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The images captured underwater are usually degraded due to the effects of light

absorption and scattering. Degraded underwater images exhibit color distortion,

low contrast, and blurred details, which in turn reduce the accuracy of marine

biological monitoring and underwater object detection. To address this issue, a

generative adversarial network with multi-scale and an attention mechanism is

proposed to improve the quality of underwater images. To extract more effective

features within the generative network, several modules are introduced: a multi-

scale dilated convolution module, a novel attention module, and a residual

module. These modules are utilized to design a generative network with a U-

shaped structure. The multi-scale dilated convolution module is designed to

extract features at multiple scales and expand the receptive field to capture more

global information. The attention module directs the network’s focus towards

important features, thereby reducing the interference from redundant feature

information. To improve the discriminative power of the adversarial network, a

multi-scale discriminator is designed. It has two output feature maps with

different scales. Additionally, an improved loss function for the generative

adversarial network is proposed. This improvement involves incorporating the

total variation loss into the traditional loss function. The performance of different

methods for enhancing underwater images is evaluated using the EUVP dataset

and UIEB dataset. The experimental results demonstrate that the enhanced

underwater images exhibit better quality and visual effects compared to

other methods.

KEYWORDS

underwater image enhancement, generative adversarial network, image quality, image
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1 Introduction

In recent years, computer vision technology has played an

important role in marine engineering fields such as ocean data

collection (Gavrilov and Parnum, 2010; Zhang et al., 2022), deep

ocean resources exploration, and ocean environmental protection

(Bell et al., 2022; Townhill et al., 2022). The quality of underwater

images directly influences the performance of computer vision

technologies. However, the underwater images are usually not

clear enough with color distortion, uneven illumination, and

lower contrast, which are caused by forward scattering, backward

scattering, and absorption of light in the water medium. Degraded

underwater images directly reduce the performance of underwater

object detection, underwater image segmentation, and underwater

object tracking (Zou et al., 2021; Yu et al., 2023). Most underwater

vision systems cannot guarantee satisfactory performance under

poor water conditions. Therefore, it is necessary to enhance the

underwater images to improve the performance of underwater

computer vision.

The traditional methods of image enhancement are mainly

based on methods such as histogram equalization (Huang et al.,

2021; Ulutas and Ustubioglu, 2021), Gamma correction (Huang

et al., 2016; Huang et al., 2018a) and Retinex-based methods

(Huang et al., 2018b). Although these methods are simple, they

are not fully suitable for underwater image enhancement. There are

still significant distortions in underwater images enhanced by these

methods. Besides, underwater image enhancement methods based

on the degradation model have been proposed (Cui et al., 2022; Luo

et al., 2022). These methods necessitate the construction of an

appropriate degradation model for underwater images, followed by

the restoration of the original, undegraded underwater image by

simulating the degradation process. While they exhibit improved

performance for certain underwater images, they lack robustness.

The complexities and variations within underwater environments

make constructing a suitable degradation model challenging.

Additionally, adapting a static degradation model to different

underwater environments has proven difficult. As a result,

underwater image enhancement methods relying on degradation

models often yield subpar results for images captured in diverse

underwater settings.

With the development of deep convolutional networks, many

underwater image enhancement methods based on deep learning

have been proposed in the last few years (Yan et al., 2022; Zheng

and Luo, 2022). They use a large number of degraded images and

high-quality images to train the network model without

constructing the degradation model. Therefore, it is more suitable

for different underwater environments. A generative adversarial

network can be seen as a special deep learning method. Compared

with the conventional deep learning network, it consists of a

generative network and an adversarial network. In underwater

image enhancement, the generative network is used to enhance

the image, and the adversarial network is used to determine whether

the input high-quality image is the generated image by the

generative network or the original high-quality image. The

adversarial network aids the generative network in improving the

performance of underwater image enhancement. Therefore,
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compared with the underwater image enhancement methods

based on conventional deep learning networks, the methods

based on generative adversarial networks have better

performance. Although many generative adversarial networks

have been used for underwater image enhancement and in

attempts to improve the quality of underwater images(Estrada

et al., 2022; Xu et al., 2023), the enhanced underwater images still

contain much color distortion and detail loss, which affect

underwater object detection. To further improve the quality of

underwater images, an efficient generative adversarial network

is proposed.

The main contributions of this paper are summarized

as follows:
• A generative adversarial network with a U-shaped network

structure is proposed for enhancing the underwater images.

The network incorporates a new multi-scale dilated

convolution module, a novel attention module, and a

residual module. The generative adversarial network is

capable of extracting more effective features at different

scales. As a result, the enhanced underwater images

produced by the proposed generative adversarial network

preserve more details and color information.

• A multi-scale adversarial network is also proposed to

improve the discriminative power, which is helpful in

improving the optimization of the generative network. It

contains two judgment score matrices at different scales to

determine whether the input image is the image generated

by the generative network or the original high-quality image

at multiple scales.

• An improved loss function of the generative adversarial

network is also proposed to provide a more accurate

measurement of the difference between the enhanced

image and the high-quality image. This improvement

involves incorporating the total variation loss into the

traditional loss function. By considering the difference

between adjacent image pixels, the total variation loss

promotes image smoothness and enhances the overall

quality of the generated image.
2 Related works

In recent years, a number of underwater image enhancement

methods have been proposed. These methods can be broadly

classified into three categories: model-free methods, model-based

methods, and deep learning-based methods. The model-free

methods do not require a degradation model for underwater

images. They correct the color and improve the contrast of

underwater images by directly adjusting the image pixel values

(Zhang et al., 2021; Zhuang et al., 2021). While the model-free

method can effectively correct image color, it struggles to address

issues such as blurred details and noise interference. Furthermore,

these methods typically involve multiple steps to process images,

making practical applications challenging. In contrast, model-based
frontiersin.org
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methods establish a degradation model for underwater images and

estimate model parameters using prior knowledge. These methods

obtain enhanced images by inversion of the model (Ding et al.,

2022; Zhou et al., 2022). These model-based methods exhibit

superior performance in terms of color correction. Nevertheless, a

majority of these methods rely on scene-specific depth and

illumination information as a priori knowledge to estimate the

model parameters. This dependence on such information is less

stable and cannot be easily adapted to varying underwater scenes.

Recently, deep learning technology has developed rapidly. It has

been widely used in image dehazing (LiuW. et al., 2019; Wang et al.,

2022), super-resolution (Srivastava et al., 2022; Tian et al., 2022),

remotely sensed image enhancement (Huang et al., 2022), and

underwater image enhancement (Li et al., 2022; Zhou et al., 2023). It

uses a large number of degraded images and high-quality images to

train the network model without constructing the degradation

model. Therefore, it is more suitable for different underwater

environments. Compared with traditional deep learning with a

single network, generative adversarial networks consist of two

networks, the generative network and the adversarial network.

The adversarial network can indirectly improve the performance

of the generative network. Due to the advantages of a generative

adversarial network, it is widely used in underwater image

enhancement. Fabbri et al. proposed UGAN (Fabbri et al., 2018).

They used CycleGAN to generate paired underwater image datasets

for the following network training. Meanwhile, they added L1 loss

and gradient loss to the original loss of Wasserstein GAN to better

restore the degraded underwater images. This method can well

correct the color of underwater images, but the model has some

limitations in the types of images. Liu et al. proposed MLFcGAN

(Liu X. et al., 2019). The network extracted multi-scale features and

enhanced local features by using global features. The network was

effective in restoring underwater image colors and eliminating

unwanted artifacts but performed poorly in restoring image

texture details. Guo et al. proposed a multi-scale dense generative

adversarial network (Guo et al., 2019). This network improved its

performance through the design of a multi-scale dense module,

alongside the incorporation of L1 loss and gradient loss. These

additions enabled the network to generate images of superior

quality. While this method demonstrated strong results with both

synthetic and real underwater images, it falls short in producing

aesthetically pleasing underwater images.

Yang et al. proposed an underwater image enhancement

method based on conditional generative adversarial networks

(Yang et al., 2020). The network employed a dual discriminator

that guided the generator to generate higher-quality images in terms

of both global semantics and local features. Islam et al. proposed a

fast underwater enhancement method (Islam et al., 2020). The

method used a CGAN-based network model with L1 loss and

Perceptual loss as loss functions. It showed good enhancement on

the EUVP dataset but was less effective for enhancing images with

severe degradation. Wu et al. proposed a multi-scale fusion

generative adversarial network (Wu et al., 2022). To help the

model achieve better performance, the network used three prior

images as input to refine the prior features and then these features

are fused into the encoding and decoding process. Jiang et al.
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proposed a target-oriented perceptual fusion generative adversarial

network (Jiang et al., 2022). The network used a Multi-scale Dense

Boosted module and Deep Aesthetic Render module for contrast

enhancement and color correction. A dual discriminator for global-

local discrimination was used, too. Liu R. et al. proposed an

unsupervised model to enhance underwater images (Liu et al.,

2022). They constructed a twin adversarial constrained

enhancement module to eliminate the reliance on paired images.

It showed good performance in improving image quality.

Although underwater image enhancement based on generative

adversarial networks attempts to improve the quality of underwater

images, the enhanced underwater images still contain much color

distortion and detail loss, which affect the performance of high-level

computer vision for analysis of underwater images.
3 Proposed method

To improve the quality of the enhanced underwater images, a

generative adversarial network for enhancing underwater images is

proposed. A generative adversarial network consists of a generative

network and an adversarial network. The generative network is

responsible for enhancing degraded underwater images, aiming to

produce visually improved outputs. It takes degraded underwater

images as input and generates enhanced versions of those images.

The adversarial network plays a crucial role in evaluating the

performance of the generative network. It serves as a

discriminator and is responsible for determining whether an

input image belongs to the set of generated images produced by

the generative network or the original high-quality images. The

adversarial component guides and offers feedback to the generative

network, promoting its improvement by differentiating between

real and generated images. Through the interaction of the

generative and adversarial networks, the proposed GAN

framework strives to augment the quality of underwater images.

This is achieved by training the generative network to generate

visually appealing and realistic outputs, with the adversarial

network providing feedback to refine its performance.
3.1 Generative network

The proposed generative network consists of three primary

modules: a residual module, a multi-scale dilated convolution

module, and an attention module. The structure of the generative

network is illustrated in Figure 1. Firstly, a convolutional layer

coupled with the LeakyReLU activation function is employed to

extract local features. The number of channels also increases from 3

to 8. Secondly, two designed residual modules are used to reduce the

size of feature maps and extract feature maps with different scales.

The residual module reduces the output feature map size to one-half

of the input feature map size. The number of channels of the output

feature maps for the two residual modules are 32 and 128,

respectively. Thirdly, two designed multi-scale dilated convolution

modules are used to expand the receptive field and extract multi-

scale features without changing the number of channels and the size
frontiersin.org
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of the feature map. Fourthly, we use deconvolution to increase the

size of the feature map. In contrast to the conventional upsampling

operation, deconvolution allows for the learning of parameters,

which aids in recovering feature information. Besides, a new

attention module is proposed and used to extract important

features that are beneficial for enhancing underwater images. In

the end, the extracted feature maps are restored to an RGB image

using a convolution layer and a Tanh activation function. This

restored underwater image is the enhanced underwater image.

In conventional generative networks, multiple downsampling is

employed to broaden the receptive field and extract feature

information on different scales. The downsampling will lead to

the loss of information, which reduces the quality of the enhanced

image. To reduce the loss of information, we design a residual

module and use the designed residual module to realize the

downsampling operation. In the designed generative network, two

designed residual modules are used to expand the receptive field

and extract multi-scale feature information. The structure of the

proposed designed residual module is illustrated in Figure 2. It
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consists of two branches. The upper branch consists of a 4×4

convolution layer with stride 1, an instance normalization layer, a

LeakyReLU activation function, a 4×4 convolution layer with stride

2, and an instance normalization layer. The first 4×4 convolution

layer is used to increase the number of channels without changing

the size of the feature map. The instance normalization layer is used

to improve network stability and speed up network convergence.

The second 4×4 convolution layer is used to decrease the size of

feature maps, instead of pooling operation for downsampling. In

the lower branch, a 1×1 convolution layer with stride 2 is used to

directly decrease the size of feature maps. The output feature maps

of two branches are fused by the element addition operation.

A larger receptive field proves advantageous for extracting

global features, whereas a smaller receptive field is well-suited for

extracting local texture features. To extract more comprehensive

information, we have designed a multi-scale dilated convolution

module. This module integrates five distinct receptive fields,

allowing it to extract features across various scales simultaneously.

The architecture of the proposed multi-scale dilated convolution
FIGURE 2

The proposed residual module.
FIGURE 1

The proposed generative network.
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module is illustrated in Figure 3. It consists of five branches. The

first branch only contains a 1×1 convolution with a LeakyReLU

activation function. The second branch contains a 5×5 convolution

with a LeakyReLU activation function, a 3×3 dilated convolution

with dilated rate 5, an instance normalization, and a LeakyReLU

activation function. The third branch contains a 3×3 convolution

with a LeakyReLU activation function, a 3×3dilated convolution

with dilated rate 3, an instance normalization, and a LeakyReLU

activation function. The fourth branch contains a 5×5 convolution

with a LeakyReLU activation function. The fifth branch contains a

3×3 convolution with a LeakyReLU activation function. The

receptive fields for the five branches are 1×1, 15×15, 9×9, 5×5

and 3×3, respectively. The output feature maps of the second

branch to the fifth branch are fused by the concatenation

operation. The last 1×1 convolution layer is used to adjust the

number of channels of the fused feature map to be equal to the

number of channels in the first branch. In the end, the output

feature maps of the last 1×1 convolution and the first branch are

fused by an element-wise addition operation.

For the extraction of crucial features that contribute to the

enhancement of underwater images, an attention module has been

introduced, as depicted in Figure 4. This module comprises three

key components: a texture encoding module, a feature extraction

module, and an attention generation module. The texture encoding

module consists of three branches. The first branch only contains a

1×1 convolution layer that is used to encode features in channel

dimension. The second branch contains a 1×1 convolution layer, an

average pooling in the horizontal direction, and a permute

operation. The convolution layer is used to adjust the number of

channels. The average pooling is used to encode the features along

the horizontal direction. The permute operation is used to rearrange

the dimensions of the feature maps. The third branch contains a
Frontiers in Marine Science 05
1×1 convolution layer, an average pooling in the vertical direction,

and a permute operation. The average pooling is used to encode the

features along the vertical direction. In the end, the output feature

maps of three branches are concatenated by the concatenate

operation. The size of the feature map of the texture encoding

module is 3×H×W. The feature extraction module contains a 1×1

convolution with a LeakyReLU activation function to extract

features. The attention generation module contains three

branches that contain a permute operation, a 1×1convolution,

and a sigmoid function. The permute operation is to rearrange

the dimensions of the feature maps. The 1×1 convolution is used to

adjust the number of channels. The sigmoid function is used to

generate weight. Utilizing the attention generation module, three

weights are derived for the channel dimension, vertical dimension,

and horizontal dimension. Eventually, these three weights are

applied as multipliers to the input feature map, resulting in the

production of the output feature map.
3.2 Discriminative network

A multi-scale adversarial network based on the Markovian

adversarial network is proposed and shown in Figure 5. It

consists of 5 layers of downsampling. The downsampling

operation is implemented by the residual module to reduce the

loss of feature information. To improve the multi-scale feature

extraction capability of the adversarial network, the concatenation

operation is employed to fuse the features obtained from three

residual modules at different scales. Furthermore, we use the

convolution operation to adjust the number of channels in the

output feature maps of the 4th and 5th residual modules to 1,

respectively. In the end, we get the two judgment scores from two
FIGURE 3

The proposed multi-scale dilated convolution module.
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adjusted output feature maps. The weights of the two scores are 0.6

and 0.4, respectively.
3.3 Loss function

An improved loss function is proposed by introducing the total

variation loss into the conventional loss function. The improved

loss function is expressed as follows.

L = l1(0:6� LGAN (G,D1) + 0:4� LGAN (G,D2)) + l2

� LL1(G) + l3 � Lper(G) + l4 � LTV (G) (1)
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where l1, l2, l3 and l4 are scaling coefficients to adjust the

importance of each loss function. We initially set the coefficient

initial values based on the importance of the function, where the

higher importance of the function corresponds to a larger

coefficient value. We randomly set the coefficient initial values to

l1 = 0:2; l2 = 0:4, 0.42, 0.44, 0.46, 0.48, or 0.5; and l3 = 0.2, 0.19,

0.18, 0.17, 0.16, or 0.15; and l4 = 0:2, 0.19, 0.18, 0.17, 0.16, or 0.15.

In our experiments, when l1 = 0:2, l2 = 0:48, l3 = 0:16, and l4 =
0:16, our proposed method has better performance in enhancing

underwater images. Therefore, we set l1 = 0:2, l2 = 0:48, l3 = 0:16,

and l4 = 0:16. LGAN ( · ) is the adversarial loss function, which is

calculated as follows.
FIGURE 5

The proposed adversarial network.
FIGURE 4

The proposed attention module.
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LGAN (G,D1) = EX,Y ½logD1(Y ,X)� + EX,Y ½log (1
− D1(G(X),X))� (2)

LGAN (G,D2) = EX,Y ½logD2(Y ,X)� + EX,Y ½log (1
− D2(G(X),X))� (3)

where X is the low-quality underwater image, Y is the high-

quality underwater image, G is the generator, G(X) is the output of

the generator, D1( · ) is the first output score of the discriminator,

and D2( · ) is the second output score of the discriminator. LL1(G) is

the L1 loss function, which is expressed as follows.

LL1(G) = EX,Y ½j jY − G(X) j j1� (4)

Lper(G) is the perceptual loss function, which is expressed as

follows.

Lper(G) = EX,Y ½j j f(Y) − f(G(X)) j j2� (5)

where f( · ) are the high-level features extracted by a pre-trained
VGG-19 network. The total variation loss is expressed as follows.

LTV (G(X)) =o
i,j
((xi,j+1 − xi,j)

2 + (xi+1,j − xi,j)
2)

b
2 (6)

where xi,j is the pixel in the ith row and the jth column of the

enhanced image that is the G(X).
4 Simulation and discussion

In this section, we use a synthetic paired underwater image

dataset and a real underwater image dataset to test the effectiveness

of our proposed method through qualitative and quantitative

experiments. We compared our method with four underwater

image enhancement methods: the FUnIEGAN (Islam et al., 2020),

the FWGAN (Wu et al., 2022), the TOPAL (Jiang et al., 2022) and

the TACL (Liu et al., 2022). We evaluated each method

quantitatively using two full-reference evaluation metrics which

were peak signal-to-noise ratio (PSNR), structural similarity (SSIM,

Wang et al., 2004), and one no-reference evaluation metric which

was underwater image quality measures (UIQM,Panetta

et al., 2015).
4.1 Datasets and metrics

The underwater ImageNet dataset (Fabbri et al., 2018) which

contains 6,128 pairs of underwater images is used as the training set.

Fabbri et al., first selected underwater images from the ImageNet

dataset, and secondly classified the selected underwater images into

degraded underwater images and high-quality underwater images.

Thirdly, CycleGAN was trained on these images and used to

generate 6,128 pairs of high-quality underwater images and their

corresponding degraded underwater images. The EUVP dataset

(Islam et al., 2020) which contains paired images, and the UIEB

dataset (Li et al., 2019), which contains real-world underwater
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images, were used to test the performance of different methods,

respectively. The PSNR, SSIM, and UIQM were evaluation metrics.

The PSNR is expressed as follows.

PSNR(x, y) = 10 log10½
2552

MSE(x, y)
� (7)

where x and y are the enhanced image and the corresponding

ground truth image. MSE is the mean square error. It is expressed as

follows.

MSE =
1
mn o

m−1

i=0
o
n−1

j=0
(xi,j − yi,j)

2 (8)

where xi,j is a pixel of enhanced image x, yi,j is a pixel of the

ground truth image y. The larger the value of PSNR is, the closer the

enhanced image is to the ground truth image. The SSIM is

expressed as follows.

SSIM(x, y) =
2mxmy + c1
m2
x + m2

y + c1

 !
2sxy + c2

s 2
x + s 2

y + c2

 !
(9)

where mx and my are the mean of x and y, respectively. The s 2
x

and s 2
y are the variance of x and y, respectively. The sxy is the

covariance of x and y. The closer the SSIM value is to 1, the closer

the enhanced image is to the ground truth image.

The UIQM consists of three parts, which are UICM

(underwater image colorfulness measure), UISM (underwater

image sharpness measure), and UIConM (underwater image

contrast measure). It is expressed as follows.

UIQM = c1UICM + c2UISM + c3UIConM (10)

where c1=0.0282, c2=0.2953, and c3=3.5753. The higher the

UIQM value is, the better the color balance, sharpness, and contrast

of the enhanced image are.
4.2 Underwater image enhancement on
synthetic images

We evaluated the performance of our proposed method on the

synthetic images using the test_samples subset from the EUVP

dataset. This subset consisted of 515 pairs of underwater degraded

images along with their corresponding high-quality images. We

randomly selected three paired images that consisted of reference

images (high-quality images) and corresponding degraded images

that were synthesized to test the performances of FUnIEGAN,

FWGAN, TOPAL, TACL, and our method. The reference

underwater images (high-quality underwater images), raw images

(degraded underwater images), and underwater images enhanced

by different methods are shown in Figure 6. In the first row, the

FUnIEGAN method introduces noise interference in the enhanced

images, which negatively affects their quality. The FWGAN cannot

effectively enhance the contrast. The TOPAL method fails to

adequately restore the details in the enhanced images, leading to a

loss of important visual information. The TACL method produces

reddish color biases in the enhanced images, which deviates from
frontiersin.org
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the desired color accuracy and may impact the overall visual quality.

The image enhanced by our method stands out due to its

exceptional color correction and contrast enhancement. In the

second row, the FUnIEGAN method introduces artifacts in the

enhanced image, negatively impacting its visual quality. The

FWGAN method, although improving the image, still leaves a

residual haze effect. However, the TACL, TOPAL, and our

proposed method effectively enhance the image details, resulting

in sharper visual features. Nonetheless, our approach excels in

terms of color fidelity, yielding a more authentic and natural

color rendition in the enhanced image. In the third row, the

FUnIEGAN method introduces reddish color biases to the

enhanced image, which diverges from the original color

representation. The FWGAN method fails to provide clear details

in the enhanced image, resulting in reduced clarity. Both the

TOPAL and TACL methods leave a residual haze effect on the

enhanced images, diminishing their overall quality. Conversely, our

proposed method produces enhanced images that closely resemble
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the reference image, demonstrating better color accuracy and

preserving finer details.

In summary, the FUnIEGAN method falls short in effectively

enhancing degraded underwater images and addressing issues

related to color bias and image details. The FWGAN, TOPAL,

and TACL methods struggle to adequately sharpen image details. In

contrast, our proposed method successfully generates enhanced

images that demonstrate satisfactory color correction, contrast

enhancement, and detail sharpening. Furthermore, the images

enhanced by our method closely resemble the corresponding

reference images, indicating its superior performance.

To quantitatively analyze the performance of different methods,

we used all paired images in the EUVP test set as test images and

computed the PSNR, SSIM, and UIQM of the images enhanced by

different methods. The average results are shown in Table 1 The

PSNR values for the FUnIEGAN method, FWGAN method,

TOPAL method, TACL method, and our proposed method were

23.23, 26.87, 25.41, 26.65, and 27.28, respectively. Our proposed
FIGURE 6

The images enhanced by different methods from the EUVP dataset.
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method had the highest PSNR, followed by the FWGAN method

and TACL method. The SSIM values for the FUnIEGAN method,

FWGAN method, TOPAL method, TACL method, and our

proposed method were 0.70, 0.80, 0.76, 0.79 and 0.81,

respectively. Our proposed method had the highest SSIM,

followed by the FWGAN method and TACL method. The UIQM

values for the FUnIEGAN method, FWGAN method, TOPAL

method, TACL method, and our proposed method were 3.04,

2.97, 3.06, 2.95, and 3.14, respectively. Our proposed method had

the highest UIQM, followed by the FUnIEGAN method and

TOPAL method. As shown in Table 1, our proposed method had

the highest PSNR, SSIM, and UIQM, which shows that our

proposed method had the best performance in enhancing

underwater images on the EUVP dataset.
4.3 Underwater image enhancement on
real-world images

We also assessed the effectiveness of our proposed method using

950 real-world images sourced from the UIEB dataset. This dataset

encompasses a total of 950 underwater images in degraded conditions,

consisting of 890 images from the raw-890 subset and an additional 60

images from the challenging-60 subset. We randomly selected three

real-world degraded underwater images from the raw-890 subset to

evaluate the performances of FUnIEGAN, FWGAN, TOPAL, TACL,

and our proposed method. The images included both the original

degraded underwater images and the corresponding enhanced

underwater images generated by each method. The results are

visualized in Figure 7. In the first row, the images enhanced by

FUnIEGAN, FWGAN, and TACL exhibit reddish color biases, while

the image enhanced by TOPAL shows greenish color biases. In

contrast, the image enhanced by our proposed method achieves

satisfactory contrast and saturation. In the second row, the image

enhanced by FUnIEGAN exhibits checkerboard artifacts. The image

enhanced by the FWGAN suffers from bluish color bias. The image

enhanced by the TOPAL suffers from greenish color bias. TACL

generates a darkish image. In contrast, our proposed method

effectively removes the bluish hue, resulting in a more accurate and

visually pleasing enhanced image. In the third row, the image enhanced

by FUnIEGAN exhibits artifacts. The images enhanced by FWGAN

and TACL suffer from reddish color bias. TOPAL fails to effectively

sharpen details in the enhanced image. In contrast, our proposed

method successfully enhances the images in terms of color correction

and detail sharpening.

In summary, the FUnIEGAN usually introduces color bias and

artifacts in the enhanced image. The FWGAN, TOPAL, and TACL

cannot effectively correct color and sharpen details. The results
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show that our method has the best generalization capability for real-

world underwater image enhancement.

To quantitatively analyze the performance of different methods,

we used all real-world degraded underwater images on the UIEB

dataset as test images and computed the UICM, UISM, UIConM, and

UIQM. The UICM, UISM, and UIConM are used to measure the

colorfulness, sharpness, and contrast of enhanced underwater images,

respectively. The UIQM which consists of UICM, UISM, and

UIConM is used to measure the complete visual effect of enhanced

underwater images. The average results are shown in Table 2. The

UICM values for the FUnIEGANmethod, FWGANmethod, TOPAL

method, TACL method, and our proposed method were 4.41, 4.43,

4.93, 4.68, and 5.02, respectively. Our proposed method had the

highest UICM, followed by the TOPAL method and TACL method,

which shows that our method had the best performance in restoring

colorfulness. The UISM values for the FUnIEGANmethod, FWGAN

method, TOPAL method, TACL method, and our proposed method

were 5.82, 5.99, 6.29, 6.16, and 6.68, respectively. Our proposed

method had the highest UISM, followed by the TOPAL method and

TACL method, which shows that our method had the best

performance in restoring sharpness. The UIConM values for the

FUnIEGAN method, FWGAN method, TOPAL method, TACL

method, and our proposed method were 0.24, 0.24, 0.26, 0.27, and

0.28, respectively. Our proposed method had the largest UIConM,

followed by the TOPAL method and TACL method, which shows

that our method had the best performance in restoring contrast. The

UIQM values for the FUnIEGAN method, FWGAN method,

TOPAL method, TACL method, and our proposed method were

2.70, 2.78, 2.93, 2.91, and 3.12, respectively.

As shown in Table 3, our proposed method had the best

performance in restoring colorfulness, sharpness, and contrast.

Furthermore, our proposed method also had the largest UIQM,

which shows that our method had the best performance in

improving the visual effect of underwater images.
4.4 Ablation study

To analyze the contributions of the multi-scale adversarial

network, the multi-scale dilated convolution module, the

attention module, and the TV loss, we conducted the following

ablation studies:
• w/o MAN: without multi-scale adversarial network

• w/o MDCM: without multi-scale dilated convolution

module;

• w/o AM: without attention module;

• w/o TV loss: without TV loss;
TABLE 1 Performances of underwater image enhancement for different methods on the EUVP dataset.

FUnIEGAN FWGAN TOPAL TACL Ours

PSNR 23.23 26.87 25.41 26.65 28.28

SSIM 0.70 0.80 0.76 0.79 0.85

UIQM 3.04 2.97 3.06 2.95 3.25
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The PSNR, SSIM, and UIQM scores on the test_samples subset

from the EUVP dataset are shown in Table 3. As is shown in the

table, our complete model achieved the best performance compared

to all the ablated models, which proves the effectiveness of the

multi-scale adversarial network, the multi-scale dilated convolution

module, the attention module, and the TV loss.

4.4.1 Ablation study on MAN
The multi-scale adversarial network is designed to improve the

discriminative power, which is helpful in improving the quality of

images generated by the generative network. From Table 3,

compared with our method without a multi-scale adversarial
Frontiers in Marine Science 10
network, our complete method improved the PSNR, SSIM, and

UIQM scores by nearly 5%, 7%, and 9%, respectively. It is shown

that the multi-scale adversarial network is effective in improving the

performance of the network model.

4.4.2 Ablation study on MDCM
The multi-scale dilated convolution module in the generative

network is designed to increase the receptive field and extract more

feature information. FromTable 3, compared with ourmethod without

multi-scale dilated convolution modules, our complete method

improved the PSNR, SSIM, and UIQM scores by nearly 10%, 9%,

and 9%, respectively. The result demonstrates the important role of the
FIGURE 7

The images enhanced by different methods from the UIEB dataset.
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multi-scale dilated convolution module in recovering Image color and

enhancing detailed information.

4.4.3 Ablation study on AM
The attention module is designed to extract important features and

reduce the influence of unimportant features. From Table 3, compared

with our method without the attention module, our complete method

improved the PSNR, SSIM, and UIQM scores by nearly 4%, 5%, and

4%, respectively. It is shown that the attention module is effective in

improving the quality of images generated by our method.

4.4.4 Ablation study on TV loss
The TV loss is added to the traditional loss function to improve the

visual effect of the generated images. From Table 3, compared with our

method without TV loss, our complete method improved the PSNR,

SSIM, and UIQM scores by nearly 2%, 4%, and 7%, respectively. The

TV loss improved the image visual effect by smoothing image details, so

the PSNR and SSIM scores were less increased, and the UIQM score,

which is more suitable for the quality of human eye vision,

was increased.
4.5 Performance of saliency detection
based on enhanced underwater images

We also randomly selected an image from the UIEB dataset to

test the performance of saliency detection (Liu and Yu, 2022) based

on the enhanced underwater image. In Figure 8, the images in the

first row are the real-world degraded underwater image (raw image)

and enhanced images by FUnIEGAN, FWGAN, TOPAL, TACL, and

our method. The images in the second row are the saliency

probability maps by saliency detection from the images in the first

row in Figure 8. All shark boundaries are not clear for the first image

in the second row. The saliency detection method only detected one

shark boundary from the enhanced images by TOPAL and TACL

methods, respectively. While saliency detection effectively detects

more shark boundaries in the enhanced images generated by

FUnIEGAN, FWGAN, and our method, it is worth noting that the
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boundary of the shark in the upper right part of the detected image

appears less distinct in the enhanced images created by the

FUnIEGAN and FWGAN methods. Compared with other

methods, saliency detection detected more shark boundaries and

the boundaries are clearer in the enhanced image from our method. It

shows that our underwater image enhancement method is more

useful in improving the performance of saliency detection.
4.6 Model complexity analysis

To further prove the performance of our model, we measured

its complexity using two metrics: floating point operations (FLOPs)

and parameters. FLOPs quantify the amount of computation

required by the model and can be used to gauge its complexity.

In our analysis, we focused on the convolution layer as it contributes

significantly to the computational load. The FLOPs of the

convolution layer can be calculated as follows.

FLOPs = (2� Ci � K2 − 1)�H �W � Co (11)

where Ci is the number of input feature map channels, K is the

size of the convolution kernel, H, W, Co are the height, width, and

channels of the output feature map. The parameters of the

convolution layer can be calculated as follows.

parameters = Ci � Co � K2 (12)

where Ci, Co are the number of input and output channels, K is the

size of the convolution kernel. Among them, the smaller the FLOPs,

the smaller the computational complexity of the model. The fewer the

parameters, the less memory the model occupies.

We compared the model complexity of FUnIEGAN, FWGAN,

TOPAL, and TACL and our method. The measurement results are

shown in Table 4. While our method had a larger number of FLOPs

compared to FUnIEGAN and FWGAN, it was still smaller than

TOPAL and TACL. Additionally, although our method had a larger

number of parameters compared to FUnIEGAN, it was smaller than

FWGAN, TOPAL, and TACL.When compared to TACL and TOPAL,

which have demonstrated better performance in enhancing underwater
TABLE 2 Performances of underwater image enhancement for different methods on the UIEB dataset.

FUnIEGAN FWGAN TOPAL TACL Ours

UICM 4.41 4.43 4.93 4.68 5.52

UISM 5.82 5.99 6.29 6.16 6.68

UIConM 0.24 0.24 0.26 0.27 0.31

UIQM 2.70 2.78 2.93 2.91 3.24
frontie
TABLE 3 Experimental results of the ablation study.

w/o MAN w/o MDCM w/o AM w/o TV loss Ours

PSNR 26.97 25.54 27.28 27.61 28.28

SSIM 0.79 0.77 0.81 0.82 0.85

UIQM 2.95 2.97 3.12 3.01 3.25
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images, our proposedmethod stands out with smaller values for FLOPs

and parameters.
5 Conclusion

In this article, a new generative adversarial network is proposed

for enhancing underwater images. First, we designed a multi-scale

dilated convolution module, attention module, and residual

module, and employed these modules to construct a generative

network with a U-shaped network structure. The designed

generative network was utilized to enhance the underwater

images. Second, we designed a multi-scale adversarial network to

indirectly improve the performance of the generative network.

Finally, we proposed an improved loss function for the designed

generative adversarial networks by incorporating the total variation

loss into the traditional loss function. We used the paired

underwater images consisting of high-quality images, degraded

images, and real-world underwater images to test the

performance of our proposed method. Compared with the other

methods, the images enhanced by our proposed method from the

synthesized degraded underwater images had the highest PSNR,

SSIM, and UIQM. The images enhanced by our proposed method

from the real-world degraded underwater images also had the

highest UICM, UISM, UIConM, and UIQM. These show that the

quality and visualization of enhanced underwater images from our

method are better than other methods. Furthermore, ablation
Frontiers in Marine Science 12
studies on the network structure and loss function demonstrated

the effectiveness of our method. Moreover, we also used the

underwater image enhancement method as a pre-processing

method for saliency detection. The saliency detection results

indicated that our proposed method outperforms other methods

in terms of saliency detection performance. Our proposed method

can improve the performance of high-level image processing. In the

final analysis, we performed a thorough complexity assessment of

the proposed network model. The results conclusively show that

our method demonstrated lower complexity and required less

memory compared to alternative approaches.
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