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Embodied simulation with a digital brain model and a realistic musculoskeletal

body model provides a means to understand animal behavior and behavioral

change. Such simulation can be too large and complex to conduct on a single

computer, and so distributed simulation across multiple computers over the

Internet is necessary. In this study, we report our joint e�ort on developing a

spiking brain model and a mouse body model, connecting over the Internet,

and conducting bidirectional simulation while synchronizing them. Specifically,

the brain model consisted of multiple regions including secondary motor

cortex, primary motor and somatosensory cortices, basal ganglia, cerebellum

and thalamus, whereas the mouse body model, provided by the Neurorobotics

Platform of the Human Brain Project, had a movable forelimb with three joints

and six antagonistic muscles to act in a virtual environment. Those were simulated

in a distributed manner across multiple computers including the supercomputer

Fugaku, which is the flagship supercomputer in Japan, while communicating via

Robot Operating System (ROS). To incorporate models written in C/C++ in the

distributed simulation, we developed a C++ version of the rosbridge library from
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scratch, which has been released under an open source license. These results

provide necessary tools for distributed embodied simulation, and demonstrate

its possibility and usefulness toward understanding animal behavior and

behavioral change.

KEYWORDS

spiking neural networks, musculoskeletal model, distributed simulation, Fugaku,

Neurorobotics Platform, ROS

1. Introduction

To investigate the neural mechanisms underlying behavioral

changes, it is crucial to examine how neural activity is altered by

learning through interaction with the environment via a physical

body. Bidirectional computer simulations incorporating both brain

and body models offer a promising approach for reproducing

and predicting neural activity changes during learning and

subsequent behavioral modifications. However, such brain-body-

environment simulations can be exceedingly complex and large,

necessitating a distributed simulation system in which multiple

computers participate over the Internet. Several technologies have

been developed to realize such distributed simulations (Quigley

et al., 2009; Djurfeldt et al., 2010), and a distributed brain-body-

environment simulation has been already demonstrated (Feldotto

et al., 2022a) using the supercomputer Piz Daint within a unified

framework for embodied simulation called the Neurorobotics

Platform (NRP) developed under the Human Brain Project (Knoll

and Gewaltig, 2016).

To extend the size and details of the model further, we decided

to recruit multiple supercomputers with different architectures,

separated physically and geographically. We have been using

the supercomputer Fugaku, which is the Japanese flagship

supercomputer (RIKEN, 2021) under the MEXT Program, and

have created a large-scale spiking network model of the cortico-

basal ganglia-thalamic (CBT) circuit (Gutierrez et al., 2020). Also,

we have developed a spiking cerebellar model (CB model) on

a Graphics Processing Unit (GPU) cluster (Kuriyama et al.,

2021). The NRP officially supports only the Ubuntu operating

system, and so a Linux machine specifically running Ubuntu

is necessary to use the body-environment platform. While the

brain-body-environment system in a previous study (Feldotto

et al., 2022a) was completed within a single computer system, we

posited that connecting the above three models and running them

harmoniously across physically separated system, would enable

more flexible simulation. Furthermore, we aimed to provide a tool

to realize such distributed simulation.

Robot Operating System (ROS) is a de-facto standard message-

passing middleware suite for communicating among robots and

controllers called “ROS nodes” in a local network used in the field

of robotics (Quigley et al., 2009). On the other hand, to realize

distributed simulations beyond a local network, all ROS nodes

must be able to communicate with each other across separate

networks, which cannot be made by the plain ROS. To address

this issue, the rosbridge protocol (ROS, 2022) provides a means

to communicate beyond a local network, in which messages are

wrapped in JSON format, and are exchanged via WebSocket.

BecauseWebSocket is implemented on https, and https seems to be

opened by firewalls at most institutions, the distributed simulation

can be realized by rosbridge. Unfortunately, the rosbridge library

had only been implemented in Python and Javascript. No C/C++

version was available. Because the CB model has been developed

in C/C++ (Kuriyama et al., 2021) to use GPUs, we need a C/C++

version of the rosbridge library.

In the present study, we first developed a C/C++ version

of the rosbridge library, and released it under an open source

license (Omura, 2022). While the library can be used in various

situations in which a rosbridge library is required, in this study,

we used the library to conduct embodied bidirectional simulation

including a secondary motor cortex (M2) model written in C++

and a CBT model implemented in the NEST simulator on Fugaku,

a CB model written in C++ and CUDA (Kuriyama et al., 2021) on

a local GPU cluster, and a body-environment model on another

local computer. Using this system, we simulated a behavioral task

in which a mouse pushes and pulls a lever alternatively, and

furthermore, we demonstrated that the mouse gradually adapted

an amplitude of the lever movement online by the CB model.

Thus, a brain model that consists of different brain regions,

and a body and environment model across three computers

including Fugaku were coordinated to achieve a bidirectional

brain-body-environment simulation.

2. Materials and methods

2.1. Overview of the system architecture

The brain-body model consists of a brain model which includes

multiple regions and a mouse musculoskeletal body model. The

multiple regions in the brain model include an M2 model, a

CBT model composed of primary motor (M1) and somatosensory

(S1) cortices, basal ganglia (BG) and thalamus (TH), and a CB

model. Those models were distributed across multiple computers

synchronously while communicating bidirectionally (Figure 1).

Specifically, the M2 and CBT models ran on Fugaku, the CB

model on a local GPU cluster, and the body-environment model

on another local computer called an NRP server. Those models

across the three computers communicated with each other while

passing messages. The body-environment model was simulated in

the Gazebo simulator that uses Simbody as the physics engine.

The Gazebo simulator also provided a visualization function. A

proxy function called a transfer function (TF), which implemented

a fictitious spinal cord model, exchanged messages among the

multiple regions in the brain model and the body-environment

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1269848
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Kuniyoshi et al. 10.3389/fnbot.2023.1269848

FIGURE 1

Overview of the simulation models setup. The system consists of (A) the M2 model written in C++ and the CBT model implemented in the NEST

simulator on Fugaku, (B) the GPU-based CB model written in C++ with CUDA running on a local GPU cluster, and (C) a mouse musculoskeletal

model implemented in NRP on another local computer. In (A), the M2 model sends spike trains to the CBT model. Between (A) and (C), the

population-averaged firing rate of neurons in the CBT model (L5B PT neurons in M1; Figure 2) is sent to the body, whereas muscle length

information is sent back to other neurons (L4 Pyr neurons in S1; Figure 2). Between (B) and (C), the compensatory and actual gain information were

exchanged. In (C), the body model communicates with the brain model via TF, which implements a fictitious spinal cord model. This TF transforms

the firing rate of M1 neurons into muscle activation signals, and computes the actual gain.

simulator. The details of the communications are described in

Section 2.4.

2.2. Brain region models

2.2.1. M2 model
The M2 model was assumed to provide information on desired

goal movements to the downstream brain and body. Specifically,

the M2 model was built to provide two spike trains that alternate

in time to represent periodic movements of the forelimb of the

mouse body. Eventually, we developed the M2 model as a set of

100 central pattern generators (CPGs) to generate these alternating

spike patterns, where each CPG model was implemented as a

Matsuoka oscillator (Matsuoka, 1985) with leaky integrate-and-fire

(LIF) neurons as follows:

τm
dVi

dt
(t) = −(Vi(t)− Vrest)

+ RsynIsyni(t)− RahpIahpi(t)+ RmIexti(t), (1)

Vi(t) > θ ⇒ Si(t) = 1,Vi(t)← Vreset (2)

where Vi(t) is the membrane potential of neuron i, τm = 20 ms

is the membrane time constant, Rsyn = 1.0 M� is the resistance

of the synapse, Isyni(t) is the inhibitory synaptic current, Rahp =

0.5 M� is the resistance of the adaptation, Iahpi(t) is the adaptation

current, Rm = 1.0 M� is the resistance of the membrane, Iexti(t)

is the external input current, θ = −55 mV is the threshold for

spike emission, Si(t) is the spike event of neuron i at time t, and

Vreset = −65 mV is the reset potential. When Vi(t) exceeds θ , a

spike is emitted. And then, Vi(t) is reset to Vreset.

To avoid aligning the firing times at all CPGs, Iext(t) is

randomly drawn from a uniform distribution in the range of

[−19.95, 20.05] at every time step as background noise. Isyn(t),

Iahp(t) are described as current-based exponentially-decaying

synapses:

Isyni(t) = w
∑

f∈Sj(t)

exp

(
−
t − t(f )

τsyn

)
2

(
t − t(f )

)
, (3)

Iahpi(t) =
∑

g∈Si(t)

exp

(
−
t − t(g)

τahp

)
2

(
t − t(g)

)
, (4)

where τsyn = 5.0 ms is the synaptic time constant, τahp = 350.0 ms

is the adaptation time constant, w = −80 is synaptic strength, Sj(t)

is a set of spikes from pre-synaptic neuron j, Si(t) is a set of self-

initiated spikes, 2(t) is the Heaviside step function, and t(f ) is the

time of spike f . The synaptic delay is set as 0.1 ms. The differential
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FIGURE 2

The architecture of the CBT model. The S1 and M1 models were composed of 22 and 19 layers for di�erent cell types, respectively. Although there

were a number of synaptic connections within S1 and M1, we omitted all such intra-regional connections for simplicity of the drawing. The other

intra- and inter-layer connections are shown. Triangle and circle arrows represent excitatory and inhibitory connections, respectively. All white layers

with two arrows contained LIF neurons, whereas Green layers are virtual “parrot” layers in the NEST simulator, where a “parrot" neuron simply lets

spikes pass through from input neurons to output neurons.

equation is numerically solved using a forward Euler method with

a time step of 1t = 0.1 ms. The model was implemented in C++

and the simulation was conducted on a single node of Fugaku.

2.2.2. CBT model
The CBT model, which was developed previously (Gutierrez

et al., 2020), is the main component of our brain-body-

environment simulation (Figure 2). The model is also adopted

by our previous study (Feldotto et al., 2022a) without any

modification. Briefly, the model is a collection of various subregion

models for M1, S1, BG, and TH, which were developed in

previous computational works (Liénard and Girard, 2014; Igarashi

et al., 2019; Girard et al., 2021). The parameters including axonal

and synaptic delays, synaptic weights, time constants, and the

numbers of neurons were set based on experimental data (Lev and

White, 1997; Weiler et al., 2008). The cortical models have six

layers in which various types of neurons exist (Table 1). The BG

model consists of multiple nuclei such as the striatum containing

medium spiny neurons (MSNs) and fast spiking interneurons

(FSIs), external and internal capsules of globus pallidus (GPe and

GPi), and subthalamic nucleus (STN; Table 1). The TH model is

divided into excitatory and inhibitory subcortical input-dependent

zones (EZ and IZ) containing various types of neurons (Table 1).

The model was entirely implemented in the NEST simulator

version 2.20.0 (Gewaltig and Diesmann, 2007) with 176,465 LIF

neurons (conductance-based and current-based, depending on the

regions), and the simulation was conducted using 12 cores in a

single compute node of Fugaku. In this study, we used this model

to generate motor commands to the body based on the desired goal

movement fromM2, while also receiving the feedback signals of the

body states.

2.2.3. CB model
The CB model, which was originally developed in our previous

study (Kuriyama et al., 2021), was also included in the system to

demonstrate (a) online adaptation capability of our brain-body-

environment model and (b) flexibility of the system. Themodel was

designed for real-time simulation of a cerebellar spiking network by

harnessing GPUs, and has a capability of online gain adaptation for

eye movement reflex called optokinetic response. A role of the CB

model is to calculate a compensatory gain which amplifies motor

commands generated by the CBT model. The details of the gain

adaptation mechanisms are described in Section 2.6.

The model implements a 400 × 400 × 900µm3 volume

of the cerebellar cortex and deep nuclei (Figure 3; Table 1)

composed of 88,158 granule cells, 219 Golgi cells, 603 basket
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TABLE 1 Layers and neuron types in the CBT and CB models.

Model Layer Neuron types

L1 ENGC, SBC

L2 PV, Pyr, SST, VIP

L3 PV, Pyr, SST, VIP

S1 L4 PV, Pyr, SST

L5A PV, Pyr, SST

L5B PV, Pyr, SST

L6 PV, Pyr, SST

L1 ENGC, SBC

L2/3 CC, PV, SST, VIP

M1 L5A CC, CS, CT, PV, SST

L5B CC, CS, PT, PV, SST

L6 CT, PV, SST

BG FSN, MSN, GPe, GPi, STN

TH
EZ IN, TC, RE

IZ IN, TC, RE

CB MF, CF, GrC, GoC, BC, SC, PKJ, DCN

ENGC, elongated neugliaform cell; SBC, single bouquet cell; PV neuron, parvalbumin-

expressing neuron; Pyr neuron, pyramidal neuron; SST neuron, somatostatin-expressing

neuron; VIP neuron, vasoactive intestinal peptide-expressing neuron; CC neuron,

Corticocortical neuron; CS neuron, corticospinal neuron; CT neuron, corticothalamic

neuron; PT neuron, pyramidal-tract neuron; FSI, fast-spiking interneuron; MSN, medium

spiny neuron; GPe, external segment of globus pallidus; GPi, internal segment of globus

pallidus; STN, subthalamic nucleus; EZ, excitatory subcortical input-dominant zone; IZ,

inhibitory input-dominant zone; IN, interpositus nucleus; TC neuron, thalamocortical

neuron; RE nucleu, thalamic reticular nucleus; MF, mossy fiber; CF, climbing fiber; GrC,

granule cell; GoC, golgi cell; BC, basket cell; SC, stellate cell; PKJ, purkinje cell; DCN, deep

cerebellar nucleus.

cells, 603 stellate cells, 69 Purkinje cells (PKJs), and 12 deep

cerebellar nuclear neurons (DCNs), where all neurons were

implemented as conductance-based LIF neurons. The model has

two types of inputs: 7,073 mossy fibers (MFs) and 12 climbing

fibers (CFs).

MFs connect to granule cells and DCNs, then granule

cells extend parallel fibers (PFs) to Golgi cells, molecular

layer interneurons (basket cells and stellate cells) and PKJs,

and excite them. Golgi cells inhibit granule cells, whereas

molecular layer interneurons inhibit PKJs. PKJs inhibit DCNs,

which in turn provide the only outputs of the CB model. On

the other hand, CFs connect and deliver instruction signals

to PKJs. PKJs adapt their activity depending on the signals,

and regulate DCN activity. MFs and CFs are implemented

as Poisson spike generators with inhomogeneous firing rates.

All parameters for neurons (e.g., membrane capacitance,

leak conductance, threshold potential, etc.) and synapses

(e.g., reversal potential, synaptic weight, and synaptic delay)

were set the same as in the previous study (Kuriyama et al.,

2021).

The CBmodel was implemented in C++with CUDA (NVIDIA,

2023), and simulated on a local GPU cluster (an NVIDIA DGX

Station with four NVIDIA V100 GPUs).

2.3. Body and environment model

A mouse musculoskeletal model was adapted from previous

work (Allegra Mascaro et al., 2020) internally referred to

as the “CDP1 Mouse Experiments" in the Neurorobotics

Platform (Albanese et al., 2020) and used as the body-environment

model. The model has a movable forelimb composed of three joints

and three pairs of antagonistic muscles (i.e., six muscles): Foot1,

Radius1, and Humerus 2 as extensors, and Foot2, Radius2, and

Humerus1 as flexors. The mouse simulation model including the

kinematic configuration and virtual muscles has been configured

previously using the NRP Robot Designer (Feldotto et al., 2022b).

Each muscle receives real numbers that represents the degree of

activation. The contraction is calculated by the muscle dynamics

ranging from 0 (completely relaxed) to 1 (maximum activation),

which are the motor commands specified by the normalized

population-averaged firing rates of L5B PT neurons in M1.

Furthermore, a movable lever is attached to the forelimb.When the

three extensors (Foot1, Radius 1, and Humerus2) are maximally

contracted, the mouse pushes the lever maximally, whereas when

the three flexors (Foot2, Radius 2, and Humerus1) are maximally

contracted, the mouse pulls the lever maximally (Figure 4). The

information of individual muscle lengths of the limb as muscle

states are obtained and fed to L4 Pyr neurons in S1. The model

simulation was conducted on a local GNU/Linux PC (Ubuntu

20.04.6 LTS; Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20GHz; 128

GB RAM).

2.4. Communication between the brain and
body models

All models communicated with each other to achieve

bidirectional simulation (Figures 1, 5). The source of the activation

was the M2 model, which emitted two spike trains alternating

periodically at about 0.5 Hz as desired movements. The spike trains

were fed to L5B PT neurons inM1 (Figure 2), which in turn emitted

similar spike trains that represent motor commands. The spike

trains were propagated to the other layers of M1 and BG internally,

and to CB and the body via TF, which could be regarded as a

fictitious spinal cord. TF received normalized firing rates calculated

by L5B PT neurons in M1, translated the firing rates into muscle

activation levels within [0, 1], and fed the levels to the muscles.

Then, muscles contracted and the mouse started to push and pull

the lever repeatedly with the same period of the spiking activity of

M2, namely, 2 s. The muscle length information was fed back to

the L4 Pyr neurons in S1, which also exhibited similar alternating

spike patterns. These mathematical forms can be found in the

Supplementary material: how to convert firing rates of L5B PT

neurons in M1 into muscle activation levels (Section 2) and how

to convert muscle length into firing rates, which represent inputs to

L4 Pyr neurons in S1 (Section 3). There are pathways from S1 toM1

including a pathway from L4 Pyr neurons in S1→ L5A Pyr neurons

in S1→ CSN→MSN in BG→ GPi in BG→M1 IZ TC neurons

in TH→ L5B PT neurons in M1 (Figure 2), thus closing the loop

between the brain and the body. For simplicity in this study,

inter-regional synaptic connections assumed certain time delays
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FIGURE 3

Spatial arrangement of neurons in the CB model. The figure was adapted from Fig. 1 of Kuriyama et al. (2021). (A) Cell placement in a 3D volume of

400× 400× 900 µm3. Dots represent neurons except for CFs. Detailed explanation in our previous paper (Kuriyama et al., 2021). (B) Schematic of

connectivity in the CB model. Abbreviations as listed in Table 1.

of milliseconds, but not several tens of milliseconds (Lemarechal

et al., 2021), for spike transmission. Meanwhile, the normalized

firing rates from L5B PT neurons in M1 were also fed to the mossy

fibers in CB via TF. On the other hand, compensatory gain was

calculated from the firing rates of the DCN and was sent to TF. The

gain was adapted gradually during simulation for 10s.

To implement these communications across components,

namely M2, CBT, CB, TF, and Body, we adopted ROS as the

communication middleware suite for the present system.

2.5. Implementing the communication on
ROS

To realize the message passing across components, we

employed ROS which is a popular middleware suite used in the

field of robotics (Quigley et al., 2009). ROS allows robots and

controllers to “publish” or “subscribe” messages periodically via a

queue called a “topic” for sharing the messages, through which

they can communicate bidirectionally. For example, a controller

publishes a message on desired movement direction to a topic,

whereas a robot subscribes the message from the same topic and

moves toward the direction. Similarly, the same robot can publish a

message on the actual movement direction to the topic, whereas

the controller subscribes the message from the same topic and

compensate the direction. In ROS, a robot or a controller can be

represented as a “ROS node.” Thus, ROS nodes communicate with

each other while publishing/subscribing messages to topics. For the

communication shown in Figure 5, we created topics summarized

in Table 2. We defined the following topics: spike trains from the

M2 model to the CBT model (desired_movement), the firing

rate of M1 neurons to TF (motor_command), muscle activation

from TF to muscles (cmd_activation), the current muscle

length from the muscles to TF (muscle_states), the firing rates

reflecting the antagonistic muscle lengths for Humerus1/2 to the

CBT model (muscle_length), the compensatory gain from the

CB model to TF (gain), the calculated actual gain from TF to the

CB model (actual_gain), and a control signal from the CBT

model to theM2model to resume the simulation of M2 for the next

100 ms of the physics simulation time (sync). ROS messages were

published every 1 s, and the network latency between the Fugaku

and the local network was about 10 ms.

To synchronize the brain model and the body-environment

model, we elaborated our own TF. Specifically, all ROS topics sent

to TF included information on the local elapsed time (Table 2).

Then, TF detected the completion of the other components ecept

M2 for each 100ms of the physics simulation time. Finally, TF

sent the information on the next target time (i.e., current time +

100 ms) back to them (Figure 5). For M2, the synchronization was

not mediated by TF directly, but indirectly via the CBT model.

Owing to the synchronization mechanism, simulation results were

reproducible as long as the simulations were initialized with the

same random seed.

The messages are passed over the Internet, and all ROS nodes

must be in the same subnet by default. This means, ROS nodes in

different subnets cannot communicate directly. This is a problem

when a brain model and a body model run on different computers

in different subnets as in our case. To address this issue, ROS

provides a mechanism called rosbridge (ROS, 2022). Rosbridge

is a communication protocol that allows a program without

ROS functionality (rosbridge client) to connect to ROS nodes.

Communication over rosbridge is made by wrapping ROS topics

in JSON format, and then sending/receiving them to the rosbridge

server using the WebSocket protocol. The rosbridge server, which

is also a ROS node, relays communications over rosbridge. Because

the WebSocket protocol is allowed to pass through firewalls in
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FIGURE 4

The mouse musculoskeletal model. The model has a movable forelimb composed of three joints and three pairs of antagonistic muscles (i.e., six

muscles): Humerus 1 and 2, Radius 1 and 2, and Foot 1 and 2. The mouse pulls (A) or pushes (B) the lever attached to the forelimb, when the muscles

contracted maximally, visualized in red.

FIGURE 5

Communication diagram across components for each 100 ms of the physics simulation time. Arrows represent information flow across

components, and in particular, colored arrows represent publication/subscription of ROS topics summarized in Table 2. Gray vertical arrows

represent calculation after t+ 100 ms. Annotated topics (* and **) have full names (Table 2).

most organizations, rosbridge allows us to connect a brain model

on Fugaku and a body-environment model on a local computer.

Furthermore, libraries in Python and Javascript are available for

rosbridge. We needed to use rosbridge for the M2 model and

the CB model written in C++. For this purpose, we developed a

C++ version of the rosbridge library called CppRosBridge (Omura,

2022). CppRosBridge is built to depend on external libraries as

minimally as possible. In fact, it depends only on Jansson (Lehtinen,

2018) and websocketpp (Thorson, 2014) for JSON APIs and

WebSocket communications, respectively.

2.6. Gain adaptation by the CB model

An essential role of the CB model for the entire system is

to provide learning mechanisms based on simulated long-term

depression (LTD) and potentiation (LTP) at parallel fiber-Purkinje

cell synapses. The LTD at PF–PKJ synapses occurred by conjunctive

activation of a CF and PFs (Sakurai, 1987). The mechanism

decreases the synaptic efficacy, and so decreases PKJ activity. This

decrease of PKJ activity leads to disinhibition of DCNs, so that the

DCNs can increase their activation. The LTP at PF–PKJ synapses

occurred by firing of a presynaptic PF only (Ito, 2001). This

mechanism prevents synaptic efficacy from completely vanishing

due to the LTD.

Specifically, the synaptic weights at PF–PKJ synapses were

updated as folllows:

wPKJi ,PFj (t+1t) = wPKJi ,PFj (t)+αPFj(t)−β

50∑

s=0

CFi(t)PFj(t−s1t),

(5)
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TABLE 2 Summary of ROS topics.

Topic name Type Contents

desired_movement std_msgs/

Float64MultiArray

M2 elapsed time, neuron

IDs, spike times

motor_command std_msgs/

Float64MultiArray

CBT elapsed time, firing

rates of L5B PT neurons

in M1

gain std_msgs/

Float64MultiArray

CB elapsed time, gain

muscle_states∗ MuscleStates∗∗∗ Current muscle lengths

actual_gain std_msgs/

Float64MultiArray

TF elapsed time,

actual_gain, firing rates

of L5B PT neurons in M1

muscle_length std_msgs/

Float64MultiArray

TF elapsed time, firing

rates reflecting lengths

for Humerus1, 2

cmd_activation∗∗ std_msgs/Float64 Muscle activation

sync std_msgs/Int32 CBT elapsed time

∗ muscle_states has a full topic name

/gazebo_muscle_interface/robot/muscle_states.
∗∗ cmd_activation has a full topic nam

/gazebo_muscle_interface/robot/name/cmd_activation for each

name ∈ {Foot1, Foot2, Radius1, Radius2, Humerus1, Humerus2}.
∗∗∗ MuscleStates has a full type name gazebo_ros_muscle_interface/MuscleStates.

where wPKJi ,PFj (t) is a synaptic weight between ith PKJ and jth PF,

and PFj(t) (CFi(t)) take 1 if a PF of j th granule cell (a CF connects to

i th PKJ) elicited a spike at time t, and 0 otherwise. The 2nd term on

the RHS simulates LTP that occurred by firing of a presynaptic PF

only. The 3rd term simulates LTD by conjunctive activation of a CF

and a PF, that are active 0–50ms earlier than the CF activation. Both

α and β are learning coefficients for LTP and LTD, respectively.

However, we only applied LTD in order to reduce the required

simulation time for the CBT model. Consequently, parameters α

and β were set to 0 and 0.4, respectively.

Equation (5) contains PF and CF spikes that need to

be determined. First, PF spikes were emitted by granule

cells in response to the MF spikes, which represent the

efference copy of the motor command in M1. Specifically,

the MF firing rate was calculated from normalized firing

rates of L5B PT populations in M1 at the CBT model,

and were received via TF. In our implementation, MFs

were divided into two groups, and the firing rate of each

group reflected that of one L5B PT population in M1

as follows:

ρMF1 =

{
4 if ρL5BPT1 < ρL5BPT2 ,

24 if ρL5BPT2 < ρL5BPT1 .

ρMF2 =

{
4 if ρL5BPT2 < ρL5BPT1 ,

24 if ρL5BPT1 < ρL5BPT2 ,

(6)

where ρMFx is firing rate of MF group x ∈ {1, 2}, and ρL5BPTx is

firing rate of M1 L5B PT group x ∈ {1, 2}.

On the other hand, the firing rate of CFs, as error

inputs, represented the difference between the desired

and actual motor gain. Specifically, the firing rate was

calculated by a monotonically increasing function of the

difference between hard-corded desired gain and actual gain

information received from TF. The firing rate was defined as

follows:

ρCF = 6× (1− G̃), (7)

where ρCF is firing rate of CFs, G̃ ∈ [0, 1] is a

normalized actual gain calculated by TF. How to

calculate the actual gain can be found in Section 4 of the

Supplementary material.

The adaptive changes of PF–PKJ synaptic weights let DCNs

to increase their firing rate, which is represented as compensatory

gain g.

g(t) =

{
1 if ϕDCN(t) ≤ 0.85,

1+ 10(ϕDCN(t)− 0.85) if ϕDCN(t) > 0.85.
(8)

10
dϕDCN(t)

dt
= −ϕDCN(t)+

NDCN∑

i

DCNi(t), (9)

where ϕDCN(t), NDCN, and DCNi(t) are temporal population

activity of DCNs, the number of DCNs, and the ith DCN’s spike

activity which takes 1 if it elicited a spike at time t, and 0

otherwise, respectively.

2.7. The supercomputer Fugaku

For our distributed simulation, we used local computers as

well as the supercomputer Fugaku (RIKEN, 2021), the Japanese

flagship supercomputer, to run the M2 and CBT models. It

consists of about 160,000 compute nodes, where each compute

node comprises an ARM-based A64FX processor with 48

computational and four assistant cores, 32GB HBM2 memory,

and a network port. All compute nodes are connected via a

special interconnect Tofu6D. Each computational core of the

A64FX processor can issue SIMD operations called Scalable

Vector Extentions (SVEs) on 512-bit registers. Fugaku runs

a GNU/Linux operating system based on Red Hat Enterprise

Linux 8 for ARM. Spack packaging system is available to

load necessary packages on demand. Most standard compilers

and scripting languages including Python are installed. In fact,

Python is a prioritized programming language on Fugaku for

AI/ML purposes.

3. Results

3.1. Distributed bidirectional
brain-body-environment simulation across
multiple computers

We first determined that all components were working

coherently and synchronously to realize distributed bidirectional

simulation between the brain and body models. In this simulation,

we tested whether the mouse body model running on a local

computer was able to push and pull a lever attached to the forelimb
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alternatively in response to the motor commands generated in

the brain model running on Fugaku. Specifically, neurons in

M2 were assumed to represent desired lever movements, which

were alternating push/pull of the lever for every 1 s. Those

neurons emitted spikes alternatively to represent the alternating

lever movements (Figure 6A). Then, the spikes were fed to the

downstream brain regions, and L5B PT neurons in M1 also emitted

spikes alternatively with the same period to represent the motor

commands for the desired lever movements (Figure 6B). The

motor commands in M1 were sent via TF to the six antagonistic

muscles, which lead the mouse body model to push/pull the lever

alternatively with the same period (Figure 6C). Finally, L4 Pyr

neurons in S1 received information on the body states, which were

the muscle length, from the body model via TF, and also emitted

alternating spike trains with the same period (Figure 6D). Thus, the

communication between the brain and body models was not just

one way but bidirectional. Raster plots of all neurons were shown

in Supplementary Figure S1.

During the task, neurons emitted spikes alternatively or

uniformly (Supplementary Figure S2). For example, the CB model

received the firing rate of L5B PT neurons in M1 via TF as an

efference copy of motor commands through MFs. All cerebellar

neurons except DCNs showed alternating spike patterns that

synchronized with M2 activity with a certain delay. Meanwhile,

the spike activity of M1 neurons was propagated to neurons on

different layers and in BG. Those neurons, however, emitted spikes

rather uniformly: modulatory activities in time were subtle.

Overall, the brain and body models running on different

computers worked coherently and synchronously, although

those computers were located in different subnetworks. The

synchronization was mediated by TF, whereas the communication

across the subnetworks was realized by ROS and rosbridge.

3.2. Computational performance in the
simulation

Because of the communication among ROS nodes across

multiple computers distributed remotely, waiting time for

synchronization in the communication may cause substantial

problems. First, waiting time may slow down the simulations,

because ROS nodes must wait for the update of topics. Moreover,

too much waiting time may cause timeout at the system level and

so simulations may be terminated accidentally. To investigate how

much waiting time affect the entire simulation time, we measured

the actual simulation runtime for all components.

On the actual runtime, the CBT model took the longest. The

runtimes of M2 and CB models were less than a tenth of that

of the CBT model, and that of TF was negligible (Figure 7A).

Due to the imbalance of runtimes, M2, CB, and TF had to wait

for the calculation of the CBT model. These results suggest that

imbalance of runtime among all components affects the entire

computational performance.

To address the imbalance of runtimes for the CBT model, we

conducted parallel simulations for the CBT model by introducing

more compute nodes. In other words, we measured the strong

scaling property of the CBT model (Figure 7B). When the number

of compute nodes was doubled from 1 to 2, we obtained almost

60% speed up. When the number of compute nodes was increased

further, we still obtained slight speed up, but the scalability

became worse.

3.3. Online gain adaptation by the CB
model

After confirming such equilibrium network state, we turned on

the learning mechanism in the CB model to adapt the movement

gain of the lever push/pull (Figure 8). The initial gain was measured

as 0.3, and we set the desired gain at 0.9, thereby making the

movement three times larger. We spent 10 s for a learning period,

and analyzed mean firing rates of CB neurons before and after

learning (Figure 8A). We found that the mean firing rate of PKJs

decreased from 71 to 49 Hz, on average, whereas that of DCNs

increased from 71 to 84 Hz, on average (Figure 8B). The mean

firing rate of the CFs also decreased from 6.8 to 3.4 Hz, on

average, suggesting that the error between desired and actual gains

decreased by learning. Finally, the increase of the DCN activity

was translated to the compensatory gain, and made the lever

movement about 2.3 times larger (Figure 8A). Furthermore, due to

the gain increase, the activity of L4 Pyr neurons in S1 also increased

(Figure 8C). These results suggest that our distributed simulation

system allow us to study not just the entire network dynamics but

also learning mechanisms that spanned across the network.

4. Discussion

In this study, we orchestrated various simulations of an M2

model written in C++ and a CBT model implemented in the NEST

simulator on Fugaku, a CB model written in C++ and CUDA on a

local GPU cluster, and a mouse musculoskeletal model in NRP on

a local computer to achieve forelimb movements in a bidirectional

manner by using ROS and rosbridge. The following two issues may

summarize the novelty and usefulness of the present study.

First, owing to ROS, we were able to integrate multiple brain

region models and a body-environment model running in multiple

different simulators. ROS supports development in C++ and

Python, and so both high-performance and easy-to-use neural

simulators can be supported. Therefore other simulators such as

NEURON (Carnevale and Hines, 2006) and Brian (Goodman and

Brette, 2008) simulators will be included through their Python

interfaces. Furthermore, our C++ version of the rosbridge library,

which is newly developed by the present study, allows other high-

performance neural simulators such as MONET (Igarashi et al.,

2019) and GeNN (Yavuz et al., 2016) to be included as well.

We will be able to further employ other body models such as a

mouse full body model (Ramalingasetty et al., 2021), a human

body model (Rajagopal et al., 2016), and even environment models

such as an AI framework called Gymnasium (Farama Foundation,

2022). These will enable us to conduct simulation of more complex

motor control tasks including reaching, grasping, and locomotion,

suggesting the usefulness of our library.

Second, Fugaku is a powerful yet flexible and open

supercomputer. We were able to compile and run the
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FIGURE 6

Population activity of the M2 model (A) and the CBT model [(B) L5B PT neurons in M1, (D) L4 Pyr neurons in S1], and plots of the body states (C). (A,

B, D) Firing rates for the two alternating populations were calculated and plotted separately above (population A) and below (population B) zero in a

symmetric manner with di�erent colors. (C) Top panel shows the lengths of all six muscles, whereas the bottom panel plots the lever position at the

forelimb.

FIGURE 7

Breakdown of computational time. (A) Running time spent by each component in a simulation for 100 ms of the physics simulation time. (B) Strong

scaling performance of the CBT model. Running time of the CBT model for the same 100 ms was measured while varying the number of compute

nodes from 1 to 8.

NEST simulator on Fugaku. Moreover, the CBT model on

Fugaku was able to connect to other brain regions and body-

environment models running on local computers over the Internet,

demonstrating the openness of this supercomputer owing to

rosbridge. Furthermore, our C++ version of the rosbridge library

allowed the supercomputer Fugaku to participate in the distributed

simulation system over the firewall, owing to the open architecture

of the Fugaku system. In fact, this is the first demonstration of

such distributed simulation that involves Fugaku. Furthermore,

a human-scale spiking network model simulation on a MONET

simulator has been reported, using all 160,000 compute nodes of

Fugaku (RIKEN, 2021). Thus, simulation of a human brain-body

model and an environment model will be possible from the aspect

of compute resources required.
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FIGURE 8

Gain adaptation during lever movements by the CB model. (A) Top panel shows the trajectory of lengths for all six muscles, whereas the bottom

panel plots the trajectory of the lever position. (B) Change in population activity in the CB model. (C) Change in population activity in S1.

Abbreviations listed as in the text.

4.1. Related studies

As we demonstrated, ROS is a powerful technology to achieve

such distributed simulations. However, various other choices exist.

To distribute the entire system, we chose ROS as the

communication interface among various parallel and distributed

computing frameworks. Message Passing Interface (MPI) is

a standard framework that provides low-level Application

Programming Interfaces (APIs) (Gropp et al., 1999). MPI

allows us to run a single application program on multiple

computers as if they act as a single computer with multiple

processors. MPI also supports running multiple application

programs simultaneously on multiple computers while passing

messages with each other. Other frameworks shown below only

support the latter usage. Remote Procedure Call (RPC) is a

protocol used for client-server style communication, where a

client submits a query to a server, and the server returns the

answer to the client. A variant of RPC called gRPC has been

developed by Google (gRPC, 2023), and used to build a large-

scale application by combining a number of small applications

called microservices.

In the field of computational neuroscience, MUlti SImulator

Coordinator (MUSIC) is a standard choice to connect various

neural simulators such as NEST and NEURON (Djurfeldt et al.,

2010). MUSIC itself is implemented in MPI. There is an attempt

to enhance interoperability between MUSIC and ROS (Weidel

et al., 2016). In the field of robotics, OpenRTM-aist is a promising

choice besides ROS, which aims to let multiple components

communicate on a robot. OpenRTM-aist is built on an RPC-based

architecture called Common Object Request Broker Architecture

(CORBA) (Pope, 1998). These are also called robot middleware

occasionally. ROS has been also used in the interdisciplinary

area between neuroscience and robotics such as a brain-machine

interface (Tonin et al., 2022).

To develop and maintain distributed brain-body-environment

simulation, the framework must be (1) available, where

implementations in various programming languages are provided,

(2) maintained, where the development is active, (3) usable, where

the framework can be adopted to our applications easily, and (4)

reachable, where the communication can pass through firewalls.

Notably, (4) could be problematic for the previously mentioned

frameworks, because they were actually assumed to be used within
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the same subnetwork. The combination of ROS and rosbridge

suffices all the four issues by using WebSocket.

Message Queuing Telemetry Transport (MQTT) is another

protocol developed for IoT devices (MQTT.org, 2022). MQTT

supports a publisher/subscriber-style message passing, which is

similar to ROS. MQTT also supports WebSocket to go over

firewalls (MQTT over WebSocket). Further investigation will be

necessary to adopt MQTT rather than ROS.

4.2. Limitations

Although we successfully demonstrated the distributed

simulation, several limitations and shortcomings exist. First, the

most serious problem is the existence of TF as a single point

of failure. All communications between the brain and body

models must pass through TF. While TF can synchronize all

the models, this suggests that our simulations were distributed,

but still centralized at TF. Removing TF is a technical challenge

to achieve a truly decentralized system. One possible way is to

adopt peer-to-peer communication protocols. Second, controlling

the entire system is still complicated. In particular, debugging

a distributed system like the present system is quite difficult

for standard neuroscientists like us. We need a sophisticated

debugging system for such distributed systems.

4.3. Perspectives

Nevertheless, we foresee that distributed simulations are

inevitable. As the size and complexity of models increase, there will

be no way to simulate the entire system on a single computer. We

must move on to distributed simulation at some point. Moreover,

distributed simulation will also be necessary and helpful to include

more scientists in developing an integrated and large-scale model

like the present model.

For simplicity, the brain model developed in this study does

not consider the inter-regional time delays reflecting white matter

propagation. This problem can be addressed by adjusting the

cycle of exchanging ROS messages between brain regions and

adding the time delays reflecting the results of recent works (e.g.,

Lemarechal et al., 2021) to the spike times. As a result, we may

investigate a role of time delays in synaptic transmission for shaping

emergence of brain dynamics such as brain-wide oscillation and

synchronization (Fries, 2005). Moreover, we will also be able to

even incorporate more realistic ion channels and spatial structure,

connectomics, glia, and so on. These will be the basis for a digital

twin of living systems.

5. Conclusion

We developed a distributed simulation system for a spiking

network model of the cortico-basal ganglia-cerebellar-thalamic

circuit and a mouse musculoskeletal model on multiple computers

including Fugaku over the Internet. Computer simulation of such

a large-scale embodied model will provide the means to virtualize

neurosciences and provide digital twins of living systems.
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