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Understanding the key factors in the tumor microenvironment (TME) that affect
the prognosis of gliomas is crucial. In this study, we sought to uncover the
prognostic significance of immune cells and immune-related genes in the TME
of gliomas. We incorporated data of 970 glioma patient samples from the Chinese
Glioma Genome Atlas (CGGA) database as the training set, and an additional set of
666 samples from The Cancer Genome Atlas (TCGA) database served as the
validation set. From our analysis, we identified 21 immune-related differentially
expressed genes (DEGs) in the TME, which holds implications for glioma
prognosis. Based on these genes, we constructed a prognostic risk model on
the 21 genes. The prognostic risk model demonstrated robust performance with
an area under the curve (AUC) value of 0.848. Notably, the risk score derived from
themodel emerged as an independent prognostic factor of gliomas, with high risk
scores indicative of an unfavorable prognosis. Furthermore, we observed that high
infiltration levels of certain immune cells, namely, activated dendritic cells,
M0 macrophages, M2 macrophages, and regulatory T cells (Tregs), correlated
with an unfavorable glioma prognosis. In conclusion, our findings suggested that
the TME of gliomas harbored a distinct immune-associated signature, comprising
21 immune-related genes and specific immune cells. These elements significantly
influence the prognosis and present potential as novel indicators in the clinical
assessment of glioma patient outcomes.
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1 Introduction

Glioma is the most common and aggressive primary brain malignancy in adults,
originating from cancerous glial cells in the brain and spinal cord. It accounts for more
than 30% of the total intracranial tumors and 2% of adult cancers (Stupp et al., 2009; Gilbert
et al., 2014; Hu et al., 2017; Zhang et al., 2018). According to the current research, there are
three major signaling pathway alterations that can elicit glioma formation, namely, the
growth factor signaling pathway of the receptor tyrosine kinase (RTK) genes, the
phosphatidylinositol 3-kinase (PI3K) pathway, and the p53 tumor suppressor pathways
(Furnari et al., 2007). Many treatment options are available for gliomas, including surgery,
radiotherapy, systemic therapy (chemotherapy and targeted therapy), supportive therapy,
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and temozolomide combined with chemotherapy; however, the
overall prognosis remains poor and long-term survival rates are
low (Stupp et al., 2005; Tan AC. et al., 2020). Therefore, it is crucial
to determine effective and accurate prognostic indicators for
gliomas.

The tumor microenvironment (TME) is an extremely
heterogeneous system. Immune cells are the critical non-tumor
components of the TME that are involved in the generation,
growth, and progression of cancer (Iyengar et al., 2016; Hoy
et al., 2017; Wu et al., 2019). Identifying immune conditions and
immune-related genes in the TME that affect prognosis is
significant. Yoshihara K. et al designed an algorithm called
ESTIMATE to calculate immune and stromal scores to predict
the level of cell infiltration by analyzing the expression profiles of
specific genes in immune and stromal cells (Yoshihara et al., 2013).
The prognostic value of immune-related genes in the TME has been
demonstrated in several trials (Galon et al., 2012; Pagès et al., 2018;
Fakih et al., 2019; Yang et al., 2020). Jia D. et al identified the genes
such as IL-13RA2, CCL2, IL-6, TLR2, COL1A2, TIMP1, THBS1, and
SERPINE1 in the TME of glioma patients associated with poor
prognosis based on the ESTIMATE algorithm (Jia et al., 2018).
However, single genes as prognostic indicators often tend to lead to
less accurate predictions of prognostic risk due to individual
differences.

To avoid individual differences, researchers have combined
multiple genes to construct prognostic risk models. Cheng W.
et al. used eight immune genes with the greatest prognostic
value, namely, FOXO3, IL-6, IL-10, ZBTB16, CCL18, AIMP1,
FCGR2B, and MMP9, to develop an immune-related risk
signature for gliomas that could independently distinguish high-
risk patients (Yi et al., 2019). Tan Y.Q. et al constructed a prognostic
model to predict the outcomes of low-grade gliomas based on six
genes, namely, CD163, FPR3, LPAR5, P2ry12, PLAUR, and SIGLEC1
(Tan YQ. et al., 2020). However, the important correlation between
glioma prognosis and immune-related genes and immune cells is
still unclear. In this study, we identified 21 immune-related genes
differentially expressed in the TME that affect the prognosis of
gliomas. We evaluated the prognostic impact of the risk score from
these 21 immune-related genes and the correlation between immune
cells and prognosis in the TME.

This study intends to construct a highly accurate and sensitive
prognostic risk model based on immune-related genes, and provide
independent prognostic factors for the clinical prognosis assessment
of glioma patients, so as to elucidate the critical role of immune cells
and related genes in the TME and its impact on the prognosis of
patients with gliomas.

2 Materials and methods

2.1 Data collection

The transcriptomic data and clinical data of 970 glioma patients
were downloaded from the Chinese Glioma Genome Atlas (CGGA)
database (http://www.cgga.org.cn/) as the training cohort. For the
validation cohort, transcriptomic data and the clinical data of
666 glioma patients were obtained from The Cancer Genome
Atlas (TCGA) (https://portal.gdc.cancer.gov/). Samples with gene

expression 0 were excluded. A total of 1811 immune-related genes
were downloaded from the Immunology Database and Analysis
Portal (IMMPORT; https://www.immport.org/).

2.2 Calculation of immune score and
stromal score

Based on gene expression data, the ESTIMATE algorithm was
used to calculate the stromal and immune scores for each tumor
sample, predicting the levels of stromal and immune cells. The
stromal score and immune score calculated by this algorithm helped
quantify the stromal and immune cells in the tumor. The glioma
patients were then divided into high- and low-stromal score
subgroups and high- and low-immune score subgroups based on
the median stromal score and immune score.

2.3 Recognition of differentially expressed
genes

The R package limma was used to identify DEGs between high-
and low-stromal score subgroups, as well as high and low immune
scores. The cut-off criteria were set as |fold change| greater than
2 and p value less than 0.05. To reduce the false positive rate, the
eBayes test was used to adjust the p value. The heatmaps and volcano
plots of the DEGs were displayed using the ComplexHeatmap and
“ggplot2” packages in R, respectively. Shared DEGs were analyzed
using immune gene sets, DEGs of the stromal score group and the
immune score group. A Venn diagram to display the crossover genes
was constructed using the R package “venn”.

2.4 GO and KEGG pathway enrichment
analyses

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were used to identify the
characteristic biological attributes and functional attributes of DEGs,
respectively. GO and KEGG analyses were performed using the R
package “clusterProfiler” and “org.Hs.eg.db”. Enrichment results were
visualized using the R package “ggplot2”, and a p-value of less than
0.05 and a false discovery rate (FDR) of less than 0.05 were considered
as the criteria for significant enrichment.

2.5 Development of an immune
gene-related prognostic risk model

The shared DEGs with p-values less than 0.05 were screened by
univariate Cox analysis. The screened immune-related DEGs were
further selected by Lasso regression with the R package “SIS” to
identify the final variables used to construct the Cox model. A
multivariate Cox regression risk model was then constructed using
the final 21 DEGs. The results of the multivariate Cox analysis were
presented with the R package “forestplot”. The risk score of the Cox
model was calculated based on a linear combination of coefficients
and gene expression levels. Its formula is as follows:
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Risk score � Coef 1*Exp1( ) + Coef2*Exp2( ) + . . . + Coefn*Expn( ).

(1)
Here, n represents the gene number. Exp represents the gene
expression level. coef represents the coefficient value. The median
risk score was set as the cut-off value, and all glioma patients were
divided into high-risk and low-risk score groups. Receiver operating
characteristic (ROC) curves of the multivariate Cox analysis were
used to evaluate the performance of the model for the CGGA data
and TCGA data. The model with an area under the curve (AUC)
value of greater than 0.7 was considered a reliable model. Risk curves
and survival status scatter plots were drawn using the risk scores and
survival status of each patient, with the median risk value taken as
the cut-off value, which were used to evaluate the predictive effect of
the model on the survival prognosis of patients. The nomogram and
calibration curves were generated using the “rms” package in R. The
decision curve analysis (DCA) was conducted using the “ggDCA”
package, specifically designed for creating decision curves.

2.6 Survival analysis

Correlations were analyzed between several key variables and
overall survival: the stromal score, the immune score, the expression
levels of DEGs, the risk score, and the infiltration level of immune
cells. The impact of these variables on the overall survival was
calculated using Kaplan–Meier survival curves. For these analyses,
two R packages, namely, “survival” and “survminer,” were
employed. A p value less than 0.05 was considered statistically
significant.

2.7 Analysis of independent prognostic
factors

The difference in the risk score between the different genders,
WHO grades, and IDH1 mutation states was compared. The
statistical significance of the differences between the two groups
was estimated using the Wilcoxon test, and the differences between
the three groups were assessed by the Kruskal–Wallis test.
Univariate and multivariate Cox regression analyses of age,
gender, WHO grade, IDH1 mutation status, and risk score were
performed and displayed using the R package forestplot. Factors
with a p value less than 0.05 were considered to be independent
prognostic factors.

2.8 CIBERSORT algorithm to assess the level
of immune cell infiltration

According to gene expression data, the CIBERSORT algorithm
was used to assess the immune infractions in each tumor sample and
to provide an estimation of the abundances of each immune cell type
in a mixed-cell population. The CIBERSORT algorithm was based
on a known reference set that provided gene expression signatures
for 22 leukocyte subtypes (LM22). The CIBERSORT algorithm was
used to quantify the immune cells between high- and low-risk score
groups. The results of inferred scores for immune cell populations

were considered accurate at a threshold of p value 0.05. The
distribution of immune cells in the two groups was shown using
the ggpubr package. The univariate Cox analysis was performed
using the plyr package and visualized using the forestplot package.

2.9 Statistical analysis

In this study, all statistical computations and figures were
performed using R software (version 3.6.3). The Wilcoxon rank-
sum test was used as a non-parametric test for comparison between
the two groups, and the Kruskal–Wallis test was used to estimate the
differences between three groups. The Wald test was used in the
univariate and multivariate Cox analyses. The log-rank test was used
to generate p-values in Kaplan–Meier survival analysis. A p value less
than 0.05 was considered to be statistically significant.

3 Results

3.1 Immune conditions are significantly
associated with overall survival of patients
with gliomas

In this study, we obtained gene expression data and clinical
information of glioma patients from the CGGA database for the
training cohort and the TCGA database for the validation cohort.
After excluding patients with incomplete clinical information
and normal controls, 970 and 666 glioma patients with gliomas
were included in this study (Table 1). These glioma patients were
diagnosed pathologically at ages 8–89 years, with a median age of
44 years. Men accounted for 58.37%, and these patients were at
different WHO grades (31.48% WHO II, 35.57% WHO III, and

TABLE 1 Clinical characteristics of the patients. TCGA, The Cancer Genome
Atlas; CGGA, the Chinese Glioma Genome Atlas; WHO, the World Health
Organization; tumors were graded I ~ IV according to the histopathological
and clinical criteria established by the World Health Organization. The values
in brackets indicate percentages.

No. of patients (n = 1636)%

Database

TCGA 666 (40.71)

CGGA 970 (59.29)

Age

Median (range) 44 (8–89)

Gender

Male 955 (58.37)

Female 681 (41.63)

Grade

WHO II 515 (31.48)

WHO III 582 (35.57)

WHO IV 534 (32.64)
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32.64%WHO IV). To evaluate the abundance of stromal cells and
immune cells in the tumor microenvironment, we calculated the
stromal score and the immune score of all patients in the training
cohort using ESTIMATE. The results showed that the stromal
score ranged from −2567.35 to 1358.71 and the immune score
ranged from −2557.44 to 2611.02 (Figures 1A, B). We then
examined the relationship between stromal/immune scores
and the different WHO grades in the CGGA database. The
results displayed a positive correlation between stromal/
immune scores and WHO stages, indicating a higher
prevalence of advanced-grade patients within the high-stromal
score and high-immune score groups (Supplementary Tables S1,
S2). To investigate the association between the stromal score,
immune score, and overall survival, we divided 970 glioma
patients into a high-score group and a low-score group and
performed a Kaplan–Meier survival analysis between the two
groups. The results displayed that the median overall survival of
glioma patients with a low stromal score (−1400.96) was longer
than those with a high stromal score (−677.93), and the median
overall survival of low-immune score (−589.07) patients was
longer than that of high-immune score (403.25) patients
(p <0.0001) (Figures 1C, D). These results indicated that
stromal score and immune score could be used as prominent
predictors of overall survival in patients with gliomas.

3.2 Identification of differentially expressed
immune-related genes in brain gliomas

To determine key factors in the immune microenvironment that
affect prognosis, we analyzed immune-related genes that were
differentially expressed in gliomas. First, we compared the DEGs
between the high-score group and the low-score group with RNA-
seq data of the training cohort, and we identified 9,589 DEGs from
the stromal score groups and 9,777 DEGs from the immune score
groups. The heatmaps and volcano plots of DEGs are shown in
Figures 2A–D. The shared genes between the DEGs of the stromal
score groups, the DEGs of immune score groups, and immune genes
were analyzed. Among the 1,811 immune-related genes obtained
from the ImmPort database, 667 genes were shared with the DEGs
of the stromal score groups and 670 were shared with the DEGs of
the immune score groups. A total of 610 immune-related DEGs were
identified between the stromal and immune score groups
(Figure 2E). To explore the functions and enrichment pathways
of these immune-related DEGs, GO and KEGG analyses were
performed on 610 DEGs. As for GO analysis, we analyzed three
subontologies of DEGs: cellular components, molecular functions,
and biological processes. We exhibited the top 20 significantly
enriched GO terms (Figure 2F). The results indicated that the
external side of the plasma membrane and the MHC protein

FIGURE 1
Immune conditions are significantly associated with overall survival of patients with gliomas. Distribution of stromal scores (A) and immune scores
(B) for glioma patients using the violin plot. The horizontal line in the white box indicated the median. The Kaplan–Meier survival curve displaying the
survival duration of glioma patients between high- and low-stromal group (C) and high- and low-immune group (D), respectively. Patients were divided
into the high-score group (red line) and the low-score group (blue line) according to the median score. A p value less than 0.0001 was considered
statistically significant.
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complex were the main enriched cellular components of immune
DEGs. The molecular functions of the immune DEGs were
primarily focused on receptor–ligand activity and signaling
receptor activator activity. The biological process of the immune
DEGs mainly included the pathways of leukocyte migration, cell
chemotaxis, and positive regulation of leukocyte activation.
Subsequently, the results of KEGG pathway enrichment analysis
indicated that the DEGs were mainly involved in the pathway of the
cytokine–cytokine receptor interaction and the Epstein–Barr virus
infection (Figure 2G).

3.3 21 Immune-related DEGs significantly
related with overall survival

To clarify the potential value of immune-related DEGs in the
prognosis of glioma patients, we used univariate Cox regression and
Lasso regression analysis to screen for the most relevant DEGs. Finally,
21 immune-related DEGs were screened out from the 610 DEGs. A
multivariate Cox regression risk model was constructed with the
21 genes (Supplementary Figure S1). We further investigated
whether these 21 genes independently affected the overall survival of
glioma patients. The Kaplan–Meier survival curves exhibited that the
high expression level of CHGB, BMP2, SSTR2, IL17D, ADCYAP1R1,
UCN,GDF10, andARRB1was significantly correlated with long overall
survival (Figure 3A), indicating that these genes are good prognostic
genes. Meanwhile, a significant negative association between the
expression levels of TMSB4X, IFNGR2, SERPINA3, VIM, JUN,
TXLNA, CDC42, HDAC1, PSMC2, IL-13RA2, PAK4, PDK1, and
TMSB15A and overall survival is observed in Figure 3B. We then
divided the patients into LGG and GBM sets and explored the
relationship between the 21 genes and survival rates. The results
indicated that the 21-gene signature exhibited significant correlations
with the OS in LGG patients, revealing discernible patterns in gene
expression, potentially indicative of disease progression (Supplementary
Figure S2). However, many genes within our signature lacked a marked
impact on OS in GBM subsets (Supplementary Figure S3). This
suggested the inherent complexity and heterogeneity of GBM, which
might attenuate the influence of individual genes or challenge the
signature’s ability to encapsulate the nuanced biology of this subtype.

3.4 The risk score derived from the
constructed prognostic risk model
correlated with overall survival

We developed a prognostic risk model using 21 immune-related
DEGs to evaluate the prognosis of glioma patients. The risk scores

FIGURE 2
Identification of differentially expressed immune-related genes
in brain gliomas. Heatmaps of the DEGs derived from the high-/low-
stromal score groups (A) and high-/low-immune score (B) groups.
Green groups represented low-stromal/immune score groups,
and red groups were high-stromal/immune score groups. Stromal
score groups found a total of 9,586 DEGs, and immune score groups
had a total of 9,777 DEGs. Volcano plots of DEGs from the high- and
low-stromal score groups (C) and the high- and low-immune score
groups (D). Red and blue dots represented upregulated and
downregulated DEGs, respectively. Gray dots represented no

(Continued )

FIGURE 2 (Continued)
statistically significant genes. (E) Venn diagrams showing the
shared DEGs in the immune group, stromal group, and immune genes.
There were a total of 610 immune-related DEGs. (F) GO enrichment
analysis of common DEGs. The bar chart exhibited the top
20 significantly enriched signaling pathways, including cellular
components (left), molecular functions (right), and biological
processes (bottom). (G) KEGG function enrichment analysis of the
shared DEGs.
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were calculated based on gene expression levels and their
corresponding regression coefficients. The receiver operating
characteristic plot for the prognostic model over a 5-year period
is shown in Figure 4A, and the area under the curve was 0.848. We
then used TCGA data as a validation cohort, and the AUC value of

the ROC plot was 0.846 (Figure 4B). These results suggest that the
prognostic model based on 21 immune-related DEGs is effective in
predicting the prognosis of glioma patients. To further evaluate the
model’s efficacy, we divided glioma patients into high-risk and low-
risk groups based on their median risk score. The risk score

FIGURE 3
Correlation between immune-related DEGs and overall survival. (A,B) Kaplan–Meier survival curves of 21 genes with a p value of the log-rank test. A
p value less than 0.05 represented statistical significance.
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distribution and survival status of glioma patients in the CGGA
database showed that the patients in the high-risk score group had
more deaths (Figure 4C). Additionally, we observed a significant
difference in overall survival between the high-risk and low-risk
groups through Kaplan–Meier survival analysis (p <0.0001). The
low-risk group had a good prognosis, while the high-risk group had
a poor prognosis (Figure 4D). Furthermore, we analyzed the
expression levels of 21 immune-related genes between the high-

risk and low-risk groups. We found that genes associated with a
good prognosis (CHGB, BMP2, SSTR2, IL17D, ADCYAP1R1, UCN,
GDF10, and ARRB1) were highly expressed in the low-risk
group. Conversely, the genes associated with a poor prognosis
(TMSB4X, IFNGR2, SERPINA3, VIM, JUN, TXLNA, CDC42,
HDAC1, PSMC2, IL-13RA2, PAK4, PDK1, and TMSB15A) were
highly expressed in the high-risk group (Figure 4E). Subsequently,
we developed a nomogram utilizing the clinicopathological

FIGURE 4
Construction of an immune-related prognostic signature for patients of gliomas. The receiver operating characteristic curve (ROC) of 5-year survival
data exhibited risk model credibility for training cohort (A) and validation cohort (B). (C) Risk score distribution of glioma patients in the CGGA database
(top). The blue line represented low risk score, and the red line represented high risk score. Survival status and the duration of patients (bottom). (D)
Kaplan–Meier survival curves of the high-risk score and low-risk score groups. A p value less than 0.05 showed statistical significance. (E)Differential
expression of 21 immune-related DEGs between the high-risk score group and the low-risk score group.
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parameters and risk scores to estimate the 3-year and 5-year survival
probabilities for glioma patients in the CGGA database
(Supplementary Figure S4A) and TCGA database (Supplementary
Figure S4B). Furthermore, we conducted a decision curve analysis
and analyzed calibration curves to assess the performance of our
predictive nomogram. The DCA plots revealed favorable net
benefits across the majority of threshold probabilities, specifically
indicating optimal threshold probabilities between 0 and 0.92 for the
CGGA database (Supplementary Figure S5A) and between 0 and
0.75 for the TCGA database (Supplementary Figure S5C).
Additionally, the calibration curves corroborated the concordance
between the predicted survival probabilities and the observed

outcomes, further substantiating the model’s predictive accuracy
(Supplementary Figures S5B, D). The results indicated that the risk
score derived from the prognostic model emerged as a molecular
indicator of poor prognosis in glioma patients.

3.5 The risk score and WHO stage were
independent prognostic factors of gliomas

We used the constructed risk model to predict the risk scores for
different subgroups of glioma patients. When comparing the risk
scores between female and male patients, there was no statistically

FIGURE 5
The risk score andWHO stage were independent prognostic factors of gliomas. (A)Differences of risk scores between female andmale patients (p =
0.37). (B)Differences of risk scores between pathologic stages includingWHO II, WHO III, andWHO IV (p <2.2e-16). (C)Differences of risk scores between
the IDH1 wildtype andmutant glioma patients (p <2e-16). (D)Univariate Cox (left) andmultivariate Cox (right) regression analyses were performed on five
prognostic indicators of glioma patients. The blue squares represented the HR, and the short transverse lines represented 95% CI. p <0.05 was
considered significant.
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significant difference (p = 0.37; Figure 5A). The WHO stage is
positively associated with poor prognosis in glioma patients. When
comparing the risk scores of patients with different WHO stages,
including WHO II, WHO III, and WHO IV, the results showed that
the risk score ofWHO IV had a significant difference compared with
WHO III (p <0.05) orWHO II (p <0.05). Moreover, the risk score of
WHO III also had a significant difference with the WHO II risk
score (p <0.05) determined by the Kruskal–Wallis test. A significant
positive association between WHO grades and the risk score is
displayed in Figure 5B. We also analyzed the risk scores of the
IDH1 mutant and wildtype glioma patients. The results indicated
that the IDH1 mutant group had significantly decreased risk scores
(p <0.05), indicating a better prognosis for patients with
IDH1 mutations (Figure 5C). To verify whether the risk scores
derived from the prognostic model can be used as an independent
prognostic factor, univariate and multivariate Cox regression
analyses were performed with the CGGA dataset. From the forest
plots, the hazard ratios (HRs) of the risk score were 2.718 (95%
confidence interval (CI), 2.467–2.995, p <0.05) and 2.179 (95% CI,
1.943–2.444, p <0.05), respectively. This result suggests that risk
score could be considered an independent prognostic factor for the
survival of glioma patients. Meanwhile, WHO grade was also an
independent prognostic factor, the HRs of WHO grade III were
2.761 (95% CI, 2.143–3.357, p <0.05) and 2.206 (95% CI,
1.705–2.856, p <0.05), respectively, and the HRs of WHO grade
IV were 7.605 (95% CI, 5.949–9.723, p <0.05) and 3.155 (95% CI,
2.386–4.172, p <0.05), respectively (Figure 5D). These results
confirm that the risk score and WHO staging grades III and IV
can be used as independent clinical prognostic factors for patients
with gliomas.

3.6 Association of infiltrating immune cells
with the risk score and prognosis

To clarify the impact of immune cells on glioma prognosis, we
analyzed immune cell infiltration in the TME using the CIBERSORT
algorithm and then compared the differences of immune cell
presence in gliomas between the high- and low-risk score
subgroups. The results showed that infiltration levels of memory
B cells, plasma cells, naïve CD4+ T cells, activated NK cells,
monocytes, resting dendritic cells, activated mast cells, and
eosinophils were increased in the low-risk score group. In
contrast, CD8+ T cells, regulatory T cells (Tregs), γδ T cells,
M0 macrophages, M1 macrophages, M2 macrophages, activated
dendritic cells, and neutrophils were increased in the high-risk score
group (Figure 6A). These results suggested that while the former set
of immune cells might be linked to a favorable prognosis, the latter
may be associated with a poorer outcome. To further investigate the
potential risk of infiltrating immune cells on survival, we performed
univariate Cox regression analysis and calculated the HRs with 95%
CI. M0 macrophages, M2 macrophages, and neutrophils emerged as
independent risk factors for unfavorable glioma prognosis (HR >1;
p <0.05). Conversely, CD4 naïve T cells, monocytes, memory B cells,
resting dendritic cells, and activated NK cells appeared as potential
protective factors (HR <1; p <0.05) (Figure 6B). Kaplan–Meier
survival analysis was further performed in these immune cells.
We found pronounced survival probability differences associated

with nine immune cell types. Notably, increased levels of memory
B cells, resting dendritic cells, monocytes, plasma cells, and naïve
CD4 T cells correlated with prolonged survival, while high levels of
activated dendritic cells, M0 macrophages, M2 macrophages, and
Tregs were linked to shorter survival (Figure 6C). In conclusion, our
study underscored the variability in immune cell infiltration across
different risk score groups. Crucially, specific immune cell
infiltration levels emerged as influential determinants in glioma
prognosis.

4 Discussion

Glioma is a fatal brain malignancy worldwide with an extremely
poor prognosis. Therefore, the construction of predictive models
and identification of reliable biomarkers are key requirements for
glioma prognosis. In this study, we identified 21 immune-related
genes differentially expressed in the TME (TMSB4X, IFNGR2,
SERPINA3, VIM, CHGB, JUN, BMP2, TXLNA, CDC42, HDAC1,
PSMC2, SSTR2, IL-13RA2, IL17D, ADCYAP1R1, PAK4, PDK1,
UCN, GDF10, ARRB1, and TMSB15A), and these genes were
significantly associated with the prognosis of glioma patients.
Patients with high expression levels of CHGB, BMP2, SSTR2,
IL17D, ADCYAP1R1, UCN, GDF10, and ARRB1 had longer
overall survival. Among them, IFNGR2, TXLNA, PSMC2, and
TMSB15A have not been reported to be associated with gliomas.

We constructed a prognostic risk model based on the
21 immune-related DEGs. The performance of the model was
assessed by the ROC curves of the training cohort of CGGA data
(AUC = 0.848) and the validation cohort of TCGA data (AUC =
0.846). Our model had a higher specificity and sensitivity than
previously reported prognostic models for gliomas (AUC <0.8)
(Pagès et al., 2018; Zeng et al., 2019). By analyzing the
relationship between the risk score of the constructed prognostic
model and overall survival, we found that overall survival was
shorter for patients in the high-risk score group. The patients in
the high-risk score group were considered to have a poor prognosis.
Therefore, the risk score can be used as a molecular indicator of poor
prognosis. Previous studies have reported several independent
prognostic indicators for gliomas, such as age and WHO grade
(Pignatti et al., 2002; Louis et al., 2007; Reuss et al., 2015). In this
study, we found a significant positive correlation between clinical
WHO grades and the risk score, which was consistent with previous
reports (Weller et al., 2013; Khasraw et al., 2014; Glioma through the
looking GLASS, 2018). Meanwhile, we found that patients with the
IDH1 gene mutation had lower risk scores (Theeler et al., 2012;
Eckel-Passow et al., 2015). In addition, the risk score was validated as
an independent prognostic factor for gliomas by univariate and
multivariate Cox regression analyses, as well as age and WHO
grades.

In this study, GO and KEGG analyses displayed genes enriched
for cytokine–cytokine receptor interaction signaling pathways, and
single-gene survival analysis showed that immune DEGs for
cytokines or receptors, such as BMP2, ARRB1, IL17D, IL-13RA2,
ADCYAP1R1, IFNGR2, UCN, SSTR2, and GDF10, were significantly
associated with overall survival (Bao et al., 2020). IL-13RA2 is a cell
surface receptor that is not significantly expressed in normal brain
tissue; however, it is overexpressed in most cancer cells and is
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currently important in the treatment of brain tumors (Debinski
et al., 1999; Kawakami et al., 2004; Brown et al., 2012; Brown et al.,
2016). Mantovani A. et al. reported that IL-13 can stimulate the
activation of M2 macrophages (Mantovani et al., 2002). The

presence of M2 in the TME plays a key role in the inflammatory
cycle that disrupts adaptive immunity and promotes tumor growth
and development (Mantovani et al., 2002). In this study, we found
that the infiltration level of M2 was significantly higher in the high-

FIGURE 6
Association of infiltrating immune cells with the risk score and prognosis. (A) Level of immune cell infiltration between the high-risk score group and
the low-risk score group. ns, no significance. *: p <0.05. **: p <0.01. ***: p <0.001. (B) Infiltration levels of 16 immune cell subgroups by univariate Cox
regression. (C) Kaplan–Meier survival curves of different infiltration levels of immune cells. A p value less than 0.05 was considered significant.
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risk score group than in the low-risk score group. Kaplan–Meier
survival analysis showed a lower survival probability in glioma
patients with a higher level of M2 infiltration. This result
suggests that M2 in the TME may be involved in the formation
and development of gliomas.

Several studies reported that regulatory T cells interact with
intra-tumor antigen-presenting cells (APCs) to promote
localization to induce cytotoxic T lymphocyte (CTL)
dysfunction and prevent tumor rejection (Bauer et al., 2014;
Speiser et al., 2016). APCs mainly consist of dendritic cells and
macrophages, with M2 having weak levels of antigen presentation
and co-stimulatory capacity (Gordon, 2003; Schmieder et al.,
2012). In this study, the infiltration level of activated dendritic
cells, M2, and Tregs, was higher in the high-risk score group than
in the low-risk score group. Survival analysis showed that patients
with higher infiltration levels of activated dendritic cells, M2 and
Tregs, had lower survival probability. These results were consistent
with those of previous studies (Bauer et al., 2014; Speiser et al.,
2016). Thus, the results indicated that the differences in the
infiltration levels of immune cells between the high-risk and
low-risk score groups may be an important factor contributing
to the impact of the risk score on the prognosis of patients with
gliomas. However, further investigations are still needed to
elucidate the specific mechanisms by which infiltrating immune
cells in the TME affect the prognosis of gliomas.

Thomas DA et al. investigated the role of TGF-β in tumor
evasion of immune surveillance and demonstrated that TGF-β
attenuated glioma rejection by inhibiting the cellular expression
of key effector molecules, such as granzyme B and IFN-γ (Thomas
and Massagué, 2005). We found that immune genes such as
BMP2 and GDF10, which belong to the TGF-β family, were
differentially expressed between high-risk and low-risk score
groups. However, the expression levels of BMP2 and
GDF10 were significantly positively correlated with the overall
survival in glioma patients, which is inconsistent with the
previous findings, suggesting that TGF-β family genes have
complex regulatory functions in gliomas. Additionally, we
identified that the JUN gene was differentially expressed between
high-risk score and low-risk score groups. Liu Y et al. reported that
the JUN/miR-22/HuR regulatory axis played a crucial role in
colorectal cancer (CRC) progression (Liu et al., 2018). In CRC
cells, the JUN gene binds to the USP28 promoter and is involved
in KRAS-mediated transcriptional activation to promote CRC
formation. However, whether this mechanism occurs in gliomas
is unclear and requires further validation.

Nevertheless, our study has some limitations. Although our
results had a validation cohort of TCGA to evaluate the
performance of the prognostic risk model, the model still needs
the support of a large number of clinical samples and clinical data of
glioma patients. Moreover, the prognostic risk model was based on
RNA-sequencing results from the CGGA database and lacks cellular
and animal experiments.

In conclusion, we identified 21 immune-related DEGs that
affected prognosis based on immune scores of the TME in
gliomas. We also found that the risk score from the 21 genes
was an independent risk factor for glioma prognosis, and patients
with high risk scores had a poorer prognosis. Furthermore,
infiltrating activated dendritic cells, M0 macrophages,

M2 macrophages, and Tregs were associated with poor
prognosis of gliomas. The immune-associated signature of the
glioma microenvironment, including immune-related genes, the
risk score, and immune cells significantly associated with
prognosis, can be considered new indicators for clinical
prognosis assessment of glioma patients.
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