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Background: Several studies have investigated the population pharmacokinetics
(popPK) of valproic acid (VPA) in children with epilepsy. However, the predictive
performance of these models in the extrapolation to other clinical environments
has not been studied. Hence, this study evaluated the predictive abilities of
pediatric popPK models of VPA and identified the potential effects of protein
binding modeling strategies.

Methods: A dataset of 255 trough concentrations in 202 children with epilepsy
was analyzed to assess the predictive performance of qualified models, following
literature review. The evaluation of external predictive ability was conducted by
prediction- and simulation-based diagnostics as well as Bayesian forecasting.
Furthermore, five popPK models with different protein binding modeling
strategies were developed to investigate the discrepancy among the one-
binding site model, Langmuir equation, dose-dependent maximum effect
model, linear non-saturable binding equation and the simple exponent model
on model predictive ability.

Results: Ten popPK models were identified in the literature. Co-medication,
body weight, daily dose, and age were the four most commonly involved
covariates influencing VPA clearance. The model proposed by Serrano et al.
showed the best performance with a median prediction error (MDPE) of 1.40%,
median absolute prediction error (MAPE) of 17.38%, and percentages of PEwithin
20% (F20, 55.69%) and 30% (F30, 76.47%). However, all models performed
inadequately in terms of the simulation-based normalized prediction
distribution error, indicating unsatisfactory normality. Bayesian forecasting
enhanced predictive performance, as prior observations were available. More
prior observations are needed for model predictability to reach a stable state.
The linear non-saturable binding equation had a higher predictive value than
other protein binding models.
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Conclusion: The predictive abilities of most popPK models of VPA in children with
epilepsy were unsatisfactory. The linear non-saturable binding equation is more
suitable for modeling non-linearity. Moreover, Bayesian forecasting with prior
observations improved model fitness.

KEYWORDS

population pharmacokinetics, valproic acid, external evaluation, pediatric epilepsy,
protein-binding saturation, therapeutic drug monitoring

1 Introduction

Epilepsy is a common chronic neurological disorder in
pediatrics that burdens patients with huge biological,
psychological, and social hardship and requires long-term
antiseizure medications (ASMs) therapy (Moshe et al., 2015;
Patsalos et al., 2018). As a first-line ASM for both focal and
generalized epilepsy syndromes and seizures in male children, the
advantages of valproic acid (VPA) include a wide spectrum of
antiepileptic properties and an acceptable tolerability profile
(Johannessen Landmark and Svein, 2016; Romoli et al., 2019).

The oral bioavailability of VPA is almost complete in all
commonly prescribed formulations (Romoli et al., 2019). VPA
exhibits high (90%–95%), concentration-dependent, and saturable
plasma protein-binding (Kodama et al., 1992a; Johannessen and
Johannessen, 2003), resulting in non-linear pharmacokinetics (PK)
(Zaccara et al., 1988). VPA is mainly metabolized through
glucuronidation via uridine diphosphate glucuronosyltransferase
(UGT), β-oxidation in the mitochondria, and cytochrome P450
(CYP)-catalyzed oxidation in the liver. Ultimately, the metabolites
are mainly excreted in the urine (Silva et al., 2008; Romoli et al.,
2019).

In clinical practice, the clearance (CL/F) and plasma
concentrations of VPA vary greatly among individuals, which
can be primarily ascribed to demographic and clinical
characteristics, concomitant medications, and genetic variants
(Ghodke-Puranik et al., 2013; Zhu et al., 2017). Owing to the
narrow therapeutic range (50–100 mg/L) and considerable
interpatient PK variability of VPA, close therapeutic drug
monitoring (TDM) and individualized medication are
indispensable (Patsalos et al., 2008; Johannessen Landmark et al.,
2020).

Individual PK parameters required for optimizing dosage
regimens can be obtained using population pharmacokinetic
(popPK) modeling combined with Bayesian forecasting (Sheiner
et al., 1979). Unlike traditional PK approaches, popPK analysis is
superior in estimating intra- and inter-subject variabilities and
predicting plasma concentrations by quantifying the effects of
relevant covariates on PK parameters (Sun et al., 1999; Ette and
Williams, 2004). This method allows the use of sparse TDM data
and is suitable for studies in children due to logistical and ethical
constraints with respect to performing intensive sampling strategies
in this vulnerable population.

Several popPK models have been established to quantitatively
explore the PK characteristics of VPA (Methaneethorn, 2018; Zang
et al., 2022). Body weight, sex, age, VPA daily dose, and concomitant
medications have been most frequently reported as covariates that
influence VPA CL/F. Approximately one-third of the studies have

assessed the predictive performances of the final models. The
predictive abilities of VPA popPK models for patients with
bipolar disorder in China (Zang et al., 2022) and patients with
mania in Thailand (Methaneethorn and Leelakanok, 2021) have
been externally evaluated. However, popPK models and the
influence of incorporating non-linear properties on the model’s
predictive ability for children with epilepsy have not been evaluated.
The modeling strategy and functional forms of the covariates
involved may affect the model’s predictive ability (Mao et al., 2020).

VPA concentrations are disproportionately higher when protein
binding is saturated, particularly as the concentrations of VPA
exceed 50 mg/L (Winter, 2010). To investigate the non-linear
relationship of VPA concentrations between the total and free
serum, a one-binding site model (Dutta et al., 2007), Langmuir
equation (Ueshima et al., 2008), dose-dependent maximum effect
model (Ding et al., 2015), linear non-saturable binding equation (Gu
et al., 2021), and the VPA daily dose incorporated as a covariate have
been used in modeling development. However, most published
models have been developed using empirical covariate selection
and have not considered non-linear properties. Theoretical covariate
selection, which is based on the understanding of PK mechanisms
rather than solely on the data, combined with the relationships
between covariates and parameters, may help improve model
prediction (Danhof et al., 2008; Mao et al., 2020).

To fully exploit the benefits of model-informed precision dosing,
the most suitable popPK model that can accurately describe the PK
process in the target population should be obtained (Kluwe et al.,
2020). This study aimed to systematically assess the predictive
performance of published popPK models for VPA in children
with epilepsy as well as explore the potential effects of protein
binding modeling strategies on model transferability.

2 Materials and methods

2.1 Review of studies on popPK analyses of
VPA in children with epilepsy

A systematic review of studies on the popPK of VPA in children
with epilepsy was conducted by retrieving literature from PubMed,
Web of Science, and Embase from inception up to 30 June 2022. The
criteria for inclusion in published models were as follows: (1) a study
using a non-linear mixed effect modeling approach to analyze VPA
PK parameters in children with epilepsy, and (2) publications
written in English. Studies were excluded if (1) they were
methodological papers or reviews, (2) the required information
was insufficient for external evaluation, and (3) the data or
cohorts overlapped. In addition, popPK studies, including genetic
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polymorphisms as covariates, were excluded as genotyping is not
routinely performed in TDM of VPA. Furthermore, citations in the
identified publications were screened.

2.2 Data for external evaluation

2.2.1 Participants
Overall, 202 Chinese children with epilepsy (139 males and

63 females) undergoing VPA treatment and who had undergone
routine monitoring of plasma concentrations at Wuhan Children’s
Hospital between January 2016 and November 2018 were eligible.
The clinical and demographic characteristics of each participant,
including sex, age, body weight (BW), dosage regimen, concomitant
drugs, and seizure control, were obtained at each TDM visit for the
current evaluation. Patients with missing information on the
required covariates, hepatic or renal impairment, abnormal
albumin levels, or poor medication adherence were excluded. The
Ethics Committee of Wuhan Children’s Hospital approved the
protocol (Serial Number: 2015015), and patients’ direct relatives
were well informed and signed informed consent declarations
voluntarily.

2.2.2 VPA concentration determination
VPA total plasma concentrations were measured by gas

chromatography (GC). The calibration range of the hydrogen
flame ionization detector was 12.5–150 mg/L. The detection limit
was 1 mg/L, and the coefficient of variation was below 10%, as
reported in an earlier study (Liu et al., 2020).

2.3 External predictive ability evaluation

The assessment of predictive ability was conducted with
NONMEM® 7.4 (ICON Development Solutions, Ellicott City,
MD, United States) and assisted by Intel Fortran XE
2011 Update 13 (Intel Corp, Santa Clara, CA, United States). We
reconstructed published popPK models by incorporating reported
parameters and subsequently assessed the predictive performance of
the eligible models using prediction- and simulation-based
diagnostics, as well as Bayesian forecasting (Zhao et al., 2016a;
Mao et al., 2018), with an external dataset. To analyze the output
of NONMEM, R software (version 4.2.1, http://www.r-project.org/)
was used.

2.3.1 Prediction-based diagnostics
For each participant, we calculated the prediction error (PE%)

using population predictions (PREDs) and corresponding
observations (OBS) according to Eq. 1. To evaluate the predictive
accuracy and precision, median prediction error (MDPE) and
median absolute prediction error (MAPE) were used (Sheiner
and Beal, 1981).

PE %( ) � PRED −OBS
OBS

( ) × 100 (1)

Subsequently, we calculated the PE% within ±20% (F20)
and ±30% (F30) to serve as an indicator of the combined
performance of model accuracy and precision. The candidate

model’s predictive ability was considered to be satisfactory if the
following criteria were met: MDPE ≤ ± 15%, MAPE ≤30%, F20 >
35%, and F30 > 50% (Mao et al., 2018). The PE%was visualized using
boxplots and cumulative distribution curve plots.

2.3.2 Simulation-based diagnostics
The evaluation and simulated data were statistically compared

via a prediction-corrected visual predictive check (pcVPC)
(Bergstrand et al., 2011) and normalized prediction distribution
error (NPDE) (Comets et al., 2008) to assess each candidate model’s
predictive ability for VPA via simulation. Based on the reported final
model parameters, 2,000 times simulations of the dataset were
carried out.

The graphical visualizations and calculations for pcVPC were
conducted using PsN. The comparisons between the simulations
and the observations at different time points were performed in
pcVPCs using automatic binning. The NPDE was determined
using an R package (NPDE, version 2.0, www.npde.biostat.fr)
(Comets et al., 2008). To test the normal distribution property of
NPDE data, diagnostic graphs were generated. Statistical tests
were conducted with the null hypothesis, and the derived model
satisfactorily accounted for the evaluation data. The hypothesis
was examined with the Wilcoxon signed-rank test, Fisher’s exact
variance test, and Shapiro-Wilk test, as appropriate (Brendel
et al., 2010).

2.3.3 Bayesian forecasting
To assess the impact of priors on model predictive performance,

maximum a posteriori Bayesian (MAPB) forecasting using data from
individuals with observed concentrations was performed. For each
patient, one prior measurement was used to predict the individual
prediction (IPRED) of the last observation, and the individual PE%
(IPE%) was calculated using Eq. 2 to assess the model’s accuracy.
Further details are shown in Supplementary Text S1.

IPE %( ) � IPRED − OBS
OBS

( ) × 100 (2)

The median IPE% (MDIPE), median absolute IPE% (MAIPE),
and IF20 and IF30 (representing F20 and F30 of IPE%, respectively)
were calculated to assess the model’s predictive performance with
increasing prior information.

2.4 The impact of protein binding modeling
strategy

VPA is known to follow non-linear PK based on concentration-
dependent protein binding (Zaccara et al., 1988). Based on the
review of literature and data characteristics, a one-compartment
model with first-order absorption was used as base model to describe
VPA PK. Subsequently, five protein-binding modeling strategies
(Eqs 3–7) were applied to compare the potential effect of functional
forms and the non-linearity of covariates on the model’s predictive
performance.

Model I: One-binding site model (Eq. 3)

Cb � N × K × Cu × ALB
1 + K × Cu

(3)
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where Cb and Cu represent the bound and unbound plasma
concentrations of VPA, respectively, and ALB is the albumin
level. The number of binding sites (N) per unit of single-site
binding material was set as 1.98 while the binding site
association constant (K) was set to 15.5 mM−1 as reported (Dutta
et al., 2007).

Model II: Langmuir equation (Eq. 4)

Cb � Bm × Cu

Kd + Cu
(4)

The dissociation constant of VPA (Kd) and maximum binding
site concentration (Bm) were set to 7.8 and 130 mg/L, respectively
(Ueshima et al., 2008).

Model III: Dose-dependent maximum effect model (Eq. 5)

CL/F � CLP × 1 + E max × DDγ

DD50
γ +DDγ( ) (5)

where CLp is the apparent plasma clearance, Emax is the maximum
effect of VPA, DD50 is the daily dose (mg kg−1 day−1) when Emax is
increased by 50%, and the sigmoid decline slope is specified by the

Hill coefficient (γ). Emax and γ were set to 2.8 and 1.68, respectively,
as reported (Ding et al., 2015).

Model IV: Linear non-saturable binding equation (Eq. 6)

Cb � Bm × Cu

Kd + Cu
+NS × Cu (6)

where NS is the slope of non-saturable protein-binding. Kd, Bm, and
NS were set to 2.12, 67.3 mg/L, and 2.25, respectively (Gu et al.,
2021).

Model V: The simple exponent model (Eq. 7)

CL/F � CLP ×
DD

25
( )k

(7)

where k is the exponent of the daily dose, which was estimated using
our dataset.

The evaluation approaches comprise the aforementioned
diagnostic methods based on prediction and simulation as well as
Bayesian forecasting methods. The tendency plots based on
established models Ⅲ and Ⅴ were used to assess the relation of
the daily dose to CL/F within these two modeling strategies.

FIGURE 1
Overview of the literature search strategy. n, number of articles returned by search.
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TABLE 1 Summary of published population pharmacokinetic studies of VPA in children with epilepsy.

Study
(publication
year)

Country (single/
multiple sites)

Number of
patients (male/
female)

Total
samples

VPA
assay

Structural
model

PK parameters and formula BSV
(%)

Residual
error

Serrano et al. (1999) Spain (single) 255 (128/127) 770 FPIA 1CMT CL/F 0.012 × WT0.715 × (DDW)0.306 × (1.359, if concomitant CBZ) 21.4 15.6 mg/L

V/F 0.24 × WT /

Ka 1.9 (fixed) /

Desoky et al. (2004) Egyptian (single) 81 (52/29) 81 FPIA 1CMT CL/F 0.105 + 0.000248 × DD + 0.0968 × AGE/20 + (0.151, if concomitant CBZ) +
(0.0803, if uncontrolled epilepsy)

23.6 5.24 mg/L

V/F 11.5 (fixed) —

Ka 4 for syrup, 1 for EC-tablet (fixed) —

Jiang et al. (2007) China (multiple) 317 (195/122) 624 FPIA 1CMT CL/F 0.106(0.98 × CO) + 0.0157 × AGE 25.1 13.2 mg/L

CO = 1 when co-medication exists

V/F 2.88 + 0.157 × WT 49.1

Ka 0.251 + 2.24 (1 − HS), HS = 1 for SR-tablet, otherwise HS = 0 11.0

Correa et al. (2008) Mexico (single) 110 (63/47) 119 CEDIA 1CMT CL/F (0.0466 + 0.00363 × WT + 0.000282 × DD) × (1.236, if concomitant PB) 14.1 17.3 mg/L

V/F 0.24 × WT —

Ka 1.2 (fixed) —

Williams et al. (2012) United States
(multiple)

52 (36/16) 231 FPIA 2CMT CL/F 0.854 × (WT/70)0.75 35.9a 34.8%

Vc/F 10.3 × (WT/70) × (AGE/8.5) −0.267 19.6a

Vp/F 4.08 × (WT/70) 101.5a

Q/F 5.34 × (WT/70)0.75 —

Ka 2.0 for capsule, 1.2 for sprinkle, 4.1 for tablet (fixed) —

Tlag 1.0 for sprinkle, 2.0 for tablet (fixed) —

Ogusu et al. (2014) Japan (single) 237 (137/100) 827 EMIT 1CMT CL/F 0.559 × (DD/1000)0.596 × (0.917, if female) × (1.19, if concomitant CBZ) × (1.12,
if concomitant PB) × (1.43, if concomitant PHT) × (0.906, if concomitant CLB)

24.2 24.8%

V/F 21.4 × (DD/1000)1.52 0.043

Ka 0.109 0.088

Tlag 3.00 —

(Continued on following page)
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TABLE 1 (Continued) Summary of published population pharmacokinetic studies of VPA in children with epilepsy.

Study
(publication
year)

Country (single/
multiple sites)

Number of
patients (male/
female)

Total
samples

VPA
assay

Structural
model

PK parameters and formula BSV
(%)

Residual
error

Ding et al. (2015) China (multiple) 902 (547/355) 1107 FPIA 1CMT CL/F 0.3 × (1.43, if concomitant CBZ) × (WT
70 )0.791−

0.096×AGE8.63

0.8028.63+AGE8.63 19.5 13.3 mg/L

× (1 + 2.8 × DDW1.68

37.41.68+DDW1.68)

V/F 22.2 × (WT/70) /

Ka 2.64, 1.57, 0.46 for syrup, conventional tablet and SR tablet, respectively (fixed) /

Rodrigues et al. (2018) France (multiple) 98 (50/48) 325 FPIA 1CMT CL/F 0.624 × (WT/70)0.75 33.9 15.4%

V/F 13.0 × (WT/70) /

Ka 0.274 /

Gu et al. (2021) China (single) 313 (209/104) 375 GC 1CMT CL/F 10.4 × (1.25, if concomitant LGT) × (WT
70 )0.75 × ( PMA4.17

33.74.17+PMA4.17) 43.0 2.5%

V/F 1680.1 × (WT/70) 92.8

Ka 2.64, 1.57, 0.46 for syrup, conventional tablet and SR tablet, respectively (fixed) /

Teixeira-da-Silva et al.
(2022)

Spain (single) 836 (451/385) 1751 FPIA 1CMT CL/F 0.646 × (WT/70)0.75 × (AGE/15.0)−0.0154 × (1.640, if concomitant PHT) × (1.386,
if concomitant PB) ×(1.521, if concomitant CBZ)

26.8 57.7%

V/F 14.0 × (WT/70) —

Ka 2.64, 0.78, 0.38 for syrup, EC tablet and SR tablet, respectively (fixed) —

BSV, between subject variability; CBZ, carbamazepine; CEDIA, cloned enzyme donor immunoassay; CLB, clobazam; CL/F, apparent clearance (L h−1); CMT, compartment; CO, co-medication; DD, daily dose in mg day−1; DDW, daily dose in mg kg−1.day−1; EC, enteric

coated; EMIT, enzyme multiplied immunoassay technique; FPIA, fluorescence polarization immunoassay; GC, gas chromatography; k0, zero order rate constant (h−1); Ka, absorption rate constant (h−1); LGT, lamotrigine; PB, phenobarbital; PHT, phenytoin; PK,

pharmacokinetics; PMA, post-menstrual age; Q, intercompartmental clearance (L h−1); SR, sustained release; Tlag, lag time (h); Vc/F, apparent volume of distribution of central compartment (L); V/F, apparent volume of distribution (L); VPA, valproic acid; Vp/F,

apparent volume of distribution of peripheral compartment (L); WT, weight.
aCorrelations are CL/F ~ Vc: 0.0397; CL/F ~ Vp: 0.0777; Vc ~ Vp: 0.144.
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3 Results

3.1 Review of published popPK analyses on
VPA in children with epilepsy

After literature retrieval (Figure 1; Supplementary Text S2),
10 published popPK studies on VPA in children with epilepsy
were identified for external evaluation (Serrano et al., 1999;
Desoky et al., 2004; Jiang et al., 2007; Correa et al., 2008;
Williams et al., 2012; Ogusu et al., 2014; Ding et al., 2015;
Rodrigues et al., 2018; Gu et al., 2021; Teixeira-da-Silva et al.,
2022). Four studies were conducted in East Asian countries
[three in China (Jiang et al., 2007; Ding et al., 2015; Gu et al.,
2021) and one in Japan (Ogusu et al., 2014)], three in Europe [two in
Spain (Serrano et al., 1999; Teixeira-da-Silva et al., 2022) and one in
France (Rodrigues et al., 2018)], two in North America [one each in
Mexico (Correa et al., 2008) and United States (Williams et al.,
2012)], and one in Africa (Desoky et al., 2004). Among these studies,
four were multi-center studies (Jiang et al., 2007; Williams et al.,
2012; Ding et al., 2015; Rodrigues et al., 2018) and the others were
single-center studies. Additionally, three studies used sample size
of ≤100 participants (Desoky et al., 2004; Williams et al., 2012;
Rodrigues et al., 2018).

Four bioassays were used in specific publications. Specifically,
fluorescence polarization immunoassays (FPIA) were used in seven
studies (Serrano et al., 1999; Desoky et al., 2004; Jiang et al., 2007;
Williams et al., 2012; Ding et al., 2015; Rodrigues et al., 2018;
Teixeira-da-Silva et al., 2022), enzyme multiplied immunoassay
technique (EMIT), cloned enzyme donor immunoassays
(CEDIAs), and GC were used in the remaining three studies
(Correa et al., 2008; Ogusu et al., 2014; Gu et al., 2021)
(Table 1). The demographic and pharmacokinetic characteristics
of the models are listed in Supplementary Table S1.

Most studies described VPAPK using a one-compartment (1CMT)
model with first-order absorption (Serrano et al., 1999; Desoky et al.,
2004; Jiang et al., 2007; Correa et al., 2008; Ogusu et al., 2014; Ding et al.,
2015; Rodrigues et al., 2018; Gu et al., 2021; Teixeira-da-Silva et al.,
2022), while only one study reported a two-compartment (2CMT)
model (Williams et al., 2012). Three models were established with data
from both pediatric and adult patients (Desoky et al., 2004; Ogusu et al.,
2014; Teixeira-da-Silva et al., 2022). Six studies considered the effects of
the formulation on the absorption rate (Desoky et al., 2004; Jiang et al.,
2007;Williams et al., 2012; Ding et al., 2015; Gu et al., 2021; Teixeira-da-
Silva et al., 2022), of which most used a fixed absorption rate constant
(ka) (Desoky et al., 2004;Williams et al., 2012; Ding et al., 2015; Gu et al.,
2021; Teixeira-da-Silva et al., 2022). The four covariates that most
frequently influenced VPA CL/F were concomitant medication intake,
BW, daily dose, and age, accounting for 80.0%, 70.0%, 50.0%, and 50.0%
of the studies, respectively. The most commonly reported co-
medications were carbamazepine, phenobarbital, phenytoin, and
lamotrigine.

3.2 External predictive ability evaluation

3.2.1 Participants
A total of 202 volunteers who met the inclusion and exclusion

criteria were included, providing 255 VPA concentrations for

analysis. Table 2 shows the demographic and clinical
characteristics of all participants. Age, BW, VPA daily dose, and
serum concentrations were 4.92 (0.17–15.00) years, 19.00
(4.00–70.00) kg, 23.40 (8.70–49.20) mg/kg/day, and 50.40
(22.60–118.50) µg/mL, respectively. A sustained-release
formulation or a syrup was administered orally one, two, or three
times per day. Trough concentrations were calculated under steady-
state conditions. The three most commonly prescribed co-
medications in our cohort were levetiracetam, oxcarbazepine, and
topiramate.

3.2.2 Prediction-based diagnostics
The prediction-based diagnostic results are listed in Table 3. The

models proposed by Serrano et al. (1999), Desoky et al. (2004),
Correa et al. (2008), Ogusu et al. (2014), Gu et al. (2021), and
Teixeira-da-Silva et al. (2022) met the criteria mentioned above
(MDPE ≤ ± 15%, MAPE ≤30%, F20 > 35%, and F30 > 50%). The
model proposed by Serrano et al. (1999) (MDPE, 1.40%; MAPE,
17.38%; F20, 55.69%; F30, 76.47%) performed the best. The predictive
abilities of these models are displayed in box plots (Figure 2) and
cumulative distribution curve plots (Figure 3).

3.2.3 Simulation-based diagnostics
The results of pcVPC indicated a significant deviation between

observations and simulations among the most involved models
(Supplementary Figure S1). A clear pattern of over- or under-
prediction of true variability among subjects was observed, except
in the relatively superior model of prediction-based diagnostics
developed by Serrano et al. (1999). However, the NPDE results
of the model proposed by Serrano et al. (1999) were not as accurate
as those of pcVPC, which failed to obey a normal distribution,
especially for the description of variance. For the global test
(Supplementary Table S2), all models were statistically rejected
(p-values >0.05). The NPDE results are shown in Supplementary
Figure S2 and Supplementary Table S2.

3.2.4 Bayesian forecasting
In Bayesian forecasting, the prediction accuracy was

substantially enhanced by one prior observation in most models
(Figure 2; Table 3), which highlighted the usefulness of popPK
modeling combined with Bayesian estimation in VPA dosage
adjustments. Due to the limitation of the sample size, the
Bayesian forecasting results of two or three prior observations
were not available in this study. As model predictability reaches a
stable state after two or three prior observations (Zhao et al., 2016a;
Mao et al., 2018), this limitation might have caused fluctuation in
model accuracy, such as those observed for models proposed by Gu
et al. (2021) and Teixeira-da-Silva et al. (2022).

3.3 The impact of protein binding modeling
strategy

The estimated parameters of the five protein-binding modeling
strategies based on our evaluation dataset are shown in
Supplementary Table S3. The objective function value decreased
dramatically as non-linearity was involved in modeling, except in
the dose-dependent maximum effect model. Moreover, the
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aforementioned assessments were employed to evaluate the
predictive ability of these models. Results for these metrics are
presented in Table 3 and Figure 4.

The results of the prediction-based diagnostics showed that the
linear non-saturable binding equation and the simple exponent
model performed better than the other models. After Bayesian
forecasting, the prediction accuracy improved substantially with
one prior observation. The simulation-based diagnostics
(Supplementary Table S2, Supplementary Figures S3, S4)
indicated that more covariates should be identified to quantify
the variabilities.

Although the simple exponent model had a satisfactory
predictive ability, the equation did not describe the non-linear
properties of the VPA PK process (Supplementary Figure S5).
According to the tendency plot results, the dose-dependent
maximum effect model describes the non-linear property of the
VPA PK process. However, regarding the empirical-estimated
parameters and center-related variability, the dose-dependent
maximum effect model did not had a satisfactory simulation-
based predictive ability. Therefore, the linear non-saturable

binding equation is more suitable for modeling the non-linear
kinetics of VPA according to the saturation of protein-binding.

4 Discussion

Although several studies have reported popPK characteristics in
children with epilepsy, the predictive ability of these models have not
been fully assessed. In this study, we systematically evaluated
10 published popPK models in children with epilepsy. Although
six models met the criteria (MDPE ≤ ± 15%, MAPE ≤30%,
F20 > 35%, and F30 > 50%) in prediction-based diagnostics, large
variabilities existed in simulation-based diagnostics, indicating the
discrepancies across centers, especially for variance. With prior
observations available, the performance of popPK models
significantly improves, indicating that Bayesian forecasting
substantially improves the prediction accuracy of the popPK
model (Zhao et al., 2016a; Mao et al., 2018; Cai et al., 2020).

Given the similarity of participants’ race, prescription regimen,
dietary habits, and genetics, models established in populations with

TABLE 2 Characteristics of external evaluation dataset.

Characteristics Number or mean ± SD Median (range)

No. of patients (Male/Female)a 202 (139/63) —

No. of samplesb 255 —

Age (years) 5.74 ± 3.67 4.92 (0.17-15.00)

Weight (kg) 22.46 ± 12.23 19.00 (4.00-70.00)

Height (cm) 111.83 ± 25.31 108.00 (54.00-180.00)

Body surface area (m2) 0.83 ± 0.31 0.76 (0.24-1.85)

Formulation (syrup/sustained release tablet)a 194/61 —

Daily dose (mg day−1) 513.04 ± 234.45 480.00 (60.00-1250.00)

Daily dose (mg kg−1 day−1) 24.50 ± 7.80 23.44 (8.70-57.69)

VPA serum concentration (μg mL−1) 54.34 ± 17.89 50.40 (22.60-118.50)

Total Bilirubin (μmol L−1) 7.03 ± 2.53 6.70 (2.30-17.80)

Albumin (g L−1) 42.21 ± 3.65 42.10 (29.70-70.50)

Alanine aminotransferase (U L−1) 12.24 ± 7.12 10.00 (1.00-38.00)

Aspartate transferase (U L−1) 24.46 ± 7.34 24.00 (9.00-55.00)

Serum Creatinine (μmol L−1) 31.34 ± 8.27 29.90 (13.90-57.80)

Blood Urea Nitrogen (mmol L−1) 4.35 ± 1.24 4.20 (1.40-8.70)

Concomitant medicationa 77 —

levetiracetam 27 —

oxcarbazepine 24 —

topiramate 19 —

clonazepam 12 —

lamotrigine 10 —

carbamazepine 3 —

aData are expressed as the number of patients.
bData are expressed as the number of samples.
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similar evaluation datasets might have superior predictive ability.
However, models developed for East Asians (Jiang et al., 2007; Ding
et al., 2015) did not show any advantages in the evaluation. The
typical CL/F values in those studies were 0.18 and 0.24 L/h,
respectively, which are lower than that of our base model
(0.31 L/h), resulting in an overestimation of concentration.
Moreover, the best method for prediction-based diagnostics and
simulation-based pcVPC was performed in Spain, with 255 patients
and 770 samples (Serrano et al., 1999). Indeed, no obvious
relationship between superior predictive performance and sample
size or ethnicity was observed in our study.

VPA is highly bind to plasma proteins, and the binding sites can
be saturated as total VPA concentration increases, thus following
non-linear PK. To capture this phenomenon, five candidate studies
included dose as a covariate in the models to characterize the non-
linear relationship between VPA dose and CL/F (Serrano et al., 1999;
Desoky et al., 2004; Correa et al., 2008; Ogusu et al., 2014; Ding et al.,
2015). Most of them chose a simple exponent model (Serrano et al.,
1999; Desoky et al., 2004; Correa et al., 2008; Ogusu et al., 2014),
while only a study by Ding et al. (2015) proposed a dose-dependent
maximum effect (DDE) model.

Moreover, the incorporation of the VPA daily dose is
controversial with regard to its influence on CL/F. In patients
with a higher clearance rate, lower drug concentrations may be
present. Therefore, they require higher TDM-guided doses.
Regarding the complicated TDM effect, the simple exponential
model may not be suitable for describing non-linear PK profiles
(Ahn et al., 2005). In addition, the simple exponent model was

insufficient in describing the non-linear correlation between the
daily dose and CL/F as indicated by the tendency plot results.
Therefore, although model predictive ability may be improved
when considering the effect of the daily dose, it is not a suitable
strategy for modeling PK non-linearity by adding daily doses to CL/
F (Vucicevic et al., 2009; Teixeira-da-Silva et al., 2022). In fact, as the
VPA daily dose was the goal of prediction, it should not be used as a
covariate for prediction.

Regardless of whether the DDE model or the simple exponent
model were data-driven empirical models, the transferability of
these models may be influenced by center-related factors, which
might be partly due to the differences in study design (such as age
and dosage regimen) and retained covariates between different
clinical sites. Adding covariates based on the mechanisms of PK
processes may assist in improvement of a model’s predictive ability
(Danhof et al., 2008). In addition, only free VPA can access the
central nervous system, where its pharmacological action occurs.
Therefore, the estimation of the free VPA concentration based on
the understanding of serum protein binding is essential (Kodama
et al., 1992b). However, as a low extraction ratio drug, the effective
concentration of VPA does not only depend on protein binding, but
also on the intrinsic ability of the eliminating organ. Saturation or
competition would result in dose-normalized reduction of the total
concentration whereas the free concentration may remain
unchanged (Benet and Hoener, 2002).

The one-binding site model (Dutta et al., 2007), Langmuir
equation (Ueshima et al., 2008), and linear non-saturable binding
equation (Gu et al., 2021) have been built based on the

TABLE 3 Results of the prediction-based metrics with or without prior observation.

Models Without prior observation With one prior observation

MDPE MAPE F20 F30 MDIPE MAIPE IF20 IF30

Serrano et al. (1999) 1.40 17.38 55.69 76.47 −2.62 9.46 71.70 90.57

Desoky et al. (2004) 11.25 24.28 43.53 57.25 0.47 10.64 69.81 83.02

Jiang et al. (2007) 66.84 66.84 12.94 20.39 10.98 12.07 66.04 81.13

Correa et al. (2008) 9.37 21.03 49.02 67.06 3.32 12.06 73.58 86.79

Williams et al. (2012) −25.92 27.70 31.76 54.51 −19.61 19.61 52.83 77.36

Ogusu et al. (2014) 8.84 19.90 50.20 68.63 −2.23 11.11 71.70 84.91

Ding et al. (2015) 30.24 32.14 34.51 47.06 9.24 17.14 64.15 88.68

Rodrigues et al. (2018) 26.13 29.36 36.08 50.98 −5.02 13.39 71.70 100

Gu et al. (2021) 4.35 18.74 51.76 67.06 −7.61 14.56 62.26 79.25

Teixeira-da-Silva et al. (2022) 1.34 19.80 50.20 67.06 −14.20 15.83 56.60 81.13

Impact of protein binding modeling strategy

One-binding site model 3.48 19.38 51.37 68.24 −3.05 16.29 61.70 85.11

Langmuir equation 0.82 20.49 47.84 67.45 −1.73 4.06 97.87 100

Dose-dependent maximum effect model −1.10 27.67 39.61 52.94 −4.43 5.47 97.87 97.87

Linear non-saturable binding equation −0.19 19.8 50.20 72.16 −2.51 5.51 97.87 100

The simple exponent model 1.50 17.68 56.47 72.94 −2.79 6.47 97.87 97.87

F20, F30, the percentages of prediction error within 20% and 30%, respectively;MAPE, median absolute prediction error;MDPE, median prediction error; IF20, IF30, the percentages of individual

prediction error within 20% and 30%, respectively; MAIPE, median absolute individual prediction error; MDIPE, median individual prediction error.
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understanding of the non-linear relationship between the total and
free serum concentrations of VPA. Age, ultrafiltration temperature,
albumin level, and the existence of various metabolites affect VPA
binding in a population of patients (Kodama et al., 1992b). Age is
positively correlated with the VPA free fraction (Zaccara et al.,
1988). Therefore, a one-binding site model built on adult patients
may not be suitable for the pediatric population. The linear non-
saturable binding equation incorporating the slope of non-saturable
protein binding may be superior to the Langmuir equation, which
has been confirmed in a previous study (Gu et al., 2021).

BW is a body size indicator associated with the functionality of
the liver, which is responsible for VPA metabolism. It is one of the
most common covariates considered in final models, accounting for
nearly 62.5% of candidate studies (Xu et al., 2018). Although the 3/
4 allometric exponent model has been universally applied to scale
clearance (Anderson et al., 2007; Holford et al., 2013), the value of
0.75 in this approach might not be reliable for estimating clearance
in pediatric patients (Mahmood, 2006; Peeters et al., 2010).
Moreover, age is an important maturation marker, and some
studies have shown that VPA CL/F varies with age in children
(Chiba et al., 1985; Cloyd et al., 1993). However, age was not
included in half of the selected models, including the superior
model proposed by Serrano et al. (1999).

Both age and BW reportedly determine maturation in
children <2 years old, whereas BW is the most important factor
influencing CL/F in children ≥2 years old (Ding et al., 2015; Gu et al.,
2021). The age-dependence of PK in young children may be partially
due to the maturation of UGT enzymes that mediate VPA

elimination. The activities of UGT1A9 and UGT1A6 reach adult
levels at 2 years and 14 months of age, respectively (Choonara et al.,
1989; Miyagi and Collier, 2011). The ability of another UGT enzyme
involved in VPA elimination, UGT2B7, reaches adult levels between
two and 6 months of age (Ebner and Burchell, 1993). The median
age in each of the studies analyzed here was above 2 years. That
explains why BW was the most common covariate in the final
models.

In addition, several other center-based factors could have
resulted in inter-study variability and affected the model’s
predictive performance. The VPA bioassay is one of the most
frequently mentioned factors. Three immunoassay methods were
used in the candidate publications, including FPIA, EMIT, and
CEDIA, whereas a GC technique was used for our dataset. The
analytical performance of these immunoassays was reported to be
practically equivalent to that of chromatographic methods
(Johannessen and Johannessen, 2003). Correlation coefficients for
ultraperformance liquid chromatography mass spectrometry versus
FPIA, and high-performance liquid chromatography has been
reported as 0.989, and 0.987, respectively; Bland-Altman analysis
has also shown these methods to be comparable (Zhao et al., 2016b),
indicating their agreement. Although EMIT overestimates VPA
levels compared with chromatographic methods (Xia et al.,
2021), no clear correlation between model predictive ability and
bioassay method was observed (Zang et al., 2022).

Pharmacogenetics may also contribute to drug PK variability.
VPA metabolism is related to several metabolic enzymes and
transporters, including UGTs, CYPs, ATP-binding cassette (ABC)

FIGURE 2
Box plots of the prediction error with or without Bayesian forecasting for published population pharmacokinetic models. The blue box represents
predictions without prior information, while the white box represents predictions with one prior observation. Black solid lines and blue dotted lines are
reference lines indicating PE% of 0% and ±30%, respectively.
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transporters, and monocarboxylate transporters (MCTs). Genetic
polymorphisms of these enzymes and transporters may influence
the PKs and VPA concentrations (Hung et al., 2011; Mei et al.,
2018). However, few researchers have regarded polymorphisms as

covariates of the popPK characteristics of VPA (Jiang et al., 2009;
Mei et al., 2018; Xu et al., 2018), and the findings remain
controversial in pediatric patients. In our previous study,
11 single-nucleotide polymorphisms in UGT2B7, UGT1A6, and

FIGURE 3
The cumulative distribution percentage plots of absolute value of prediction error.

FIGURE 4
Box plots of the prediction error with or without Bayesian forecasting for five protein binding models. The blue box represents predictions without
prior information, while the white box represents predictions with one prior observation. Black solid lines and blue dotted lines are reference lines
indicating PE% of 0% and ±30%, respectively. The model with an asterisk (*) performed the best.
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CYP2C9 were investigated, revealing no significant influence of any
of them on VPA responsiveness (Liu et al., 2020). As
pharmacogenomic considerations have not been verified in
clinical practice, genotyping is not routinely performed in VPA
therapy, and genetic polymorphisms were not available in a part of
our external evaluation dataset. The role of pharmacogenetics in
model predictive ability was not explored in this work, and needs
further clarification in future research, specifically in children.

This study has several limitations. First, the external dataset
consisted of a fraction of participants (202 children) from a single
center, which could limit statistical power. In addition, the collected
data were mostly at trough concentrations; therefore, parameters for
the absorption and distribution stages could not be obtained
precisely. Furthermore, among the candidate studies, five
reported traditional ASMs, such as phenobarbital, phenytoin, and
carbamazepine, have enzymatic induction effects that can enhance
VPA metabolism in children. However, novel ASMs (levetiracetam,
oxcarbazepine, and topiramate) had been commonly prescribed for
polytherapy in our population. Owing to the low proportion of
patients treated concomitantly with classical enzyme inducers, drug-
drug interactions were applied as a predictive factor, which may
have led to misspecification to some extent. Furthermore, the
inconsistency of bioassays may result in systematic biases.

5 Conclusion

The predictive performance ofmost selected popPKmodels of VPA
in children with epilepsy was unsatisfactory and diverse, and the direct
extrapolation of these models to the clinical application should be
performed with caution. Describing the non-linear kinetics of VPA
based on the mechanisms of PK processes may enhance model
predictive ability. Importantly, the linear non-saturable binding
equation is more suitable for modeling the non-linearity in terms of
protein-binding saturation. Moreover, Bayesian forecasting with prior
observations led to an improvement in model fitness.
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