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Objectives: The long-term cardiopulmonary outcomes following preterm
birth during the surfactant era remain unclear. Respiratory symptoms,
particularly exertional symptoms, are common in preterm children. Therefore,
cardiopulmonary exercise testing may provide insights into the pathophysiology
driving exertional respiratory symptoms in those born preterm. This review aims
to outline the current knowledge of cardiopulmonary exercise testing in the
assessment of children born preterm in the surfactant era.
Design: This study is a narrative literature review.
Methods: Published manuscripts concerning the assessment of pulmonary
outcomes using cardiopulmonary exercise testing in preterm children (aged <18
years) were reviewed. Search terms related to preterm birth, bronchopulmonary
dysplasia, and exercise were entered into electronic databases, including
Medline, PubMed, and Google Scholar. Reference lists from included studies
were scanned for additional manuscripts.
Results: Preterm children have disrupted lung development with significant
structural and functional lung disease and increased respiratory symptoms. The
association between these (resting) assessments of respiratory health and
exercise capacity is unclear; however, expiratory flow limitation and an altered
ventilatory response (rapid, shallow breathing) are seen during exercise. Due to
the heterogeneity of participants, treatments, and exercise protocols, the effect
of the aforementioned limitations on exercise capacity in children born preterm
is conflicting and poorly understood.
Conclusion: Risk factors for reduced exercise capacity in those born preterm
remain poorly understood; however, utilizing cardiopulmonary exercise testing
to its full potential, the pathophysiology of exercise limitation in survivors of
preterm birth will enhance our understanding of the role exercise may play. The
role of exercise interventions in mitigating the risk of chronic disease and
premature death following preterm birth has yet to be fully realized and should
be a focus of future robust randomized controlled trials.

KEYWORDS

exercise and lung disease, bronchopulmonary dysplasia, pediatric lung disease, lung
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Introduction

Preterm births [less than 37 weeks completed gestational age (GA)] make up

approximately 11% of births worldwide (1), with an increased rate of children born

preterm reported from 1990 to 2010 (1). Babies surviving preterm birth are at risk

of significant health challenges throughout life, including chronic respiratory,
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neurodevelopmental, and cardiovascular disorders. Long-term

health challenges following preterm birth are accentuated in those

with bronchopulmonary dysplasia (BPD), a chronic lung disease

resulting from the disruption of development and subsequent

treatment-induced injury (2). Advancements in neonatal care in

the 1990s improved the survival of infants at borderline viable

gestational ages, resulting in a change in the pulmonary pathology

associated with preterm birth and BPD from the condition first

described in the 1960s (3). The hallmark characteristics of

contemporary BPD include immature airways, arteries and veins,

few or no alveoli, and an inefficient gas exchange area (3).

Respiratory health assessments conducted in childhood (4) and

young adulthood (5, 6) reveal reduced lung function and structural

abnormalities in modern survivors of preterm birth, raising

concerns for early-onset adult respiratory disease, including

chronic obstructive pulmonary disease (COPD) (7). While the

long-term respiratory consequences of preterm birth will likely not

be fully realized until the fourth, fifth, and sixth decades of life,

recent evidence suggests that infants born preterm in the

contemporary era are at risk of developing cardiometabolic

diseases in adulthood (8) and increased respiratory morbidity and

exertional dyspnea (4, 9, 10). Cardiopulmonary exercise testing

(CPET) provides insights into the etiology of cardiopulmonary

function following preterm birth and has the potential to identify

targets for therapeutic interventions. This narrative review aims to

summarize the current knowledge of cardiopulmonary exercise

testing in the assessment of pulmonary outcomes in children born

preterm in the surfactant era.
Cardiopulmonary exercise testing

CPET assesses the integrative response of the cardiovascular,

pulmonary, and skeletal muscle systems to exercise, providing

clinical information that may not be apparent at rest. Indeed,

health status correlates more strongly with exercise responses

than resting measurements across various different pathologies

(11). Performing exercise assessments enables the identification

of early disrupted physiology and causes of exercise intolerance.

Children born preterm are at higher risk of cardiometabolic

diseases (8), such as increased vascular resistance and blood

pressure (12), alterations in fat distribution (13), and impaired

glucose regulation (14). Understanding the exercise capacity of

children born preterm and the systems limiting exercise capacity

improves our understanding of deterrents to partaking in

physical activity. Importantly, understanding barriers to exercise

participation in this population can inform programs designed to

mitigate the health risks associated with preterm birth.
Peak aerobic exercise capacity (V̇O2)

Peak V̇O2, a measure of the oxygen uptake of the skeletal

muscles, provides a measure of aerobic capacity and is an

independent predictor of all-cause mortality (15). Peak V̇O2

independently predicts hospitalizations and future exacerbations
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in other parenchymal lung diseases such as cystic fibrosis

(16–19), and hence, its predictive use in children born preterm

has been explored. Data on the aerobic capacity of preterm

children born in the surfactant era are conflicting: some studies

show a lower peak V̇O2 (10, 20, 21), whereas others have shown

no difference (22–26). Comparisons of these studies are difficult

due to the variability within the inclusion criteria of the cohorts

studied, such as GA, birth weight, the presence and severity of

BPD, and the nature of neonatal care.
Neonatal factors associated with lower
peak V̇O2

Our literature review shows that the impact of neonatal factors

associated with preterm birth on peak V̇O2 is poorly understood.

Hochwald et al. reported similar deficits in V̇O2 at peak exercise

between participants born early preterm (<30 weeks GA) and late

preterm (34–36.6 weeks GA) (27). Several studies have reported

no association between peak V̇O2 and the presence or severity of

BPD (26, 28). We have previously reported that after accounting

for height, weight, and sex, there were no associations between

neonatal factors, structural abnormalities on CT, and lung

function for V̇O2 at peak exercise (26). Collinearities between

gestational age, the severity of BPD, and neonatal interventions,

including the duration of mechanical ventilation and

supplemental oxygen, make the effect of neonatal histories

difficult to elucidate. Consequently, few studies have accurately

identified or are able to report the independent effect of

gestational age or duration of mechanical ventilation and

supplemental oxygen on the aerobic exercise capacity of children

born preterm (10, 21, 26).
Association between lung structure and
peak V̇O2

Structural lung disease accounts for 42% of the variability in peak

V̇O2 in other chronic chest diseases, such as cystic fibrosis, and the

total CT score is a stronger predictor for exercise limitation than

lung function or body mass (29). To date, only one published

study has explored the relationship between structural lung

abnormalities in preterm children and exercise capacity, showing

no association between peak exercise outcomes and structural lung

disease. However, this study did not demonstrate significant

exercise impairment in children born preterm (26). Given the high

prevalence of exertional symptoms and structural lung disease, an

association between exercise capacity and structural lung disease is

plausible for children born preterm.
Impact of exercise modality on
peak V̇O2

Differences in the methods of exercise testing [e.g., cycle

ergometers (10, 21, 23–25, 30, 31), treadmills (9, 22, 28), or
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shuttle run tests (20, 32–35)] likely contribute to the conflicting

outcomes for aerobic capacity in this group. Generally, most

treadmill exercise test studies report no difference in aerobic

capacity (9, 22), while all studies involving shuttle runs and most

studies involving cycle ergometers show lower peak V̇O2 in the

preterm population. The varied methodologies of exercise testing

make comparisons difficult due to the different advantages and

limitations of each method.
Shuttle run assessment

The estimation of peak V̇O2 from shuttle runs involves physical

movements that are familiar to children. However, the shuttle run

is demanding from a cognitive perspective and may be challenging

for preterm children with impaired neurodevelopmental

performance (1). Burns et al. (34) reported that motor

impairment was the only predictor of estimated peak V̇O2 in

extremely low birth weight children, which may suggest that the

reductions reported are perhaps due to poor coordination rather

than cardiopulmonary limitation. Unfortunately, other factors

that may limit exercise during a shuttle run test, such as

workload, ventilatory response, or gas exchange during exercise,

cannot be assessed, limiting the utility of these studies in

understanding the underlying exercise limitation.
Cycle ergometry

Most exercise studies in children born preterm in the surfactant

era used cycle ergometry, with some (10, 21, 31, 36) but not all

(23–25, 30) studies showing a reduced peak V̇O2. Reductions in

workload (10) and V̇O2/work (24, 31) were reported in the

preterm population, even with normal peak V̇O2 (25, 30). These

differences in workload and V̇O2/work may suggest differences

in cardiovascular or peripheral muscle function underlie the

reduced exercise capacity, as the V̇O2/work slope is related to

cardiovascular and musculoskeletal responses to exercise (31, 37).

The assessment of peak outcomes in a cycle ergometer test relies

on the muscular endurance of the legs, in particular, the

quadriceps. It is also plausible that the low workload and V̇O2/

work relationship may be due to changes in the peripheral

muscle mass (31).

Children born preterm have a persistent reduction in body

mass with an overall reduction in bone, fat, and fat-free mass;

however, there is no difference in the percentage of fat-free mass,

suggesting that the overall reduction in body mass is

proportional, even when accounting for height (13). This

reduction in fat-free mass may lead to a reduction in peripheral

muscle strength; indeed, Vardar-Yagli et al. (38) reported a

reduction in peripheral muscle strength evaluated using a

dynamometer in children born preterm. In particular, Vardar-

Yagli et al. reported a significantly greater reduction in lower

extremity muscle strength compared to upper body extremities.

As exercise using a cycler ergometer requires lower extremity

muscle strength, this reduced peripheral strength may make it
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more difficult for children born preterm to continue cycling at

higher workloads, resulting in a reduced peak V̇O2 and V̇O2/

work slope.
Treadmill

Preterm children born in the post-surfactant era typically have a

normal peak V̇O2 when assessed using a treadmill-based exercise

protocol (9, 22). A sensitivity analysis performed by Edwards et al.

comparing metadata from different exercise testing modalities

showed that treadmill testing was more likely to identify a

difference between term and preterm groups than cycle ergometry

(39). However, we note that the data that most heavily contributed

to the differences observed were based on an abstract containing

preliminary data (40), which, when submitted for full publication,

showed no differences between the term and preterm groups (9).

Exercise testing using a treadmill is advantageous because it

mimics daily activities such as running and walking. The treadmill-

based exercise involves the recruitment of a larger muscle mass

compared to the predominately lower body recruitment in cycle-

based exercise. This results in a higher peak V̇O2 and peak heart

rate during a treadmill-based CPET than those obtained when

using cycle ergometry in healthy subjects (41). Therefore,

differences in muscle mass recruitment may explain the

contrasting outcomes of the studies using cycle and treadmill

protocols. However, treadmill exercise testing also relies on the

child’s cognitive ability to run to maximal exertion. Preterm

children with muscle incoordination or gait impairment may

terminate the exercise test early, resulting in a measurement bias

favoring healthy children. In addition, preterm children unable to

perform a peak exercise test are likelier to have worse lung function

and more parentally reported symptoms (9). The literature

contains no direct comparisons of treadmill and cycle ergometry

feasibility in children born preterm, and testing modality is

ultimately determined by equipment availability and the preference

of the supervising team.
Oxygen update efficiency slope

Developmental delay and poor coordination are well-

recognized in children following preterm birth. Accurate peak

V̇O2 measurements can be difficult to achieve in this group as

they are critically dependent on subject motivation and

coordination and also on the skills of the observer. Baba et al.

(42) proposed the oxygen uptake efficiency slope (OUES), a

submaximal measurement of cardiopulmonary functional

capacity. OUES is derived from the slope of V̇O2 plotted against

the log of minute ventilation (V̇E), which is linear throughout

testing,, and is independent of workload, enabling the assessment

of cardiopulmonary exercise capacity even from submaximal

tests. OUES has been validated against peak V̇O2 in children

with congenital heart disease when assessed at the ventilatory

threshold, 75% or 100% of peak V̇O2. Further, OUES has been

proven to differentiate between disease groups (43, 44). The
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utility of OUES in a preterm population is largely unstudied.

Therefore, it should be an area of future research, given the

variability in reported outcomes, the difficulties testing in this

population, and the possibility of healthy survivor bias. Hence,

the wider use of OUES in the assessment of aerobic capacity in

young children would allow for the generalization of results to a

broader preterm population.
Ventilatory response to exercise

Exertional dyspnea in preterm-born individuals is attributed

to an altered ventilatory response to exercise, which may be

associated with decreased lung function. A growing body of

evidence suggests that children born preterm mount an altered

ventilatory response to exercise, characterized by a rapid

breathing pattern (9, 10, 24, 25, 31). Some studies also report

a shallow breathing pattern at peak exercise, identified by a

reduced tidal volume (10, 21, 24, 31). Supporting these

findings, our group (26) reported significantly higher breathing

frequency to tidal volume ratios at peak exercise in school-

aged children born very preterm with BPD. Two studies on

children delivered extremely preterm (10, 21) showed a

reduction in peak V̇E; however, studies on children delivered

very preterm showed no alterations (9, 23, 31). The differences

in results between children born extremely preterm and very

preterm suggest that gestational age and lung development

may play a role in altered ventilatory response.

Ventilatory efficiency during exercise as assessed by ventilatory

equivalents for carbon dioxide and oxygen (V̇E/V̇CO2 and V̇E/V̇O2,

respectively) independently predict hospitalizations and future

exacerbations in other parenchymal lung diseases such as cystic

fibrosis (16–19); ventilatory efficiency can be assessed using the

V̇E/V̇CO2 slope. The effect of preterm birth on ventilatory

efficiency is unresolved: two studies (21, 25) showed an increased

V̇E/V̇CO2 slope, suggesting inefficient ventilation, while a further

study showed no difference (31). In a study on very low birth

weight (VLBW) children, conducted by Rideau Batista Novais

et al. (25), the V̇E/V̇CO2 was elevated and associated with a

reduction in end-tidal CO2, suggesting inefficient ventilation and

hyperventilation during exercise (45). However, peak exercise

ventilatory indices were similar between the VLBW and control

groups. The authors hypothesized that this finding was due to

either an altered CO2 setpoint or inspiratory muscle fatigue.

However, the plausibility of a significant alteration in CO2

setpoint is unclear, given the normal peak exercise ventilatory

outcomes. Respiratory muscle fatigue was suggested to be a more

likely contributor to the altered ventilatory response, given

increased inspiratory load for the same exercise intensity and,

therefore, likely an increased susceptibility to fatigue (25).

Supporting this hypothesis, Davidson et al. (46) found elevated

sternocleidomastoid muscle activity in children born preterm,

suggesting increased respiratory muscle activity at high-intensity

exercise, which may lead to respiratory muscle fatigue. However,

the mechanism(s) driving respiratory muscle fatigue remains

largely unknown.
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Expiratory flow limitation

One factor potentially contributing to altered ventilatory

responses during exercise may be expiratory flow limitation (EFL).

EFL is associated with an impaired ventilatory response to exercise

in asthma, cystic fibrosis, and COPD (47–50). We identified two

studies that assessed the prevalence and impact of EFL on exercise

in preterm children born in the surfactant era (9, 21). Both studies

showed that approximately half of all preterm children develop

significant EFL during exercise compared to 25%–30% of term-

born controls. Contrary to other obstructive lung diseases, the

inspiratory capacity during exercise and the operational lung

volumes were not altered in those born preterm, suggesting that

gas trapping and airway collapse are not likely causes for EFL in

this population. Instead, increased EFL without changes in

operating lung volumes may be due to reduced pulmonary

compliance and the consequent increased elastic load of breathing,

respiratory muscle weakness, and altered respiratory mechanics.

Preterm children may have respiratory muscle weakness, which

may lead to an inability to overcome the increased work of

breathing, leading to EFL; this increased work of breathing may

also lead to dyspnea. However, there is no association between

EFL and alterations in exercise capacity or ventilatory response to

exercise (9, 21). In a 2018 study, we showed that the presence of

EFL is associated with a lower gestational age and reduced FEV1/

FVC (9). The influence of low FEV1/FVC is supported by the

findings that EFL in healthy adults is explained mainly by

alterations in lung and airway size or dysanapsis (smaller airway

size relative to lung volume), which limits the capacity to generate

the flows and volumes required during exercise (51). Given the

disrupted lung growth and development associated with preterm

birth, airway dysanapsis likely contributes to EFL in conjunction

with respiratory muscle weakness and altered respiratory

mechanics. Understanding the mechanisms underlying EFL and

their contribution to exercise limitation will be key to clarifying

the mechanisms of the altered ventilatory response and identifying

potential therapeutic options for reducing respiratory morbidity.
Early V̇O2 recovery

Exertional dyspnea in preterm children is still poorly

understood; there is no obvious correlation between exertional

dyspnea with exercise outcomes despite reduced lung function

(9, 10). Dyspnea is related to respiratory muscle strength and

endurance in adults with congestive heart failure, and respiratory

muscle strength is related to early recovery oxygen kinetics (52).

Early recovery following maximal exercise is characterized by rapid

payback of oxygen debt and resynthesis of phosphocreatine. This

process depends on the transport and utilization of oxygen (53).

In children with chronic chest diseases, such as cystic fibrosis and

bronchiectasis, the V̇O2 recovery following maximal exercise is

delayed (measured by the time to return to 50% of peak V̇O2) and

is associated with disease severity. However, there is a large

variability in the V̇O2 recovery rate (53). Recovery following a

maximal exercise test depends not only on the size of the oxygen
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debt (larger debt, faster recovery) but also on the ability of the

cardiovascular system to transport oxygen. Therefore, recovery

may be a measure of cardiovascular fitness (54) or the ability of

the skeletal muscles to take up the delivered oxygen due to

alterations to structure or function (55). Currently, there is no

evidence regarding V̇O2 recovery in children born preterm.

However, assessment of early V̇O2 recovery may identify

differences given the altered ventilatory response in preterm

children (which may be related to altered respiratory muscle

strength) and could help explain increased exertional symptoms.
Heart rate recovery

Following maximal exercise, the immediate heart rate recovery

is mediated by the autonomic nervous system with activation of the

parasympathetic nervous system via the reactivation of the vagal

nervous system and the withdrawal of the sympathetic nervous

system. Reduced vagal activity, which may delay heart rate

recovery, is a predictor of all-cause mortality and is associated

with metabolic risk factors in healthy children (56). The

development of the autonomic nervous system occurs in the

third trimester after the delivery of most preterm infants, making

autonomic nervous system impairment plausible (57). To date,

limited research has reported heart rate recovery following peak

exercise in survivors of preterm birth. One study by

Haraldsdottir et al. assessed 12 preterm patients who reported

delayed heart rate recovery in adult survivors of preterm birth;

however, it did not investigate the impact of neonatal variables

(57). Another study by Huckstep et al. found that young adults

who were born moderately preterm have lower peak V̇O2 and

slower heart rate recovery following exercise compared to term

controls. They concluded that impaired myocardial functional

reserve may be a key factor underpinning these impairments

(36). Given the known risks for metabolic disease in preterm

children, altered heart rate recovery in this population may

justify the evaluation of a cardiopulmonary rehabilitation

program to help modify these risks and reduce exertional

dyspnea. This has been successful in other childhood diseases;

cardiac rehabilitation was shown to improve heart rate recovery

in children with complex congenital heart disease (58). The role

of cardiopulmonary rehabilitation programs in improving heart

rate recovery and other exercise outcomes in those born preterm

is yet to be fully realized; however, it should be a focus of future

robust randomized controlled trials.
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Conclusion

Children born preterm have disrupted lung growth and

development, which results in significant respiratory symptoms,

structural changes to the lung, and a reduction in lung function.

During exercise, a significantly altered ventilatory response is

evident; however, the underlying mechanisms and their clinical

significance remain unclear. Associations between resting

assessments of lung health (function, structure, and symptoms)

and exercise limitation are poorly understood and cannot

accurately predict exercise limitation. Due to the heterogeneity of

participants, treatments, and exercise protocols, there are variable

reports in the literature about the nature and extent of exercise

limitation in those born preterm.

CPET assesses interactions between the metabolic, respiratory,

cardiovascular, and musculoskeletal systems, and by utilizing this

tool to its full potential, the pathophysiological consequences of

preterm birth can be further investigated. Enhanced knowledge

of the pathophysiology of impaired lung function in childhood

will open new avenues for interventions to prevent further

deterioration in lung function throughout childhood.
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