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Contact-rich robotic manipulation tasks such as assembly are widely studied

due to their close relevance with social and manufacturing industries. Although

the task is highly related to vision and force, current methods lack a unified

mechanism to e�ectively fuse the two sensors. We consider coordinating

multimodality from perception to control and propose a vision-force curriculum

policy learning scheme to e�ectively fuse the features and generate policy.

Experiments in simulations indicate the priorities of our method, which could

insert pegs with 0.1 mm clearance. Furthermore, the system is generalizable to

various initial configurations and unseen shapes, and it can be robustly transferred

from simulation to reality without fine-tuning, showing the e�ectiveness and

generalization of our proposed method. The experiment videos and code will be

available at https://sites.google.com/view/vf-assembly.

KEYWORDS

contact-rich manipulation, multimodal perception, sensor fusion, curriculum learning,
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1. Introduction

In recent years, there has been a growing interest in developing advanced robotic systems

capable of performing complex assembly tasks (Sergey et al., 2015; Oikawa et al., 2021;

Spector and Zacksenhouse, 2021). These tasks often involve intricate manipulation of objects

in contact-rich environments, requiring the robot to possess a high degree of dexterity and

adaptability. The success of contact-rich assembly tasks relies on a combination of accurate

perception, precise control, and intelligent decision-making. Robots must be equipped with

sensory capabilities that enable them to perceive and understand their environment, such as

vision systems that capture high-resolution images or depth maps (Morrison et al., 2019;

Andrychowicz et al., 2020; Zeng et al., 2021). Additionally, force perception and control

mechanisms play a crucial role in managing the physical interaction between the robot and

the objects, ensuring gentle and accurate manipulation (Raibert and Craig, 1981; Whitney

et al., 1982; Hogan, 1984; Khatib, 1987).

While significant progress has been made in the utilization of unimodal approaches,

focusing solely on vision or force (Chhatpar and Branicky, 2001; Tang et al., 2016;

Bogunowicz et al., 2020; Stevŝić et al., 2020; Xie et al., 2023), the integration of these

modalities presents a compelling opportunity for robots to exploit the complementary

nature of vision and force information. By integrating these modalities, robots can enhance

their perception and control capabilities, enabling them to adapt effectively to uncertain

and dynamic environments. There are two primary approaches to integrating these two
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modalities: sensor-based controller integration and sensory data

fusion (Hosoda et al., 1996). Firstly, visual servoing control and

force control are designed separately to form a result scheme

capable of coordinating two sensors, and a hybrid structure of

sensor-based controllers is built accordingly. Gao and Tedrake

(2021) extract the key point representation of the object with

a visual detector and then command the robot to the desired

pose with the force controller. However, this decoupling method

of pose control and force perception ignores the fact that the

contact force aroused during the interaction helps to localize the

target pose and may enhance the performance of the control

scheme. Secondly, given the prioritization of external sensor-based

controller coordination over sensory data coordination during the

perception phase (Hosoda et al., 1996), this kind of method remains

underdeveloped until the emergence of data-driven methodology.

Thismethodology facilitates the fusion ofmodalities, irrespective of

their individual characteristics, and has sparked a surge of interest

in numerous studies focusing on robotics perception (Van Hoof

et al., 2016; Lee et al., 2020a; Song et al., 2021; Zhao et al., 2021;

Spector et al., 2022).

To overcome the limitations of the aforementioned existing

methods, we consider a holistic approach to unifying the perception

and control modeling process for contact-rich assembly tasks.

Specifically, a novel robotic framework based on multimodal

fusion and curriculum learning is proposed to improve the

performance of contact-rich policy generation end-to-end. Firstly,

multimodal perception (i.e., vision and force) are considered to

extract multimodal fusion features. Next, we employ reinforcement

learning techniques (Sutton and Barto, 2018) to generate both

motion and force commands reactive to the multimodal features.

For efficient multimodal policy learning, our method includes a

two-step vision-force curriculum learning (CL) scheme (Bengio

et al., 2009), allowing agents to learn from a curriculum of tasks

that progress in complexity and difficulty. The acquired policy

is then implemented by a Cartesian motion/force controller, an

innovation from our prior work (Lin et al., 2022), designed to

guarantee compliant movements amidst uncertain contacts.

To acquire the multimodal policy, we propose a simulated

assembly environment based on MuJoCo (Todorov et al., 2012),

where the multimodal fusion and policy generation mechanisms

are developed. After learning the multimodal policy in simulation,

we transfer the simulated system to its physical counterpart. Our

multimodal perception-control system could handle the imperfect

modeling of interactions in simulated contact-rich scenarios and

demonstrate the possibility of a direct sim-to-real transition

using a variety of domain randomization techniques (Peng et al.,

2018; Chebotar et al., 2019). To evaluate the effectiveness of our

proposed framework, a comprehensive series of experiments are

conducted on both simulated and physical robots. The results

illustrate the remarkable capabilities of the vision-force perception

and control system in the simulated environment. It achieves an

impressive success rate of 95.3% on a challenging square assembly

task whose clearance is 0.1 mm. Furthermore, the algorithm

exhibits robust generalization across various spaces, sizes, and

even previously unseen shapes. Most notably, the simulated

system is seamlessly transferred to the physical environment,

achieving zero-shot capabilities and highlighting its potential for

real-world implementation.

In summary, the contribution of this work could be

summarized as below:

• We propose a novel vision-force framework for contact-rich

assembly tasks, enabling multimodal perception and control

in challenging and precise operations.

• We introduce a vision-force-fused curriculum learning

approach, which progressively coordinates multimodal

features based on task difficulty. This innovative approach

enables effective vision-force fusion and policy learning

specifically tailored to precise assembly tasks.

• We conduct extensive experiments to validate the efficacy

of our proposed method. The vision-force perception

and control system demonstrates robust generalization

capabilities across varying poses and previously unseen shapes.

Moreover, we successfully transfer the control scheme to real-

world scenarios, ensuring its reliability and applicability in

practical settings.

2. Related work

2.1. Force and vision perception in the
assembly task

For unimodal perception and control, several methods develop

force controllers and map the contact force to misalignment

between the peg and the hole (Tang et al., 2016; Inoue et al.,

2017). Unten et al. (2023) accurately estimate the relative position

between the peg and hole through the force/torque sensing from

the transient responses. However, the above methods require prior

knowledge of geometry and fail to generalize over new shapes.

Apart from the use of force, the utilization of vision to search for

holes has also been investigated (Schoettler et al., 2019; Nair et al.,

2023). Utilizing an in-hand RGB-D camera, Zhang et al. (2023)

develop a 6-DoF robotic assembly system for multiple pegs.

For multimodal perception and control, the complementary

nature of vision and force inspires a flurry of study on how

to utilize better visual and force sensory feedback. The normal

practice is to control the force along the constraint direction

while controlling motion via visual servoing along the remaining

directions (Haugaard et al., 2021). The task geometry needs to

be known a priori in order to properly design the controller

through a selection matrix that ensures orthogonality between

vision and force control directions. The combination of visual

servoing control and impedance control is also actively proposed.

The position of the hole is estimated using two depth cameras,

followed by a spiral search for the hole using impedance control

in Triyonoputro et al. (2019). However, the aforementioned

algorithms only combine disparate sensors with their respective

controllers. This sensory data separation does not fully exploit

the complementarity of vision and force. To better coordinate

vision and force, several works have focused on combining visual

servoing control and force regulation to achieve a fusion of

visual and force perception. The External/Hybrid vision-force

control scheme is developed to reach visual and force references

simultaneously (Mezouar et al., 2007). The external wrench is

transformed into a displacement of the image’s feature reference.

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1280773
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Jin et al. 10.3389/fnbot.2023.1280773

FIGURE 1

(A) Setup of the task: the experimental setup comprises a Franka Emika Panda robot arm equipped with two wrist-mounted RealSense D435 cameras

for vision perception and a six-axis ATI mini40 force/torque sensor for interaction forces capturing. (B) The overview of our framework includes

vision-force feature fusion (blue), followed by curriculum learning-based policy generation (orange), and ended with the motion vector execution

module using a Cartesian motion/force controller (green).

And all directions of the task space are simultaneously controlled

by both vision and force. Oliva et al. (2021) further generalize the

control scheme by not specifying the visual features.

This paper takes a different approach by simultaneously

leveraging visual and force features to generate compliant motion

and force commands. The system’s capability to accommodate

environmental variations is greatly expanded as the accurate

interaction model is unnecessary in our approach.

2.2. Reinforcement learning-based
manipulation

Reinforcement learning (RL) endows robots the promise

to accommodate variations in environmental configurations.

Some previous works on impedance, admittance, and force

control are revisited under the RL scope (Luo et al., 2019;

Zang et al., 2023). Oikawa et al. (2021) extend the traditional

impedance control using a non-diagonal stiffness matrix learned

over RL for precise assembly. Similarly, the use of RL in

the admittance control trains the deep neural network that

maps task specifications to corresponding parameters (Spector

and Zacksenhouse, 2021). Although these algorithms could

handle uncertainty and achieve the task, the validness of

the unimodal methods is restricted to the single modality’s

functioning ranges. The development of multimodal policy holds

the potential to further enhance manipulation ability (Luo

et al., 2021). Lee et al. (2020b) learn a representation model

that combines vision, haptics, and proprioceptive data. The

state representation is validated in peg-in-hole insertion tasks.

Nevertheless, the complicated multimodal features and tedious

fine-tuning may hinder practical applications. To simplify the

multimodal policy learning process, some strategies leverage

prior task knowledge or human demonstrations (Zhao et al.,

2021; Spector et al., 2022). Despite their impressive performance

in physical insertion experiments, these approaches necessitate

human interventions, which are infeasible to acquire in hazardous

environments.

Despite the potential of acquiring general policies with RL, the

sample inefficiency of RL results in tedious policy training and ill-

posed real machine deployment. To overcome the disadvantage,

model-based methods (Luo et al., 2019) have been utilized by

several researchers to fill this gap, avoiding extensive interactions

and training. Curriculum learning (CL) which allows the agents

to learn from a curriculum of tasks that progressively increase

in complexity and difficulty, could facilitate learning efficiency

and improve manipulation performance. Dong et al. (2021) train

the insertion agent in progressively more complex environments

(wall→corner→U→hole). The result shows that the curriculum

training scheme improves the data efficiency of RL and made the

problem feasible to solve in a reasonable training time.

In this paper, we propose a novel framework for multimodal

curriculum policy learning which could not only explore the

compatibility of vision and force but also achieve effective

multimodal decision-making. The method is free of human

interventions and task priors that expand the scheme’s applicability.

To effectively deploy the method on the real machine, we train the

system in the simulation and then transfer the trained policy to

reality. The inconsistencies in perception and control in simulated

and real environments (called the reality gap) are bridged by

domain randomization (Peng et al., 2018).
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3. Problem statement

Our algorithm aims to develop a vision-force perception and

control system and validate the scheme in the assembly task. The

task is to insert the grasped square peg into the corresponding hole

whose clearance is up to 0.1mmand depth up to 10mmas shown in

Figure 1. Starting from a randomized robot arm configuration, the

robot must maneuver and rotate the peg to insert into the target

hole, which could be denoted as robotinit → holetarget . To reach

holetarget , we formulate the task as a servoing problem and generate

the incremental motion vector 1X at each timestep. The desired

robot pose Xtarget could be derived from the current robot pose

Xcur as:

Xtarget = Xcur +1X,

1X = f (xv, xf ),
(1)

where xv and xf represent raw vision and force observation

from robotic sensors, respectively. f is the function mapping

from the raw sensory data to the motion vector 1X ∈ R
4

(i.e. [1x,1y,1z,1θ]), where 1x represents the incremental

displacement along x-axis, and so does 1y and 1z. 1θ represents

incremental z-axis roll command. Absent any prior information

about the hole’s geometry and pose, the robot must rely solely

on sensory feedback to generate motion vector 1X. Since the

robot exhibits distinct dynamic properties before and during

contact, some methods split the task into two stages: vision-based

hole searching in the free space and force-based insertion in the

constraint space. In contrast, our method proposes a single strategy

that unifies the two stages, eliminating the need for prior knowledge

of how to solve the task and simplifying the modeling process.

Nevertheless, unifying the two stages and devising a single

policy function f is quite challenging because visual and force

data exhibit different characteristics in the two stages. Therefore,

this paper explores the utilization of modality-specific encoders to

fuse vision and force and curriculum policy learning to generate

motion commands progressively. By leveraging modality-specific

encoders, visual and force features are extracted from xv and

xf , respectively. Through curriculum policy learning, the policy

function πmlp automatically generates motion vector 1X based

on the concatenation of visual and force features as shown in

Equation (2).

φv = Evision(xv),

φf = Eforce(xf ),

1X = πmlp(φv ⊕ φf ),

(2)

where Evision and Eforce represent the visual and force encoders,

respectively. φv and φf the extracted visual and force features, while

(φv⊕φf ) concatenation of visual and force features. To this end, the

initial servoing problem defined in Equation (1) is transformed into

investigating modality-specific encoders and a vision-force-fused

curriculum policy learning scheme to generate the incremental

motion vector. As such, the target motion vector is derived as in

Equation (3). The target motion vector Xtarget is then executed by

the Cartesian motion/force controller proposed in our previous

work (Lin et al., 2022).

Xtarget = Xcur + πmlp(φv ⊕ φf ). (3)

4. Method

As is shown in our control framework Figure 1, our method

begins by using modality-specific encoders to extract visual and

force features. These features are then combined to form the

multimodal features (Section 4.1). Next, the curriculum policy

learning mechanism is employed to train an assembly policy, which

hierarchically uses the multimodal features in an environment

that gradually increases in difficulty (Section 4.2). Lastly, to

execute the motion vector, we utilize the Cartesian motion/force

controller proposed in our previous work (Lin et al., 2022).

The implementation details are explained in Section 4.3. By

coordinating vision and force in the generation and execution

of the motions, our vision-force perception and control scheme

could fully utilize the multimodality and form a resultant robust

assembly system.

4.1. Vision-force feature fusion

The heterogeneous nature of visual and force sensory

feedback requires modality-specific encoders to capture the unique

characteristics of each modality. We design modality-specific

encoders and fusion modules to approximate Equation (2). For

the force encoder Eforce, we employ experience replay with a

sliding window of the most recent five frames to extract the force

feature. The aggregated force signals are later flattened to a 30-

dimensional force feature φf . Compared to the instant F/T data,

the experienced force/torque (F/T) sensory data within the time

windows provides a more compact representation of the robot-

environment interactions. To further process the data, the raw force

data is normalized with the mean (fµ) and variance (fσ 2 ). The tanh

function further scales the data between−1 and 1.

For the visual encoder Evision, we propose a self-supervised

algorithm to extract its RGB feature φv. As shown in Figure 1,

two cameras are symmetrically placed to the gripper. From the

top-down view, the grasped peg and hole are observable from the

images. With these two images, the visual feature related to the

spatial relationship between the peg and hole can be extracted.

The spatial relationship between the grasped peg and hole could be

denoted by four parameters, Ex, Ey, Ez , and Eθ , which individually

represent the translation error along the x, y, and z axes, as well as

the z-axis rotational error (Figure 2). To extract the visual feature,

the self-supervised neural network predicts three Booleans related

to Ex, Ey, and Eθ , while Ez is not observable due to the loss of depth

information. Rather than regressing to the values of Ex, Ey, and Eθ ,

the outputs indicate whether they are positive or negative. More

precisely, a label of 0 is assigned when the value is negative, and a

label of 1 is assigned when the value is positive.

As illustrated in Figure 3, the first step is to crop two RGB

images to a size of 224 × 224. These images are then processed

individually using the ResNet50 backbone network (He et al.,

2016) and reduced to a 128-dimensional feature space. The
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FIGURE 2

(A) Frames of the hole and object in the simulator MuJoCo. (B) The transformation between the hole and object frames is denoted by four

parameters, Ex, Ey , Ez, and Eθ .

FIGURE 3

The neural network architecture of the self-supervised visual encoder.

resulting visual feature is subsequently input to a three-layer

multi-layer-perceptron (MLP) to predict the spatial relationship

between the grasped peg and the hole. To train the self-

supervised visual neural network, the dataset comprising 60k

synthetic multi-view RGB images and labels is collected in

the simulation. While this simplifies the labor of performing

the operation on real machines, the reality gap of the images

hinders the direct transfer of the synthetic visual system to

the real robot. To bridge the reality gap, a series of domain

randomization techniques are applied, such as Gaussian blurring,

white noise, random shadows, and random crops. What’s more, in

simulation, the colors of the peg, hole, and background are also

randomly varied.

4.2. Curriculum policy learning

Our goal is to enable robots to perform precise assembly

tasks leveraging visual and force sensory feedback. To achieve

the goal, we utilize deep reinforcement learning to map the

visual and force sensory data to the robot’s motion vector and

guide the robot to the target pose following Equation (3). The
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input to the multimodal policy is the fusion of the visual and

force features (φv ⊕ φf ) as defined in Equation (2). πmlp is

the multi-layer-perceptron (MLP) function mapping the sensory

features to the incremental robot vector 1X. To learn the policy,

the assembly task is formulated as a model-free reinforcement

learning problem. This approach avoids the need for an accurate

dynamics model that is typically hard to obtain due to the

presence of rich contacts. Furthermore, we apply curriculum

learning (CL) to structure the task difficulty in accordance with

the sensory data input so as to facilitate learning efficiency

Data: visual feedback xv, force feedback xf ,
and stage S

Result: vision-force manipulation policy φmlp

1 initiate S← 1 ⊲ train the visual policy in
stage 1 with 0.5 mm clearance;

2 if S = 1 then

3 φv ← Evision(xv) ;
4 1X← φinit_mlp(φv) ⊲ visual policy φinit_mlp;

5 set the observation and action as φv and 1X

and update the PPO policy φinit_mlp until it

converges;

6 end

7 initiate φmlp with φinit_mlp, S← 2 ⊲ resume
vision-force training in stage 2 with 0.1 mm
clearance;

8 if S = 2 then

9 φv ← Evision(xv) ;
10 φf ← Eforce(xf ) ;

11 1X← φmlp(φv ⊕ φf ) ;

12 set the observation and action as (φv ⊕ φf )

and 1X and update the PPO policy φmlp until

it converges ;

13 end

Algorithm 1. Vision-force-fused curriculum policy learning.

and enhance model performance. The algorithm is detailed in

Algorithm 1.

The CL approach divides the training process into two stages:

the pure visual policy learning stage and the continued vision-

force policy learning stage (shown in Figure 4 and Algorithm 1).

The observation space of the first stage contains only 128-

dimensional visual feature φv (Section 4.1), and the larger peg-

hole clearance makes this stage of the task easier to manipulate.

The difficulty of the second stage intensifies by narrowing

the peg-hole clearance to 0.1 mm. We extend the observation

space to 158 dimensions by combining the 30-dimensional force

feature φf (Section 4.1). The visual strategy learned in the first

stage provides a rough translational and rotational relationship

between the grasped peg and the hole. After mastering the

required skills in the first stage, the robot proceeds to train

in more challenging scenarios incorporating force data. The

training in the second stage is like fine-tuning the global visual

policy with the local contact force. The action space 1X for

both stages is a 4-dimensional vector representing the desired

displacements along x, y, and z axes, and the z-axis rotation roll

in the object frame (1X = [1x,1y,1z,1θ]). Meanwhile, to

achieve compliance along the z-axis, we command the interaction

force along the z-axis to be zero. The Cartesian motion/force

controller proposed in Lin et al. (2022) executes the motion and

force commands.

Although complex reward functions are often devised for

reinforcement learning algorithm (Lee et al., 2020b), sparse rewards

are sufficient in our proposed method experimentally. Specifically,

the agent obtains the reward of 0.5 if the peg is aligned with the

hole and half inserted. The agent gets another reward of 0.5 if

the peg is entirely in the hole. Besides, if the peg falls off the

gripper, the agent will receive a penalty of −0.2. Since in our

setup, the peg is grasped and not fixed to the gripper. The peg

can easily fall off the gripper if a large contact force and undesired

movements occur.

FIGURE 4

The curriculum policy learning procedure. (A) The clearance influences policy learning critically. (B) Firstly, the peg-hole clearance d is 0.5 mm and

the observation is a 128-dimensional visual feature φv . Secondly, the peg-hole clearance is narrowed to 0.1 mm and the observation space is

expanded with the incorporation of force feature φf . The action space is a four-dimensional motion vector 1X consisting of the desired

displacement along the x, y, and z axes and the z-axis rotation roll.
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4.3. Implementation details

To train the self-supervised visual encoder Evision proposed in

Section 4.1, we use a binary-class cross-entropy loss to optimize the

network with Adam optimizer. We train the network for 20 epochs

with batch size 32 and learning rate 1e−4 under PyTorch 1.11. To

achieve a more generalized and robust policy πmlp (Section 4.2),

simulation training is conducted under diverse conditions. The

initial relative pose of the peg and hole is sampled from a uniform

distribution. Specifically, the pose error along the x and y axes is

randomly distributed between −10 mm and +10 mm, while the

z-axis positional error is distributed between 5 mm and 20 mm.

The z-axis rotational error is uniformly distributed between −10◦

and +10◦. It is assumed that the gripper has already grasped the

peg using a human-designed grasp pose. To introduce additional

positional randomness, errors along the x and z axes are uniformly

distributed between −2 and +2 mm. The training of the policy

employs Proximal Policy Optimization (PPO) (Schulman et al.,

2017), implemented using the stable baselines library (Hill et al.,

2018). In training the PPO algorithm, the n_steps is chosen to be

64, and the batch_size is 32, and the gae_lambda to be 0.998.

5. Experiment

We conduct simulated and physical experiments to evaluate the

performance and effectiveness of our vision-force perception and

control system for the contact-rich assembly task. In particular, we

investigate the following four research questions (RQs):

• RQ1. How does our proposed method outperform existing

work in contact-rich assembly tasks?

• RQ2. Is the multimodal-based policy robust to unseen shapes,

colors, and places?

• RQ3. How do modules of our proposed framework improve

the final performance?

• RQ4. Can our proposed method perform well in real-world

scenarios?

5.1. Evaluation metrics

We define a trial as successful if the robot effectively navigates

the peg, securing it within the hole to a depth of 10mm. Conversely,

a trial is considered unsuccessful if the peg slips from the robot’s

grasp, preventing its insertion into the hole.

5.2. Simulation results analysis

For RQ1, we initially evaluate the performance of our

vision-force system in the square peg insertion task and then

compare the results with those of existing vision-force assembly

systems, enabling a comprehensive assessment of the proposed

approach. Experimental results indicate that our proposed method

outperforms existing baseline work broadly. As shown in Table 1,

comparing our method with the baseline from Lee et al. (2020b),

we achieve more than 15% improvement in success rate (78% →

95.2%). Their method is consistent with ours in fusion vision

and force perception and adoption of an impedance controller

for incremental motion execution. Nevertheless, they utilize

naive RL for policy training while we take a CL approach and

split the task into two parts to learn the insertion strategy

progressively. Moreover, our Cartesian motion/force controller is

more advantageous when dealing with unknown contacts. These

two major aspects explain our model’s great outperformance. For

clearance, our method improves 50% relative to baseline from Gao

and Tedrake (2021) (0.2 mm→ 0.1 mm). Their approach involves

a vision-based key point detector followed by a force controller.

Our approach differs in formulating the insertion task as a servoing

problem and making decisions leveraging both visual and force

data end-to-end, thereby achieving more precise manipulation.

Although our approach doesn’t achieve the high success rate as

the work in Spector et al. (2022), our method doesn’t require

human demonstrations and prior task information. Moreover, our

evaluation metrics are stricter by requiring a 10 mm insertion

depth while the work in Spector et al. (2022) only requires a 1 mm

insertion depth.

For RQ2, we first conduct a series of insertion tasks initiating

with a randomized peg-hole position error within [−15 mm, 15

mm] along both x and y axes. At each position, we conduct 50

trials to statistically evaluate the system’s performance. Next, we

test the system’s out-of-domain performance on three different

shapes that have never been exposed before, namely the pentagonal,

triangular, and circular pegs. Experimental results demonstrate

that our multimodal system is robust to varying in-domain initial

configurations and novel shapes. As shown in Figure 5A, our

method achieves an overall success rate of 95.2% across the varying

initial pose errors up to 3 cm, which is a reasonable setup in

factories and social industries. When the positional error is small

than 1.5 cm, the success rate even reaches nearly 100%. The

method’s robustness to varying positions owns the object-centric

design of the observation and action. Specifically, the observation

and action are centered on the object coordinate regardless of the

robot configurations and global positions. As long as the hole plane

can be observable from the in-hand cameras, the robot is able

to approach the hole. For novel shapes, the result in Figure 5B

indicates the method’s remarkable robustness to unseen shapes.

Although the novel shapes are never explored before, they share

similar task structures with the square pegs. Among the three new

shapes, the pentagonal peg is most similar to the square peg and

thus has better generalization ability than the other shapes. The

triangular peg insertion task is more challenging with a higher z-

axis roll requirement. Surprisingly, themodel behaves poorly on the

circular peg, probably due to the small contact surface (line contact)

between the peg and the gripper. Although the hardware setup for

the circular peg easily causes slippage and tilt, it still maintains a

success rate of 60%.

5.3. Ablation study of proposed module

For RQ3, we investigate the contributions of the

design choices, namely the act of vision-force perception

fusion and the curriculum vision-force fusion mechanism.
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This section conducts two comparisons: (1) we compare

whether the fusion of vision and force boost performance

over vision only. (2) we investigate whether the two-stage

curriculum learning (CL) fusion mechanism could improve

fusion efficiency and manipulation performance than the

naive reinforcement learning (RL) fusion mechanism. To

verify the suppositions mentioned above, we design the

following models:

TABLE 1 The performance of di�erent multimodal models in the assembly task.

Models Clearance ↓ Peg Modalities DoF Success
rate ↑

Shape
generalization

Human
demonstration

Gao and Tedrake (2021) 0.2 mm Unfixed RGB/depth/force 3 74% No No

Lee et al. (2020b) 2 mm Fixed RGB/depth/force 4 78% Yes No

Spector et al. (2022) – Unfixed RGB/force 6 97.5% No Yes

Ours 0.1 mm Unfixed RGB/force 4 95.2% Yes No

The bold values represent the best performance among the comparisons.

FIGURE 5

(A) Simulation experimental results with varied initial positions for peg-hole operations using a square object. Each individual value corresponds to

the insertion success rate at that region, thereby providing a comprehensive overview of the spatial distribution and variations in success rates of the

square peg insertion task. (B) The success rate of di�erent peg-hole objects, in which square is used in training (in-domain) while others only are

used to test (out-of-domain).

FIGURE 6

(A) Training curves of three models, including the Vision-only CL model, Vision-force CL model, and Naive RL model. (B) The insertion success rates

at di�erent training stages of three models.
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• Vision-only CL model contains only vision perceptually and

curriculum learns the visual policy.

• Vision-force CL model curriculum learns the vision-force

multimodal policy.

• Naive RLmodel naively learns the vision-force policy with RL.

All of the above-mentioned models are trained and tested

in simulation. For a fair comparison, all the models except the

Naive RL model are initialized using a pure visual policy trained

with a larger clearance. Figures 6A, B visualize the learning curves

during the training and the test results for 250 trials with three

random seeds.

5.3.1. Vision-force vs. vision-only
The experiment results indicate the superior performance

of the Vision-force CL model over the Vision-only CL model,

manifesting the necessity of vision-force fusion in contact-

rich precise manipulation tasks. As demonstrated in Figure 6,

comparing the Vision-force CL model with the Vision-only CL

model, the proposedmethod achieves more than 20% improvement

in success rate (70% → 95.2%). Although the ablative Vision-only

CL model doesn’t perform as well as Vision-force CL model, it

maintains a success rate of 70% which indicates that integrating

sensor-based controllers is a solution for contact-rich tasks.

Formulating the assembly task as a servoing problem and solving

it with curriculum policy learning end-to-end is a good fit

for the challenging precise insertion. Nonetheless, the fusion

of vision and force perception results in significantly improved

outcomes, as the contact-rich insertion task is sensitive to

both visual and force signals. Vision perception serves as the

main data stream to locate the target, and force perception is

a complementary data source when contacts are made and

interactions occur.

FIGURE 7

Snapshots of the peg-hole insertion process during the physical robot experiments.
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TABLE 2 Performance on physical assembly task.

X
X
X

X
X
X

X
XX

Models
Shapes

Square Pentagon Triangle Circle

Vision-only CL 3/10 8/10 3/10 2/10

Vision-force CL 6/10 9/10 5/10 4/10

5.3.2. CL-based model vs. naive RL model
In terms of the results of the CL, the experiment results

indicate that the conduct of CL is decisive for multimodal

strategy generation in extremely challenging tasks. Comparing the

Vision-force CL model with the Naive RL model in Figure 6, the

proposed method could achieve a remarkable success rate of 95.2%.

In contrast, the ablativeNaive RLmodel couldn’t succeed in the task

and has 0% success rate. The huge performance gap between the

two models comes from the different policy learning formulations.

The Naive RL model leverages visual and force data to insert the

square peg whose clearance is as low as 0.1 mm from scratch.

Nevertheless, it’s difficult for the agent to coordinate the motions

and insert the peg into the hole as a rash motion will cause the

slippery of the peg and finally lead to the local optima of the

algorithm. Different from the naive RL modeling, the CL-based

modeling first learns a visual policy on a larger clearance and is

followed by the fusion of force perception on a 0.1 mm clearance

task. The curriculum task difficulty organization provides a more

effective policy generation approach.

5.4. Physical robot experiments

For RQ4, we perform direct sim-to-real transfer and

generalization tests on the real machine. In the experiment, the

robot first grasps the object and then executes the assembly policy

to insert the peg into the hole. The insertion hole is rigidly fixed

so as not to add extra compliance to the system. Figure 7 shows

the four shapes utilized in our experiments, along with snapshots

captured during the insertion process. Specifically, the square,

pentagonal, triangular, and round peg-hole clearances are 0.37

mm, 0.44 mm, 1 mm, and 0.41 mm, respectively. Table 2 presents

the results obtained from the experiments on these four shapes

using two models: the Vision-only CL model and the Vision-force

CL model. Experiment results indicate that the simulated assembly

system can be transferred to the physical robot. Moreover,

the Vision-force CL model demonstrates stronger robustness

against the ablative Vision-only CL model. As shown in Table 2,

the Vision-force CL model achieves 20% success rate more than

theVision-only CLmodel. Although theVision-only CLmodel could

be transferred to the physical robot, the Vision-force CL model

even demonstrates better behavior. The performance gap between

the two models is consistent with that in the simulated system.

Although dynamics in the simulated and physical environment

differ, the domain randomization techniques applied to the

visual encoder and the compliant motion/force controller to

handle uncertain contacts minimize the reality gap. Furthermore,

consistent with the situation in simulations, the method could also

be generalized to unseen shapes in physical environments.

6. Conclusion

This paper proposes a novel vision-force fusion scheme for

contact-rich precise assembly tasks. Our approach utilizes a

curriculum policy learning mechanism to effectively fuse multi-

view visual and force features and implement compliant motions.

By effectively fusing visual and force data from perception

to control, our method achieves higher precision and better

generalization to unseen shapes in the simulated environment. The

experiments on the physical environment validate the practicability

of our simulated system. Our vision-force system significantly

contributes to the advancement of multimodal contact-rich tasks.
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