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Actin cytoskeleton remodeling
at the cancer cell side of the
immunological synapse:
good, bad, or both?

Elena Ockfen1,2, Liza Filali 1, Diogo Pereira Fernandes1,2,
Céline Hoffmann1 and Clément Thomas1*

1Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of
Health, Luxembourg, Luxembourg, 2Faculty of Science, Technology and Medicine University of
Luxembourg, Esch-sur-Alzette, Luxembourg
Cytotoxic lymphocytes (CLs), specifically cytotoxic T lymphocytes and natural

killer cells, are indispensable guardians of the immune system and orchestrate

the recognition and elimination of cancer cells. Upon encountering a cancer cell,

CLs establish a specialized cellular junction, known as the immunological

synapse that stands as a pivotal determinant for effective cell killing. Extensive

research has focused on the presynaptic side of the immunological synapse and

elucidated the multiple functions of the CL actin cytoskeleton in synapse

formation, organization, regulatory signaling, and lytic activity. In contrast, the

postsynaptic (cancer cell) counterpart has remained relatively unexplored.

Nevertheless, both indirect and direct evidence has begun to illuminate the

significant and profound consequences of cytoskeletal changes within cancer

cells on the outcome of the lytic immunological synapse. Here, we explore the

understudied role of the cancer cell actin cytoskeleton in modulating

the immune response within the immunological synapse. We shed light on the

intricate interplay between actin dynamics and the evasion mechanisms

employed by cancer cells, thus providing potential routes for future research

and envisioning therapeutic interventions targeting the postsynaptic side of the

immunological synapse in the realm of cancer immunotherapy. This review

article highlights the importance of actin dynamics within the immunological

synapse between cytotoxic lymphocytes and cancer cells focusing on the less-

explored postsynaptic side of the synapse. It presents emerging evidence that

actin dynamics in cancer cells can critically influence the outcome of cytotoxic

lymphocyte interactions with cancer cells.
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Introduction

The anti-tumor immune response is a complex process

involving a coordinated interplay between various immune cells.

At the forefront of this response are cytotoxic lymphocytes (CLs),

mainly natural killer (NK) cells and CD8+ cytotoxic lymphocytes

(CTLs), that are essential for identifying and eliminating cancer

cells. NK cells are the frontline defense against cancer cells due to

their innate capability to rapidly recognize and kill target cells

without prior sensitization or the need for clonal expansion (1).

They play a significant role in the control of early tumors and

metastasis (2, 3) while they are typically less abundant than CTLs in

the tumor microenvironment (TME) of more advanced tumors (4,

5). Presently, CTLs are recognized as the most potent effectors in

the anti-tumor immune response and represent the primary focus

of current cancer immunotherapies involving immune-checkpoint

inhibitors and genetic modification of receptors (6, 7).

NK cells have a large repertoire of surface inhibitory and

activating receptors, which enable them to differentiate between

healthy and diseased cells (8–11). Most host’s healthy cells express

self-major histocompatibility complex class I (MHCI) molecules

that act as ligands for NK cell inhibitory receptors, such as killer cell

immunoglobulin-like receptors (KIRs) in humans and C-type

lectin-like Ly49 receptors in mice, thus preventing NK cell

activation (12–14). In contrast, cancer cells frequently

downregulate MHCI molecule expression which makes them

more susceptible to NK cell cytotoxicity, a process referred to as

“missing-self” recognition (15). In addition, they increase the

production of stress molecules recognized by activating receptors

on NK cells. The combination of reduced inhibitory signals (e.g.,

due to low MHCI expression) and enhanced activating signal (e.g.,

due to the upregulation stress-induced molecules) effectively

triggers the activation of NK cells. Beyond their cytotoxic

function, NK cells fulfill a crucial role in modulating adaptive

immune responses by releasing cytokines and chemokines and

physically interacting with other immune cells, particularly

dendritic cells (DCs) (16, 17). Harnessing the potent cytotoxicity

and immunomodulatory functions of NK cells has emerged as a

promising therapeutic strategy to treat cancer, and readers are

referred to recent reviews on the subject (5, 18–20).

Unlike NK cells, CTLs need to be primed by DCs in lymph

nodes, before they start to proliferate, acquire an effector phenotype,

traffic to and infiltrate the tumor, and recognize and kill cancer cells

(21). The specificity of CTLs for their targets is defined by their T

cell receptor (TCR) and its affinity for MHCI molecules loaded with

antigenic peptides. Activation of CTLs is triggered by the

interaction of the TCR-CD3 complex with MCHI molecule-

bound cancer-derived antigen in conjunction with co-stimulatory

signals from CD8 and CD28. While being activated through

different mechanisms, both NK cells and CTLs establish similar

intercellular contacts with cancer cells, referred to as lytic

immunological synapses (ISs), whose primary functions are to

integrate signaling for activation of the killing machinery and

facilitate the execution process itself (22, 23).

The prevalent and best-characterized modalities for eliminating

cancer cells are the directed secretion of lytic granules containing
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pro-apoptotic granzymes and pore-forming perforin, as well as

expression of death receptor ligands such as TNF-related apoptosis-

inducing ligand (TRAIL) and Fas ligand, which can trigger caspase-

dependent apoptosis in target cells expressing the cognate receptors

(24–26). The lytic granule pathway is recognized as a highly efficient

and rapid killing modality, while the death receptor pathway

typically operates at a slower pace primarily due to complex

apoptotic signaling cascades. Although these mechanisms exhibit

different kinetics, they are not mutually exclusive and can work in

synergy. For instance, after a few killing events, CLs can switch from

a fast granzyme B-mediated killing to a slow death receptor-

mediated killing, thus prolonging their killing capabilities (27).

The formation of an IS plays a crucial role in promoting the

directed secretion of lytic granules toward the target cells. Following

their convergence to the microtubule organizing center (MTOC)

along microtubules, lytic granules undergo polarization towards the

presynaptic membrane, thus ensuring their precise positioning for

subsequent secretion (28). Upon reaching the secretory domain,

lytic granules are secreted into the synaptic cleft, which is a narrow

intercellular space. Of note, lytic granule polarization and

degranulation are uncoupled events in NKs. While ICAM-1

binding to LFA-1 is sufficient to trigger polarization of granules

to the IS (29, 30), additional input derived from other activating

receptors is necessary to induce granule secretion (31, 32). By tightly

restricting the area of secretion, the synaptic cleft not only enhances

the concentration of cytotoxic molecules delivered to the target cell

but also minimizes the risk of collateral damage to the surrounding

healthy cells. Perforin plays a prominent role in CL-mediated

cytotoxicity by creating pores in the target cell membrane, thus

leading to a repair response that facilitates granzyme uptake and

target cell apoptosis (33–37). Interestingly, a recent study has

suggested that effective killing of cancer cells by CTLs might

require sequential sublethal hits, a process referred to as “additive

cytotoxicity” (38).

The prototypical architecture of the mature IS draws its origins

from early investigations on T cell synapses, wherein functionalized

lipid bilayers were utilized in place of an antigen presenting cell

(APC), enabling high-resolution imaging (39–41). The so-called

“bull’s eye” model is characterized by three concentric and

functionally distinct domains and has played a pivotal role in

understanding IS dynamics, encompassing variations in receptors,

signaling molecules, and cytoskeletal organization (42, 43). The

innermost domain, known as the central supramolecular activation

domain (cSMAC), houses a significant concentration of TCRs and

features a loose mesh of actin filaments (AFs) that can only be

resolved using super-resolution imaging techniques (44, 45).

Adjacent to the cSMAC is the peripheral SMAC (pSMAC),

serving as an adhesion domain where the integrin leucocyte

function-associated antigen-1 (LFA-1) accumulates and interacts

with its ligand ICAM-1 on the target cell. The pSMAC’s

architecture is characterized by a concentric network of

contractile actin arcs assembled by formins and myosin II (46,

47). Finally, the outermost domain, referred to as the distal SMAC

(dSMAC), consists of a dense and branched network of actin

fi laments encircling the periphery of the IS. Detailed

investigations of the ISs formed between CTLs or NK cells and
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partner immune cells or target diseased cells have revealed a rich

array of SMAC-based architectures, such as the multifocal ISs,

which deviate from the monocentric topology, expanding our

understanding beyond the traditional bull’s eye model (22, 48–

54). While this observation may not be universally applicable to all

models, an intravital microscopy-based comparative study has

highlighted that, in vivo, NK cells tend to form shorter and more

dynamic interactions with tumor cells, whereas CTLs establish

longer-lasting contacts (55). Intriguingly, both types CLs

exhibited similarly effectiveness in killing their targets, suggesting

that the disparities in their interaction dynamics with target cells are

likely attributable to differences in their activation mechanism and

associated signaling pathways, in particular calcium influx, rather

than variations in their ability to induce cell death.

Here, we begin by briefly summarizing the roles of the actin

cytoskeleton at the pre-synaptic (CL) side of the IS. We then delve

into a more comprehensive review of research studies that explore

the organization and dynamics of the actin cytoskeleton at the post-

synaptic side of the IS with a primary emphasis on cancer cells.

Finally, we discuss the potential impact of actin cytoskeleton

remodeling within cancer cells on the overall outcome of CL-

mediated cytotoxicity.
The actin cytoskeleton at the pre-
synaptic side of the CL-cancer cell IS

Extensive research spanning several decades has shed light on

the diverse functions of the actin cytoskeleton and actin-generated

forces at the pre-synaptic side of NK cell and CTL ISs, including

initiation, organization, and maintenance of the IS; assembly of

signaling complexes and patterning of receptors; activation of

receptors; and controlling the exocytosis of lytic granules (22, 43,

56–59). One of the earliest and most significant events triggered by

TCR engagement is the formation of a ring-shaped branched F-

actin network at the cell-cell interface’s edge (dSMAC). This plays a

critical role in facilitating T cell adhesion to the target cell surface

(60–62). The signaling pathway involved in this process includes

phosphoinositide 3-kinase (PI3K)-mediated generation of

phosphatidyl inositol-3,4 ,5-tr iphosphate (PIP3) , which

subsequently recruits DOCK2, an activator of the Rho family

small GTPase Rac1. Consequently, activated Rac1 leads to the

activation of WAVE2 at the plasma membrane, which in turn

mediates activation of the ARP2/3 complex and actin

polymerization. The organization and dynamics of this radial

dendritic actin network are reminiscent of those found in the

lamellipodium of migrating cells and give rise to a centripetal

flow of actin (also referred to as retrograde actin flow), which is

essential for assembling the TCR signaling complexes and

transporting these complexes to the cSMAC where they undergo

recycling through actin-dependent endocytosis (63–67). The

centripetal flow of actin also directly contributes to stimulating T

cell activation by providing the mechanical force required for

optimal TCR signaling and promoting integrin conformational

change (68–73). In turn, integrin engagement constrains the

centripetal flow of actin by recruiting focal adhesion proteins
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such as talin and vinculin and paxillin, thus modulating the

motion of signaling complexes and TCR signaling (74). A similar

centripetal flow of actin driving adhesion molecules and receptors

toward the IS center exists in the NK cell IS. Its velocity is

modulated by the activity of ARP2/3 complex regulator Wiskott-

Aldrich-Syndrome-Protein (WASp) and myosin IIA (75) and

critically determines the conformation and activity of SH2

domain-containing protein tyrosine phosphatase-1 (SHP-1) - a

key inhibitory regulator of the NK cell response (76–78).

The establishment of the synaptic secretory domain involves a

reduction in cortical F-actin density at the IS center, which leads to

the formation of a permissive network (22, 28, 44, 45, 79–82).

Additionally, nanoscale actin dynamism, mediated by the ARP2/3

complex and myosin IIA, generates mechanical forces that facilitate

degranulation (79, 83). In CTLs, rapid recovery of higher cortical F-

actin levels follows granule exocytosis and directs termination of

secretion, potentially by acting as a mechanical barrier (83, 84).

Prior to their secretion into the synaptic cleft, lytic granules

converge toward the MTOC and subsequently polarize along with

the MTOC to the secretory domain (22, 85). The processes of

granule convergence and MTOC repositioning to the IS are

complex and remain not fully understood (86), with dynein, a

microtubule minus-end-directed motor protein, being implicated in

these processes (87, 88). Recent evidence highlights the critical role

of cortical clearance of F-actin within the IS in dynein recruitment

and MTOC reorientation, thus illustrating that the actin and

tubulin cytoskeletons closely interact to coordinate CL

polarization and exocytosis (86, 89, 90). Intriguingly, the F-actin

cross-linking protein FLNa has been identified to facilitate multiple

steps of NK cell cytotoxicity, including conjugation to target cells,

synaptic accumulation of F-actin, and lytic granule degranulation,

while limiting the production of IFN-g and TNF-a (91). This

suggests that modulation of actin dynamics contributes in

steering CLs toward cytotoxicity or regulatory functions through

cytokine production. Readers are referred to recent reviews for a

more comprehensive description of the regulation and roles of the

actin cytoskeleton at the pre-synaptic side of the IS (57, 90, 92, 93).
Actin dynamics at the post-synaptic
side of the immunological synapse:
lessons from lymphocyte-dendritic
cell interactions

Until recently, the exploration of actin dynamics in cancer cells

during their interaction with CLs and formation of the lytic IS has

been limited. However, studies on other types of ISs formed by T

cells and NK cells have shed light on the importance of actin

dynamics in the conjugated target cells particularly dendritic cells

(DCs) in regulating IS formation, organization, and activity. For a

more comprehensive discussion on the actin cytoskeleton at the DC

side of the IS, readers are invited to refer to a recent review that

provides information beyond the scope of the present section (94).

Over two decades ago, pioneering investigations unveiled the active

reorganization of the actin cytoskeleton in DCs during their
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interaction with resting CD4+ T cells, thus leading to a robust

polarization of F-actin and actin regulatory proteins, such as the

actin bundling protein fascin, towards the IS (95–97). Such

remodeling of the DC actin cytoskeleton is necessary for optimal

cell-cell conjugation and activation of T cells.

Additional evidence of the changes in actin dynamics occurring

in DCs during conjugation with T cells was provided by

fluorescence recovery after photobleaching (FRAP) analysis,

which revealed an overall stabilization of filamentous actin at the

cell-cell interface compared to distal cortical regions (98). More

recent studies show the mechanistic details underlying the role of

actin cytoskeleton remodeling in DCs in the regulation of the T cell

IS (99). Remarkably, depolymerization of F-actin in DCs induces

the conversion of the T cell IS from a multifocal to monofocal

topology (49, 99), thus supporting the involvement of the DC actin

cytoskeleton in patterning the T cell IS. Similar to the T cell side of

the IS, the DC side exhibits a multifocal topology that is

characterized by multiple and dynamic small and larger actin

patches separated by actin hypodense areas. The inhibition of the

lateral movement of these patches following the genetic ablation of

the Wiskott-Aldrich-Syndrome-Protein (WASP)-family verprolin-

homologous protein (WAVE) regulatory complex (WRC), a critical

regulator of the ARP2/3 complex, leads to prolonged cell-cell

conjugation time and reduction in T cell priming efficiency (99).

Such effects are primarily attributed to an overstabilization of

ICAM-1 on the DC surface through the activation of ERM

proteins that connect ICAM-1 and the cortical actin cytoskeleton,

and the subsequent increase in synaptic ICAM-1-LFA-1

interactions and overstabilization of the IS.

As previously stated, the mechanical forces exerted by the actin

cytoskeleton play critical role in modulating TCR signaling. For an

in-depth understanding of this role and the underlying molecular

mechanisms, readers are referred to an excellent review article (43).

While the mechanical forces applied to the TCR stem from the

actin-dependent pushing and pulling forces exerted by CLs on the

APC surface (100, 101), they are also contingent upon the

biomechanical properties of the APC - particularly the cortical

stiffness, which is mostly governed by the cytoskeleton (99, 102,

103). Remarkably, DCs undergo a 2-3-fold (actin cytoskeleton-

dependent) increase in cortical stiffness during their maturation,

which is perceived by T cells as a co-stimulatory signal (104). As

part of the underlying mechanism, cortical stiffening increases TCR

complex mechanical stimulation, thus leading to enhanced

downstream signaling and lowering the antigenic threshold

required to activate T cells (43, 100, 101, 103–106). Of note, both

the ARP2/3 complex- and formin-mediated actin polymerization

contribute to the increased cortical stiffness of mature DCs (104).

Similar to T cells, NK cells physically interact with DCs via an

IS. NK cells contribute to the selection of immunogenic DCs by

selectively killing immature DCs. This editing process is critical for

the initiation of anti-cancer immune responses by promoting

successful T cell priming (107, 108). However, NK cells also

engage with mature DCs within a non-lytic IS, thus leading to a

reciprocal cross-talk between the two cell types, which is crucial for

orchestrating and regulating the immune response against cancer.

Such, non-lytic, NK-DC IS is referred to as the regulatory IS (109)
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(110–113). In turn, DC-activated NK cells can stimulate DC

maturation (114). The investigation into how mature DCs evade

destruction while synapsing with NK cells has shed light on the key

role of the DC actin cytoskeleton in facilitating this process (115).

Throughout the conjugation process, there is a gradual relocation of

the filamentous actin cytoskeleton in DCs towards the synaptic

region. Such cytoskeletal polarization was associated with a

blockade of NK cell cytotoxicity as indicated by the absence of

MTOC and perforin polarization to the IS. Remarkably, genetic or

pharmacological inhibition of actin polymerization in DCs induced

the conversion of the regulatory IS into a lytic IS as indicated by NK

cell MTOC and perforin polarization, as well as a significant

increase in degranulation, IFN-g production, and DC killing. As

an underlying mechanism, DC-derived F-actin was shown to

induce the polarization of MHCI molecules to the IS and restrict

their diffusion away from the IS.

Collectively, these studies emphasize the crucial role of the

synaptic actin cytoskeleton in DCs, which plays a pivotal role in

modulating the organization of T cell and NK cell ISs and regulating

the synaptic density of signaling molecules, thus ultimately

safeguarding DCs from CL-mediated cytotoxicity. Additionally,

emerging evidence suggests that the cortical stiffness of DCs,

which is primarily determined by cytoskeletal dynamics, acts as a

critical regulator of the mechanical response of T cells. These

findings imply that specific configurations or characteristics of the

cortical actin cytoskeleton of cancer cells may be indispensable for

facilitating efficient CL-mediated killing. Cancer cells may exploit

actin cytoskeleton remodeling to alter the morphology and activity

of the lytic IS and evade immune destruction. These intriguing

possibilities will be evaluated and discussed below.

Intrinsic cytoskeletal properties
of cancer cells and the lytic
immunological synapse

Compelling evidence suggest that mechanical forces within the

lytic IS significantly influence CL cytotoxicity potential through

multiple mechanisms (43, 116). As previously discussed, these

forces play a crucial role as co-activating signals in both CTLs

and NK cells, thus enhancing immunoreceptor affinity for ligands

and promoting conformational changes in receptors and integrins,

which subsequently amplify downstream signaling (117–121).

Moreover, CL-originating mechanical forces have been shown to

potentiate the pore-forming activity of perforin by increasing target

cell membrane tension, thus enhancing target cell killing (122, 123).

In turn, recent research has highlighted the significance of target cell

rigidity as a pivotal factor governing the magnitude of the synaptic

forces, as well as its impacts on lytic IS formation and activity (124).

For instance, experiments utilizing stiff beads that were

functionalized with antibodies against the NK activating receptor

NKp30 and LFA-1 have proven highly effective in triggering NK cell

degranulation (116). Conversely, softer beads fail to induce the NK

cell’s MTOC and lytic granule polarization, and only lead to the

formation of poorly stable IS.
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The implications of target cell rigidity are especially pertinent to

cancer because cancer cells tend to undergo softening during the

metastatic cascade and the acquisition of invasive properties,

primarily due to alterations in their cytoskeletal architecture

(125–130). In this regard, a recent study established a compelling

link between the mechanical softness of cancer cells and their ability

to hinder the formation of membrane pores by perforin. The data

suggested that this evasion mechanism is utilized by a subset of

undifferentiated, stem cell-like, cancer cells (characterized by their

intrinsic softness) to escape CTL-mediated cytotoxicity (131). The

manipulation of cellular stiffness using pharmacological or genetic

approaches targeting the actin cytoskeleton was proven to dictate

the susceptibility of both murine cancer cell models and primary

human cancer cells to perforin-mediated perforation. Most

remarkably, stiffening tumor cells with the actin polymerization

promoting drug jasplakinolide significantly improved antitumor T

cell immunity and PD-1 blockade immunotherapy in in vivomouse

models. Softening tumor cells with the myosin II inhibitor

blebbistatin had opposite effects. Another important finding of

this study is the identification of MYH9 - the heavy chain of non-

muscle myosin IIA that crosslinks and contracts actin filaments to

produce mechanical forces (132) - as a critical molecule for perforin

pore formation. A MYH9 Knockout proved sufficient to make cells

softer and inhibit the pore-forming activity of perforin in several

cancer cell models. Although the exact mechanism remains elusive,

perforin might interact with MYH9 and thus trigger an opposite

force whose strength is proportional to the amount of F-actin linked

to MYH9. While this force would be sufficient to induce perforin

active conformation in the case of stiff cancer cells, it would remain

insufficient in the case of soft cells.

The association between the actin polymerization status of

cancer cells and their susceptibility to CL-mediated lysis was

previously suggested in an earlier study that focused on a

variant of a non-small-cell lung carcinoma cell line exposed to

in vitro CTL selection pressure (133). This particular resistant

variant exhibited a substantial reduction in filamentous actin

content, resulting in a consistent shift toward a more rounded

cellular morphology. Transcriptomics uncovered notable

dysregulation in the expression of various genes. Among those,

two genes encoding cytoskeleton regulators, ephrin-A1 and

scinderin, were markedly upregulated and played a pivotal role

in driving alterations in cell morphology alterations and

conferring resistance to CTL-mediated lysis. Although target cell

perforation was not specifically evaluated in this model, it is

noteworthy that the resistant cells were proficient in inducing

CTL degranulation. This observation raises the possibility that

these cells may exhibit resistance to pore-forming activity.

Another intriguing observation was the disorganization of the IS

formed between CTLs and resistant cells, characterized by a more

loosely organized synaptic cleft and a reduced number of close

contacts when compared to the IS formed with susceptible cells.

Another recent study has unveiled an important link between

the expression levels of myocardin-related transcription factors

(MRTFs), the rigidity of cancer cells and the control of tumors by

CLs (134). MRTFs play a pivotal role as co-factors for the serum

response factor (SRF), responding to actin polymerization by
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dissociating from actin monomers and relocating to the nucleus

where they transcriptionally activate a range of SRF-target genes

related to the actin cytoskeleton (135). MRTFs are indispensable for

actin-based cell migration during physiological processes and

cancer progression (136). As cancer cells disseminate via the

bloodstream and infiltrate supportive perivascular niches, their

ability to establish prominent metastatic lesions relies on their

adhesion and spreading onto the endothelial basement membrane

(137). This process critically requires MRTF activity (138, 139).

Strikingly, Tello-Lafoz et al. have established that beyond their pro-

metastatic function in facilitating adaptation to the metastatic

niche, MRTFs paradoxically sensitize cancer cells in vivo to CL-

mediated destruction, and increase the effectiveness of PD1 and

CTLA4 checkpoint blockade therapies (134). Mechanistic

investigations have indicated that MRTF-induced actin

polymerization increases the stiffness of cancer cells, which

stimulates IS formation and CL cytotoxic potential as

demonstrated by increased levels of cytokine secretion

and degranulation.

Further strengthening the concept that cancer cell stiffness is an

actionable therapeutic point of intervention, membrane cholesterol

depletion-induced stiffening of cancer cells has recently been

demonstrated to enhance CTL-mediated cytotoxicity as well as

the efficacy of adoptive T-cell therapy in preclinical mouse models

of solid tumors (140). The vulnerability of cancer cells resulting

from membrane cholesterol depletion primarily depends on actin

cytoskeleton-dependent forces exerted by CTLs at the IS. It is

noteworthy that, in contrast to the cytoskeleton rigidification

resulting from MRTF overexpression (134), cholesterol depletion

fails to induce a significant increase in CTL cytokine production or

degranulation (140). This intriguing disparity underscores

distinctions in underlying mechanisms among the approaches

targeting the enhancement of cancer cell rigidity. Additional

investigations are required to unravel and characterize these

intricate mechanistic distinctions.
Actin dynamics at cancer cell side of
the immunological synapse

The target cell side of the lytic IS has long been regarded as a

relatively passive area and is primarily characterized by the array of

molecules present on its surface. This perception has mainly

evolved from the historical focus on the presynaptic cell side of

the IS as well as the use of reductionists target cell models amenable

to high-resolution microscopy such as glass-supported planar lipid

bilayers wherein specific proteins are embedded to initiate IS

formation. However, a growing body of research centered around

cell-cell conjugates has underscored the dynamic nature of the

cancer cell side - particularly with regards to actin dynamics and

vesicular and membrane trafficking (57, 141–143).

In a recent study, we thoroughly investigated the distribution of

the actin cytoskeleton within breast cancer cells upon encountering

NK cells. We found that a subset of breast cancer cells responded to

the attack of NK cells by exhibiting a prominent accumulation of
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filamentous actin within the synaptic region (144). This intriguing

response somehow paralleled the cytoskeletal modifications

observed in DCs during their interaction with NK cells in the

context of the regulatory synapse (115, 145). Moreover, akin to

DCs, the synaptic accumulation of actin filaments was associated

with breast cancer cell resistance to NK cell-mediated cytotoxicity.

Remarkably, such resistance could be reverted by silencing CDC42

or N-WASP, two regulators of the ARP2/3 complex, thus leading to

a return of cancer cells to a susceptible phenotype (144). In a follow-

up study we extended the concept of actin remodeling-mediated

resistance to several chronic lymphocytic leukemia (CLL) cell lines

and primary cells from CLL patients (146). Inhibition of synaptic

actin accumulation using a CDC42-targeting drug - combined with

an anti-HLA-G blocking antibody as a mean to increase conjugate

formation - resulted in a substantial enhancement of NK cell-

mediated killing of primary CLL cells.

The precise mechanism through which the polarization of

cancer cells’ actin cytoskeleton to the IS leads to resistance to NK

cell-mediated cytotoxicity remains unclear. The accumulation of F-

actin in the postsynaptic region of the IS has been linked to

diminished levels of granzyme B and a reduction in apoptosis

within target cells (144, 146). However, whether this reduction

stems from actin cytoskeleton-mediated resistance against perforin,

the degradation of granzyme B, or inhibition of NK cell killing

activity requires further investigation. Remarkably, similar to the

scenario observed in the DC-NK cell inhibitory IS (115), breast

cancer cells exhibiting synaptic F-actin accumulation also display

increased levels of HLA-A,-B,-C and PD-L1 at the IS (144). This

observation suggests that F-actin accumulation at the postsynaptic

side of the IS might act as a scaffold for the clustering of NK cell

inhibitory ligands, leading to potent inhibitory signal against NK

cells. This remains largely speculative and will require rigorous

experimental evaluation.

The mechanism responsible for initiating actin remodeling in

NK cell-conjugated cancer cells remains a subject of ongoing

investigation. Interestingly, K562 cells, characterized by their lack

of MHCI expression and highly susceptibility to NK cell-meditated

cytotoxicity have been documented as incapable of remodeling their

actin cytoskeleton in response to NK cell conjugation (115). This

intriguing observation raises the possibility that MHCI expression

might be instrumental in driving the polarization of F-actin to the

post-synaptic side of the IS. It is also unclear why discrete cells

within the same cancer cell line do not uniformly exhibit the same

ability to respond to NK cell attack by actin cytoskeleton

remodeling (144). This variability may arise from the inherent

phenotypic heterogeneity within a single cell line including factors

such as the epithelial-mesenchymal transition (EMT) status of

individual cells (147). This diversity can contribute to differing

capacities to promptly reconfigure the actin cytoskeleton in

response to NK cell IS formation. Notably, the process of EMT

has been recognized as a critical driver of tumor immune evasion

(148), and has been implicated in the overall proficiency of cancer

cell lines to effectively polarize their actin cytoskeleton towards the

IS (144).
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Recent breakthroughs have prompted an increasing interest in

actin dynamics at the cancer cell side of the IS and support the

notion that the actin cytoskeleton of cancer cells is a double-edged

sword exerting a pivotal influence on the regulation of CL cytotoxic

activity. The cytoskeletal and biophysical properties of cancer cells

are exploited by CLs to adjust their response to the biochemical

signals present at the surface of cancer cells - a mechanism termed

mechanosurveillance. Notably, the stiffening of the actomyosin

cytoskeletal network, e.g., during cancer cell spread and

colonization at new metastatic sites, serves as a trigger for the

assembly of the IS and subsequent unleashing of lytic activity. This

cytoskeleton-mediated rigidification of cancer cells amplifies force-

dependent signaling in CLs, thus enhancing their proficiency in

target cell recognition. Furthermore, elevated mechanical tension

stands indispensable for the assembly of perforin-based

transmembrane pores in cancer cells, which are pivotal for

mediating cytotoxic effects.

Conversely, the softening of the actin cytoskeleton - a

phenomenon often accompanying the transition of cancer cells

towards an invasive and metastatic state - has emerged as a novel

immune checkpoint exploited by cancer cells to dampen CL

cytotoxicity. For a more comprehensive discussion on the

synergistic interplay between biomechanical and biochemical cues

leading to a robust antitumor immune response, readers are

encouraged to refer to the recent review article “Harder, better,

faster , s tronger : biochemistry and biophysics in the

immunosurveillance concert” (124).

Our live cell investigations into actin dynamics within cancer

cells during their interaction with NK cells have revealed the

remarkable ability of cancer cells to rapidly and extensively

remodel their actin cytoskeleton upon engaging with NK cells,

regardless of gene expression changes. This cytoskeletal remodeling

is characterized by massive polarization of filamentous actin

towards the IS, thus mirroring the cytoskeletal changes occurring

in CLs during the IS initiation. The polarization of the cancer cell’s

actin cytoskeleton provides robust protection against CL-mediated

killing by efficiently reducing intracellular granzyme B levels within

target cells. Nevertheless, the elucidation of the precise underlying

mechanism requires further investigation. F-actin accumulation at

the tumor cell side of the IS could be considered as an evasion

strategy per se, possibly through inducing IS disorganization and

destabilization, or as a fundamental cellular process shared across

multiple synaptic evasion tactics. This remains an open question.

While this remains speculative, augmenting synaptic actin

dynamics could facilitate the recruitment of lysosomes and

subsequent membrane repair (143), stimulate autophagy-

mediated degradation of granzyme B (149), promote the synaptic

recruitment of inhibitory ligands and immune checkpoint

molecules (115, 144), and trigger local changes in membrane

composition mediating increased resistance to perforin (145, 150).

A concise summary of the primary findings and hypotheses

discussed in this review article is provided in Table 1.
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Innovating therapeutic approaches aiming to enhance physical

contact between CLs and cancer cells or APCs and increase CL

cytotoxicity against cancer cells, hold tremendous potential in

cancer treatment (151). In particular, chimeric antigen receptors

(CAR)-T and CAR-NK cell therapies have shown great promise –

particularly in hematologic malignancies (152–160). Preclinical

models and advanced intravital imaging techniques have been

combined to provide real-time visualization of cancer cell

elimination by CAR-CLs at the single-cell level within living

organisms (161–164). Such breakthrough technologies open

exciting avenues for in-depth mechanistic investigations and for

translating these findings into clinical applications, such as the

prospective assessment of the clinical effectiveness of CAR-based

therapies. CAR synapses display several structural and functional

differences compared to conventional ISs (53, 165), thus potentially

limiting the effectiveness of CAR-based therapies. Recent

advancements such as the incorporation of an intracellular

scaffolding protein binding site, a PDZ binding domain, to the

CAR of CAR-T or -NK cells, have shown improved IS formation

and CL polarization, leading in turn to enhanced anti-tumor

activity and prolonged survival in several in vivo tumor models

including in solid tumors (166). The development of various CAR

products has catalyzed the expansion of clinical trials aimed at
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addressing a wide spectrum of hematologic and solid malignancies

(167). In the light of the present discussion, the concept of targeting

the postsynaptic actin cytoskeleton, in conjunction with optimized

CAR CLs, or alternative CL redirecting strategies, holds significant

potential for triggering a potent anti-tumor response. The

combination of CAR-based therapy with other treatment

modalities, such as radiotherapy or immune checkpoint blockade,

has emerged as one of the most auspicious approaches and is being

currently under evaluation in clinical trials (168, 169). However, the

ubiquitous expression of the actin cytoskeleton and its multiple

roles in physiological processes - particularly within immune

responses - pose significant challenges for the development of

therapeutic approaches aimed at manipulating the organization

and dynamics of the actin cytoskeleton within cancer cells.

Furthermore, unlike microtubule-targeting drugs that exhibit a

preference for selectively impairing rapidly dividing cancer cells

and have demonstrated efficacy in treating various malignancies,

actin-targeting drugs result in unacceptable levels of toxicity

precluding their clinical utility. The identification of relevant

molecular targets will require a thorough dissection of the cancer

cell side of the IS and the development of innovative methodologies

that can distinguish between the pre- and post-synaptic sides of the

IS (170).
TABLE 1 Key findings and hypotheses regarding the impact of actin cytoskeleton remodeling within cancer cells on the lytic immunological synapse.

Actin
cytoskeleton

changes

Effects on the
immunological

synapse

Underlying
mechanisms

Cytoskeletal
effector
proteins

Associated
genetic
pathways

Overall
outcome

Progression
stage

Refs.

Stiffening of the
cortical actin
cytoskeleton

▪ Stimulation of
synapse formation
▪ Enhanced CL
activation
(degranulation,
cytokine secretion)
▪ Enhanced target cell
perforation

▪ Cell
rigidification
▪ Mechanical
stimulation of
CLs
▪ Enhanced
receptor signaling
▪ Enhanced
perforin pore-
forming activity

▪ ARP2/3
▪ CDC42
▪ Formins

▪ Upregulation of
SRF target actin
cytoskeleton genes
promoted by actin
polymerization-
induced nuclear
translocation of
MRTFs

▪ Increased
cytotoxicity
▪ Reduced
metastasis
▪ Increased
survival
▪ Improved
response to ICB

▪ Colonization of
the metastatic site

▪ (43)
▪ (124)
▪ (134)
▪ (140)

Softening of the
cortical
cytoskeleton

▪ Attenuated target
cell perforation
▪ Morphological
alteration of the
synapse

▪ Cell softening
▪ Insufficient
mechanical
tension to induce
perforin active
conformation
▪ Reduced
MYH9-mediated
force generation
due to limited
amounts of F-
actin

▪ MYH9

▪ Downregulation of
MYH9 expression
▪ upregulation of
scindrin and ephrin-
A1

▪ Reduced
cytotoxicity
▪ Faster tumor
growth and
increased
tumor
incidence
▪ Reduced
response to
immunotherapy

▪ Tumor-
repopulating cells
▪ Acquisition of
migratory/
invasive
properties
▪ Metastatic
dormancy?

▪ (116)
▪ (124)
▪ (131)
▪ (133)

Actin cytoskeleton
polarization
toward the
immunological
synapse

▪ Reduced levels of
GzB and apoptosis
within target cells
▪ Synapse
destabilization?
▪ Reduced CL
activation?

▪ Synaptic
polarization of
inhibitory and
immune
checkpoint
molecules

▪ N-WASP
▪ CDC42

▪ Fast response to
interaction with CLs;
does not require a
change in gene
expression

▪ Resistance to
CL-mediated
cytotoxicity

▪ Association
with the
epithelial-
mesenchymal
transition (EMT)
process

▪ (57)
▪ (115)
▪ (144)
▪ (146)
▪ (150)
fron
The last column provides important references, with the primary research articles of the highest significance highlighted in bold.
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