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Combined signature of N7-
methylguanosine regulators with
their related genes and the
tumor microenvironment: a
prognostic and therapeutic
biomarker for breast cancer

Tingjun Li1,2†, Zhishan Chen3†, Zhitang Wang1,2†,
Jingyu Lu1,4 and Debo Chen1,2*

1The School of Clinical Medicine, Fujian Medical University, Fuzhou, China, 2Department of Breast
Surgery, Quanzhou First Hospital of Fujian Medical University, Quanzhou, China, 3Department of
Breast and Thyroid Surgery, Nan’an Hospital, Quanzhou, China, 4Department of Breast Surgery, The
Affiliated Hospital of Putian University, Putian, China
Background: Identifying predictive markers for breast cancer (BC) prognosis and

immunotherapeutic responses remains challenging. Recent findings indicate that

N7-methylguanosine (m7G) modification and the tumor microenvironment (TME)

are critical for BC tumorigenesis and metastasis, suggesting that integrating m7G

modifications and TME cell characteristics could improve the predictive accuracy

for prognosis and immunotherapeutic responses.

Methods: We utilized bulk RNA-sequencing data from The Cancer Genome

Atlas Breast Cancer Cohort and the GSE42568 and GSE146558 datasets to

identify BC-specific m7G-modification regulators and associated genes. We

used multiple m7G databases and RNA interference to validate the

relationships between BC-specific m7G-modification regulators (METTL1 and

WDR4) and related genes. Single-cell RNA-sequencing data from GSE176078

confirmed the association between m7G modifications and TME cells. We

constructed an m7G-TME classifier, validated the results using an independent

BC cohort (GSE20685; n = 327), investigated the clinical significance of BC-

specific m7G-modifying regulators by reverse transcription-quantitative

polymerase chain reaction (RT-qPCR) analysis, and performed tissue-

microarray assays on 192 BC samples.

Results: Immunohistochemistry and RT-qPCR results indicated that METTL1 and

WDR4 overexpression in BC correlated with poor patient prognosis. Moreover,

single-cell analysis revealed relationships between m7G modification and TME

cells, indicating their potential as indicators of BC prognosis and treatment

responses. The m7G-TME classifier enabled patient subgrouping and revealed

significantly better survival and treatment responses in the m7Glow+TMEhigh

group. Significant differences in tumor biological functions and

immunophenotypes occurred among the different subgroups.
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Conclusions: The m7G-TME classifier offers a promising tool for predicting

prognosis and immunotherapeutic responses in BC, which could support

personalized therapeutic strategies.
KEYWORDS

breast cancer, N 7 -methylguanosine modification, tumor microenvironment,
prognosis, immunotherapy
1 Introduction

Breast cancer (BC) is the most common cancer in women

worldwide with an incidence rate that has continued to increase

steadily (1). In 2020, an estimated 2.3 million new BC cases were

diagnosed globally, accounting for 11.7% of all cancer diagnoses. By

2040, this number is expected to exceed 3 million (2). BC treatment

has progressed from a single surgical approach to multifaceted

strategies involving local and systemic therapies. Unlike traditional

chemotherapy, immune checkpoint inhibitors (ICIs) have shown

potential as adjunctive therapies, with minimal toxicity or adverse

effects. Although recent data have suggested that patients with BC

may benefit from immunotherapy (3), predictive markers for

guiding treatment selection are lacking. Hence, developing novel

prognostic biomarkers and diagnostic tools may revolutionize

BC management.

With the recent development of bioinformatics technology, an

increasing number of datasets on RNA modification have emerged,

and their role in disease development has become clearer (4–8). One

of the most prevalent RNA modifications is N7-methylguanosine

(m7G), essential for RNA processing, degradation, and translation

in eukaryotes (9). Methyltransferase-like 1 (METTL1) interacts

with WD repeat structural domain 4 (WDR4) to add m7G

modifications to the internal regions of several types of RNA.

RNA guanine-7 methyltransferase (RNMT) and RNA guanine-7

methyltransferase activation subunit (RAMAC) are primarily

responsible for adding m7G to the mRNA 5′ cap. Williams–Bern

syndrome chromosome region 22 (WBSCR22, also known as

BUD23) and tRNA methyltransferase activation unit 11-2

(TRMT112) are involved in the m7G modification of rRNA (10).

Recently, quaking proteins (QKIs) were reported to act as m7G

readers by selectively recognizing m7Gmodifications within mRNA

and regulating target mRNA metabolism and cellular drug

resistance (11).

m7G modifications have been linked to tumor progression and

development. In BC, increased RNMT activity is significantly

associated with the oncogenic mutation rate of PIK3CA,

suggesting that RNMT-targeted therapy may have better

developmental prospects for patients with PIK3CA mutations

(12). Similarly, METTL1 expression is significantly upregulated in

BC (13). The impact of the expression signature of various m7G

regulators and m7G-associated non-coding RNAs on BC prognosis

has also been reported (14–17). Furthermore, METTL1 specifically

modulates the translation of oncogenic transcripts associated with
02
epidermal growth factor receptor pathways and cell-cycle

progression by mediating m7G tRNA modifications in

intrahepatic cholangiocarcinoma (18). In hepatocellular

carcinoma, WDR4 facilitates the binding of eukaryotic translation

initiation factor 2A to cyclin B1 (CCNB1) mRNA, promoting its

transcription and enhancing diverse malignant phenotypes (19).

Intricate interactions between cancer cells and the tumor

microenvironment (TME) underlie the multifactorial processes of

tumorigenesis and progression (20). The TME and immune

regulation are crucial factors that affect BC immunotherapy (21).

Among the different types of immune cells, tumor-infiltrating

lymphocytes (TILs) are promising predictive and prognostic

markers for various BC subtypes. In HER2-positive and triple-

negative BCs, higher TIL levels are significantly associated with

improved overall survival (OS), fewer recurrences, and higher rates

of pathological complete remission after neoadjuvant therapy (22–

24). In addition to lymphocytes, tumors harbor many myeloid cells,

including dendritic cells and macrophages. In particular, tumor-

associated macrophages (TAMs) can negatively affect the disease-

free survival (DFS) and OS of patients with BC (25, 26).

The m7G modification is closely associated with immune cell

infiltration into the TME. Recently, METTL1 was found to be

upregulated in radioresistant hepatocellular carcinoma and to

recruit bone marrow-derived suppressor cells by enhancing

transforming growth factor (TGF)-b2 translation, creating an

immunosuppressive environment (27). Nevertheless, to date, no

studies have investigated the TME in BC through a combined

analysis of m7G modifications and the cellular landscape. In this

study, we investigated the association between m7G regulators with

their associated genes and TME cells and predicted the prognosis

and treatment response of BC by combining their signatures. Our

findings may advance our understanding of tumor-specific biology

based on m7G modifications and the TME, with important

implications for the clinical management of BC.
2 Materials and methods

2.1 Data sources

We obtained data from the Gene Expression Omnibus (GEO)

(https://www.ncbi.nlm.nih.gov/geo/) and The Cancer Genome Atlas

(TCGA) (https://portal.gdc.cancer.gov/) databases. Using TCGA

Breast Cancer (TCGA-BRCA) database, we conducted a differential
frontiersin.org
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analysis of RNA-sequencing (RNA-seq) data from 113 adjacent

normal tissue samples and 1113 BC samples. Co-expression

analyses were performed using BC samples from TCGA-BRCA (n

= 1113) and two BC microarray datasets (GSE42568 [n = 104] and

GSE146558 [n = 106]). We also obtained three samples totaling

14,281 cells (sample ident: CID44971, CID4513, and CID4523) from

the BC single-cell dataset GSE176078 with cell annotations (28) for

single-cell analysis through random sampling. For subsequent

analyses, patients with survival information in TCGA-BRCA

cohort (n = 1043) were used as the training cohort, and an

independent dataset (GSE20685) containing information for 327

BC samples was used to validate the classifier model. Microarray

data were log-transformed, and RNA sequencing data were collected

to obtain transcripts-per-million values. We studied samples from

192 patients with BC (treated at Quanzhou First Hospital of Fujian

Medical University between October 2012 and November 2021) for

our tissue microarray (TMA) analysis. Patient clinical information,

including the histological tumor grade, clinical stage (as defined by

the American Joint Committee on Cancer, 8th edition), and follow-

up recurrence and survival data, were obtained from electronic

medical records. Patient information is presented in detail in Table 1.

This study adhered to the principles outlined in the Declaration

of Helsinki and was approved by the Medical Ethics Committee of

Quanzhou First Hospital of Fujian Medical University (No 2022-

208). All patients provided written informed consent before

participating in the study.
Frontiers in Immunology 03
2.2 Identifying differentially expressed and
prognosis-related genes and constructing
a co-expression network

To identify genes that regulate m7G RNAmethylation that were

differentially expressed between tumor and normal tissues, we first

identified m7G regulators (METTL1, WDR4, RNMT, RAMAC,

WBSCR22, and TRMT112) in the literature (9). Differential

analyses were performed using the Limma package of R software

(version 4.1.1). Additionally, univariate Cox regression analysis was

performed to identify m7G regulators associated with prognosis.

We selected genes that met the following criteria as regulators of

BC-specific m7G RNA methylation: p<0.05 and |log2 (fold-change

in expression)| >0.5 (for differential expression analysis) and p<

0.05 (for univariate Cox regression analysis). Co-expression

analyses were performed on the selected genes. We identified

m7G regulator-related genes in the GSE42568, GSE146558, and

TCGA-BRCA datasets using Pearson correlation analysis and

retained those with a correlation coefficient (r) > 0.4 and p<

0.001. We designated the BC-specific m7G regulators and their

co-expressed genes as m7G regulator-related genes (MGRRGs).

Cytoscape (version 3.9.1) was used to visualize the co-expression

relationships, whereas the clusterProfiler package (version 4.0.5)

was utilized to analyze MGRRGs for enrichment in terms of Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways and Gene

Ontology biological processes (GO-BP).
TABLE 1 Patient characteristics of tissue microarray.

Characteristic METTL1
(n = 96)

WDR4
(n = 96)

p value

Age

Mean (SD) 52.3 (9.87) 52.1 (11.0) 0.863

Median [Min, Max] 51.0 [29.0, 75.0] 51.0 [27.0, 84.0]

Grade

I 5 (5.2%) 5 (5.2%) 0.865

II 55 (57.3%) 56 (58.3%)

III 23 (24.0%) 28 (29.2%)

Missing 13 (13.5%) 7 (7.3%)

Stage

0–I 38 (39.6%) 32 (33.3%) 0.655

II 38 (39.6%) 43 (44.8%)

III–IV 20 (20.8%) 21 (21.9%)

State

No recurrence 86 (89.6%) 84 (87.5%) 0.999

Recurrence 10 (10.4%) 10 (10.4%)

Missing 0 (0%) 2 (2.1%)
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2.3 Database examination for
regulatory links between m7G
regulators and MGRRGs

Evidence supporting the regulation of MGRRGs by m7G

regulators was obtained from the m7GHub v2.0 (4), RMVar (29),

RMDisease v2.0 (8), and RM2Target (30) databases. The m7GHub

v2.0 database contains comprehensive data for the study of m7G

modifications on internal mRNAs. The RMVar and RMDisease

v2.0 databases provide data on many genomic variants that may

affect RNA modifications, whereas the RM2Target database

provides target-gene data for RNA-modifier regulators. In further

analysis, only MGRRGs with confirmed m7G modifier loci in more

than one database or with prior experimental validation of m7G-

modifier regulation were considered.
2.4 Single-cell RNA-seq data analysis,
m7G-score calculations, and cell–cell
communication analysis

Three filters were applied to the raw matrix for each cell to

ensure data quality in terms of unique molecular identifiers (from

100 to 100,000), gene counts (from 300 to 8,000), and

mitochondrial genes (≤ 15%). Using the MGRRGs, we calculated

the m7G scores for each cell subset using the AddModuleScore

function of the Seurat package (version 4.1.0) (31). Tumor cells

were categorized based on their m7G scores, with those > the 75th

percentile assigned to the m7G-high group and those<

the 25th percentile assigned to the m7G-low group. Gene-set

enrichment analysis (GSEA) of different tumor cell subgroups

was performed using the ‘h.all.v2022.1.Hs.symbols.gmt’ and

‘c5.go.bp.v2022.1.Hs.symbols.gmt’ gene sets from MSigDB and

the fgsea package of R software. CellChat (version 1.1.3) (32) was

used to infer differences in ligand–receptor interactions and

signaling pathways across different subgroups of tumor cells and

other cell subsets.
2.5 Identification of prognosis-related
MGRRGs and TME cells

We downloaded an expression matrix for all cells from the

single-cell RNA (scRNA)-seq data. To generate the CIBERSORTx

signature matrix with TME cell types and utilized the Create

Signature Matrix module at https://cibersortx.stanford.edu/

runcibersortx.php (33). The generated signature matrix was then

leveraged for CIBERSORTx-based deconvolution of TCGA-BRCA

cohorts. The deconvolution scores calculated using CIBERSORTx

were used to determine the abundance of each TME cell type in

each sample. To select MGRRGs and TME cells associated with BC

survival, we performed univariate Cox regression analysis using a

significance level of p< 0.05.
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2.6 Establishment of m7G scores, TME
scores, and the m7G-TME classifier

We conducted multivariate Cox regression analysis on prognosis-

related MGRRGs and TME cells to obtain the corresponding

regression coefficients. The variance of the multivariate Cox

regression coefficients was calculated after 1000 bootstrap

samplings. The m7G and TME scores were based on previously

reported data. The weight of each prognosis-related MGRRG in the

m7G score was determined by its respective regression coefficient and

the corresponding variance from 1000 bootstrap samplings. The

m7G score was calculated as per Equation (1):

m7G score  =on
i=1

Coefi*Gi
Bootstrap(SD)

, (1)

Similarly, the TME score was calculated using Equation (2):

TME score  =on
j=1

−Coefj*Cj
Bootstrap(SD)

, (2)

where Gi and Cj represent the abundance of MGRRG gene i and

TME cell j in each sample, respectively. SD represents

standard deviation.

The m7G and TME scores were integrated to develop the m7G-

TME classifier. We subsequently stratified the tumors into the

following subgroups based on the median m7G and TME

scores in each cohort: m7Ghigh+TMElow, intermediate-mixed

(m7Ghigh+TMEhigh and m7Glow+TMElow), and m7Glow+TMEhigh.
2.7 Functional-enrichment analysis of the
tumor cell molecular signatures

We performed gene-set variation analysis (GSVA) with the

‘h.all.v2022.1.Hs.symbols.gmt,’ ‘c2.cp.kegg.v2022.1.Hs.symbols.gmt,’

and ‘c5.go.bp.v2022.1.Hs.symbols.gmt’ gene sets from MSigDB to

conduct our analysis. Using the GSVA package of R software, we

performed GSVA enrichment analysis to evaluate the biological

functions of different groups of tumor samples. Additionally,

heatmaps were generated using the pheatmap package of R

software for visualization purposes.
2.8 Analysis of tumor immunophenotypes
and predicting ICI-treatment responses

We compared the expression levels of human leukocyte

antigens (HLAs) (34) and immune checkpoints (35) in different

subgroups of BC samples. Cancer–immunity-cycle analysis was

conducted using TIP (Tracking Tumor Immunophenotype)

(http://biocc.hrbmu.edu.cn/TIP/) (36), which conceptualizes anti-

cancer immune response as a series of stepwise events referred to as

the cancer–immunity cycle. Using the TIP website, we compared

differences in the seven-step cancer–immunity cycle between the

groups. We then used the TIDE (Tumor Immune Dysfunction and

Exclusion) website (http://tide.dfci.harvard.edu/) (37) to predict the
frontiersin.org
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responses to ICI treatment with these samples. To compare gene-

expression levels between subgroups, we used a web tool (https://

bionic-vis.biologie.uni-greifswald.de/) (38) to generate proteomaps.
2.9 Statistical analysis

Statistical analyses were performed using R software (version

4.1.1), and the survival rate of each group was assessed using the

log-rank test. Comparisons of more than two groups were conducted

using the Kruskal–Wallis test, whereas comparisons of two groups

were carried out using the Wilcoxon test. We generated survival

curves for each subgroup in the dataset using the Kaplan–Meier

method. To analyze the frequency of ICI-treatment responses between

the m7G-TME classifier subgroups, we used the chi-squared test. The

threshold for statistical significance was set at p< 0.05. The parameters

used for the analysis described above are the default parameters.
2.10 Cell culture

We utilized the mammary gland epithelial cell line MCF-10A

(RRID: CVCL_0598) and the BC cell line MCF-7 (RRID:

CVCL_0031), procured from the Cell Resource Center of

Shanghai Institutes for Biological Sciences. MCF-7 cells were

cultured in Minimal Essential Media (MEM; SH30024.FS,

Hyclone, USA) containing 10% fetal bovine serum (FBS; BS1615-

119, BIOEXPLORER, USA), and MCF 10A cells were cultured in a

specific epithelial culture medium (CL-0525, Procell Co., China).

All cells were incubated at 37 °C with 5% CO2.
2.11 Quantitative reverse
transcription-quantitative
polymerase chain reaction analysis

RNA samples were isolated using an RNApure Tissue & Cell Kit

(DNase I) (CW0560S, CWBIO, China). Reverse transcription was

performed using a PrimeScript RT Reagent Kit (RR047A, Takara,

Japan). Quantitative PCR was performed using the SYBR Green

PCR Master Mix (RR820A, Takara, Japan) on a StepOnePlus

System (Applied Biosystems). The 2−DDCT method was used to

determine fold changes in gene expression levels, with

normalization to glyceraldehyde-3-phosphate dehydrogenase

(GAPDH ) mRNA express ion as an internal contro l .

Supplementary Table 1 provides the primer sequences used in

this study. Each PCR was conducted in triplicate.
2.12 Immunohistochemical analysis of TMA

The TMAs were constructed by Shanghai Outdo Biotech Co.,

Ltd., Shanghai, China. Antibodies against METTL1 (diluted 1:5000,

ab271063, Abcam, UK) and WDR4 (diluted 1:1000, ab169526,

Abcam, UK) were used for IHC staining. Immunostaining was

considered positive if ≥ 10% of the tumor cells were
Frontiers in Immunology 05
immunoreactive. Two investigators independently analyzed the

IHC results using a double-blind method without knowledge of the

clinical and pathological characteristics of the patients. The staining

intensity and percentage of positive cells were used to evaluate

METTL1 and WDR4 expression. The proportion of positive cells

was classified and scored as 0–10% (0), 11–30% (1), 31–50% (2), 51–

80% (3), and 81–100% (4). The staining intensity was rated as no

staining (0), weak staining (1), moderate staining (2), or strong

staining (3). The total score was calculated by multiplying the

percentage of positively-stained cells by the staining intensity.
2.13 RNA interference and transfections

We acquired small-interfering RNAs (siRNAs) from RiboBio

(Guangzhou, China) designed to target the mRNA sequences of

METTL1 and WDR4. The riboFECT™ CP Transfection Kit

(C10511-05 & C10502-05, RiboBio, Guangzhou, China) was used

to transfect MCF-7 cells with siRNAs. We conducted qPCR at 72 h

post-transfection. Supplementary Table 2 presents the sequences of

the siRNA used in this study.
3 Results

3.1 Identification of BC-specific m7G
regulators and their co-expression network

An overview of the study design is presented in Figure 1. Six m7G

regulators were identified from a literature search. We analyzed the

expression levels of all six m7G regulators in normal and tumor tissues,

as well as their association with patient prognosis. Our findings

revealed that METTL1 and WDR4 were highly expressed in BC

tissues (Figure 2A) and their high expression levels indicated a poor

prognosis (Figure 2B). Co-expression analysis was performed on three

public datasets, and the results were screened against them7G database

(Supplementary Table 3), revealing 165 MGRRGs (Figure 2C). All 165

co-expressed genes correlated positively with the m7G regulators, of

which 126 were highly expressed in BC. KEGG analysis indicated that

the MGRRGs were significantly enriched for pathways related to cell-

cycle progression (Figure 2D). Furthermore, GO-BP enrichment

analyses of the MGRRGs revealed their involvement in nuclear

division, chromosome segregation, and positive regulation of the cell

cycle (Figure 2E). Our results indicate that increased levels ofMGRRGs

may significantly affect cell-cycle progression in cancer cells, potentially

contributing to the development of BC.
3.2 Differential expression of MGRRGs at
the cellular level and implications for
cellular communication

Following strict quality-control criteria, we screened the processed

scRNA-seq data using the original metadata file to annotate all cells.

After gene filtering, normalization, and principal-component analysis,

we employed uniform manifold approximation and projection
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(UMAP) plots to demonstrate the cell clustering of the samples

(Figure 3A). Additionally, UMAP and violin plots were used to

show the overall expression levels of MGRRGs in different cell

types, with elevated expression observed in tumor cells (Figures 3B,

C). Tumor cells were grouped based on MGRRG-expression levels,

and GSEA was used to assess functional differences between the

different groups (Figure 3D; Supplementary Figure 1). Our findings

revealed that epithelial–mesenchymal transition, angiogenesis, and

Wnt pathways were significantly enriched in tumor cells with high

m7G scores, whereas oxidative phosphorylation, negative regulation

of gene expression, and positive regulation of intrinsic apoptotic

pathways were enriched in tumor cells with low m7G scores. We

further constructed a cell-communication network using receptor–

ligand-pair interactions of secreted signals through CellChat to

investigate the molecular associations between tumor cells and other

cells (Figure 3E). Notably, tumor cells in the high-MGRRG-score

group exhibited higher outgoing interaction strengths, with stronger

probabilities of communicating through signaling pathways, such as

the macrophage migration inhibitory factor (MIF), fibroblast growth

factor 5 (FGF5), transforming growth factor-beta (TGF-b), and
semaphorin 3C (SEMA3C) pathways, than cells in the low-

MGRRG-score group. Overall, we hypothesized that tumor cells in

the high-MGRRG-score group would have increased proliferative and

invasive abilities, while possessing stronger abilities for inhibiting

immune-cell infiltration and promoting angiogenesis.
3.3 Multivariate cox regression based on
bootstrap replicates uncovered the
prognostic value of MGRRGs and the TME

We conducted univariate Cox regression analysis on the

expression matrix of MGRRGs and the cell-abundance matrix of
Frontiers in Immunology 06
1,043 patients with BC in TCGA-BRCA dataset. We identified nine

MGRRGs and five TME cells as prognostic factors (Figures 4A, B).

Furthermore, correlation analyses of the MGRRGs and TME cells

demonstrated a general negative correlation between MGRRGs and

prognostically favorable TME cells, with a significant positive

correlation with prognostically unfavorable lipid-associated

macrophages (LAMs; Figure 4C). We then performed

multivariate Cox regression analysis with 1000 bootstrap

replicates to establish m7G and TME scores based on the

prognostic characterist ics of MGRRGs and the three

prognostically favorable TME cells (coefficients shown in

Supplementary Tables 4, 5). Risk scores were calculated using the

following formulas: m7G score = (0.55955 × AIMP2) + (2.22332 ×

POP1) + (0.75771 × STIP1) + (1.88989 × DCTPP1 + (−1.40753 ×

GTPBP4) + (1.1109 × ZPR1) + (0.3425 × METTL1) + (−1.26914 ×

WDR4) + (1.28125 × SLC19A1) + (0.50205 × TIMM8A) +

(−0.3904 × MRPL15); TME score = (−1.6721 × B cells) +

(−1.73618 × CD8+ T cells) + (−1.53024 × dendritic cells [DCs]).

Notably, our results demonstrated a strong positive correlation

between m7G scores and prognostically unfavorable MGRRGs

(Figure 4D). Moreover, we observed a positive correlation

between TME scores and prognostically favorable TME cells and

a negative correlation between the TME score and prognostically

unfavorable TME cells (Figure 4E). Furthermore, patients with high

m7G and low TME scores had significantly shorter survival times

than those with low m7G and high TME scores (Figures 4F, G).
3.4 Prognostic value of the
m7G-TME classifier

We found that MGRRGs correlated negatively with prognostically

favorable TME cells and positively with prognostically unfavorable
FIGURE 1

Flow chart of the present study.
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TME cells. Building on these discoveries, we created an m7G-TME

classifier by merging the m7G score with the TME score, which

enabled us to sort the patients into four subgroups, namely the

m7Glow+TMEhigh, m7Glow+TMElow, m7Ghigh+TMEhigh, and

m7Ghigh+TMElow groups. In TCGA-BRCA dataset (n = 1043

patients), our m7G-TME classifier displayed a statistically distinct

prognosis (Figure 5A) and could predict OS at 1, 3, 5, 7, and 10

years, with an area under the curve (AUC) range of 0.643–0.705

(Figure 5B). Our findings indicate that the m7G and TME scores

significantly impact BC prognosis. Patients in the m7Glow+TMEhigh

subgroup had the most favorable prognosis compared with patients in

the other three subgroups. The prognoses of patients in the

m7Glow+TMElow and m7Ghigh+TMEhigh subgroups were less

divergent, prompting us to consolidate these two subgroups into a
Frontiers in Immunology 07
mixed subgroup. Notably, we validated the performance of the m7G-

TME classifier in another independent BC cohort, GSE20685 (n = 327;

Figure 5C). The differences in prognoses were statistically significant in

all three patient subgroups, with AUC values for the receiver operating

characteristic (ROC) curves ranging from 0.626 to 0.755 (Figure 5D).
3.5 Tumor biological functions among
different m7G-TME subgroups

Our results demonstrated significant prognostic differences in the

m7G-TME classifier, which prompted us to perform tumor molecular-

signature enrichment analysis based on gene-function annotations

using the GO-BP (Figure 6A), KEGG (Figure 6B), and Hallmark
A B

D E

C

FIGURE 2

BC-specific m7G regulators and their co-expression network. (A) Violin plot showing the differential expression of m7G RNA-methylation regulators
in BC and normal tissues. (B) Forest plot presenting univariate Cox regression analysis of the m7G-methylation regulators. (C) Network showing
connections between BC-specific m7G regulators and MGRRGs. The node colors reflect the fold-differences in expression between BC and normal
tissues, whereas the edge colors represent the correlation coefficients with m7G regulators. (D) KEGG and (E) GO-BP enrichment results. *p< 0.05;
****p< 0.0001.
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gene sets (Figure 6C) for the m7G-TME subgroup. Interestingly,

tumors in the m7Glow+TMEhigh group displayed significantly higher

enrichment for major histocompatibility complex (MHC)1-like

molecule-mediated antigen-presentation responses, negative

regulation of fibroblast chemokines, resistance in tumors, and

multiple immune cell infiltration than those in the m7Ghigh+TMElow

group. Furthermore, tumors in the m7Ghigh+TMElow subgroup

showed much higher enrichment scores for terms related to cell-

cycle progression, DNA replication, RNA translocation-related gene
Frontiers in Immunology 08
expression, and glycolytic pathways. Additionally, the results of the

tumor molecular-signature enrichment analysis in the mixed group

were intermediate between those in the aforementioned two groups.

Our findings emphasize that patients in the m7Glow+TMEhigh group

had stronger antitumor immune responses and less tumor growth,

whereas those in the m7Ghigh+TMElow group had more aggressive

tumors. These results underscore the importance of integrating m7G

and TME scores to help understand prognostic differences between

different subgroups based on tumor biology.
A B

D
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C

FIGURE 3

Differential expression of MGRRGs at the cellular level and implications for cellular communication. (PVL. perivascular-like cell; T-regs, regulatory T
cell; Tfh, T follicular helper cell) (A) UMAP plot of all cells with annotation based on the original dataset (GSE176078). (B) UMAP plot of all cells with
colors reflecting their m7G scores. (C) Violin plot showing m7G scores of cells from different cell types. Cancer epithelial cells had the highest
scores. (D) GSEA results for the Hallmark gene set of cancer cells with different m7G scores. (E) Results of cell-communication analysis between
tumor cells and non-tumor cells.
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3.6 Association between the m7G-TME
classifier and clinical features

To investigate clinical characteristics based on the m7G-TME

classifier, we combined the m7G-TME subgroups with clinical

characteristics (including the age, tumor subtype, and tumor–

node–metastasis stage). The results of our univariate and

multivariate Cox regression analyses suggested that the m7G-TME

classification is an independent prognostic risk factor (p< 0.001;

Figures 7A, B). A nomogramwas constructed for patient number 1 to
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facilitate analysis of the model (Figure 7C). Calibration curves were

generated to evaluate the fit of the classifier model to real-world

situations. The three fitted lines at 1, 5, and 10 years closely matched

the reference line (Figure 7D), indicating that the prediction had high

accuracy. Therefore, we validated the accuracy of the m7G-TME

classifier for different clinical subgroups. Our classifier accurately

assessed the prognostic risk of patients in various subgroups,

including those with different ages, Luminal B and basal-like

subtypes of BC, stage I–II BC and tumor stage 1–2, and the

presence of lymph node metastasis (Supplementary Figure 2).
A B D
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FIGURE 4

The prognostic values of MGRRGs and TME cells. (A) Forest plot of univariate Cox regression analysis of 11 prognosis-related MGRRGs. (B) Kaplan–
Meier-curve analysis of OS for patients classified according to five prognosis-related TME cell types. (C) Correlation between TME cells and MGRRGs.
(D) Pearson correlation analysis of prognosis-related MGRRGs and m7G scores. (E) Pearson correlation analysis of prognosis related TME cells and TME
scores. (F, G) Kaplan–Meier-OS curves are shown for tumors with high m7G scores versus low m7G scores (F) and for tumors with high TME scores
versus low TME scores (G). CI, confidence interval; HR, hazard response. *p< 0.05; **p< 0.01; ***p< 0.001.
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3.7 Immune phenotyping of the m7G-TME
subgroups and predictions of
immunotherapeutic responses

The expression levels of MHC and immune-checkpoint

markers were assessed across different subgroups (Figures 8A–C).

Interestingly, the m7Glow+TMEhigh subgroup showed higher

expression levels of MHC and most of the co-stimulatory and co-

inhibitory receptors than the mixed and m7Ghigh+TMElow

subgroups. Differences in the cancer–immunity cycle among the

various subgroups were also investigated. In the m7Glow+TMEhigh

subgroup, increased activity was observed at multiple steps in the

cell cycle (Figure 8D), specifically at priming and activation (step 3),

T cell recruiting to tumors (step 4), and immune cell infiltration

into tumors (step 5). Correlation analysis between the m7G scores

and steps in the tumor–immune cycle revealed significant negative

correlations with steps 3–5 (Figure 8E). We assessed the capacity of

the m7G-TME classifier to predict clinical responses to ICI

therapies. The response rates to ICI therapies in different

subgroups were predicted using the TIDE website, with patients

in the m7Glow+TMEhigh group exhibiting the highest response rate

(36%) when compared to those in the mixed and m7Ghigh+TMElow

subgroups, with response rates of only 31% and 25%, respectively

(Figure 8F). Moreover, proteomap visualization suggested how the

m7G-TME classifier enabled therapeutic-response predictions for
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patients treated with ICIs (Figure 8G). Specifically, the proteomap

revealed very similar patterns between the m7Glow+TMEhigh group

and the ICI-treatment responders. Overall, these findings indicate

that the m7G-TME classifier may be useful in predicting patient

responses to ICI treatments.
3.8 Validation of BC-specific m7G-
regulators and co-expressed genes

Initially, we used qPCR to examine the expression levels of

METTL1 and WDR4 in MCF-7 and MCF-10A cell lines, revealing

that both genes were upregulated in the MCF-7 BC cell line

(Figure 9A). To evaluate the clinical relevance of METTL1 and

WDR4 in patients with BC, we performed IHC analysis of the

METTL1 and WDR4 proteins with TMAs, quantifying the positive

staining of tumor cells. As expected, METTL1 and WDR4 showed

higher expression levels with increasing clinical stages (Figures 9B–

E). Patients were divided into high- and low-expression groups

based on the median score found with each microarray. DFS rates

were calculated, followed by survival analysis using the Kaplan–

Meier method and the log-rank test. The results suggested that

patients with high METTL1 and WDR4 expression had shorter

survival times than those with low expression of these genes (p<

0.05; Figures 9F, G). To ascertain the co-expression relationships
A B

D

C

FIGURE 5

Prognostic value of the m7G-TME classifier. (A) Kaplan–Meier curves of the training cohort (n = 1043) are presented with patients categorized into
four subgroups based on the m7G-TME classifier. (B) ROC curves for the 1-, 3-, 5-, 7-, and 10-year survival rates of the training cohort according to
the m7G-TME classifier. (C) Kaplan–Meier curves for the testing cohort (n = 327) stratified by the m7G-TME classifier. (D) ROC curves for the 1-, 3-,
5-, 7-, 10-year survival rates of the testing cohort based on the m7G-TME classifier.
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between METTL1, WDR4, and other MGRRGs used to construct

the model, MCF-7 cells were transfected with siRNAs targeting

METTL1 and WDR4 mRNA. The qPCR results showed that

downregulating METTL1 and WDR4 expression tended to

decrease the express ion leve ls of a l l n ine MGRRGs

(Supplementary Figure 3). Finally, we highlighted regions possibly

involved in m7G modification in these nine MGRRGs by searching

the m7GHub v2.0 database (Supplementary Table 6).
4 Discussion

In recent years, numerous studies on m7G modifications and

the TME have provided a better understanding of their value in

predicting the prognosis and treatment of patients with cancer.

However, the association between m7G modifications and the TME

in BC remains unclear. In this study, we conducted a combined

analysis of m7G modification and TME signatures in BC to develop

an m7G-TME classifier. Our findings revealed a promising

predictive efficacy for estimating patient prognosis and

immunotherapy responses.

METTL1 and WDR4 are the best described m7G regulators.

METTL1 acts as an m7G methyltransferase, whereas WDR4

promotes the binding of heterodimeric complexes to target

mRNAs, making it an m7G writer for mRNAs (39). Both
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METTL1 and WDR4 were expressed at high levels in BC, which

correlated with a poor prognosis and underscored their significance

in BC development. Over half of the METTL1 and WDR4 co-

expressed genes were highly expressed in BC, and KEGG

enrichment analysis revealed that these genes were significantly

enriched for functions related to cell-cycle progression, DNA

replication, and nucleoplasmic-transport pathways. Previous

findings showed that deficiency of the METTL1–WDR4 complex

in mouse embryonic stem cells led to significant dysregulation of

the cell cycle and cell proliferation (40); therefore, we hypothesized

that METTL1 and WDR4 may be associated with the cell cycle in

BC cells. To explore the roles of METTL1 and WDR4 and co-

expressed genes in the TME, we evaluated the expression levels of

MGRRGs using scRNA-seq data. Intriguingly, MGRRGs were

expressed at significantly higher levels in tumor cells than in non-

tumor cells in the TME. Moreover, our GSEA results demonstrated

that tumor cells with high MGRRG-expression levels exhibited a

higher capacity for the epithelial–mesenchymal transition, which is

associated with tumor metastasis and is involved in both

malignancy and drug resistance in breast tumors (41). Our

findings further confirmed the critical roles played by METTL1

and WDR4 and related genes in tumorigenesis.

Our findings indicate that tumor cells with high m7G scores

exert significant autocrine and paracrine effects on the cellular

communication network through multiple tumor growth-
A

B C

FIGURE 6

Differences in tumor biological functions and tumor immunophenotypes among different m7G-TME subgroups. (A–C) Heatmaps for GO-BP
(A), KEGG (B), Hallmark (C) GSVA analysis.
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promoting signals (FGF5 and SEMA3C) and immunosuppressive

signals (MIF and TGF-b). In BC, tumor cells promote the

expression of MEKK1 in CAFs by secreting FGF5. This

phenomenon enhances the secretion of CCL5 in CAFs, which

bind to CCR5 present on the tumor cells to induce tumor cell

invasion (42). Meanwhile, SEMA3C can promote BC cell growth

through autocrine secretion and mediate tamoxifen resistance in

ER+ BC cells by activating MAPK and AKT signaling (43). MIF is

overexpressed in nearly all types of solid tumors and is crucial in

negatively affecting antitumor immunity, resulting in tumorigenesis

and metastasis (44). Previous data demonstrated that MIF could

evade antitumor immunity by activating myeloid-derived

suppressor cells (MDSCs) and TAMs, working together to

suppress cytotoxic T cell and natural killer (NK) cell activities

(45). TGF-b, which is co-produced by tumor cells and stromal cells,

activates signaling networks that influence TME formation (46). In

addition to inhibiting NK and CD8+ cytotoxic T lymphocyte (CTL)

functions, previous data suggest that TGF-b can promote the

phenotypic transformation of M1-type macrophages to M2-type

macrophages and enhance M2-type macrophage activity, assisting

tumor metastasis and angiogenesis (47). The results of our study
Frontiers in Immunology 12
indicate that tumor cells with high m7G scores exhibit stronger

communication with LAMs through MIF and TGF-b signaling

communication. LAMs form a specific macrophage subset with a

high expression of lipid-metabolism genes (such as those encoding

fatty acid-binding protein 5 or apolipoprotein E). The results of

recent studies have also shown that LAMs exist in the TMEs of BC

and lung metastatic lesions (48) and contribute to an

immunosuppress ive microenvironment by promoting

extracellular-matrix remodeling and inhibiting T cell activation

and proliferation, leading to poor patient prognosis and

immunotherapy resistance (49). Therefore, we postulated that

tumor cells with high m7G scores can impede antitumor

immunity by recruiting LAMs and enhancing their activity. Our

results suggest a close association between m7G modifications and

the TME.

Based on a review of existing literature, eight MGRRGs

associated with BC prognosis that promote tumorigenesis in

many other tumor types, have been identified (50–57). CD8+ T

cells are key effector cells in antitumor immunity that collaborate

with cytotoxic molecules, such as granzyme and perforin (58).

Positive correlations between the abundance of CD8+ T cells and
A B

DC

FIGURE 7

Associations with clinical features and the m7G-TME classifier. (A, B) Forest diagrams of univariate Cox regression analysis and multivariate Cox
regression analysis of the m7G-TME classifier. (C) Nomogram of m7G-TME-classified subgroups and clinical characteristics for patient number 1.
(D) Calibration plots were generated for the nomogram to evaluate the predicted probabilities. *p< 0.05; ***p< 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1260195
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1260195
improved survival rates have been demonstrated in various cancers

(59). In addition to their role in humoral immunity, B cells can act

as antigen-presenting cells (APCs) and enhance cellular immunity.

B cells have antitumor immune functions and may help improve

patient prognosis. CD20+ B cells positively correlate with favorable

prognoses in patients with non-small cell lung carcinoma and

ovarian cancer, perhaps because they serve as APCs that amplify

cytolytic T cell responses (60, 61). DCs are major APCs that present

MHC class-I molecules to CD8+ T cells, secrete chemokines to

recruit effector T and NK cells into the TME, and produce cytokines

to sustain effector-cell cytotoxicity (62, 63). Our results suggest that

infiltrating CD8+ T cells, B cells, and DCs in BC are associated with
Frontiers in Immunology 13
better prognosis. We observed negative correlations between

multiple MGRRGs and these three immune-cell populations, as

well as positive correlations with LAMs. The scRNA-seq data

obtained in this study suggest a possible relationship between

increased MGRRG-expression levels in tumor tissues and elevated

LAM infiltration, which could inhibit the antitumor immune

activities of DCs, CD8+ T, and B cells.

Our results revealed a strong association between m7G

modifications and the TME. To prevent overfitting, we created the

m7G and TME scores using bootstrap multivariate Cox regression

and built the m7G-TME classifier to assess the prognosis of patients

with BC. As expected, the m7Glow+TMEhigh subgroup had the most
A B
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FIGURE 8

Predictions of ICI-treatment responses according to the m7G-TME classifier. (A–C) Box plots showing the expression level of MHC and immune-
checkpoint markers in three subgroups, stratified by the m7G-TME classifier. (D) Heatmap for the results of TIP analysis. (E) The correlation
coefficients between the m7G scores and specific steps in the tumor–immune cycle are illustrated in the radar plot. (F) TIDE-based predictions of
the response rates of different subgroups based on the m7G-TME classifier. (G) Functional analysis in m7Glow+TMEhigh group and TIDE-predicted
responder group using proteomaps. Each small polygon in the figure corresponds to a single KEGG pathway, and its area indicates the abundance of
proteins within that pathway. *p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001.
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favorable prognosis. In contrast, the m7Ghigh+TMEhigh subgroup had

a worse prognosis than the m7Glow+TMEhigh subgroup and a similar

prognosis to the m7Glow+TMElow subgroup, potentially due to

stronger m7G modifications that limited antitumor immune

activities. The prognostic predictiveness of our classifier was

confirmed across independent BC cohorts and various TCGA-

BRCA clinical subgroups, indicating its broad applicability to

patients with BC. The AUC values of the ROC curve demonstrated

good accuracy in predicting the survival rates at distinct stages of

BC development.
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By elucidating the biological functions of these subgroups, we

discovered that the m7Ghigh+TMElow subgroup showed activation

of several metabolic pathways, including glycolysis. Glucose

metabolism in tumor cells permits the production of lactic acid

even under oxygenated conditions, leading to decreased rates of

oxidative phosphorylation. Abundant glucose consumption and

lactic acid release ultimately result in an acidic TME. A low TME

pH favors the selection of aggressive tumor cells, inhibits antitumor

immunity, and facilitates tumor progression (64). A low TME pH

also accelerates effector T cell exhaustion (65); increases the
A B

D

E

F G

C

FIGURE 9

Clinical significance of METTL1 and WDR4 upregulation in BC cells. (A) RT-qPCR data showing the relative expression levels of METTL1 and WDR4 in
MCF7 and MCF10A cells. (B, C) IHC staining for METTL1 and WDR4 in BC TMAs. Scale bars: left, 200 mm; right, 40 mm. (D, E) Comparison of
METTL1- and WDR4-staining scores at different BC stages. (F, G) Kaplan–Meier curves displaying the differences in DFS rates between patients
classified based on their IHC scores for METTL1 and WDR4 expression. ns, not significant *p< 0.05; **p< 0.01; ***p< 0.001.
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differentiation and accumulation of regulatory T cells, M2-like

macrophages, and MDSCs (66); suppresses cancer immune

surveillance; and promotes immune evasion. Our scRNA-seq data

suggest that high MGRRG-expression levels corresponded to a

reduced oxidative phosphorylation capacity, indicating a possible

link between m7G modification and glucose metabolism. However,

the precise regulatory mechanisms involved remain unknown and

require further investigation. Collectively, our results underscore

the importance of establishing an m7G-TME classifier and offer

insights into the mechanisms underlying its prognostic and

treatment-response-prediction capabilities.

We also observed high expression levels of multiple HLAs

and immune checkpoints (co-inhibitory receptors such as

programmed cell death 1 [PDCD1], CTL-associated protein 4

[CTLA4], CD274, and co-stimulatory receptors such as CD40) in the

m7Glow+TMEhigh subgroup. HLA plays a crucial role in antigen

presentation during antitumor immunity, with high expression levels

helping immune cells recognize and destroy tumors (67). Co-inhibitory

receptors are immune checkpoints that maintain immune tolerance but

are frequently co-opted by cancer cells to avoid immune surveillance.

ICIs restore antitumor immune responses by interrupting co-inhibitory

signaling pathways, primarily by targeting PDCD1, CTLA4, and

CD274 (68). Co-stimulatory receptors are associated with activation

of APCs, promotion of pro-inflammatory factors, and stimulation of

anti-tumor responses in CD8+ T cells. Moreover, expression of the co-

stimulatory receptor CD40 is associated with enhanced responsiveness

of melanoma to immune checkpoint blockade therapy (69).

Furthermore, we observed significant differences in circulating anti-

cancer immune cells across the subgroups, with the m7Ghigh+TMElow

subgroup exhibiting weaker capacities in terms of antitumor-immunity

initiation and activation, T cell recruitment to the TME, and immune

cell infiltration into the TME. The negative correlation between the

m7G score and step 5 of the cancer–immunity cycle further suggests

that high levels of m7G-modified BC cells may inhibit immune-cell

infiltration into the TME. These results confirm our scRNA-seq

findings, emphasizing the potential of the m7G-TME classifier for

the pre-immunotherapy stratification of patients with BC. The TIDE

platform could be used to assess the power of the m7G-TME classifier

to predict immunotherapeutic responses and indicated that the m7Glow

+TMEhigh subgroup had the highest immunotherapy-response rate in

TCGA-BRCA dataset. The similarity in the proteomic patterns between

the m7Glow+TMEhigh subgroup and the immunotherapy-response

group may shed mechanistic insight as the why the former group

was well suited for ICI treatments, further underscoring the therapeutic

predictive value of the m7G-TME classifier.

This study has certain limitations. First, the gene expression-

based m7G-TME signature requires further validation using

immunofluorescence or flow-cytometric analysis of tumor

samples (biopsies). Second, owing to the absence of a large ICI-

treatment cohort for BC, the ability of the m7G-TME classifier to

predict immunotherapy responses requires further validation.

In conclusion, integrating m7G modifications and cellular-

landscape signatures within the TME facilitated the prediction of

prognosis and treatment responses. Our findings offer a viable
Frontiers in Immunology 15
approach for prognostic estimation and patient stratification for

managing BC in the future.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Ethics statement

The studies involving humans were approved by Medical Ethics

Committee of Quanzhou First Hospital of Fujian Medical

University. The studies were conducted in accordance with the

local legislation and institutional requirements. The participants

provided their written informed consent to participate in this study.
Author contributions

TL: Conceptualization, Investigation, Software, Formal Analysis,

Visualization, Writing - original draft. ZC: Resources, Validation,

Writing - Review & Editing. ZW: Data curation, Investigation,

Writing - original draft. JL: Data curation, Investigation. DC:

Supervision, Project management, Methodology, Funding

acquisition, Writing - Review & Editing.
Funding

The authors declare financial support was received for the

research, authorship, and/or publication of this article. The

Medical Innovation Project Foundation of Fujian Province, PRC

(grant number 2021CXA045), Science and Technology Innovation

Joint Fund Project of Fujian Province (grant number 2019Y9049),

Science and Technology Project of Quanzhou (grant number

2020C047R), and Special Fund for Clinical Research of the Wu

Jieping Medical Foundation (grant number 320.6750.2021-10-60)

provided financial support for this study.
Acknowledgments

We extend our sincere appreciation to all individuals whose

contributions have been invaluable to the success of this project. Our

heartfelt thanks go to Chen Kunqi for his outstanding support and

expertise in data analysis, which were critical to the study’s success.

We would also like to acknowledge Hong Zhipeng for his valuable

suggestions regarding the qPCR and immunohistochemical analyses,

Li Shaoyang for his assistance with image editing, and Xu Xinyue for

her support during the experimental processes. We truly thank each

of you for enabling us to complete this project successfully.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1260195
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1260195
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher's note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Immunology 16
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2023.

1260195/full#supplementary-material
References
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin
(2022) 72(1):7-33. doi: 10.3322/caac.21708

2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA: A Cancer J Clin (2021) 71(3):209–49. doi: 10.3322/
caac.21660

3. Mediratta K, El-Sahli S, D'costa V, Wang L. Current progresses and challenges of
immunotherapy in triple-negative breast cancer. Cancers (Basel) (2020) 12(12):3529.
doi: 10.3390/cancers12123529

4. Song B, Tang Y, Chen K, Wei Z, Rong R, Lu Z, et al. m7GHub: deciphering the
location, regulation and pathogenesis of internal mRNAN7-methylguanosine (m7G) sites
in human. Bioinformatics (2020) 36(11):3528–36. doi: 10.1093/bioinformatics/btaa178

5. Chen K, Song B, Tang Y,Wei Z, Xu Q, Su J, et al. RMDisease: a database of genetic
variants that affect RNA modifications, with implications for epitranscriptome
pathogenesis. Nucleic Acids Res (2021) 49(D1):D1396–D404. doi: 10.1093/nar/gkaa790

6. Ma J, Song B, Wei Z, Huang D, Zhang Y, Su J, et al. m5C-Atlas: a comprehensive
database for decoding and annotating the 5-methylcytosine (m5C) epitranscriptome.
Nucleic Acids Res (2022) 50(D1):D196–203. doi: 10.1093/nar/gkab1075

7. Zhang Y, Jiang J, Ma J, Wei Z, Wang Y, Song B, et al. DirectRMDB: a database of
post-transcriptional RNA modifications unveiled from direct RNA sequencing
technology. Nucleic Acids Res (2023) 51(D1):D106–D16. doi: 10.1093/nar/gkac1061

8. Song B, Wang X, Liang Z, Ma J, Huang D, Wang Y, et al. RMDisease V2.0: an
updated database of genetic variants that affect RNA modifications with disease and trait
implication. Nucleic Acids Res (2023) 51(D1):D1388–D96. doi: 10.1093/nar/gkac750

9. Luo Y, Yao Y, Wu P, Zi X, Sun N, He J. The potential role of N7-methylguanosine
(m7G) in cancer. J Hematol Oncol (2022) 15(1):63. doi: 10.1186/s13045-022-01285-5

10. Du D, He J, Ju C, Wang C, Li H, He F, et al. When N7-methyladenosine
modification meets cancer: Emerging frontiers and promising therapeutic
opportunities. Cancer Lett (2023) 562:216165. doi: 10.1016/j.canlet.2023.216165

11. Zhao Z, Qing Y, Dong L, Han L, Wu D, Li Y, et al. QKI shuttles internal m7G-
modified transcripts into stress granules and modulates mRNAmetabolism. Cell (2023)
186(15):3208–26.e27. doi: 10.1016/j.cell.2023.05.047

12. Dunn S, Lombardi O, Lukoszek R, Cowling VH. Oncogenic PIK3CA mutations
increase dependency on the mRNA cap methyltransferase, RNMT, in breast cancer
cells. Open Biol (2019) 9(4):190052. doi: 10.1098/rsob.190052

13. Campeanu IJ, Jiang Y, Liu L, Pilecki M, Najor A, Cobani E, et al. Multi-omics
integration of methyltransferase-like protein family reveals clinical outcomes and
functional signatures in human cancer. Sci Rep (2021) 11(1):14784. doi: 10.1038/
s41598-021-94019-5

14. Huang Q, Mo J, Yang H, Ji Y, Huang R, Liu Y, et al. Analysis of m7G-Related
signatures in the tumour immune microenvironment and identification of clinical
prognostic regulators in breast cancer. BMC Cancer (2023) 23(1):583. doi: 10.1186/
s12885-023-11012-z

15. Li A-Y, Xiao H-N, Zhao Z-Y, Xiang C, Chen Z-Y, Wang P-X, et al. Prognostic
and immune implications of a novel 7-methylguanosine-related microRNA signature
in breast invasive carcinoma: from exploration to validation. J Cancer Res Clin Oncol
(2023) 149(11):9105–28. doi: 10.1007/s00432-023-04849-1

16. Zhang W, Zhang S, Wang Z. Prognostic value of 12 m7G methylation-related
miRNA markers and their correlation with immune infiltration in breast cancer. Front
In Oncol (2022) 12:929363. doi: 10.3389/fonc.2022.929363

17. Huang Z. A Novel prognostic signature based on N7-methylguanosine-related
long non-coding RNAs in breast cancer. Front Genet (2022) 13:1030275. doi: 10.3389/
fgene.2022.1030275

18. Dai Z, Liu H, Liao J, Huang C, Ren X, Zhu W, et al. N-Methylguanosine tRNA
modification enhances oncogenic mRNA translation and promotes intrahepatic
cholangiocarcinoma progression. Mol Cell (2021) 81(16):3339–55. doi: 10.1016/
j.molcel.2021.07.003

19. Xia P, Zhang H, Xu K, Jiang X, Gao M, Wang G, et al. MYC-targeted WDR4
promotes proliferation, metastasis, and sorafenib resistance by inducing CCNB1
translation in hepatocellular carcinoma. Cell Death Dis (2021) 12(7):691.
doi: 10.1038/s41419-021-03973-5

20. Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer. Nat Rev
Cancer (2021) 21(6):345–59. doi: 10.1038/s41568-021-00347-z

21. Adams S, Gatti-Mays ME, Kalinsky K, Korde LA, Sharon E, Amiri-Kordestani L,
et al. Current landscape of immunotherapy in breast cancer: A review. JAMA Oncol
(2019) 5(8):1205–14. doi: 10.1001/jamaoncol.2018.7147

22. Denkert C, Loibl S, Noske A, RollerM,Müller BM, KomorM, et al. Tumor-associated
lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast
cancer. J Clin Oncol (2010) 28(1):105–13. doi: 10.1200/JCO.2009.23.7370

23. Salgado R, Denkert C, Campbell C, Savas P, Nuciforo P, Nucifero P, et al.
Tumor-infiltrating lymphocytes and associations with pathological complete response
and event-free survival in HER2-positive early-stage breast cancer treated with
lapatinib and trastuzumab: A secondary analysis of the neoALTTO trial. JAMA
Oncol (2015) 1(4):448–54. doi: 10.1001/jamaoncol.2015.0830

24. Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, et al. Tumor
infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive
for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol
(2014) 25(8):1544–50. doi: 10.1093/annonc/mdu112

25. Campbell MJ, Tonlaar NY, Garwood ER, Huo D, Moore DH, Khramtsov AI,
et al. Proliferating macrophages associated with high grade, hormone receptor negative
breast cancer and poor clinical outcome. Breast Cancer Res Treat (2011) 128(3):703–11.
doi: 10.1007/s10549-010-1154-y

26. Zhang Y, Cheng S, Zhang M, Zhen L, Pang D, Zhang Q, et al. High-infiltration of
tumor-associated macrophages predicts unfavorable clinical outcome for node-
negative breast cancer . PLoS One (2013) 8(9) :e76147. doi : 10.1371/
journal.pone.0076147

27. Zeng X, Liao G, Li S, Liu H, Zhao X, Li S, et al. Eliminating METTL1-mediated
accumulation of PMN-MDSCs prevents hepatocellular carcinoma recurrence after
radiofrequency ablation. Hepatology (2023) 77(4):1122–38. doi: 10.1002/hep.32585

28. Wu SZ, Al-Eryani G, Roden DL, Junankar S, Harvey K, Andersson A, et al. A
single-cell and spatially resolved atlas of human breast cancers. Nat Genet (2021) 53
(9):1334–47. doi: 10.1038/s41588-021-00911-1

29. Luo X, Li H, Liang J, Zhao Q, Xie Y, Ren J, et al. RMVar: an updated database of
functional variants involved in RNA modifications. Nucleic Acids Res (2021) 49(D1):
D1405–D12. doi: 10.1093/nar/gkaa811

30. Bao X, Zhang Y, Li H, Teng Y, Ma L, Chen Z, et al. RM2Target: a comprehensive
database for targets of writers, erasers and readers of RNA modifications. Nucleic Acids
Res (2023) 51(D1):D269–D79. doi: 10.1093/nar/gkac945

31. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell
transcriptomic data across different conditions, technologies, and species. Nat
Biotechnol (2018) 36(5):411–20. doi: 10.1038/nbt.4096

32. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan C-H, et al.
Inference and analysis of cell-cell communication using CellChat. Nat Commun (2021)
12(1):1088. doi: 10.1038/s41467-021-21246-9

33. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al.
Determining cell type abundance and expression from bulk tissues with digital
cytometry. Nat Biotechnol (2019) 37(7):773–82. doi: 10.1038/s41587-019-0114-2

34. Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y, et al. IOBR: multi-omics immuno-
oncology biological research to decode tumor microenvironment and signatures. Front
Immunol (2021) 12:687975. doi: 10.3389/fimmu.2021.687975
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1260195/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1260195/full#supplementary-material
https://doi.org/10.3322/caac.21708
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.3390/cancers12123529
https://doi.org/10.1093/bioinformatics/btaa178
https://doi.org/10.1093/nar/gkaa790
https://doi.org/10.1093/nar/gkab1075
https://doi.org/10.1093/nar/gkac1061
https://doi.org/10.1093/nar/gkac750
https://doi.org/10.1186/s13045-022-01285-5
https://doi.org/10.1016/j.canlet.2023.216165
https://doi.org/10.1016/j.cell.2023.05.047
https://doi.org/10.1098/rsob.190052
https://doi.org/10.1038/s41598-021-94019-5
https://doi.org/10.1038/s41598-021-94019-5
https://doi.org/10.1186/s12885-023-11012-z
https://doi.org/10.1186/s12885-023-11012-z
https://doi.org/10.1007/s00432-023-04849-1
https://doi.org/10.3389/fonc.2022.929363
https://doi.org/10.3389/fgene.2022.1030275
https://doi.org/10.3389/fgene.2022.1030275
https://doi.org/10.1016/j.molcel.2021.07.003
https://doi.org/10.1016/j.molcel.2021.07.003
https://doi.org/10.1038/s41419-021-03973-5
https://doi.org/10.1038/s41568-021-00347-z
https://doi.org/10.1001/jamaoncol.2018.7147
https://doi.org/10.1200/JCO.2009.23.7370
https://doi.org/10.1001/jamaoncol.2015.0830
https://doi.org/10.1093/annonc/mdu112
https://doi.org/10.1007/s10549-010-1154-y
https://doi.org/10.1371/journal.pone.0076147
https://doi.org/10.1371/journal.pone.0076147
https://doi.org/10.1002/hep.32585
https://doi.org/10.1038/s41588-021-00911-1
https://doi.org/10.1093/nar/gkaa811
https://doi.org/10.1093/nar/gkac945
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.3389/fimmu.2021.687975
https://doi.org/10.3389/fimmu.2023.1260195
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1260195
35. Gao Y, Wang H, Chen S, An R, Chu Y, Li G, et al. Single-cell N-methyladenosine
regulator patterns guide intercellular communication of tumor microenvironment that
contribute to colorectal cancer progression and immunotherapy. J Trans Med (2022) 20
(1):197. doi: 10.1186/s12967-022-03395-7

36. Xu L, Deng C, Pang B, Zhang X, Liu W, Liao G, et al. TIP: A web server for
resolving tumor immunophenotype profiling. Cancer Res (2018) 78(23):6575–80.
doi: 10.1158/0008-5472.CAN-18-0689

37. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction
and exclusion predict cancer immunotherapy response.NatMed (2018) 24(10):1550–8.
doi: 10.1038/s41591-018-0136-1

38. Liebermeister W, Noor E, Flamholz A, Davidi D, Bernhardt J, Milo R. Visual
account of protein investment in cellular functions. Proc Natl Acad Sci U.S.A. (2014)
111(23):8488–93. doi: 10.1073/pnas.1314810111

39. Zhang L-S, Liu C, Ma H, Dai Q, Sun H-L, Luo G, et al. Transcriptome-wide
mapping of internal N-methylguanosine methylome in mammalian mRNA. Mol Cell
(2019) 74(6):1304–16.e8. doi: 10.1016/j.molcel.2019.03.036

40. Lin S, Liu Q, Lelyveld VS, Choe J, Szostak JW, Gregory RI. Mettl1/Wdr4-
Mediated mG tRNA methylome is required for normal mRNA translation and
embryonic stem cell self-renewal and differentiation. Mol Cell (2018) 71(2):244–
55.e5. doi: 10.1016/j.molcel.2018.06.001

41. Hashemi M, Arani HZ, Orouei S, Fallah S, Ghorbani A, Khaledabadi M, et al.
EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular
interactions and biological functions. BioMed Pharmacother (2022) 155:113774.
doi: 10.1016/j.biopha.2022.113774

42. Gentile S, Eskandari N, Rieger MA, Cuevas BD. MEKK1 regulates chemokine
expression in mammary fibroblasts: implications for the breast tumor
microenvironment. Front In Oncol (2021) 11:609918. doi: 10.3389/fonc.2021.609918

43. Bhasin S, Dusek C, Peacock JW, Cherkasov A,WangY, GleaveM, et al. Dependency
of tamoxifen sensitive and resistant Er+ breast cancer cells on semaphorin 3C (SEMA3C)
for growth. Cells (2023) 12(13):1715. doi: 10.3390/cells12131715

44. Sumaiya K, Langford D, Natarajaseenivasan K, Shanmughapriya S. Macrophage
migration inhibitory factor (MIF): A multifaceted cytokine regulated by genetic and
physiological strategies. Pharmacol Ther (2022) 233:108024. doi: 10.1016/
j.pharmthera.2021.108024
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