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Introduction: Small cell lung cancer (SCLC) is characterized by poor prognosis

and challenging diagnosis. Screening in high-risk smokers results in a reduction

in lung cancer mortality, however, screening efforts are primarily focused on

non-small cell lung cancer (NSCLC). SCLC diagnosis and surveillance remain

significant challenges. The aberrant expression of circulating microRNAs

(miRNAs/miRs) is reported in many tumors and can provide insights into the

pathogenesis of tumor development and progression. Here, we conducted a

comprehensive assessment of circulating miRNAs in SCLC with a goal of

developing a miRNA-based classifier to assist in SCLC diagnoses.

Methods: We profiled deregulated circulating cell-free miRNAs in the plasma of

SCLC patients. We tested selected miRNAs on a training cohort and created a

classifier by integrating miRNA expression and patients’ clinical data. Finally, we

applied the classifier on a validation dataset.

Results: We determined that miR-375-3p can discriminate between SCLC and

NSCLC patients, and between SCLC and Squamous Cell Carcinoma patients.

Moreover, we found that a model comprising miR-375-3p, miR-320b, and miR-

144-3p can be integrated with race and age to distinguish metastatic SCLC from

a control group.

Discussion: This study proposes a miRNA-based biomarker classifier for SCLC

that considers clinical demographics with specific cut offs to inform SCLC

diagnosis.

KEYWORDS

small cell lung cancer, microRNAs, biomarkers, oncology, classifier
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1255527/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1255527/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1255527/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1255527&domain=pdf&date_stamp=2023-10-05
mailto:Patrick.Nana-Sinkam@vcuhealth.org
https://doi.org/10.3389/fonc.2023.1255527
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1255527
https://www.frontiersin.org/journals/oncology


Saviana et al. 10.3389/fonc.2023.1255527
1 Introduction

In the United States, lung cancer is the leading cause of cancer-

related death in both women and men (1). Lung cancers are

histologically classified as Small Cell Lung Cancer (SCLC) or

Non-Small Cell Lung Cancer (NSCLC). Although SCLC

constitutes the minority of lung cancer cases, it represents an

aggressive form of cancer characterized by a high growth fraction,

early development of metastases, and extremely poor prognosis,

with less than 7% 5-year survival rate (2). Low-dose computed

tomography (LDCT) screening among high-risk populations

remains an effective strategy for curbing mortality, with an

observed 20% reduction in lung cancer-associated mortality (3).

However, these results appear to be primarily applicable to NSCLC

cases and the strategies for SCLC diagnoses are limited to biopsy, an

invasive procedure at times impacted by tissue of poor quality or

quantity (4, 5). New diagnostic methods to inform diagnosis and

surveillance have the potential to impact SCLC outcomes.

Liquid biopsy has emerged as a potential approach for guiding

clinical decision-making in both early detection and in guiding

therapies in cancers (6, 7). Multiple components of biological fluids

are being investigated as potential disease-related markers,

including microRNAs (miRs, miRNAs) (8). These single-stranded

non-coding RNAs drive the post-transcriptional repression of gene

expression (9) and can be released to the extracellular environment

either as circulating cell-free molecules or encapsulated within

extracellular vesicles (EVs). These vesicles are constitutively

secreted by all cell types and EVs released from cancer cells can

functionally alter recipient cells by reprogramming them to become

active contributors to tumor growth, metastasis , and

immunosuppression (10). Circulating cell-free and EV-contained
Frontiers in Oncology 02
miRNAs are stable and easily detectable in bodily fluids (11). Thus,

circulating miRNA signatures can potentially reveal clinically

relevant information about disease pathobiology and prognosis.

To date, miRNAs have been considered promising candidates as

circulating biomarkers in lung cancer. The majority of circulating

cell-free and EV-contained miRNAs have been examined in NSCLC

subtypes with only a few similar studies in SCLC. A recent study

reported a miRNA panel that discriminated SCLC from NSCLC

(12), while another described the expression of miR-92b and miR-

375 as prognostic factors for SCLC (13). Despite the good

performance of these miRNAs as possible biomarkers, neither

study integrated clinical demographics in the development of the

classifier nor provided specific cutoffs that could be used to assist

with diagnosis, thus, limiting their clinical applicability. In this

study, we tested and validated the expression of circulating miRNAs

in SCLC patients and built a miRNA-based classifier.
2 Results

Identification of candidate miRNAs
in circulation

With the intent of building a miRNA-based biomarker classifier

for SCLC diagnosis (Figure 1, see method section), we performed

RNA-seq on a discovery cohort (Supplementary Table 1) of 38 RNA

plasma samples. We compared control (CTR), Adenocarcinoma

(ADENO), Squamous Cell Carcinoma (SCC), and SCLC groups

and profiled the expression of circulating cell-free miRNAs

(constituted by both cell-free and EVs included miRNAs). The

sequencing was focused on small RNA profiling and revealed
FIGURE 1

Study design for the identification of a circulating miRNA biomarker in SCLC. CTR (control group), SCC (squamous cell carcinoma), ADENO
(adenocarcinoma), SCLC (small cell lung cancer). The plasma samples were obtained from VCU (Virginia Commonwealth University) and Vanderbilt
medical centers.
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deregulation of several miRNAs in SCLC patients compared to the

other histological groups. We specifically found that plasma

miR-375-3p was significantly upregulated in the SCLC group

compared to the other groups (Supplementary Table 2 and

Supplementary File 1).

To improve the distinction between SCLC and the other

histological types, a second analysis was conducted on the RNA-

seq data to identify additional deregulated miRNAs. For this

purpose, we chose those miRNAs with low P-value (<0.05) in at

least one comparison (SCLC vs CTR, SCLC vs ADENO, SCLC vs

SCC, SCLC vs NSCLC, SCLC vs OTHER) and/or with low

correlation with miR-375-3p. Among these, we elected to test

miR-122-5p, miR-144-3p, miR-145-5p, miR-200a-3p, miR-200b-

3p, miR-205-5p, and miR-320b (Table 1 and Supplementary File 2).

In parallel, we profiled EV-included miRNAs by NanoString in

a second discovery cohort of 24 patients (Supplementary Table 1).

The bioinformatic analysis identified few miRNAs upregulated in

SCLC. Among these, we selected only miR-1285-5p, which was

present in all the comparisons and showed a fold change higher

than 1.5 in at least one comparison (Supplementary File 3).

Moreover, considering the relevant upregulation of miR-375-3p

in plasma, which contains also EVs, we decided to investigate its

expression specifically in EVs.
Testing of candidate miRNAs

We evaluated the expression of the selected miRNAs by qRT-

PCR in a training cohort of 111 samples (Table 2), from which we

extracted both circulating cell-free miRNAs in whole plasma and

EV-included miRNAs.
Frontiers in Oncology 03
Due to the high variability existing between human samples, we

used three different endogenous miRNAs to normalize the

expression of the circulating cell-free miRNAs, resulting in three

features in the selection pool for each of these miRNAs. An

exogenous spike-in was used as normalizer for EV-included

miRNAs. Circulating cell-free miR-200b-3p was removed from

the analysis because of its low expression (CT values >35 in more

than 10% of samples).

Based on qRT-PCR data, we identified 7 circulating cell-free

miRNAs significantly upregulated in the SCLC group in at least one

comparison (Figure 2A). miR-375-3p, was significantly upregulated

in SCLC group compared with the other groups (SCLC vs CTR:

p<0.0001; SCLC vs SCC and SCLC vs ADENO: p<0.001); miR-122-

5p was significantly upregulated in SCLC vs all the other groups

(p<0.05); miR-144-3p was upregulated compared to CTR (p<0.01)

and ADENO (p<0.001); miR-145-5p was upregulated in SCLC vs

ADENO group (p<0.05); miR-200a-3p was upregulated in SCLC vs

all the other groups (SCLC vs CTR and SCLC vs SCC: p<0.01; SCLC

vs ADENO: p<0.001), miR-205-5p was upregulated in SCLC vs

CTR (p<0.05) and SCLC vs ADENO (p<0.001); miR-320b was

upregulated in SCLC vs all the other groups (SCLC vs CTR:

p<0.001; SCLC vs SCC: p<0.05; SCLC vs ADENO: p<0.01).

By contrast, none of the tested EV-miRNAs showed significant

deregulation in SCLC group (Figure 2B).
Establishment and validation of
the classifier

With the intent of building a classifier capable of distinguishing

SCLC from the other histological subtypes (SCC, ADENO and
TABLE 1 circulating cell-free miRNAs selected from NGS RNA-seq analysis.

miR KW
raw p

KW
FDR

SCLC vs
ADENO raw p

CTR vs
SCLC raw p

SCC vs
SCLC raw p

SCLC vs
OTHER raw p

SCLC vs
NSCLC raw p

Correlation with
miR-375-3p

miR-
375-3p

0.0001 0.0281 0.0076 0.0002 0.0006 0.0001 0.0004 1

miR-
200a-
3p

0.0136 0.7668 0.9291 0.0140 0.0142 0.0549 0.1857 0.484

miR-
200b-
3p

0.0290 0.8626 0.7220 0.0474 0.0359 0.1392 0.3329 0.434

miR-
122-5p

0.0423 0.9967 0.0676 0.3704 0.4598 0.4352 0.5661 0.178

miR-
144-3p

0.0468 0.9967 0.0343 0.6730 0.4082 0.2994 0.0887 0.053

miR-
205-5p

0.0902 0.9967 0.1972 0.3114 0.3279 0.5795 0.1857 -0.002

miR-
145-5p

0.0923 0.9967 0.9292 0.0268 0.2662 0.2029 0.5757 0.375

miR-
320b

0.1424 0.9967 0.8286 0.0464 0.1011 0.1169 0.2806 0.383
In bold are shown the p-values <0.05..
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CTR), we employed LASSO regression for selecting the variables

(miRNAs expression and clinical data). Acknowledging the high

expression of circulating cell-free miR-375-3p, and its significant

upregulation in SCLC, we forced its expression into the model. We

also forced the batch effect in the classifier, to consider the

variability between the sample processing placed in the two

different medical centers from which we obtained the samples.

We first tested the association between clinical variables (age, sex,

race, smoking history, histology, stage) and miR-375-3p expression

to ensure that the miRNA expression was independent from the

clinical data. We found that the only association of miR-375-3p

expression was related to histology and stage.

We estimated the model on the complete training dataset (see

methods), and then we evaluated its diagnostic performance on the

qRT-PCR results for both the circulating cell-free and EV-included

miRNA of the validation data set (Supplementary Figure 1). For

each comparison, we estimated the probability of being SCLC by

using area under the receiver operating characteristics (ROC) curve

(AUC), setting a specific cutoff, calculating specificity, sensitivity,

positive predictive value (PPV), and negative predictive value

(NPV) at the optimal cutpoint derived from the training

data (Table 3).

We also evaluated the predicted probability of SCLC association

with the group in the validation dataset. Our data show that the

variables selected comprise circulating cell-free miRNAs, whereas

none of the EV-included miRNAs were retained in the model. As

shown in Figure 3, the model built on the training cohort provided a

significant classification between SCLC patients and NSCLC (SCC +

ADENO) and between SCLC and SCC patients in the validation

dataset, highlighting its diagnostic relevance. In the SCLC vs SCC

classification, miR-375 turned out to be an effective predictor, with

AUC= 0.833 and with sensitivity and specificity 0.375 and 1,
Frontiers in Oncology 04
respectively. The applied cutoff was 0.5494 which discriminated,

in the validation dataset, 6 out of 16 test-positive SCLC patients and

0 out of 6 test-positive SCC patients (Supplementary Table 3),

ruling out any SCC from having a positive test. As well, in SCLC vs

NSCLC classification, miR-375-3p was effective predictor of SCLC,

with AUC= 0.793 with sensitivity and specificity 0.375 and 1,

respectively. The set cutoff was 0.4012 which correctly

discriminated 6 out of 16 test-positive SCLC patients, and 0 out

of 13 test-positive NSCLC patients. The results of the remaining

comparisons show a significant classification in the training dataset,

however, the performance of the classifier in validation data was not

significant with a low AUC (Supplementary Figure 2, Table 3).

Taken together, these results demonstrate that levels of circulating

cell-free miR-375-3p can provide a significant classification between

SCLC and NSCLC patients.

To evaluate the usefulness of our classifier in informing stage,

we compared early stage (stages I+II), non-metastatic (stages I+II

+III), and metastatic (stage IV) SCLC with the CTR (Supplementary

Figure 3). We found that miR-375-3p, miR-320b, and miR-144-3p

combined with race and age could discriminate between stage IV

SCLC patients and the CTR group (AUC=0.882, sensitivity=0.2857,

and specificity =0.9412).
3 Discussion

The prompt diagnose of SCLC is essential for effective treatment

as the majority of patients present with advanced disease (14).

Further, given the high rates of recurrence of the disease, classifiers

that could be applied to surveillance strategies would be invaluable.

MiRNAs are small molecules that are unique for their stability and

detection in body fluids, making them potentially valuable
TABLE 2 Characteristics of patients in Training and Validation cohorts.

Training cohort (n=111) Validation cohort (n=55)

CTR
(n=35)

SCC
(n=22)

ADENO
(n=23)

SCLC
(n=31)

CTR
(n=19)

SCC
(n=10)

ADENO
(n=9)

SCLC
(n=17)

Age ± SD 60 ± 9 67 ± 8 65 ± 10 66 ± 9 60 ± 12 65 ± 10 64 ± 8 61 ± 13

Sex
F 15 43% 10 45% 9 39% 10 32% 7 37% 5 50% 4 44% 6 35%

M 20 57% 12 55% 14 61% 21 68% 12 63% 5 50% 5 56% 11 65%

Race
B 5 14% 8 36% 6 26% 7 23% 0 0% 3 30% 5 56% 4 24%

W 30 86% 14 64% 17 74% 24 77% 19 100% 7 70% 4 44% 13 76%

Smoking status

Never smoked 5 14% 2 9% 3 13% 1 3% 4 21% 1 10% 0 0% 0 0%

Former smoker 15 43% 10 45% 10 43% 13 42% 7 37% 4 40% 7 78% 5 29%

Current smoker 15 43% 10 45% 10 43% 17 55% 8 42% 5 50% 2 22% 12 71%

Pk-Yr Hx ± SD 43 ± 21 59 ± 32 45 ± 25 49 ± 26 54 ± 25 57 ± 38 41 ± 32 48 ± 29

TNM

I-II 10 45% 8 35% 9 29% 4 40% 4 44% 4 24%

III 7 32% 9 39% 8 26% 3 30% 2 22% 6 35%

IV 5 23% 6 26% 14 45% 3 30% 3 33% 7 41%
f
rontier
CTR, control; SCC, squamous cell carcinoma; ADENO, adenocarcinoma; SCLC, small cell lung cancer; F, female; M, male; W, white; B, black. Pk-Yr Hx, pack-year history; TNM, tumor-node-
metastasis stage.
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biomarker candidates (15). Sozzi et al., reported that a combination

of both plasma miRNA signature and LDCT resulted in the

reduction of LDCT false-positive rate (16), highlighting the utility

of miRNA in informing lung cancer diagnoses. Despite

investigation describing miRNAs deregulation in lung cancers

(17), few studies have identified a panel of miRNAs

distinguishing SCLC from NSCLC (12, 18). NSCLC represents

the majority of lung cancer cases while SCLC remains a less

common subtype of tumor that is often not considered in

biomarker studies. SCLC is an exceptionally aggressive tumor
Frontiers in Oncology 05
type that rapidly becomes metastatic and chemo resistant thus

carrying poor prognosis (2). Moreover, compared to NSCLC that is

often characterized by mutations of targetable oncogenes, SCLC

frequently exhibits gene alterations in the tumor suppressors P53

and RB (89% and 64% respectively), which are near-universally

inactivated (14, 19), hindering the development of targeted

therapies. The neuroendocrine features and the high

heterogeneity of the tumor, render SCLC a completely different

cancer compared to NSCLC in terms of pathology, progression, and

possible therapeutic treatments (20, 21). Importantly, the rapid rate
B

A

FIGURE 2

Relative expression of selected circulating cell-free miRNAs normalized with miR-24-3p (A) and miRNAs included in EV (B) in the training cohort.
Mann Whitney P-values: *=p<0.05; **=p<0.01; ***=p<0.001; ****=p<0.0001.
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of proliferation is reflected in the late presentation of the disease,

when the tumor is unresectable, and the biopsy may be obtained

from a sample of poor quantity or quality (4, 22). For this reason, a

thorough understanding of specific circulating markers capable of

detecting SCLC in a cost-effective and non-invasive way would

be invaluable.

Several miRNAs regulating proliferation, metastasis and

chemoresistance have been detected in SCLC and are suggested as

candidate biomarkers for monitoring response to chemotherapy

and predicting survival outcomes (23, 24). However, although the

expression of miRNAs in circulation has been reported for cancer

diagnosis, they have yet to reach effective clinical utility. Our work

represents a step towards developing a miRNA-based classifier to

distinguish SCLC from SCC and NSCLC.

In this study, we used a total of 166 plasma samples from lung

cancer patients to identify miRNA deregulation across histological

subtypes. To profile circulating free miRNAs from whole plasma,

we used NGS, a sophisticated and highly informative technique that

provides the exact miRNA sequence and can potentially inform
Frontiers in Oncology 06
about the presence of miRNA isoforms (25, 26). To profile miRNAs

included in EVs, we elected to use NanoString, given our previous

experience in analyzing miRNAs included in EVs with this

technology (27–29). Although less informative compared to NGS,

this technique allows for minimal sample processing and easier data

analysis. In fact, NanoString technology does not require any

preamplification process, accurately counts the number of

molecules in a specific sample and has good performance for low-

expressing miRNAs (30). Finally, we used qRT-PCR to test selected

miRNAs and build the classifier for SCLC diagnosis. qRT-PCR is

extensively used for assessing the miRNAs expression; moreover, it

is a reliable and cost-effective technique that can be easily used for

routine diagnostics.

qRT-PCR on samples derived from EVs did not show

significantly deregulated miRNAs in SCLC patients (Figure 2).

This result was not entirely unexpected and may depend on the

low fold change of the selected miRNAs which did not allow for

accurate discrimination between groups. Numerous studies have

suggested EV-based miRNAs as biomarkers in cancer (31).
TABLE 3 Variables selected for each comparison and performance assessment of the classifier.

Comparison Retained variables Coefficient Cutpoint AUC Sensitivity Specificity PPV NPV

SCLC vs CTR Batch 0.634 0.4166 0.574 0.3125 0.8824 0.7143 0.576

Age 0.3153

PLASMA.miR.122.5p.vs.93.5p -0.01554

PLASMA.miR.320b.vs.93.5p -0.003632

PLASMA.miR.375.3p.vs.126.3p 2.573

SCLC vs ADENO Batch 1.091 0.5771 0.75 0.375 1 1 0.411

PLASMA.miR.375.3p.vs.24.3p 0.5744

SCLC vs SCC Batch 1.013 0.5494 0.833 0.375 1 1 0.375

PLASMA.miR.375.3p.vs.126.3p 1.507

SCLC vs NSCLC Batch 0.9479 0.4012 0.793 0.375 1 1 0.565

PLASMA.miR.375.3p.vs.24.3p 0.3593

SCLC vs OTHER Batch 0.9766 0.4423 0.658 0.3125 1 1 0.731

PLASMA.miR.144.3p.vs.24.3p 0.003482

PLASMA.miR.375.3p.vs.126.3p 1.206

SCLC stage I+II vs CTR Batch 2.17 0.2394 0.515 0.5 0.5294 0.2 0.818

PLASMA.miR.375.3p.vs.126.3p -4.265

SCLC stage I+II+III vs CTR Batch 0.5922 0.3019 0.444 0.4444 0.4118 0.2857 0.583

PLASMA.miR.375.3p.vs.126.3p 1.239

SCLC stage IV vs CTR Batch -0.1454

0.3414 0.882 0.2857 0.9412 0.6667 0.761

Age 0.4699

Race -0.6286

PLASMA.miR.144.3p.vs.24.3p 0.01695

PLASMA.miR.320b.vs.126.3p -3.508

PLASMA.miR.375.3p.vs.126.3p 6.354
frontie
AUC, area under the ROC curve; PPV, positive predicted value; NPV, negative predicted value.
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However, EV isolation requires several steps and a specific spike-in

is essential for normalization issues (32), limiting their clinical

relevance and reproducibility.

We observed a significant upregulation of circulating cell-free

miR-375-3p in SCLC compared to the other groups (Figure 2).

Using LASSO regression for selecting variables, we evaluated and

validated a model to discriminate SCLC from NSCLC and, more

precisely, between SCLC and SCC (Figure 3). The importance of

this discrimination lies in the radiographic similarity between SCLC

and SCC, both of which arise centrally in the lung, hindering their

distinction by imaging. Furthermore, histologically, SCC tumors

may occasionally show characteristics in common with SCLC, such

as small cells with hyperchromatic nuclei and scant cytoplasm,
Frontiers in Oncology 07
leading to misdiagnose (5). Thus, a non-invasive approach for

additional discrimination could be of value.

An upregulation of miR-375 in SCLC was previously reported

by Lu et al. in a large cohort of patients (12). We obtained similar

results in a relatively small cohort of patients but included clinical

demographic variables to build a more comprehensive and accurate

classifier for SCLC. Furthermore, we provide specific cut points for

miR-375 expression in each comparison which represents the first

step towards potential clinical application for informing

SCLC diagnoses.

The expression of miR-375 in SCLC is highly variable and,

occasionally, overlaps with those of other histological types. The

variability in miR-375 expression in SCLC may be attributable to
B

A

FIGURE 3

Predicted probability of SCLC in comparison of SCLC vs SCC (left) and SCLC vs NSCLC (ADENO + SCC) (right) in Training (A) and Validation cohorts
(B top) and ROC curves (B bottom) of the model in the Validation cohort. The Red line in box plots indicates the optimal cut-point derived from the
training data.
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the presence of different SCLC subtypes which may harbor variable

expression of this miRNA. Recently, gene expression profiling of

SCLC patients, cell lines, and mouse models revealed four major

SCLC subtypes (33), distinguished by four major transcription

factors: ASCL1, NEUROD1, YAP1, and POU2F3, which differ for

neuroendocrine grades. ASCL1 is known to induce miR-375

transcription in lung cancer and its expression is associated with

elevated neuroendocrine characteristics in lung cancer (34, 35).

Interestingly, miR-375 targets YAP1 (36), suggesting a role of this

miRNA as a mediator of neuroendocrine differentiation and

tumorigenesis in lung carcinoid cells (37). The expression of miR-

375 in our classifier did not discriminate between SCLC and

adenocarcinoma patients (Supplementary Figure 2). High

expression of miR-375 in lung adenocarcinoma has been recently

reported by Kumar et al. (38) consistent with our findings. As such,

Augustyn et al. showed that ASCL1 is expressed in 8% of lung

adenocarcinomas, which plays a tumor-promoting role (39) and

could partially explain the upregulation of miR-375 in the plasma of

some NSCLC patients (34). Conversely, a recent paper showed that

miR-375 is often downregulated in NSCLC tissues compared to

adjacent tissues (40), and that the overexpression of this miRNA

induces cisplatin sensitivity in lung adenocarcinoma cell lines (41).

MiR-375 is downregulated in several cancers, where it acts as

tumor-suppressor by targeting oncogenes like PDK1, and IGFR1

and by suppressing the PI3K/Akt pathway (42, 43). However, its

upregulation has been reported in other tumors, such as breast

cancer, where circulating miR-375 can be internalized by tumor-

associated macrophages altering their phenotype to create a pro-

tumoral environment (44). The variable function of miR-375 in

cancer reflects a tumor specific role of this miRNA that has yet to be

fully elucidated.

A recent study demonstrated that exosomal miR-375 induces

brain metastasis in SCLC by targeting CLAUDIN-1 (45). Consistent

with these findings, our classifier could distinguish metastatic SCLC

from control patients. Although the small number of samples

requires further validation, this result suggests that the selected

variables can potentially provide insight into metastatic disease and

tumor burden.

To the best of our knowledge, we have validated for the first

time a miRNA-based biomarker classifier capable of distinguishing

between SCLC and SCC. In addition, we established a classifier

specific to stage in SCLC by combining circulating cell-free miRs

and clinically relevant patient information. Building a classifier

should require consideration of clinical variables which are not

often included in other studies. We believe that including the

patients’ demographics is fundamental for clarifying the risk

factors for SCLC. It is known that the expression of miRNAs can

be influenced by demographic factors such as sex, race, age, and

smoking history, and discrepancy in miRNA profiling in different

sex and race were previously observed (46–50). We found no

association between the expression of miR-375 and the patients’

demographics, demonstrating that miR-375 may be related to SCLC

histology. It is important to mention that incorporating patients’

clinical information helps to establish a correct classification

including minorities that have different lung cancer incidence and

mortality (51, 52).
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We recognize that there are limitations to our study as

presented. First, given the relatively small sample size, our

findings result require additional external validation as well as

assessment for actual clinical utility. The optimal cutpoint for

each comparison was determined based on the minimum p-value.

It is important to specify that the cutpoints determined from a

higher number of samples would be more precise. Although the

sensitivity, specificity, PPV and NPV for the validation were

computed using the cutpoints derived from the training data,

considering the limited number of patients in our training cohort

the cutpoints are certainly parameters that would need to be refined

prior to consideration of the model for clinical use. Moreover, our

classifier for distinguishing between SCLC and SCC/NSCLC

includes only miR-375. To increase the accuracy of the

classification, additional clinical and genomic features should be

considered. One possibility would be to investigate the expression of

proteins, metabolites, or lipids. A particularly intriguing approach

would be to investigate for modified miRNAs, such as isomiRNAs

or edited miRNAs that could then be included in the analysis.

Additionally, a more comprehensive study should take into

consideration different SCLC subtypes and their correlation with

miR-375 expression. Such information would increase the

diagnostic relevance of biomarkers suitable for detecting specific

SCLC subtypes that can be specifically targeted (33, 53–55).

Nevertheless, our findings represent a step towards the clinical

utility of cell-free miRNA circulation as a reliable, cost-effective, and

non-invasive biomarker that may have potential as a complement to

histology for SCLC diagnosis.
4 Materials and methods

Ethics statement

A total of 166 patients were selected for this study. The patients

were recruited from two medical centers (Virginia Commonwealth

University, Richmond, VA, USA, and Vanderbilt University,

Nashville, TN, USA) in accordance with the institutional review

board (IRB) for equivalent guidelines for each institution. Informed

consent was obtained from all subjects and/or their legal guardian(s).
General design

Based on previous approaches (56, 57), we conducted a three-

phase study (Figure 1): Discovery (phase 1), Training (phase 2) and

Validation (phase 3). The Discovery phase aimed to identify cell-

free and EV-included miRNAs present in circulation that were

deregulated in the SCLC group compared to the other histological

types: control (CTR) which includes normal and granuloma

histology, squamous cell carcinoma (SCC), and adenocarcinoma

(ADENO). We used plasma samples from a first discovery cohort

collected at Virginia Commonwealth University (VCU) (n=38,

Supplementary Table 1) to extract circulating cell-free miRNAs

that were then analyzed by Illumina Next Generation Sequencing

(NGS). These samples include both circulating free miRNA as well
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as EV-included miRNA. In parallel, we isolated EVs from a second

discovery cohort (n=24, Supplementary Table 1) and extracted EV-

included miRNAs, which were then analyzed through NanoString.

Accurate isolation of EVs was confirmed by Nanoparticle

Tracking Analysis (NTA) and cryo-electron microscopy (cryo-

EM), as suggested by the International Society of Extracellular

Vesicles (58) (Supplementary Figure 4).

In the Training phase, we extracted both circulating cell-free

and EV-included miRNAs from a larger cohort (training cohort,

Table 2, left), which included part of the samples from the discovery

cohort. From these samples, we tested, by qRT-PCR, candidate

miRNAs in both plasma and EVs.

A biomarker classifier for detecting SCLC was established by

using the expression of circulating cell-free miRNAs and EV-

contained miRNAs from paired samples, as well as six clinical

variables (histology, stage, sex, race, smoking history, and age), in

the selection pool for the LASSO model in the training cohort.

In the Validation phase, we first evaluated the expression of

circulating cell-free and EV-included miRNAs by qRT-PCR on an

independent validation cohort (Table 2, right), which included part

of the samples from the discovery cohort. Finally, we applied of the

model generated on the training data set to the validation data set.
Patient selection and plasma preparation

The plasma samples were divided into two clinically

homogeneous groups, identified as training (n=111) and

validation (n=55) (59, 60). To ensure comparable training and

validation sets, splits of 111/55 were performed randomly 10,000

times, and group (training/validation) was tested for association

with each of six clinical variables (histology, stage, sex, race,

smoking history, and age) at each split. The split with the highest

minimum p-value (p>0.9) across the six variables was retained for

the training and validation analyses.

Plasma samples were spun at 2,000 X g for 20 minutes and

subsequently at 10,000 X g for 20 minutes to remove cellular debris.

200 µl of supernatant were used for whole plasma miRNAs

extraction and 500 µl were used for EVs isolation.
EV isolation

EVs were isolated from plasma using the Total Exosome

Isolation Kit (INVITROGEN #4484450) following the

manufacturer’s protocol. EVs were thoroughly resuspended in

200 µl of PBS with 1/10 reserved for EVs characterization.
Nanoparticle tracking analysis

Nanoparticle tracking analysis was performed using the

NanoSight NS300 system (Malvern, Great Malvern, UK) as

previously described (61).
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Cryo-EM

EV characterization by cryogenic transmission electron

microscopy (cryo-EM) was performed at the Advanced Materials

and Liquid Crystal Institute (AMLCI), Kent State University, OH,

USA. A FEI Vitrobot (Mark IV) plunge freezer was used to prepare

vitrified cryo-TEM specimens from the solution sample (62). Cryo-

TEM observation was performed on a FEI Tecnai F20 transmission

electron microscope. The basic experimental setup and procedure

can be found in (63).
RNA extraction and qRT-PCR from
patients’ samples

Circulating cell-free RNA was extracted by using the miRNeasy

micro kit (QIAGEN #217084) according to the manufacturer’s

protocol. RNA from EVs was extracted using TRIzol reagent

(Invitrogen #15596018) and supplied with 35 picograms of non-

human miRNA spike-ins (ath-miR-159a; cel-miR-248; osa-miR-

414), for normalization purposes. RNA purification was performed

with RNA Clean-Up and Concentration Kit (NORGEN #43200). 3

µl of RNA from plasma and EV samples were retrotranscribed using

the TaqMan® Advanced miRNA cDNA Synthesis Kit (#A28007)

and qRT-PCR was performed using TaqMan® reagents

(TaqMan™ Advanced miRNA assay #4444964; TaqMan™ Fast

Advanced Master Mix # 4444557, Thermo Fisher). All the probes

used were obtained from TaqMan® (#A25576). MiRNAs 24-3p,

93-5p and 126-3p were used as endogenous controls for

normalizing whole plasma PCR data, as suggested from the

manufacturer; ath-miRNA-159a was used as a unique normalizer

for EV PCR data. All the assays were carried out in three technical

replicates. Samples and technical replicates in which the Ct value

was >35 were excluded from the statistical analysis. The 2^-dct

values were used as relative expression of the biostatistical analysis.
NGS and feature selection analysis

NGS was performed at the Institute for Systems Biology, Seattle,

Washington as previously reported (64). One of the control samples

was considered an outlier and removed from the NGS analysis. Raw

fastq files were initially pre-processed by trimming Illumina adapter

sequences via Cutadapt tool (65). and then qualitatively filtered by

Condetri tool (66) (parameters: -pb=fq -lq=20 -hq=30 -minlen=15

-sc=33). For each sample, all post-processed reads were mapped

into the human genome (GRCh37) by using miARma-Seq tool (67),

which includes Bowtie tool (v1) (68) for aligning reads and

featureCounts tool (69) to annotate them into microRNA space

[miRBase v20 (70)]. A minimum expression filtering is applied

prior to normalization, retaining all those miRNAmolecules with at

least 10 reads in 50% of samples. Filtered miRNA were normalized

by applying the TMM method (trimmed mean of M-values).

Differentially expression analysis was carried out by using EdgeR
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package (71). For each comparison, we took into consideration all

those miRNAs with a P-value<.05 and |Linear Fold-Change|>1.5

(Supplementary File 1). For a second more restricted analysis in the

discovery data, features were filtered by percent present >90%, and

at least 15 read counts in a least 50% of the samples in at least one

group. Count data were analyzed across groups with the omnibus

Kruskal-Wallis test, followed by pairwise by group analysis with the

Wilcoxon rank sums tests. Spearman correlation was used to

determine miRNA/miRNA associations. Additional miRNAs were

selected for inclusion in the classification stage by association with

group and low correlation with miR-375 (Supplementary File 2).
NanoString nCounter assay and feature
selection analysis

Total exosomal RNA from a cohort of 24 samples (8 CTR, 4

SCC, 4 ADENO, 8 SCLC) were profiled through NanoString

nCounter Human v3 miRNA Expression Assay as previously

described (29).

Raw data (.rcc files) produced via NanoString nCounter Human

v3 miRNA Expression Assay were analyzed with nSolver™

(provided by NanoString Technologies). Negatives controls were

considered to perform background noise subtraction, while positive

controls were considered to perform technical normalization,

adjusting lane-by-lane variability due to differences in

hybridization, purification, or binding. Finally, data were

biologically normalized by calculating the geometric mean of the

top 100 miRNAs in all samples, as recommended by NanoString

company. Differential expression analysis was carried out by using

Limma R package (72) from the Bioconductor R project. For each

comparison, we took into consideration all those miRNAs with a

P-value<.05, |Linear Fold-Change|>1.25 and an average expression

of >30 count in at least one condition (Supplementary File 3).
Statistical analysis and predictive modeling

Training and validation analyses were performed in R (73). For

qRT-PCR data, hierarchical clustering using the Ward method (74)

on correlations was performed using differentially expressed

miRNAs. For the training data, LASSO (glmnet package) was

used to select variables and produce the final model. Data were

produced in two batches, and therefore a batch variable was forced

into the LASSO models. Additionally, the initial strongest

association in the discovery data was miR-375-3p, and, therefore,

this feature was also forced into the LASSO models. The variables

considered were the log10(2^-dct) of EV- included miR-1285-5p,

miR-375-3p, and circulating cell-free miR-122-5p, miR-144-3p,

miR-145-5p, miR-200a-3p, miR-205-5p, miR-320b, miR-375-3p

vs the normalizers miR-24-3p, miR-93-5p and miR-126-3p, as

well as clinical data (race, sex, age, and smoking history).

The samples with missing features were not considered for the

predictive modeling and the analysis was performed on a total of 94

(Training cohort) and 46 (Validation cohort) paired EVs and

PLASMA samples.
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The predicted probability of being SCLC from the model was

used as a score for each sample. The optimal cutpoint by minimum

p-value (OptimalCutpoints package) (75), was determined for each

comparison to classify samples. The training set derived model was

then applied to the validation set. The probability of SCLC was

tested (Wilcoxon rank sums) for association with group (control vs.

SCLC, for example), AUC calculated, and using the cutpoint

determined from the training data, sensitivity, specificity, PPV,

and NPV calculated to evaluate the utility of the model for

classification in the validation set.

For the real-time PCR data, normal distribution was first

assessed and non-parametric Mann Whitney test was performed

using GraphPad Prism version 9.5.1 for Windows, GraphPad

Software, San Diego, California USA, www.graphpad.com.
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