found at each timepoint in each group. NC is represented by the 
black lines.

FIGURE 11

Gene expression downregulated by TULA at T4, day 14, related to NF – κβ activation, macrophage activation, and cytokine production. (A) Trended 
normalized averages calculated from log10 transformed gene expression over time of CD48 for TULA. (B) T Trended normalized averages calculated 
from log10 transformed gene expression over time of IFNG for TULA. (C) Trended normalized averages calculated from log10 transformed gene 
expression over time of RPS27A for TULA. The dots represent the average gene expression level at that timepoint, and the bars represent the standard 
error of gene expression found at each timepoint in each group. NC is represented by the black lines.
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production of IL-17, among other various cytokines (58). No previous 
research was identified corroborating the findings of florfenicol’s 
upregulation of CEBPB in relation to IL-17, possibly illustrating a novel 
secondary mechanism for this antimicrobial. The same gene, CEBPB, 
also influenced a tumor necrosis factor (TNF) signaling pathway and 
a GO term of “positive regulation of inflammatory response.”

There were no shared pathways identified at day 14 between any 
antimicrobials, but TULA possessed 19 pathways and 8 GO terms 
enriched related to NF- κβ activation, macrophage activation and 
differentiation, and production of various cytokines such as IL-3, IL-5, 
and IFN-γ. There were three genes acting as the main drivers of the 
pathways and terms: RPS27A, IFNG, and CD48. It has been reported 
that tulathromycin significantly inhibits proinflammatory NF- κβ 
signaling in bovine neutrophils and reduced secretion of 
proinflammatory CXCL-8  in lipopolysaccharide (LPS)-stimulated 
macrophages (59, 60). In another trial, the effect of tulathromycin was 
examined in a nonbacterial in vivo model of pulmonary inflammation, 
where tulathromycin administration inhibited phospholipases and 
altered leukotriene B4, prostaglandin E2, and lipoxin A4 production 
(61). The findings from the present trial support the anti-inflammatory 
benefits of tulathromycin while providing insight on the DEGs being 
downregulated to inhibit pathways discussed above. Furthermore, 
tulathromycin has been shown to have immunomodulatory effects in 
species other than cattle, such as rabbits, pigs, and horses (62–64).

On day 21, there were no shared pathways or GO terms between 
treatment groups. TILD possessed the most DEGs identified, and 
pathways/GO terms enriched at 2,107 and 347, respectively. Pathways 

found were related to cytokine signaling, toll like receptor (TLR)/TCR 
cascades, and FcεRI-mediated NF-κβ activation. Genes 
downregulating these pathways included FBX09, PIK3CA, RAP1B, 
RNF14, SUMO1, UBE2Q2, and WWP1. Although minimal published 
literature exists regarding the effect of tildipirosin specifically on 
cytokines and TCR/TLR cascades, there is evidence that macrolides 
can interfere with signal transduction of T-cell activation and growth, 
and the impairment of T-cell production thus decreasing the immune 
response, shown through trials completed with rapamycin and 
clarithromycin (50, 53).

On day 56, there were 25 DEGs in total identified across three 
treatment groups (FLOR, OXYT, and TILD) when compared to 
NC. However, none of the genes that enriched pathways related to 
immune function were differentially expressed. This may demonstrate 
a transient induction or influence of genomic regulation by these 
drugs, as the majority of the antimicrobials used in this trial possess 
half-lives less than 3 days, with the exception of tildipirosin which is 
9 days in the plasma and 10 days in the lung (65).

To investigate the intersection of time and treatment within this 
study, we identified several DEGs and functional enrichments within 
each group comparison. Interestingly, we identified direct immune-
related mechanisms in five of the six groups: CEFT, ENRO, FLOR, 
TILD, and TULA (Supplementary File S9). The GO terms and 
pathways identified for CEFT primarily related to ion reception and 
cell scavenging. One study, albeit in combination with vanadium and 
performed in vitro, suggested that cephalosporin interacts with tissue 
macrophages and act as a reducing scavenger (66). Of particular 

FIGURE 12

Gene expression downregulated by TILD at T5, day 21, related to cytokine signaling, Toll-like receptor/T-cell receptor cascades, and FcεRI-mediated 
NF- κβ activation. (A) Trended normalized averages calculated from log10 transformed gene expression over time of PIK3CA for TILD. (B) Trended 
normalized averages calculated from log10 transformed gene expression over time of RAP1B for TILD. (C) Trended normalized averages calculated from 
log10 transformed gene expression over time of SUMO1 for TILD. (D) Trended normalized averages calculated from log10 transformed gene expression 
over time of WWP1 for TILD. The dots represent the average gene expression level at that timepoint, and the bars represent the standard error of gene 
expression found at each timepoint in each group. NC is represented by the black lines.
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interest, DEGs identified within ENRO enriched for prostaglandin 
and thromboxane syntheses and arachidonic acid metabolism. In 
recent studies, it has been shown that danofloxacin administration, a 
closely related fluoroquinolone drug, significantly reduced 
prostaglandin E2 levels and induced lipid peroxidation (67, 68). From 
the FLOR enrichment analysis, we identified significant terms and 
pathways related to lipopolysaccharide (LPS) binding and gram-
negative bacterium defense, primarily driven by LBP, several members 
of the cathelicidin family of antimicrobial peptides (CAMP, CATHL1, 
and CATHL2), and the adhesion G protein-coupled receptor gene 
ADGRB1. Several studies have suggested that florfenicol helps combat 
bacterial infection, regulate LPS-induced immune proliferation, and 
quell host inflammation via these mechanisms in a concentration-
dependent manner (69–72). For both TILD and TULA interaction 
analyses, we  identified enrichment for neutrophil chemotaxis and 
autophagy, extracellular matrix structure, and defense against 
bacterium. A recent therapeutic review article related to adjunct 
therapies for SARS-CoV-2 infection highlights that clinical use of 
azithromycin, a closely related macrolide, appears to regulate 
proinflammatory cytokine production, inhibit neutrophilic 
infiltration, and alters autophagosomes within macrophages (73). 
While unclear at this time, this may suggest that these macrolides alter 
neutrophilic release of proinflammatory cytokines, such as IL-1β, and 
enhance leukocyte stimulation through autophagy (74, 75).

One limitation of this study was the variation of breeds within the 
sample population; however, randomization was used to successfully 
account for this and other potential confounders. Other important 
confounders such as BW and feed were controlled by the experimental 
design. This aspect could account for variation biologically between 
samples. Additionally, there was only one pen per treatment. The lack 
of replication reduces the ability to extrapolate results to other 
populations, but these findings provide a direction for further research 
to explore the mechanisms found for each antimicrobial. A strength 
of this trial was the detection of DEGs using two different statistical 
methods, showing the robustness of the results.
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