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Maritime Spatial Planning (MSP) promotes the sustainable human activities

development and uses in the marine space, playing a role in their effective

management. The enhancement of connectivity is crucial for the conservation of

biodiversity and landscape planning. Ecological Corridors (ECs) are an important

type of connectivity for biodiversity conservation in fragmented habitats. The EU

Biodiversity Strategy 2030 includes ECs into the network of protected areas and

allows for the creation of additional protected areas. MSP studies considering

ECs remain still lacking, especially for the design of networks between Marine

Protected Areas (MPAs) and Other Effective area-based Conservation Measures

(OECMs). In this paper, knowledge, and tools for investigating marine ECs were

reviewed, with a systematic bibliometric analysis to summarize the current

scientific research. Previous studies integrating ecological connectivity into

planning for marine conservation have focused on models of larval dispersal,

adult movements, and dispersal of single species by using benthic habitat

proxies. Few studies were found on ECs in marine environments: in the coral

Caribbean reef systems in the Gulf of Mexico; within benthic habitats along the

Pacific coast of Canada; between MPAs in British Columbia (Canada); and by

analyzing migratory species in the Yangtze estuary (China). Commonly used

approaches to project and map ECs in marine environments are least-cost and

circuit theories allowing to incorporate movement with cost or resistance to

movement, depending on species and preferred habitats. The systematic

bibliometric analysis returned 25 studies, most of which were from North

America (40%) and European countries (36%) and the largest share of papers

(68%) from 2018 to 2022. This review pinpointed the need of integrating different

disciplines to investigate connectivity and the need by policymakers and

practitioners to recognize the importance of ecological connectivity, even

there are significant challenges for integrating connectivity into policies,

planning, and conservation.
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1 Introduction

Maritime Spatial Planning (MSP) is a strategy defined by the EU

Directive 2014/89/EU as an integrative public process that establish

a framework whereby authorities in relevant Member States allocate

human activity in maritime space. MSP goals include fostering the

long-term expansion of the maritime economy, the development of

marine regions, and the exploitation of marine resources by

integrating ecological, economic, and social objectives (e.g.:

Gilliland and Laffoley, 2008; Halpern et al., 2008; Stelzenmüller

et al., 2010; Micheli et al., 2013; Kelly et al., 2014; Halpern et al.,

2015; Da Luz Fernandes et al., 2018). MSP outcomes can result in

plans, permits, strategies, planning concepts, guidelines, governance

principles, and other administrative decisions about the spatio-

temporal allocation of present and future human activities and uses

in maritime space (https://maritime-spatial-planning.ec.europa.eu/

msp-eu/introduction-msp1). Furthermore, MSP promotes the

reduction of conflicts and the creation of synergies and

cooperation between sectors and EU countries, and the creation

of protected area networks to safeguard and maintain the

environment by recognizing the effects and opportunities for

space utilization, raising stakeholder awareness (https://maritime-

spatial-planning.ec.europa.eu/msp-eu/introduction-msp1). MSP

necessitates spatial information regarding marine resources,

biodiversity, habitat, ecosystems, and human activities to

effectively manage them (Ban et al., 2010; Da Luz Fernandes

et al., 2018; Margules and Pressey, 2000; Pressey et al., 2007;

Muñoz et al., 2017).

In this context, the protection and enhancement of natural

connectivity is a challenging topic for biodiversity conservation and

landscape planning (Ersoy et al., 2018; Fang et al., 2018; Pereira,

2018; Guzmán-Colón et al., 2020; Tulloch et al., 2021). Despite its

ecological importance, connectivity in marine environments is

challenging to assess due to limited data and the fact that it

encompasses several ecological processes such as dispersal (by

larvae, juveniles, and adults), oceanographic conditions,

ontogenetic shifts, migration, nutrient flow, invasive species,

anthropogenic impacts, or diseases (Gillanders et al., 2003;

Robinson et al., 2005; Blowes and Connolly, 2012; Friesen

et al., 2019).

Conservation in Europe is carried out with regulatory

frameworks such as the Birds and Habitats Directives and the

Marine Strategy Framework Directive (Leontiou et al., 2022)

resulting in the designation of the Natura 2000 network, which

currently covers almost 10% of the entire EU maritime area (more

than 3,150 marine Natura 2000 sites, over 550,000 km2) (https://ec.

europa.eu/2). In addition, the rate of Marine Protected Areas

(MPAs) is increasing worldwide as a response to the UN

Convention on Biological Diversity (2004) to effectively protect

and conserve at least 10% of marine ecoregions through MPAs that
1 https://maritime-spatial-planning.ec.europa.eu/msp-eu/introduction-

msp

2 https://ec.europa.eu/
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are ecologically representative and well connected. Currently, a total

of 18,384 MPAs and 818 Other Effective area-based Conservation

Measures (OECMs) exist, covering the 8.26% of the world’s oceans,

and less than a third of these are adequately connected (Saura et al.,

2018; UNEP-WCMC, 2023).

Despite the EU’s concerted efforts in the identification of

conservation zones, biodiversity loss continues at worrying rates

(European Commission, 2021). At the European level, MPAs cover

12% of the seas, and only 1% are strictly protected. In this context,

the action plan to foster the protection of EU marine ecosystem and

reduce the impact of fishing activities was set through the new EU

Biodiversity Strategy for 2030 (European Commission, 2021). This

strategy established as main objective the protection of 30% of the

EU seas, of which 10% strictly protected.

MPAs represent an important component for protecting

ecosystems and endangered species, as well as for fisheries

management, to ease anthropogenic stresses and guarantee the

sustainable use of marine resources (Lubchenco et al., 2003;

Lowry et al., 2009; Halpern et al., 2010). MPAs can help to

reduce biodiversity loss by fostering population persistence,

recovery, and expansion, as well as conserving community

composition and the biological processes that control those

ecosystems (Almany et al., 2009; Gaines et al., 2010; Speed et al.,

2018). MPAs contribute significantly to climate change adaptation

by improving ecosystem resilience and maintaining ecosystem

services (Micheli et al., 2012; Carr et al., 2017). However, When

MPA classification cannot be extended to key sites or when it is not

in the best interests of local governments or landowners, these

places can nevertheless be designated as OECMs (Diniz et al., 2022).

An OECM is a geographically defined area, but not a protected area,

governed and managed for biodiversity protection and

conservation, and associated ecosystem services, as well as, when

appropriate, cultural, spiritual, socioeconomic, and other important

values (IUCN-WCPA, 2019). Moreover, OECMs can include a

variety of players and governance types (for example, indigenous

peoples, local communities, business actors, and governments)

(IUCN-WCPA, 2019). Participation of these stakeholders in area-

based conservation efforts is a necessary step toward achieving

favorable socioeconomic and conservation outcomes (Maxwell

et al., 2020). The potential role of OECMs in constructing

ecologically representative and well-connected networks of MPAs

is gaining traction (Woodley et al., 2012; Spalding et al., 2013;

Borrini-Feyerabend et al., 2014; Jonas et al., 2014; Dunn et al., 2016;

Laffoley et al., 2017; Diz et al., 2018; Rees et al., 2018).
1.1 The role of ecological corridors in the
environmental conservation

Among the most well-known, prioritized, and historically

implemented types of connectivity, Ecological Corridors (ECs)

represent clearly defined geographical spaces (biological or

physical strips), regulated throughout time in order to preserve or

restore effective ecological connectivity allowing movement of

species and related ecological processes such as energy and gene

fluxes and nutrient cycles (Good, 1998; Benson et al., 2007; Van der
frontiersin.org

https://maritime-spatial-planning.ec.europa.eu/msp-eu/introduction-msp
https://maritime-spatial-planning.ec.europa.eu/msp-eu/introduction-msp
https://maritime-spatial-planning.ec.europa.eu/msp-eu/introduction-msp1
https://maritime-spatial-planning.ec.europa.eu/msp-eu/introduction-msp1
https://ec.europa.eu/
https://ec.europa.eu/
https://maritime-spatial-planning.ec.europa.eu/msp-eu/introduction-msp
https://maritime-spatial-planning.ec.europa.eu/msp-eu/introduction-msp
https://ec.europa.eu/
https://doi.org/10.3389/fmars.2023.1271397
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Podda and Porporato 10.3389/fmars.2023.1271397
Windt and Swart, 2008; Palmeri et al., 2017; Hilty et al., 2020;

Velázquez et al., 2022).

According to the EU Biodiversity Strategy for 2030, Member

States are called to create ECs between protected sites (European

Commission, 2021). In addition, IUCN Guidelines for Conserving

Connectivity through Ecological Networks and Corridors is meant

to guide global connectivity conservation efforts to design, govern,

and manage for effective ecological connectivity (Hilty et al., 2020;

Zhao et al., 2022). The EU Biodiversity Strategy asks for ECs to be

included in the network of protected areas as a method of creating a

cohesive transboundary network of protected areas (Hilty et al.,

2020). Ecologically, ECs play an important role in the reconnecting

fragmented ecosystems, regulating climate (Pataki et al., 2011;

Gratani and Varone, 2013) and water (Cettner et al., 2014; Nickel

et al., 2014), and providing food (Barthel and Isendahl, 2013), with

the common aim of fostering, protecting and conserving

biodiversity, (Hilty et al., 2006; Kattwinkel et al., 2011; Klaus,

2013; Garmendia et al., 2016; Fung et al., 2017). From a

sociocultural standpoint, ECs connect valuable locations, offer

working and leisure areas, and cultivate a sense of place

associated with cultural heritage, in addition to being key

components in the growth of tourism (McHarg, 1969; Beger

et al., 2015; Beyer et al., 2018; Hilty et al., 2020).

In this context, remains still lacking the volume in MSP

scientific research on ECs, and in particular, into the design of

networks between MPAs and OECMs, supporting connectivity of

marine systems (Balbar and Metaxas, 2019). MPAs and OECMs as

elements for the conservation of the biodiversity may not be enough

for addressing threats, such as, for instance, global climate change

(Bates et al., 2019). For this reason, further environmental

attributes, such us connectivity through ECs, might be considered

to achieve biodiversity protection goals.

The aim of this paper is to review the scientific literature to

investigate the current approaches and tools applied for

investigating marine ECs between MPAs and OECMs, in an MSP

perspective, and to identify gaps and opportunities to improve

ecological connectivity between current areas to promote marine

ecosystem conservation.
2 An overview of bibliometric research
of previous literature

Literature search was conducted in Scopus3 and checked in

Google Scholar4 by using the searching terms: “ecological

connectivity”, OR “ecological corridor*”, OR “ecological

network”, AND “marine protected area*, OR “Natura 2000”, OR

“Other effective area-based conservation measures”, OR “OECM*”,

AND “marine”, OR “ocean”, OR “coastal water*”, OR “offshore”,

OR “Mediterranean Sea”. Only peer reviewed English language

articles were included in the analysis. Abstracts were subsequently
3 https://www.scopus.com

4 https://scholar.google.com/
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examined manually to select only papers that analyzed connectivity

in terms of ECs at sea among MPAs and OECMs.

The bibliographic review was completed on April 2023. The

search returned a total of 25 studies, excluding duplicates, made up

of 24 research articles and 1 review (Table S1). Of these, the largest

share (n = 17, 68% of the total) was concentrated in the latest five

years (2018-2022), while the first article dates back to 2009. Most

articles were produced in North America (USA: 6, Canada: 4; 40%),

followed by European countries (9, 36%), and Asian countries (3,

12%), while remaining papers were developed in South America

and Oceania (3, 12%).

To highlight the main keywords on which considered papers

have been focused, a total of 294 author keywords from the 25

investigated papers were collected and analyzed for their frequency

and then plotted in a keyword cloud (Figure 1). Furthermore, most

relevant keywords, found at least in five studies, are summarized in

Table 1. Keywords were selected with the aim of collecting

information first on global scale and then specifically on a

Mediterranean scale to identify the existence of studies on marine

ECs at two different scales (global and local). Only few manuscripts,

that have been highlighted in this review have dealt with the topic,

easily providing overall information covering the global oceanic

scale. Because scientific literature on marine ECs is actually scarce,

the focus on the Mediterranean would provide new information in

anticipation of future studies.
3 State of art of ECs connecting MPAs
and OECMs: what do we know?

To maximize conservation effectiveness, the upcoming

extension of MPAs needs the use of systematic conservation

planning methodologies that account for connectivity (Balbar and

Metaxas, 2019; Katsanevakis et al., 2020; Virtanen et al., 2020).
FIGURE 1

Word cloud of keywords of 25 articles included in the present study.
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Previous research has established advanced techniques for

incorporating ecological connectivity into the selection of marine

conservation priorities (Magris et al., 2016; Weeks, 2017; Daigle

et al., 2020).

In contrast to terrestrial systems, where the underlying habitat

structure associated with ECs is often rather static, in marine

systems ECs are constantly changing due to water movements

caused by hydrological and meteorological processes (Hastie

et al., 2016).

Based on the information obtained from the systematic review,

we report here on the state of art approaches and methodologies

used to study ecological connectivity at sea. In particular, this

section describes existing studies focused on the ecological

connectivity in terms of larval dispersal, adults’ movement and

migration, the importance of the tridimensional character of the

marine environment, and common methodologies.
3.1 Larval dispersal

Research to investigate ecological connectivity in marine

environments has focused mainly on models of larval dispersal by

oceanic currents (Sanvicente-Añorve et al., 2014; Soria et al., 2014;

Thomas Y. et al., 2014; Roberts et al., 2021), as a key driver of

population connectivity (Treml et al., 2008; Andrello et al., 2015;

Magris et al., 2016). Understanding dispersal trends between MPAs

and OECMs is difficult since these phenomena are influenced by

currents, season, time, and depth, all of which vary by area and

species (Kinlan and Gaines, 2003; Basterretxea et al., 2012; Sayol

et al., 2013). To deepen connectivity in seawaters by using larval

dispersal, it is also important to use oceanographic data when

addressing dispersion direction, since they constitute key variables

for recruitment estimates (Schunter et al., 2011). Chemical tags

(Hüssy et al., 2020), parentage analysis (Bode et al., 2019), or

individual-based biophysical models are often used to evaluate

larval, fragments or organisms’ dispersion distance in coastal

marine ecosystems (Lett et al., 2020; Mari et al., 2020; Cecino and

Treml, 2021) providing a spatial representativeness needed for
Frontiers in Marine Science 04
conservation planning more easier than other techniques (Beger

et al., 2022).
3.2 Adults’ movement and migration

In the past ten years, also adults’movement has received a novel

attention. It is well understood that knowledge on adult-mediated

population connection is crucial for understanding the complicated

dynamics of connectivity (Frisk et al., 2014; Pittman et al., 2014;

Bryan-Brown et al., 2017; Holyoak et al., 2020; Keeley et al., 2021;

Jetz et al., 2022). Connectivity analysis combines information about,

for example, adult habitat preferences, resistance to mobility within

and across habitat types, influence of oceanic currents, density

dependency, and interactions between species where species-

specific data are available (Rocha et al., 2002; Gillanders et al.,

2003; Treml et al., 2008; Baggio et al., 2011; Caldwell and Gergel,

2013; Pittman et al., 2014; Magris et al., 2016; Allan et al., 2021). The

most interesting species for assessing connectedness are those with

modest adult mobility distances since the movement of widely

dispersed species may limit the efficacy of conservation

interventions (e.g.: MPAs) (Moffitt et al., 2009; Green et al., 2014;

Friesen et al., 2021). Even if species with low dispersion distances

might be confined, for example, within single MPAs (Kaplan et al.,

2009; Carr et al., 2017; Friesen et al., 2021).

Furthermore, it was found that narrow coastal channels

effectively function as ECs for mobile marine species migration,

and earlier research suggests that marine predators may seek these

habitats for feeding (e.g.: Tursiops truncatus and Phoca vitulina)

(Brown and Mate, 1983; Thompson et al., 1991; Suryan and Harvey,

1998; Hastie et al., 2004; Wilson et al., 2007; Hastie et al., 2016;

Krost et al., 2018). This because narrow coastal channels are

characterized by hydrographic features (e.g.: current direction and

velocity, tide) have been demonstrated to alter nutrient availability

and movement, plankton retention, and fish aggregation, as well as

potentially give greater feeding chances for predators (Benjamins

et al., 2015).

Technological advancements in microelectronics for telemetry,

spatial analytical approaches, and marine remote sensing favor the

possibility of filling substantial information gaps in marine animal

migrations (Pittman et al., 2014). In all cases, tagging highly mobile

marine organisms with acoustic transmitters is the most successful

and widely used approach for studying their movements in time

and space (Pittman and McAlpine, 2003; Heupel et al., 2006).

In contrast, it is unclear how connectivity patterns, discovered

using benthic habitat as a proxy, match with the effective population

connectivity of a single species. (Friesen et al., 2019). By combining

landscape characteristics with knowledge about a species’ capacity

for dispersal (Calabrese and Fagan, 2004) or likelihood of dispersal

between patches (Watson et al., 2010), this potential connectivity

provides a more thorough understanding of species-specific

connectivity patterns than a habitat proxy approach. However,

connectivity is an important component in marine habitats,

particularly for benthic species (Carr et al., 2003). Indeed, several

physical drivers such as ocean currents are involved in connectivity

(Brock et al., 2012). Surface currents can help to detect main
TABLE 1 Authors keywords, number of articles in which keywords are
included, and proportion of these on the total of considered articles (%).

Author keyword n° articles (% of total)

Marine 18 (72%)

Conservation 16 (64%)

Connectivity 16 (64%)

Network 14 (56%)

Area 13 (52%)

Ecological 13 (52%)

Protected 12 (48%)

Plannin 10 (40%)

Spatial 6 (24%)

Habitat 5 (20%)
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connections and ECs which should be considered in MSP (Muñoz

et al., 2015) and MPA network design (Schill et al., 2015).
3.3 Tridimensionality of marine
environments

Another factor to consider is the tridimensional character of

pelagic ecosystems, as well as the fact that most MSP techniques do

not take this third vertical dimension into account (Muñoz et al.,

2017). In fact, vertical connectivity can be attributed to physical

(upwelling, downwelling, particle settling) or biological

mechanisms (migration) (Robinson et al., 2010). For instance, the

upwelling from the thermocline to the photic zone may promote

the growth of phytoplankton, a component which is the basis of the

pelagic food web (Sarhan et al., 2000; Granata et al., 2004).

The deposition of particulate organic carbon connects surface

primary production to benthic secondary production

(Pfannekuche, 1993). Zooplankton diel vertical migration (DVM)

contributes to the biological pump as a driver of carbon fluxes

(Hernández-Leon et al., 2010; Ochoa et al., 2013; Ariza et al., 2015).

Horizontal or vertical connectivity in marine ecosystems is essential

for MSP as well as potential risk assessment of marine activities and

discharges, however, there is currently a scarcity of knowledge on

connection in these ecosystems (Sutton, 2013; Muñoz et al., 2015;

Muñoz et al., 2017). Furthermore, in terms of connectivity

direction, studies have primarily focused on horizontal or vertical

one, but not both at the same time (Sutton, 2013; Schill et al., 2015;

Muñoz et al., 2017). MSP and risk assessment necessitate the

simultaneous consideration of all types of connectivity (physical,

biological, horizontal, and vertical) (Muñoz et al., 2017).
3.4 ECs projection and mapping

There are, to the best of our knowledge, relatively few studies

about the presence of EC in marine environments and among

MPAs, while none including OECMs. Specifically, Ortiz-Lozano

et al. (2013) studied EC across three coral reef systems in the

southwest Gulf of Mexico. This study pinpointed that the found

heterogeneity at a biogeographical and habitat level represents one

of the main criteria to establish MPAs networks (Ortiz-Lozano

et al., 2013). Pittman et al. (2014) provided direct evidence of

ecological connectivity throughout an MPAs network in Caribbean

reefs, considering movements of fish populations by using

telemetric data. Subsequently, Friesen and coauthors (2019)

incorporated connectivity within benthic habitats, as a proxy of

adult movement due to the lack of information on population or

individual mobility, into MPA planning in a case study conducted

on Canada’s Pacific coast. In this paper, it was found a low

interconnectedness among existing MPAs and the need to

increase connectivity by prioritizing spaces that existing MPAs

could use as steppingstones. In addition, Friesen et al. (2021)

examined the ecological connectivity between MPAs considering

two commercially important species in the Northern Shelf

Bioregion in British Columbia (Canada). Lastly, even if not
Frontiers in Marine Science 05
among MPAs, He et al. (2022) examined the importance of ECs

to migratory species in the Yangtze estuary, the largest estuary in

China, based on the variance in temporal and spatial density of

three top fishery species to identify migratory ECs connecting

optimum habitats that may be important in preserving

population or community connectivity.

Common methodologies and tools for projecting and mapping

ECs in terrestrial conservation planning have been established

(Fenu and Pau, 2018; Liang et al., 2018; Bergès et al., 2020; Hilty

et al., 2020). However, to our knowledge, in marine environments

only two of these approaches were applied: least-cost theory and

circuit theory (e.g.: McRae et al., 2008; McRae and Kavanagh, 2011;

Pittman et al., 2014; Thomas C. J. et al., 2014; Friesen et al., 2021;

Weeks, 2017). The two methods consider costs or resistance to

migration based on species or habitat preferences (McRae et al.,

2008; Correa Ayram et al., 2016). To run the lowest cost path,

organisms need to be familiar with the landscape and its costs

(Adriaensen et al., 2003; McClure et al., 2016). In this regard, least-

cost path analysis calculates the single route between two regions

with the lowest aggregate cost. On the other hand, circuit theory

includes random walk theory similarly to random exploratory

individual movements, assuming that organisms have not priori

knowledge on the landscape (McRae et al., 2008; Dickson et al.,

2019). Furthermore, the circuit theory technique examines the

probability contributions of all feasible pathways in the landscape,

allowing for the assessment of path redundancy and movement

bottlenecks (Carroll et al., 2012; Dickson et al., 2019).
4 Discussion

4.1 Future perspectives and limitations of
ECs connecting marine environments

MSP is one of the most significant processes for determining

spatial priorities for the conservation through ecological

connectivity (Beger et al., 2010). It is well understood that

connectivity varies in space and time, making measurement and

modeling difficult for conservation planning (Fahrig, 2003).

Nevertheless, demographic growth and climate change present

new problems and possibilities for incorporating connectivity into

ecosystem-supportive planning (Simberloff, 1992; European

Commission, 2015; Muñoz et al., 2017). Climate change is also

expected to have a considerable influence on marine biological

connectivity patterns (Harley et al., 2006; Andrello et al., 2015;

Bruno et al., 2018; Friesen et al., 2021). Data on current and future

ocean conditions, and the distribution of the species can be

integrated to deepen how hotspots of connectivity as well as MPA

networks interconnectedness may change over time (Heyman and

Wright, 2011; Hooker et al., 2011; Piquer-Rodrıǵuez et al., 2012;

Friesen et al., 2019). Therefore, to integrate all available information

on the ecological connectivity into MPAs planning is crucial (Carr

et al., 2017). However, as stated earlier, direct integration of

connectivity into MPA network planning is rare (Magris et al.,

2014). To enhance connectivity between existing MPAs, planners

should prioritize areas that can serve as steppingstones between
frontiersin.org
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existing ones. Connectivity regards the spatial structure of a

network of MPAs and the potential capacity of organisms to

move within each MPA of the network and in other suitable

habitats outside to maintain itself. In some cases, to evaluate

connectivity, only habitat inside MPAs have been regarded

(Allison et al., 1998; Jonsson et al., 2020).

Connectivity can also depend on the movement between habitat

patches within an MPA during various life stages (Berkström et al.,

2022). Furthermore, connectivity within MPAs is important for species

with reduced dispersal ranges and living in fragmented habitats, while

connectivity between MPAs and the surrounding area is important for

dispersal and genetic exchange between populations for larger areas

(Andersson et al., 2008). Therefore, if any climate refugia exist, locating

and protecting them can assist to preserve sensitive ecosystems (Brito-

Morales et al., 2018). In this context, future studies should examine

shifts in connectivity patterns in relation to climate change (Magris

et al., 2014; Andrello et al., 2015). To better understand connectivity

patterns of species regarding possible climate change implications,

studies should evaluate vulnerability andmovements throughout all life

stages (Moffitt et al., 2009; Álvarez-Romero et al., 2018; Friesen et al.,

2021). For instance, it is known that climate change is predicted to

modify larval dispersion patterns, whether owing to decreasing

planktonic larval duration or larval sensitivity to changing

environmental features (O'Connor et al., 2007).

To our knowledge, there are very few MSP research that include

horizontal, vertical, physical, and biological connectivity (Muñoz

et al., 2017). This might be due to the existence of barriers across

disciplines (oceanography, biology, and management) as well as the

difficulty of developing a sample strategy that allows to study

physical and biological connectivity simultaneously (Muñoz et al.,

2017). Typically, benthic habitat data may be the only information

available in MSP procedures where data are scarce (Brooks et al.,

2004). Because of limitations of time and resources, conservation

planners frequently use limited data to guide their decisions (Ban

et al., 2009; Hansen et al., 2011). The biology of ecologically

significant species (spawning and nursery grounds, reproductive

periods, migration patterns) should be deepened to determine

potential connectivity and offer a firm foundation for reserve

siting, planning, and zoning (Fraschetti et al., 2018).

Faced with a future of increasing susceptibility to human activities

(Halpern et al., 2019), successful marine biodiversity conservation

necessitates a strategic planning approach to identifying places where

numerous anthropogenic hazards coexist with ecological components

(Halpern et al., 2008; Crain et al., 2009; Micheli et al., 2013).

Investigating connectivity in a managed area is crucial for

population management as well as possible pollutant spread

derived from human activities (Muñoz et al., 2015). In this

context, currents have a role in connecting coastal managed areas

environmentally, but that result administratively disconnected

because differently managed by various local governments or

nations (Muñoz et al., 2015). In case good connectivity is found

between areas resulting under the jurisdiction of different

administrations and countries, MSP requires administrative

cooperation in that area as well as connectivity estimation and

identification of ECs and the time necessary to cross them (Muñoz

et al., 2015).
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Lastly, encouraging is that policymakers and practitioners

increasingly recognize the importance of ecological connectivity,

even there are significant challenges for integrating connectivity

into policies, planning, and conservation (Lausche, 2011; Keeley

et al., 2019).
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Álvarez-Romero, J. G., Munguıá-Vega, A., Beger, M., del Mar Mancha-Cisneros, M.,
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C., et al. (2017). Fertilization and connectivity in the Garrucha Canyon (SE-Spain)
implications for Marine Spatial Planning. Mar. Environ. Res. 126, 45–68. doi: 10.1016/
j.marenvres.2017.02.007

Nickel, D., Schoenfelder, W., Medearis, D., Dolowitz, D. P., Keeley, M., and Shuster,
W. (2014). German experience in managing stormwater with green infrastructure. J.
Environ. Plan. Manage. 57, 403–423. doi: 10.1080/09640568.2012.748652

O'Connor, M. I., Bruno, J. F., Gaines, S. D., Halpern, B. S., Lester, S. E., Kinlan, B. P., et al.
(2007). Temperature control of larval dispersal and the implications for marine ecology,
evolution, and conservation. PNAS 104, 1266–1271. doi: 10.1073/pnas.0603422104

Ochoa, J., Maske, H., Scheinbaum, J., and Candela, J. (2013). Diel and lunar cycles of
vertical migration extending to below 1000 m in the ocean and the vertical connectivity
of depth-tiered populations. Limnol. Oceanogr. 58 (4), 1207–1214. doi: 10.4319/
lo.2013.58.4.1207
Frontiers in Marine Science 09
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Gutiérrez-Velázquez, A., and Martos, J. (2013). The Reef Corridor of the Southwest
Gulf of Mexico: challenges for itsmanagement and conservation. Ocean Coast. Manage.
86, 22–32. doi: 10.1016/j.ocecoaman.2013.10.006

Palmeri, L., Barausse, A., and Jorgensen, S. E. (2017). Ecological processes handbook
(Applied ecology and environmental management) (Florida: CRC Press), 341.

Pataki, D. E., Carreiro, M. M., Cherrier, J., Grulke, N. E., Jennings, V., Pincetl, S., et al.
(2011). Coupling biogeochemical cycles in urban environments: Ecosystem services,
green solutions, and misconceptions. Front. Ecol. Env. 9, 27–36. doi: 10.1890/090220

Pereira, J. (2018). Multi-node protection of landscape connectivity: Habitat availability and
topological reachability. Community Ecol. 19, 176–185. doi: 10.1556/168.2018.19.2.10

Pfannekuche, O. (1993). Benthic response to the sedimentation of particulate organic
matter at the BIOTRANS station, 47°N, 20°W. Deep Sea Res. Part II 40 (1–2), 135–149.
doi: 10.1016/0967-0645(93)90010-K
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