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Artificial intelligence unveils key
interactions between soil
properties and climate factors on
Boletus edulis and B. reticulatus
mycelium in chestnut orchards
of different ages

Serena Santolamazza-Carbone1*, Laura Iglesias-Bernabé1,
Mariana Landin2, Elena Benito Rueda1, M. Esther Barreal1

and Pedro Pablo Gallego1*

1Agrobiotech for Health, Plant Biology and Soil Science Department, Biology Faculty, University of
Vigo, Vigo, Spain, 2Pharmacology, Pharmacy, and Pharmaceutical Technology Department, Santiago
de Compostela University, Santiago de Compostela, Spain
The main objective of this study was to determine the possible interaction of two

important abiotic factors (soil and climate) on the mycelial concentration and

frequency of the ectomycorrhizal fungi Boletus edulis and B. reticulatus, using

traditional statistics and artificial neural network tools. The frequency and

concentration of Boletus mycelium were determined over three months

(September, October, and November), and two years (2018 and 2020), in three

hybrid chestnuts (Castanea × coudercii) orchards of 40-, 10-, and 3- years-old,

using real-time qPCR. Statistical analysis revealed a significant effect of the year

on B. edulis mycelium concentration and of the sampling plot (different tree

ages) on B. reticulatus frequency. The combination of artificial intelligence

networks (ANN) with fuzzy logic, named neurofuzzy logic (NF), allowed the

construction of two robust models. In the first, using year, month, and sampling

plot as inputs, NF identified hidden interactions between year and month on B.

edulis mycelium concentration and between sampling plot and sampling month

on B. reticulatus mycelium frequency, thus improving the information obtained

from the statistical analysis. In the second model, those three factors were

disaggregated into 44 inputs, including 20 soil properties and 24 climatic factors,

being NF able to select only 8 as critical factors to explain the variability found in

both ectomycorrhizal Boletus species regarding mycelial frequency and

concentration. Specifically, NF selected two chemical soil properties (cation

exchange capacity and total carbon) and three physical properties

(macroaggregates, total porosity, and soil moisture at field capacity), as well as

their interactions with three climatic elements (cumulative difference between

precipitation and potential evapotranspiration (P-PET-1-2) and water deficit

(WD-1-2) in the previous two months and excess water (WE-1) in the month
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prior to sampling. These results provide a much deeper understanding and new

insights into the ecology and the role of abiotic factors which explain the

different mycelial development patterns of ectomycorrhizal fungi such as B.

edulis and B. reticulatus in chestnut agroecosystems.
KEYWORDS
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Introduction

Mycelium of ectomycorrhizal fungi creates in the soil an

extensive and dynamic mycelial network which plays a crucial

role not only for the nutrient uptake by the host plants, but also

promotes the mobilization of soil nutrients (1), enhances the soil C

cycle (2, 3), drives the assemblages of microfauna and microbiota

communities (2, 4), and contributes to the formation of soil

structure through a variety of biochemical and biophysical

mechanisms (5). For tracking fungal species along the whole

biological cycle, detection, identification, and quantification of

extraradical mycelium in the soil represent valuable information

to complete the scenario obtained from sporocarp and

ectomycorrhizal root tip samplings. However, the distribution

and density of the extraradical mycelium were poorly understood

until appropriate methods and modern data analysis tools for its

study were developed (6). Real-time PCR (qPCR), for instance,

provides a precise species-specific measure of mycelial biomass, in

comparison to other quantification techniques such as total hyphal

length, biochemical markers, or species-specific primers (7).

Biological processes are generally governed by non-

deterministic rules, being so difficult to understand and

explain by simple statistical analysis, particularly when the

experimental design is poor or imbalanced, the databases are

complex, vague, noisy, incomplete, or diverse types of data

(continuous, discrete, binomial) are used (8, 9). Artificial

intelligence tools have demonstrated advantages over statistical

analysis in understanding and deciphering hidden patterns and

interactions among factors in the complex multifactorial process

(10, 11), as is the case of mycelia development. In addition,

modern computer-based tools such as artificial neural networks

(ANNs) a lgor i thms have been des igned to generate

mathematical models to learn autonomously (with little

human intervention), to detect the effect of several factors, to

predict and optimize complex biological processes (12), which

could be applied to the study of the mycelial development of

ectomycorrhizal fungi.

The Boletus edulis complex (B. edulis Bull.: Fr. sensu stricto, B.

aereus Bull.: Fr., B. pinophilus Pilat et Dermek, and B. reticulatus

Schaeff.) represents a group of highly valuable edible mushrooms

with a broad geographic distribution across Eurasia and North

America, also been introduced into several Southern Hemisphere

countries including South Africa and New Zealand (13). The
02
identification of the fruiting bodies of these four species

traditionally has been difficult because it is based exclusively on a

few highly variable morphological characters. Recent studies

showed that these four species can be successfully discriminated

by an extensive analysis of the internal transcribed spacer of the

nuclear rDNA region (14). Many plants are suitable hosts for

Boletus spp., belonging to the family Fagaceae (Castanea,

Castanopsis, Fagus, Lithocarpus, Quercus), Betulaceae (Carpinus,

Corylus, Betula, Ostrya, Populus), Malvaceae (Tilia), Cistaceae

(Cistus), Salicaceae (Salix), Ericaceae (Arctostaphylos), and

Pinaceae (Abies, Keteleeria, Picea, Pinus, Tsuga) (15, 16). In

Spain, the chestnut, Castanea sativa (Mill. Fagaceae), occupies

272,400 ha, being the dominant species in 154,500 ha (17).

Galicia (NW Spain) is the main producing area in the country of

this plant species, and both forest stands and cultivated chestnut

orchards cover a total surface area of 49,308 ha (18). In this region,

Rigueiro (19) reported that 100,000–800,000 kg of B. edulis and

allied species are marketed and exported annually from Lugo

Province (Galicia, Spain).

Despite its ecological and economic importance, the autecology

of the B. edulis complex is still poorly understood, and field studies

have been carried out only in Italy (20–24) and Spain (4, 25–32).

The climatic niche and the soil characteristics of the association

B. edulis-Cistus ladanifer have been investigated, creating a model

that could predict territories climatically and lithologically suitable

in peninsular Spain (26). Soil parameters involved in significant

interactions with B. edulis in Pinus pinaster habitat have been also

investigated by Martinez-Peña et al. (28). Peintner et al. (23),

studying the soil fungal communities in a Castanea sativa forest,

showed that the overlap between above and belowground fungal

communities was very low. In their study, Boletus mycelium was

rare and scattered, whereas their sporocarps were abundant. This

finding was corroborated by De la Varga et al. (27), who indicated

that Boletus sporocarps production was correlated neither with the

concentration of soil mycelium nor with the presence or abundance

of ectomycorrhizas. This high degree of spatial heterogeneity of the

mycelium in the soil could depend on the fact that Boletus

mycorrhiza is characterized by a long-distance exploration type,

having their mycelia concentrated as rhizomorphs (33). Parladé

et al. (31) showed as timber harvesting, by either clearcutting or

partial cutting, produces a dramatic and rapid decrease of B. edulis

extraradical mycelium in the soil. Also, thinning and litter removal

affected B. edulis sporocarp production, highlighting as this species
frontiersin.org
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does not need a dense canopy but an open and sunny wood habitat

to maintain or increase its productivity (22).

Abiotic factors, such as climate elements (light, temperature,

humidity, precipitation) and soil properties (nutrient availability or

soil structure), exert a decisive influence on mycelium and

sporocarp formation (34–36). Moreover, Martinez-Peña et al. (28)

showed that rainfall and temperature are the most critical climate

factors for B. edulis sporocarps development and used such

parameters to develop a predicting model of mushroom

production. Similarly, De la Varga et al. (29) concluded that B.

edulis mycelium is strongly dependent on the climate, being

positively correlated with precipitation, and negatively correlated

with the mean temperature of the previous month. Also, soil

structure affects fungal development mainly through water

availability, organic matter distribution, or bulk density (5).

In the present study, the frequency and concentration of B.

edulis and B. reticulatus mycelium were determined over three

months (September, October, and November), and two years (2018

and 2020), in three hybrids experimental orchards of Castanea ×

coudercii orchards of 40-, 10-, and 3-years-old. The existence of a

significant impact of these three factors on Boletus mycelium was

investigated. We hypothesized a higher concentration of mycelium

in mature (40-years-old) orchards in comparison with younger

orchards (10- and 3-years-old) because B. edulis is considered a

late-stage fungus that produces sporocarps in mature stands and

should require an important level of carbon supply (28, 30). A

second objective was to assess the existence of significant

interactions between chemical and physical soil properties and

climate elements in chestnut orchards and B. edulis and B.

reticulatus mycelium concentration and frequency, identifying

what parameters support mycelium development, using artificial

intelligence tools. This study represents the first report on the

impact of soil properties and climate factors on two members of

the Boletus edulis complex in the Castanea agroecosystem. To the

best of our knowledge, this is the first time that artificial intelligence

tools have been used to unveil the effect of an abiotic factor on soil

mycelium development.
Materials and methods

Study site and experimental orchards

The study site was located in the province of Pontevedra,

Galicia, NW Spain. It is characterized by a humid Atlantic

climate with a mild mean annual temperature (14.8°C) and low

thermal amplitude (11°C). Annual precipitation is high (1613 mm),

with significant seasonal variability, being the autumn period as the

rainiest season and the months of July and August the lowest

precipitation months (44 and 56 mm, respectively), although no dry

month is observed throughout the year (www.aemet.es). The soils of

the area are mainly Leptosols, Umbrisols, Cambisols, and Regosols

(37, 38).

The experimental orchards are located at Bora (Pontevedra), at

the Biotechnology Centre of Hifas Foresta company, located at 140

m.a.s.l. (42° 25′ 56.5″ N–8° 34′ 41″ W). In 2018, we used three
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orchards of chestnut hybrid Castanea × coudercii (C. sativa x C.

crenata), sorted among three age classes (two repetitions each),

designed as 40-years-old (A40), 10-years-old, (A10), and 3-years-

old (A3). In 2020, the study was replicated in the same experimental

orchards with chestnut trees of different ages (named B40, B10, and

B3, respectively) as indicated in Santolamazza-Carbone et al. (4). The

experimental orchards (approximately 300 m2 each) were in the same

area (from 200 to 800 m apart from each other) and shared identical

climate conditions and geological material (granitic rock). They are

surrounded by pastures, fruit orchards, mature chestnuts, and oak

trees (Quercus robur). From 2018 to 2020, in the 40-years old

orchards, 134 sporocarps belonging to Boletus edulis complex have

been observed (S. Santolamazza-Carbone personal observation).
Soil characterization and climate data

Samplings to assess the soil properties of each experimental

orchard were carried out in October 2018 and in September 2020.

Three soil samples were taken per orchard in the first horizon with a

soil corer (5 x 5 cm) for bulk density determination, and another

three soil samples at 20 cm deep for the other analyses for a total of

36 samples (3 experimental orchards x 2 replicates x 3 soil samples x

1 sampling month x 2 years).

Soil physical properties such as particle size distribution (sand,

silt, and clay %), aggregate size distribution (dry mean weight

diameter and aggregates), bulk density (BD; kg m-3), total

porosity (Pt; %), and soil moisture at field capacity (FC; % v/v) as

well as soil chemical properties, such as pH, total carbon (C; %),

total nitrogen (N; %), C/N ratio, available phosphorus (P; mg kg-1),

Ca2+, Mg2+, K+, Na+, Al3+ exchange cations, and cation exchange

capacity (CEC) expressed in cmol(+) kg-1, and base saturation (V;

%) were determined. Most of the soil properties were analyzed

according to international standards (39). Others were determined

as follows: total C and N with an elemental analyzer. Available P

was determined by the Olsen method (40) and aggregate size

distribution was determined following the procedure described by

Kemper and Rosenau (41) by mechanically sieving the smaller-

than-10 mm fractions through sieves of 5, 2, 1, 0.25, and 0.05 mm

mesh size. Aggregate size distribution was expressed as the dry

mean weight diameter (MWD, mm), % macro- (>0.25 mm), and %

micro-aggregates (<0.25 mm) fractions.

The climatic parameters monitored in the two years of study

and during the period of 25 years (1985-2020) were the following:

mean monthly temperature (Tm,°C), mean monthly maximum

temperature (Tmax,°C), mean monthly minimum temperature

(Tmin,°C), mean air relative humidity (H, %), monthly

precipitation (P, mm). The monthly water balance was

characterized by monthly potential evapotranspiration (PET,

mm), the monthly difference between precipitation and potential

evapotranspiration (P-PET, mm), monthly water deficit (WD,

mm), and monthly water excess (WE, mm). The empirical

method of Thornthwaite (42) was applied to calculate the

monthly water balance parameters: P-PET, WD, and WE,

considering a soil maximum water retention of 100 mm.
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Meteorological data were obtained from the Pontevedra-

Mourente station (42° 26’ 18’’ N - 8° 36’ 57’’ W), about 3 km from

the sampling sites (AEMET, Government of Spain, www.aemet.es).
Molecular detection and quantification of
B. edulis and B. reticulatus mycelium

To assess mycelium concentration and frequency soil samples

were taken in mid-September, mid-October, and mid-November of

2018 and 2020. Three soil samples were extracted per orchard (each

year andmonth), for molecular detection and quantification of Boletus

mycelium constituting another 108 samples (3 experimental orchards

x 2 replicates x 3 soil samples x 3 samplingmonths x 2 years). Samples

were taken next to the angles and in the center of the square orchard

with a maximum distance of 30 cm apart from the tree trunk,

according to De la Varga et al. (27) procedure. Soil samples were

individually introduced in marked plastic bags and transported to the

laboratory, where they were stored at 4°C until processed.

All soil samples from the 2018 (N = 54) and 2020 (N = 54)

surveys were individually processed. Soil DNA extractions were

carried out with the DNeasy® PowerSoil® Kit (QIAGEN Group),

from 0.25 g of soil per sample according to the manufacturer’s

instruction. The extracted DNA was stored at −20°C until used.

The concentration (ng mycelium/kg soil) and frequency

(calculated as the number of samples that resulted positive for

mycelium presence/total samples per plot and sampling month in

each year), of extraradical soil mycelium of the 108 soil samples

were both assessed by RT-PCR (qPCR).

The DNA samples from 2018 and 2020 (total N = 108) were

shipped to the AllGenetics laboratories (AllGenetics & Biology SL,

www.allgenetics.eu). Boletus edulis mycelia identification and

quantification were performed using a quantitative PCR (qPCR)

assay, targeting the ITS genomic region using the primers FWD-

B e d u ( C TGTCGCCGGCAACGT ) a n d RV S - B e d u

(TGCACAGGTGGATAAGGAAACTAG), and TaqMan® probe

STQBedu (6FAM-CCCTTTCTCTTTCGTGGAACCTCCCC-

BHQ1) designed by De la Varga et al. (27). The dye 6-carboxy-

fluorescein (6-FAM) and the Black Hole Quencher (BHQ1) were

attached to the primers’ 5’ and 3’ ends, respectively. The qPCRs

were carried out in a final volume of 20 mL, containing 10 mL of

NZY qPCR Probe Master Mix ROX plus (NZYTech), 0.25 mM of

the probe, 0.9 mM of the amplification primers, 2 mL of template

DNA, and ultrapure water up to 20 mL. The reaction mixture was

incubated as follows: an initial incubation at 95°C for 10 min,

followed by 40 cycles of denaturation at 95°C for 15 s, annealing at

55°C for 1 min, extension at 60°C for 1 min; and a final extension

step at 60°C for 30 s. Negative qPCR controls that contained no

DNA were included to check for cross-contamination. A total of 9

plates were analyzed in this study, with the qPCR reactions

performed in triplicate on each sample and control. The standard

curve for quantification of B. edulismycelium in the soil, established

by using sporocarp DNA, fulfilled the requirements for real-time

PCR in terms of efficiency (R2 = 0.99; efficiency = 96.93%).

Identification and quantification of B. reticulatus were obtained

using a primer pair for targeting the ITS genomic region, designed for
Frontiers in Soil Science 04
the first time for this study by using Geneious 10.2.3 (Biomatters Ltd).

The primer pair designed for ITS amplification were as follows:

Bret_ITS2_F: 5 ’ GGTGAATCGCTTCCAATTCC 3 ’ and

Bret_ITS2_R: 5’ GTCTCTCGAAGGTCAAAGGT 3’. PCRs were

carried out in a final volume of 12.5 mL, containing 1.25 mL of 1:10

diluted template DNA, 0.9 mM of primers, 6.25 mL of Supreme

NZYTaq 2x Green Master Mix (NZYTech), and ultrapure water up

to 12.5 mL. The reaction mixture was incubated at an initial

denaturation of 95°C for 10 min, followed by 40 cycles of 95°C for

15 s, and 64°C for 1 min. This PCR product was purified and used to

verify the amplification and to generate the standard curve in the qPCR

experiment. The standard curve, established by using sporocarp DNA,

had a satisfactory efficiency (R2 = 0.98; efficiency = 99.54%).
Statistical analysis

The impact of the sampling year (2018 and 2020), the sampling

month (September, October, November), and the three chestnut

orchards of different ages (40-, 10-, and 3-years-old), and the

interaction between them were assessed by using factorial

ANOVA, firstly on soil physical and chemical properties (assessed

from samplings in October 2018 and September 2020) and later on

B. edulis and B. reticulatus mycelium concentration and frequency.

Pairwise comparisons were tested using Tukey´s Studentized Range

(HSD) post hoc test, both at a = 0.05 significance level, using the

open software STATISTICA v.12 (43).

Before the statistical analyses, variables were checked for

normality by the Levene test and Bartlett’s test for homogeneity

of variances. Mycelium concentration data were previously

subjected to logarithm transformation (log x+1) to assume equal

variance conditions.
Artificial neural networks models

A unique database (Table S1) including a total of 47 inputs or

factors and 4 outputs or parameters was analyzed using

FormRules® v4.03 (44). Two models were built: the first includes

as inputs the 3 factors studied (year, month, and plot) and as

outputs the concentration and frequency of mycelium of B. edulis

and B. reticulatus. In the second model, two of those inputs (year

and month), were better characterized by including the next 24

climatic elements (as inputs): monthly Tm, Tmax, Tmin, H, P, P-

PET, WD, and WE. For all temperatures and humidity parameters,

the mean of the sampling month (Tm and Hm), the mean of the

previous month (Tm-1 and Hm-1), and the mean of two previous

months (Tm-1-2 and Hm-1-2) were calculated. For precipitation

and water balance parameters the value of the sampling month (P

and W), the value of the previous month (P-1 and W-1), and the

accumulated value of two previous months (P-1-2 and W-1-2) were

also calculated (Table S1). The third input (plot) was disaggregated

into 20 soil physical and chemical properties that best described the

characteristics of each experimental orchard (Table S1).

FormRules combines the strength of artificial neural networks

with those of fuzzy logic and has been designed to model and
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decipher cause-and-effect relations between the factors to the

parameters, particularly efficient when complex multifactorial

biological processes are studied (12). All modeling procedures

have been described in detail previously (45, 46). In short, this

software permits the selection of the ASMOD (adaptive-spline-

modelling-of-data) algorithm to maximize model accuracy while

minimizing the number of significant factors and model complexity

(47). ASMOD split the model into smaller submodels, starting with

a set of the simplest ones, for each parameter (48). Model quality

was assessed by the coefficient of determination (Train Set R2)

expressed in percentage:

Train Set R2 = 1 − o
n
i=1(yi − y

0
i)
2

on
i=1(yi − y

0 0
i )

2

 !
� 100  

yi represents the experimental values, yi’ represents the

predicted values by the model, and yi’’ represents the mean of the

dependent variable. The Train Set R2 coefficient describes how

much of the variance of the parameters (dependent variables) are

considered during model building: the higher the R2 value, the more

the model has captured the variation in the training data. Thus,

train Set R2 percentages between 70 and 99 are indicative of good to

excellent model performance, below those rates (50-70%) model

loss accuracy and models may not be reliable, finally, if high values

≥ 99% indicated over-fitting, meaning the model present poor

predictability, in this case, the model should be readjusted (10,

49). The model quality was also determined by the ANOVA

parameters (f-ratio): if the model F- ratio is higher than the

training data f-critical there are no statistical differences between

experimental and predicted values, thus the model presents high

predictability and accuracy (50).

Five fitness criteria can be selected: two focus on the validation

such as Cross-Validation (CV) and Leave One Out Cross-

Validation (LOOCV) and three focus on statistical significance

such as Bayesian Information Criterion (BIC), Minimum

Description Length (MDL), and Structural Risk Minimization

(SRM). Details about the convenience of using one or the other

can be found elsewhere (51–53). In this study, SRM fitness

criterium was selected showing a high accuracy and predictability

models. The training parameters selected to build the neurofuzzy

logic models 1 and 2 are shown in Table S2.

Although this software built a predictive black box model,

advantageously delivers a set of IF (condition)–THEN (observed

behavior) rules per submodel with their corresponding membership

degree, ranging from 0 to 1 (54 and references therein). These rules use

linguistic tags with a certain range level from Low to High, facilitating

the interpretation of the predicted results by the model (12).
Results

Soil characterization

The results of soil physical and chemical properties of the

experimental orchards and the existence of significant differences

between them are summarized in Table S3. All the soils were
Frontiers in Soil Science 05
characterized by presenting a sandy-loam texture, and a clear

predominance of the macro-aggregates (63.8-81.0%) in

comparison with micro-aggregates (19.0-36.2%). The scarce

presence of clays makes the aggregation of the soils very weak,

being reflected in the low values of MWD (0.9-1.8 mm). The bulk

density (BD) was low (950-1194 kg m-3), which translates into a

high porosity (Pt) (53.5-64.1%) and low-mid soil moisture (FC)

(20.2-34.1% w/w). In addition, these soils are strongly acid (pH 4.7-

5.0), with high C contents (3.2-6.9%), a very weak CEC (2.8-4.9

cmol(+) kg-1), and very low assimilable P (4.6-14.5 mg kg-1) values

(Table S3).

The ANOVA showed significant differences (p<0.05) in the soil

properties depending on the year and sampling plot factors however

no interaction between year and plot (P = 0.065) was found.

Regarding physical properties, no significant differences in the

size particle distribution (sand, silt, and clay) have been found

(Table S3). However, a higher percentage (p<0.05) of soil macro-

aggregates and MWD have been detected in younger chestnut

orchards (10- and 3-years-old plots) compared to mature

chestnuts (40-years-old plots) in both years, whereas micro-

aggregates were significantly more abundant in 40-years-old

orchards. In addition, BD and Pt were significantly different only

when comparing the 3-year-old orchards in 2018 with the 40-year-

old orchards in 2020. Finally, FC was significantly higher in 10-

year-old plots in both years (Table S3).

Regarding the chemical properties, pH and assimilable P

content did not change across the sampling plots. On the other

hand, C and N contents were significantly higher in 40- and 10-

years-old orchards in 2020 compared to 40-old orchards in 2018,

whereas the C/N ratio in 40-years-old orchards in 2018 was the

highest value obtained in both years in all the orchards. Finally,

significant differences in CEC and V% were also observed in the

soils of the 3-year-old orchards compared to 40-year-old orchards,

with higher values in the young plots.
Climate conditions characterization

In 2018 a mild mean temperature (14.9°C) and high

precipitation (1755 mm), like the mean climate of the area were

measured (Table S4). However, mean maximum and minimum

temperatures during the 2018 summer (Jul-Sept) period were of the

order of 2-3°C higher than those of the 25-year average climate, and

precipitation decreased from 51.4 mm in this period compared to

195 mm in the same period of the 25-year average (Table S4).

Consequently, three consecutive dry months (Pm ≤ 2 Tm) can be

observed in the climograph (Figure S1B). Even more, a negative

water balance that extended from July to the end of September in

2018 with a cumulative P-PET value of -288.5 mm andWD of 214.4

mm were observed (Table S4).

During 2020, the mean annual temperature was slightly higher

than in 2018 (15.4°C) and annual precipitation was also high (1668

mm). However, it stands out, only the month of July without

precipitation (Table S4), being the warmest month of the year

(Tm 22.7°C, Tmax 29.3°C), resulting in the only dry month of this

year (Figure S1C). Precipitation in August and September was
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much higher (149.9 mm) than in 2018 (16.6 mm), while November

was much drier (106.0 mm) than in 2018 (310.5 mm) (Table S4 and

Figure S1). The water deficit started earlier, in June (1.2 mm), but

the recovery of the soil water reserve was faster and earlier than in

2018 (Table S4), thanks to rainfall from August (92.1 mm) onwards

(Figure S1C).
Mycelium concentration and frequency

Both mycelium concentration, expressed as log (x+1), and

mycelium frequency of B. edulis increased significantly (p<0.05)

in 2020 in comparison with 2018 (Figures 1A, D), but no significant

effect (p>0.05) of sampling month (Figure 1B) and plot

(Figures 1C, E), nor the interactions among all the factors were

found. The mycelium frequency of B. reticulatus was significantly

higher in the 40-year-old orchard (Figure 1F), whereas mycelium

concentration did not change depending on the years, months, and

plot (Figures 1A–C).
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Neurofuzzy models for mycelium
concentration and frequency

The first neurofuzzy logic model using a database (Table S1)

which includes three factors (year, month, and plot) as inputs, and

the four parameters (concentration and frequency of B. edulis and

B. reticulatus) was built.

The ASMOD algorithm was able to divide the models into 1 or

2 submodels for each of the four parameters, selecting in each case

the simplest submodels, which were those that maximized accuracy

and minimized the number of significant factors (up to four inputs

per submodel; see Table S2), reducing the complexity of the model

(Table 1). Specifically, neurofuzzy logic was able to build two robust

submodels that predicted successfully (percentage Train Set R2 >

70%) and accurately (F ratio > f critical) with no significant

differences between the predicted and the experimental values, the

concentrations and frequency of B. edulis. The interaction of year

and month was the most significant critical factor for the mycelium

concentration of B. edulis, while only the year was significant for

frequency (Table 1A).
B

C

D

E

F

A

FIGURE 1

Logarithmic transformation (Log x+1) of the mean of mycelial concentration (A–C) and frequency (D–F) of B. edulis (Be) and B. reticulatus (Br) as a
function of the three abiotic factors studied: year (A, D), month (B, E) and plot (C, F). Bars show standard deviation. Different lowercase letters
represent significant differences between the groups (a = 0.05).
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Contrarily, the submodels built for B. reticulatus showed

extremely low predictability for mycelium concentration (Train

Set R2 = 6.05%) and no accuracy (F ratio< f critical). On the other

hand, the submodel showed a bit lower predictability (68.28%) but a

good accuracy (F ratio > f critical) for the mycelium frequency

(Table 1A), being the plot the most significant factor. Despite this

result suggests an important contribution of the three factors

studied on this specie, it should be not taking into account due to

model low robustness, predictability, and accuracy.

The rules delivered by neurofuzzy logic submodels facilitate the

interpretation of the results predicted by the model (Table 2). The

rules describe how the critical factors affect each output. Thus,

the highest concentration of B. edulis mycelium was obtained in

November 2020 and the lowest in September 2018 (rules 6 and 1,

respectively; Table 2). The membership (MD) value (0.61) means

that the concentration of the mycelium achieved under the climatic

and soil conditions of November 2020 falls more into the High

(0.61) than in the Low (1.00-0.61 = 0.39) range of concentrations

obtained in this study data. However, if the climatic conditions were

those found in September 2018 (rule 1; Table 2), the concentration

of mycelium predicted will be always included in the low (MD 1.00)

range of concentrations determined. Almost the same results were

obtained for the rest of the months of 2018 (rules 2-3; Table 2) since

low concentration was predicted by the model with an MD of 0.99.

This interaction between year and month suggests that climate

factors, rather than soil properties, were the cause of this effect.

The frequency of B. edulis mycelium (rules 7-8; Table 2) also

indicated that the factor year was essential, being higher in 2020,

and predicted that under those climatic and soil conditions will be

always high (MD 1.00).
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Regarding B. reticulatus, the models built for mycelium

frequency may be no reliable (predictability a bit lower than 70%,

Table 1A), but accurate, suggesting that if experimental orchards

were constituted by 40-years-old trees (rule 13; Table 2), and if the

climatic conditions were those found in November (rule 16;

Table 2), these conditions facilitate the frequency of this

mycelium with a membership of 1.00 and 0.65, respectively. In

this case, no interaction between both factors was detected, meaning

their effect was independent of each other.

All those results suggest that some climatic and soil

characteristics conditions together with the age of the trees (plot

factor), may favor the mycelium concentration and frequency,

however, no information was obtained regarding what climatic

element and soil properties were responsible for those effects. For

this reason, to better characterize the factors “year” and “month”

those factors were substituted by adding 24 climatic elements,

whereas for the factor “plot” it was by 20 soil physical and

chemical properties (Table S1).

Again, the ASMOD algorithm was able to divide the model built

by neurofuzzy logic into only 1 or 2 submodels for each of the four

parameters, to select the simplest ones and to minimize the number

of significant factors, reducing the complexity of the model, but

maximizing its accuracy (Table 1B). With this new database,

neurofuzzy logic successfully predicted all parameters (Train Set

R2 > 70%) with precision and accuracy (f critical> F ratio) for B.

edulis and B. reticulatus (Table 1B).

Two submodels were delivered for the concentration of B.

edulis: submodel 1 pointed out that the interaction between one

climatic parameter related to water balance (WE-1) and one soil

chemical characteristic (CEC) play the most key role in the
TABLE 1 Neurofuzzy logic model quality parameters Train Set R2 and ANOVA (f-ratio, degrees of freedom and F -critical) and inputs causing a
significant effect on each output: concentration (C) and frequency (F) of B. edulis (Be) and B. reticulatus (Br).

A

Outputs Submodel Train Set R2 (%) f-ratio df1 df2 f-critical (a = 0.01) Critical factors

CBe 1 73.82 5.17 6 17 4.102 Year × Month

FBe 1 97.60 305.57 2 17 6.112 Year

CBr 1 6.05 0.48 2 17 6.112 Year

FBr 1
68.28 6.99 4 17 4.669

Plot

2 Month

B

Outputs Submodel Train Set R2 (%) f-ratio df1 df2 f-critical (a = 0.01) Critical factors

CBe 1
93.61 35.13 5 17 4.336

WE-1 × CEC

2 C

FBe 1 97.18 111.80 4 17 4.669 CEC x Macroag

CBr 1 85.52 10.83 6 17 4.102 FCx WD-1-2

FBr 1
92.50 8.64 10 17 3.593

P-ETP-1-2 x Pt

2 Macroag
Inputs with the strongest effect on each parameter are in bold. A: Model I uses year, month, and plot as inputs. B: Model II uses soil characteristics and climate elements as inputs.
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mycelium concentration, followed by (submodel 2) another soil

chemical characteristic (C%) (Table 1B). For the mycelium

frequency of B. edulis, the most crucial factors were the

interaction between soil CEC and one physical factor (Macroag).

For B. reticulatus, only one submodel was delivered by

neurofuzzy logic, pointing out that the interaction between one

soil physical character (FC) and one climate factor (WD-1-2) was

essential to increase the mycelium concentration. On the other

hand, for B. reticulatus mycelium frequency two submodels were

released: the first highlighted the interaction between one climate

element (P-PET-1-2) and soil porosity (Pt), whereas the second

showed the impact of the soil macro-aggregates (Table 1B).

The rules from the neurofuzzy logic model also facilitate the

interpretation of the predicted results (Table 3).

The highest concentration of B. edulis mycelium was obtained

when a high amount of water excess one month before the sampling

(WE-1) interacts with low CEC in the soil (rule 2; Table 3), as can be

observed in Figure 2A. The membership (MD) value (1.00) means

that the concentration achieved under those climatic and soil

conditions always will fall into the highest values obtained in this

study. Secondly, the submodel 2 (Table 1B) pinpointed that high

concentrations of carbon in the soil (C) also favor the amount of

mycelium concentration found (rule 6; Table 3).

The interaction between high water deficit two months before

the sampling (WD-1-2) and high field capacity (FC) caused the

strongest effect on the mycelium concentration of B. reticulatus

(rule 16; Table 3 and Figure 2C).

As described previously (Table 1B), neurofuzzy logic was able to

build highly predictive and accurate models for the frequency of
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both Boletus species, in Model II in contrast to Model I. The rules

derived for B. edulis frequency indicated that if the amount of cation

exchange capacity (CEC) was high (rules 9-10; Table 3),

independently of the macro-aggregates values, then the frequency

was always high, as clearly can be visualized in Figure 1B.

Finally, the neurofuzzy logic rules revealed that most of the

combinations of soil porosity (Pt) and accumulation of

evapotranspiration during the two months previous to the

sampling (P-PET-1-2), caused a positive effect on the frequency

of B. reticulatus (rules 17-25; Table 3), although the strongest

negative effect was obtained with low porosity and High P-PET-

1-2 (rule 18; Table 3), as can be observed in Figure 2D. Finally, if soil

presents a high percentage of macro-aggregates then a low

frequency of mycelium was achieved (rule 27; Table 3).
Discussion

Currently, the knowledge on the factors related to mycelium

development of ectomycorrhizal fungi highlights the importance of

both biotic and abiotic factors, such as soil microbiota (4, 32), climate

elements (29, 31), seasons (29, 31, 55), and forest management (30,

31). This investigation area, however, is much less prominent in

comparison with the study of the factors promoting sporocarp

fruiting of ectomycorrhizal macrofungi (21, 26, 28, 34–36, 56, 57

58, 59), probably because wild edible fungi have a great social,

economic, and ecological value, being not only a source of food,

income, and jobs but also an important reason to maintain forest

health (35).
TABLE 2 Rules selection obtained by neurofuzzy logic for Model I.

Rules Year Month Plot CBe FBe CBr FBr MD

1

IF

2018 Sep

THEN

Low 1.00

2 2018 Oct Low 0.99

3 2018 Nov Low 0.99

4 2020 Sep Low 0.85

5 2020 Oct Low 0.75

6 2020 Nov High 0.61

7
IF

2018
THEN

Low 0.85

8 2020 High 1.00

9
IF

2018 THEN Low 0.89

10 2020 Low 1.00

11

IF

3-years

THEN

Low 0.96

12 10-years Low 0.74

13 40-years High 1.00

14 Sep Low 0.74

15 Oct Low 0.52

16 Nov High 0.65
frontier
Bold letters indicate input/s with the strongest effect on Low and High values for each output: concentration (C) and frequency (F) of B. edulis (Be) and B. reticulatus (Br). MD, membership
degree.
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It has been also established that soil and climate parameters

only do not fully explain fungal dynamics being silvicultural

management (31), stand structure, and local site characteristics

(28, 60), stand basal area (28), and plant age class (61) of great

importance. However, despite these important advances, at present,

the specific factors responsible for B. edulis complex mycelial

development and sporocarp yield are still unclear.

Regarding the soil characteristics that may favor the presence

and development of B. edulis mycelium, in 1998 Hall et al. reported

that this species can be found in a wide range of habitats and

edaphic conditions. More recently, Alonso Ponce et al. (26)

provided models to describe the realized niche of B. edulis in

Cistus ladanifer habitat, assessing that the appropriated soil

pattern had low pH, sandy loam texture, high C/N content, low
Frontiers in Soil Science 09
nitrogen, and poor P, K, Mg, and Ca content. Also, Martıńez-Peña

et al. (28) through the study of B. edulis yield in Pinus sylvestris

stands, confirmed the importance of high C/N content, low mineral

nutrient, and low pH, and highlighted the positive correlation with

sand percentage and water retention capacity. Similar conclusions

were shown by Pereira et al. (62), who reported that high contents

of organic matter and medium-low concentrations of macro and

micronutrients were key factors for Boletus sp. development.

Our results of soil characterization of chestnut orchards

generally agree with these works and confirm, therefore, that the

optimal edaphic environment for the development of Boletus

species has a sandy loam texture, a clear predominance of macro-

aggregates, low mean diameter aggregates, and low bulk density,

which caused high porosity and low-mid field capacity.
TABLE 3 Rules selection obtained by neurofuzzy logic for Model II.

Rules Macroag Pt FC C CEC P-ETP-1-2 WD-1-2 WE-1 CBe FBe CBr FBr MD

1

IF

Low Low

THEN

Low 1.00

2 Low High High 1.00

3 High Low Low 1.00

4 High High Low 0.89

5 Low Low 0.61

6 High High 0.75

7

IF

Low Low

THEN

Low 0.84

8 High Low Low 1.00

9 Low High High 1.00

10 High High High 1.00

11

IF

Low Low

THEN

Low 1.00

12 High Low Low 0.97

13 Low Mid Low 1.00

14 High Mid Low 1.00

15 Low High Low 1.00

16 High High High 0.86

17

IF

Low Low

THEN

High 0.93

18 Low Mid High 1.00

19 Low High Low 1.00

20 Mid Low High 0.72

21 Mid Mid Low 0.72

22 Mid High High 1.00

23 High Low High 1.00

24 High Mid High 1.00

25 High High High 1.00

26 Low High 0.53

27 High Low 1.00
frontier
Macroag: Macroaggregates; Pt: Total porosity; FC: Field capacity; C: Total carbon; CEC: Cation exchange capacity; P-PET-1-2: The accumulated value of two previous months of the difference
between precipitation and potential evapotranspiration; WD-1-2: The accumulated value of two previous months of water deficit; WE-1: Water excess of sampling previous month.
Bold letters indicate inputs with the strongest effect on low and high values for each output: concentration (C) and frequency (F) of B. edulis (Be) and B. reticulatus (Br). MD, membership degree.
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Furthermore, the experimental soils were strongly acids (pH 4.7-

5.0), with high carbon content, weak CEC, and low content in

essential cations (Ca2+, Mg 2+, K+, Na +, and Al 3+) and P available.

The soil P content did not change significantly between the

sampling orchards and neither statistical tests nor artificial

intelligence did find a significant impact on boletes mycelium,

thus, in the present study the influence of this important nutrient

on mycelium development was not detected.

Significant differences among the experimental orchards,

regarding soil properties have been found. This result was not

surprising because it is well-known that plant age may influence

plant-soil interactions through significant changes in soil

microbiota, which in turn shapes soil performance (63–65). The

younger plots (3-year-old) presented higher bulk density, macro-

aggregates, mean diameter aggregates, cation exchange capacity,

and base saturation, in comparison with the 40-years-old plots,

which, in contrast, have a higher content of C, N, and C/N. This

could be also due to the different management of the experimental

chestnut orchards. Mature orchards were conserved to obtain new

plant material for grafting, consequently, the accumulation and

decomposition of leaf litter increased soil mineral nutrients such as

C, N, and C/N ratio (66, 67). On the other hand, 3-years-old

orchards were destinated for commercialization and have been

irrigated and fertilized with macronutrients. This different

management also promoted higher soil bacterial and fungal

diversity in younger orchards compared to the mature (40-years-

old) ones (4).

B. edulis and B. reticulatus are highly valued ectomycorrhizal

fungi with a wide distribution in the world, particularly in acidic

soils in the warmer parts of temperate zones (68). The study area

(Galicia, NW Spain) is characterized by acidic soils (pH 5.0) and a

warm climate, with abundant rainfall (around 1,700 mm) and mild

temperatures (around 15°C) over the year, being adequate for the

development of these two boletes. For B. edulis, both precipitation

and temperature have been positively correlated with sporocarp
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development (28). On the other hand, a positive correlation of B.

edulismycelia with precipitation, but a negative correlation with the

mean temperature of the previous month have been also reported

(29). In a more recent study, in which B. edulis mycelium biomass

was determined, no correlation with mean monthly temperature

was found, although a negative correlation with mean monthly

precipitation was detected (31). In agreement with this last study,

we did not find any impact of the air temperature on B. edulis and B.

reticulatus mycelium development, whereas climate factors relative

to precipitations such as field capacity (FC), the difference between

precipitation and potential evapotranspiration (P-PET), water

deficit (WD) and water excess (WE), had a significant effect. In

the present study, in 2020 summer precipitations (from July to

September) were much higher than in 2018 (195 mm and 51 mm,

respectively), triggering a significant increase in soil water

availability (FC), which had a positive effect on B. reticulatus

mycelium concentration. However, for B. edulis this abiotic factor

did not have a significant impact, suggesting for the first time

different climatic needs for the mycelium development of these

fungal species.

Boletus edulis is considered a late-stage ectomycorrhizal fungus

requiring elevated levels of carbon and fruiting in mature stands

(28, 30). Considering that mature agroforestry habitats commonly

have a higher soil organic C due to the abundance of organic matter

input in the form of litterfall and fine roots from trees (69), it was

expected a greater mycelium development in mature orchards.

Accordingly with this hypothesis, we found that B. edulis

mycelium concentration was positively affected by high C% in the

soil, however, data analyses showed that not only B. edulis

mycelium concentration equally spread irrespective of plant age,

in agreement with previous research (4), but also B. reticulatus

mycelium concentration followed the same pattern. Nonetheless,

the highest frequency of B. reticulatus mycelium was found in 40-

years-old orchards, suggesting that the presence of this specie was

favored by some factors specific to this plant age, possibly related to
B

C D

A

FIGURE 2

Tridimensional plot predicted by the neurofuzzy logic model for each parameter: mycelial concentration (A, C) and frequency (B, D) of B. edulis (Be)
and reticulatus (Br) respectively, as a function of key soil properties and climate elements.
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a different soil microbiota assemblage in this age class in

comparison with younger orchards (4).

By using the ANOVA, no significant differences were found

between the sampling months, neither for mycelium concentrations

nor for the frequency of both boletes. However, neurofuzzy logic

has autonomous learning capabilities, being able to simultaneously

identify nonlinear and hidden relationships between the studied

factors (70), facilitating decision-making by helping researchers to

understand the cause-effect relationships between those factors (11,

12, 71). Two neurofuzzy models were built to decipher the role of

soil properties and local climate elements on the frequency and

concentration of B. edulis and B. reticulatus mycelium. In the first,

year, month, and plot were used as inputs, and in the second, soil

and climate characteristics were disaggregated into 20 soil physical

and chemical properties and 24 climate elements, simultaneously

modeling 44 inputs and 4 outputs.

Advantageously, neurofuzzy unveils some interactions not

detected by statistics. Firstly, the variability detected for B. edulis

mycelium concentration was caused by the interaction of year and

month, being the highest concentration found in November 2020.

This output was also corroborated by the ANOVA, which detected

the highest mycelium concentration in 2020. Moreover, neurofuzzy

predicted low B. reticulatus mycelium concentration in both years,

suggesting that despite both fungal species being exposed to the

same climate conditions during the autumn of both years in the

same chestnut orchards, they have different requirements for

mycelium development. Also, neurofuzzy was able to unveil that

the highest B. reticulatus mycelium frequency was caused by the

interaction between the soil conditions of mature (40-years-old)

orchards combined with the climate factors found in November.

These new results suggested hidden relationships between soil

characteristics and climate elements.

Soil requirements of B. edulis complex extra-radical mycelium

and sporocarps development are still poorly understood. Martinez-

Peña et al. (28) assessed that in general soil characteristics were not

significant predictors of the annual yield of ectomycorrhizal

sporocarps such as Lactarius and B. edulis in Pinus sylvestris

stands. However, these authors highlighted the existence of

simple negative relationships between silt content and soil pH

with B. edulis yield, whereas sand content and water field capacity

were positively correlated with the development of the sporocarps.

In the present study, artificial intelligence found that the

existence of a high CEC, and the predominance of macro-

aggregates, both characters typical of fertilized 3-years-old

orchards, determined a high mycelium frequency of B. edulis. On

the other hand, low CEC associated with high water excess one

month before the sampling date (WE-1) triggered a high mycelium

concentration, whereas the opposite was found if WE-1 was low.

The response of B. edulis mycelium to soil CEC is difficult to

interpret because it has been shown that the mycelium frequency

and concentration of this species did not depend on the plot.

Seasonal fluctuations of Boletus mycelia concentration during

the fructification period, from October to December, can be due to
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the change in the allocation of resources in the mycelium to produce

sporocarps (29). We detected a significant increase in B. edulis

mycelium concentration in 2020, which could be explained by the

increase in monthly water excess found in November of both 2018

and 2020. Rainfalls in August and September 2020 were higher

(149.9 mm) than in 2018 (16.6 mm), although November 2020 was

much drier (106.0 mm) than in 2018 (310.5 mm). In addition, the

recovery of the soil water reserve in 2020 was faster and earlier than

in 2018, thanks to rainfall from August onwards. However, it has

been also shown that severe precipitations provoke a lack of oxygen

caused by temporary flooding which could severely affect the

mycorrhizal formation and mycelium development of B. edulis

(31). These results suggest that for B. edulis mycelium development

soil water availability represents a critical factor, which agrees with

the finding of Parladé et al. (31).

This is the first time that the ecology of B. reticulatus regarding

the interaction with soil parameters and climate factors has been

investigated. In agreement with our hypothesis, the mycelium

frequency of B. reticulatus did increase in 40-year-old orchards,

although mycelium concentration was not affected by year, month,

or sampling plot. It is known that ectomycorrhizal fungi preferred

soil with high percentages of organic matter, low bulk density, and

high porosity because it is crucial for the increased water-holding

capacity and nutrient availability (72). The C, N, and C/N ratio were

significantly higher in 40-year-old orchards, accompanied by a

lower bulk density, a better equilibrium between macro- and

micro-aggregates, and a higher water retention capacity, which

may explain the significant increase of B. reticulatus mycelium

frequency in these plots. The interaction between a high water

deficit one month before the sampling (WD-1-2) and a high soil

moisture (FC) induced a high mycelium concentration, suggesting

that under dry weather and water stress conditions, B. reticulatus

mycelium can develop effectively only if the soil has high water

retention capacity. Other soil characteristics such as a high soil

porosity combined with a high P-PET two months before the

sampling, positively affected mycelium frequency. Soil porosity

seems to be an important factor because low values of this

parameter triggered a negative effect on mycelium frequency. The

study of the impact of soil physical conditions on fungal

colonization is important to understand how the fungi explore

the pore volume within soil being clustering, connectivity, and

tortuosity of the pore space of great importance (73). An increase in

bulk density and a reduction in aggregate size increased the fraction

of micropores in the air-filled pore volume, thus resulting in

smaller, more slowly expanding fungal colonies and also reducing

soil volume from which a nutrient source can be colonized (73).

Finally, while the ability to explain complex interactions may be

limited, the advantages of artificial neural networks compared to

traditional statistical analysis in uncovering concealed patterns and

interactions within complex biological processes (10, 11), have once

again been demonstrated. Here, the application of neural networks

has successfully unveiled the crucial soil properties and climate factors

influencing soil mycelia development, never described previously.
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Conclusions

Climate-soil interactions, through the water balance and water

availability in the soil, together with certain soil chemical (C % and

CEC) and physical (macro-aggregates, porosity) properties, have

been the main determinants of the mycelial frequency and

concentration of two species of the Boletus edulis complex.

Thanks to the use of artificial intelligence, this study allows for

the first time to appreciate the different abiotic requirements of B.

edulis and B. reticulatus under the same soil conditions and climate

parameters. Both species have found more favorable conditions in

2020 and in November, probably because of the higher

precipitations that characterized this year at the end of the

summer. However, they completely differed regarding soil

requirements, being B. reticulatus mycelium more frequently

found in mature 40-years-old orchards, and more dependent on

high soil water availability and soil porosity than B. edulis. This last

species was equally spread in all the orchards, especially in

November, and was significantly affected by soil CEC, C content,

and macro-aggregates.
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9. Gago J, Martıńez-Núñez L, Landıń M, Gallego PP. Artificial neural networks as an
alternative to the traditional statistical methodology in plant research. J Plant Physiol
(2010) 167:23–7. doi: 10.1016/j.jplph.2009.07.007

10. Landin M, Rowe RC, York P. Advantages of neurofuzzy logic against
conventional experimental design and statistical analysis in studying and developing
direct compression formulations. Eur J Pharm Sci (2009) 38:325–31. doi: 10.1016/
j.ejps.2009.08.004
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28. Martıńez-Penãa F, De-Miguel S, Pukkala T, Bonet JA, Ortega-Martıńez P, Aldea
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31. Parladé J, Martıńez-Peña F, Pera J. Effects of forest management and climatic
variables on the mycelium dynamics and sporocarp production of the ectomycorrhizal
fungus Boletus edulis . For Ecol Manage (2017) 390:73–9. doi: 10.1016/
j.foreco.2017.01.025

32. Mediavilla O, Geml J, Olaizola J, Oria-de-Rueda JA, Baldrian P, Martıń-Pinto P.
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38. Carballas T, Rodrıǵuez-Rastrero M, Artieda O, Gumuzzio J, Dıáz-Raviña M,
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