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Abstract: Carbon nanotubes (CNTs) are the most widely studied class of engineered nanoparticles 

due to carbon’s unique hybridization properties and they are extensively used in several fields 

depending on their morphology, particle size, exposure time, and concentration. These nanoparticles 

are released into the aquatic ecosystems through domestic and industrial wastewater and induce 

adverse effects on the aquatic organisms. The present study evaluated the toxicity effects of CNTs 

nano-particles on crustacean hyperglycemic hormone (CHH) hormone release, hematology factors, 

and anti-oxidative enzymes’ activity of Macrobrachium rosenbergii. This research was conducted in 

five treatments, including 0 (control), 5, 10, 20, and 30 mg/L CNT nanoparticles in triplicate for 28 

days. The experimental units consisted of a 300-l recirculating system, stocked with, 10 prawns. The 

results indicated that M. rosenbergii reproductive performance, anti-oxidant enzyme activities, 

hematology parameters and CHH hormone release, survival rate, and growth performance were 

strongly affected by CNT NMs toxicity. The findings showed that SOD and CAT antioxidant 

enzymes activities have positive responses to the CNTS NMs in the experimental treatments and 

these NMs showed dose-dependent effects on the enzyme's activities. Also, CHH hormone in the 

experimental treatments showed significantly higher than the control treatment. The results of this 

work illustrate that because of the settling behavior of NMs, M. rosenbergii as a freshwater benthic 

decapod crustacean is an appropriate biological model to study NMs toxicity and also a suitable bio-

monitor for NMs contaminations in freshwater aquatic environments. 

  

Introduction 

Nanomaterials (NMs) have been categorized as those 

materials that have structured components with at 

least one dimension less than 100 nm and some of 

them have relatively high surface-to-volume ratios 

which are known as nano-absorbents (Qu et al., 2013). 

These NPs are widely used for various purposes in 

different applications and industries. Carbon 

nanotubes (CNTs) are tubes of graphite sheets with 

diameter in the nano-scale, including single-wall 

carbon nanotubes and multiwall carbon nanotubes; 

carbon nanotubes are named as the king of nano-

materials. Nanotube drugs have been discovered to 

kill bacteria and are more effective than traditional 

antibiotics (Subramanian and Mehta, 2018). CNTs are 

the most widely studied class of engineered NPs due 

to carbon’s unique hybridization properties and the 
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sensitivity to variations in the synthesis conditions 

allowing tailoring of these nanostructures for specific 

applications (Aqel et al., 2012). The different 

synthesis, purification, and post-processing methods 

produce CNTs with different physical characteristics, 

which can be applied in different fields ranging from 

composite materials, medical applications, and 

electronics to energy storage (Helland et al., 2007). 

These nanoparticles are allotropes of carbon, made of 

graphite and constructed in cylindrical tubes that have 

been applied in pharmacy and medicine due to their 

high surface area that is capable of adsorbing or 

conjugating with a wide variety of therapeutic and 

diagnostic agents (He et al., 2013) and also for 

wastewaters treatment (Qu et al., 2013; 

Nezhadheydari et al., 2019) to remove impurities. 

Aquatic environments are the ultimate sink for these 
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nano-contaminants, via either direct discharge or 

hydrological processes (Rezaei Tavabe et al., 2010; 

Lee et al., 2015; Turan et al., 2019). 

Yearly, a large quantity of carbon nanotubes is 

released into aquatic ecosystems through domestic 

and industrial wastewater and induce adverse effects 

on fish and other aquatic organisms (Wu et al., 2019), 

because animal cells and tissues can easily absorb 

these materials due to their tiny sizes. In aqueous 

environments, CNTs clump together to form 

aggregates in the micrometer range and cause harmful 

and toxic effects on aquatic organisms; on the other 

hand, the large surface area of CNTs may cause other 

molecules to adhere and potentially pick up pollutants 

and transport these throughout the environment 

(Subramanian and Mehta, 2018). So, CNTs NPs are 

hazardous to aquatic organisms and especially 

invertebrates as bio-indicators. Mwangi et al. (2012) 

confirmed CNTs toxicity on Hyalella azteca, 

Chironomus dilutus, Lumbriculus variegatus, and 

Villosa iris species of invertebrates in freshwater 

ecosystems. Also, Lee et al. (2015) demonstrated that 

CNTs exposure could cause antioxidant depletion and 

apoptosis in a manner influenced by tissue and gender 

in the Oryzias latipes. CNTs induce oxidative stress 

and neurotoxicity in fish models such as Danio rerio 

and Astyanax altiparanae after acute and sub-chronic 

exposure (Cimbaluk et al., 2018). Therefore, it is 

important to study the biological effects of NMs 

contaminants on aquatic animals in freshwater 

ecosystems. Because of the settling behavior of NMs, 

benthic organisms are likely to be exposed to a higher 

degree than pelagic organisms (Selck et al., 2016). 

Decapod crustaceans because of their ecological 

and physiological characteristics are excellent bio-

indicators and bio-monitors of different contaminants 

in freshwater ecosystems (Rezaei Tavabe et al., 2019; 

Zhang et al., 2020). The giant freshwater prawn, 

Macrobrachium rosenbergii, is one of the most 

important decapods crustacean aquaculture species, 

originally from Asia's southeastern region, but during 

past decades it has been moved throughout many other 

countries globally, for aquaculture activities (Tidwell 

et al., 2005). Since, this species readily breeds in 

captivity condition sequentially with high fecundity 

and fertilized eggs clutch attach to the abdomen 

section of the ovigerous females (Tavabe et al., 2013; 

Rafiee et al., 2015; Rezaei Tavabe et al., 2015a, b, 

2017), it is an appropriate benthic biological model for 

toxicological studies in laboratory condition. The 

main objective of the present study was the assessment 

of CNT-NPs toxicity effects on hyperglycemic 

hormone (CHH) release, hematology factors, and anti-

oxidative enzymes’ activities of the M. rosenbergii in 

laboratory conditions. 

 

Materials and Methods 

Preparation of CNT NPs: The required CNTs 

nanomaterials were purchased from Sigma-Aldrich 

Company (USA). After obtaining the nanomaterial, 

Figure 1. SEM images of the prepared CNTs nanoparticle (Tescan mira 3, CZE). 

 

 
 

 



244 
 

Rezaei Tavabe and Samadi Kuchaksaraei / Effects of carbon nanotubes nano-materials on Macrobrachium rosenbergii 

SEM (Tescan Mira 3, CZE) images were taken for 

morph-structure of the surface, shape, and size of the 

NPs (Fig. 1). To assess the quality of NPs, the CNTs 

NPs X-ray diffraction pattern was recorded by a 

Philips PW1730, NED in the range of 10° to 80° (2θ). 

Figure 2 shows its XRD spectra and the peak points of 

26.2, 43.1, and 54.5, and the recorded XRD was 

completely consistent with the standard patterns.   

Experimental animals: Studied prawns (n = 350) 

were obtained from the Ghasreshirin freshwater prawn 

aquaculture center in Kermanshah Province in western 

Iran. Experiments were conducted at the aquatic 

animal laboratory of the Fisheries Sciences 

Department, University of Tehran. The prawn’s 

average weight was 14±2 g and moved to the 

laboratory and stocked in a 1000 l tank for acclimation 

approximately 10 days before the experiment. In the 

acclimation tank, water quality parameters, 

photoperiod, and feedings were recorded and adjusted 

by the recommendations of Javanmardi et al. (2018), 

Javanmardi et al. (2020), Rezaei Tavabe and Rafiee 

(2015) and Rafiee et al. (2014). 

Experimental setup and design: Experiments were 

conducted in five treatments including 0 (control), 5, 

10, 20, and 30 mg/L of CNTs-NMs. Treatments were 

tested in triplicate and each of the experimental tanks 

(300-l recirculating systems) was stocked with, 10 

prawns for 28 days research period. During the study, 

the photoperiod and temperature were 12 h light and 

28±2°C, respectively, based on Rezaei Tavabe and 

Rafiee (2016). 

Evaluation parameters: 

Prawn broodstock reproductive parameters: Inter-

spawn period, egg fertilization percentage, egg dry 

weight, total fecundity, egg-clutch somatic index 

(ESI), weight gain (WG), and survival of the females 

were recorded at the end of the experiment. Egg 

clusters were removed after spawning from berried 

females (n=3) to estimate fecundity, egg fertilization 

percentage, egg weight, and ESI. WG, ESI, egg 

fertilization percentage, and fecundity were calculated 

based on Rezaei Tavabe et al. (2015b).   

CHH hormone release measurement: Measurement 

of CHH in the hemolymph was carried out according 

to the methodology described by Levenson et al. 

(1999). The sampled hemolymph was mixed 1:1 (v/v) 

with coating buffer (0.2 M/l sodium bicarbonate 

buffer, pH 9.4) and 100 μl was loaded in each well. 

After washing with buffer (10 mM/l PBS, pH 7.4 and 

0.1% Tween 20) the plate was blocked with 100 μl of 

blocking buffer (10 mM/l PBS, 0.1% Tween 20, 2% 

BSA) for 2 hours and then incubated with anti-CHH 

solution (dilution 1:10 000 in blocking buffer) for 2 

hours at room temperature. The plate was then washed 

Figure 2. The XRD spectra of the obtained CNTS-Nanomaterials (Philips PW1730, NED). 
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and incubated with the secondary antibody, anti-rabbit 

IgG peroxidase for 2 hours at room temperature. 

Again, the plate was washed and 100 μl of 

tetramethylbenzidine (TMB) ELISA substrate was 

added to each well to initiate the enzymatic reaction. 

The plate was incubated in the dark for 10-30 min at 

37°C. The reaction was stopped by adding 2 M/l 

H2SO4. After that multi-well plates were read at 450 

nm in ELISA-reader (Cyberlab Inc., USA).  

Anti-Oxidative enzymes activity assay: At the end 

of the research period, three prawns for each tank were 

sampled and anaesthetized and the hepatopancreas 

tissue of an individual prawn was removed then 

Superoxide dismutase (SOD) enzymes activities were 

assayed. SOD enzyme activity in hepatopancreas was 

assayed according to Du et al. (2019), based on the 

oxidation of epinephrine to adreno-chrome by the 

enzyme. According to this method, 0.1 ml volume of 

hepatopancreatic homogenate was added to a tube 

containing 0.75 ml ethanol and 0.15 ml chloroform 

and centrifuged. The supernatant obtained (0.5 ml) 

was treated with 0.5 ml EDTA solution and 1 ml 

buffer. The enzyme reaction, increase in absorbance, 

and activity were expressed as 50% inhibition of 

epinephrine auto-oxidation/min/mg protein.  

Hematology assay: SGH (Small granular haemocyte) 

and LGH (large granular haemocyte) were determined 

at the end of the experiment period by monitored light 

microscope as hematological assay parameters. 

Hemolymph sampling and hemocyte counting were 

carried out based on Leigh and Antoinette (1997).   

Data analysis: The data were normalized by the 

Shapiro-Wilk test then the parameters were analyzed 

by one-way ANOVA and significant differences 

among the means were calculated (P<0.05) by 

Duncan's test by SPSS version 24 (IBM, USA). 

 

Results and  

During the experiment period, water physic-chemical 

factors including temperature, pH, dissolved oxygen 

(DO), ammonia-N, and nitrite-N were recorded 

28±2°C, 7-7.6, 6±1 mg/l, < 0.2 mg/l, and < 0.1 mg/l 

respectively. 

Growth and reproductive performances: Growth 

and reproductive results were sharp; so, by increasing 

CNT NMs concentrations on the treatments WG and 

survival rate were strongly decreased. Although, WG 

and survival rate in the control treatment were 84.5 

and 92%, respectively, but these parameters for the 30 

mg/L CNT treatment were 27.9 and 40%. On the other 

hand, high concentrations of CNT NMs disrupted the 

reproduction process in the experimental tanks. At the 

20 mg/L treatment, the broodstock spawned, but 

detached immediately the egg clutches from the 

swimming legs after spawning while at the 30 mg/L, 

the broodstock did not spawn at all. In other 

treatments, while inter-spawn period and fecundity 

were not different among the treatments but egg dry 

weight, egg fertilization rate, and ESI parameters were 

significantly different and showed a decreasing trend 

(Table 1).  

Anti-Oxidative enzymes activities assay: As 

expected, antioxidant enzymes’ activities showed a 

positive response to the CNTS NMs in the 

experimental treatments. SOD enzyme activity in the 

hepatopancreas tissue for the 50 mg/L treatment was 

Table 1. Growth and reproductive parameters (mean±SD) of the prawns at different CNT-NMs treatments during the experiment period. 

 

 
 

 

CNT 

Treatments 

(mg/L) 

Initial 

weight 

(g) 

WG% 
Survival 

(%) 

Inter-spawn 

period 

(days) 

Egg dry 

weight 

(µg) 

Fecundity 

(eggs/ 

female) 

Eggs 

fertilization 

(%)  

ESI (%) 

Control 14±2 84.5±5.2a 92 % 26±4  25±2a  3350±641 95±4a 9±1a 

5  14±2 60.7±3.9b 83 % 25±3  22±3ab 3045±325 81±6b 8±2ab 

10  14±2 58.6±5.5b 75 % 25±5  19±2b 3184±501 48±11c 6±1b 

20  14±2 31.8±6.7c 42 % 
At this treatment the brood stock spawned, but detached immediately 

the egg clutches from the swimming legs after spawning. 

30 14±2 27.9±8.5c 40 % At this treatment the brood stock did not spawn. 

The comparison is intergroup and means with different superscript letters in same columns are significantly different (P<0.05). 
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67.5 U/g protein while at the control treatment, this 

enzyme activity was 20.9 U/g protein (Fig. 3). Based 

on the results, catalase activity in the same tissue in 

10, 20 and 30 mg/L treatments were same but these 

treatments were significantly different from the 

control one and 5 mg/L treatments (Fig. 4).  

Figure 3. SOD enzyme activity in hepatopancreas tissue of Macrobrachium rosenbergii (mean±SD) at different CNT-NMs treatments (mg/L). 

Different letters denote significant differences (P<0.05) among the treatments. 

 

 
 

 

Figure 4. Catalase enzyme activity in hepatopancreas tissue of Macrobrachium rosenbergii (mean±SD) at different CNT-NPs treatments (mg/L). 

Different letters denote significant differences (P<0.05) among the treatments. Different letters denote significant differences (P < 0.05) among 

the treatments. 
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CHH hormone assay: CHH hormone in crustaceans 

is known as a metabolizing stress hormone. In the 

present study, the experimental treatments showed 

significant differences from the control treatment. 

While in the 50 mg/L CNT treatment CHH release was 

11.5 pmol/ml, but this value for the control treatment 

was 1.7 pmol/ml (Fig. 5).  

Hematology parameters: Hemocyte changes are 

common responses in crustacean hemolymph in 

challenge with stressors. According to the hematology 

Figure 5. CHH of Macrobrachium rosenbergii (mean±SD) at different CNT-NPs treatments (mg/L). Different letters denote significant differences 

(P<0.05) among the treatments. Different letters denote significant differences (P<0.05) among the treatments. 

 

 
 

 

Figure 6. Hematocytes changes of Macrobrachium rosenbergii (mean±SD) at different CNT-NPs treatments (mg/L). The comparison is intergroup 

and different letters denote significant differences (P<0.05) among the treatments. 
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data, by increasing CNTs NMs concentrations in the 

experimental treatments, SGH and LGH hemocyte 

values were decreased and increased, respectively 

(Fig. 6).    

 

Discussions 

Nanoparticles have been widely used in different 

fields resulting in their intentional or unintentional 

release into the aquatic environment (Ashori et al., 

2019; Turan et al., 2019). The fate of nanomaterials in 

the aquatic environment depends both on their 

physicochemical properties and the characteristics of 

the receiving environment and this environment 

because of the settling behavior of NMs, benthic 

organisms are likely to be exposed to a higher degree 

than pelagic organisms (Selck et al., 2016). Therefore, 

aquatic environments receive a large quantity of 

carbon nanotubes due to their increasing production 

and applications via direct discharge or hydrological 

processes, yearly (Zhang et al., 2020), and cause 

adverse effects on aquatic organisms (Vali et al., 

2020). The present study showed that M. rosenbergii 

reproductive performance, anti-oxidant enzymes’ 

activities, hematology parameters and CHH hormone 

release, survival rate, and growth performance were 

strongly affected by CNT NMs toxicity. Nano-

materials enhance the formation of reactive oxygen 

species (ROS), which is one of the main toxic 

mechanisms observed in aquatic organisms (Lee et al., 

2012; Rezaei Tavabe et al., 2018). These materials of 

varying chemical composition such as CNTs have 

been shown to induce oxidative stress (Bonner, 2007). 

Hence, knowledge of the fate and behavior of CNTs 

in different types of natural aquatic ecosystems and 

their potential eco-toxicity is essential for the 

quantitative assessment of the environmental risks of 

these NMs (Lukhele et al., 2015). 

The findings of the current study showed that SOD 

and CAT antioxidant enzymes’ activities have positive 

responses to the CNTS NMs in the experimental 

treatments and these NMs showed dose-dependent 

effects on the enzymes’ activities. Oxidative stress is 

defined as a situation where the redox balance is 

shifted toward a pro-oxidant state as compared to an 

antioxidant state. Oxidative stress endpoints can be 

assessed in experimental models ranging from simple 

cellular conditions to molecular epidemiology using 

biomarkers of oxidative-generated biomolecules, 

antioxidant depletion, or other indicators (Møller et 

al., 2014; Rezaei Tavabe et al., 2020). ROS as pro-

oxidants cause oxidative stress and oxidation of 

proteins, lipids, and DNA, which can lead to 

significant cellular and tissue damage (Tripathy, 

2016). Liu et al. (2018) indicated that SOD and CAT 

enzymes can maintain steady-state levels of ROS in 

cells and protect cells against the adverse effects of 

them. Wang et al. (2015) showed that exposure of 

goldfish to different CNTs NPs causes obvious 

changes in antioxidant enzymes’ activities such as 

SOD and catalase in the liver. Saria et al. (2014) 

confirmed the effects of MWCNT NPs toxicity on 

SOD and catalase enzymes’ activities in the African 

frog (Xenopus laevis) tadpoles. Also, increased 

activities of these enzymes were shown in zebrafish 

(Souza et al., 2019), Rare minnow (Gobiocypris 

rarus) larvae (Zhu et al., 2015; Tavabe et al., 2020), 

and Channa punctatus fish (Amjad et al., 2018) in a 

dose-dependent manner. The results of the present 

study not only confirm the past reports but also depict 

that CAT enzyme activity in M. rosenbergii 

hepatopancreas is more intense than SOD in exposure 

to CNT NMs. 

CHH hormone in crustaceans is known as a 

metabolizing stress hormone. In the present study, the 

experimental treatments showed significantly higher 

than the control treatment. Lorenzon et al. (2004) 

indicated that CHH hormone excretion in decapod 

crustaceans is directly related to their exposure to 

stressors. The stressors induce hyperglycemia and 

glucose release from the hepatopancreas storage cells 

by secretion of CHH hormone from the X-Organ 

(Santos and Keller, 1993) to provide energy to deal 

with stressors. Also, Sreenivasula Reddy et al. (2011) 

indicated that stressor factors cause glucose release 

from the hepatopancreas tissue in the developed 

crustaceans via excretion of CHH hormone. This 

hormone release in the crustacean’s body has a direct 

relation to the severity of the stressor factor. Lukhele 
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 et al. (2015) confirmed the toxicity effects of CNT 

NMs on three aquatic animals including 

Pseudokirchneriella subcapitata, Daphnia pulex, and 

Poecilia reticulate. Like most invertebrates, 

crustaceans facing stressful conditions switch to an 

alternative anaerobic energy metabolism via 

glycolysis and hyperglycemia, the process that is 

regulated by CHH hormone secretion (Chung et al., 

2010). Reddy and Sainath (2009) indicated that the 

variations in the CHH values and hemolymph glucose 

level in relation to stressor factors could be used as an 

efficient tool to monitor a variety of stress responses 

in decapod crustaceans. Therefore, CHH hormone not 

only is a stress-metabolizing hormone but is also 

known as a reproductive regulation hormone (Chung 

et al., 2010).  
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