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Objectives: The aim of this study was to find a new loss function to automatically

segment temporal lobes on localized CT images for radiotherapy with more

accuracy and a solution to dealing with the classification of class-imbalanced

samples in temporal lobe segmentation.

Methods: Localized CT images for radiotherapy of 70 patients with

nasopharyngeal carcinoma were selected. Radiation oncologists sketched

mask maps. The dataset was randomly divided into the training set (n = 49),

the validation set (n = 7), and the test set (n = 14). The training set was expanded

by rotation, flipping, zooming, and shearing, and the models were evaluated

using Dice similarity coefficient (DSC), Jaccard similarity coefficient (JSC),

positive predictive value (PPV), sensitivity (SE), and Hausdorff distance (HD).

This study presented an improved loss function, focal generalized Dice-binary

cross-entropy loss (FGD-BCEL), and compared it with four other loss functions,

Dice loss (DL), generalized Dice loss (GDL), Tversky loss (TL), and focal Tversky

loss (FTL), using the U-Net model framework.

Results: With the U-Net model based on FGD-BCEL, the DSC, JSC, PPV, SE, and

HD were 0.87 ± 0.11, 0.78 ± 0.11, 0.90 ± 0.10, 0.87 ± 0.13, and 4.11 ± 0.75,

respectively. Except for the SE, all the other evaluation metric values of the

temporal lobes segmented by the FGD-BCEL-based U-Net model were

improved compared to the DL, GDL, TL, and FTL loss function-based U-Net

models. Moreover, the FGD-BCEL-based U-Net model was morphologically

more similar to the mask maps. The over- and under-segmentation was

lessened, and it effectively segmented the tiny structures in the upper and

lower poles of the temporal lobe with a limited number of samples.

Conclusions: For the segmentation of the temporal lobe on localized CT images

for radiotherapy, the U-Net model based on the FGD-BCEL can meet the basic
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clinical requirements and effectively reduce the over- and under-segmentation

compared with the U-Net models based on the other four loss functions.

However, there still exists some over- and under-segmentation in the results,

and further improvement is needed.
KEYWORDS

U-Net model, deep learning, medical-image segmentation, temporal lobe,
radiotherapy, loss function
1 Introduction

Global cancer statistics show that the incidence and mortality rates

of nasopharyngeal carcinoma (NPC) in Southeast and East Asia are at

high levels, posing a severe threat to patients’ safety and life quality.

Radiotherapy proved to be an important and effective treatment for

NPC (1, 2). During radiation therapy for NPC, the temporal lobe is

inevitably irradiated during irradiation due to its anatomical location

and structure, thus causing different degrees of side effects (3).

Temporal lobe injury (TLI) is the most common side effect of

radiotherapy for NPC (4). It is one of the severe late complications

affecting memory, neurocognitive function, physical function, emotion

and language, and life quality (5). Some researchers have shown that

the degree of temporal lobe damage in patients with NPC is affected by

the maximum dose, with the incidence of TLI increasing by 2.6% for

each 1 Gy increase when Dmax ≥ 64 Gy (6). Moreover, TLI correlates

with the irradiated volume of the temporal lobe, and when temporal

lobe necrosis (TLN) occurs, patients with V45 >15.1 cc are more likely

to suffer from massive necrosis (7), causing positive results such as

cognitive decline. Therefore, the temporal lobe must be precisely

protected as organs at risk (OARs).

In current clinical treatment, radiation oncologists mainly

delineate OARs manually, making the delineation subjective and

experience-affected, and resulting in differences in the irradiated

dose and volume of the temporal lobe, thus increasing the risk of

TLN. With the rapid development of artificial intelligence, deep

learning-based automatic delineation was gradually developed and

applied in clinical work. Ibragimov et al. used convolutional neural

networks (CNNs) for predictive segmentation of head and neck

OARs, and they obtained segmentation results ranging from 37.4%

DSC for the optic chiasm to 89.5% DSC for the mandible (8). Their

results showed that most of the OARs could be accurately

delineated, which showed that automatic delineation could avoid

the influence of individual differences with more efficiency.

Nevertheless, among the studies on OAR segmentation of NPC,

some researches failed to include the temporal lobe as OAR (9),
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which makes the study on the automatic delineation of the temporal

lobe on localized CT images inadequate. In addition, most current

studies on automatic segmentation of the temporal lobe and related

diseases were performed on MRI with few reports on big aperture

localization CT for radiotherapy. Big-aperture CT images are

characterized by big aperture, small row size, and relatively poor

image pixels, which necessitates further studies on the automatic

segmentation of the temporal lobe on CT images to observe the

segmentation effect of deep learning.

The training effectiveness of a deep learning model hinges upon

two critical factors: the model architecture and the choice of loss

function (10). Adjusting the model architecture necessitates the

redesign and training of the model, which can be a time-consuming

and computationally intensive process (11). Furthermore,

computers with low computational power cannot provide the

required running environment for the training and application of

the model with larger parameters (12–14). By contrast, modifying

the loss function is a comparatively more practicable approach. The

choice of loss function directly impacts the training process and

convergence of the model (15). A well-suited loss function can

guide the model to be optimized in the desired direction. Therefore,

improvements based on the loss function have the potential for

greater generalizability and applicability to a certain extent.

In recent years, CNNs have been widely used for medical image

segmentation. Typically, these networks employ the cross-entropy

loss function for training and model convergence. However, because

of the same weight shared by all the samples, the cross-entropy loss

function does not yield satisfactory results when dealing with the

classification of class-imbalanced samples. For example, the temporal

lobe occupies a relatively small proportion on localized CT images for

radiotherapy due to its anatomical structural characteristics. With the

traditional cross-entropy loss function, the model tends to predict the

pixel points as background, leading to incorrect predictions of the

temporal lobe. Consequently, the traditional cross-entropy loss

function fails to perform well on the dataset. In addressing the

issue of imbalanced samples in medical image segmentation,

Milletari et al. (16) proposed a loss function called the Dice loss

function in their study of V-net. This loss function is designed based

on the Dice similarity coefficient (DSC) and allows direct comparison

between predicted images and ground truth. However, its gradient

provokes oscillation during the training, which affects the model’s

accuracy. In addressing the challenges posed by unbalanced data,

Sudre et al. (17) introduced the generalized Dice loss function (GDL)
frontiersin.org
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in their study. GDL aims to effectively balance the relationship

between lesions and Dice coefficients. However, when dealing with

highly unbalanced data, GDL may still exhibit some fluctuations.

Additionally, while GDL addresses class imbalance by applying

weights, incorrect weight selection and an excessive emphasis on

certain classes at the expense of others can potentially impact the

overall performance of the model. Similarly, Lin et al. (18) proposed a

focal loss function to solve the problems caused by data class

imbalance in the image domain. It improves the model’s accuracy

in an imbalance sample by putting the difficulty of the sample

classification in the first consideration and making the loss function

focus on complex samples. However, the NAN value quickly occurs

due to its oversized loss function. The Tversky loss function serves as

an extension of the DL loss function, enabling effective adjustment of

the balance between false positives and false negatives through the

utilization of hyperparameters. On the other hand, the FTL loss

function builds upon the concept of FL by incorporating power

weighting to further refine this balance. However, both methods still

rely on DL for refinement, resulting in potential issues with gradient

stability and subsequent accuracy concerns. Moreover, the limited

number of pixel points occupied by the upper and lower poles of the

temporal lobe poses a challenge for the currently employed loss

function. Consequently, it becomes necessary to develop a new loss

function that can effectively address these challenges. In this study, we

proposed a novel loss function called FGD-BCEL, in the light of

weight assignments by FL, TL, and FTL loss functions. To assess its

performance, we adopted the widely used U-Net model as the

framework and employed five different loss functions (FGD-BCEL,

DL, GDL, TL, and FTL) respectively to segment the temporal lobes

on localized CT images for radiotherapy.
2 Methods

2.1 Dataset acquisition

The experimental dataset used in this study was obtained from 70

patients with NPC admitted to the radiotherapy department of Yunnan

Cancer Hospital from May 2020 to September 2021. Each patient was

simulated and positioned using Siemens large-aperture CT (Somatom

Sensation Open, 24 rows, F85 cm) with a 5-mm or 3-mm layer

thickness. Patient computed tomography scans contained the complete

temporal lobe with an image resolution of 512 × 512. Mask maps were

delineated by the radiation oncologists using the 3D slicer software, as

shown in Supplementary Figure 1. In this study, the dataset was

randomly divided into the training set (n = 49), validation set (n =

7), and test set (n = 14) with the proportion of 7:1:2. To improve the

generalization and robustness of the model, we expanded the training

set by rotation, flipping, zooming, and shearing. The expanded training

set contained 2,094 temporal lobe CT slices.
2.2 Image preprocessing

Image preprocessing in this study is performed on the dataset,

including HU value transformation, window width and window
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level adjustment, adaptive histogram equalization, and image

normalization operations. The Simple ITK package automatically

converts HU value transformation; window width and window level

values are 160 and 80, respectively; and the image normalization

operation normalizes the image range to [0,1].
2.3 Model architecture

The U-Net architecture (19), the widely used model in the

medical field, is used in this study. It consists of three parts:

downsampling, upsampling, and “bridge” connections, as shown in

Figure 1. The downsampling module on the left is mainly used for the

initial extraction of temporal lobe features and the compression of

images and features, also called Encode. The downsampling consists

of four blocks of different-resolution images, each consisting of two

3 × 3 convolutional layers and a 2 × 2 max pooling layer. The

convolutional layer extracts the temporal lobe features layer by layer,

and the max pooling layer is used for image and feature compression.

The arrow in the middle indicates the “bridge” connection. Its

primary function is to copy and crop the feature map obtained by

downsampling and upsampling, forming a feature map with deep

and shallow information to achieve more effective segmentation. The

right part is the upsampling module, mainly used for temporal lobe

image size recovery and further feature extraction. The upsampling

part also consists of four blocks of different-resolution images. Each

block contains one 3 × 3 deconvolution layer and two 3 × 3

convolution layers. The deconvolution layer reduces the feature

map size so that the final output size is the same as the original map.

In this study, the initial input of the model is a 512 × 512 × 1

temporal lobe CT image, and the output result is a 512 × 512 × 1

model prediction image. The ReLU activation function is used for

upsampling and downsampling convolutional feature extraction,

and the Sigmoid activation function is used for the final result

output. In order to ensure that the corresponding features of

downsampling and upsampling can be fused correctly, the image

resolution size must be the same when the features are fused.

Therefore, this paper adopts a complementary zero-fill approach

in the convolution operation to ensure that the image remains

constant in size during feature extraction at each resolution and

removes the cropping step in the “bridge” connections.
2.4 Loss function

This paper combines GDL and focal loss and incorporates the

binary cross-entropy (BCE) loss function to smooth the training

process further. The paper proposes an FGD-BCEL with the

formula provided in Equation (1). In this study, the GDL loss

function replaced the traditional cross-entropy loss function and a
is added to further regulate the weight of each pixel in the GDL loss

function. The BCE loss function with weights is incorporated to

regulate the smoothing of the loss function in the training process,

to improve the model’s accuracy. To explore the effect of FGD-

BCEL, this study employed the same U-Net framework with five

loss functions, the proposed FGD-BCEL, DL (16), GDL (17), TL
frontiersin.org
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(20), and FTL (21), respectively, to segment the temporal lobe on

localized CT images for radiotherapy.

FGD − BCEL = (1 − 2 o
2
l wlonrln  pln

o2
l wlonrln + pln

)a + b ∗BCE (1)

The GDL loss function is in parentheses, where rln is the

standard value of category l at the nth pixel, pln is the predicted

pixel probability value, wl is the weight of each category, a is used to

regulate the size of the weight of each pixel, and the value of this

study is 0.75. BCE is the binary cross-entropy loss function, and b is

used to regulate the weight of the BCE loss function and adjust the

smoothing of the loss function during model training. The value is

0.7 in this study.
2.5 Model evaluation metrics

In this study, DSC, JSC, PPV, SE, and HD, which are more

commonly used in medical image segmentation, were used to

further evaluate the generalization ability and segmentation

accuracy of the U-Net models based on the five different loss

functions respectively. The DSC and JSC are calculated in

Equations (2) and (3).

DSC =
2 X ∩ Yj j
Xj j + Yj j (2)

JSC =
X ∩ Yj j
X ∪ Yj j (3)

where X represents the standard segmentation of the temporal

lobe delineated by the radiation oncologist and Y represents the
Frontiers in Oncology 04
predicted segmentation by the U-Net model. jX ∩ Y j denotes the
overlapping parts. The value of DSC ranges from 0 to 1, and the

closer the value is to 1, the better the model prediction is and

vice versa.

As shown in Equations (4) and (5), PV and SE are calculated.

PPV =
TP

TP + FP
(4)

SE =
TP

TP + FN
(5)

where TP denotes temporal lobe pixel points that are correctly

predicted, FP denotes background pixel points that are incorrectly

predicted as the temporal lobe, and FN denotes temporal lobe pixel

points that are predicted as background.

HD is calculated as shown in Equation (6).

H(X,Y) = max (h(X,Y), h(Y ,X)) (6)

where h(X,Y) = max
x∈X

min
y∈Y

jx − yj, h(Y ,X) = max
y∈Y

min
x∈X

jy − xj; the
smaller the value of HD, the better the model prediction result.
2.6 Model environment and parameters

In the study, TensorFlow software version 2.4.0 (Google Brain

Team, 2015; Mountain View, CA, USA) and Keras software version

2.4.3 (Chollet, 2015) were used to build the model and Python 3

(Van Rossum and Drake, 2009) was employed to program it. The

operating system used in the study is the Windows 10 64-bit

operating system (Microsoft Corp., Redmond, WA, USA) with

the following hardware: central processing unit (CPU), Intel Core

i9-10900 KF @ 3.70 GHz (Intel Corp., Santa Clara, CA, USA);
FIGURE 1

U-Net structure.
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graphics card, NVIDIA GTX3090 24 G (NVIDIA Corp., Santa

Clara, CA, USA); and 128 GB memory. Model hyperparameters, as

shown in Table 1, were selected from the best results according to

the experimental conditions. (Batch Size: the number of input

images per iteration. Epoch: the batch to be trained. Image Size:

the input size of the image. Learning Rate: the initial learning rate

using exponential decay. Decay Steps: the number of steps that have

been experienced for a learning rate decay. Decay Rate: the learning

rate decay coefficient).
2.7 Statistical and plotting methods

In this study, statistical analysis was performed using the

EXCEL function, and the measures were expressed as mean ±

standard deviation.
3 Results

In this study, the U-Net model framework based on five

different loss functions was used to predict the test set and

measured by the related evaluation metrics. The results, shown in

Table 2, reveal that with the U-Net model based on FGD-BCEL, the

DSC is 0.88, which is improved compared with the DSCs of the U-

Net models based on DL, GDL, TL, and FTL loss functions,

respectively. The improvement between FGD-BCEL and TL is the

largest with an improvement value of 0.07. With the U-Net model

based on FGD-BCEL, the standard deviation for the DSCS is

smaller than those for all the four other loss functions, indicating

that the U-Net model based on FGD-BCEL presents less difference

among different CT slices. The results of JSC are consistent with

those of DSC, with the difference between FGD-BCEL and TL being

0.09. For the PPV, the U-Net model based on FGD-BCEL has no

significant improvement compared with the U-Net model based on

Dice loss function, but has different degrees of improvement

compared with GDL, TL, and FTL loss functions. For the SE,

except for the U-Net model based on Dice loss function, the U-Net

model based on FGD-BCEL has decreased value compared with the

U-Net model based on other loss functions. The HD of the FGD-

BCEL-based U-Net model is 4.10, which is higher than that of the

U-Net model based on the other loss functions. In summary, it can

be concluded that the FGD-BCEL-based U-Net model can better

segment the temporal lobe on the localization CT.
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The prediction results of the U-Net model based on different

loss functions are shown in Figures 2–4. The results show that the

segmented temporal lobes by the U-Net model based on FGD-

BCEL is morphologically more similar to those by the experts. The

over- and under-segmentation of the temporal lobe is lessened.

Meanwhile, the figure shows that the U-Net model based on DL,

GDL, TL, and FTL loss functions cannot, to some extent, perform

accurate identification for the tiny structures in the superior and

inferior poles of the temporal lobe, probably due to the number of

data samples. In contrast, the FGD-BCEL-based U-Net model can

effectively perform the prediction of the superior and inferior

temporal lobes with a limited number of samples. Therefore, the

qualitative results show that the FGD-BCEL-based U-Net model

presents less over- and under-segmentation of the temporal lobe

besides the effective segmentation of the temporal lobe.

To show the results of the test set more visually, we plotted the

results of evaluation metrics about the five loss functions, as shown

in Figure 5 and Supplementary Figures 2–6. The box plots indicate

that the U-Net model based on FGD-BCEL loss function has fewer

outliers or outliers are closer to the median in most evaluation

metrics. This result also demonstrates that the U-Net model based

on FGD-BCEL has less variability in the accuracy of segmentation

results for different CT slices.
4 Discussion

In this study, we introduced a novel loss function called FGD-

BCEL and applied it to train the U-Net model for medical image

segmentation. Additionally, we conducted a comparative analysis of

four commonly used medical loss functions to evaluate the

performance of FGD-BCEL specifically in segmenting the

temporal lobe. The FGD-BCEL loss function addressed two key

issues. Firstly, it assigns different weights to each sample, which is

employed by FL and GDL. This approach allowed the model to

emphasize the foreground target values during training, effectively

mitigating the issue resulting from class imbalance, commonly

encountered in medical image segmentation. By giving more

weights to the foreground regions, the model learned to segment

the target more accurately. Secondly, the FGD-BCEL loss function

incorporated BCE loss to address the issue of training instability.

The introduction of the BCE loss function reduced oscillation

during the training process, ensuring stability and consistency of

the model, leading to improved segmentation accuracy.
TABLE 1 Network training parameters.

Loss Batch Size Epoch Image Size Learning Rate Decay Steps Decay_Rate

DL 2 120 512 × 512 3e-4 400 0.96

GDL 2 120 512 × 512 1e-3 400 0.96

TL 2 120 512 × 512 1e-3 400 0.96

FTL 2 120 512 × 512 2e-3 500 0.96

Our Loss 2 120 512 × 512 5e-4 600 0.96
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The quantitative results show that except for SE, the other

quantitative evaluation indexes of the U-Net model based on the

FGD-BCEL loss function are better than those of DL, GDL, TL, and

FTL. Simultaneously, the box plot results for each evaluation metric

reveal that the U-Net model, which incorporates the FGD-BCEL

function, displays a decreased number of outliers or outliers that are

closer to the median across the majority of evaluation metrics.

Moreover, previous studies have demonstrated that segmentation

results meeting the basic criteria are achieved when the DSC

exceeds 0.70 (22, 23). All the DSCs for the U-Net models based

on all the loss functions used in the study exceed this threshold,

among which the DSC value of the U-Net model based on the FGD-

BCEL loss function is 0.88, and the U-Net model based on the FGD-

BCEL loss function is capable of effectively segmenting the temporal

lobe on localized CT images for radiotherapy. The comprehensive

analysis of quantitative and box plot results consistently

demonstrates that FGD-BCEL exhibits superior performance in

segmenting the temporal lobe on localized CT images for

radiotherapy with minimal segmentation variations among

different slicers, indicating excellent generalization and robustness

of the model. This improved performance may be attributable to the

incorporation of a weight adjustment mechanism in FGD-BCEL, on

the basis of GDL. By regulating the weights assigned to each pixel,

the model effectively adapts to the characteristics of the

segmentation task, leading to improved segmentation accuracy

and performance.

Meanwhile, the qualitative analysis reveals that the U-Net

model based on the FGD-BCEL loss function produces, to a

certain extent, less over- and under-segmentation than the U-Net

model based on DL, GDL, TL, and FTL in automatic delineation of
Frontiers in Oncology 06
the temporal lobe. Remarkably, it is observed that the four loss

functions used as comparison are unable to effectively segment the

smaller structures situated in the superior and inferior poles of the

temporal lobe. In contrast, the FGD-BCEL loss function

demonstrates successful segmentation of these structures. The

inability of the other four loss functions to handle these regions

can be attributed to their gradient instability, resulting in instable

and inaccurate segmentation. The proposed loss function in this

study, which incorporates the cross-entropy loss, contributes to a

more stable training process, thus enabling effective segmentation.

This finding further reinforces the advantage of FGD-BCEL in

accurately segmenting small structures.

Furthermore, we compared the segmentation results of this

study with other studies on temporal lobe segmentation of

nasopharyngeal or head and neck tumors, as shown in Table 3.

Liu et al. (24) proposed a loss function called TELD-loss for

automatic segmentation of the OARs for nasopharyngeal and

lung cancer, and the results showed that the mean DSC values of

the temporal lobes on the left and right side were 0.7873 and 0.5969,

respectively. Compared with them, the resultant value in this study

was 0.88, which has a sufficient improvement. Yang et al. used three

different deep learning models based on focal loss to automatically

segment OARs for NPC. The results showed that the DSCs of the

left and right temporal lobes produced by the U-Net model based

on focal loss were only 0.58 and 0.61, respectively (25). Similar

studies include the work by Mu et al. (26). They proposed an

improved loss function by combining the cross-entropy loss and the

Dice coefficient, which was applied to segment OARs in the head

and neck region. The results showed that their method achieved

DSCs of 0.831 and 0.853 for the left and right temporal lobes,
A B D E F GC

FIGURE 2

Results of temporal lobe segmentation by the U-Net model based on five loss functions. (A) Standard radiotherapy localization CT image (CT image).
(B) Mask map (Ground truth) sketched by the experts. (C) Temporal lobe segmented by the U-Net model based on DL loss function. (D) Temporal lobe
segmented by the U-Net model based on GDL loss function. (E) Temporal lobe segmented by the U-Net model based on TL loss function. (F) Temporal
lobe segmented by the U-Net model based on FTL loss function. (G) Temporal lobe segmented by the U-Net model based on FGD-BCEL loss function.
TABLE 2 Assessment indices of test set.

DSC JSC PPV SE HD

DL 0.87 ± 0.11 0.78 ± 0.11 0.90 ± 0.10 0.87 ± 0.13 4.11 ± 0.75

GDL 0.87 ± 0.10 0.78 ± 0.11 0.88 ± 0.12 0.89 ± 0.12 4.13 ± 0.78

TL 0.81 ± 0.15 0.70 ± 0.17 0.75 ± 0.17 0.92 ± 0.14 4.77 ± 0.98

FTL 0.87 ± 0.09 0.78 ± 0.11 0.86 ± 0.12 0.91 ± 0.10 4.20 ± 0.81

Our Loss 0.88 ± 0.05 0.79 ± 0.08 0.90 ± 0.10 0.88 ± 0.10 4.10 ± 0.82
fr
* Bold, optimal value.
ontiersin.org

https://doi.org/10.3389/fonc.2023.1204044
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wen et al. 10.3389/fonc.2023.1204044
A B

DC

FIGURE 4

Segmentation of the superior pole of the temporal lobe segmented by the U-Net model based on five loss functions. (A) Standard radiotherapy
localization CT image (CT image). (B) Mask map (Ground truth) by the experts. (C) Segmented superior temporal lobe pole maps from the U-Net
model based on the FGD-BCEL loss function. (D) Segmented superior temporal lobe pole maps from the remaining four loss functions (with the
four loss functions, the U-Net failed to segment the superior temporal lobe).
A B D E F GC

FIGURE 3

Coverage maps of temporal lobe segmented by the U-Net model based on five loss functions. (A) Standard radiotherapy localization CT map.
(B) Coverage map of the standard temporal lobe (Ground truth) sketched by the experts. (C) Coverage map of the temporal lobe segmented by the
U-Net model based on the DL loss function. (D) Coverage map of the temporal lobe segmented by the U-Net model based on the GDL loss
function. (E) Coverage map of the temporal lobe segmented by the U-Net model based on the TL loss function. (F) Coverage map of the temporal
lobe segmented by the U-Net model based on the FTL loss function. (G) Coverage map of the temporal lobe segmented by the U-Net model based
on the FGD-BCEL loss function.
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FIGURE 5

Box plot diagrams in the test set. (A) Box plot diagram of DSC in the test set. (B) Box plot diagram of JSC in the test set. (C) Box plot diagram of PPV
in the test set. (D) Box plot diagram of SE in the test set. (E) Box plot diagram of HD in the test set.
TABLE 3 References related to the results of temporal lobe segmentation with different loss functions.

References Basic model Patients Loss function
DSCmean

(%)
HDmean

(mm)

Liu et al. (24) CLAF-CNN 50 TELD-loss 69.21 None

Yang et al. (25) U-Net 147 Focal loss 59.50 4.75

Mu et al. (26)
SE_Residual Block+V-

Net
50 Cross entropy + Dice loss 84.20 None

Peng et al. (27) U-Net 310 Body-inside loss 88.00 None

Wang et al. (28) Ua-Net 170 Boundary loss 84.47 12.45

Sun et al. (29) U-Net 112
Batch dice loss + spatially balanced focal loss + cross entropy

loss
87.15 None
F
rontiers in Oncolo
gy
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The values of DSC and HD were the average of the corresponding evaluation index values of the left and right temporal lobes.
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respectively. However, compared to the FGD-BCEL loss function

used in this study, their segmentation results exhibited inferior

performance in both temporal lobes. Furthermore, Peng et al. (27)

introduced a novel loss function called body-inside loss to replace

the commonly used SoftMax cross-entropy loss (SCE) in training

the U-Net model. Their approach achieved similar results to this

study in temporal lobe segmentation, with an average DSC of 0.88.

To address the issue of class imbalance in segmenting OARs in the

head and neck region, Wang et al. (28) proposed a loss function

named Boundary Loss based on the boundary loss mechanism.

Their method achieved DSCs of 0.848 and 0.841, as well as HDs of

11.32 and 13.58 for the left and right temporal lobes, respectively.

However, compared to this study, our proposed FGD-BCEL loss

function achieved better performance with a DSC of 0.88 and an

HD of 4.10. Additionally, Sun et al. (29) combined batch dice loss,

spatially balanced focal loss, and cross-entropy loss to address the

issue of class imbalance. Their results showed DSCs of 0.8730 and

0.8699 for the left and right temporal lobes, respectively, which were

lower than the results obtained by the FGD-BCEL loss function

proposed in this study. In conclusion, the FGD-BCEL loss function

proposed in this study exhibits significant superiority in segmenting

the temporal lobe on localized CT images for radiotherapy.

In summary, the U-Net model based on our proposed loss

function can effectively improve the segmentation results of the

temporal lobe, but the box plots show that the U-Net model based

on the FGD-BCEL loss function still has some outliers, which may

be due to the lack of sample size and small volume of the upper and

lower poles of the temporal lobe, thus making it difficult to segment.

In further studies, the dataset needs to be increased further.

Meanwhile, the segmentation results of the U-Net model based

on the FGD-BCEL loss function still have some over- and under-

segmentation, and future attempts should be made to incorporate

the residual or attention module to further improve the

segmentation effect.
5 Conclusion

In summary, the U-Net model based on the FGD-BCEL loss

function can automatically outline the temporal lobe on localized

CT images for radiotherapy, and it can effectively alleviate the over-

and under-segmentation of the U-Net model compared with the

other four loss functions. However, some over- and under-

segmentation still exists, and further improvement is needed in

the future.
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