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Inhibition of ethylene involved
in resistance to E. turcicum
in an exotic-derived double
haploid maize population

Sarah Lipps, Alexander E. Lipka,
Santiago Mideros and Tiffany Jamann*

Department of Crop Sciences, University of Illinois, Urbana, IL, United States
Northern corn leaf blight (NCLB) is an economically important disease of maize.

While the genetic architecture of NCLB has beenwell characterized, the pathogen is

known to overcome currently deployed resistance genes, and the role of hormones

in resistance to NCLB is an area of active research. The objectives of the study were

(i) to identify significant markers associated with resistance to NCLB, (ii) to identify

metabolic pathways associated with NCLB resistance, and (iii) to examine role of

ethylene in resistance to NCLB. We screened 252 lines from the exotic-derived

double haploid BGEM maize population for resistance to NCLB in both field and

greenhouse environments. We used a genome wide association study (GWAS) and

stepwise regression to identify fourmarkers associatedwith resistance, followed by a

pathway association study tool (PAST) to identify important metabolic pathways

associated with disease severity and incubation period. The ethylene synthesis

pathway was significant for disease severity and incubation period. We conducted

a greenhouse assay inwhichwe inhibited ethylene to examine the role of ethylene in

resistance to NCLB. We observed a significant increase in incubation period and a

significant decrease in disease severity between plants treated with the ethylene

inhibitor and mock-treated plants. Our study confirms the potential of the BGEM

population as a source of novel alleles for resistance. We also confirm the role of

ethylene in resistance to NCLB and contribute to the growing body of literature on

ethylene and disease resistance in monocots.

KEYWORDS
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1 Introduction

Northern corn leaf blight (NCLB), caused by the fungus Exserohilum turcicum (Pass.)

K. J. Leonard and Suggs [syn. Setosphaeria turcica (Luttr.) K. J. Leonard and Suggs.], is one

of the most important diseases of maize. E. turcicum is well-adapted to most maize growing

regions in the world and causes yield losses globally (Savary et al., 2019). Over 7.62 million
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metric tons (300 million bushels) have been lost due to NCLB

between 2016 and 2019 in the United States and Ontario, Canada

(Mueller et al., 2020). The cost of economic losses due to damage

from NCLB was estimated in one study examining hybrids with a

range of resistance levels to be from $122.00 ha-1 to $353.20 ha-1 in

fields managed for optimized yield (De Rossi et al., 2022).

Furthermore, E. turcicum has a high evolutionary potential, as the

fungus has high genetic variability and undergoes sexual

reproduction in the field. Thus, there is the potential for

widespread loss of resistance to E. turcicum (McDonald and

Linde, 2002; Galiano-Carneiro and Miedaner, 2017; Munoz-

Zavala et al., 2023).

The disease cycle and pathogenesis process of E. turcicum have

been well characterized (Kotze et al., 2019; Navarro et al., 2020). E.

turcicum is a hemibiotroph with a biotrophic and a necrotrophic phase.

The fungus overwinters as mycelia in crop residue. Conidia are spread

to the host by wind and rain. In the biotrophic phase, an appressorium-

like structure is formed, and the fungus penetrates the cuticle, grows

through the mesophyll, then colonizes the xylem (Navarro et al., 2020).

The necrotrophic phase of the disease cycle begins when the fungus

exits the xylem and colonizes the mesophyll, resulting in cell death.

Eventually, E. turcicum forms conidiophores resulting in polycyclic

disease over the course of the growing season (Kotze et al., 2019;

Navarro et al., 2020). The first symptoms of infection are tan flecks that

develop into tan-grey ovular lesions. The most severe epiphytotics are

observed when disease symptoms occur before flowering time and in

warm, humid environments (Ullstrup andMiles, 1957; Raymundo and

Hooker, 1981a; Perkins and Pedersen, 1987).

An integrated NCLBmanagement program includes host resistance,

fungicides, and cultural methods. Host resistance is an important

management technique as it does not increase the cost of production

and does not harm the environment (Galiano-Carneiro and Miedaner,

2017). Both qualitative resistance, conferred by a single gene, and

quantitative resistance, conferred by multiple genes, have been

characterized in maize. Qualitative resistance genes effective for

managing E. turcicum include Ht1, Ht2, Ht3, and HtN1 (Welz and

Geiger, 2000; Hurni et al., 2015; Galiano-Carneiro and Miedaner, 2017).

Ht2, Ht3, and HtN1 are allelic and encode a wall-associated protein

kinase (Hurni et al., 2015; Yang et al., 2021). Ht1 encodes a nucleotide-

binding leucine-rich repeat receptor, PH4GP- Ht1 (Thatcher et al., 2022).

In this pathosystem, the qualitative genes do not confer complete

resistance, but instead delay the onset of symptoms after initial

infection and or dramatically reduce the severity of symptoms.

Many quantitative trait loci (QTL) effective against NCLB have

been identified in maize (Wisser et al., 2006). A recent meta-analysis

evaluating 110 studies identified chromosomes 10, 6, 5, 1, and 2 as

having the highest odds of contributing a major-effect QTL for

resistance to fungal and viral diseases, with chromosome 10 have

the highest likelihood and chromosome 2 having the lowest

likelihood (Rossi et al., 2019). In addition to regions associated

with resistance, progress has been made on identifying potential

quantitative resistance mechanisms to E. turcicum. Receptor-like

kinases (RLKs) have been implicated in resistance to NCLB and

other diseases. Three FERONIA-like receptors (FLRs), a type of
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RLK, have been identified as conferring resistance to multiple

fungal foliar diseases, including NCLB (Yu et al., 2022). Originally

pan1, an RLK, was implicated in increasing susceptibility to E.

turcicum, as well as Pantoea stewartii, in maize on bin 1.06 (Jamann

et al., 2014). However, a recent study revealed that pan1 is not

responsible for the altered resistance but potentially an aldo-

ketoreductase is responsible instead (Doblas-Ibáñez et al., 2019).

Additionally, a remorin gene, ZmREM6.3, on bin 1.02 was

implicated in resistance to E. turcicum, P. stewartii and Puccinia

sorghi (Jamann et al., 2016). Recently, a transcription repressor,

ZmMM1, was cloned in maize from teosinte, and found to confer a

lesion mimic phenotype, as well as resistance to NCLB and other

fungal diseases (Wang et al., 2021). Other biochemical processes,

such as the production of phenylpropanoids, have also been

implicated as mechanisms of resistance. In bin 9.02, a maize

caffeoyl-CoA O-methyltransferase encoded by ZmCCoAOMT2, is

involved in the production of phenylpropanoids and lignin and is

associated with resistance to multiple diseases (Yang et al., 2017).

The recent advances in understanding NCLB have elucidated both

regions associated with and mechanism of resistance.

The role of hormones in pathogen defense has been reviewed

(Glazebrook, 2005; Robert-Seilaniantz et al., 2011; Denance et al.,

2013). Three hormone pathways have been well discussed regarding

their overlapping roles in abiotic and biotic stress: salicylic acid

(SA), jasmonates (JA), and ethylene (ET). In Arabidopsis, SA is

typically associated with biotrophic pathogens, and JA and ET are

associated with necrotrophic pathogens (Glazebrook, 2005).

Resistance to biotrophic and necrotrophic pathogens has been

thought of as antagonistic, meaning that heightened resistance to

biotrophic pathogens is typically associated with increased

susceptibility to necrotrophic pathogens (Robert-Seilaniantz et al.,

2011). However, the relationship between phytohormones and

pathogen resistance is complex. Some fungi are able to mimic

phytohormones or produce effectors that interfere with in planta

hormone signaling (Denance et al., 2013). Additionally, pathogens

are able to disrupt the balance of active hormones by targeting the

regulatory aspects of hormonal pathways or inducing in planta

hormone production (Robert-Seilaniantz et al., 2011).

The role of ethylene in disease resistance is complex. Ethylene is

produced in planta in response to abiotic or biotic stress, which can be

sensed by receptors located in the endoplasmic reticulum (Muller and

Munne-Bosch, 2015). The ethylene pathway was first characterized in

horticultural crops. It is synthesized from methionine which is

converted into S-adenosyl-L-methionine (SAM) by SAM synthase.

SAM is converted to 1-aminocyclopropane-1-carboxylate (ACC) via

ACC synthase (ACS), and ACC is finally converted to ethylene via

ACC oxidase (ACO) (Yang, 1985; Xu and Zhang, 2015). When

activated, ethylene response factors link ethylene sensing and the

activation of pathogen related genes (Huang et al., 2016).

The role of ethylene in plant-pathogen interactions has been

extensively studied in dicots. However, several recent studies have

focused on the role of ethylene in resistance against necrotrophic

pathogens in maize. In maize, there are five known ACS genes and

13 ACO gene family members (Park et al., 2021). In kernels treated
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with Fusarium verticillioides, it was found that several ethylene

production genes were induced upon infection, and ethylene

production was associated with disease progression (Park et al.,

2021). A similar trend was found in kernels inoculated with

Aspergillus flavus, where ethylene production encouraged fungal

conidiation and sporulation (Wang et al., 2017). Additionally, an

ethylene signaling gene, ZmEIN2, regulated the abundance of

metabolites associated with resistance to Fusarium graminearum

in maize seedlings (Zhou et al., 2019). The bulk of research

regarding ethylene in maize-pathogen interactions has focused on

necrotrophic pathogens. Less is known about the role of hormone

signaling and resistance to E. turicucm, a hemibiotrophic

plant pathogen. Recently, an ethylene response factor, ZmERF061,

was implicated in resistance against E. turcicum in maize (Zang

et al., 2020; Zang et al., 2021). The plant’s ability to sense and

respond to ethylene is likely important in defense against

hemibiotrophic pathogens like E. turcicum, but this hypothesis

needs further investigation.

Recent research shows that pathogens are increasing in

complexity. In the case of E. turcicum, this increased complexity

enables certain strains to overcome multiple, and occasionally, all

available qualitative disease resistance genes (Weems and Bradley,

2018; Jindal et al., 2019; Muñoz-Zavala et al., 2022). The emergence

of novel physiological races of E. turcicum requires further

development and utilization of host resistance to effectively

manage NCLB (Muñoz-Zavala et al., 2022). The endemic region

of E. turcicum has expanded due to global warming; thus, it is likely

that NCLB prevalence and severity are increasing in regions where

it was previously a less common disease (Miedaner and Juroszek,

2021). With the increased complexity and ability of E. turicucm to

overcome resistance in maize, it is imperative to continue

identifying novel sources of resistance in maize. One effective

approach to discover novel resistance alleles is by screening

exotic-derived materials to identify previously unknown sources

of resistance.

The germplasm enhancement of maize (GEM) program was

established in 1995 to increase allelic diversity in temperate maize

through the release of exotic-derived germplasm (Pollak and

Salhuana, 2001). The BGEM population is an exotic-derived

double haploid (DH) population developed by Iowa State

University in collaboration with the GEM program (Brenner

et al., 2012). In total, the BGEM population is derived from 67

landraces originating from 13 different countries (Sanchez et al.,

2018). The BGEM population has previously been evaluated for

flowering traits, kernel quality, and root architecture (Sanchez et al.,

2018; Vanous et al., 2018; Vanous et al., 2019). We selected the

BGEM population for this study as it is adapted to temperate

climates and is a source of novel alleles not currently present in

midwestern United States commercial germplasm.

The goals of this study were to (i) identify markers associated

with resistance to NCLB in the BGEM population, (ii) identify

potential metabolic pathways associated with resistance, and (iii)

confirm the role of in planta ethylene production in NCLB

resistance. We hypothesized that allelic diversity in the BGEM

population would confer a range of resistance responses sufficient

for genetic mapping when challenged with E. turcicum.
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Subsequently, we used the pathway association study tool (Thrash

et al., 2020) to identify metabolic pathways associated with

resistance. We confirmed the role of ethylene in the E. turcicum-

maize pathosystem in the greenhouse by evaluating resistance

responses of plants after treatment with AgNO3, a chemical

which limits in planta ethylene action (Beyer, 1976; Kumar et al.,

2009). Our results provide additional insight into the role of

phytohormones and resistance to NCLB.
2 Materials and methods

2.1 Germplasm

The BGEM population is a BC1F1 exotic-derived DH

population. The population was developed at Iowa State

University in collaboration with the USDA-ARS Germplasm

Enhancement of Maize project (Pollak and Salhuana, 2001).

Briefly, BC1F1 lines were created by crossing exotic accessions to

one of two expired Plant Variety Protection (PVP) lines, namely

PHZ51 or PHB47, backcrossing the resulting F1 accessions were

backcrossed to their respective ex-PVP parent, and then DH lines

were created and self-pollinated (Brenner et al., 2012). Any lines

that were infertile, lacked uniformity, or with poor agronomic traits

were discarded. Genetically, the BGEM population is comprised of

roughly 25% donor parent and 75% recurrent parent (Sanchez et al.,

2018). The BGEM population represents a broad diversity of exotic

derived maize. In total 67 landraces from 13 different countries are

represented (Sanchez et al., 2018).
2.2 Experimental design

The BGEM population was screened for resistance to E.

turcicum in three environments from 2019 to 2021. In total, all

lines were evaluated four times in the field between 2019 and 2021

and twice in the greenhouse in 2020. All experiments were designed

as augmented randomized incomplete block designs using the

agricolae package (de Mendiburu, 2021) in the statistical software

R, version 3.6.0 (R Core Team, 2021). Lines from BGEM population

were screened at the Crop Sciences Research and Education Centers

in Urbana, IL in 2019 (n = 252) and 2021 (n = 240). Differences in

the number of lines used in 2019 and the other years were due to

seed availability. Field plots were planted in rows that were 3.65 m

long with 0.91 m alleys. The 2019 field was irrigated to encourage

disease development. Lines were replicated twice in 2019 and 2021.

In 2019, incomplete blocks (n = 14) were augmented with Oh7B

and NC344 as susceptible and resistant checks, respectively. In

2021, Oh7B, NC344, PHB47, and PHZ51 served as check lines in

each incomplete block (n = 16). In 2021 the following NCLB

differential lines were included in each replication: A619-Ht1,

A619-Ht2, A619-Ht3, A619, B37-HtN1, and B37.

In 2020, BGEM lines (n=240) were screened at the Plant Care

Facility in Urbana, IL. The 2020 greenhouse experiment was

replicated twice with 13 incomplete blocks in each replication.

Due to space constraints, replications had to be run separately.
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One plant per line was grown in a one-gallon pot filled with 1:1:1

general purpose potting mix. Greenhouse conditions were set to 12/

12 hr. light-dark cycle. Ambient temperatures were set to 24-28°C

during the day and 20-22°C during the night. Lines were organized

in an augmented randomized incomplete block design. Oh7B and

NC344 were susceptible and resistant check lines in each block.

PHB47 and PHZ51 were randomized once in each replication. The

same qualitative check lines used in 2021 were also used in the

greenhouse in each replication.
2.3 Inoculation and phenotyping

In 2019 natural inoculum was relied upon for infection, as the

growing season was conducive for disease development and

evaluation. For all other experiments, inoculum was prepared

using five fungal isolates (19StM06, 19StM07, 19StM09, 19StM11,

19StM12) that were isolated from diseased maize tissue collected

from the 2019 field experiment at Crop Science Research and

Education Center in Urbana, IL. A mixture of isolates was used

to best reproduce disease pressure observed in 2019. For the 2020

greenhouse experiment, plants were inoculated with a spore

suspension at the V3 stage (Adhikari et al., 2021). Fungal isolates

were grown on lactose-casein hydrolysate agar (LCA) media for 14

days under 12/12 hr light/dark photoperiod at room temperature.

Spores were harvested from 14-day old plates and the concentration

adjusted to 4 × 103 spores/mL in a 0.02% Tween 20 solution. For

inoculations, 0.5 mL of the spore suspension was pipetted into the

whorl of the plants. Following inoculation, plants were maintained

in high humidity conditions for 24 hours to facilitate disease

development. In 2021 plants were inoculated at the V4 to V5

stage using infested sorghum grains (Zhang et al., 2020). Fungal

isolates were cultured on LCA for 14 days as described above. After

14 days of culturing, agar pieces cut directly from the plates were

added to mushroom bags containing 1000 mL of soaked, autoclaved

sorghum grains. The mushroom bags were cultured for two to three

weeks at room temperature under 12/12 hr light/dark photoperiod.

The infested grains were examined under a dissecting microscope to

confirm the presence of conidia then dried and stored at room

temperature. Each plant was inoculated with 1.3 g of the prepared

inoculum in the whorl at the V3 growth stage.

Disease ratings for the 2019 and 2021 field experiments were

taken on a whole plot basis using a 0-100% scale in 5% increments

(Poland and Nelson, 2011) where no disease present was

represented by 0%, and a rating of 100% indicated that the total

leaf area of the plants was necrotic due to disease. In 2019 two field

ratings were taken after lines had started flowering, and ratings were

taken 7 days apart. In 2021 a total of four field ratings were taken.

Ratings were conducted every 7-14 days starting two weeks before

the onset of flowering in the earliest maturing plants.

Lines in the 2020 greenhouse experiment were evaluated for

incubation period and disease severity. Incubation period is defined

as the number of days after inoculation (DAI) that the first lesions

were visible. Lines were evaluated for incubation period every 48
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hours until all plants showed lesions. In the greenhouse experiment,

a total of four diseased leaf area ratings were taken. Disease leaf area

ratings were taken every 7-14 days starting the day when all plants

had lesions present. Lines were rated on a single leaf per plant basis

using the same 0-100% rating scale mentioned above.
2.4 Statistical analyses

Disease severity data was examined using the standardized area

under the disease progress curve (sAUDPC). sAUDPC is used to

compare disease progression between environments or experiments

(Simko and Piepho, 2012). sAUDPC is calculated by first measuring

the area under the disease progress curve (AUDPC), which is the

area of a trapezoid between two or more time points on a

progression curve and accounts for disease severity over time

(Jeger and Viljanen-Rollinson, 2001; Madden et al., 2007). The

sAUDPC value is then obtained by dividing AUDPC by the

weighted total of the number of days of disease evaluation.

sAUDPC was calculated using the R package agricolae (de

Mendiburu, 2021). Both days to anthesis (DTA) and days to

silking (DTS) were recorded for the 2019 field experiment. DTA

is defined as the number of days after planting when 50% or more of

the plot had visible anthers on the tassel. DTS is defined as the

number of days after planting when 50% or more of the plot had

visible silks emerging from the ears. Pearson correlation coefficients

for sAUDPC across all environments were calculated using the

rcorr() function in the R package Hmisc v4.5-0 (Harrell, 2021).

Flowering data was only collected in 2019. Using AUDPC, DTS,

and DTA data from 2019, Pearson correlation coefficients were

calculated between each trait.

Both sAUDPC and incubation period values were used to fit

mixed models and estimate least squared means (LS Means). The

following model was fit to estimate LS Means for sAUDPC in the

2019 + 2021 dataset:

Yijkl =   μ +  Gi +  Rj +  Bl(j(k)) +  El + GEil + e ijkl

The factors are defined as follows: Yijkl is the sAUDPC value

from genotype i in replicate j in block k and environment l; Gi is the

fixed effect of genotype I; Rj is the random effect of replicate j; Bk(j) is

the random effect of block k nested in replicate j nested in

environment l; El the random effect of the environment l; GEil the

random effect of the interaction between genotype i and

environment l; and eijkl the error term. From this model, LS

Means were calculated from the estimates of Gi from the fitted

model. For the 2020 incubation period dataset the following mixed

model was fit:

Yij =   μ +  Gi +  Bj +   e ij

Terms in the model are described as follows Yij is the incubation

period value in days of genotype i in block j; Gi is the fixed effect of

genotype i; Bj is the random effect of block j; and eij the error term
associated with Yij. The fixed effects for genotype in each model

were extracted and used for further analysis. As with the previous
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model, LS Means were calculated from the estimates of Gi from the

fitted model.
2.5 Genotyping

The BGEM population was previously genotyped (Sanchez

et al., 2018). A dataset consisting of 62,077 single nucleotide

polymorphisms (SNPs) was obtained from Sanchez, Liu (Sanchez

et al., 2018). This dataset was generated for the DH BGEM lines via

genotyping-by-sequencing (Elshire et al., 2011) by the Cornell

University Genomic Diversity Facility with data analysis by the

Buckler Lab for Maize Genetics and Diversity. The 62,077 SNP

dataset was generated by filtering SNPs with a large amounts of

missing data and low allele frequencies, followed by SNPs in the

same genetic position (Sanchez et al., 2018). Within the BGEM

population, the average number of recombination events was higher

than expected. A Bayes theorem described by Sanchez, Liu (Sanchez

et al., 2018) was implemented to correct for monomorphic markers

that were flanked by markers with donor parent genotypes. After

correction, the number of recombination events was reduced, and

the donor genome composition was closer to 25%, as expected. All

edits to the genotypic dataset were conducted prior to this study.
2.6 Identification of markers associated
with disease resistance

To identify candidate regions associated with resistance to E.

turcicum two mapping strategies were employed using TASSEL

v5.2.81 (Bradbury et al., 2007). First, we used a generalized linear

model (GLM) in TASSEL to identify significant markers, as well as a

stepwise regression approach to identify markers that were

associated with disease severity and incubation period. The

Bayesian corrected genotypic dataset was filtered to remove

markers with a minor allele frequency less than 0.05. Two

principal components, calculated in TASSEL using the standard

PCA plugin, were used to control for population structure. The

phenotypic datasets used were the LS Means estimated using the

2019 + 2021 combined disease severity and the 2020 incubation

period datasets (File S1). The same genotypic dataset was used for

both phenotypes. The GLM model was ran for both phenotypes

with 1000 permutations. A significance threshold of a = 0.10 was

applied using permutation corrected p-values. For the second

approach, stepwise regression was implemented in TASSEL

independently of the GLM association analysis. The two principal

components calculated in TASSEL were included as numeric

covariates along with the estimated LS Means value for each line.

The stepwise regression analysis was implemented for both the

2019 + 2021 combined disease severity and the 2020 incubation

period datasets. The p-value model was used with 1000

permutations with entry and exit limits of 1 × 10-5 and 2 × 10-5,

respectively. A significance threshold of a = 0.10 was used to

identify significant SNPs.
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2.7 Pathways Association Study Tool

The Pathway Association Study Tool (PAST) approach (Thrash

et al., 2020) was implemented via the MaizeGDB online platform

(Woodhouse et al., 2021). PAST is designed to take outputs

generated by TASSEL and provide biological insight into

association study results. The software interprets the results from

association analysis to identify metabolic pathways associated with

genes that are strongly associated with the trait through significant

markers or when genes are moderately associated with a trait, but

the markers themselves may not have been significant in the

original association study. PAST uses the output from association

analysis, allelic effects files, and a linkage disequilibrium file to

assign SNPs to genes based on LD and genomic distance between

SNPs and genes before then identifying significant metabolic

pathways. PAST analysis was conducted for the 2019 + 2021

combined disease severity dataset and the 2020 incubation period

dataset. The association and effect files generated from the GLM

were used as the input for the PAST analysis. A gene assignment

window size of 1000 base pairs was used. Pathways with at least five

genes were considered and significance was determined based on

1000 permutations. A Type I error rate of a = 0.05 was used to

determine statistical significance for each pathway.
2.8 Differentially expressed genes
associated with ethylene

A recent study examined differences in gene expression in maize

and sorghum plants inoculated with different strains of E. turicum

(Adhikari et al., 2021) (File S2). Our hypothesis was that genes

involved in the synthesis of ethylene were differentially expressed in

mock-inoculated maize plants versus E. turcicum inoculated maize

plants. A list of genes associated with ethylene biosynthesis was

downloaded from CornCyc7.5 available through the MaizeGDB

(corncyc-b73-v3.maizegdb.org) (File S3).

Transcriptome data were generated by Adhikari et al. (2021).

Briefly the maize line B73 was grown in the greenhouse and either

inoculated with E. turcicum or mock inoculated with sterile

deionized H2O (DI H2O). RNA was extracted from plant tissue

collected at 24 and 72 hours after inoculation (hai) and sequenced at

the Roy J. Carver Biotechnology Center at the University of Illinois

at Urbana-Champaign. Quality control, alignment, and

normalization were conducted using standard procedures

(Adhikari et al., 2021). We used the final dataset with annotated

differentially expressed genes (DEGs) and calculated false discovery

rates (FDR) (Adhikari et al., 2021). (File S2). Global FDR adjusted

p-values were calculated based on the Benjamini & Hochberg

procedure (Benjamini and Hochberg, 1995).

Our objective with the RNA data was to examine the expression

of genes associated with ethylene biosynthesis in maize during the

E. turcicum infection stage. Therefore, we are interested in three

contrasts: DEG of maize 24 and 72 hai with E. turcicum, DEG of

maize 24 hai with E. turcicum and DI H2O, and DEG of maize 72
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hai with E. turcicum and DI H2O. Using a list of known genes

involved in ethylene biosynthesis (File S3), we filtered the

normalized list of DEGs for those only involved in ethylene

biosynthesis. Then, for each contrast we only examined DEGs

with an FDR value greater than or equal to 0.05. We

hypothesized that ethylene biosynthesis could be involved in

maize early defense against E. turcicum.
2.9 Greenhouse ethylene assay

A subset of DH lines was chosen to evaluate the role of ethylene

in resistance against E. turcicum. In maize, ethylene is inhibited by

the foliar application of AgNO3 (Kumar et al., 2009). Using LS

Means data from the 2021 field experiment, we examined disease

phenotypes within exotic donor families. Only the ex-PVP

recurrent parents have been genotyped, and there is no genotypic

information for the landrace donor parents. We chose a resistant

and susceptible line, as we wanted to see if inhibiting ethylene

affected phenotypes of resistant or susceptible lines differently

(Table 1). We selected pairs of lines categorized as resistant or

susceptible within five exotic landrace groups. Both ex-PVP

recurrent parents, PHB47 and PHZ51, were included in the assay.

Our goal was to assess the role of ethylene between resistant and

susceptible lines, within different exotic families, and within

different recurrent parent backgrounds.

The experiment was arranged in a split-plot design. The whole-

plot was a complete block of plants, and the subplot was each

BGEM line randomly assigned to each treatment within each

complete block. Lines were either treated with AgNO3 followed

by inoculation with E. turcicum, or treated with DI H2O followed by

inoculation with E. turcicum. There were three whole-plots

(complete blocks) per treatment and each line occurred once in

each whole-plot. Greenhouse growing conditions were the same as

the conditions described previously. The E. turcicum spore

suspension was prepared as explained above. At the V3 growth

stage, plants were treated with either 20 mM AgNO3 in 0.001%

Tween 20 (Wang et al., 2017) or with sterile water in 0.001% Tween

20 at a rate of 187 L ha-1 at 207 kPa using a spray chamber

(Technical Machinery Inc., Sacramento, CA). The chamber was

equipped with an even flat-fan nozzle 8002E (TeeJet Technologies,

Wheaton, IL) and plants were sprayed 45 cm above the tallest leaf.

After treatment, plants were allowed to dry completely before

inoculation with 4 × 103 spores/mL in a 0.02% Tween 20 solution

prepared as mentioned previously. Plants were inoculated by

pipetting 0.5 mL of spore suspension into the whorl. After

inoculation, a high-humidity environment was maintained

overnight to encourage disease development. All plants were

evaluated for incubation period and disease severity on a per

plant basis as described previously. AUDPC was calculated using

the agricolae package (de Mendiburu, 2021) in the statistical

software R, version 3.6.0 (R Core Team, 2021). We ran an

ANOVA to appropriately account for the differences in the

whole-plots and the subplot replicates.
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3 Results

3.1 Characterization of the
BGEM population

The BGEM population was evaluated for DTA and DTS in 2019

and for resistance to E. turcicum in 2019 and 2021 in the field at the

Crop Sciences Research and Education Center in Urbana, IL. A field

trial of the BGEM population was lost during the 2020 growing

season due to poor emergence, followed by a hailstorm, which

destroyed the field. Thus, the BGEM population was grown a

second time and evaluated for resistance in the greenhouse in

2020 at the Plant Care Facility in Urbana, IL. All checklines

performed as expected. In the 2019 and 2021 field environments,

Oh7B was more susceptible than NC344. The BGEM recurrent

parents, PHB47 and PHZ51, were moderately resistant in the 2021

field season with PHZ51 being the more resistant recurrent parent.

The observed range of phenotypes suggest that there was sufficient

disease pressure in each experiment to evaluate for disease severity

and incubation period, even in the uninoculated field trial (Table 2).

Due to the high evolutionary potential of E. turcicum, we

examined whether isolates collected from Champaign County

could overcome major genes associated with resistance. In 2020

and 2021 A619-Ht1, A619-Ht2, A619-Ht3, A619, B37-HtN1, and

B37 were included to evaluate whether the mixture of 19StM06,

19StM07, 19StM09, 19StM11, 19StM12 were able to overcome

major genes associated with resistance. In the 2020 greenhouse

experiment we did not observe a significant difference in AUDPC or

incubation period among lines containing major genes and their

respective background based on a Dunnett’s test (a = 0.05), but we

observed typical resistant responses for Ht2, Ht3, and HtN1. In the

2021 field experiment the AUDPC for A619-Ht2 and A619-Ht3

were significantly different from A619 based on a Dunnett’s test (p<

0.001), indicating that Ht2 and Ht3 conferred resistance.

Additionally, B37-HtN1 was significantly different from B37 (a =

0.01), indicating that HtN conferred resistance. Discrepancies

between genotype performance in the greenhouse and the field

environment could be due to other E. turcicum genotypes present in

the field environment. The effectiveness of qualitative and

quantitative under greenhouse conditions differs from the field

environment (Raymundo and Hooker, 1981b; Chung et al., 2010).

Thus, it is possible that the observed discrepancy in phenotypes

between the field and greenhouse environments could be attributed

to environmental effects on the plants, as well as additional strains

present in the field environments.

We observed a difference in resistance responses between the

greenhouse and field environments. The 2019 and 2021 field

environments were strongly and significantly correlated, (r= 0.64,

a = 0.001) while the 2020 greenhouse environment had a weaker

correlation with the 2019 field environment (r = -0.21, a = 0.01) and

the 2021 field environment (r = -0.29, a = 0.01, Table 3). The strong

correlation between the 2019 and 2021 field data underscores that

similar levels of resistance were observed even though one field was

artificially inoculated while the other relied on natural inoculum. In
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the mixed model for the 2019 + 2021 combined dataset,

environment contributed the most variance, followed by the

genotype × environment interaction (Table 4). The model used to

estimate LS Means in the 2020 incubation period dataset only

included block but not replication. Replication was not included as

it had a covariance estimate of zero, indicating that block and

replication were redundant. By including the blocking factor in the

model, we are still able to account for variation in the greenhouse

environment. The 2020 greenhouse diseased leaf area was analyzed

in the same manner as the 2020 greenhouse incubation period. The

estimated LS Means for the 2019 + 2021 combined dataset and the

2020 incubation period dataset showed a range of phenotypic

responses suitable for association mapping (Figure 1, Table 1).
3.2 Identification of significant markers
associated with resistance to NCLB

In order to identify candidate markers associated with resistance

to NCLB, we employed genome-wide association analysis using

TASSEL (Bradbury et al., 2007). To control for population

structure, two principal components were included in the model, as

most of the variation is explained by the first two components

(Figure 2). We then employed a GLM model using TASSEL to

examine the genetic architecture of resistance to NCLB. For both the

2019 + 2021 field dataset and the 2020 greenhouse incubation period

dataset log quantile-quantile plots were constructed to assess the

effectiveness of two principal components to control population

structure (Figures 3B, D). Given the genetic design of the BGEM

population, this approach is appropriate to control for population

structure while controlling for any false positives. The same mapping

approach was used for the 2019 + 2021 field dataset, the 2020
TABLE 1 Lines selected to evaluate the role of ethylene in resistance against E. turcicum.

Line Landrace RP* Pedigree R/S^

BGEM-0078-S Cristalino Amarillo PHB47 (CRISTALINO AMAR AR21004/PHB47 #001-(2n)-002 R

BGEM-0079-S Cristalino Amarillo PHB47 (CRISTALINO AMAR AR21004/PHB47 #005-(2n)-003 S

BGEM-0087-N Dulcillo del Noroeste PHZ51 (DULCILLO DE NO SON57/PHZ51)/PHZ51 #001-(2n)-001-001-B R

BGEM-0088-N Dulcillo del Noroeste PHZ51 (DULCILLO DE NO SON57/PHZ51)/PHZ51 #002-(2n)-002 S

BGEM-0108-S Elotes Occident PHZ51 (ELOTES OCCIDENT NAY29/PHB47)/PHB47 #002-(2n)-001-001-B R

BGEM-0109-N Elotes Occident PHZ51 (ELOTES OCCIDENT DGO236/PHZ51)/PHZ51 #004-(2n)-002-002-B S

BGEM-0120-N Jora PHZ51 ((Jora - ANC 1/PHZ61 B)/PHZ51)-(2n)-001-001-B R

BGEM-0121-N Jora PHZ51 ((Jora - ANC 1/PHZ61 B)/PHZ51)-(2n)-002-001-B S

BGEM-0162-S Morado PHB47 (MORADO BOV567/PHB47)/PHB47 #002-(2n)-001 R

BGEM-0167-S Morado PHB47 (MORADO BOV567/PHB47)/PHB47 #005-(2n)-003 S

PHB47 - - - R

PHZ51 - - - R
frontie
*RP, recurrent parent.
^R/S, Resistant/Susceptible.
Lines were selected in pairs from five exotic landrace groups based on phenotype to see if exotic landrace background influenced ethylene production and if inhibiting ethylene influenced the
phenotypes of resistant and susceptible lines differently. Both recurrent parents, PHZ51 and PHB47, were included in the experiment.
TABLE 2 Variation for standardized AUDPC (sAUDPC), incubation period
(IP), days to anthesis (DTA) and days to silk (DTS) in each environment
the BGEM population was screened in.

Environment Trait Minimum Maximum Mean

2019 Field sAUDPC* 17.50 87.50 42.59

2021 Field sAUDPC* 8.07 49.43 27.62

2020 GH IP^ 5 19 10

2019 Field DTA# 61 84 69

2019 Field DTS+ 63 84 71
*sAUDPC, standardized area under the disease progress curve.
^IP, incubation period, the number of days from inoculation to the appearance of first lesions.
#DTA, days to anthesis, the number of days after planting until 50% of the plot has visible
anthers.
+DTS, days to silking, the number of days after planting until 50% of the plot has visible silks.
TABLE 3 Pearson correlation coefficients between LS Means disease
severity among environments.

2021 Field 2020 GH DLA+ 2020 GH IP^

2019 Field 0.64*** 0.16** -0.21**

2021 Field 0.34*** -0.29***

2020 GH
DLA

-0.37***
Significance *** p ≤ 0.001, ** p ≤ 0.01.
+DLA, diseased leaf area.
^IP, incubation period.
Field environments were evaluated for diseased leaf area (DLA) while greenhouse experiments
were evaluated for incubation period (IP) and diseased leaf area.
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greenhouse incubation period dataset, and the 2020 greenhouse

diseased leaf area dataset. We did not identify any significant

markers using the 2020 greenhouse diseased leaf area dataset. In

total, four significant markers were identified using the GLM model

in TASSEL (Figure 3).

The BGEM-DH lines have a high percentage of recurrent parent

genome, and as such, linkage disequilibrium (LD) decays at a much

slower rate than expected. In some regions, the LD blocks are large and

span 100,000,000 bp or beyond (Sanchez et al., 2018). Given the LD

structure in this population, we considered genes within 1 Mbp of a

significant marker when examining candidate genes. Three markers on

chromosome 3 were associated with delayed incubation period (Table 5,

Figure 3A). A stepwise regression approach using the same marker

dataset identified a single significant marker for incubation period on

chromosome three (S3_8266879; p = 5 × 10-5), which was also significant

in the GLM model (p = 0.033, Table 5, Figure 3A). The marker

S3_8266879 is within GRMZ2G108898, plant cysteine oxidase 1

(PCO1). PCO1 spans from 8,263,929 bp to 8,269,675 bp on
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chromosome 3. The other two significant markers identified in the

GLM model for incubation period, S3_15712704 (p = 0.53) and

S3_18008517 (p = 0.55) were proximal to GRMZM2G445261 a

probable carboxylesterase 15 and GRMZM2G380195 a

pentatricopeptide repeat-containing protein chloroplastic, respectively.

While these genes were the closest to the most significant marker, it is

important to keep in mind the extensive LD structure in this population.

Resistance to diseased leaf area (DLA) is genetically distinct

from incubation period; a single marker was significant on

chromosome 2 (Figure 3C). The significant marker, S2_10777410

(p = 0.053), is proximal to GRMZM2G068982, a methionine

aminopeptidase. Using the same marker dataset, a stepwise

regression approach did not reveal any significant markers for the

field DLA dataset (Table 5). Stepwise regression is more

conservative than GLM, and our findings are consistent in that

no significant markers were identified using stepwise regression.

There was no overlap in significant markers for incubation

period and disease severity. We observed a weak negative
TABLE 4 Covariance estimates with standard deviation for all fixed factors included in each mixed model used to estimate LS Means for incubation
period and the 2019 + 2021 combined disease severity datasets.

Factor 2019 + 2021 Fields Incubation Period 2020 GH DLA

Environment 95.65(9.78) − −

Genotype × Environment 17.20(4.15) − −

Environment/Replication/Block 11.71(3.42) − −

Environment/Replication 3.62(1.90) − −

Block − 0.17 (0.41) 5520 (74.29)

Residuals 31.75(5.6) 2.32 (1.52) 5499 (74.16)
A B

FIGURE 1

Histograms showing the distribution of least squared means (LS Means). The x-axis shows LS Means values, and the y-axis shows the frequency. LS
Means were estimated for (A) incubation period and (B) standardized area under the disease progress curve (sAUDPC). Dashed and solid horizontal
lines represent recurrent parents PHZ51 and PHB47, respectively. (180 x 100 mm, 300 dpi).
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A B

FIGURE 2

Figures illustrating the population structure of the BGEM population. (A) Is a scatter plot for principal components 1 and 2 plotted against each other.
The shape of the points represents each ex-PVP background. The ex-PVP parents, PHB47 and PHZ51, are highlighted in red. (B) Is a scree plot of all
principal components. The x-axis is the principal component number, and the y-axis is the proportion of total variation explained by each principal
component. (200 x 100 mm, 300 dpi).
A B

DC

FIGURE 3

Results from the generalized linear model (GLM) with two principal components to control for population structure (A, C) and qq-plots showing
observed versus expected -log10(p) (B, D). A significance threshold of a=0.1 was established based on 1000 permutations conducted in TASSEL. For
incubation period, evaluated in the greenhouse in 2020, (A, B) three SNPs were significant. The annotated SNP, S3_8266879, was also significant
with a stepwise regression model. For the 2019 + 2021 combined field sAUDPC data, (C, D) one SNP was significant. (300 x 180 mm, 300 dpi).
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correlation between disease severity and incubation period

(Table 3). Although we observed some chlorotic resistant

responses in our 2019 and 2021 field experiments and 2020

greenhouse experiment, we did not identify any significant

markers near any of the major genes for NCLB resistance, Ht1,

Ht2, Ht3, HtN1 (Figure S1). If the qualitative resistance genes were

present in the population, they may have been at too low of a

frequency to detect any significant markers in these regions. It is

also possible that these responses were due to novel

resistance genes.
3.3 Metabolic pathways associated
with disease resistance

To better understand the molecular mechanisms associated

with resistance to NCLB we conducted a metabolic pathway

analysis and examined a previously published RNA-seq dataset.

We identified metabolic pathways associated with disease severity

and incubation period using the results from the GLM model and

the PAST software (Thrash et al., 2020). In total, 24 metabolic

pathways (a = 0.05) were associated with resistance to E. turcicum

(Table 6), including nine associated with incubation period and 15

associated with disease severity. Several pathways associated with

plant hormones were significant including jasmonic acid

biosynthesis (PWY-735, p = 0.02) and cytokine-O-glucosides

biosynthesis (PWY-2902, p = 0.04) in the combined disease

severity dataset. Additionally, gibberellin inactivation I (PWY-

102, p = 0.01) and brassinosteroids inactivation (PWY-6546,

p = 0.03) were significant in the incubation period dataset. A

pathway of particular interest is the ethylene biosynthesis

pathway (ETHYL-PWY) which was significant for both

incubation period (p = 0.006) and disease severity (p = 0.01).

Ethylene synthesis has previously been associated with disease

resistance in plants (Dong, 1987; van Loon et al., 2006).

Additionally, S-adenosyl-L-methionine cycle II (PWY-5041) was

significant for disease severity. S-adenosyl-L-methionine (SAM) is

the starting substrate in ethylene synthesis. It is converted to 1-

aminocyclopropane-1-carboxylic acid (ACC) by ACC synthase

(ACS), which is subsequently converted into ethylene via

oxidation by ACC oxidase (ACO) (Xu and Zhang, 2015).
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Pathogens are known to mimic phytohormones and interfere

with signaling (Denance et al., 2013), as well as to target regulatory

components involved with in planta hormone production (Robert-

Seilaniantz et al., 2011). Thus, we examined an RNA-seq dataset

(Adhikari et al., 2021) for DEGs associated with ethylene

biosynthesis during the early stages of infection. We examined

three contrasts: inoculated versus uninoculated maize 24 hai,

inoculated versus uninoculated maize 72 hai, and inoculated

maize 24 versus 72 hai. Only one gene associated with ethylene

biosynthesis, GRMZM2G07529 (FDR = 0.03), was upregulated,

with a fold change of 16.87, in maize 24 hai with E. turcicum

compared to maize 24 hai with DI H2O. GRMZM2G07529 is

annotated as ACC oxidase ACO31. ACO is the final oxidation

step in the synthesis of ethylene (Xu and Zhang, 2015). Thus, during

the initial phases of infection ethylene production may be increased,

indicating that it may play a role in resistance to NCLB.
3.4 Investigation of ethylene and
resistance to E. turcicum

We hypothesized that inhibiting ethylene would alter NCLB

disease severity. We used a foliar treatment of AgNO3 to examine

the effect of ethylene on disease resistance. AgNO3 inhibits ethylene

action in planta by reducing the ability of ethylene receptors to bind

to ethylene, which results in decreased ethylene sensitivity and the

inhibition of continuous ethylene production (Kumar et al., 2009).

We hypothesized that inhibition of ethylene by applying AgNO3

would decrease disease severity and increase incubation period.

Furthermore, we postulated that host resistant level and genetic

background might alter the magnitude by which inhibiting ethylene

improves resistance and increases incubation period.

To examine the role of ethylene in E. turcicum infection, a total of

10 DH lines and both recurrent parents were selected. We selected

DH lines in pairs within each exotic family, where the pair had

contrasting disease phenotypes. Plants were either treated with

AgNO3 or DI H2O prior to a whorl inoculation with E. turcicum.

From our ethylene inhibition assay, disease severity was significantly

impacted by genotype (Table 7, p = 0.012) and by treatment with

AgNO3 or deionized H2O (Table 7, p = 1.756 × 10-5). Similarly,

incubation period was significantly impacted by genotype (Table 8,

p = 0.004) and by treatment with AgNO3 or deionized H2O Table 8,
TABLE 5 SNPs associated with resistance to E. turcicum were identified in the BGEM populations using genome-wide association and stepwise
regression models.

Dataset Chr.* SNP^ Perm. p-value (GWAS)
p-value

(Step Reg.)
Nearest gene Distance from marker (BP)

Incubation Period 3 S3_8266879 0.033 5 × 10-5 GRMZM2G108898 Genic

Incubation Period 3 S3_15712704 0.053 − GRMZM2G445261 10,690

Incubation Period 3 S3_18008517 0.055 − GRMZM2G380195 1,896

2019 + 2021 LS
Means

2 S2_10777410 0.053 − GRMZM2G068982 5,033
* Chromosome.
^ Single Nucleotide Polymorphism.
The significant SNPs identified in the 2019 + 2021 combined dataset and for incubation period are shown.
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p = 4.281 × 10-5). In plants treated with AgNO3, incubation period

increased and AUDPC decreased (Figure 4). We did not observe a

significant impact of the line’s resistance level, exotic family, or

recurrent parent on AUDPC or incubation period (a = 0.05). In

this experiment, application of AgNO3 affected all genotypes similarly

meaning that, of the lines screened, no line was more or less resistant

relative to the other lines after AgNO3 application; thus, inhibiting

ethylene using AgNO3 decreases disease severity similarly in the

lines screened.
4 Discussion

We evaluated the exotic-derived BGEM population for

resistance to NCLB and examined the role of metabolic pathways

in resistance to NCLB, specifically ethylene. We identified several

significant markers for diseased leaf area and incubation period.
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These markers can be used to enrich the repertoire of quantitative

resistance genes effective against E. turcicum. Additionally, we

report that the ethylene synthesis pathway modulates a defense

response against E. turcicum. Finally, we report variation in the

ethylene metabolic pathway as a whole that is associated with

resistance to NCLB.

This is the first study to report on disease resistance in the

BGEM population. While we did not map any previously identified

qualitative genes, several interesting responses were observed

during the early stages of infections in some lines (Figure S1). Of

note, the lines BGEM-0081-S, BGEM-0027-S, BGEM-0087-S,

BGEM-0116-S, and BGEM-0154-S showed defense responses that

were the most unique, could be useful in breeding for resistance and

are worth examining closer in future experiments (Figure S1).

Allelic variation has been reported for the major genes Ht2/3

(Hurni et al., 2015; Yang et al., 2021), and it would be reasonable

to expect allelic variation for other qualitative resistance genes.
TABLE 6 Significant metabolic pathways associated with increasing or decreasing incubation period and the 2019 + 2021 combined disease severity
datasets.

Pathway ID Pathway Name p-Value Effect Dataset

ETHYL-PWY ethylene biosynthesis I (plants) 0.0062419 Decrease IP*

PWY-5667 CDP-diacylglycerol biosynthesis I 0.0273528 Decrease IP

PWY-5138 unsaturated, even numbered fatty acid-oxidation 0.0354694 Decrease IP

PWY-3181 tryptophan degradation VI (via tryptamine) 0.0367993 Decrease IP

PWY-581 indole-3-acetate biosynthesis II 0.0459157 Decrease IP

PWY-5080 very long chain fatty acid biosynthesis I 0.0026768 Increase IP

PWY-102 gibberellin inactivation I (2-hydroxylation) 0.0152976 Increase IP

PWY-5097 lysine biosynthesis VI 0.0268191 Increase IP

PWY-6546 brassinosteroids inactivation 0.0334693 Increase IP

LIPASYN-PWY phospholipases 0.007419 Decrease DLA#

PWY-6441 spermine and spermidine degradation III 0.011873 Decrease DLA

PWY-735 jasmonic acid biosynthesis 0.022039 Decrease DLA

PWY-5097 lysine biosynthesis VI 0.032238 Decrease DLA

PWY-6959 L-ascorbate degradation V 0.032430 Decrease DLA

PWY-6803 phosphatidylcholine acyl editing 0.037275 Decrease DLA

PWY-2902 cytokinin-O-glucosides biosynthesis 0.048633 Decrease DLA

PWY-5041 S-adenosyl-L-methionine cycle II 0.007802 Increase DLA

ETHYL-PWY ethylene biosynthesis I (plants) 0.014177 Increase DLA

PWY-5690 TCA cycle II (plants and fungi) 0.019701 Increase DLA

PWY-6363 D-myo-inositol (1,4,5)-trisphosphate degradation 0.021242 Increase DLA

PWY-702 methionine biosynthesis II 0.026966 Increase DLA

PWY-6549 glutamine biosynthesis III 0.031528 Increase DLA

UDPNACETYLGALSYN-PWY UDP-N-acetyl-D-glucosamine biosynthesis II 0.047356 Increase DLA

PWY-5138 unsaturated, even numbered fatty acid-oxidation 0.047695 Increase DLA
fro
*IP, incubation period.
#DLA, diseased leaf area.
Only pathways significant at a = 0.05 are shown.
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We identified three markers associated with incubation period

and one marker associated with DLA (Table 5). We observed no

overlap between the significant markers associated with incubation

period and the marker associated with diseased leaf area indicating
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that the genetic architecture underlying disease severity and

incubation period are distinct. It was surprising to see no overlap

in significant markers for disease severity and incubation period;

however, this phenomenon has been reported previously (Balint-
A B

FIGURE 4

Boxplots showing distribution of incubation period (A) and AUDPC (B) when plants were sprayed with AgNO3, light blue, and sterile water, dark blue,
before inoculation with E. turcicum. A total of 12 plants were replicated three times in each treatment. (300 x 115 mm, 300 dpi).
TABLE 7 Analysis of variance (ANOVA) output from the model used to evaluate the split-plot ethylene design to assess the effect of whole-plot and
subplot on AUDPC.

Source DF* SS# MS^ F-value P-value

Whole Plot 2 5524 2762.1 1.6573 0.20764

Genotype 11 51549 4686.3 2.8117 0.01209

Whole Plot/Treatment 3 62622 20873.9 12.5241 1.756 × 10-5

Whole Plot × Genotype 22 35546 1615.7 0.9694 0.52271

Error 30 50001 1666.7
*DF, degrees of freedom.
#SS, sums of squares.
^MS, mean squares.
TABLE 8 Analysis of variance (ANOVA) output from the model used to evaluate the split-plot ethylene design to assess the effect of whole-plot and
subplot on incubation period.

Source DF* SS# MS^ F-value P-value

Whole Plot 2 0.75 0.375 0.3123 0.7339

Genotype 11 43.042 3.9129 3.2587 0.00417

Whole Plot/Treatment 3 38.875 12.9583 10.7918 4.281 × 10-5

Whole Plot × Genotype 22 30.583 1.3902 1.1577 0.34438

Error 33 39.625 1.2008
*DF, degrees of freedom.
#SS, sums of squares.
^MS, mean squares.
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Kurti et al., 2010). Incubation period and disease severity are

important measures of resistance to E. turccium. Both traits are

typically strongly correlated (Smith and Kinsey, 1993; Welz and

Geiger, 2000). In this study we observed significant, weak negative

correlations between disease severity and incubation period

(Table 3), suggesting that the ability to delay the onset of lesions

is a separate component of resistance than restricting the pathogen

growth after initial lesion development. Both incubation period and

disease severity are believed to be controlled by genetically similar

mechanisms (Schechert et al., 1999; Welz et al., 1999).

Of the three significant markers associated with incubation

period, one marker (S3_8266879) was significant after the stepwise

regression approach in TASSEL and is within GRMZM2G108898, a

plant cysteine oxidase 1 (PCO1). Plant cysteine oxidases are

associated with oxygen sensing and stress response in plants

(Weits et al., 2014). When under hypoxic conditions, such as

flooding, PCOs initiate downstream ethylene production by

stabilizing ethylene response factors (ERFs) such as ERF-VII

(Hartman et al., 2021). In Arabidopsis, several PCOs were found

to be sensitive to in planta oxygen levels and necessary for

mediating the stability of ERF-VII transcription factors in low

oxygen environments (White et al., 2018). Because ethylene is a

stress hormone, it makes sense that ERFs would be important in

plant hosts under abiotic and biotic stress factors. In maize two

ERFs, ZmERF061 and ZmERF105, have been implicated as

important for NCLB resistance (Zang et al., 2020; Zang et al., 2021).

We identified a single marker associated with disease severity,

S2_10777410. This marker is proximal to a methionine

aminopeptidase, GRMZM2G068982. Methionine aminopeptidases

function as catalysts in cleaving methionine from synthesized

polypeptides. Methionine is involved in many metabolic

pathways, including the production of ethylene. The ethylene

biosynthesis pathway was significant (a = 0.05) in the post-

GWAS PAST analysis. Interestingly, ACO was strongly

upregulated in maize plants 24 hai with E. turcicum compared to

mock inoculated control. It is known that ethylene production is

upregulated in response to pathogen invasion (Li et al., 2012; Xu

and Zhang, 2015). The final step in ethylene synthesis is the

oxidation of ACC by ACO which yield ethylene. The

upregulation of ACO during the initial stages of infection

supports our hypothesis that ethylene is an important defense-

related hormone for resistance against NCLB. In our ethylene

experiment, we saw that the inhibition of ethylene significantly

increased incubation period and significantly decreased disease

severity. This same trend has been observed in other

pathosystems, where inhibiting ethylene or decreasing ethylene

production improves resistance (Dong, 1987; van Loon et al.,

2006; Wang et al., 2017).

The role of ethylene in plant defense against biotic stress factors,

such as pests and pathogens, is highly complex, as both the

synthesis and response to ethylene can be modulated to confer

resistance or susceptibility. In some pathosystems it has also been

shown that plant sensitivity to ethylene production is important in

mediating resistance. Ethylene insensitive mutants in Arabidopsis

had higher disease severity to necrotrophic and hemibiotrophic
Frontiers in Plant Science 13
pathogens, while disease severity was lower for biotrophic

pathogens (van Loon et al., 2006). In rice, increased accumulation

of ethylene increased host susceptibility to rice dwarf virus

(Zhao et al., 2017), but decreased ethylene accumulation resulted

in decreased resistance to the hemibiotrophic pathogen

Magnaporthe oryzae (Zhai et al., 2022). In tomato, plants with

antisense mutations for the ERF LeETR4 were generally more

resistant to the bacterial pathogen Xanthomonas campestris pv.

vesicatoria, suggesting expression of ERFs may be important in

rapid response to pathogen invasion (Ciardi et al., 2001). Two ERFs

have been identified in maize. Transcription of these ERFs are

upregulated during E. turcicum infection, suggesting that ethylene

sensitivity may be as important as ethylene production in defense

response (Zang et al., 2020; Zang et al., 2021). Given the complexity

of the role of ethylene in stress response, it is likely that there are

many pleiotropic effects associated with ethylene synthesis

and sensing.

After ethylene is synthesized, there are several downstream

effects, including interactions with JA, as well as potential

pleiotropic roles. In Arabidopsis it was shown that ethylene

biosynthesis is activated due to insect herbivory, with downstream

effects, such as increased transcription of ethylene response factors

and JA synthesis (Rehrig et al., 2014). Additionally, in Arabidopsis a

calcium elongation factor and a glutathione S-transferase were

upregulated when ethylene production was increased (Stotz et al.,

2000). Other downstream effects of ethylene synthesis include

increased callose accumulation and increased expression of Tdy2,

enhancing overall resistance to aphids in maize (Varsani et al.,

2019). In maize, ethylene production is shown to mediate the

expression of mir-1, an insect defense related gene, and is

believed to also interact with JA (Harfouche et al., 2006).

Metabolite abundance has been implicated and ethylene synthesis

have been shown to be interconnected in mediating resistance to the

necrotrophic pathogen Fusarium graminearum (Zhou et al., 2019).

Most research has investigated the qualitative role of ethylene in

plant-pathogen interactions. However, little is known about the effect

of allelic variation in ethylene related genes on disease severity. Here

we show that there is variation in the ethylene metabolic pathway as a

whole that is signiciantly associated with NCLB resistance. Our study

is limited in that we did not measure ethylene production or the

expression of genes associated with the production or response to

ethylene. However, the ethylene inhibition experiment suggests that

ethylene is an important part of the maize-E. turcicum pathosystem.

Other areas of exploration would be to measure quantitative

differences in ethylene production in response to pathogen

inoculation in lines with allelic diversity in the ethylene pathway, as

well as to evaulate mutants and natural alleles of genes related to

ethylene biosynthesis and sensing. Additionally, future studies could

examine the effect of the exogenous application of ethylene on gene

expression and disease resistance. While no individual genotypes

were statistically different between treatment with AgNO3 and sterile

water, we observed a range in disease severity in each treatment.

Based on our findings, it is plausible that allelic variation in genes

associated with ethylene production and ethylene sensitivity could

translate to altered defense responses.
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5 Conclusion

Northern corn leaf blight is an economically important disease.

We screened the BGEM population for resistance to NCLB,

identified metabolic pathways associated with resistance to NCLB,

and confirmed the role of ethylene in resistance to NCLB. In this

study we demonstrate the utility of the BGEM population as a

source of novel alleles for resistance, and contribute to the growing

body of literature focused on the role of ethylene in plant-microbe

interactions, specifically maize-E. turcicum. In this study, we

contribute to the growing body of literature by examining the role

of ethylene in NCLB resistance.
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