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Purpose: Fast and automated reconstruction of retinal hyperreflective foci (HRF) 
is of great importance for many eye-related disease understanding. In this paper, 
we introduced a new automated framework, driven by recent advances in deep 
learning to automatically extract 12 three-dimensional parameters from the 
segmented hyperreflective foci in optical coherence tomography (OCT).

Methods: Unlike traditional convolutional neural networks, which struggle with 
long-range feature correlations, we  introduce a spatial and channel attention 
module within the bottleneck layer, integrated into the nnU-Net architecture. 
Spatial Attention Block aggregates features across spatial locations to capture 
related features, while Channel Attention Block heightens channel feature 
contrasts. The proposed model was trained and tested on 162 retinal OCT volumes 
of patients with diabetic macular edema (DME), yielding robust segmentation 
outcomes. We further investigate HRF’s potential as a biomarker of DME.

Results: Results unveil notable discrepancies in the amount and volume of HRF 
subtypes. In the whole retinal layer (WR), the mean distance from HRF to the 
retinal pigmented epithelium was significantly reduced after treatment. In WR, 
the improvement in central macular thickness resulting from intravitreal injection 
treatment was positively correlated with the mean distance from HRF subtypes 
to the fovea.

Conclusion: Our study demonstrates the applicability of OCT for automated 
quantification of retinal HRF in DME patients, offering an objective, quantitative 
approach for clinical and research applications.
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1. Introduction

Diabetic retinopathy (DR) is one of the most common complications 
of diabetes (1). With about 1 in every 10 diabetic patients developing 
visual impairment due to DR (2). One of the leading causes of visual 
impairment in DR patients is diabetic macular edema (DME) (3). It is 
suggested that in DR patients, disruption of the blood-retina barrier 
leads to increased fluid leakage within the retina, resulting in the 
development of DME (4) ultimately resulting in visual loss.

In recent decades, advances in high-resolution fundus imaging 
techniques have led to the discovery of specific imaging features of 
retinal diseases, which may serve as diagnostic, predictive, and 
prognostic biomarkers for this disease (5). Optical coherence 
tomography (OCT) is an imaging tool that can help in the visualization 
of the intra-retinal layers. Due to its non-invasiveness, affordability 
and high resolution, this imaging tool is suggested as the gold standard 
for the diagnosis and monitoring of DME (6). ‘Hyperreflective foci’ 
(HRF) is a term denoting any hyperreflective lesion, focal or dotted 
appearance, seen at any retinal layer on OCT images (7). Reports 
suggest that HRF is associated with lipid extravasation (7), microglia 
cells (8), migrating retinal pigment epithelium (RPE) cells (9), 
degenerated photoreceptor cells, and visual prognosis (10), increasing 
its clinical significance. In the last decade, it was shown that the 
presence of HRF was associated with DME, and several more recent 
studies have indicated that HRF could serve as a promising biomarker 
for investigating DME, due to its association with the soluble cluster 
of differentiation 14 (CD14) pro-inflammatory cytokine expressed by 
glial cells, monocytes, and macrophages (8, 11).

However, manual annotation of HRF in OCT is time-consuming, 
and sometimes excessively subjective. With the rapid development of 
computer science, there is great potential for automatic segmentation 
and quantification of HRF in OCT images, with benefits for clinical 
practice. The segmentation algorithms for HRF can be categorized 
into two primary groups: traditional segmentation algorithms and 
deep learning-based segmentation methods. Traditional HRF 
segmentation approaches usually require manual parameter tuning 
and extensive prior knowledge. Okuwobi et  al. (12) employed an 
automated grow-cut algorithm for HRF segmentation. It is difficult for 
traditional automated methods to perform accurate HRF 
segmentation due to boundary blurring and speckle noise within HRF 
images. Okuwobi et al. (13) introduced another component tree-based 
method to segment HRF by extracting the extreme regions from the 
connected areas. Still, the method is complicated and relies on 
handcrafted features. Deep learning techniques have achieved 
significant success in medical image segmentation. Yu et  al. (14) 
modified GoogLeNet for HRF segmentation in DR using pixel-level 
predictions of small image patches. However, this method partially 
addresses the class imbalance issue, leading to the mis-segmentation 
of large blood vessels or low-contrast backgrounds as HRF. Xie et al. 
(15) modified 3D-UNet for HRF segmentation, introducing denoised 
and enhanced OCT images as a dual-channel input and dilation 
convolution in the final layer of the encoder to expand the receptive 
field. Nevertheless, this approach overlooks false positive outcomes 
caused by high-frequency noise in the NFL/GCL and IS/OS layers. 
Yao et al. (16) modified U-Net for HRF segmentation, enhancing 
gradient propagation by replacing ordinary convolution blocks with 
dual residual modules and integrating adaptive modules within the 
bottleneck layer to fuse local features and global dependencies. 

However, this network ignores the inappropriateness of employing 
deformable convolutions for the segmentation of HRF due to its small 
size and lack of shape information. Wei et al. (17) preprocessed images 
using Non-local means (NLM) filters and adopted a patch-based 
segmentation approach, employing a lightweight network for 
automated HRF segmentation. This network relies on the patch-based 
method, which further diminishes the limited semantic information 
inherent in HRF.

In this study, we presented a deep learning-based framework for 
the quantitative analysis of HRF in OCT images. Specifically, the main 
contributions of our article can be summarized as follows:

 • We achieve excellent HRF segmentation performance by 
combining nnU-Net (18) adaptability with the advanced long-
range feature-capturing abilities of channel and spatial 
attention modules.

 • Using the proposed method, we  extracted 12 parameters to 
characterize HRF morphology and distribution, showing 
significant differences in volume and amount among the three 
HRF sub-types in retinal OCT images.

 • Using the extracted 12 HRF parameters, we evaluated changes in 
HRF before and after treatment and their correlation with central 
macular thickness (CMT) improvement.

2. Materials and methods

This is a retrospective, longitudinal study conducted at the 
Affiliated Ningbo Eye Hospital of Wenzhou Medical University 
(Ningbo, China) from November 2020 to July 2022. This study was 
approved by the ethics committee of the Affiliated Ningbo Eye 
Hospital of Wenzhou Medical University (ID: 20210327A), and 
informed written consent was obtained from each participant involved 
in our study according to the Declaration of Helsinki.

2.1. DME participants

Type 2 diabetes mellitus (DM) patients were recruited and diagnosed 
by an endocrine specialist. Demographic and clinical information from 
all patients such as age, gender, duration of DM, and systolic/diastolic 
blood pressure were recorded. All patients had an extensive ophthalmic 
examination, involving slit-lamp biomicroscopy, and assessment of 
intraocular pressure, axial length, and visual acuity. The inclusion criteria 
of our patients are as follows: 1. Diagnosed with type 2 DM; 2. 
Age > 18 years; 3. Macular edema, defined clinically and by a retinal 
thickness of >250 μm in the central subfield (19); 4. Could cooperate with 
OCT imaging. Exclusion criteria were as follows: 1. Myopia; 2. Presence 
of media opacities; 3. Inability to cooperate with OCT imaging.

2.2. OCT image acquisition

3D retinal imaging was performed using the OCT tool (Spectralis 
HRA + OCT; Heidelberg Engineering, Heidelberg, Germany, software 
version V6.16.2). This imaging equipment has a scanning protocol of 
40,000 A-scans/s (20), with an axial resolution of 3.9 μm and a lateral 
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resolution of 11.4 μm in high-speed mode. We acquired OCT images 
covering fovea-centered regions of 4.5 × 4.5 mm2, with 384 B-scans, 
and 6 × 6 mm2, with 512 B-scans. OCT images showing retinal 
abnormalities such as age macular degeneration (AMD), severe 
cataract, and glaucoma; images with signal quality less than 7; or with 
OCT artifacts present, were excluded. OCT data displayed in our 
study followed the OSCAR-IB quality criteria (21) and APOSTEL 
recommendation (22). Patients were excluded if their CMT did not 
increase after treatment with anti-vascular endothelial growth factor 
(anti-VEGF).

2.3. HRF and retinal layers segmentation

We introduced an automatic tool for HRF analysis in OCT 
images. A deep learning-based approach was employed for precise 
segmentation of HRF, boundaries of inner retina (IR) and outer retina 
(OR) in OCT images. The resulting segmentations are then used to 
calculate HRF parameters.

2.3.1. Hyperreflective foci segmentation
HRF was defined as discrete and well-defined lesions distributed 

between the in-ternal limiting membrane (ILM) and retinal 
pigmented epithelium (RPE), with similar reflectivity to the RPE layer 
(8). Considering that the most HRFs cross 2–4 B-scans (15), 
we randomly selected 8 consecutive B-scans from each OCT volume 
for manual annotations of HRF. Two senior ophthalmologists made 
manual annotations of HRF on 140 OCT volumes, and their consensus 
was defined as the ground-truth. 112 OCT volumes were randomly 
selected for training: the rest were used for validation. The best-
performing model during training was then used for the evaluation of 
HRF segmentation in intact OCT data from all participants, across 22 
OCT volumes from 11 eyes and a total of 9,216 B-scans. Figure 1A 
shows the automated segmentation results indicating HRF. Section 2.4 
gives a detailed description of the proposed approach.

2.3.2. Inner and outer retinal layers segmentation
The distribution of HRF in the IR and OR, and their downward 

shift, have been previously studied (23). The IR region is defined as the 
region between the upper boundary of the ILM and the upper 
boundary of the outer plexiform layer (OPL), while the OR region is 
defined as the region between the upper boundary of the OPL and the 
lower boundary of the RPE (24). The whole retinal layer (WR) region 
is then defined as including both IR and OR. When HRF cross the 
upper boundary of OPL, they are considered located in the OR region. 
The IR and OR boundaries of 1,120 OCT images randomly selected 
from the training and validation dataset in section 2.3.1 were manually 
annotated by a senior ophthalmologist (Y.Y.Z). We used 896 images 
for training and the rest for validation. The evaluation dataset is also 
the same as in section 2.3.1. Figure 1B illustrates an example of IR and 
OR segmentation in OCT images.

2.4. Methods

2.4.1. Network architecture
In this research, we  modified the nnU-Net, to, respectively, 

perform two segmentation tasks: hyperreflective foci segmentation 

and retinal layer segmentation. The framework comprises a basic 
U-Net architecture library that includes 2D and 3D version.

For the retinal layer segmentation task, we modified the 2D version 
of nnU-Net as the underlying network topology. The network 
architecture is shown in Figure 2. The network consists of six symmetric 
encoder-decoder layers with skip connections, which provides detailed 
features from the encoder to the decoder. A 384 × 384 patch with 3 
channels is first input to one 3 × 3 convolution with stride 1 to obtain the 
low-level feature map with 32 channels. In the encoder, each layer 
contains two 3 × 3 convolutions with stride 1 followed by one 3 × 3 down-
convolution with stride 2. In the decoder, each layer contains a 2 × 2 
up-convolution with stride 2 followed by two 3 × 3 convolutions with 
stride 1. Finally, the feature map of the last decoder layer is fed into one 
1 × 1 convolution with stride 1 to output the segmentation map.

Convolutional neural networks with U-Net structure have higher 
inductive bias, but lack the ability to capture long-distance dependent 
features. Inspired by CS2-Net (25), we embed a spatial and channel 
attention (SCA) module integrating channel attention and spatial 
attention mechanisms at the bottleneck layer. Specifically, the features 
output by the encoder are fed into two sub-modules of SCA in parallel. 
Spatial Attention Block (SAB) aggregates features at each spatial location 
to correlate similar features, while Channel Attention Block (CAB) 
enhances the contrast of each channel feature. The spatial attention 
matrix models the spatial relationship between pixel features. The 
acquisition of intra-class spatial association can be expressed as follows:
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where S x y,( ) represents the influence of the y position on the x 
position. N represents the number of features. T denotes matrix 
transposition. Qy and Kx represent two new feature maps generated 
from input features, representing the vertical and horizontal directions 
of structural features. The channel attention matrix enhances similar 
channel features and reduces different channel features, which can 
be expressed as follows:
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where C x y,( ) represents the association between the features of the 
x-channel and y-channel. C denotes the number of channels. T represents 
matrix transpose. Fx and Fy represent the original input features.

For the HRF segmentation task, we have extended the modified 
nnU-Net from 2D to 3D. To achieve this, we have replaced all the 2D 
operations in both the encoder and decoder modules with 3D ones. 
Additionally, we have incorporated the 3D version of the SCA module 
into the bottleneck layer of the network. The detailed network 
architecture is illustrated in Figure 3.

All convolutions in the encoder and decoder adopt the form of 
Convolution-InstanceNorm-LeakyReLU, which are different from 
that in the vanilla architecture. Specifically, LeakyReLU (negative 
slope = 0.01) is used instead of ReLU, and instance normalization (26) 
is used instead of batch normalization (27). To train the network, the 
framework adopts a combination of dice coefficient loss and cross-
entropy loss:
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   total dice CE= +  (3)

The dice loss formula used here is a variant of that used in 
Drozdzal et al. (28), and it is implemented as follows:
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where u ∈ RI × K denotes the softmax output of the network, v ∈ RI × K 
denotes the one-hot encoding of the ground truth, I  represent the 
number of pixels in a training batch and K represents the number 
of categories.

2.5. Definitions of quantitative parameters

In this study, we analyzed changes in HRF’s morphology and 
distribution in OCT images before and after IVI treatment. A previous 
study limited the maximum diameter range of HRF to 20–50 μm, 
which excludes the other two signals (8), refers to HRF <20 μm 

and > 50 μm, respectively. These signals were considered small noise 
signals (NS) in OCT images, and as hyperreflective clumps (HC) that 
appear as hard exudates in fundus images, respectively. By contrast, 
our study included all three types of these HRFs, allowing us to 
comprehensively investigate their differences in terms of number, 
volume, and spatial distribution. To this end, we first divided HRF into 
three types: NS, hyperreflective dots (HD), and HC, which are, 
respectively, defined as simply connected regions with a diameter 
range 0–20 μm, 20–50 μm, and greater than 50 μm. We then focused 
on 12 parameters that describe the distribution and morphological 
characteristics of these HRF in the retinal regions to be analyzed, as 
depicted in Figures 1C–F. Figures 1E,F demonstrate a 3D volume 
reconstruction case before and after IVI treatment. Following previous 
studies (8, 29), we  selected a circular range of 3 mm in diameter, 
centered on the central macular region, for assessment of horizontal 
B-scans across the macular region. This region was used for analysis 
to ensure consistency in the region of interest across all participants.

2.5.1. Morphology-related parameters

 ‐ Noise Signal Quantity (QNS): Number of NS within the 
analyzed region.

FIGURE 1

Morphology and distribution-related parameters used in quantitative measurements. (A) Shows the segmentation of HRF with NS in yellow, HD in 
green, and HC in red. (B) Shows the segmentation of the retina, with the inner layer in green and the outer layer in red. (C) Shows the distance 
parameter for the foveal direction of HRF. The distance between NS and fovea is shown in yellow, the distance between HD and fovea is shown in 
green, and the distance between HC and fovea is shown in red. The distance is measured in μm. (D) Shows the distance parameters between HRF and 
RPE. The distance between NS and RPE is shown in yellow, the distance between HD and RPE is shown in green, and the distance between HC and 
RPE is shown in red. The distance is measured in μm. (E,F) illustrate three-dimensional volume-rendered optical coherence tomography at the initial 
visit and six months after the initial visit, with NS in yellow, HD in green, and HC in red. For this case, the number parameters (QNS , QHD, QHC), and 
volume parameters (VNS , VHD, and VHC) decreased.
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 ‐ Hyperreflective Dots Quantity (QHD): Number of HD within the 
analyzed region.

 ‐ Hyperreflective Clumps Quantity (QHC ): Number of HC within 
the analyzed region.

 ‐ Noise Signal Volume (VNS ): Volume of NS within the analyzed 
region in μm3.

 ‐ Hyperreflective Dots Volume (VHD): Volume of HD within the 
analyzed region in μm3.

FIGURE 2

Architecture of modified nnU-Net (2D version).

FIGURE 3

Architecture of modified nnU-Net (3D version).
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 ‐ Hyperreflective Clumps Volume (VHC): Volume of HC within the 
analyzed region in μm3.

2.5.2. Distribution-related parameters

 ‐ Distance between noise signal and fovea (DNS fovea, ): Distance 
between NS and fovea, indicating average distance of NS pixels 
from the foveal center in μm.

 ‐ Distance between hyperreflective dots and fovea (DHD fovea, ): 
Distance between HD and fovea, indicating average distance of 
HD pixels from the foveal center in μm.

 ‐ Distance between hyperreflective clumps and fovea (DHC fovea, ): 
Distance between HC and fovea, indicating average distance of 
HC pixels from the foveal center in μm.

 ‐ Distance between noise signal and RPE (DNS RPE, ): Distance 
between NS and RPE, indicating average distance of NS pixels 
from RPE in μm.

 ‐ Distance between hyperreflective dots and RPE (DHD RPE, ): 
Distance between HD and RPE, indicating average distance of 
HD pixels from RPE in μm.

 ‐ Distance between hyperreflective clumps and RPE (DHC RPE, ): 
Distance between HC and RPE, indicating average distance of 
HC pixels from RPE in μm.

2.6. Statistical analysis

All statistical analysis was performed using version 18.0 of 
SPSS software (SPSS, Inc., Chicago, IL, USA). Continuous 
variables were expressed as mean ± standard deviation (SD) for 
normal data; and median and interquartile ranges (IQR) for 
skewed data. Categorical variables were presented as frequencies. 
To compare the differences among different subtypes of HRF and 
the differences in HRF parameters before and after treatment, the 
Wilcoxon signed-rank test was used, and the results were 
expressed as the median (IQR). To investigate the correlation 
between the improvement in CMT and given parameters of HRF, 
Spearman’s rank correlation coefficients were calculated using a 
non-parametric test for linear correlation. A significance level of 
p < 0.05 (two-sided test) was adopted to express 
statistical significance.

3. Results

3.1. Experimental results

3.1.1. Implementation details
The proposed model was implemented in PyTorch using an 

NVIDIA GeForce 3,090 GPU with 24GB memory. The training 
process involved 500 epochs, and employed the following settings: 
Adam optimization, with an initial learning rate of 0.01; a batch 
size of 2 for HRF segmentation; and a batch size of 1 for retinal 
layer segmentation. To enhance training stability, we adopted a 
poly learning rate policy, with a momentum of 0.9.

3.1.2. Evaluation metrics
To quantitatively assess the proposed network’s segmentation 

performance, we employ the following metrics. The Dice Similarity 
Coefficient (DSC) quantifies the agreement between HRF manually 
annotated by expert ophthalmologists and those automatically 
segmented by the proposed network, which can be defined as:

 
DSC TP

P FN TP
=

+ +
2

2F  
(5)

We also assess our method using Intersection over Union (IOU), 
precision, recall, and F1-Score, defined as:

 
IOU TP
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+ +  
(6)
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where TP indicates true positives, FP indicates false positives, TN 
indicates true negatives, and FN indicates false negatives.

3.1.3. Comparison of different segmentation 
methods

In order to evaluate the effectiveness of the proposed network, 
we selected several state-of-the-art neural networks for comparison, 
including FCN (30), U-Net (31), U-Net++ (32), Res U-Net (33), 3D 
U-Net (34), SW-3DUNet (15), SANet (16), DBR-Net (17). The 
evaluation metrics utilized include the DSC, IOU, precision, recall, 
and F1 Score, as detailed in Table  1. We  show that the proposed 
network outperforms other methods regarding DSC, IOU, and 
precision. Although the proposed method has a slightly lower recall 
rate than U-Net, when we  consider both precision and recall 
comprehensively, the proposed method outperforms in terms of the 
F1 Score.

As seen in Figure  4, our proposed network outperforms at 
identifying complete HRF regions and avoiding errors in segmentation 
when compared to other methods in the task of HRF segmentation 
for DME diseases. This indicates that the proposed network can 
effectively extract detailed HRF features and analyze them, by 
combining robust pre-processing capabilities from the baseline 
network and embedding spatial and channel attention modules. As a 
result, there is a notable improvement in segmentation effectiveness.

3.1.4. Ablation experiment
To demonstrate the effectiveness of the channel attention and 

spatial attention modules, we compared our proposed method with 
the baseline method and two variants.
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 • Baseline + SAB: We removed the CAB from this variant to assess 
its contribution.

 • Baseline + CAB: We removed the SAB from this variant to assess 
its contribution.

 • Baseline: We  removed both SAB and CAB to evaluate their 
combined contribution.

Table  2 presents the experimental results for our proposed 
method, the baseline, and its two variants. Compared to the results of 
our proposed method, the variant without SAB exhibited reductions 
of 0.31% in DSC, 4.29% in IOU, 0.7% in recall, 0.4% in precision, and 
0.31% in F1 Score. The variant without CAB showed reductions of 
1.15% in DSC, 5% in IOU, 0.55% in recall, 0.75% in precision, and 
1.55% in F1 Score. Removing both SAB and CAB resulted in 
reductions of 1.7% in DSC, 5.65% in IOU, and 2.91% in recall. 
Although there was a slight increase of 0.41% in precision, there was 
a decrease of 1.7% in F1 Score. The experimental results above 
demonstrate the rationality and effectiveness of embedding spatial and 
channel attention modules in the bottleneck layer of the 
baseline model.

3.2. Quantitative parameter evaluation

We enrolled 47 eyes from 26 patients with DME, acquired with 
OCT (Spectralis HRA + OCT), and a total of 11 eyes from 8 patients 
were included in this study. We excluded 36 eyes from 18 patients 
from the analysis. One eye of one patient was excluded due to poor 
OCT image quality (motion artifacts on OCT images): 22 eyes of 11 
patients were excluded due to lack of follow-up records; and 13 eyes 
from 7 patients were excluded due to no improvement in CMT after 
anti-VEGF or dexamethasone IVI treatment. The characteristics and 
clinical information of our study participants are displayed in Table 3. 
Two sets of OCT data were included for each eye, one at baseline, and 
one at follow-up, for a total of 9,472 OCT B-scans included in 
the study.

3.2.1. Parametric comparison of baseline 
hyperreflective foci

Table 4 compares 12 quantitative parameters of HRF, classified by 
different diameter sizes in WR at baseline. Among the morphology-
related parameters, significant differences were observed between QNS 

and QHD , QHD  and QHC , QNS and QHC , VNS  and VHD, and VNS  and 
VHC (all p = 0.003). No significant differences were found between VHD 
and VHC  (p = 0.131). Among the distance-related parameters, the 
results showed no significant differences between the HRF classified 
according to their diameter size.

3.2.2. Parametric comparison of follow-up 
hyperreflective foci

Due to the retrospective design of the study, OCT examinations 
were not performed at regular intervals. To avoid bias related to the 
duration of follow-up, only two consecutive follow-up visits with 
improvement in CMT were selected for each eye. The longitudinal 
study included 11 eyes from 8 patients, with a follow-up of 
1.9 ± 1.6 months (range 1 to 6, median 1). During study period, all eyes 
were treated with intravitreal injections: 91% (10/11) of eyes received 
anti-VEGF injections and 9% (1/11) of eyes received dexamethasone 
injections. The number of intravitreal injections was 1.4 ± 0.7 (range 1 
to 3, median 1).

We assessed whether changes in HRF were significant at two 
consecutive follow-up visits in the presence of improved CMT. Table 5 
showed the comparison of the 12 quantitative parameters of HRF in 
WR, IR, and OR between the pre-IVI and post-IVI stages. In WR, 
QHD , VNS , VHD, DNS RPE, , DHD RPE, , DHC RPE,  and CMT were 
significantly reduced in post-IVI compared with pre-IVI (p = 0.003, 
p = 0.033, p = 0.003, p = 0.026, p = 0.008, p = 0.004, p = 0.003, 
respectively). There were no significant changes in the other six 
quantitative parameters between the two phases. In IR, DNS RPE,  and 
DHD RPE,  were significantly reduced in post-IVI compared with 
pre-IVI (p = 0.016, p = 0.016, respectively). There were no significant 
changes in the other 10 quantitative parameters between the two 
phases. In OR, QHD, VNS , VHD, DHD RPE, , DHC RPE,  were significantly 
reduced in post-IVI compared to pre-IVI (p = 0.006, p = 0.047, 
p = 0.006, p = 0.004, p = 0.004, respectively). There were no significant 
changes in the other seven quantitative parameters between the 
two phases.

3.2.3. Correlation between follow-up CMT 
changes and baseline hyperreflective foci

We assessed whether there was a significant correlation between 
improvement in CMT at two consecutive follow-up visits and baseline 
HRF. Table  6 shows the correlation between the 12 quantitative 
parameters of baseline HRF in WR, IR, OR, and the percentage of 

TABLE 1 Comparison of different segmentation methods.

Method DSC (%) IOU (%) Recall (%) Precision (%) F1 Score (%)

FCN 59.31 ± 9.30 44.60 ± 9.32 66.07 ± 7.93 57.69 ± 9.69 59.31 ± 9.30

U-Net 62.12 ± 8.91 47.84 ± 9.42 68.89 ± 8.44 60.44 ± 8.64 62.12 ± 8.91

U-Net++ 61.60 ± 9.26 47.48 ± 9.73 67.43 ± 6.60 60.37 ± 11.26 61.60 ± 9.26

Res U-Net 63.93 ± 8.82 50.32 ± 9.31 62.71 ± 9.20 71.37 ± 7.66 63.93 ± 8.82

3D U-Net 61.45 ± 8.64 49.41 ± 10.18 58.64 ± 12.91 65.58 ± 8.73 61.45 ± 8.64

SW-3DUNet 51.18 ± 9.87 36.26 ± 9.08 60.68 ± 12.10 47.62 ± 10.17 51.18 ± 9.87

SANet 64.33 ± 8.68 50.59 ± 9.31 63.09 ± 8.23 70.90 ± 8.40 64.33 ± 8.68

DBR-Net 51.14 ± 7.57 36.71 ± 6.77 48.88 ± 7.69 59.99 ± 6.03 51.14 ± 7.57

Proposed method 66.83 ± 9.06 56.33 ± 7.08 61.12 ± 11.9 82.31 ± 6.39 66.83 ± 9.06

1The variable was expressed as the mean ± standard deviation (SD). The bold value represents the optimal result for the column of indicators.
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FIGURE 4

Comparison between the proposed SW-3DUNet and other methods. Yellow and green arrows represent the regions of over-segmentation and under-
segmentation. B-scans in the second column are taken from fovea-centered regions of 6  ×  6  mm2, while B-scans in the other columns are taken from 
fovea-centered regions of 4.5  ×  4.5  mm2.
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CMT improvement ( ∆ ( )CMT % ). In WR, significant positive 
correlations were shown between baseline DNS fovea, , DHD fovea, , 
DHC fovea, , and ∆ ( )CMT %  (p = 0.015, p = 0.016, p < 0.001, 
respectively). There was no significant correlation between the other 
nine baseline quantitative parameters and ∆ ( )CMT % . In OR, 
significant positive correlations were shown between baseline 
DNS fovea, , DHD fovea, , DHC fovea, , and ∆ ( )CMT %  (p = 0.006, 
p = 0.019, p < 0.001, respectively). There was no significant correlation 
between the other nine baseline quantitative parameters and 
∆ ( )CMT % . In IR, there was no significant correlation between all 12 
baseline quantitative parameters and ∆ ( )CMT % .

4. Discussion

The given study aims to quantify HRF in OCT images as part of 
a retrospective study on patients with DME at baseline and 
follow-up. Previous studies relied on manual counting methods to 
quantify HRF, which is time-consuming and less reliable. In 
examining HRF as a potential biomarker, the existing body of 
literature has been inconsistent (23, 35–42), which may be due to 
variations in the OCT tool used, image quality, and manual 
segmentation of HRF. To address these challenges, our study 
employed artificial intelligence techniques for quantifying HRF, 
thereby overcoming some limitations of previous studies. With 
artificial intelligence, retinal images can be analyzed in a completely 

new way. We  showed that the three subtypes of HRF were 
significantly different in volume and number on retinal OCT images, 
with HC pre-dominating in volume and HD in number. We also 
showed that the mean distance from HRF to RPE was reduced after 
IVI treatment compared to before IVI treatment. In addition, 
we  showed that eyes with less HRF in the center of the macula 
showed greater reduction in macular edema after IVI treatment. 
These findings validate previous findings and suggest new insights, 
emphasizing the potential of deep learning as a powerful tool for 
analyzing baseline and follow-up HRF in DME patients.

4.1. Differences between baseline HRF 
parameters

Statistical analysis indicated significant disparities in both the 
number and volume parameters of baseline HRF subtypes. Our study 
validated HRF discrimination based on diameter range by analyzing 
baseline HRF morphological parameters. A previous study used 
20 μm and 50 μm diameters to differentiate HRF subtypes (8), found 
a positive correlation between the number of HRF subtypes in the 
20–50 μm range and the levels of CD14, without discussing the other 
two subtypes. Our study revealed significant differences among the 
three subtypes. Our findings corroborated previous studies showing 
that smaller HRFs merge into larger HRF (7), and show differential 
treatment responses (23). Furthermore, our study observed different 
responses to IVI treatment in the number and volume of the smallest 
HRF subtype, which may include microglia cells, whose activation 
decreased with treatment (43).

4.2. Follow-up findings

We showed the mean distance from HRF to RPE was significantly 
reduced after IVI treatment. By studying the distribution parameters 
of HRF in a longitudinal analysis of two consecutive follow-ups, our 
study indicated the tendency of HRF to migrate from the inner retina 
to the outer retina after IVI treatment; similar to our findings, Pemp 
et al. showed that DME uptake triggered the downward migration of 
HRF (44) into the outer retina. Notably, despite the lack of response 
to IVI treatment, the largest diameter HRF subtype exhibited a 
significant reduction in mean distance to the RPE in both OR and 
WR. This finding was consistent with Marmor’s mechanistic model of 
retinal fluid movement (45), which postulated fluid flowed across the 
retina due to intraocular pressure, choroidal osmolarity, and active 
fluid uptake by the RPE. The migration of partial HRF was impeded 
by narrow channels on the ELM, composed of zonular adhesions 
between Müller cells and photoreceptor inner segments. Consequently, 

TABLE 2 Ablation experiment.

Method DSC (%) IOU (%) Recall (%) Precision (%) F1 score (%)

Baseline 65.13 ± 9.75 50.68 ± 9.89 58.31 ± 12.93 82.72 ± 5.68 65.13 ± 9.75

Baseline + SAB 65.68 ± 9.62 51.33 ± 9.65 59.57 ± 12.41 81.56 ± 6.19 65.68 ± 9.62

Baseline + CAB 66.52 ± 9.55 52.04 ± 10.10 60.42 ± 12.37 81.91 ± 6.26 66.52 ± 9.55

Proposed method 66.83 ± 9.06 56.33 ± 7.08 61.12 ± 11.9 82.31 ± 6.39 66.83 ± 9.06

1The variable was expressed as the mean ± standard deviation (SD). The bold value represents the optimal result for the column of indicators.

TABLE 3 Demographics.

Characteristics

Number of patients 8

Number of eyes 11

Age, mean ± SD (range), years 48.4 ± 11.0 (33 to 61)

Male gender, n (%) 4 (50)

Type 2 diabetes, n (%) 8 (100)

Diabetes duration, mean (IQR), years 7.9 (5 to 10)

DR severity, n (%)

Severe non-proliferative DR 10 (91)

Proliferative DR 1 (9)

Baseline BCVA, mean ± SD (range), LogMar 0.59 ± 0.17 (0.4 to 0.8)

Final BCVA, mean ± SD (range), LogMar 0.57 ± 0.16 (0.3 to 0.8)

1The retrospective nature of this study resulted in missing data, including the duration of 
diabetes for one patient, baseline BCVA for one eye, and follow-up BCVA for another eye. 
2DR, diabetic retinopathy; IQR, interquartile range; BCVA, best-corrected visual acuity; 
LogMar, logarithm of the minimal angle of resolution.
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this fraction of HRF aggregated in front of the ELM, forming the HRF 
isoform with the largest diameter, supporting the study conducted by 
Bolz et al. (7). However, no evidence was found to indicate migration 
of HRF toward or away from the fovea after IVI treatment, suggesting 
that IVI treatment did not significantly impact the distribution of HRF 
in the direction of the fovea. Further studies are required to confirm 
this conjecture.

4.3. Correlations between HRF parameters 
and CMT improvement

We also showed that improvement in CMT resulting from IVI 
treatment was positively correlated with the mean distance from 
HRF to the fovea in OR and WR, and not significantly correlated 
with other parameters. We explored the correlation between the 
therapeutic effect of IVI on foveal edema and the quantitative 
parameters of HRF at baseline by examining the quantitative 
parameters of HRF at baseline and the percentage improvement in 
CMT at two consecutive follow-up visits. A previous study (46) 
performed two-dimensional quantification of hard exudates in OCT 
enface images, and found that the area of hard exudates in the fovea 
at baseline was inversely correlated with BCVA at the 12th month. 
Similar to the aforementioned report, we showed that in both OR 
and WR, the percentage of IVI treatment-induced improvement in 
CMT was inversely correlated with the concentration of HRF in the 
fovea at baseline, but independent of other quantified parameters. 
Notably, the concentration of the largest-diameter HRF subtype in 
the fovea was inversely correlated with the reduction in CMT (rs
=0.882, p < 0.001), which could explain why there was no correlation 
between the concentration of baseline HRF in the fovea in IR and 
the reduction in CMT, since the convergence of smaller HRF 
subtypes to larger HRF subtypes mainly occurs in OR according to 
the discussion above. We  speculate that future studies on the 
differential distribution of HRF aggregated in the fovea may be able 

to verify whether it produces some physiological changes that affect 
the outcome of IVI treatment.

4.4. Limitations

Our study has certain limitations. Firstly, all participants were 
Chinese, and enrolled from a single medical center: larger and more 
various samples would be an advantage. More multi-center studies 
should therefore be  conducted on larger cohorts to confirm the 
reproducibility of analysis on these parameters of HRF. Secondly, the 
enrollment criteria for this study only included cases with a positive 
response to injection therapy, rather than including refractory cases. It 
would be more convincing to recruit subjects with definitive treatment 
and make a long-term follow-up comparison. Thirdly, the study design 
lacked untreated blank controls to derive reasons for changes in 
parameters before and after treatment, while the small sample size and 
high homogeneity made the study findings more indicative of a pilot.

5. Conclusion

We introduced a deep learning-based approach to quantify 
hyperreflective foci in OCT images of DME patients. Our retrospective 
analysis of 11 eyes using this method showed that it effectively quantified 
baseline and follow-up changes in hyperreflective foci by extracting 
relevant geometric parameters. In this study, we were able to validate 
certain findings reported in prior research and uncover novel insights: 
for instance, our investigation revealed that the concentration of HRF 
in the fovea region may influence the efficacy of IVI treatment. 
We believe that accurate quantification and follow-up of HRF in OCT 
images at baseline and during treatment may enable clinicians to 
monitor DME disease progression, assess treatment response and 
identify patients who may benefit from a personalized approach 
to treatment.

TABLE 4 Parametric comparisons of hyperreflective foci of different diameters.

Variable, in 
WR

Morphology-related parameters Variable, in 
WR

Distribution-related parameters

Pre-IVI, n  =  11 P Pre-IVI, n  =  11 P

QNS
QHD

60 (26–101)

239 (76–411)
0.003 DNS fovea,

DHD fovea,

991.35 (959.52–1072.49)

982.67 (921.75–1028.42)
0.062

QHD
QHC

239 (76–411)

20 (8–37)
0.003 DHD fovea,

DHC fovea,

982.67 (921.75–1028.42)

985.87 (909.17–1093.25)
1.0

QNS
QHC

60 (26–101)

20 (8–37)
0.003 DNS fovea,

DHC fovea,

991.35 (959.52–1072.49)

985.87 (909.17–1093.25)
0.286

VNS
VHD

2.88 × 105 (1.14 × 105–3.68 × 105)

9.22 × 106 (2.56 × 106–1.30 × 107)
0.003 DNS RPE,

DHD RPE,

216.45 (204.38–239.87)

213.52 (188.28–230.87)
0.424

VHD
VHC

9.22 × 106 (2.56 × 106–1.30 × 107)

1.18 × 107 (1.53 × 106–2.86 × 107)
0.131 DHD RPE,

DHC RPE,

213.52 (188.28–230.87)

213.86 (202.93–273.82)
0.110

VNS
VHC

2.88 × 105 (1.14 × 105–3.68 × 105)

1.18107 (1.53 × 106–2.86 × 107)
0.003 DNS RPE,

DHC RPE,

216.45 (204.38–239.87)

213.86 (202.93–273.82)
0.062

1The variable was expressed as the median (IQR); the p value was obtained by Wilcoxon Signed Rank Test. 2 WR, the whole retinal layer; IVI, intravitreal injection; QNS , noise signal quantity; 
QHD, hyperreflective dots quantity; QHC, hyperreflective clump quantity; VNS  noise signal volume; e; VHD, hyperreflective dots volume; VHC , hyperreflective clump volume; DNS fovea, , 
distance between noise signal and fovea; DHD fovea, , distance between hyperreflective dots and fovea; DHC fovea, , distance between hyperreflective clumps and fovea; DNS RPE, , 
distance between noise signal and RPE; DHD RPE, , distance between hyperreflective dots and RPE; DHC RPE, , distance between hyperreflective clumps and RPE.

https://doi.org/10.3389/fmed.2023.1280714
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


W
an

g
 et al. 

10
.3

3
8

9
/fm

ed
.2

0
2

3.12
8

0
714

Fro
n

tie
rs in

 M
e

d
icin

e
11

fro
n

tie
rsin

.o
rg

TABLE 5 Comparison of parameters between pre-IVI and post-IVI.

WR IR OR

Pre-IVI, n  =  11 Post-IVI, n  =  11 P Pre-IVI, n  =  11 Post-IVI, n  =  11 P Pre-IVI, n  =  11 Post-IVI, n  =  11 P

QNS 60 (26–101) 64 (24–84) 0.247 14 (9–36) 15 (9–20) 0.241 43 (21–94) 48 (15–63) 0.533

QHD 239 (76–411) 210 (71–232) 0.003 33 (20–75) 23 (12–49) 0.173 216 (59–318) 168 (55–209) 0.006

QHC 20 (8–37) 27 (13–40) 0.213 0 (0–1) 0 (0–1) 0.317 19 (8–37) 27 (12–38) 0.213

VNS 2.88 × 105 (1.14 × 105–3.68 × 105)
2.47 × 105 (1.05 × 105–

3.54 × 105)
0.033

5.32 × 104 (3.40 × 104–

1.35 × 105)

5.27 × 104 (3.85 × 104–

9.58 × 104)
0.374

2.16 × 105 (9.22 × 104–

3.45 × 105)
1.94 × 105 (6.43 × 104–2.57 × 105) 0.047

VHD 9.22 × 106 (2.56 × 106–1.30 × 107)
5.66 × 106 (2.55 × 106–

8.45 × 106)
0.003

9.71 × 105 (5.74 × 105–

2.04 × 106)

7.61 × 105 (2.86 × 105–

1.32 × 106)
0.155

7.67 × 106 (1.84 × 106–

1.05 × 107)
4.52 × 106 (2.10 × 106–7.69 × 106) 0.006

VHC 1.18 × 107 (1.53 × 106–2.85 × 107)
9.97 × 106 (4.65 × 106–

2.66 × 107)
0.929 0 (0–1.53 × 105) 0 (0–2.11 × 105) 0.345

1.18 × 107 (1.53 × 106–

2.84 × 107)
9.97 × 106 (4.65 × 106–2.66 × 107) 0.929

DNS fovea, 991.35 (959.52–1072.49) 1042.95 (1014.85–1064.91) 0.534 1103.94 (1057.83–1212.58) 1086.73 (1030.12–1237.50) 0.534 954.27 (906.40–1023.99) 1011.02 (960.74–1060.23) 0.594

DHD fovea, 980.67 (921.75–1028.42) 1005.93 (973.22–1066.87) 0.131 1035.34 (919.43–1184.14) 1014.14 (956.53–1106.73) 0.79 1000.76 (888.70–1024.25) 1011.21 (948.34–1083.34) 0.131

DHC fovea, 985.87 (909.17–1093.25) 970.50 (833.29–1020.72) 0.79 0 (0–909.00) 0 (0–664.33) 0.893 9983.01 (909.17–1093.25) 970.50 (833.29–1022.10) 0.79

DNS RPE, 216.45 (204.38–239.87) 190.71 (160.61–202.84) 0.026 293.66 (260.66–322.31) 234.73 (197.79–246.13) 0.013 191.16 (179.96–214.40) 174.93 (147.46–185.65) 0.075

DHD RPE, 213.52 (188.28–230.87) 177.60 (162.27–200.99) 0.008 278.50 (270.14–336.15) 242.80 (210.56–249.98) 0.016 196.62 (181.72–211.72) 172.52 (149.30–192.06) 0.004

DHC RPE, 213.86 (202.93–273.82) 177.44 (167.83–204.70) 0.004 0 (0–274.30) 0 (0–242.46) 0.686 213.28 (202.93–273.82) 177.44 (167.83–204.70) 0.004

CMT 401 (383–490) 315 (253–367) 0.003

1the variable was expressed as the median (IQR); the P value was obtained by Wilcoxon Signed Rank Test. 2WR, the whole retinal layer; IR, the inner retinal layer; OR, the outer retinal layer; IVI, intravitreal injection; QNS , noise signal quantity; QHD, hyperreflective 
dots quantity; QHC, hyperreflective clump quantity; VNS , noise signal volume; VHD, hyperreflective dots volume; VHC , hyperreflective clump volume; DNS fovea, , distance between noise signal and fovea; DHD fovea, , distance between hyperreflective dots and 
fovea; DHC fovea, , distance between hyperreflective clumps and fovea; DNS RPE, , distance between noise signal and RPE; DHD RPE, , distance between hyperreflective dots and RPE; DHC RPE, , distance between hyperreflective clumps and RPE; CMT, central 
macular thickness.
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