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Inflammatory Bowel Disease (IBD) is a chronic, relapsing inflammatory disorder of

the gastrointestinal tract. Though the pathogenesis of IBD remains unclear, diet is

increasingly recognized as a pivotal factor influencing its onset and progression.

Fatty acids, essential components of dietary lipids, play diverse roles in IBD, ranging

from anti-inflammatory and immune-regulatory functions to gut-microbiota

modulation and barrier maintenance. Short-chain fatty acids (SCFAs), products of

indigestible dietary fiber fermentation by gut microbiota, have strong anti-

inflammatory properties and are seen as key protective factors against IBD.

Among long-chain fatty acids, saturated fatty acids, trans fatty acids, and w-6
polyunsaturated fatty acids exhibit pro-inflammatory effects, while oleic acid and

w-3 polyunsaturated fatty acids display anti-inflammatory actions. Lipid mediators

derived from polyunsaturated fatty acids serve as bioactive molecules, influencing

immune cell functions and offering both pro-inflammatory and anti-inflammatory

benefits. Recent research has also highlighted the potential of medium- and very

long-chain fatty acids in modulating inflammation, mucosal barriers, and gut

microbiota in IBD. Given these insights, dietary intervention and supplementation

with short-chain fatty acids are emerging as potential therapeutic strategies for IBD.

This review elucidates the impact of various fatty acids and lipid mediators on IBD

and delves into potential therapeutic avenues stemming from these compounds.

KEYWORDS
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Introduction

Inflammatory Bowel Disease (IBD) is a gastrointestinal chronic inflammatory disorder

characterized by mucosal barrier disruption, dysbiosis, and immune dysregulation, which

mainly comprises ulcerative colitis (UC) and Crohn’s disease (CD). Although the etiology

of IBD remains unclear, genetic susceptibility and multiple environmental factors play

significant roles (1). As one of the modifiable risk factors, diet has gained increasing

attention from researchers (2, 3), where fatty acids derive mostly from diet. Growing

evidence demonstrated that “western diet” rich in high fat is closely associated with the risk
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and progression of IBD (3, 4), with supplementation exacerbating

colitis severity in both IBD patients and dextran sulfate sodium

(DSS) induced colitis mice (5, 6). This may be attributed to the

effects of fatty acids on the regulation of inflammatory pathways, the

mucosal barrier, and the intestinal microbiota, as fatty acids are

essential components of dietary lipids (7).

Fatty acid is a diverse class of molecules consisting of

hydrocarbon chains of different lengths and degrees of

desaturation. Classification based on carbon chain length divides

them into short-chain fatty acids (SCFAs), medium-chain fatty

acids (MCFAs), long-chain fatty acids (LCFAs), and very long-

chain fatty acids (VLCFAs) (8). LCFAs and VLCFAs are mainly

derived from dietary intake, whereas SCFAs are formed by the

conversion of indigestible dietary fibers by specific gut bacteria. In

LCFAs, the anti-inflammatory effect of w-3 fatty acids has been

widely confirmed, while w-6 is connected with impacts of pro-

inflammation (9). w-3 and w-6 fatty acids can also produce lipid

mediators that regulate inflammation resolution (10). SCFAs, which

interact with the gut microbiota, are considered important factors in

regulating physiological processes such as metabolism and

inflammation in the human body (11, 12). Briefly, fatty acids vary

in length and type, playing crucial roles in physiological regulation

within the body.

Intriguingly, emerging research highlights the varying roles that

different types of fatty acids play in the progression of IBD. SCFAs

are closely connected with gut microbiota and have been reported to

alleviate intestinal inflammation, maintain the mucosal barrier, and

regulate immunity. On the contrary, LCFAs promote inflammation

and contribute to IBD induction and aggravation. In addition, an

imbalance in w-6 and w-3 intake is among the factors contributing

to IBD onset. w-3 polyunsaturated fatty acids are thought to be anti-
inflammatory and ameliorate IBD (13), while w-6 fatty acids are

considered to contribute to IBD pathogenesis (14). Lipid mediators,

derived from PUFA through at least one oxidation step, possess

inflammation-regulating capabilities (10). Fatty acids and lipid
Frontiers in Immunology 02
mediators wield critical roles in IBD, particularly LCFAs and

SCFAs, holding promise as prospective therapeutic targets for

IBD. However, there is limited knowledge of what forms and

amounts of fatty acids and lipid mediators should be consumed

to benefit patients with IBD, and evidence-based dietary guidance is

relatively scarce. Thus, this review categorizes fatty acids and lipid

mediators, clarifies their roles in IBD pathogenesis, and introduces

fatty acid-based therapeutic approaches (Figure 1).
Short-chain fatty acids

SCFAs mainly include butyric acid, propionic acid, and acetic

acid, which not only provide nourishment to the intestinal mucosal

epithelium but also exhibit potent anti-inflammatory effects, and

regulate immune functions (15). They also collaborate with the gut

microbiota to maintain intestinal homeostasis (16). Dietary fiber

serves as a substrate for SCFAs production. Gut microbiota capable

of breaking down indigestible dietary fibers has the capacity to

produce SCFAs (17). The inflammatory response in the gut is

modulated by the intestinal microbial ecosystem, with an

imbalanced microbiota being a hallmark of IBD (18). At a

molecular level, SCFAs act as ligands for G-protein-coupled

receptors, exerting their physiological effects (19).

Epidemiological studies have illustrated the role of SCFAs in

IBD. Evidence from population-based research implies lower levels

of isobutyric, butyric, propionic, and acetic acids in patients with

active IBD, accompanied by diverse alterations in SCFAs patterns

between CD and UC (20). The dysbiosis of the intestinal microbiota

is a significant manifestation of IBD. In CD, the composition of the

gut microbiota undergoes distinct changes, including the loss of

SCFA-producing bacteria such as Roseburia, Eubacterium,

Subdoligranumum, and Ruminococcus, alongside an increase in

pro-inflammatory microbial groups (21). As a result, the

diminished ability to synthesize butyrate in CD was more
FIGURE 1

Sources of fatty acids and lipid mediators and classification based on carbon chain length, as well as therapeutic approaches based on fatty acids.
(IBD, Inflammatory Bowel Disease; SCFAs, Short-chain fatty acids; MCFAs, Medium-chain fatty acids; LCFAs, Long-chain fatty acids; VLCFAs, Very
long-chain fatty acids; SFAs, Saturated fatty acids; MUFAs, Monounsaturated fatty acids; PUFAs, Polyunsaturated fatty acids; DHA, Docosahexaenoic
acid; EPA, Eicosapentaenoic acid; ALA, Alpha-linolenic acid; AA, Arachidonic acid).
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pronounced than in UC, potentially linked to reduced dietary fiber

intake (22) and decreased butyrate-producing bacteria (23). During

mucosal healing in pediatric CD, Dialister species and levels of

butyrate salts notably increased (24). Furthermore, compared to

first-time surgical patients, recurrent patients exhibited significant

downregulation in levels of cyclohexanoic acid, 2-methylbutyric

acid, and isobutyric acid (25), and CD patients with a history of

abdominal surgery showed lower levels of butyrate-producing

bacteria (26). However, Kiasat A et al. suggested that plasma

SCFAs changes are unrelated to CD and UC after adjusting for

gender, age, and diet (27).

The bulk of SCFAs research has predominantly centered

around butyrate. Thus, we will detail the implications of SCFAs

concerning IBD, encompassing facets of modulation of

inflammation and immunity, regulation of intestinal microbiota,

and maintenance of the intestinal barrier (Table 1, Figure 2).
Inflammation and immune regulation

SCFAs, particularly butyrate, exhibit anti-inflammatory

properties. Among SCFAs, butyrate is most extensively studied

related to inflammation and immune regulation in IBD. Acting on

receptors GPR43 and GPR109a, butyrate effectively suppresses the

development of IBD (28, 29), and its supplementation reduces the

expression of inflammation-related genes in UC (30). Nonetheless,

the activation of the inflammasome sensor Nlrp1 triggers IL-18,

which paradoxically inhibits the benefits of butyrate-producing

bacteria, exacerbating inflammation in UC (31). EHLJ7, a

quaternary coptisine derivative, not only stimulates butyrate

production but also collaborates with butyrate to inhibit the

JAK2/STAT3/SOCS1 signalling pathway, ultimately alleviating

UC symptoms (32). Prophylactic administration of butyrate can

reverse the reduced activity of cytochrome P450 2A5 induced by

UC, a phenomenon associated with the gut microbiota (33). In

addition to butyrate, acetate supplementation decreases levels of

pro-inflammatory cytokines such as IL-8 and TNF-a in UC-derived

epithelial cells while simultaneously upregulating hypoxia-inducible

factor (HIF1a) and mucin 2 (34). Valproic Acid, functioning as a

histone deacetylase (HDAC) inhibitor, elevates H3K27ac levels in

UC mice, effectively suppressing the production of inflammatory

cytokines (35).

Maintaining the balance of T cells has always been a hot spot for

the exploration of the pathogenesis of IBD. Dendritic cells exposed

to butyrate can induce the differentiation of naïve T cells into

Foxp3-expressing Treg cells (36). Moreover, SCFAs can directly

enhance Foxp3 expression by activating GPR43 on the surface of T

cells (37). A butyrate producer, Faecalibacterium prausnitzii, fosters

forkhead box protein P3 (Foxp3) expression by inhibiting HDAC1,

thereby disrupting the IL-6/STAT3/IL-17 pathway and altering the

Treg/Th17 equilibrium (38, 39). The administration of a probiotic

combination comprising Saccharomyces boulardii, Lactobacillus

rhamnosus, Lactobacillus acidophilus, and Bifidobacterium breve

to SAMP1/YitFc mice resulted in increased SCFAs levels and

gene expression changes involved in memory B cell development

and T cell infiltration (40). Employing poly-D-3-hydroxybutyric
Frontiers in Immunology 03
acid as a controlled-release agent for 3-hydroxybutyrate, sustained

butyrate release enhances regulatory T cell presence (41).

While considerable research has delved into the anti-

inflammatory effects of butyrate, challenges persist in its

application, with some IBD patients exhibiting suboptimal

responses to butyrate treatment (42). Investigations have revealed

that the reduction of butyrate-producing bacteria in the feces of IBD

patients is unrelated to the decrease in butyrate concentration, and

the sensitivity of IBD patients to butyrate remains unchanged, but

the elevation of TNF-a diminishes the response of intestinal

epithelial cells to butyrate (43). This “disabling” effect of butyrate

during active UC might be linked to altered gene expression

patterns in UC (44) or possibly associated with compromised

regulation of the CTLA-4 receptor on T cell surfaces induced by

butyrate (45). These studies could potentially offer novel insights for

enhancing the application of SCFAs.
Regulation of gut microbiota

Dysbiosis of the gut ecosystem stands as a significant hallmark

in IBD, with beneficial probiotics producing SCFAs being

recognized for their favorable impact on IBD. Conversely, the

proliferation of certain pathogenic bacteria contributes to

intestinal inflammation associated with disease onset and relapse

(54). Among these probiotics, butyrate-producing bacteria have

garnered attention for their capacity to maintain mucosal barriers,

regulate immune functions, and alleviate inflammation (55). A

reduction in butyrate-producing bacteria, including Clostridium

coccoides/Eubacterium rectale , Clostridium leptum , and

Faecalibacterium prausnitzii in the intestinal lumen, as well as

Roseburia spp. in the mucosa of UC patients (56). The abundance

of Lachnospiraceaeis significantly diminished regardless of active or

remission phase of UC (57). Apigenin mitigates DSS-induced colitis

by modulating Akkermansia, Turicibacter, Klebsiella, Romboutsia

(58). Conversely, Paraclostridium bifermentans exacerbates UC

symptoms, potentially linked to SCFAs reduction (59). The

expansion of gut microbiota in UC patients can stimulate the

occurrence of cancer through the activation of T helper cell types

1 and 17 cytokines (60). Acetate suppresses uvrY-dependent type 1

pilus expression and hinders the adherence of invasive Escherichia

coli (61).

Dietary fiber serves as a source of SCFAs, and diets rich in

dietary fiber are advantageous for the amelioration of

inflammatory conditions (62). A Cohort study discovered that

dietary fiber intake can reduce the occurrence of CD exacerbations

(63). Conversely, the lack of dietary fiber prompts a shift in the gut

microbiota ’s nutritional preference to mucin glycans,

detrimentally impacting mucosal epithelium (64). Soluble

dietary fiber from quinoa bran increases tight junction protein

expression, enhances gut microbial diversity, boosts SCFAs

production, and alleviates DSS-induced colitis (65). Similarly,

highly purified insoluble dietary fiber extracted from soybean

bran exhibits similar effects (66). However, A case-control study

found that dietary fiber had a limited impact on microbial and

SCFAs profiles (67).
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TABLE 1 Mechanism of SCFAs in inflammatory bowel disease.

Fatty Acid
Animal
Model

Cell Mechanism Author Year

SCFAs

DSS-induced
mice colitis

SCFA-GPR43 interactions modulate colitis by regulating inflammatory cytokine
production in mononuclear cells

Ryuta Masui
et al. (28)

2013

SAMP1/YitFc
mice

Probiotic combination (Saccharomyces boulardii, Lactobacillus rhamnosus,
Lactobacillus acidophilus, Bifidobacterium breve, and amylase) ameliorates CD-
like ileitis by increasing SCFA production, modulating essential adaptive
immune pathways

Luca Di
Martino et al.
(40)

2023

Butyrate
(commensal
metabolite)

DSS-induced
mice colitis

GPR109A activation by butyrate and niacin suppresses colonic inflammation
and carcinogenesis

Nagendra
Singh et al.
(29)

2014

Butyric acid

DSS-induced
mice colitis

Butyrate and HIF-1a have a mutual regulatory mechanism, maintaining of
barrier function

Caleb J. Kelly
et al. (46)

2015

DSS-induced
mice colitis

F. prausnitzii produces butyrate to maintain Th17/Treg balance and ameliorate
colitis by inhibiting HDAC1 and IL-6/STAT3/IL-17 pathway

Lixing Zhou
et al. (38)

2018

DSS-induced
mice colitis

NLRP1 aggravates colitis by limiting beneficial butyrate-producing Clostridiales,
reversed by butyrate supplementation

Hazel Tye
et al. (31)

2018

TNBS-induced
colitis mice

Caco-2 cells Sodium butyrate ameliorated intestinal epithelium barrier dysfunction through
activating GPR109A and inhibiting the AKT and NF-kB p65 signalling
pathways.

Guangxin
Chen et al.
(47)

2018

Clostridium
difficile-
Induced
Colitis

Butyrate attenuates intestinal inflammation and improves intestinal barrier by
activation of HIF-1.

José Luıś Fachi
et al. (48)

2019

Organoids
derived epithelial
cells

Butyrate does not protect against inflammation-induced loss of epithelial barrier
function and cytokine production.

Maaike
Vancamelbeke
et al. (49)

2019

DSS-induced
mice colitis

EHLJ7 enhances butyric acid production, cooperates with butyrate to inhibit
JAK2/STAT3/SOCS1 pathway, improving UC symptoms

Xiaonan Tang
et al. (32)

2020

DSS-induced
mice colitis

HSF2 might induced by sodium butyrate and inflammation and played
protective roles in UC by enhancing autophagy of IECs.

Fengrui Zhang
et al. (50)

2020

DSS-induced
mice colitis

Butyrate can alleviate DSS-induced colitis by regulating autophagy via HIF-1a. Chao Zhou
et al. (51)

2020

Ex vivo
differentiated
epithelial
organoids (d-
EpOCs)

Intestinal inflammation alters the response of the epithelium to butyrate,
particularly under the influence of tumour necrosis factor-alpha (TNFa), making
it less responsive to butyrate during active inflammation

Elena Ferrer-
Picón et al.
(43)

2020

DSS-induced
mice colitis

Butyrate reverses CYP2A activity decrease in colitis-induced mice, highlighting
microbiota’s role in regulation

Stefan Satka
et al. (33)

2022

DSS-induced
mice colitis

Butyrate from Clostridium butyricum stimulated EGFR activation in colon,
balancing the inflammatory cytokines, protecting tight junctions, and increasing
the number of goblet cells and MUC2 production.

Jingyi Wu
et al. (52)

2022

DSS and
Carrageenan-
induced
mouse model

D-Met and BA supplementation attenuates disease conditions and suppresses
inflammation-related gene expressions in DSS-induced colitis mouse model.

Yuka Ikeda
et al. (30)

2023

3-
Hydroxybutyrate

DSS-induced
mice colitis

Poly-D-3-hydroxybutyric acid, a slow-release 3-HB donor, suppresses IBD
pathogenesis by upregulating regulatory T cells

Rimina Suzuki
et al. (41)

2023

n-butyrate
DSS-induced
mice colitis

N-butyrate upregulates intestinal claudin-23 expression through SP1 and AMPK
pathways and enhances barrier function.

Wenxi Xu
et al. (53)

2023

Acetate

Organoid-
derived epithelial
monolayer
cultures

High acetate protects intestinal barrier, reduces inflammation, and upregulates
barrier genes in UC patient-derived organoids.

Sara Deleu
et al. (34)

2023
F
rontiers in Immun
ology
 04
 frontie
SCFAs, Short-chain fatty acids.
rsin.org

https://doi.org/10.3389/fimmu.2023.1286667
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yan et al. 10.3389/fimmu.2023.1286667
Maintenance of intestinal barrier

SCFAs play a pivotal role in maintaining intestinal barrier

integrity. Prior research has indicated that HIF coordinates

intestinal protection (46). Butyrate reduces damage to the

intestinal barrier inflicted by Clostridium difficile (48), regulates

intestinal epithelial cell autophagy (51), modulates tight junction

(74) through a HIF-dependent mechanism, and thereby alleviates

DSS-induced colitis. The stabilization of HIF by butyrate is

hypothesized to occur through the inhibition of HIF prolyl

hydroxylase (75).

The maintenance of tight junction components is a critical

factor in protecting the intestinal barrier. Among these, butyrate

takes center stage in SCFAs (47). Reduced tight junction protein 1

(TJP1) expression and elevated claudin-1 expression characterize

the intestinal epithelium of IBD patients. Butyricicoccus can

upregulate claudin-1 expression, and maintain the integrity of

intestinal epithelial tight junctions (76). Butyrate might also

enhance tight junction protein abundance by activating the AKT/

mTOR pathway (77). Heat shock transcription factor 2 can inhibit

mTOR and promote butyrate-induced autophagy, thereby

protecting intestinal epithelial cells (50). Isobutyric acid

upregulates claudin-23 protein through the SP1 and AMPK

pathways (53). Butyrate-producing bacteria also activate

epidermal growth factor receptors (EGFR), contributing to tight
Frontiers in Immunology 05
junction protection (52). However, research also pointed out that

co-culturing butyrate with TNF-a and IFN-g can lead to epithelial

damage, suggesting potential contrasting effects of butyrate in

IBD (49).

Besides, exploration of acetate and propionate has enriched the

spectrum of SCFAs effects on IBD. Acetate, exhibiting lower

epithelial toxicity, maintained the epithelial barrier and reduced

levels of pro-inflammatory factors such as IL-8 and TNF-a (34).

Propionate enhanced the expression of tight junction proteins

zonula occludens-1 (ZO-1) and occludin, which exerted anti-

inflammatory effects by inhibit ing macrophages (78).

Furthermore, propionate upregulated endothelial cell-selective

adhesion molecules, reinforcing intestinal epithelial tight

junctions (79).

Supplementing bacteria that produce butyrate for CD patients

(80), or administering butyrate derivatives orally (81), can achieve

protection of the intestinal barrier. The intricate relationship

between gut microbiota and intestinal barrier function is pivotal,

where probiotics can mitigate epithelial damage and regulate

inflammatory responses. The combination of Faecalibacterium

prausnitzii, a butyrate-producing bacterium, with chitosan

oligosaccharides, can restore tight junction levels and enhance

intestinal epithelial barrier function (82). Supplementation with

prebiotics, probiotics, IgG, and amino acids collectively improves

IBD intestinal barrier function (83). Soluble dietary fiber from
FIGURE 2

The impact of SCFAs on IBD by regulating inflammation and immune, regulating gut microbiota, and maintaining intestinal barrier through various
mechanisms. The figure illustrates the three potential mechanism of SCFAs mentioned in the review. (SCFAs, Short-chain fatty acids; IBD,
Inflammatory Bowel Disease; HDAC1, Histone Deacetylase 1; MUC2, Mucin 2; ZO-1, Zonula occludens-1).
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quinoa bran (65) and Panax quinquefolius polysaccharides both

elevate tight junction protein expression, subsequently augmenting

SCFAs production.
SCFAs as biomarkers and potential
therapeutic targets

A notable feature of IBD patients is the reduced levels of SCFAs,

evident in feces, urine, plasma, intestinal fluid, and exhaled gas,

highlighting the potential of SCFAs as diagnostic and predictive

biomarkers for IBD remission and relapse. Total SCFAs in rectal

fluid are reduced in recurrent IBD patients (106). Butyrate levels in

feces decrease during active CD and UC phases, implying its

potential as a marker for active IBD (107). The diminished

capacity for butyrate synthesis is more pronounced in CD than in

UC (22). Regardless of relapse status, IBD patients have lower

isobutyrate levels than healthy individuals (106). Furthermore,

isobutyrate and Verrucomicrobiota could serve as markers for

diagnosing UC remission (108). Additionally, hexanoate might

serve as a predictive indicator for CD patient relapse risk (25).

Targeted delivery of SCFAs to the colon alleviated inflammation in

DSS-induced colitis mice, enhancing SCFAs application for

IBD (109).
Medium-chain fatty acids

MCFAs are usually defined as fatty acids with carbon chain

lengths ranging from 7 to 12 carbon atoms. As directly absorbable

fatty acids, MCFAs facilitate quick energy supply, promote

intestinal mucosal repair, and regulate inflammation (132). The

colon plays a pivotal role in the digestion and absorption of MCFAs.

Moreover, MCFAs exhibit inherent antibacterial effects, and

maintain gut microbiota balance by reducing pathogenic bacteria

and promoting beneficial bacteria (132).

The role of MCFAs in patients suffering from UC and CD has

been elucidated by various epidemiological investigations.

Observations from a case-control study have demonstrated

significantly reduced levels of lauric acid (C12:0) in the serum of

patients with autoimmune diseases (133). MCFAs such as

heptanoate, octanoate and nonanoate, exhibit markedly decreased

levels in IBD patients (134). In pediatric patients, there were

variations of lauric acid between CD and UC, and higher levels of

lauric acid were observed during UC active phases compared to

remission (135). In summary, reduced levels of MCFAs are

common among IBD patients, and proportions of MCFAs differ

between CD and UC.

MCFAs alleviates IBD symptoms by regulating inflammation

and intestinal epithelial barrier (Table 2). Jun Wang et al.

investigated the impact of octanoic acid and nonanoic acid on

intestinal mucosal barrier. They found that treatment with these

acids enhanced intestinal barrier function and reduced bacterial

translocation by reducing activity of histone deacetylases, resulting

in increased secretion of porcine b-defensin 1 and porcine b-
defensin 2 (69). Octanoic acid can also serve as a molecular
Frontiers in Immunology 06
conjugate to enhance the activity of other drugs. The novel drug

CLX-103, composed of mesalazine, eicosapentaenoic acid, and

octanoic acid, shows prolonged intestinal retention and greater

efficacy compared to mesalazine alone (68). Decanoic acid can

induce increased paracellular permeability, influencing tight

junctions in intestinal epithelial cells (70). Lauric acid has been

found to have anti-inflammatory effects in other diseases (136),

though its role in IBD remains unclear. Black soldier fly larvae

(BSFL) oil, rich in lauric acid, is proposed to modulate mTOR

signalling and enhance PPAR target gene expression related to fatty

acid oxidation. This demonstrates anti-inflammatory activity and

amelioration of colitis symptoms in mice (72). However, several

studies have demonstrated the pro-inflammatory activity of

MCFAs. MCFAs regulate inflammation in human fetal intestinal

epithelial cells by promoting IL-8 secretion induced by IL-1b and

TNF-a (137). Additionally, lauric acid could induce NOD2

signalling and increase NF-kB activation and IL-8 expression (71).

MCFAs have been employed for the prediction and treatment of

IBD. Serum lauric acid serves as a significant biomarker for

autoimmune diseases, while the relationship between MCFAs and

IBD cannot be firmly established due to the limited sample size

(133). Medium-chain triglycerides (MCTs) hold potential

therapeutic value. However, due to the risk of formulations with

MCTs lacking essential PUFAs and fat-soluble vitamins, the use as

additives is not recommended for healthy children (138).

Additionally, a novel amphiphilic C10 and C18 cyclobutene and

cyclobutane fatty acid has demonstrated inhibition of

Mycobacterium avium subsp. paratuberculosis associated with CD

(73, 139).
Long-chain fatty acids

LCFAs generally encompass fatty acids with carbon atoms

ranging from 13 to 22 (8) and are categorized into saturated fatty

acids (SFAs), monounsaturated fatty acids (MUFAs), and

polyunsaturated fatty acids (PUFAs) based on unsaturation

degrees. Dietary intake is a common means of obtaining LCFAs,

such as w-3 and w-6 fatty acids found in fish oil (140). The

significant variations among various LCFAs yield distinct

implications for IBD development (Table 3).
Saturated fatty acids and trans fatty acid

SFAs have been identified to exhibit pro-inflammatory effects.

Interestingly, trans fatty acids (TFAs), a distinct subset of

unsaturated fatty acids, seem to induce similar responses to SFAs

(141). Both SFAs and TFAs potentially regulate inflammatory

responses by impacting the PPAR-g and retinoid X receptor

(RXR) pathways (142). Despite the fact that the precise roles of

SFAs and TFAs in IBD remains enigmatic, extensive studies have

shown their contribution to IBD onset and progression. A genetic

study focusing on fatty acid profiles found that C18 TFAs, total

TFAs, and palmitic acid may positively correlate with the onset of

IBD (143). Several epidemiological studies also demonstrated that
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TABLE 2 Mechanism of MCFAs in inflammatory bowel disease.

MCFAs
Animal
model

Cell/Tissue Mechanism Author Year

Caprylic acid (8:0)

DSS-
induced
mice
colitis

Caprylic acid could form conjugates, increase mesalazine
activity and enhance its retention in the intestines.

Mahesh
Kandula
et al. (68)

2016

Caprylic acid (8:0) and
nonanoic acid (9:0)

IPEC-J2 porcine jejunal epithelial cells Caprylic acid and nonanoic acid reduce bacterial
translocation, and significantly increase the secretion of
porcine b-defensin 1 (pBD-1) and pBD-2.

Jun Wang
et al. (69)

2018

Capric acid sodium
(10:0)

Surgical specimens of distal ileum from
CD patients or colon specimens from

colon cancer patients (control)

Capric acid sodium could induce increased paracellular
permeability, affecting intestinal epithelial cell tight
junctions.

J D
Söderholm
et al. (70)

2002

Lauric acid (12:0)

HCT116 human colon epithelial cell
line

Curcumin can inhibit lauric acid-induced Nod2 signalling,
suppressing NF-kB and IL-8 expression.

Shurong
Huang

et al. (71)
2008

DSS-
induced
mice
colitis

The use of BSFL oil can regulate mTOR signalling and
promote an increase in PPAR target genes for fatty acid
oxidation.

Hadas
Richter
et al. (72)

2023

Amphiphilic
cyclobutene (C10) and
Cyclobutane cis-C18

fatty acid

Map K-10
Amphiphilic cyclobutene and Cyclobutane cis-C18 fatty
acid can inhibit Mycobacterium avium subspecies
paratuberculosis (Map) associated with Crohn’s disease.

Denise K
Zinniel

et al. (73)
2019
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TABLE 3 Mechanism of LCFAs in inflammatory bowel disease.

LCFA
Animal
model

Cell/
Tissue

Mechanism Author Year

SFAs Palmitic acid

Human
colonic
LS174T

goblet cells

Palmitic acid induces altered Muc2 secretion due to ER stress in goblet
cells, potentially exacerbating IBD.

Quentin
Escoula et al.
(84)

2019

Caco-2
cells

Palmitic acid affects intestinal epithelial barrier integrity and
permeability in Crohn’s disease.

Manuele
Gori et al.
(85)

2020

Caco-2
cells

Palmitic Acid induces NF-kB pathway and downstream cytokines.
Romina
Bashllari
et al. (86)

2023

MUFAs

Oleic acid

Human
Intestinal
smooth

muscle Cell

Oleic acid does not affect IL-8 production in Crohn’s-derived intestinal
smooth muscle cells, potentially having no impact on inflammation.

M A
Alzoghaibi
et al. (87)

2003

DSS-induced
rat colitis

Diet rich in oleic acid from acorn-fed ham alters gut microbiota,
reduces colitis symptoms and inflammation, and enhances antioxidant
activity.

J Fernández
et al. (88)

2020

DSS-induced
mice colitis

High intake of extra virgin olive oil or flaxseed oil does not prevent
DSS-induced colitis in mice and may cause adverse effects.

Roberto de
Paula do
Nascimento
et al. (89)

2020

Oleic acid (Oleic
acid is a major
component of

Brucea javanica oil)

DSS-induced
mice colitis

Oleic acid-rich Brucea javanica oil emulsion exhibits anti-inflammatory
effects by inhibiting NF-kB activation in DSS-induced colitis in mice.

Yan-Feng
Huang et al.
(90)

2017

9- or 10-nitro-
octadecenoic oleic

acid

DSS-induced
mice colitis

Nitrated oleic acid activates PPARg, reduces colonic inflammation, and
improves symptoms of DSS-induced colitis.

Sara
Borniquel
et al. (91)

2010

(Continued)
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higher intake of SFAs and TFAs is associated with elevated UC risk

(4, 5), whereas a meta-analysis did not observe a significant

correlation between SFA intake and IBD (144). Furthermore, a

diet rich in TFAs could exacerbate pathological inflammation in the

intestinal epithelium of individuals with IBD (94). In addition, a

multicenter prospective study found that consuming high intake of
Frontiers in Immunology 08
myristic acid increased the risk of UC recurrence in remission

(145). Another cohort study indicated a significant difference in

urinary TFAs among patients with UC recurrence (146).

Palmitic acid is a key component of SFAs, which is associated

with pro-inflammation. Plasma metabolomics measurements

suggested that palmitic acid was a potential diagnostic marker for
TABLE 3 Continued

LCFA
Animal
model

Cell/
Tissue

Mechanism Author Year

PUFAs

w-3 fatty acid

TNBS-induced
rat colitis

Dietary w-3 fatty acid decreases PEG2 and AP, therefore, ameliorates
inflammation and mucosal damage in experimental ulcerative colitis.

Natalia Nieto
et al. (92)

2002

Transgenic
mice

biosynthesizing

Increased tissue w-3 PUFA leads to anti-inflammatory resolvin
formation, reducing NF-kB activity, TNF-a, IL-1b, and inducible NO
synthase.

Christian A
Hudert et al.
(93)

2006

TNBS-induced
rat colitis

Dietary n−3 PUFA attenuates inflammation in TNBS-induced rat
colitis via PPAR−g/NFAT pathway.

Jiayin Yao
et al. (94)

2017

ALA

Rat colitis
models (DSS,

TNBS)

Human
Caco-2
cells

ALA-rich sage oil ameliorates colitis by down-regulating pro-
inflammatory genes, including IL-6, COX2, TNFa, IL-8, and iNOS.

Ram Reifen
et al. (95)

2015

DSS-induced
mice colitis

ALA alleviates DSS-induced colitis in mice by suppressing colon
damage and inflammation, by reducing the expression of ionized
calcium binding adaptor molecule 1-positive macrophages.

Jeongtae Kim
et al. (96)

2020

Eicosapentaenoic
acid

Acetic acid-
induced rat

colitis

EPA mitigates AA-induced colitis by modulating TGF-b/P-EGFR and
NF-kB pathways, balancing oxidant/antioxidant, and enhancing colon
barrier integrity.

Raghda N El
Mahdy et al.
(97)

2023

Polyunsaturated
fatty acids

Mouse models,
Xbp1-/-IEC
and Gpx4
+/-IEC

Human CD
epithelial
organoids

PUFA excess induces ER stress, activates IRE1a via TLR2, triggers
chemokine production, and therefore exacerbates CD.

Julian
Schwärzler
et al. (98)

2022

w-6 polyunsaturated
fatty acids

DSS-induced
mice colitis

w-6 PUFA in Western diet triggers GPX4-restricted mucosal
inflammation resembling colitis via cytokine response and impaired
GPX4 activity.

Lisa Mayr
et al. (99)

2020

w-6 polyunsaturated
fatty acids (linseed
oil, extruded linseed)

DSS-induced
mice colitis

w-6 polyunsaturated fatty acids in linseed oil and extruded linseed
rebalancing w-6/w-3 PUFA ratio, gut dysbiosis, inflammation, and
microbiota modulation.

Claire
Plissonneau
et al. (100)

2022

DPA

DSS-induced
mice colitis

DPA attenuates inflammation in DSS-induced colitis model; modulates
pro-inflammatory cytokines (TNF-a, IL-1b, IL-6) and anti-
inflammatory cytokine (IL-10); inhibits synthesis of pro-inflammatory
eicosanoids (PGE2, LTB4).

Zhenxiao
Zheng et al.
(101)

2019

DSS-induced
mice colitis

DPA supplementation enriches the diversity of gut microbiota and
increases butyrate production.

Ye Dong
et al. (102)

2022

DHA, EPA
LS174T

goblet cells

DHA and EPA alleviate palmitic acid-induced ER stress in LS174T
goblet cells, protect Muc2 secretion, has potential therapy for
lipotoxicity.

Quentin
Escoula et al.
(84)

2019

ETYA
Human
Intestinal
Organoids

ETYA and butyrate regulate ECM genes, suppress collagen content,
and reduce tissue stiffness in CD-related strictures.

Ingrid
Jurickova
et al. (103)

2022

Icosapent ethyl
Acetic acid-
induced rat

colitis

Icosapent alleviates acetic acid-induced rat colitis by modulating SIRT1
pathway, reducing inflammation, oxidative stress, and apoptosis.

Ahmed
Ahmed
Abdelsameea
et al. (104)

2023

17S−epoxy
−docosapentaenoic

acid

DSS-induced
mice colitis

DiHEP-DPA reduces inflammation, decreases pro-inflammatory
cytokines, and inhibits NF-kB pathway in UC model.

Lifang Wang
et al. (105)

2022
frontie
DPA, Docosapentaenoic acid; ALA, Alpha-Linolenic acid; DHA, Docosahexaenoic acid; EPA, Eicosapentaenoic acid; ETYA, Eicosatetraynoic acid.
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IBD (147). Palmitic acid contributes to inflammation by enhancing

intestinal epithelial permeability (85), activating NF-kB pathway

and cytokines (86), and inducing endoplasmic reticulum stress

leading to intestinal epithelial cell lipotoxicity (84).
Monounsaturated fatty acids

MUFAs, characterized by a single double bond, have been

observed to possess anti-inflammatory properties in animal

experiments (148, 149). However, investigations on the effects of

MUFAs on IBD are limited and contradictory. S. Bühner et al.

identified a reduction in MUFAs (18:1, w-9) levels by analyzing

fatty acid profiles of biopsies from CD patients (150), while another

study reported increased oleic acid levels in IBD patients (14).

Mounting case-control studies have associated increased MUFA

intake with elevated UC incidence (4, 151). In the case of

palmitoleic acid, a study revealed elevated serum levels in CD

patients, correlating with increased surgical intervention risk

(152). Conversely, a cross-sectional analysis found lower MUFA

intake in CD patients (153), and a meta-analysis incorporating four

case-control and five prospective studies did not establish a

significant association between MUFAs and UC incidence (144).

In conclusion, further epidemiological and clinical research is

required to elucidate the role of MUFAs in IBD.

As one of the prominent MUFAs, oleic acid has garnered

considerable attention from researchers. Early experiments

indicated decreased levels of oleic and palmitoleic acids in the

inflamed intestinal mucosa (154). Oleic acid exerts a protective

effect on CD patient intestinal epithelial cells without upregulating

interleukin-8 (IL-8) levels (87). Furthermore, oleic acid-containing

Javanese Bruise Oil Emulsion and ellagic acid-containing thymol

polyphenols can inhibit the NF-kB pathway in DSS-induced colitis

mice (90, 155). In addition, 9- or 10-nitrooctadec-9-enoic acid

activates the PPAR-g pathway, displaying superior anti-

inflammatory efficacy in IBD compared to natural oleic acid (91).

Mice consuming oleic acid-rich acorn-fed ham exhibited enhanced

anti-inflammatory microbial abundance and cecal SCFAs

concentration after DSS induction, suggesting potential preventive

effects against UC (88). On the contrary, excessive consumption of

oleic acid-rich extra virgin olive oil failed to ameliorate symptoms in

DSS-induced colitis mice and even elevated TNF-a levels (89).

Therefore, MUFAs potentially serve as an anti-inflammatory fatty

acid with preventative and therapeutic roles in IBD. Nonetheless,

contradictions across studies necessitate further experimental

exploration into the specific mechanisms underlying MUFAs’

actions in IBD.
Polyunsaturated fatty acids

PUFAs comprise a category of fatty acids characterized by

multiple double bonds. Among the various PUFAs, w-6 fatty

acids promote IBD progression (14), whereas w-3 fatty acids

possess anti-inflammatory properties (13). High w-6/w-3 fatty

acid ratio in Western diets is a pivotal feature of IBD.
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w-6 fatty acids include arachidonic acid (AA) and linoleic acid,

which are often associated with promoting UC pathogenesis (14).

Accumulating evidence from population-based revealed an

increased level of AA in the colonic mucosa of UC patients (154)

associated with IBD-related colorectal cancer progression (156,

157). Metabolomic analysis indicated perturbed AA metabolism

in UC mucosa (158), and an increased likelihood of w-6 fatty acid

depletion in pediatric IBD patients (159). Observations from a

cohort inquiry highlight a positive correlation between dietary AA

intake and UC risk (160). A Mendelian analysis proposed w-6 fatty
acids as causative for CD (161).

w-3 fatty acids exert anti-inflammatory effects and are often

considered protective against IBD. Diminished levels of w-3 fatty

acids were observed in both CD and UC patients (162). A Japanese

case-control study suggested that PUFA intake serves as a protective

factor for UC, while excessive docosahexaenoic acid (DHA),

eicosapentaenoic acid (EPA), and docosapentaenoic acid (DPA)

intake might increase UC risk (163). Conversely, two Mendelian

analyses independently associated w-3 fatty acids with protection

against IBD (164, 165). A nurse cohort study found a connection

between w-3 fatty acid intake and reduced UC risk (5). Meta-

analytic investigations revealed protective effects of fish oil and

dietary w-3 fatty acids against UC (13). Conversely, a systematic

review highlighted that supplementing PUFAs has a negligible

impact on IBD prevention and treatment, with limited long-term

inflammation improvement (166). Another scoping review revealed

inconclusive effects of w-3 fatty acids on IBD inflammation and

symptom alleviation (167).

PUFAs can impact IBD through influencing intestinal

inflammation. Elevated AA levels in UC patient’s colonic mucosa

are linked to inflammation and colonic mucosal phospholipid AA

composition (154, 168). PUFAs can modulate anti-inflammatory

signalling pathways and maintain the integrity of the intestinal

barrier by binding to GPR120 (169, 170). The anti-inflammatory

effects of w-3 fatty acids were linked to decreased levels of

prostaglandin E2 (PGE2), alkaline phosphatase (AP) (92), and the

downregulation of NF-kB, TNF-a, inducible nitric oxide synthase,
and IL-1b activity (93), along with upregulation of PPAR-g (94).

Alpha-linolenic acid (ALA) could reduce ionized calcium-binding

adaptor molecule 1-positive macrophages (96) and downregulate

the expression of pro-inflammatory genes IL-8, cyclooxygenase-2

(COX2), and inducible nitric oxide synthase to reduce intestinal

inflammation (95). EPA moderates TGF-b/P-EGFR and NF-kB
inflammatory pathways, modulates the redox balance, and mitigates

rat UC progression (97). Recent research revealed the antioxidative

activity of glutathione peroxidase 4 against PUFA-induced

oxidative stress. Excessive dietary PUFAs could activate toll-like

receptor 2 (TLR2) through inositol-requiring enzyme 1a (IRE1a)-
induced endoplasmic reticulum stress (98), and AA might trigger

cytokine production akin to ferroptosis in intestinal epithelial cells,

leading to epithelial injury (99).

Microbial dysbiosis and impaired mucosal barrier are pivotal

features in IBD pathogenesis, and PUFAs might influence IBD by

altering microbial balance and maintaining mucosal barrier.

Flaxseed supplementation and w-6-rich fatty acids have been

associated with promoting microbial dysbiosis in CD and altering
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mucosal barrier functions (100, 171). Supplementation of DPA

increases gut microbial diversity and changes microbial

composition in DSS-induced colitis mice (102). Furthermore,

DHA and EPA alleviate endoplasmic reticulum stress in goblet

cells, reducing the synthesis and secretion of Muc2 protective mucin

barriers (84). Limited evidence suggested DPA possesses stronger

anti-inflammatory and protective effects against IBD than EPA and

DHA (101), offering new directions for PUFAs research.

Eicosatetraynoic acid (ETYA) (20:4) in a patient-specific

human intestinal organoid (HIO) model developed by Ingrid

Jurickova et al. demonstrated reduced extracellular matrix gene

expression and alleviated CD ileal stricture (103). Icosapent ethyl

can mitigate CD ileitis through the silent information regulator 1

(SIRT1) pathway, decreasing the expression of various pro-

inflammatory cytokines and exerting anti-inflammatory,

antioxidant, and anti-apoptotic effects (104). Lifang Wang et al.

synthesized 7S, 15R-dihydroxy-16S, 17S-epoxy-22-carbon-5-

docosenoic acid and demonstrated its anti-inflammatory effects

by reducing TNF-a, IL-6, and IL-1b levels (105). Notably,

traditional Chinese herbal formulas may modify IBD progression

by regulating PUFAs (172–174).

Researches have extensively been exploring the regulation of

inflammation and intestinal barrier by PUFAs. Recent studies

elucidate PUFAs mechanisms impacting IBD progression via

ferroptosis-related pathways and the influence of PUFAs on

microbial ecology, thereby expanding perspectives in IBD research.
Very long-chain fatty acids

The role of VLCFAs, defined as fatty acids with a carbon chain

length exceeding 23, is gradually being elucidated in inflammation.

VLCFAs can originate from dietary sources and can also be

endogenously synthesized from long-chain fatty acids and Elongated

by the elongase of very long fatty acid (ELOVL) family (175). Saturated

VLCFAs can mediate necroptosis (176) and activate macrophages to

generate an inflammatory response (177). However, research on

VLCFAs has primarily focused on X-linked adrenoleukodystrophy, a

disorder characterized by VLCFAs accumulation. There is a gap in

understanding of VLCFAs’ role in IBD.

Research on VLCFAs in IBD is limited. Only some gene

sequencing revealed differences in the ELOVL gene between IBD

patients and healthy individuals. Genetic sequencing of two CD

patients in Japan revealed variations in ELOVL6 (178), and gene

analysis of immune cells from UC patients demonstrated significant

upregulation of ELOVL5 (179). Furthermore, ELOVL7 gene regions

were identified as possible novel loci associated with adalimumab

response in CD patients (180). Additionally, octacosanol was

demonstrated to alleviate DSS-induced colitis by protecting intestinal

barrier and modulating gut microbiota and SCFAs levels (181).
Lipid derive mediators

Lipid mediator (or oxylipins) is a group of bioactive molecules

that derive from fatty acid involving at least one step of dioxygen-
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dependent oxidation (10). PUFAs serve as major precursors for

lipid mediators. Inflammatory responses and resolution are

perceived as a controlled, ongoing process involving sequential

release of diverse lipid mediators. Prostaglandins (PGs) and

leukotrienes (LTs) derived from AA are pro-inflammatory

mediators at inflammation onset, while lipoxin A4 (LXA4) and

LXB4 from AA and w-3 fatty acids derived lipid mediators are

recognized as pro-resolving mediators during resolution.

Furthermore, the interaction of a novel lipid mediator

endocannabinoid system with exogenous cannabinoids is

considered to be a potential therapeutic avenue for IBD (182).

Lipid mediators are increasingly recognized for their significance in

the pathophysiology and treatment of IBD (Table 4).
Arachidonic acid derived lipid mediators

Lipid mediators derived from AA primarily include PGs, LTs,

and LXA4. A case-control study has identified a series of pro-

inflammatory lipid mediators, such as PGE2, PGD2, and

thromboxane (TXB2) in the intestinal mucosa of UC patients,

correlated with the severity of inflammation (183). Interestingly,

PGD2 also exhibited a protective effect, and its upregulation was

associated with prolonged remission in UC patients (183). Elevated

LXA4 expression promotes mucosal homeostasis and can be found

only in the intestinal mucosa during remission (184). EPA, an AA

metabolite generated through P450 metabolism, has been observed

at elevated levels in UC tissues in comparison to the surrounding

tissues, suggesting a potential protective role against UC (185).

Evidence from observational study points to higher levels of AA-

derived oxylipins in CD patients (186).

PGs serve as key regulators of vascular responses, modulating

inflammatory cell infiltration (187). PGE2 and PGD2 play a crucial

role in inflammation modulation, originating from the common

precursor PGH2 through enzymatic catalysis. In IL-10 knockout

mice, PGD2, PGE2, and other lipid mediators are upregulated. This

may result from local inflammatory cell induced breakdown of

PUFA to maintain inflammatory homeostasis (188). PGE2 exerts

pro-inflammatory effects in IBD, possibly through the IL-23/IL-17

axis regulation (110). PGD2 may have both pro-inflammatory and

anti-inflammatory effects under different circumstances. For

instance, the increased presence of lipocalin-type prostaglandin D

synthase (L-PGDS) in UC may exacerbate inflammation (111).

Conversely, PGD2 also has protective effects in IBD. Nicotinic acid

regulates suppressed macrophage pro-inflammatory gene

expression through PGD2 release (114). The effects of PGD2

depend on its receptors; activation of CRTH2 may mediate

inflammation, while stimulation of another PGD2 receptor DP is

inversely correlated with neutrophil activity to mitigate

inflammation (112, 113).

LTs promote leukocyte activation and cytokine production. In

trinitrobenzene sulfonic acid (TNBS)-induced colitis mice, LTB4

inhibition accelerates colitis healing. Furthermore, LTB4 synthesis in

colonic epithelial cells is enhanced in TNBS-induced colitis mice,

which modulates Th1 and Th17 cell differentiation (115). LXA4 and

LXB4, anti-inflammatory pro-resolving lipid mediators derived from
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TABLE 4 Mechanism of lipid mediators in inflammatory bowel disease.

Lipid Mediators Animal Model Cell Mechanism Author Year

PGE2 TNBS-induced mice colitis
PGE2 shifts IL-12/IL-23 balance, promoting IL-23, and exacerbating
IBD.

Amir F
Sheibanie
et al. (110)

2007

Lipocalin-type PGD
synthase

DSS-induced mice colitis
Increased L-PGDS expression was found in active UC patients, and
L-PGDS exacerbated mice colitis.

Ryota
Hokari
et al. (111)

2011

PGD2 receptors DSS-induced mice colitis
DP and CRTH2 receptors have opposing roles in DSS-induced mice
colitis inflammation regulation.

Eva M
Sturm et al.
(112)

2014

PGD2

TNBS-induced mice colitis
CRTH2 activation in eosinophils contributes to CD inflammation,
while CRTH2 antagonist reduces inflammation.

Balázs
Radnai
et al. (113)

2016

DSS-induced mice colitis
Niacin increases PDG2 releases and reduce inflammation. Juanjuan Li

et al. (114)
2017

LTB4 TNBS-induced mice colitis
BLT1 (LTB4 receptor) in dendritic cells promotes Th1/Th17
differentiation, exacerbating colitis via cytokine modulation.

Jinfeng
Zhou et al.
(115)

2018

LXA4

Cyclooxygenase 2 (Cox2)
total knockout and

myeloid knockout (MKO)
mice

Administration of an LXA4 analog rescued disease in Cox2-MKO
mice.

David
Meriwether
et al. (116)

2019

RvE1

DSS-induced mice colitis
RvE1 induces intestinal alkaline phosphatase (ALPI) expression,
detoxifies LPS, and promotes inflammatory resolution.

Eric L
Campbell
et al. (117)

2010

TNBS-induced mice colitis
RvE1 derived from omega-3 eicosapentaenoic acid (EPA) reduces
leukocyte infiltration and counter-regulates pro-inflammatory gene
expression to protect mice from colitis.

Makoto
Arita et al.
(118)

2005

DSS-induced mice colitis
RvE1 derived from eicosapentaenoic acid inhibits pro-inflammatory
cytokines, regulates macrophage responses via ChemR23, and
ameliorates colonic inflammation in colitis model.

Tsukasa
Ishida et al.
(119)

2010

RvD1

DSS-induced mice colitis
RVD1 remodelling gut microbiota, restoring intestinal barrier
integrity, reducing inflammation, and improving gut-liver axis
communication.

Cui Zeng
et al. (120)

2022

DSS-induced mice colitis
RvD1 reduces autophagy-induced EMT in intestinal epithelial cells
and ameliorates intestinal fibrosis by disrupting epithelial-fibroblast
crosstalk.

Cui Zeng
et al. (121)

2022

PD1, RvD5 DSS-induced mice colitis
PD1 and RvD5 protect against colitis and inflammation by reducing
leukocyte adhesion and emigration.

Thomas
Gobbetti
et al. (122)

2017

MaR1

Mouse models (DSS-
induced colitis, TNBS-

induced colitis)

MaR1 attenuates colonic inflammation by inhibiting NF-kB pathway
and inflammatory mediators, reducing neutrophil migration, and
enhancing macrophage M2 phenotype.

Rodrigo
Marcon
et al. (123)

2013

DSS-induced colitis rat

MaR1 reduces inflammation by reducing neutrophil and macrophage
infiltration, activating Nrf2 signalling, and inactivating TLR4/NF-kB
signalling. Besides, MaR1 improves TJ protein expression and
decreases MPO and ROS activity, therefore ameliorating DSS-
induced colitis.

Shujin Qiu
et al. (124)

2020

5-HETE
Differentiated
Caco-2 cells

Leukotriene D4 and 5-Hydroxyeicosatetraenoic acid alter paracellular
permeability and epithelial barrier function by activation of the
phospholipase C/Ca (2+)/protein kinase C pathway and cAMP-
independent protein kinase A activation.

M J
Rodrıǵuez-
Lagunas
et al. (125)

2013

12-HETE DSS-induced mice colitis

Systemic Alox15 (leukocyte-type 12-LOX) deficiency suppresses the
formation of 12-hydroxyeicosatetraenoic acid (12-HETE), reduced
expression of pro-inflammatory gene products, and sustained
expression of ZO-1.

Saskia
Kroschwald
et al. (126)

2018

(Continued)
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AA, inhibit vascular inflammation (189). Knocking outCOX2 reduces

colonic LXA4 levels, exacerbating inflammation (116).

AA derived lipid mediators can also serve as biomarkers and

potential therapeutic targets. Due to its significant role in

inflammation, the major urinary metabolite of PGE is considered

to be a predictive biomarker of mucosal healing and relapse (190).

Furthermore, in a lipidomics study of UC patients, PGE1 and PGD2

are critical factors influencing mucosal healing (191). Inhibition of

LTB4 might hold potential therapeutic implications for UC (192).

w-3 fatty acids derived lipid mediators

ALA can be metabolized into DHA and EPA, which are

subsequently transformed by LOX and CYP enzymes into various

w-3 fatty acid-derived lipid mediators (193). w-3 fatty acids derived
lipid mediators include resolvins, protectins, and maresins, are

considered potential tools for controlling IBD due to their

remarkable pro-resolving capabilities, which are also named

specialized pro-resolving mediators (SPMs) (194). In an

observational study, RvE1 was found to be positively correlated

with disease activity in UC patients (195). Resolvins and protectins

from w-3 fatty acids have a significant up-regulation in IBD colon

biopsies (122). A case-control study has revealed lower levels of w-3
fatty acid-derived lipid mediators in CD patients (186).

Resolvins are interactive products generated during the

inflammation resolution phase, contributing to alleviating

inflammatory stress (10). Protectin, a lipid mediator produced by

DHA, exhibits the ability to inhibit neutrophil migration and

promote neutrophil apoptosis (196, 197). Maresins, macrophage

mediators derived from DHA, demonstrate pronounced anti-

inflammatory effects (198). Resolvin E1 (RvE1) derived from EPA
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induces the expression and activity of alkaline phosphatase in

intestinal epithelial cells to detoxify lipopolysaccharide (LPS) (117).

RvE1 suppresses pro-inflammatory cytokine TNF-a production,

reducing leukocyte-mediated tissue damage and gene expression

(119), ultimately improving histological scores in colitis mice and

preventing colitis onset (118, 119). BLT1 can serve as a receptor for

RvE1, accelerating the intestinal epithelial barrier repair (199). RvD1,

sourced from DHA, confers protection against IBD by strengthening

tight junctions, maintaining intestinal homeostasis, and attenuating

inflammation (120). RvD1 also reduces mesenchymal transition of

intestinal epithelium and prevents IBD-associated fibrosis (121). Both

RvD1 and RvD5 diminish leukocyte adhesion, migration, and

endothelial adhesion activated by TNF-a, which exhibit protective

effects against colitis (122). Maresin 1 diminishes IL-1b, TNF-a, IL-6,
and IFN-g levels and suppresses NF-kB pathway (123). Besides,

maresin 1 regulates NRF2 and TLR4/NF-kB pathways to control

colonic inflammation, concurrently improves tight junction protein

expression, and maintains mucosal barrier (124). Targeted transport

of maresin 2 via nanoparticle packaging promotes mucosal repair

(200). Besides, DHA-derived epoxides can restore the ability of the

endothelium to resolve intestinal inflammation through major

facilitator superfamily domain containing 2A (MFSD2A), and

overexpression of MFSD2A reduces colitis in mice (201).

Certain lipid mediators derived from w-3 fatty acids have the

potential to serve as biomarkers reflecting the progression of IBD.

Compared to CD, RvE1 levels are significantly elevated in active

UC, while during CD remission, protectin DX concentrations are

higher than UC (202). However, another study suggests that RvE1

may not be a biomarker for UC (195). Enteral nutrition can

stimulate the release of RvD1-RvD5 through innate lymphoid cell

activation to alleviate CD symptoms (203).
TABLE 4 Continued

Lipid Mediators Animal Model Cell Mechanism Author Year

15- HEPE

DSS- and TNBS-induced
colitis in fat1 transgenic
mice with endogenously
increased n-3 PUFA tissue

status

Alox15 deficiency suppresses the formation of n-3 PUFA-derived 15-
HEPE. Intraperitoneal injections of 15S-HEPE protect mice from
DSS- and TNBS-induced colitis.

Nadine
Rohwer
et al. (127)

2021

15- HETE
Human Caco-

2 cells

EGCs from CD patients have reduced 15-HETE production, leading
to impaired control of IEB permeability via inhibition of adenosine
monophosphate-activated protein kinase and increased expression of
ZO-1.

Camille
Pochard
et al. (128)

2016

Endocannabinoid
anandamide

Chronic ileitis model
(TNFDARE/+ mice)

CB2R activation on Tregs enhances suppressive function and IL-10
secretion, attenuating murine ileitis by improving histological scoring
and decreasing inflammatory cytokine expression.

Kristina L
Leinwand
et al. (129)

2017

endocannabinoid DSS-induced mice colitis
Diet high in linoleic acid dysregulates the intestinal endocannabinoid
system and increases susceptibility to colitis in mice.

Nathan
Calzadilla
et al. (130)

2023

Endocannabinoidome
(eCBome) lipid

mediators: LEA, OEA,
etc.

TNBS-induced mice colitis

Depletion of gut microbiota and subsequent differential development
of the gut immune system in germ-free mice leads to altered
eCBome lipid mediator levels, contributing to reduced susceptibility
of mice to DNBS-induced colitis.

Tommaso
Venneri
et al. (131)

2023
frontie
PGE2, Prostaglandin E2; PGD2, Prostaglandin D2; LTB4, Leukotriene B4; LXA4, Lipoxin A4; RvE1, Resolvin E1; RvD1, Resolvin D1; PD1, Protectin D1; MaR1, Maresin 1; HETE,
Hydroxyeicosatetraenoic acid.
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Other lipid mediators

Hydroxyeicosatetraenoic acid (HETE) and cannabinoids are

important lipid mediators influencing IBD. Accumulating case-

control research suggests elevated levels of 5-HETE, 11-HETE, 12-

HETE, 15-HETE, and endocannabinoids in inflamed mucosa of IBD

(186, 203, 204). Pro-inflammatory AA derivative 15S-HETE elevated

in CD and 12S-HETE higher during CD remission (204). Functional

variants of cannabinoid receptor 2 increase the risk of pediatric CD

(205). Distinct differences exist in the endocannabinoid systems

between individuals with IBD and colorectal cancer (206).

HETEs derived from various PUFAs could regulate

inflammation. HETE is upregulated in IL-10 knockout mice, for

local inflammatory cell induce PUFA breakdown (188). 5-HETE

enhances intestinal epithelial cell permeability through the cAMP-

independent protein kinase A pathway and phospholipase C/Ca (2

+)/protein kinase C pathway (125). Exogenous supplementation of

12-HETE reduces the expression of tight junction protein ZO-1,

impairing the intestinal barrier function in UC (126). Conversely,

w-3 supplementation exerts a protective effect on UC by increasing

15-HETE (127, 207). Mechanistic study on 15-HETE reveals its role

in reducing intestinal epithelial permeability by inhibiting AMPK

and increasing the activity of ZO-1 (128).

Endocannabinoid system has recently been identified to offer

protective effects in IBD. Under chronic IBD conditions, the

endocannabinoid system undergoes downregulation, while the

activation of cannabinoid receptor 2 mitigates inflammation by

enhancing regulatory T cell (Treg) function and IL-10 secretion

(129). DSS-induced colitis mice exhibit an increase in

colonic mucosal endocannabinoids (130). Disruption of the

endocannabinoid system in mice by a high w-6 fatty acid diet

heightens susceptibility to UC (208). Recent findings suggest that

inflammation induced in germ-free mice by DNBS is attenuated,

attributing to the role of the endocannabinoid system in the

endocannabinoidome (eCBome) (131).

These lipid mediators also serve as biomarkers and potential

therapeutic targets. The 20- HETE-d6 could serve as a diagnostic

biomarker for IBD (147). Patients with IBD might self-administer

cannabis to alleviate abdominal pain symptoms (209). Phycocyanin

has been found to activate cannabinoid receptors and promote UC

healing (210).
Therapeutic approaches based on
fatty acids

A myriad of therapeutic strategies is available for IBD,

encompassing surgical interventions, dietary interventions,

corticosteroid hormone therapy, biologics, fecal microbiota

transplantation, probiotic therapy, and enteral nutrition. In this

context, we will specifically highlight three treatment approaches

closely associated with fatty acids and lipid mediators, including

dietary interventions, SCFAs and lipid mediator supplementation.

Biologica l agents , 5-aminosal icy l ic ac id (5-ASA),

glucocorticoids, and immunosuppressive drugs are widely used
Frontiers in Immunology 13
for induction and maintenance treatment in IBD patients. The

therapeutic mechanisms of these drugs are partly related to fatty

acids. Butyrate salts might synergistically enhance the therapeutic

effects of anti-TNF treatments (211). An increase in SCFA-

producing bacterial levels is one of the mechanisms by which

Infliximab therapy exerts its therapeutic effect (212), and serves as

a biomarker for patient response to Infliximab therapy (213). Levels

of butyrate and substrates are correlated with the remission

outcomes of Infliximab treatment (214). Similarly, butyric acid

and isobutyric acid can serve as biomarkers for patient responses

to Vedolizumab (108). Furthermore, glucocorticoids, such as

prednisolone, can directly reduce luminal lipid mediators like

PGE2 and LTB4, improving IBD symptoms (215, 216). The

effects of 5-ASA on UC intestinal mucosa SCFA have been

elaborated on in other reviews (217). A recent clinical study

found that UC patients treated with a combination of 5-ASA and

FEEDColon involving Butyrate achieved better subjective symptom

improvement than those treated with 5-ASA alone (218).

Additionally, animal studies have found that 1000mg/kg EPA in

alleviating colitis-related oxidative stress, serum LDH, colonic GLP-

1 expression, and NF-kB capacity is comparable to Sulfasalazine

(97). These studies illuminate the role of fatty acids in IBD

drug therapy.
Dietary intervention: particularly the
therapeutic role of fatty acids in IBD

Fatty acids play a pivotal role in the pathological and

physiological processes of IBD by regulating intestinal mucosal

barrier, modulating pro-inflammatory/anti-inflammatory balance,

influencing immune function, and regulating gut microbiota

homeostasis. Therefore, a rational intake of fatty acids is crucial

for both IBD prevention and treatment.

Increasing the intake of w-3 fatty acids is generally deemed

advantageous for IBD. Consumption of anti-inflammatory diets

rich in w-3 fatty acids has been linked to alterations in the gut

microbiota of UC patients during remission, resulting in a

reduction of subclinical inflammation (219). Incorporating a

Japanese diet, which is high in fish oil and has high w-3 fatty

acids, is also beneficial for clinical remission in UC patients (220).

w-3 fatty acids exhibit anti-inflammatory effects in postoperative

patients without influencing the risk of postoperative complications

(221). The use of EPA has shown promise in lowering calprotectin

levels and decreasing UC relapse (222), as well as improving gut

microbiota composition and inflammation (223). Supplementing

with cis-palmitoleic acid can downregulate the expression of

hepatocyte nuclear factor (HNF4a) and HNF4g, potentially

mitigating inflammation in UC patients (224). Moreover, the

combination of amino-salicylic acid and w-3 fatty acids effectively

maintains remission in pediatric CD (225).

However, w-3 fatty acids exhibit contradictory effects.

Combined supplementation of w-3 fatty acids and vitamin D

does not significantly improve CD inflammation and clinical

remission (226). Multicenter randomized controlled trials have

demonstrated the ineffectiveness of using free w-3 fatty acids for
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preventing CD relapse (227). Hence, the European Society of

Parenteral and Enteral Nutrition suggests a dietary approach

characterized by lower w-6 and higher w-3 content to prevent

IBD, while advising against w-3 supplementation for maintaining

IBD remission (228).

The Mediterranean diet, rich in fish oil and PUFAs and low in

SFAs, was considered a relatively healthful dietary pattern (229). It

has been recommended as a part of auxiliary treatment for patients

with IBD (230). Embracing a healthful lifestyle, such as the

Mediterranean diet, has demonstrated potential in ameliorating

IBD disease activity and inflammation status (229). Mediterranean

diet can elevate the levels of SCFA-producing bacteria, maintaining

clinical remission in patients with quiescent UC (230), and reducing

the mortality associated with IBD (231). The Mediterranean diet

might exhibit superior therapeutic efficacy for mild-to-moderate

CD compared to specific carbohydrate-based diets (232).

The composition of fatty acids can also play a guiding role in the

proportion of enteral nutrition (EN). Early EN stands as a primary

therapeutic choice for CD patients (233), offering a relatively low-

cost option. EN formulations contain fewer SFAs than the National

Diet and Nutrition Survey (234). Prior research has highlighted the

varied impacts of EN with different lipid compositions on CD

patients, with higher proportions of oleic acid showing a stronger

relief impact compared to higher proportions of stearic acid (235).

The ratio of w-6 to w-3 fatty acids exhibits a significant positive

correlation with CD remission, while total MCFAs and LCFAs

show an inverse correlation with remission (236). This insight

contributes to a better understanding of optimal EN fatty

acid ratios.
SCFAs supplements

The anti-inflammatory potential of SCFAs has been well

established in animal experiments, with clinical trials showcasing

their promise in treating IBD. Butyrate enema therapy was

previously deemed as an efficacious treatment for distal colitis

(237). However, its effectiveness has not been substantiated in

large-scale RCTs, and the inconvenience associated with the long-

term administration of enemas has led to its gradual phasing out

(238). Oral microencapsulated sodium butyrate has been found to

lower calprotectin levels, sustain remission, enhance quality of life

and promote SCFA-producing bacteria in IBD patients (239).

Nevertheless, issues of potential poor tolerance to butyrate salts

have been raised (240). The use of an herbal mixture containing

chamomile flowers and charcoal has demonstrated an ability to

elevate butyrate concentrations in UC patients, resulting in reduced

relapses (241). Butyrate salts derived from dietary fiber

fermentation have shown promise in raising butyrate levels and

improving symptoms like abdominal pain and reflux (242).

However, Sunil Thomas et al. suggest caution in supplementing

with dietary fiber, as high-fiber diets might ampli fy

immunotherapy-associated toxicity in UC (243). Moreover, the

efficacy of sodium butyrate in pediatric IBD appears limited

(244). Further extensive research is warranted to further develop

therapeutic protocols centered around butyrate interventions.
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Probiotic supplementation contributes to rectifying gut

microbiota balance and alleviates IBD symptoms through elevated

SCFAs. Probiotic supplements also reduced inflammation (244).

Intake of fermented vegetable beverages containing Pediococcus

pentosaceus led to improved loose stool symptoms associated with

higher levels of acetic, propionic, and butyric acids (245). A

composite formulation of calcium butyrate, Bifidobacterium

bifidum, Bifidobacterium lactis, and fructooligosaccharides

improved the quality of life and alleviated abdominal pain and

diarrhea (218). Prebiotics can promote the growth and

reproduction of beneficial microbacteria. Oral fructooligosaccharide

prebiotics rich in inulin augmented butyrate production, lowering

UC severity (246).
Lipid mediator supplements

The endocannabinoid system is a significant lipid mediator, the

homeostasis of which can be modulated by exogenous

cannabinoids. In UC patients, supplementation with cannabinoids

led to significant downregulation of AA, palmitoylethanolamine,

and anandamide levels, reshaping the tone of endocannabinoid

system and ameliorating UC symptoms (247). Cannabinoid

supplementation exhibited improvement in active CD and

reduced corticosteroid dependency (248). The exploration of lipid

mediator-derived therapies remains underdeveloped, pointing

toward a potential avenue for future research.
Conclusion

In summary, this review encompasses the mechanisms of fatty

acid impact on IBD, the current epidemiological landscape, and

therapeutic strategies. Fatty acids, as essential dietary components,

have been identified to exert anti-inflammatory, immune-

regulatory, gut-microbiota-modulating, and barrier-maintaining

effects within the pathological processes of IBD. However, the

mechanisms of specific fatty acids like MCFAs and VLCFAs in

IBD necessitate further elucidation, potentially directing future

research endeavors. We have conducted an overview of

epidemiological research investigating the impact of fatty acids on

IBD. It reveals inconsistencies among certain epidemiological

studies and disparities between findings from animal experiments

and epidemiological investigations. Furthermore, the availability of

robust evidence from large-scale cohorts and randomized

controlled trials is limited, and translating results from animal

models to human populations presents challenges.

Fatty acids can serve as adjunctive therapeutic tools in

managing IBD. We compile existing dietary recommendations

and supplementary strategies utilizing fatty acids for therapeutic

intents. However, pure fatty acid supplementation often falls short

of meeting diverse patient needs. As the effects of each fatty acid and

lipid mediator are unveiled, demands for refined dietary strategies

or supplement regimens for IBD treatment or relapse prevention

intensify. More precise fatty acid ratios and composite formulations

may pave the way for future investigations. Additionally, as a
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disease influenced by genetics and environment, IBD manifests

varied sensitivity to different fatty acids or lipid mediators among

different genotypes. Leveraging personalized fatty acid supplements

based on individual genetic phenotypes through artificial

intelligence and extensive data systems could illuminate the path

toward tailored interventions.
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113. Radnai B, Sturm EM, Stančić A, Jandl K, Labocha S, Ferreirós N, et al.
Eosinophils contribute to intestinal inflammation via chemoattractant receptor-
homologous molecule expressed on th2 cells, crth2, in experimental Crohn’s disease.
J Crohns Colitis (2016) 10(9):1087–95. doi: 10.1093/ecco-jcc/jjw061

114. Li J, Kong D, Wang Q, Wu W, Tang Y, Bai T, et al. Niacin ameliorates
ulcerative colitis via prostaglandin D(2)-mediated D prostanoid receptor 1 activation.
EMBO Mol Med (2017) 9(5):571–88. doi: 10.15252/emmm.201606987

115. Zhou J, Lai W, Yang W, Pan J, Shen H, Cai Y, et al. Blt1 in dendritic cells
promotes th1/th17 differentiation and its deficiency ameliorates tnbs-induced colitis.
Cell Mol Immunol (2018) 15(12):1047–56. doi: 10.1038/s41423-018-0030-2

116. Meriwether D, Sulaiman D, Volpe C, Dorfman A, Grijalva V, Dorreh N, et al.
Apolipoprotein a-I mimetics mitigate intestinal inflammation in cox2-dependent
inflammatory bowel disease model. J Clin Invest (2019) 129(9):3670–85.
doi: 10.1172/jci123700

117. Campbell EL, MacManus CF, Kominsky DJ, Keely S, Glover LE, Bowers BE,
et al. Resolvin E1-induced intestinal alkaline phosphatase promotes resolution of
inflammation through lps detoxification. Proc Natl Acad Sci U.S.A. (2010) 107
(32):14298–303. doi: 10.1073/pnas.0914730107

118. Arita M, Yoshida M, Hong S, Tjonahen E, Glickman JN, Petasis NA, et al.
Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic
acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proc Natl Acad
Sci U.S.A. (2005) 102(21):7671–6. doi: 10.1073/pnas.0409271102

119. Ishida T, Yoshida M, Arita M, Nishitani Y, Nishiumi S, Masuda A, et al.
Resolvin E1, an endogenous lipid mediator derived from eicosapentaenoic acid,
prevents dextran sulfate sodium-induced colitis. Inflammation Bowel Dis (2010) 16
(1):87–95. doi: 10.1002/ibd.21029

120. Zeng C, Liu X, Zhu S, Xiong D, Zhu L, Hou X, et al. Resolvin D1 ameliorates
hepatic steatosis by remodeling the gut microbiota and restoring the intestinal barrier
integrity in dss-induced chronic colitis. Int Immunopharmacol (2022) 103:108500.
doi: 10.1016/j.intimp.2021.108500

121. Zeng C, Liu X, Xiong D, Zou K, Bai T. Resolvin D1 prevents epithelial-to-
mesenchymal transition and reduces collagen deposition by stimulating autophagy in
intestinal fibrosis. Dig Dis Sci (2022) 67(10):4749–59. doi: 10.1007/s10620-021-07356-
w

122. Gobbetti T, Dalli J, Colas RA, Federici Canova D, Aursnes M, Bonnet D, et al.
Protectin D1(N-3 dpa) and resolvin D5(N-3 dpa) are effectors of intestinal protection.
Proc Natl Acad Sci U.S.A. (2017) 114(15):3963–8. doi: 10.1073/pnas.1617290114

123. Marcon R, Bento AF, Dutra RC, Bicca MA, Leite DF, Calixto JB. Maresin 1, a
proresolving lipid mediator derived from omega-3 polyunsaturated fatty acids, exerts
protective actions in murine models of colitis. J Immunol (2013) 191(8):4288–98.
doi: 10.4049/jimmunol.1202743

124. Qiu S, Li P, Zhao H, Li X. Maresin 1 alleviates dextran sulfate sodium-induced
ulcerative colitis by regulating nrf2 and tlr4/nf-kb signaling pathway. Int
Immunopharmacol (2020) 78:106018. doi: 10.1016/j.intimp.2019.106018

125. Rodr ı ́guez-Lagunas MJ, Storniolo CE, Ferrer R, Moreno JJ. 5-
hydroxyeicosatetraenoic acid and leukotriene D4 increase intestinal epithelial
paracellular permeability. Int J Biochem Cell Biol (2013) 45(7):1318–26. doi: 10.1016/
j.biocel.2013.04.005

126. Kroschwald S, Chiu CY, Heydeck D, Rohwer N, Gehring T, Seifert U, et al.
Female mice carrying a defective alox15 gene are protected from experimental colitis
via sustained maintenance of the intestinal epithelial barrier function. Biochim Biophys
Acta Mol Cell Biol Lipids (2018) 1863(8):866–80. doi: 10.1016/j.bbalip.2018.04.019

127. Rohwer N, Chiu CY, Huang D, Smyl C, Rothe M, Rund KM, et al. Omega-3
fatty acids protect from colitis via an alox15-derived eicosanoid. FASEB J (2021) 35(4):
e21491. doi: 10.1096/fj.202002340RR

128. Pochard C, Coquenlorge S, Jaulin J, Cenac N, Vergnolle N, Meurette G, et al.
Defects in 15-hete production and control of epithelial permeability by human enteric
glial cells from patients with Crohn’s disease. Gastroenterology (2016) 150(1):168–80.
doi: 10.1053/j.gastro.2015.09.038

129. Leinwand KL, Jones AA, Huang RH, Jedlicka P, Kao DJ, de Zoeten EF, et al.
Cannabinoid receptor-2 ameliorates inflammation in murine model of Crohn’s disease.
J Crohns Colitis (2017) 11(11):1369–80. doi: 10.1093/ecco-jcc/jjx096

130. Calzadilla N, Qazi A, Sharma A, Mongan K, Comiskey S, Manne J, et al.
Mucosal metabolomic signatures in chronic colitis: novel insights into the
pathophysiology of inflammatory bowel disease. Metabolites (2023) 13(7):873.
doi: 10.3390/metabo13070873

131. Venneri T, Giorgini G, Leblanc N, Flamand N, Borrelli F, Silvestri C, et al.
Altered endocannabinoidome bioactive lipid levels accompany reduced dnbs-induced
colonic inflammation in germ-free mice. Lipids Health Dis (2023) 22(1):63.
doi: 10.1186/s12944-023-01823-1

132. Jia M, Zhang Y, Gao Y, Ma X. Effects of medium chain fatty acids on intestinal
health of monogastric animals. Curr Protein Pept Sci (2020) 21(8):777–84. doi: 10.2174/
1389203721666191231145901

133. Tsoukalas D, Fragoulakis V, Sarandi E, Docea AO, Papakonstaninou E,
Tsilimidos G, et al. Targeted metabolomic analysis of serum fatty acids for the
Frontiers in Immunology 18
prediction of autoimmune diseases. Front Mol Biosci (2019) 6:120. doi: 10.3389/
fmolb.2019.00120

134. De Preter V, Machiels K, Joossens M, Arijs I, Matthys C, Vermeire S, et al.
Faecal metabolite profiling identifies medium-chain fatty acids as discriminating
compounds in ibd. Gut (2015) 64(3):447–58. doi: 10.1136/gutjnl-2013-306423

135. Kikut J, Drozd A, Mokrzycka M, Grzybowska-Chlebowczyk U, Ziętek M,
Szczuko M. There is a differential pattern in the fatty acid profile in children with cd
compared to children with uc. J Clin Med (2022) 11(9):2365. doi: 10.3390/jcm11092365

136. Khan HU, Aamir K, Jusuf PR, Sethi G, Sisinthy SP, Ghildyal R, et al. Lauric acid
ameliorates lipopolysaccharide (Lps)-induced liver inflammation by mediating tlr4/
myd88 pathway in sprague dawley (Sd) rats. Life Sci (2021) 265:118750. doi: 10.1016/
j.lfs.2020.118750

137. Andoh A, Takaya H, Araki Y, Tsujikawa T, Fujiyama Y, Bamba T. Medium-
and long-chain fatty acids differentially modulate interleukin-8 secretion in human
fetal intestinal epithelial cells. J Nutr (2000) 130(11):2636–40. doi: 10.1093/jn/
130.11.2636
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