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Neuronal diversity can improve 
machine learning for physics 
and beyond
Anshul Choudhary 1,2*, Anil Radhakrishnan 1, John F. Lindner 1,3*, Sudeshna Sinha  4 & 
William L. Ditto 1*

Diversity conveys advantages in nature, yet homogeneous neurons typically comprise the layers 
of artificial neural networks. Here we construct neural networks from neurons that learn their own 
activation functions, quickly diversify, and subsequently outperform their homogeneous counterparts 
on image classification and nonlinear regression tasks. Sub-networks instantiate the neurons, which 
meta-learn especially efficient sets of nonlinear responses. Examples include conventional neural 
networks classifying digits and forecasting a van der Pol oscillator and physics-informed Hamiltonian 
neural networks learning Hénon–Heiles stellar orbits and the swing of a video recorded pendulum 
clock. Such learned diversity provides examples of dynamical systems selecting diversity over 
uniformity and elucidates the role of diversity in natural and artificial systems.

Diversity is a hallmark of many complex systems in physics1, 2 and in physics beyond physics3, including micro-
scopic cell populations4, marine and terrestrial ecosystems5, 6, financial markets7, and social networks8–10. In 
particular, mammalian brains contain billions of neurons with diverse cell types whose complex dynamical 
patterns are believed responsible for the rich range of cognition, affect, and behavior11–14. But despite the wide-
spread appreciation of diversity in neuroscience, researchers have just begun to explore the role of diversity and 
adaptability in artificial neural networks15–17.

Inspired by nature, artificial neural networks are nonlinear systems that can be trained to learn, classify, 
and predict. Conventional artificial neural networks contain identical neurons in each network layer, even if 
the neurons vary from layer to layer. But uniform neuronal activation functions can reduce expressiveness and 
adaptability, limiting the neural network’s capacity to capture the rich diversity of computation and interaction 
observed in nature. Diversifying the activation functions can overcome such limitations, enabling the networks 
to be more expressive and better represent the complexity of natural systems. In this article, we propose a novel 
way to diversify a neural network by learning the neuron types within each layer. We flexibly realize the different 
neurons using sub-networks, or networks-within-the-network, which we train along with the overarching net-
work. This meta-learning18 generates potent neuron activation function sets, suggestive of orthogonal spanning 
functions, that increase the expressiveness and accuracy of the network.

After discussing related work and our motivation, we describe how meta-learning diverse activation func-
tions can generate better neural networks, as measured by difficult classification and nonlinear regression tasks. 
We show that learned diversity can enhance conventional neural networks as well as physics-informed neural 
networks, so the latter are doubly enhanced. To provide further insight into the advantages of diverse neuronal 
activations, we employ neuron participation ratios as a metric to elucidate the superior potential of these lay-
ers compared to their homogeneous counterparts. Additionally, we study the geometric nature of optimizing 
minima by examining the spectra of their Hessian matrices, shedding light on the underlying loss landscape 
of diversified neural networks. Finally, by examining the interplay between stochastic processes and diversi-
fied neural networks, we gain valuable insights about how the synergy between the inherent randomness of 
the optimization procedure and learned diversity results in more generalizable models. We end by discussing 
future work and the potential for learned diversity to enhance artificial neural networks, deep learning, and our 
appreciation of diversity itself.
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Related work
Researchers have recently begun to relax the rigid rules that have guided the development and use of artificial 
neural networks. Manessi and Rozza19 investigate learning combinations of known neuronal activation func-
tions, and Agostinelli et al.20 learn piecewise linear activation functions for each neuron. Apicella et al.21 survey 
trainable activation functions. Lau and Lim22 review adaptive activation function in deep neural networks. Jagtap, 
Kawaguchi, and Karniadakis23 and Haoxiang and Smys24 include scalable hyper-parameters in their activation 
functions to improve their networks, while Qian et al.25 linearly, nonlinearly, and hierarchically combine basic 
activation functions to optimize performance.

More radically, Gjorgjieva, Drion, and Marder13 investigate the computational implications of biophysical 
diversity and multiple timescales in neurons and synapses for circuit performance. Doty et al.15 show that hand-
crafted heterogeneous cell types can improve the performance of deep neural networks. Xie, Liang, and Song26 
demonstrate that diversity in synaptic weights lead to better generalization in neural networks. Mariet and Sra27 
sample a diverse subset of neurons and merge them with the remaining ones via a re-weighting procedure. 
Siouda et al.28 use genetic algorithms to optimize the number, forms, and types of hidden neurons. Hospedales 
et al.18 survey the current meta-learning landscape. Lin, Chen, and Yan29 suggest nesting neural networks inside 
neural networks.

Decisively, Beniaguev, Segev, and London30 write, “We call for the replacement of the deep network tech-
nology to make it closer to how the brain works by replacing each simple unit in the deep network today with 
a unit that represents a neuron, which is already – on its own – deep”, which is what we achieve here with our 
neuronal sub-networks that meta-learn sets of diverse activation functions that can outperform the correspond-
ing homogeneous neural networks.

Motivation
Inspired by natural brains, feed-forward neural networks are nested nonlinear functions of linear combinations 
of activities

where the activation σ is typically a saturating or rectifying function, and training strengthens or weakens the 
weights and biases W and b to minimize an objective function, often called a “cost” or “loss” (from financial 
optimization).

Motivated by the well-studied mammalian visual cortex, varying neuronal activation functions by layer is 
common. However, within each layer, the activations are typically identical, as in Fig. 1 (left). Neural networks 
are universal function approximators31, 32 and are often used to model hypersurfaces, either for classification or 
nonlinear regression. Varying the activations within a layer, as in Fig. 1 (middle), should therefore increase the 
expressiveness of the network by providing diverse spanning basis functions. Furthermore, replacing the activa-
tions by sub-networks, as in Fig. 1 (right), and training them for optimal results should increase the expressive-
ness even further. The training of the activation sub-networks can be on a different schedule than the training of 
the network, and the activations so obtained can be extracted from the sub-networks as interpolated functions 
and efficiently reused in other networks addressing different problems.

Algorithm
To create a learned diversity neural network (LDNN), incorporate sub-networks initialized to simple activations 
(like identity, ramp, or sigmoid functions). Train the network with many input-output pairs. Quantify the dif-
ference between the actual and expected outputs with a loss function L . In an inner loop, compute the gradient 
of the loss function with respect to the network’s weights and biases, and lower the loss by shifting its weights 

(1)a′
vec=σ(Wa+ b),

Figure 1.   Progression from conventional artificial neural network to diverse neural network to learned diverse 
neural network. Line thicknesses represent weights W, circle thicknesses represent biases b, and sketches inside 
circles represent activation functions σ.
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and biases down this gradient. In an outer loop, compute the gradient of the loss function with respect to the 
sub-networks’ weights and biases33, and further lower the loss by shifting the sub-networks’ weights and biases 
down this gradient, thereby evolving new activations. Repeat to minimize loss.

In the inner loop, the randomly shuffled inputs are the stochastic driver that buffets the network weights 
and biases θ as they adjust to lower the loss. In the outer loop, the activation sub-network weights and biases 
θs open extra dimensions or degrees of freedom to further lower the loss. Figure 2 provides an overview, and 
Algorithm 1 provides details. 

Results
MNIST‑1D.  Here we implement34 learned diversity neural networks with one hidden layer of 100 neurons 
and a cross-entropy loss function to classify the MNIST-1D data set, a minimalist variation of the classic Modi-
fied National Institute of Standard and Technology digits35, 36. Each neuron type in the hidden layer is further 
instantiated by a feed-forward neural network of 50 hidden units evolved from a base sinusoid. We obtain simi-
lar results for different numbers of layers, different number of neurons per layer, and different base functions.

Figure 3 summarizes meta-learning the activation functions of neurons in the hidden layer subject to the 
constraint of having two functions distributed equally among the neuronal population. Figure 3 (left) shows 
the construction of typical one-dimensional digits. Figure 3 (center) show the evolution of the two activation 
functions, with time encoded as rainbow colors from violet to red. Figure 3 (right) shows box plots demonstrat-
ing validation accuracy for 50 fully connected neural networks composed of entirely N1 type neurons (yellow), 

Figure 2.   Schematic stochastic gradient descent meta-learning nested loops. Neural-network weights and 
biases θ adjust to lower losses L (θ , θs) , during an inner loop, while periodically the sub-network weights θs open 
extra dimensions and themselves adjust to allow even lower losses, during an outer loop. Rainbow colors code 
time t.
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entirely N2 type neurons (orange), and mixed type with N1 and N2 distributed equally among hidden layer (red). 
With the same training, the mixed network outperforms either pure network on average. These results are robust 
with respect to network size, as summarized by Fig. 4.

van der Pol.  We obtain similar results for other tasks, such as nonlinear regression of the van der Pol 
oscillator37, which includes a linear restoring force and a nonlinear viscosity modeled by the differential equation

where the overdots indicate time derivatives. The van der Pol oscillator can model vacuum tubes and heartbeats 
and was generalized by FitzHugh38 and Nagumo39 to model spiky neurons. For viscosity parameter µ = 2.7 , we 

(2)ẍ − µ(1− x2)ẋ + x = 0,
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Figure 3.   Meta-learning 2 activations for MNIST-1D classification. Left: Example MNIST-1D digit 
construction, rotated 90◦ to emphasize the one-dimensionality of the digits. Center: Activation functions σn(a) 
evolve from a base sinusoid, with violet-to-red rainbow colors encoding time t. Right: Box and whisker plots 
summarize distribution (including median, quartiles, and extent) of validation accuracy A for a fully connected 
neural networks of 100 ReLU neurons (blue), type-1 neurons (yellow), type-2 neurons (orange), and a mix of 
type 1 and type 2 neurons (red). The mix of 2 neuron types outperforms any single neuron type on average.

Figure 4.   Neural network MNIST-1D classification accuracy as a function of network size. Box plots 
summarize accuracy distribution (including median, quartiles, extent, and outliers) for 100 initializations. 
Learning rate is optimized to avoid over-fitting but is the same for all network sizes. Activation functions 
evolved from zero (the null function) with similar results evolved from sine. Mixed networks of 2 neuron types 
outperform pure networks on average for all sizes and outperform both single learned activation and traditional 
activations.
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trained neural networks to forecast the phase space orbit of the oscillator, as summarized by Fig. 5. On average the 
learned diversity neural network outperforms either of its pure components as well as a homogeneous network 
of neurons with sinusoidal activations.

Hénon–Heiles.  The paradigmatic Hénon–Heiles Hamiltonian40

can model a star moving in a galaxy of other stars according to the Hamiltonian flow

where q = {x, y} and p = {px , py} . Bounded motion is possible in a triangular region of position space. As orbital 
energy increases, circular symmetry degenerates to triangular symmetry, and integrable motion complexifies 
to chaotic motion.

Consequently, for this example, we meta-learn activation functions for both a conventional and a Hamil-
tonian neural network41–46. Unlike conventional neural networks, which learn dynamical systems by intaking 
position and velocity and outputting their derivatives, a Hamiltonian neural network learns a dynamical system 
by intaking position and momentum and outputting a single energy-like variable, which it differentiates accord-
ing to Hamilton’s recipe. Rather than learning the derivatives, it learns the Hamiltonian function, which is the 
generator of derivatives. This more powerful and efficient strategy is an excellent example of physics-informed 
machine learning.

More specifically, during training a conventional neural network (NN) maps positions and velocities {qt , q̇t} 
to approximations of their time derivatives, and adjusts its internal parameters to minimize the mean-square-
error or loss

The trained network can extrapolate a given initial condition via the Euler update {q, q̇} ← {q, q̇} + {q̇, q̈}dt . By 
contrast, during training a Hamiltonian neural network (HNN) maps position and momenta {qt , pt} to the scalar 
Hamiltonian function H, uses reverse-mode automatic differentiation to find the Hamiltonian’s gradients, uses 
the gradients to approximate the position and momentum change rates, and adjusts its internal parameters to 
minimize the loss

and enforce Hamilton’s motion equations. The trained network can extrapolate a given initial condition via the 
Euler update {q, p} ← {q, p} + {q̇, ṗ}dt.
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Figure 5.   Meta-learning 2 activations for nonlinear regressing or forecasting the van der Pol oscillator. Left: 
Typical orbit is attracted to a limit cycle, where rainbow colors code time t. Center: Activation functions σn(a) 
evolve from a base sinusoid. Right: Box plots summarize distribution of neural network mean-square-error 
validation loss L , starting from 50 random initializations of weights and biases, for a fully connected neural 
networks of sine neurons (blue), type-1 neurons (yellow), type-2 neurons (orange), and a mix of type 1 and type 
2 neurons (red). The mix of 2 neuron types outperforms any single neuron type on average.
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As summarized by Fig. 6, the mix of 2 neuron types outperforms any single neuron type on average for both 
conventional and Hamiltonian neural networks, but the Hamiltonian neural network is much better, and its 
mixed version is doubly enhanced. (Spread in Hamiltonian validation losses is much smaller than the spread 
in the conventional validation losses, possibly because enforcing symplectic structure on the loss manifold 
for the Hamiltonian neural network is a regularization that facilitates more consistent optimization, while the 
unbounded loss of the conventional neural network suffers greater variance due to the wide range of stable and 
chaotic trajectories.)

Pendulum clock from video.  As a final real-world example, we video recorded a wall-hanging pendulum 
clock, tracked the ends of its compound pendulum, and extracted its angles and angular velocities at equally 
spaced times46. Engineered to be nearly Hamiltonian, the pendulum’s Graham escapement periodically inter-
rupts the fall of its weight as gravity compensates dissipation. We trained Hamiltonian neural networks to fore-
cast its phase space orbit, as summarized by Fig. 7. Once again, meta-learning proves advantageous.

Analysis
To understand how mixed activation functions outperform homogeneous neuronal populations, we estimate the 
change in the dimensionality of the network activations. Start by constructing a neuronal activity data matrix X 
with N rows corresponding to N neurons in the hidden layer and M columns representing inputs. Each matrix 
element Xij represents the activity of the ith neuron at the jth input. Center the activity so �X� = 0 . Construct the 
neural co-variance matrix C = M−1

XX
T , which indicates how pairs of neurons vary with respect to each other, 

and compute the participation ratio

where �n are the co-variance matrix eigenvalues. If all the variance is in one dimension, say �n = δn1 , then R = 1 ; 
if the variance is evenly distributed across all dimensions, so �n = �1 , then R = N . Typically, 1 < R < N , and 
R corresponds to the number of dimensions needed to explain most of the variance47. The normalized partici-
pation ratio r = R /N.

Figure 8 plots the joint probability densities ρ(A, r) for multiple realizations of the Fig. 3 MNIST-1D learned 
diversity neural network and homogeneous competitors. The mix of two neurons types has the best mean accu-
racy A and normalized participation ratio r, suggesting that more of its neurons are participating when the mix 
achieves the best MNIST-1D classification. In contrast, homogeneous networks of neurons with popular activa-
tion functions have lower accuracy and participation ratios reflecting their poorer effectiveness.

To understand the impact of learned diversity on the geometric nature of loss-function minima, we compute 
the spectrum of the Hessian matrix H = ∇2

L , which captures the curvature of the loss function. Since H is a 
symmetric matrix, all its eigenvalues are real. A purely convex loss function would have a positive semi-definite 
Hessian everywhere. However, in practice, the loss function is almost always non-convex (with multiple local 
minima) due to the presence of hidden neuron permutation symmetries48. Therefore, understanding how diver-
sity helps training find deeper minima is crucial.

Previous work suggests that flatter minima generalizes better to the unseen data49, 50. For the Fig. 3 neural 
network meta-learning two neuronal activation functions, we find that once training has converged, the result-
ing minima from diverse neurons is flatter than from homogeneous ones, as measured by both the trace TrH of 
the Hessian and the fraction f of its eigenvalues near zero: TrH1 > TrH2 > TrH12 and f1 < f2 < f12 . If steep 
minima are harder for gradient descent to locate, then the flatter minima engineered and discovered by learned 
diversity neural networks imply enhanced optimization.

Stochastic processes can provide additional insights. Optimizing a neural network by randomly shuffling 
training data is like a noisy descent to a minimum in a potential landscape, as in Fig. 9. The landscape is the 
network’s cost or loss as a function of its weights and biases, and its shape depends on the neuron activation 
functions. The effective dynamics is that of an overdamped particle buffeted by noise sliding on a complicated 
potential with many local minima. The Langevin equation

with noise intensity D = (η/B)L (θ)H(θ∗) describes the evolution of the weights and biases θ = {Wij , bi} in a 
valley with local minimum θ∗ , where η is the learning rate and B is the training batch size51–54. The drift term with 
dt includes minus the gradient of the loss function L , and the Brownian motion noise term with dWt includes 
the learning rate η . The noise aligns with the Hessian near a minimum, and the Eq. 8 Hessian dependence ensures 
that stochastic gradient descent escapes multiple sharp minima via directions corresponding to large Hessian 
eigenvalues and eventually converges to a flatter minimum.

Conclusions
Biomimetic engineering or biomimicry is design inspired by nature. Just as monoculture crops can be fragile, 
while diverse crops can be robust55, heterogeneous neural networks can outperform homogeneous ones. Here, 
we highlight advantages of varying activation functions within each layer and learning the best variation by 
replacing activations by sub-networks.

Conceptually, learned diversity neural networks discover novel sets of activation functions, when most arti-
ficial neural networks use just one of a small number of conventional activations per layer. Practically, mixes of 

(7)R =
(trC)2

trC2
=

(

∑N
n=1 �n

)2

∑N
n=1 �

2
n

,

(8)dθt = −∇L (θt) dt +
√
2D · dWt
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Figure 6.   Meta-learning 2 activations for nonlinear regressing or forecasting Hénon–Heiles orbits. Top: 
Regular and chaotic, low and high-energy Hénon–Heiles orbits, where rainbow colors code time. Bottom 
Left: Conventional and Hamiltonian neural networks learn activation functions from base sinusoids. Bottom 
Right: Box plots summarize distributions of mean-square-error validation losses L , starting from 50 random 
initializations of weights and biases, for fully connected neural networks. Hamiltonian neural networks greatly 
outperform conventional neural networks and heterogeneous neuron types consistently outperform their 
homogeneous components on average.
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learned activations can outperform traditional activations – where even a 1% improvement can be significant 
– and the learned activations can be efficiently reused in diverse neural networks. Additionally, learned diversity 
can even improve already enhanced physics-informed neural networks like Hamiltonian neural networks43, 56. 
Future work includes optimizing learned diversity by adjusting hyperparameters, applying learned diversity to 
a wider range of regression and classification problems, testing the diverse neural networks for robustness57, 
investigating clustering of learned activations, and applying learned diversity to different neural network archi-
tectures, such as recurrent neural networks and reservoir computers58–60.

Learned diversity offers neural networks sets of tailored basis functions, which enhance their expressiveness 
and adaptability and facilitates efficient function approximation. When given the ability to learn their neuronal 
activation functions, neural networks discover heterogeneous arrangements of nonlinear neuronal activations that 
can outperform their homogeneous counterparts with the same training. Our work provides specific examples of 
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Figure 7.   Meta-learning 2 activations for forecasting a real pendulum clock engineered to be almost 
Hamiltonian. Left: Falling weight (not shown) drives a wall-hanging pendulum clock. Center: State space flow 
from video data is nearly elliptical. Right: Box plots summarize distribution of neural network mean-square-
error validation loss L , starting from 50 random initializations of weights and biases, for a fully connected 
neural networks of sine neurons (blue), type-1 neurons (yellow), type-2 neurons (orange), and a mix of type 1 
and type 2 neurons (red). Meta-learning diversity is a winning strategy.
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Figure 8.   Probability densities ρ(A, r) versus accuracy A and normalized participation ratio r = R /N for 
multiple realizations of the Fig. 3 MNIST-1D heterogeneous network and three homogeneous networks with 
popular activation functions hyperbolic tangent, Rectified Linear Unit f (x) = max(0, x) , and sine. Increased 
participation accompanies increased accuracy, with the diverse network maximizing both.
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dynamical systems that spontaneously select diversity over uniformity, and thereby furthers our understanding 
of diversity and its role in strengthening natural and artificial systems.

Methods
We implement our neural networks in the Python programming language using the PyTorch open source 
machine learning library. We also implement them in the Python library JAX61 using the JAX library Equinox62. 
The code for the analysis and the network implementation can be found at our GitHub repository34.

Number of training pairs is of order 104 , and number of training epochs is of order 10. Due to computational 
constraints, the number of inner iterations is much smaller than the number of outer iterations. Indeed, the 
learner-meta-learner structure of the meta-learning algorithm incurs significant computational costs with a time 
complexity of O(NONI |X|) . Current implementation of the algorithm is constrained by the number of inner loops 
within the outer loops since the inner loop is held in memory for the outer loop computation (such as the Algo-
rithm 1 gradients ∇θsLt ) and optimization. In fact, this is one of the fundamental challenges of gradient-based 
meta-learning algorithms that currently limits the horizon of meta-optimization63. However, the inefficiency of 
the algorithm plausibly results from activation meta-learning being under-explored and ripe for improvement.

PyHessian Library is used to compute hessian based statistics without the cost of generating the full hessian 
matrix. The trace of the hessian matrix is computed using Hutchinson’s method exploiting the symmetric nature 
of the matrix64. The Empirical Spectral Density (ESD) of hessian eigenvalues is computed through Stochastic 
Lanczos Quadrature (SLQ)65 within several successive approximation schemes. Details can be found in Yao 
et al.66. At an implementation level, a classifier or forecaster using the learned activation(s) is trained in Pytorch 
and the model is saved. Using this saved model and test data, PyHessian can use PyTorch’s backward graph to 
compute the gradients needed to build the hessian trace and ESD.

The activation function is captured after meta-learning as the output of the learned activation networks on the 
interval [−10, 10] with 100 linearly spaced points. This output is then linearly interpolated between points and 
used as the activation function for the classifer at validation. Quadratic or cubic splines or symbolic regression 
can also be used. We need high order ( > 10 ) polynomials to fit the activation curves accurately so, while possible, 
we do not recommend polynomials as a reliable way to capture the features of the learned activation functions.

Code availability
Our code is available at https://​github.​com/​nonli​neara​rtifi​ciali​ntell​igenc​elab/​diver​sityNN.
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