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Detection of per- and polyfluoroalkyl substances (PFASs) is crucial in
environmental mitigation and remediation of these persistent pollutants. We
demonstrate that time-of-flight secondary ion mass spectrometry (ToF-SIMS)
is a viable technique to analyze and identify these substances at parts per trillion
(ppt) level in real field samples without complicated sample preparation due to its
superior surface sensitivity. Several representative PFAS compounds, such as
perfluorooctanesulfonic acid (PFOS), perfluorobutanoic acid (PFBA),
perfluoropentanoic acid (PFPeA), perfluoheptanoic acid (PFHpA), and
perfluorononanoic acid (PFNA), and real-world groundwater samples collected
frommonitoring wells installed around at a municipal wastewater treatment plant
located in Southern California were analyzed in this work. ToF-SIMS spectral
comparison depicts sensitive identification of pseudo-molecular ions,
characteristic of reference PFASs. Additionally, principal component analysis
(PCA) shows clear discrimination among real samples and reference
compounds. Our results show that characteristic molecular ion and fragments
peaks can be used to identify PFASs. Furthermore, SIMS two-dimensional (2D)
images directly exhibit the distribution of perfluorocarboxylic acid (PFCA) and
PFOS in simulated mixtures and real wastewater samples. Such findings indicate
that ToF-SIMS is useable to determine PFAS compounds in complex
environmental water samples. In conclusion, ToF-SIMS provides simple sample
preparation and high sensitivity in mass spectral imaging, offering an alternative
solution for environmental forensic analysis of PFASs in wastewater in the future.
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1 Introduction

Per- and polyfluoroalkyl substances (PFASs) are a group of manmade synthetic organic
fluorinated substances. They have been widely used in industrial and commercial
applications for more than 50 years. Representative examples of PFASs applications
include surfactants, flame retardants, food packaging, and non-stick coating for cooking
utensils (Rahman et al., 2014; Ciccotelli et al., 2016; Monge Brenes et al., 2019; Alves et al.,
2020; Clarity et al., 2021). PFASs are ubiquitous in the environment and they have become a
global pollution problem, especially perfluorooctanoate (PFOA) and perfluorooctanoate
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sulfonate (PFOS) due to their persistence, bio-accumulative
properties, and toxicities even at low concentrations in the
environment (Ciccotelli et al., 2016; Kucharzyk et al., 2017).
More than 5,000 individual PFASs have been found in waters,
solids, and fish; and many of them are potential precursor
compounds of PFOA and PFOS (Chan et al., 2009; Llorca et al.,
2009; Xiao, 2017; Dauchy, 2019; Abunada et al., 2020; Chohan et al.,
2021; Lassalle et al., 2021). Therefore, studies on PFASs, including
PFOA and PFOS, are extremely important to understand the
distribution, transformation, and ultimately removal of these
persistent organic pollutants from the natural water environment.

PFASs are found in different aqueous matrices including
surface water, groundwater, drinking water, lake and costal
water, or sea waters (Rayne and Forest, 2009; Crone et al.,
2019). Pre-treatment methods, such as filtration and
centrifugation, were used for analysis (Nzeribe et al., 2019; Vu
andWu, 2022). At present, the main techniques used to analyze the
distribution and compositions of PFASs in the natural
environment, food, animal’s blood, or tissue are gas
chromatography mass spectrometry (GC-MS) or tandem mass
spectrometry (GC-MS/MS), high performance liquid
chromatography mass spectrometry or tandem mass
spectrometry (HPLC-MS or HPLC-MS/MS), and ultra-high
performance liquid chromatography mass spectrometry or
tandem mass spectrometry (UPLC-MS or UPLC-MS/MS)
(Capriotti et al., 2013; Bach et al., 2016; Mulabagal et al., 2018;
Groffen et al., 2021; Qi et al., 2021). These methods are
quantitative; however, sample preparation can be challenging.
PFAS identification depends heavily on standards and reference
chemicals. For example, fluorotelomer alcohols (FTOHs) were
often determined by GC-MS, and trace levels of FTOHs are
detectable in river water, influent and effluent wastewater
samples using silica normal-phase solid phase extraction (SPE)
(Portoles et al., 2015; Bach et al., 2016). HPLC and UPLC-MS/MS
are currently widely used to determine PFASs (Capriotti et al.,
2013; Mulabagal et al., 2018). In addition to these methods, LC-
MS/MS is recommended by the United States Environmental
Protection Agency (EPA) for PFAS analysis (Benskin et al.,
2007; Stramenga et al., 2021). Specifically, Liquid
Chromatography Quadrupole Time of Flight tandem Mass
Spectrometry (LC-QToF/MS) is used to analyze and identify

PFAS in serum samples of firefighters who are exposed to fire
extinguishing agents containing PFASs (Rotander et al., 2015).
However, these methods need a complex pretreatment procedure
to extract or transfer PFASs as derivatives before analysis.
Therefore, new analytical approaches that offer easy sample
preparation and sensitive detection are attractive to the
community of PFAS research and environmental protection and
restoration.

Unlike the commonly usedMS tools as a bulk analysis approach,
time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a
powerful, high-resolution surface analysis tool. It provides sensitive
spectral mapping of molecular, elemental, and isotopic
characteristics of solid samples (Fu et al., 2017; Čižinauskas et al.,
2017). Because SIMS measurements have superior surface
sensitivity, only a minute amount of sample like microgram or
less is needed. Therefore, it does not demand huge amount of mass
to perform an analysis, and it often used in trace analysis almost
nondestructively. Another attractive feature of SIMS is high mass
resolution, often several thousand or ten thousand of relative mass
accuracy of detected peaks could be obtained compared to other
bulk MS approaches (Gilmore and Seah, 2000; Gilmore et al., 2005).
Thus, it offers comprehensive information and sensitive analysis of
specimens with spatial distribution in one-dimensional (1D) spectra
as well as 2D and 3D mass spectral images (Yu, 2020). Although
ToF-SIMS is semi-quantitative, the sample preparation and analysis
are simple and fast, yet offering high mass accuracy and high mass
resolving power of organic molecules (Touboul et al., 2005;
Vickerman and Winograd, 2015; Wei et al., 2017; Zhang et al.,
2019b). Full spectral (i.e., elemental, molecular, isotopic)
information is available due to the parallel collection nature of
ToF-SIMS (Sodhi, 2004; Smentkowski et al., 2007; Fisher et al.,
2016). Moreover, ToF-SIMS is known for its applications in forensic
analysis, namely, sensitive detection of spectral signatures in minute
specimens due to its superior surface sensitivity (Szynkowska et al.,
2013; Terlier et al., 2020; Szynkowska-Jóźwik et al., 2021). Also, the
contrast in PFASs between surface and deeper soil samples could be
more pronounced in long-chain congers than shorter chains
(Washington et al., 2010), which presents opportunities for
applications of SIMS. Amendment materials such as clay and
resin have been developed and used to treat PFAS pollution
(Nzeribe et al., 2019; Anderson et al., 2021; Kurwadkar et al.,
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2022). Once loaded, the fate and transformation of PFAS need
investigation (DOD, 2022). These are the primary drivers of
knowing the spatial resolution of PFAS in a material. ToF-SIMS
potentially provides a new imaging solution to addressing the PFAS
challenges.

In this work, we demonstrate that ToF-SIMS can be used for
rapid analysis and identification of PFASs using several
representative PFAS compounds as examples, and their
corresponding pseudo-molecular ion and fragment peaks are
observable in this work. Limit of detections (LODs) of
representative PFAS molecules, namely, PFPeA and PFOS, were
determined. Additionally, 2D imaging offers the possibility to
visualize PFASs spatial distribution in a mixture, identifying
short-chain and long-chain components in a mixture. Moreover,
real-world groundwater samples collected in a wastewater treatment
plant (WWTP) were analyzed to demonstrate the sensitive ToF-
SIMS detection and identification of PFAS compounds. Our results
present the first experimental evidence that ToF-SIMS can be a
useful tool for analysis of trace level of PFASs pollutants in
laboratory-prepared simulated mixtures as references and in field
collected groundwater samples as validation.

2 Materials and methods

2.1 Chemical agents

Four perfluorocarboxylic acid (PFCA) compounds including
perfluorobutanoic acid (PFBA, 95%), perfluoropentanoic acid
(PFPeA, 97%), perfluoheptanoic acid (PFHpA, 99%),
perfluorononanoic acid (PFNA, 97%), and perfluorooctane
sulfonate (PFOS, ~40% in H2O) were acquired from Sigma-
Aldrich and they were used as reference materials. Additional
descriptions of all chemical reagents and the sample preparation
protocol were summarized in Supplementary Table S1.

2.2 Field groundwater sample collection

The field samples were collected from a municipal WWTP
located in Southern California. The MW-6 and MW-5
groundwater samples were collected from two groundwater
monitoring wells installed around the WWTP, using dedicated
Groundfos submersible pumps, stored in polypropylene sample
bottles with Teflon®-free caps, and in compliance with the PFAS
sampling guidance document published by the California State
Water Resources Control Board (SWRCB). The PFASs of the field
samples were determined to be at the ppt level using the EPA
recommended Draft Method 1633 (EPA, 2022) by a commercial
certified by the Department of Defense laboratory.

2.3 Sample preparation

Several reference PFAS chemicals, including PFOS, and
groundwater samples were prepared by simply drying the liquid
mixtures on clean 1 × 1 cm2 silicon (Si) wafer chips after depositing
25 µL of the liquid containing PFAS chemicals on the clean Si chip

under ambient conditions (Wei et al., 2017; Fu et al., 2018; Sui et al.,
2018). Samples were dried in a laminar flow and protected under
Parafilm prior to analysis.

2.4 ToF-SIMS

A ToF-SIMS V spectrometer (IONTOF GmbH, Münster,
Germany) was used to analyze representative PFAS reference
chemicals and PFAS-containing groundwater samples. The SIMS
analysis was performed using a 25 keV pulsed bismuth (Bi3

+)
primary beam ion under high vacuum of 10–8 mbar during
measurements. The Bi3

+ primary ion beam scanned over a 500 ×
500 μm2 area for field water samples and 200 × 200 μm2 area for
reference chemicals, respectively, with a resolution of 128 by
128 pixels. The pulsed current of Bi3

+ was set at 0.54 pA at a
repeating frequency of 10 kHz. Each spectrum was acquired for
100 scans. The primary ion doses in all measurements were lower
than the static limit, and the damage artifacts resulting from the Bi3

+

primary ion beamwas negligible. Mass resolution was in the range of
3000–7000, varying from sample to sample depending on the sample
roughness. At least five positive and five negative ion replicate
spectra were collected at various locations randomly for each
sample including groundwater samples.

ToF-SIMS spectral analysis and 2D image reconstruction were
performed using the IONTOF SurfaceLab 7 software. Mass spectra
were calibrated using CH+, CH2

+, CH3
+, C2H5

+, C3H5
+, Si2C5H15O

+,
and Si3C7H21O2

+ in the positive ion mode and CH−, C2
−, C2H

−,
C3H

−, and SiO2
− in the negative ion mode, respectively. Results were

exported and plotted in Igor 8.0. Interference peaks such as Si were
removed before running principal component analysis (PCA). Peaks
were selected using spectral overlay. Selected peaks were used in
PCA using Matlab (R2020a, MathWorks, Inc., United States). SIMS
spectral data were treated by normalization to the total ion intensity
of selected peaks, square root transformation, and mean-centering
prior to performing spectral PCA. More details were available in
previous reports (Ding et al., 2016; Zhang et al., 2019a; Wei et al.,
2020).

3 Results and discussion

3.1 LOD determination

It is assumed that the instrument response counts (y) are linearly
related to the standard concentration (x) for a limited range of
concentration when there is a linear calibration curve (Armbruster
and Pry, 2008). This model is used to compute the LOD. The LOD
can be expressed as LOD � 3Sa/b. Sa is the standard deviation of the
response and b the slope of the calibration curve. The response can
be estimated by the standard deviation of either y-residuals, or y
intercept, of regression lines (Shrivastava and Gupta, 2011; Yu et al.,
2020). The LODs were estimated based on the data and linear
regressions fits (Supplementary Figures S1, S2), when using SIMS to
quantify low concentration (≤1% usually) species (Médard et al.,
2002; Coullerez et al., 2003). It is worth noting that six different
concentrations of PFOS and PFPeA solutions were analyzed, and a
linear relationship was obtained in the low concentration range (see
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Supplementary Figure S1). This result indicates that the assumption
of a linear relationship between signal intensities and concentrations
is reasonable. The LODs of PFPeA and PFOS were determined to be
28 and 5.6 ppm, respectively, using 25 μL sample deposition and the
standard bunch mode spectral collection conditions.

The LOD can be calculated as LOD � 3Sa/b. Using this formula,
the LOD is determined to be 27.97 mg/L for m/z− 168.994 and
5.59 mg/L for m/z− 268.980. The limit of quantification (which they
call QL, the quantitation limit) LOQ can be calculated as
LOQ � 10Sa/b. Using this formula, the LOQ is determined to be
93.23 mg/L for m/z− 168.994 and 18.63 mg/L for m/z− 268.980. The
LODs of representative key peaks determined using fitting results
(Supplementary Figures S1, S2) and the minimal concentrations
used in SIMS analysis, aka LOQs were listed in Supplementary Table
S2. Specifically, the LOQs are 2.50 mg/L for both m/z− 168.994 and
m/z− 268.980 based on experimental values.

The LODs can be improved by increasing the secondary ion
yields via either wider pulse width or longer analysis frames. Recent
results have shown at least an order of magnitude increase in LODs
using this approach (Coullerez et al., 2003; Klump et al., 2018).
Sample properties, such as cohesive energy and density, could
influence the LOD or surface sensitivity of the primary ion
source due to the amount of surface erosion (Muramoto et al.,
2012). Method development and optimization is needed to improve
the LOD of the target PFAS analytes using ToF-SIMS in the future.

The estimated LODs does not seem to be low as what the more
developed LC-MS/MS methods could offer. However, real field water
sample analysis results, to be discussed below in more details, show
that the SIMS LODs are equivalent to the ppt level LODs from LC-
MS/MS. The surface sensitivity of ToF-SIMS has been widely used in
forensic analysis (Lee et al., 2016; Cai et al., 2017; Terlier et al., 2020),
such sensitivity is not easily translatable to an equivalent LODs in
terms of the conventional definition of bulk samples. Regardless,
because the forensic surface analysis capabilities inherent of ToF-
SIMS, trace PFASs can be detected using simple sample preparation
and a small amount (i.e., microliter) of water samples.

3.2 Repeatability and relative mass accuracy
of PFAS peak detection

During SIMS spectral analysis, relative mass accuracy, defined as
Δm = Abs (106 × (m/z—obs − m/z—the)/m/z—the) in ppm, and
measurement repeatability shown as standard deviation (S.D.) are
key factors for obtaining reliable peak identifications. Peak
identifications of analyzed PFAS compounds are summarized in
Table 1 and Supplementary Table S2. The relative standard
deviation (RSD%) is calculated as peak area S.D. divided by the
mean peak area. The RSD% results of representative peaks based on
the PFBA and PFOS samples are listed in Supplementary Tables
S3–S5, respectively. The RSDs% are generally less than 2.5% for
PFOS and PFBA, indicating good reproducibility.

The values of relative mass accuracy of most peaks are less than
30 ppm in the negative mode and less than 100 ppm in the positive
mode, suggesting that the peak identification is dependable. The
standard deviations of most peak areas are between 10% and 20%
among all parallel samples. The standard deviations of peak height
are larger than those of peak areas. Using peak area for peak

identification would be more dependable in measurement
evaluation because the intensity is spread over the mass scale due
to imperfect energy compensation and topography effects for a
specific ion. Therefore, the peak height consequently gives a smaller
value with poorer repeatability. Thus, the peak area standard
deviation is better to describe SIMS spectral repeatability. The
PFAS measurement repeatability results shown in this work are
satisfactory for static ToF-SIMS as a semi-quantitative analysis
technique (Gilmore and Seah, 2000; Gilmore et al., 2005;
Gilmore et al., 2007). Most importantly, SIMS offers sensitive
and reproducible detection of characteristic ions and ion
fragments of PFAS readily as shown in Supplementary Figures
S3, S4.

3.3 Representative PFAS molecular
identification

The schematic of spectral and 2D image analysis using ToF-
SIMS is depicted in Figure 1. The volume of PFAS reference and
groundwater samples is 25 μL and the sample can be easily
prepared followed with analysis in ToF-SIMS without
additional sample treatment. This method is simple in
comparison with other techniques such as GC-MS/MS and
LC-MS/MS. The latter requires extraction with organic
solvents or pretreatment before analysis (Bach et al., 2016;
Dauchy, 2019). ToF-SIMS is a mass spectral imaging
technique, and both spectra and images are acquired during
measurements. Characteristic peaks for each PFAS reference
materials are observed in ToF-SIMS mass spectra (See Table 1
and Supplementary Table S2). Moreover, 2D images give direct
visualization of the distribution of PFAS components, like the m/
z− 268.980 C5F11

− and m/z− 218.986 C4F9
− in a mixture. This

feature of spatial distribution of different components is
especially appealing in studying complex PFAS mixtures.

To assure the precision of SIMS spectral measurements, at least
five repetitions were acquired for every PFAS reference material and
real-world samples in the positive and negative mode, respectively.
Good repeatability is illustrated in Supplementary Figures S3, S4.
Figure 2 depicts ToF-SIMS spectral comparison of long-chain and
short-chain PFASs, including PFBA, PFPeA, PFHpA, PFNA, PFOS,
two mixtures containing PFBA and PFOS as well as PFPeA and
PFOS, and the Si wafer control in the mass range of m/z− 0–500 in
the negative mode. Additionally, the positive spectral comparisons
are depicted in Supplementary Figure S5.

Three main spectral results are shown in Figure 2. First, PFASs,
including several representative PFCA compounds and PFOS, are
fluorinated compounds. The fluoride ion peak, m/z− 18.999 F−, was
observed with much higher intensities in all samples, indicating the
detection of fluorine fragments. This finding shows the convenience
of direct fluoride detection using SIMS compared to other bulk
conversion methods (McDonough et al., 2019; Schultes et al., 2019).
Second, typical pseudo-molecular ions [M-H]− peaks were observed
and identified for each PFAS reference compound in the negative
mode (Table 1). Specifically, these ions arem/z− 212.968 C4F7O2

− for
PFBA, 262.894 C5F9O2

− for PFPeA, 362.937 C7F13O2
− for PFHpA,

462.942 C9F17O2
− for PFNA, and 498.914 C8F17SO3

− for PFOS
(Figure 2), respectively. As to the two mixtures consisting of
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PFBA and PFOS and PFPeA and PFOS, the corresponding
molecular ions peaks (i.e., m/z− 212.968 C4F7O2

− and
498.914 C8F17SO3

−; 262.894 C5F9O2
− and 498.914 C8F17SO3

−) are
observed in Figure 2B, respectively.

Additionally, characteristic PFASs fragment ion peaks were
observed and identified (Table 1). Figure 2A shows that the main
fragment ion peaks for PFBA are m/z− 68.999 CF3

−,
118.987 C2F5

−, and 168.994 C3F7. Some higher intensity mass
peaks (i.e., m/z− 81.020, 99.983, 169.034) belong to the fragments
of PFBA according to the NIST WebBook reference mass spectra
(Linstrom, 1997; NIST, 2023). However, they cannot be identified
according to present literature. The pseudo-molecular peak m/z−

212.979 of PFBA is evident in the spectrum. PFPeA, PFHpA, and
PFNA share common fragments peaks with PFBA, including m/
z− 68.999 CF3

−, 118.987 C2F5
−, and 168.994 C3F7

−, because of
similar molecular structures. In contrast, some peaks show
relatively lower intensity possibly due to fragmentation
difference among compounds. With the increase of molecular
weight of reference PFAS chemicals, a series of fragments were
observed, such asm/z− 218.986 C4F9

− (Figure 2B), 318.962 C6F13
−

(Figure 2B), and 368.883 C7F15
− (Figure 2B). Similarly, some

unidentified peaks (e.g., m/z− 81.020, 96.979, 120.952) are
representative in PFPeA fragments. Peaks, such as m/z−

61.001, 76.974, 85.001, 112.992, 155.016, 220.933, and 242.943,
come from PFNA fragments according to the NIST WebBook
(Linstrom, 1997).

From the SIMS spectral comparison, representative fragment
ion peaks from PFOS were observed and identified in Figure 2, such
as m/z− 79.969 SO3

−, 98.956 FSO3
−, 129.954 CF2SO3

−,
179.951 C2F4SO3

−, and 229.949 C3F6SO3
−. In the lab-prepared

mixture samples, these peaks have significant occurrences with
higher mass counts due to the presence of PFOS. Previous
analyses using HPLC-MS/MS also report these characteristic
peaks from PFOS (Berger et al., 2004). Higher intensity peaks,
such as m/z− 310.954, 361.023, and 460.923, without
identification might be related to PFOS, because these peaks
appear in the spectra of PFOS and the two-component mixtures
containing PFOS. The signal to noise ratios (SNRs) for the labeled
ions with low relative abundance in the spectra, such as m/z−

118.987, 212.986, 268.980, 362.937, 368.833, and 419.984, are
3970, 124, 206, 71, 323 and 27, respectively, which indicate that
these ions exist in the PFAS samples with reasonable signal
intensities.

3.4 PFAS mixture chemical spatial
distribution

Spectral PCA was conducted to confirm the observation of
spectral analysis of representative two-component mixtures,
including PFBA and PFOS and PFPeA and PFOS, respectively,
and to further elucidate characteristic PFAS peaks. Figs. S6a − S6b

TABLE 1 Possible peak assignment of PFOS and PFBA using ToF-SIMS in the negative mode.

m/z−obsa m/z−theb Δmc (ppm) Suggested formula References

68.999 68.995 3.70 CF3
− Berger et al. (2004)

98.956 98.955 20.11 FSO3
− Llorca et al. (2009), Mulabagal et al. (2018)

118.987 118.992 18.31 C2F5
− Berger et al. (2004)

129.954 129.954 18.67 CF2SO3
− Berger et al. (2004)

168.994 168.989 19.34 C3F7
− Llorca et al. (2009)

179.951 179.950 16.52 C2F4SO3
− Berger et al. (2004)

212.968 212.979 10.79 C4F7O2
− Navarro et al. (2011), Mulabagal et al. (2018)

218.986 218.986 10.03 C4F9
− Llorca et al. (2009)

229.949 229.947 11.18 C3F6SO3
− Berger et al. (2004)

268.980 268.982 3.37 C5F11
− Langlois et al. (2007)

318.962 318.979 5.34 C6F13
− Navarro et al. (2011), Mulabagal et al. (2018)

362.937 362.969 18.49 C7F13O2
− Navarro et al. (2011), Mulabagal et al. (2018)

368.833 368.976 17.01 C7F15
− Berger et al. (2004)

398.915 398.936 12.44 C6F13SO3
− Chan et al. (2009)

418.964 418.973 9.01 C8F17
− Berger et al. (2004), Berger and Haukås (2005), Navarro et al. (2011), Mulabagal et al. (2018)

429.937 429.934 19.94 C7F14SO3
− Berger et al. (2004)

462.942 462.963 2.46 C9F17O2
− Navarro et al. (2011), Mulabagal et al. (2018)

498.914 498.930 32.07 C8F17SO3
− Berger et al. (2004), Berger and Haukås (2005), Mulabagal et al. (2018)

am/z−obs: observed mass to charge ratio in the negative ion mode.
bm/z−the: theoretical mass to charge ratio in the negative ion mode.
cΔm: = Abs (106 × (m/z−obs-m/z−the)/m/z−the) (expressed in ppm) (Gilmore and Seah, 2000).
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depict the scores plots of principal component one (PC1), PC2, and
PC3; and Figs. S6c − S6d give the corresponding loadings plots in the
negative ion mode. Representative pseudo−molecular ion peaks of
PFBA, PFPeA, and PFOS have high loadings in the loadings plots.
They act as key contributors separating selected PFASs as expected.
For example, PFBA, PFHpA, and PFNA are situated in the
PC1 positive score quadrant (Supplementary Figure S6A),

suggesting that their molecular peaks should have positive
PC1 loadings. The PCA results also demonstrate that molecular
peaks, such as m/z− 212.968 C4F7O2

−, 362.937 C7F13O2
− and

462.942 C9F17O2
− corresponding to PFBA, PFHpA, and PFNA in

positive PC1 loadings, respectively, are main contributors in the
separation among different samples (Supplementary Figure S6C).
PC1 cannot separate PFPeA from other samples, while PC2 and

FIGURE 1
(A) A ToF-SIMS schematic showing PFAS analysis in mass spectral (B) and 2D imaging (C) mode.

FIGURE 2
ToF−SIMS spectral comparison of seven reference PFASs samples and clean Si wafer in the mass range of (A)m/z− 0–150 and (B)m/z− 150–500 in
the negative ion mode. Red color mark indicates main fragment ion peaks and pseudo-molecular peaks in each spectrum. Norm. Int. stands for
Normalized Intensity. The peaks are marked in integers for visual convenience. More details are seen in Table 1 and Supplementary Table S2.
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PC3 can with PFPeA residing in the PC2 positive scores plot
(Supplementary Figure S6A) and PC3 negative scores plot
(Supplementary Figure S6B). The molecular peak of PFPeA m/z−

262.894 C5F9O2
− is situated in PC2 positive (Supplementary Figure

S6D) and PC3 negative loading plots (Supplementary Figure S6E).
The mixture substances and PFOS are only separated from other
samples by PC1 due to the common component PFOS, and
PC1 loadings plots (Supplementary Figure S6C), and the
molecular peak of m/z− 498.914 C8F17SO3

− is situated in
PC1 negative.

Figure 3 depicts the normalized 2D image comparison of the
spatial distribution of molecular ion peaks among the single
components and mixtures in the negative ion mode. The dark
sub-regions in Figures 3B,C indicate low ion counts. Detection of
PFAS mixture compounds without further sample treatment
shows selectivity of ToF-SIMS as a technique to analyze
PFASs. Figures 3A−C represents the 2D normalized images
and distributions of key peaks of the single components and
the two-component mixture consisting of PFOS and PFBA.
Representative molecular ion peaks of m/z− 212.968 PFBA are
in red and m/z− 498.914 PFOS in green. PFOS shows a higher
molecular ion peak intensity than PFBA. It is not surprising that
the PFOS is predominant in the mixture, in agreement with
findings in the spectral analysis. Similarly, the second mixture of
PFPeA and PFOS (Figures 3D−F) shows consistent results as the
other mixture in Figures 3A–C. The normalized intensity of the
molecular ion peakm/z− 498.914 PFOS is higher than that ofm/z−

262.894 PFPeA. 2D SIMS images give direct visualization of main
components as an attractive feature in mass spectral imaging,
showing long-chain and short-chain PFASs spatial distribution.
This is a unique SIMS feature that bulk MS analysis could not
provide.

3.5 Sensitive detection of PFAS in real−world
groundwater

Figure 4A−b show the spectral comparison plots of real
groundwater samples. Fluorinated compounds, such as m/z−

168.994 C3F
−, 268.980 C5F11

−, and 368.833 C7F15
−, can be

detected in two groundwater samples named MW-5 and MW-6,
respectively. In addition, characteristic pseudo-molecular ions [M-
H]− peaks were observed and identified for the groundwater samples
in the negative mode, such as m/z− 262.894 C5F9O2

− and m/z−

362.937 C7F13O2
−. Furthermore, fragment ion peaks with

relatively higher masses from PFOS, like m/z− 179.951 C2F4SO3
−,

were observed in groundwater samples. This finding indicates that
ToF-SIMS is an extremely sensitive technique for the PFPeA and
PFOS detection from the environmental water sample. Interestingly,
the representative normalized 2D images of the PFASs related peaks,
including m/z− 218.986 C4F9

−, m/z− 268.980 C5F11
−, m/z−

318.962 C6F13
−, and m/z− 368.833 C7F15

−, were observed
(Figure 4C), giving direct evidence of PFAS detection. The
polluted ground water containing PFAS was in the form of a
slurry. Dilution was used to dissipate the particles more evenly
on the Si substrate. The mass ion spatial distribution depicted in
Figure 4 gives a representation of ions of interest in the complex
mixture and their relative abundance to each other in a small

volume, namely, several microliters were used to prepare the
sample. The relative abundances of the selected ions are different
between MW5 and MW6, which were collected from different wells
in a polluted site.

Supplementary Figure S8 depicts the comparisons of SIMS 2D
images of m/z− 219, 269, and 363 between the Si substrate (a–c)
and the ground water sample MW-6 (d–f), respectively. Unlike
the 2D normalized images in Figure 3, 4 in the main text, these
results are shown in the measurement counts. The counts of the
real-world sample MW-6 are on the order of 104 for peaks of
interest. Such intensity indicates that the detected peaks are real
and not noise. Comparable results of MW-5 are depicted in
Supplementary Figure S9. Spatial distribution of PFAS is
important because there is a huge interest to understand the
PFAS laden materials to address grand challenges in
understanding the fate PFAS degradation and environmental
restoration. First, having the PFAS distribution will help
answer the question of where PFAS compounds reside in the
PFAS-laden materials, e.g., clay or resin as amendment. Liquid
extraction can tell you the amount of PFAS but not the location.
Also, the ability to offer chemical maps of PFAS and its PFAS
degradation products in the PFAS loaded amendments would be
attractive to decipher the reaction pathways. Again, liquid
extraction and bulk LC-MS or GC-MS analyses could tell you
how much not where and how relative to the original location of
the PFAS.

Selected peak spectral PCA was conducted to confirm the
observation of spectral analysis of laboratory prepared mixtures
and real-world groundwater samples. As shown in Figure 5A,
PC1 and PC2 can explain more than 66% of all data. PFPeA,
PFBA, PFOS, mixture of PFOS and PFBA, and mixture of PFOS
with PFPeA are situated in the PC1 positive score quadrant,
suggesting the molecular peaks have high positive PC1 loadings,
includingm/z− 68.999 CF3

−,m/z− 98.956 FSO3
−,m/z− 129.954 CF2SO3

−,
m/z− 229.949C3F6SO3

−, andm/z− 498.914C8F17SO3
−. PC2 separates the

PFHpA, PFNA, and PFOS from the two groundwater samples
(i.e., MW-5 and MW-6), PFPeA, PFBA, PFOS + PFBA, and
PFOS + PFPeA. The characteristic peaks in the PC2 negative
loadings are m/z− 268.980 C5F11

−, m/z− 368.833 C7F15
−, and m/z−

429.937 C7F14SO3
−. This finding is consistent with the spectral

analysis results as discussed before. In addition, Figure 5B shows the
PCA results of PC2 vs. PC5. PC5 separates the two groundwater
samples containing PFASs, and the relevant characteristic peaks are
shown in the loadings plots, for example, the peak m/z−

262.894 C5F9O2
− has a higher loading in PC5 positive, and m/z−

362.937 C7F13O2
− has a higher loading in PC5 negative. Loadings

plots of PC1, PC2, and PC5 are shown in Figures 5C–E respectively.
The ppt level concentrations of approximately 20 ppb of

PFASs in the field groundwater samples were verified based on
the commercial laboratory analysis using LC-MS/MS. Additional
comparison and quantification will be investigated in the next
step. Thus, our results demonstrate that ToF-SIMS can detect
PFAS at concentrations in ppt level using micrometer of real
water samples, i.e., significantly lower than the estimated LODs.
Furthermore, our finding show that ToF-SIMS has the potential
to tackle with the challenge of determining PFAS contamination
in drinking water and groundwater using the forensic analysis
(Zhou et al., 2016; Terlier et al., 2020) and source tracking
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FIGURE 3
Comparison of normalized 2D ToF-SIMS images of pseudo−molecular ion distributions from the single component PFAS sample and the
two−component mixture: (A) PFBAm/z− 212.968, (B) PFOSm/z− 498.914, (C) PFBA + PFOSm/z− 212.968, 498.914; (D) PFPeAm/z− 262.894; (E) PFOSm/
z− 498.914; and (F) PFPeA + PFOS m/z− 262.942 and 498.914, respectively. 2D images are normalized to the total ion counts for ease of comparisons.

FIGURE 4
ToF−SIMS spectral results of (A)MW-6 and (B)MW-5 real world groundwater samples from the field. Normalized 2D SIMS images of selected ions of
MW-6 (C) and MW-5 (D) containing PFASs. 2D images are normalized to the total ion counts for ease of comparisons.
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capabilities (Kempson et al., 2003; Héberger, 2008; Kind and
Fiehn, 2010). The latter is a topic that is worth of additional
investigation.

PFAS contamination in groundwater and soil is a major concern
in the environment (Nzeribe et al., 2019; Anderson et al., 2021;
Kurwadkar et al., 2022). Concerns over investigation-derived waste
(IDW) continues to grow (Singh et al., 2019; Lenka et al., 2021;
Longendyke et al., 2022). IDW refers to water, soil and drill cuttings
produced during well installations and sampling activities performed
during contaminated site investigations. Recently, the memorandum
of Temporary Prohibition on Incineration of Materials Containing
PFASs calls for a better understanding of PFAS-laden materials
(DOD, 2022). Our results show that ToF-SIMS can provide mass
spectra in one-dimension and 2D maps of PFAS as well as PFAS
dissociation products. Therefore, ToF-SIMS, as an imaging technique,
offers a unique and much needed solution to analyzing and imaging
PFAS compounds directly on the surface or substrate of the PFAS
laden materials, unlike the bulk LC-MS/MS or GC-MS/MS
approaches. The latter methods require sample preparation and
extraction, which destroys the PFAS-laden materials.

4 Conclusion

In conclusion, we demonstrate that ToF-SIMS can be used to
analyze persistent PFAS pollutants with simple sample preparation
due to its superior surface sensitivity. Characteristic pseudo-
molecular ion peaks of several representative PFASs were
observed. In both simulated mixture samples and real
groundwater samples, 2D visualization of PFASs, including
PFOS, component distributions are possible. Overall, our results
show that ToF-SIMS is viable to detect PFASs in groundwater using
a minute amount of liquid sample with easy sample preparation.
SIMS as a mass spectral imaging technique is attractive due to its
simplicity in sample preparation, small volume of samples, and
efficiency of sample analysis. More importantly, the forensic
potential of ToF-SIMS in detecting trace amount of PFASs in
wastewater is appealing in understanding PFAS contamination in
drinking water and groundwater and pollutant source tracking.
More environmental water samples are warranted for analysis in
ToF-SIMS to provide a rich reference library of data for its future
applications to better determine PFASs in the environmental water.

FIGURE 5
Selected peak spectral PCA results in the negative mode: (A) scores plot of PC1 vs. PC2, (B) scores plot of PC2 vs. PC5, (C) PC1, (D) PC2, and (E)
PC5 loadings plots.
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