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This study presents a new methodology to perform the distribution network
dynamic reconfiguration (DNDR), taking into consideration the stochastic
variations of loads and distributed generation (DG) of power. To solve the
heavy computational burden that exists in traditional algorithms of the DNDR,
this study first establishes the nodal sensitivity models to calculate the nodal
variations caused by nodal power variations. Then, the DNDR is executed utilizing
a co-evolutionary algorithm with the goal of loss minimization. The stochastic
power flow calculations (PFCs) based on the nodal sensitivity are performed in the
DNDR to handle the power fluctuations of the DGs and loads. Finally, themodified
IEEE 33-bus test system and a practical distribution system are used for
simulations. The simulation results validate the quickness and effectiveness of
the proposed DNDR method.
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1 Introduction

1.1 Literature review

The distribution network reconfiguration (DNR) can adjust the network topology and
improve the performance of distribution networks by combining the open/closed states of
line switches. The goals of the DNR include reducing the power losses (Lotfi et al., 2020),
improving system reliability (Kianmehr et al., 2019), enhancing system resilience (Sun et al.,
2023), reducing voltage drops (Song et al., 2020), and managing energy (Gao et al., 2022a).
The DNR plays an important role in the distribution automation of the system.

It is usually formulated as a complex non-linear optimization problem. The solution
algorithms for the DNR include intelligent optimization algorithms, heuristic algorithms, and
mathematical programming algorithms. Intelligent optimization algorithms, such as the genetic
algorithm, honeybeemating optimization algorithm, particle swarm optimization algorithm, and
harmony search algorithm, have been successfully applied in DNR (Roosta et al., 2019; Jakus
et al., 2020; Lotfi and Ghazi, 2021; Hizarci et al., 2022). However, the tremendous amount of
computation of intelligent optimization algorithms greatly limits their engineering applications.
The heuristic algorithms can solve the DNR problemwith high speed. In the study by Harsh and
Das (2023), a two-stage heuristic algorithm based on the power flow analysis is used for DNR.
Zhan et al. (2020) proposed the switch opening and exchange method for DNR. Recently,
efficient mathematical programming algorithms, such as convex programming, have been
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successfully applied in DNR. López et al. (2015) presented a mixed-
integer second-order conic programming model for the DNR
considering the reliability constraints. Sekhavatmanesh and
Cherkaoui (2020) proposed a multi-step reconfiguration model of
active distribution network restoration based on mixed-integer
second-order cone programming.

Distributed generation (DG) technology has been developed rapidly
in recent years due to its flexible and environment-friendly nature (Zheng
et al., 2021a). However, whenmanyDGs are connected to the system, the
power fluctuation of DGs increases the risks of the distribution network
operation (Zhang et al., 2023). Therefore, it is essential to take nodal
power fluctuations into account in the DNR. Santos et al. (2022)
considered the uncertainties of DGs and loads and carried out the
DNR with the goal of reducing carbon emission costs. Raj and
Kumar (2020) proposed a new DNR method based on affine
arithmetic to handle the uncertainties of nodal powers. Haghighat and
Zeng (2016) introduced continuous uncertainty sets and developed and
solved a mixed-integer robust optimization model under a master–slave
framework. Zheng et al. (2021b) presented an adaptive robust distribution
network model for three-phase DNR.

1.2 Problem addressed

The distribution network dynamic reconfiguration (DNDR), which
takes the time-varying load and constraint of the switch operation into
account, is applicable for engineering applications. Considering the
influence of forecast errors, the actual loads and DG in power deviate
from the predicted data. When the uncertainty of nodal power is
considered in the dynamic reconfiguration, the calculation burden is
huge, which greatly limits its feasibility for engineering applications. In the
study by Razavi et al. (2022), the stochastic DNDR based on the
probability distance method is employed to shrink the scenario sets,
and a self-adaptive modified crow search algorithm is introduced to find
an optimal scenario. Gao et al. (2022b) established a stochastic dynamic
reconfiguration model based on selected scenarios to address the
uncertainties of the DGs and loads.

However, the number of switch operations is usually treated
only as a constraint in existing dynamic reconfiguration approaches,
which ignores the influence of the switch operation on the
operational cost of distribution systems. When both the switch
operational cost and nodal power fluctuation are considered in
the DNDR, the computational burden is heavy, and it becomes
difficult to obtain an effective solution quickly.

1.3 Contributions

To solve the problem of heavy computational burden that exists
in the DNDR, a new methodology to perform the dynamic
reconfiguration is proposed. The main contributions are as follows:

(i) The co-evolution algorithm is proposed to solve the dynamic
reconfiguration model with the goal of loss minimization. The
switch operational cost is considered in the DNDR, which can
improve the operational costs of the distribution network
effectively. The hash table is designed to store individuals’
fitness, which can avoid extensive fitness calculations.

(ii) The effect of power fluctuation on the operation constraints is
considered in the dynamic reconfiguration model to ensure
operation security. The sensitivity models of nodal power to bus
voltage are used to calculate the voltage and branch power,
which can improve the computation efficiency of the DNDR.

1.4 Article organization

The rest of this article is organized as follows: Section
2 introduces the stochastic model of the DGs and loads. Section
3 introduces stochastic PFCs. Section 4 introduces the DNDR
algorithm. Section 5 presents the simulation results, and the
conclusions are drawn in Section 6.

2 Stochastic model of DGs and loads

It is supposed that the day-ahead active power of the wind
turbine (WT) and photovoltaic (PV) power generation is predicted
on the basis of weather conditions, and random variations of the
active power output of wind power generation and PV power
generation follows the normal distribution. The probability
density function of the active power output of wind power
generation PWT and PV power generation PPV can be described as:

f PWT( ) 1���
2π

√
σPWT

exp − PWT − μPWT
( )2

2σ2
PWT

⎛⎝ ⎞⎠,

f PPV( ) 1���
2π

√
σPPV

exp − PPV − μPPV
( )2

2σ2
PPV

⎛⎝ ⎞⎠
where μPWT

and μPPV
are the mathematical expectations that are the

predictive values of the active power output of wind and PV power
generation, respectively; σPWT and σPPV are the standard deviations
of PWT and PPV, respectively.

The reactive power of DG is supposed to follow the active power
at the rated power factor.

The random variation of the active load follows a normal
distribution, and the probability density function of the active
load PLD can be described as:

f PLD( ) 1���
2π

√
σPLD

exp − PLD − μPLD
( )2

2σ2
PLD

⎛⎝ ⎞⎠,

where μPLD
is the mathematical expectation that is the predictive

value of the active load, and σPLD is the standard deviation.
It is supposed that the reactive load follows the active load by the

rated power factor.

3 Stochastic power flow calculation

3.1 Sensitivity factors of bus voltage

The output power of the DGs is regarded as the negative load
power in PFCs. The nodal equivalent power is the difference
between the load power and DG output power:
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PE.Nd � PL,Nd − PG,d

QE.Nd
� QL,Nd

− QG,d
{ ,

where PG,d and QG,d are the active and reactive output power of the
DG, respectively; PL,Nd and QL,Nd

are the active and reactive load
power of node Nd , respectively; PE.Nd and QE.Nd

are the equivalent
active and reactive power of node Nd , respectively.

In the process of calculating branch power, the power loss of the
branch is temporarily ignored. Considering that the nodal voltages
are close to their rated values at normal conditions, the per-unit
value of the bus voltage is supposed to be 1. For the node Ni′, PC,Ni

and QC,Ni
are defined as the nodal outfeed active power and reactive

power. If a node on a trunk path is connected to one or more
bifurcation branches, the sum of the nodal equivalent power on all
bifurcation branches is defined as the nodal outfeed power, such as
the node N2 in Figure 1:

PC,N2 � PE.N2 + PE.N5 + PE.N6

QC,N2
� QE.N2

+ QE.N5
+ QE.N6

{ ,

where PC,N2 and QC,N2
are the active and reactive nodal outfeed

power of node N2, respectively; PE.N2, PE.N5, and PE.N6 are the
equivalent active power of nodes N2, N5, and N6, respectively;
QE.N2

, QE.N5
, and QE.N6

are the equivalent reactive power of nodes
N2, N5, and N6, respectively.

For the node without bifurcation, the nodal outfeed power is
equal to the nodal equivalent power, such as node N1 in Figure 1:

PC,N1 � PE.N1

QC,N1
� QE.N1

{ .

For the general radial distribution network, when the outfeed
power of node i changes, the voltage change ΔUm of node m can be
described as (Wang et al., 2018):

ΔUm � KP
i,m,vol · ΔPi + KQ

i,m,vol · ΔQi,

where KP
i,m,vol and KQ

i,m,vol are the sensitivity factors of the voltage at
node i to the nodal active and reactive power at node m,
respectively.KP

i,m,vol and KQ
i,m,vol can be expressed as:

KP
i,m,vol �

∑
B∈bpathm

RB

UB
m ∈ npathi

∑
B∈bpathi

RB

UB
i ∈ npathm,

KP
i,Tm ,vol

m ∉ npathi ∩ i ∉ npathm

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

KQ
i,m,vol �

∑
B∈bpathm

XB

UB
m ∈ npathi

∑
B∈bpathi

XB

UB
i ∈ npathm,

KQ
i,Tm ,vol

m ∉ npathi ∩ i ∉ npathm

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
where UB is the end node voltage of branch B; bpathi is the branch
set from node i to the source node of the distribution network;
npathi is the node set that contains all nodes from i to the source
node on the path of power flow; Tm is the first node with laterals in

FIGURE 1
Diagram of the simple distribution network.

FIGURE 2
Schematic of reconfiguration intervals.

FIGURE 3
Schematic of a simple distribution network.

FIGURE 4
Comparison and detection among the offspring chromosomes.
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the node set from node m to the source node; RB and XB are the
resistance and reactance of branch B, respectively.

3.2 Stochastic power flow calculation based
on sensitivity model

The power of the load and DG is supposed to be constant within
a period. First, according to the predicted load power and DG power,
the node voltages and branch power are obtained through PFCs. The
distribution network operation scenarios considering the power
fluctuations of the DGs and loads are obtained by Latin
hypercube sampling (LHS). In the generative distribution
network operation scenarios, the difference between the predicted
value and generative value of each node is used to calculate the
change of the node voltages by the sensitivity model. Then, the nodal
voltages are obtained by summing up the change of node voltages
caused by stochastic variations of nodal power. Finally, the branch
power and line losses are obtained by nodal voltages.

4 Dynamic reconfiguration of
distribution network based on co-
evolution algorithm

4.1 Time intervals division

Time intervals division can reduce the computation cost of
dynamic reconfiguration. As shown in Figure 2, the daily load curve
is divided into natural periods. Several successive natural periods
form a reconfiguration interval in which the network topology
remains unchanged.

The objective function of reconfiguration interval divisions can
be described as:

FIGURE 5
Flow chart of the co-evolution algorithm.

FIGURE 6
IEEE 33-bus distribution system.
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FIGURE 7
Number of reduced power flow calculation.

FIGURE 8
Comparison of power loss in each period before and after reconfiguration.

FIGURE 9
Comparison of lowest bus voltage in each period before and after reconfiguration.
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min Fv � ∑Nn

i�1
∑NT

t′�1
Var PE,Ni ,t′( ) + Var QE,Ni ,t′( )( ),

where Fv is the sum of variances of all load power in each interval,
Nn is the total number of nodes, NT is the total number of
reconfiguration intervals, and PE,Ni ,t′ and QE,Ni ,t′ are the
equivalent active and reactive loads of node i in interval t′,
respectively.

In addition, reconfiguration interval divisions must satisfy the
following constrains:

NT ≤NT
max ,

St′ − St′−1 ≥Δτ
min

, t′ � 1, 2, . . . ,NT ,

1≤ St′ ≤ τ, t′ � 1, 2, . . . ,NT ,

where NT
max is the maximum reconfiguration number within a day,

St′−1 and St′ are the start natural period and end natural period in
interval t′, and Δτmin

is the minimum natural period in a
reconfiguration interval.

Equations 13–16 constitute a typical integer programming
model with constraints. The branch and bound algorithm is
applied to obtain the best reconfiguration interval division
schemes as the number of control variables is limited.

4.2 Static reconfiguration model for single
time interval

The network loss Ploss,t in natural period t can be described as

Ploss,t � ∑
Bk∈L

rBk

P2
Bk ,t

+ Q2
Bk ,t

U2
Bk ,t

,

where PBk ,t and QBk ,t are the active and reactive power at the end
terminal of branch Bk in period t, UBk ,t is the end terminal
voltage of branch Bk in period t, and L represents the set of all
branches.

The objective of static reconfiguration in a single interval is to
minimize the total power loss:

min Eloss,m � ∑smns
t�sm1

Ploss,tΔt,

where Eloss,m is the total power loss in interval m, Δt is the length
of a natural period, sm1 is the first natural period of the interval m,
and ns is the number of natural periods in interval m.

The following constraints should be satisfied during static
network reconfiguration:

TABLE 1 Reconfiguration results in Case 1.

Natural periods 1–8 9–21 22–24

Reconfiguration without coordination B9, B14, B28, B33, B36 B7, B9, B14, B28, B32 B7, B9, B14, B28, B32

Reconfiguration through dynamic coordination B7, B9, B14, B28, B32 B7, B9, B14, B28, B32 B7, B9, B14, B28, B32

TABLE 2 Comparisons of reconfiguration results in Case 1.

Before
reconfiguration

Static reconfiguration
(Ouyang et al., 2009)

Dynamic reconfiguration without
coordination (Liu et al., 2020)

Proposed
method

Total energy
loss (kWh)

1763.15 1,249.60 1,212.20 1,214.39

Number of switching
operations

0 4 6 5

Lowest bus
voltage (p.u)

0.9147 0.9434 0.9434 0.9434

Operational cost ($) 1,234.21 914.72 908.54 900.07

TABLE 3 Comparison of voltage results.

Natural periods Bus voltage with BFS Bus voltage with PFSM

Mean value (kV) Variance (kV) Lowest value (kV) Mean value (kV) Variance (kV) Lowest value (kV)

1 12.5525 0.0004 12.5512 12.5525 0.0004 12.5512

5 12.5010 0.0002 12.5004 12.5010 0.0002 12.5004

10 12.1524 0.0035 12.1418 12.1524 0.0035 12.1418

15 12.1266 0.0005 12.1250 12.1266 0.0005 12.1250

19 12.0514 0.0008 12.0491 12.0514 0.0005 12.0499

24 12.5018 0.0003 12.5011 12.5018 0.0002 12.5014
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(1) Radial and connective network constraint.

The distribution network must have radial topology with all of
nodes energized.

(2) Permissible range of bus voltage.

When the impact of the power fluctuation of the DGs and loads
on the node voltage is considered, the voltage constraint can be
described as:

Urad,min
i,t ≥Umin

Urad,max
i,t ≤Umax

{ ,

where Umin and Umax are the lower and upper limits of the bus
voltage, respectively, and Urad,min

i,t and Urad,max
i,t are the minimum

and maximum voltages of node i in natural period t, considering the
power fluctuation of the DGs and loads at a certain confidence level.

(3) Branch power limits.

Taking the uncertainties of DGs and loads into account, the
branch power constraint can be described as:

Srad,max
Bk ,t

≤ SBk
max,

where SBk
max is the permitted maximum power transmitted through

branch Bk , and Srad,max
Bk ,t is the maximum power of branch Bk in

natural period t, considering the power fluctuation of the DGs and
loads at a certain confidence level.

4.3 Improved genetic algorithm

4.3.1 Genetic encoding and decoding
In this study, the randomly arranged branch sequence is

regarded as a chromosome by the strategy of searching random
spanning trees based on the decimal coding method (Ouyang et al.,
2009). In addition, the states of the switches can be obtained by the
decoding process. As for the simple network shown in Figure 3,
branch B1 and B5 do not take part in genetic encoding. The random
combination of states of switches at the other branches forms a
chromosome, such as R1: B2-B3-B4-B8-B9-B12-B6-B7-B10-B11.
According to the strategy of searching random spanning trees,

FIGURE 10
Distribution system of Taiwan Power Company.

TABLE 4 Reconfiguration results in Case 2.

Natural periods 1–8 9–21 22–24

Reconfiguration without coordination B7, B13, B34, B42, B55, B62, B72, B83, B86, B89,
B90, B92, B93

B7, B13, B33, B39, B42, B55, B62, B72, B83, B86,
B89, B90, B92

B7, B88, B33, B39, B42, B55, B62, B72, B83, B86,
B89, B90, B92

Reconfiguration through dynamic
coordination

B7, B13, B34, B39, B42, B55, B62, B72, B83, B86,
B89, B90, B92

B7, B13, B34, B39, B42, B55, B62, B72, B83, B86,
B89, B90, B92

B7, B13, B34, B39, B42, B55, B62, B72, B83, B86,
B89, B90, B92

TABLE 5 Comparisons of reconfiguration results in Case 2.

Before
reconfiguration

Static reconfiguration
(Ouyang et al., 2009)

Dynamic reconfiguration without
coordination (Liu et al., 2020)

Proposed
method

Total energy
loss (kWh)

4,915.25 4,530.63 4,381.79 4,382.13

Number of switching
operations

0 9 11 9

Lowest bus
voltage (p.u)

0.9313 0.9510 0.9510 0.9510

Operational cost ($) 3,440.68 3,261.44 3,177.25 3,157.49
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the spanning tree corresponding to chromosome R1 should be: B1-
B2-B3-B4-B8-B9-B12-B6-B10-B5.

4.3.2 Detection of offspring chromosome
The most time-consuming part in the process of

reconfiguration is the fitness calculation of chromosomes,
which represents different reconfiguration schemes. There are
a certain number of same individuals between the offspring and
parent population after cross and mutation operations. The
fitness of these individuals in the offspring population can be
obtained directly from the parent population, thus avoiding time-
consuming power flow calculation. Therefore, a hash table is
designed to store the individuals’ fitness, and the length of the
hash table is the same as the size of the population. To enhance
the efficiency of table querying, the set of open switches of
individuals is used to represent the individual. For the
network in Figure 3, the open switch set of chromosome R1 is
{B7, B11}, so B7–B11 is stored in the hash table to represent R1.
Figure 4 shows the detection process of the offspring

chromosome. As B7–B11, which represents R1, is included in
the parent chromosomes, the fitness of R1 can be obtained from
the parent population.

4.3.3 Selection operation
The elitist strategy is applied in the selection operation, and the

merging of the offspring and parent population increases the
number of good individuals. The tournament algorithm is used
in the merged population. Two individuals are chosen successively
from all the chromosomes, and the one whose fitness is larger is
selected.

4.3.4 Crossover operation
The order-based crossover method is applied in this study. First,

two points of one chromosome are chosen to be cut off randomly.
Then, the position of the first point is taken as the starting point and
the genes between the two points are put into another chromosome.
The repeating genes of the new chromosome are removed to get the
next generation.

FIGURE 11
Comparison of power loss in each period before and after reconfiguration.

FIGURE 12
Comparison of lowest bus voltage in each period before and after reconfiguration.
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4.3.5 Mutation operation
Two points of one chromosome are chosen randomly and the

genes between the two points are rearranged in the reverse order to
get the new chromosome.

4.3.6 Obtaining target solution set
The solution set of the first iteration in the static

reconfiguration is regarded as the initial target solution set.
Then, the solution set of each iteration is compared with the
target solution set, and the solution with better fitness, which has
not appeared in the target solution set, is added into the target
solution set.

4.4 Model of dynamic reconfiguration

The objective of the dynamic reconfiguration is to minimize the
daily cost of the distribution network, which can be described as

min Fc � ∑NT

m�1
∑sm

t�sm−1
Ploss,t · Δt · ρE,t( ) + Ns · CB,

where ρE,t is the price of power at the natural period t, Ns is the
number of switch operations within a day, and CB is the cost of each
switch operation.

The radial and connective network constraint, node voltage
constraint, and line load constraint that should be satisfied during
static network reconfiguration are also included in the dynamic
network reconfiguration.

4.5 Co-evolution algorithm

The daily reconfiguration schedule constitutes the static
reconfiguration schedule at each interval and cannot be
guaranteed to be the best since it ignores the interaction between
different static reconfiguration schedules. It is necessary to
coordinate the reconfiguration schedule at each interval to get
the daily reconfiguration schedule that satisfies all the constraints
and has minimal operational cost.

The co-evolutionary algorithm is a kind of optimization algorithm
which simulates the co-evolutionary phenomenon in nature. In the
multi-population co-evolutionary algorithm, the problem is divided
into several sections, and each section is represented by a population.
The calculation of the fitness of one individual in a population
requires the other population’s representative solution that is
together with the individual to form a complete solution. In this
work, the solution set in each interval represents a population in co-
evolutionary algorithm, and the co-evolutionary algorithm is applied
to coordinate the reconfiguration schedule of each interval to get the
daily reconfiguration schedule. Figure 5 is the flow chart of the co-
evolutionary algorithm.

In the process of the multi-population co-evolutionary, the
representative solution of every interval constitutes the best
reconfiguration schedule. In the first iteration, the solution with
the least power loss is temporarily regarded as the representative
solution. In the subsequent iteration process, the solution with the
least daily cost is regarded as the representative solution.

According to the total operational cost of the chromosomes and
the representative solution of the interval, the tournament algorithm
is used to select the individuals, amount of representative solutions
are used to replace some chromosomes to increase the proportion of
the representative solution.

In the process of dynamic coordination, if the daily cost of the
new dynamic reconfiguration schedule arises, the current co-
evolutionary step is regarded as invalid, and the representative
solution of the interval is not updated. Abandoning the invalid
representative solution can ensure the evolution along the direction
of cost reduction.

5 Case studies

5.1 Case 1

The proposed reconfiguration algorithm is applied to the typical
IEEE 33-bus system (Baran andWu, 1989) as shown in Figure 6. The
daily load curve is divided into 24 natural periods. The capacity of
the overhead transmission line is 10.5 MV A. TheWTs are located at
nodes 6 and 23. The PVs are located at nodes 24 and 31. The electric
price is 0.7$/kWh, operational cost of the switch is 10$ each time,
and maximum reconfiguration time within a day is three. According
to the principle of 3σ, when the confidence level is 99.73%, the
fluctuation range of the voltage is within 7%, and the branch power
limits must be satisfied. The population size of genetic algorithm
(GA) is 40. The cross rate and mutation rate of GA are 0.15 and 0.1,
respectively. The proportion of the representative solutions in each
population is 10%. The maximum evolution generation is 20.

The numerical simulations are implemented in MATLAB 2022b
with Intel® Core™ i5-8350U CPU. Figure 7 shows the saved times of
power flow calculation in the static reconfiguration of each interval.
The total number of reduced power flow calculations is 749, and the
proportion of the number of reduced power flow calculations in the
genetic algorithm is 31.21%, which improves the efficiency of the
static reconfiguration.

Figure 8 shows the comparison results of power losses in
different scenarios. Before the reconfiguration, the total energy
loss is 1,763.15 kWh and operational cost is 1,234.21$. After the
reconfiguration, the total energy loss is 1,212.20 kWh and
operational cost is 900.07$. The energy loss has decreased by
31.25%, and the operational cost has decreased by 25.74%. The
proposed DNDR algorithm reduces the energy loss and operational
cost effectively. When compared with power losses with and without
DGs, it can be concluded that both the DGs and network
reconfiguration play important roles in reducing power loss.

Figure 9 shows the comparison results of the lowest bus voltages
in different scenarios. Before the reconfiguration, the lowest bus
voltage is 0.9147 p.u. After the reconfiguration, the lowest bus
voltage is 0.9434 p.u. The proposed dynamic reconfiguration
algorithm avoids voltage violations.

Table 1 shows the reconfiguration results with and without
interval coordination. Table 2 compares the reconfiguration results
of different reconfiguration methods. In the reconfiguration results
without interval coordination, the energy loss is 1,212.20 kWh and
operational cost is 908.54$. In the reconfiguration results with
interval coordination, the energy loss is 1,214.39 kWh and
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operational cost is 900.07$. As the proposed dynamic coordination
algorithm considers the operational cost of switches, the daily
operational cost is less than that of the reconfiguration results
without interval coordination.

Table 3 shows the influence of nodal power fluctuations on the
lowest bus voltages. The traditional backward/forward sweep (BFS)
algorithm is used to compare the power flow based on the sensitivity
model (PFSM). The voltage error between the BFS and PFSM is no
more than 0.33%. The branch power error between the BFS and
PFSM is no more than 2.6%. It takes 60s to calculate power flow 100
times by BFS, and only 0.75s to calculate power flow 100 times by
PFSM. The comparisons of the calculation accuracy and
computation time prove the validity of the PFSM.

5.2 Case 2

The distribution system of the Taiwan Power Company (Wang
et al., 2018) shown in Figure 10 is tested. The system consists of
11 feeders, 83 normally closed switches, and 13 normally open
switches; the rated voltage is 11.4 kV and total active and reactive
power loads are 28,350 kW and 20,700 kVar, respectively. The
system is assumed to be three-phase balance in this work. The
wind generations are installed at nodes 6, 13, 17, 19, 31, 34, 52, 58,
71, 79, and 33. The photovoltaic power generations are installed at
nodes 7, 9, 12, 14, 21, 28, 45, 54, 64, and 75. The simulation
parameters are the same as that of Case 1, except for the
population size of the genetic algorithm that is 80.

Table 4 shows the reconfiguration results with and without
interval coordination in Case 2. Table 5 analyzes the reconfiguration
results of different reconfiguration methods. Through the proposed
reconfiguration algorithm, the total energy loss decreases from
4,915.25 kWh to 4,382.13 kWh and operational cost decreases
from 3,440.68$ to 3,157.49$. The lowest bus voltage increases
from 0.9313 p.u. to 0.9510 p.u. The proposed DNDR algorithm
improves the performance of the distribution networks. In the
reconfiguration results without interval coordination, the number
of switching operations is 11 and operational cost is 3,177.25$. In the
proposed reconfiguration algorithm with interval coordination, the
number of switching operations is nine and operational cost is
3,157.49$. The dynamic coordination among the different intervals
can reduce the number of switching operations to cut the
operational cost.

Figures 11, 12 show the comparative results of power loss and
node voltage before and after the dynamic reconfiguration. The
simulation results show that the proposed dynamic reconfiguration
method can effectively reduce the power loss and improve the
voltage levels when the loads are heavy. Moreover, the influences
of the DGs on power loss and node voltage are also considered.
Before reconfiguration, the lowest node voltages are increased from
0.9291 p.u. to 0.9313 p.u. After reconfiguration, the lowest node
voltages are increased from 0.9497 p.u. to 0.9510 p.u. The simulation
results show that the appropriate DGs can decrease the net loads,
reduce the power losses, and maintain the level of bus voltages.

6 Conclusion

This article presents a dynamic reconfiguration method of the
distribution network considering the stochastic variations of loads
and DG in power, and the following conclusions are drawn:

1) Both the power loss cost and switch operational cost are
considered in the proposed dynamic reconfiguration method.
The applied co-evolutionary algorithm can effectively coordinate
the reconfiguration schedules among different time intervals to
reduce the switch operational cost.

2) The effect of power fluctuation on the operation constraints is
considered to ensure operational security. The voltage sensitivity
models are used for PFCs, which can improve the computation
efficiency of the DNDR.
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