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Background: Gastric cancer is a highly prevalent and fatal disease. Accurate

differentiation between early gastric cancer (EGC) and advanced gastric cancer

(AGC) is essential for personalized treatment. Currently, the diagnostic accuracy

of computerized tomography (CT) for gastric cancer staging is insufficient to

meet clinical requirements. Many studies rely on manual marking of lesion areas,

which is not suitable for clinical diagnosis.

Methods: In this study, we retrospectively collected data from 341 patients with

gastric cancer at the First Affiliated Hospital of Wenzhou Medical University. The

dataset was randomly divided into a training set (n=273) and a validation set

(n=68) using an 8:2 ratio. We developed a two-stage deep learning model that

enables fully automated EGC screening based on CT images. In the first stage, an

unsupervised domain adaptive segmentation model was employed to

automatically segment the stomach on unlabeled portal phase CT images.

Subsequently, based on the results of the stomach segmentation model, the

image was cropped out of the stomach area and scaled to a uniform size, and

then the EGC and AGC classification models were built based on these images.

The segmentation accuracy of the model was evaluated using the dice index,

while the classification performance was assessed using metrics such as the area

under the curve (AUC) of the receiver operating characteristic (ROC), accuracy,

sensitivity, specificity, and F1 score.

Results: The segmentation model achieved an average dice accuracy of 0.94 on

the hand-segmented validation set. On the training set, the EGC screening

model demonstrated an AUC, accuracy, sensitivity, specificity, and F1 score of

0.98, 0.93, 0.92, 0.92, and 0.93, respectively. On the validation set, these metrics

were 0.96, 0.92, 0.90, 0.89, and 0.93, respectively. After three rounds of data

regrouping, the model consistently achieved an AUC above 0.9 on both the

validation set and the validation set.
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Conclusion: The results of this study demonstrate that the proposedmethod can

effectively screen for EGC in portal venous CT images. Furthermore, the model

exhibits stability and holds promise for future clinical applications.
KEYWORDS

early gastric cancer (EGC), deep learning, CT, automatically stomach segmentation,
gastric cancer classification
Introduction

Gastric cancer (GC) is a highly prevalent malignancy, ranking

among the top three in terms of mortality (1). Worldwide, over 1

million new cases of gastric cancer are diagnosed annually (2). The

five-year survival rate for advanced gastric cancer (AGC) is less than

30%, while early gastric cancer (EGC) boasts a remarkable 90%

survival rate (3, 4). EGC refers to invasive gastric cancer that

penetrates no deeper than the submucosa, regardless of lymph

node metastasis (5). The mainstay of treatment for EGC is

endoscopic resection, while AGC is treated with sequential

chemotherapy (5), with preoperative and adjuvant chemotherapy

improving outcomes (6). Despite the vital implications for

prognosis and treatment planning, the detection rate of EGC

remains low, with even developed countries reporting a mere 50%

diagnostic rate for EGC (3).

Gastric cancer is diagnosed histologically after endoscopic

biopsy and staged using CT, endosonography(EUS), PET, and

laparoscopy (5). The American Joint Committee on Cancer (8th

edition) recommends computed tomography (CT) and

endosonography as preoperative diagnostic techniques for gastric

cancer. CT aids in identifying malignant lesions (7), detecting

lymph node metastasis (8), and evaluating response to

neoadjuvant chemotherapy (9). However, the highest reported

accuracy for CT-based EGC detection is a mere 0.757 (10, 11),

and the overall diagnostic accuracy for T staging is only 88.9% (12).

Research indicates that EUS outperforms CT in preoperative T1

and N staging of gastric cancer (13, 14), yielding an overall T staging

accuracy of 77% (15). Double contrast-enhanced ultrasonography

(DCEUS) achieves a modest 82.3% accuracy in assessing gastric

cancer T staging (16). Additionally, EUS staging is less effective in

special locations such as the gastroesophageal junction (17).

The field of medical image analysis has witnessed significant

interest in the application of rapidly advancing artificial intelligence

techniques. These techniques have been successfully employed in

various tasks such as image segmentation (18), disease detection

(19), and lesion classification (20). Alam et al. utilized deep learning

technology to automatically segment the gastrointestinal tract on

MRI, aiding physicians in formulating precise treatment plans for

cancer-affected regions of the gastrointestinal tract (21). Arai et al.

developed a machine learning-based approach to accurately stratify
02
the risk of gastric cancer, enabling individualized prediction of

gastric cancer incidence (22). Ba et al., working with 110 whole slide

images (WSI), compared deep learning with the diagnostic results

of pathologists in diagnosing gastric cancer. The study

demonstrated that deep learning technology indeed enhances the

accuracy and efficiency of pathologists in gastric cancer diagnosis

(23). Zeng et al. manually delineated gastric cancer lesions in portal

phase CT images and subsequently selected the largest tumor slice

and adjacent slices to establish a deep learning model for

distinguishing between EGC and advanced gastric cancer (AGC)

(24). However, manual delineation of lesion areas is time-

consuming and demands a high level of expertise from the

annotators, making it unsuitable for practical clinical diagnosis.

This study aims to achieve automatic gastric segmentation and EGC

detection on portal phase CT images by establishing a deep learning

model capable of accurately distinguishing EGC.
Materials and methods

Patients

The study included 674 gastric cancer (GC) patients who

underwent CT and pathological examinations at the First

Affiliated Hospital of Wenzhou Medical University between

January 2020 and April 2023. All patients were confirmed to have

gastric cancer by pathological examination. Exclusion criteria

consisted of the following: (1) patients who did not undergo

enhanced CT scans, (2) patients with insufficient CT image

quality, (3) patients with concurrent malignant tumors, and (4)

patients who received neoadjuvant chemotherapy prior to CT

examination. Supplementary Figure 1 presents the flow chart

outlining the inclusion and exclusion criteria, ultimately resulting

in a final sample of 341 patients. Based on pathological examination

results, all GC patients were categorized as either early gastric

cancer (EGC, n=124) or advanced gastric cancer (AGC, n=217).

They were randomly assigned to a training set (n=273) and a

validation set (n=68) at an 8:2 ratio. Pathological examination

findings served as the gold standard for gastric cancer staging.

The Hospital Medical Ethics Committee approved this

retrospective study.
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Image acquisition and preprocessing

Enhanced CT scans were performed using a TOSHIBA_

MEC_CT3 device model. The scanning parameters were as follows:

tube voltage range of 120 kVp, tube current range of 90-350 mA, table

speed of 69.5 mm/rot, image matrix of 512×512, and reconstruction

slice thickness of 2 mm. During the contrast-enhanced scan, 1.5 mL/kg

of iodine contrast agent was injected through the antecubital vein using

a syringe at a flow rate of 3.50 mL/s. Following the contrast medium

injection, the patient held their breath, and imaging was conducted in

the arterial phase (at 35-40s), portal venous phase (at 60-90s), and

equilibrium phase (at 110s-130s).

Imaging during the portal venous phase is beneficial for assessing

visceral invasion in surrounding tissues, as well as detecting and

diagnosing lymph node metastasis, peritoneal metastasis, and

extramural vascular invasion. Previous studies have employed this

phase for tumor lesion segmentation (25, 26). To minimize the

impact of exceptional cases on the model, we applied a window

width of 350 Hounsfield units (Hu) and a window level of 50 Hu to

truncate the grayscale values of CT images. Additionally, we

normalized the grayscale values of all images to the range of [0,1].
Two-stage deep learning model
development

To facilitate fully automated distinction between early gastric

cancer (EGC) and advanced gastric cancer (AGC), we have developed

a two-stage deep learning model. As illustrated in Figure 1, the first

stage of the model encompasses a two-dimensional segmentation

network responsible for segmenting the stomach in enhanced CT
Frontiers in Oncology 03
images. The second stage involves a three-dimensional classification

network dedicated to EGC screening.
Segment model development

For the segmentation network in the first stage, we adopted the

Slice-Direction Continuous Unsupervised Domain Adaptation

Framework (SDC-UDA) (27). This framework leverages the

equilibrium phase CT dataset with ground truth (GT) to achieve

segmentation of the portal phase CT dataset without GT. The

equilibrium phase CT dataset with GT was sourced from the

MICCAI FLARE 2022 competition (https://flare22.grand-

challenge.org/), comprising a total of 50 cases.

The SDC-UDA model consists of five stages (Figure 2). Firstly,

on our dataset, we registered the portal phase and equilibrium phase

images and trained an unsupervised image translation generator,

employing the CycleGAN network (28), with intra- and inter-slice

self-attention. Secondly, we utilized the generator from the previous

step to synthesize portal phase images with pseudo-GT, obtained

from the equilibrium phase data with GT through 2D-to-3D image

translation. Thirdly, we trained the synthesized portal phase images

with pseudo-GT using the 3D-Unet network (29). Fourthly, we

generated pseudo-GT for real portal phase images without GT using

the 3D-Unet network trained in the previous step. Additionally, we

improved the pseudo-GT through uncertainty-constrained pseudo-

GT refinement. Finally, we jointly trained the segmentation model

based on the 3D-Unet network by combining the equilibrium phase

image with GT and the real portal phase image with the pseudo-GT.

In our hospital’s CT dataset, 50 cases of gastric segmentation

were randomly selected by a doctor with 8 years of clinical experience
FIGURE 1

Structure of Deep Learning System Used for Stomach segmentation and EGC Diagnosis.
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using ITK-SNAP (version 3.8.0, USA). The segmentation results were

utilized to evaluate the performance of the SDC-UDA model.
Classification model development

After segmenting the stomach in the CT image, we extracted

the stomach region based on the segmentation results and

resized it to a dimension of 128*128*128. Subsequently, we

employed the 3D DenseNet network (30) for the classification
Frontiers in Oncology 04
of EGC and AGC. The network comprises four dense modules

(Figure 3), connected by convolutional and pooling layers. The

final classification result is obtained through a linear layer after

passing the output of the last dense module through the pooling

layer. Each dense module consists of four convolutional blocks.

The convolutional layer incorporates multiple convolutional

layers, and the output of each convolutional block is

concatenated with the outputs of all subsequent convolutional

blocks in a channel-wise manner. Notably, all convolution

kernels in the model are 3D.
FIGURE 3

3D DenseNet network structure diagram.
FIGURE 2

Overview of SDC-UDA framework.
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Model evaluation

To evaluate the segmentation model, we employed the dice

coefficient (31). For the classification model, we assessed its

performance by computing the accuracy, sensitivity, specificity, and

F1 score. The receiver operating characteristic (ROC) curve was

plotted, and the area under the ROC (AUC) value was calculated.

To assess the model’s stability, we randomly divided the data

into three separate sets for training and validation, maintaining

consistent proportions. We compared the results obtained from the

three validation sets.
Statistical analysis

All calculations and statistical analyses were conducted in a

Linux environment (Ubuntu 7.5.0) using the following hardware

configuration: an Intel 4215FR CPU clocked at 3.20 GHz, 64 GB

DDR4 memory, and an RTX 4060 Ti graphics card. The

programming language utilized was Python 3, specifically version

3.6.13 from the Python Software Foundation. We employed the

PyTorch deep learning framework (https://pytorch.org/) along with

key packages such as torch (version 1.10.1), torchvision (version

0.11.2), and scikit-learn (version 0.20.4).
Results

Patients

The study included a total of 341 cases of gastric cancer (GC). The

training set comprised 273 participants (mean [SD] age: 66.02 [10.06]

years), while the validation set consisted of 68 participants (mean [SD]

age: 65.53 [10.62] years). Further details regarding the distribution of

cases within the training and validation sets are presented in Table 1.
Model building

The optimal parameters for the model were determined

through several experiments. For the CycleGAN in SDC-UDA,
Frontiers in Oncology 05
the parameters were set as follows: 100 training epochs, a beta value

of 0.5, a learning rate of 0.0001, and learning rate updates every 50

epochs. The parameters for the 3D Unet in SDC-UDA were set as

follows: 200 training epochs, a batch size of 2, a learning rate of

0.0005, and learning rate updates every 100 epochs. The parameters

for the 3D DenseNet were set as follows: the base network was

DenseNet121, a dropout rate of 0.5, a growth rate of 4, 1000 training

epochs, a batch size of 20, a learning rate of 0.1, and learning rate

updates every 500 epochs.
Model performance evaluation

On a dataset of 50 human-annotated gastric segmentations, our

model achieved an average dice accuracy of 0.94, with the highest

dice coefficient recorded as 0.97 and the lowest as 0.90. The

segmentation results are illustrated in Figure 4, demonstrating a

close match between the model’s segmentation output and the

actual stomach outline.

Using the segmented images as input for EGC detection, the

final model achieved AUC values of 0.98 and 0.96 on the training

and validation sets, respectively (Figure 5). The model’s

performance metrics on the training set are as follows: accuracy

of 0.93, sensitivity of 0.92, specificity of 0.92, and F1 score of 0.93

(Table 2). On the validation set, the model achieved an accuracy of

0.92, sensitivity of 0.90, specificity of 0.89, and F1 score of 0.93.

These experimental results demonstrate that the proposed model

exhibits high discriminative ability in distinguishing between EGC

and AGC.
Model robustness assessment

To examine the impact of different data distributions on the

model, we randomly divided the data into training and validation

sets in an 8:2 ratio, performed model training and testing, and

repeated this process more than three times. The robustness of the

model was evaluated based on the performance of the three models.

Supplementary Figure 2 and Supplementary Table 1 present the

model’s performance on various training and validation sets. The

results indicate that the model achieved an AUC greater than 0.90
TABLE 1 The distribution of cases on the training and validation sets.

Train set
(n=273)

Validation set
(n=68)

P-value

Age(years), (mean+SD) 66.02 ± 10.06 65.53 ± 10.62 0.832

Sex, n(%) 0.612

male 203(74.36) 50(73.53)

female 70(25.64) 18(26.47)

Gastric Cancer Staging, n(%) 0.357

EGC 97(35.53) 27(39.71)

AGC 176(64.47) 41(60.29)
fro
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on both the training set and validation set, demonstrating the

robustness of the deep learning model proposed in this paper.
Discussion

In this study, we developed a deep learning model for accurate

EGC screening using CT images without human annotation. The

model consists of two stages: automatic gastric segmentation and

EGC diagnosis. It achieved AUC values of 0.98 and 0.96 in the

training set and validation set, respectively. Additionally, our model

demonstrated robustness in EGC screening through multiple

training iterations with varied data groupings. Our study provides

a clinically applicable preoperative GC staging model for the GC

patients, which can assist doctors in formulating more accurate

diagnosis and treatment plans.
Frontiers in Oncology 06
Preoperative diagnosis of GC has been a focal point of research.

Accurately assessing the T stage in the GC classification system is

crucial for determining treatment options and prognosis.

Understaging may lead to incomplete tumor resection, while

overstaging may result in unnecessary overtreatment. EUS could

be helpful for identifying superficial that do not penetrate further

than the submucosa (T1) or muscularis propria (T2) from advanced

cancers (T3–T4) (5). Studies have reported that EUS achieves a high

overall accuracy in T stage assessment, with a sensitivity of 86%

(32). Zhao et al. demonstrated that the accuracy of staging using

multi-slice spiral CT images and gastroscope can reach 83.67%

through statistical analysis (33). Guan et al. employed Yolov5-based

DetectionNet for staging gastric cancer on arterial phase CT images,

achieving an average accuracy of 0.909 (34). Wang et al., using

gastric windows on CT images, achieved an accuracy rate of 90% in

diagnosing T1 EGC (35). In our study, the model achieved an

accuracy of 94.6% in diagnosing EGC in the training set and 90% in

the internal validation set. Furthermore, the reliability study

demonstrated the stability of the model.

Artificial intelligence technologies, such as radiomics and deep

learning, have gained significant attention in the field of gastric

cancer. These techniques play a crucial role in tasks like

preoperative TNM staging prediction, differential diagnosis,

treatment response assessment, and prognosis estimation (36).

Radiomics, in particular, has been employed for predicting

treatment response and survival in gastric cancer, although there

is heterogeneity and relatively low research quality in this area.

Nonetheless, radiomics holds promise in predicting clinical

outcomes due to its high interpretability (37). An essential initial

step in radiomics is the segmentation of the region of interest (ROI),

which can be time-consuming and demanding for annotators (38,

39). Thus, automatic segmentation of the ROI is of great

significance for omics research. Hu Z et al. proposed a multi-task

deep learning framework for automatic segmentation of gastric

cancer in human tissue sections using whole slide images (WSI)

(40). Zhang Y et al. presented a 3D multi-attention-guided multi-
FIGURE 5

EGC screening performance of our model.
FIGURE 4

Two cases to show the segmentation of our model.
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task learning network for gastric tumor segmentation on CT

images, achieving a Dice score of 62.7% by leveraging

complementary information from different dimensions, scales,

and tasks (41). However, there are limited studies on the

segmentation of gastric cancer CT, and the Dice accuracy falls

short of meeting the requirements of subsequent experiments.

Therefore, the model we developed focuses on achieving

automatic segmentation of the stomach in the first stage.

This paper used a two-stage deep learning framework that first

segments and then classifies. This framework has a wide range of

applications in the medical field. In brain disease research, many

researchers first remove the skull by segmentation, and then

perform subsequent classification modeling (42, 43). In order to

classify 18 types of brain tumors more accurately, Gao et al. (44)

adopted a deep learning framework that first segmented the tumor

area and then performed multi-classification. For the diagnosis of

chest diseases, researchers often use segmentation models to extract

lung areas, and then perform nodule detection (45), Covid-19

detection (46), interstitial lung disease (47), etc. Compared with

models that directly use original images for classification, the two-

stage deep learning framework can first segment the area where the

target of interest is located, so that the classification model focuses

on the target area, which not only improves efficiency, but also

improves classification accuracy.

Despite the promising potential of AI in the field of gastric

cancer, its clinical application has been hindered by its low

interpretability (48, 49). In our study, we utilized the Gradient

Weighted Class Activation Map (Grad-CAM) technique to

visualize the regions of focus in the model. However, this

technique only provided information about the areas the model

concentrated on, without revealing the specific features on which

the model relied to classify EGC versus AGC (Supplementary

Figure 3). Therefore, it is essential to conduct further analysis of

the model’s interpretability and verify its reliability from a

clinical perspective.

This study has several limitations: Firstly, it is a retrospective

study, which may introduce statistical biases. Subsequent studies

will include more prospective investigations. Secondly, all the data

used in this study originated from a single center. Therefore, future

research should incorporate data from multiple centers to develop a

more general and robust system. Thirdly, the patients included in

this study were exclusively those with pathologically diagnosed

gastric cancer. Consequently, the EGC detection model proposed

in this paper may not be suitable for detecting EGC in CT images

without gastric cancer. Lastly, this study solely focused on CT

images in the portal phase, and subsequent research will explore

joint multi-sequence CT image modeling.
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Conclusion

We have developed a deep learning model that automates the

screening of EGC in CT images of patients with GC. The model

follows a three-step process: first, it performs stomach segmentation;

then, it crops the segmented stomach region; and finally, it feeds the

cropped images into the classification network for EGC screening. As

the entire process is computer-based, this model holds significant

clinical value by assisting doctors in assessing the gastric cancer status

of patients and devising personalized treatment plans.
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