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Abstract

Objective: To develop and internally validate risk prediction models for adolescent

onset and persistence of eating disorders.

Methods: N = 963 Australian adolescents (11–19 years) in the EveryBODY Study

cohort completed online surveys in 2018 and 2019. Models were built to predict

12-month risk of (1) onset, and (2) persistence of a DSM-5 eating disorder.

Results: Onset Model. Of the n = 687 adolescents without an eating disorder at base-

line, 16.9% were identified with an eating disorder after 12 months. The prediction

model was based on evidence-based risk factors for eating disorder onset available

within the dataset (sex, body mass index percentile, strict weight loss dieting, history

of bullying, psychological distress, weight/shape concerns). This model showed fair

discriminative performance (mean AUC = .75). The most important factors were psy-

chological distress, weight and shape concerns, and female sex. Diagnostic Persistence

Model. Of the n = 276 adolescents with an eating disorder at baseline, 74.6% were

identified as continuing to meet criteria for an eating disorder after 12 months. The

prediction model for diagnostic persistence was based on available evidence-based

risk factors for eating disorder persistence (purging, distress, social impairment). This

model showed poor discriminative performance (mean AUC = .65). The most impor-

tant factors were psychological distress and self-induced vomiting for weight control.

Discussion: We found preliminary evidence for the utility of a parsimonious model

for 12-month onset of an eating disorder among adolescents in the community.

Future research should include additional evidence-based risk factors and validate

models beyond the original sample.

Public Significance: This study demonstrated the feasibility of developing parsimoni-

ous and accurate models for the prediction of future onset of an eating disorder

among adolescents. The most important predictors in this model included psychologi-

cal distress and weight and shape concerns. This study has laid the ground work for

future research to build and test more accurate prediction models in diverse samples,
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prior to translation into a clinical tool for use in real world settings to aid decisions

about referral to early intervention.
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1 | INTRODUCTION

Despite eating disorders (EDs) affecting 21.0%–36.9% of adolescents,

access to specialized treatment is extremely low (Hammerle

et al., 2016; Micali et al., 2015; Mitchison et al., 2019), primarily due to

a lack of detection and referral. This is true even for the better recog-

nized conditions such as anorexia nervosa and bulimia nervosa, in

which only 10%–27% of those affected are estimated to have accessed

ED specific healthcare (Fatt et al., 2019; Swanson et al., 2011). Estab-

lished screening instruments and methods have good sensitivity and

specificity for detecting a current ED (Hill et al., 2010; Maguen

et al., 2018; Solmi et al., 2015); however, their ability to predict future

outcomes, such as onset and persistence of an ED, is unclear. Key risk

factors, such as weight and shape concerns and other sociodemo-

graphic (e.g., female gender) and clinical features (e.g., strict dieting),

have well-known prognostic value in predicting variance in ED onset

(Bakalar et al., 2015; Culbert et al., 2015; Day, Bussey, Trompeter, &

Mitchison, 2021; de Portela Santana et al., 2012; Ghaderi, 2001;

Glashouwer et al., 2019; Jacobi et al., 2004; Keel & Forney, 2013; Lie

et al., 2019; Mazzeo & Bulik, 2009; N. Micali, 2005; Stice, 2002; Vall &

Wade, 2015). However, to date these have not been integrated into

algorithmically-driven screening procedures that would optimize pre-

cise prediction of these key outcomes, and facilitate early intervention.

In other areas of psychiatry, prognostic model research (also known

as “clinical risk prediction modeling”) has been applied to predict out-

comes such as likelihood to develop a new onset of psychosis over a

5-year period in the UK National Health Service with good accuracy

(Fusar-Poli et al., 2018, 2019; for a summary of model performance indi-

cators and their interpretation, see Supporting Information File 1). Prog-

nostic modeling is a specific methodology (Steyerberg et al., 2013) with

recommended reporting guidelines (the TRIPOD Statement [Collins

et al., 2015]) that makes use of the evidence base from risk factor and

early modeling (Fairburn et al., 2005) research to build models that pro-

vide an overall risk score for each individual. The translational outcome

of such research, online risk calculators that can be used by clinicians

and consumers to guide help-seeking, allocation to early intervention,

and treatment decisions (as part of evidence-based practice alongside

clinician expertise and client preferences), would be a considerable

advancement to the ED field. The value to these models is capturing

people before they develop an ED, so that we can make better use of

early interventions, which have been shown to result in better outcomes

than treatment as usual (Richards et al., 2022). Another ED outcome for

which accurate prediction would be of high value is the likelihood of

persistence of an ED among those already affected in the community

who are yet to receive treatment. For instance, predicting likelihood of

ED persistence could assist in the primary care setting regarding

decisions about the level of intervention to recommend following

screening. This could matched to level of risk for persistence from a

watch-and-wait approach, to guided-self-help, to referral to ED specific

treatment—ultimately improving the efficiency of EDs healthcare.

The development of prognostic models using methodologies that

align with the TRIPOD Statement (Collins et al., 2015) has only

recently commenced for outcomes related to EDs. These models

include the prediction of future persistence of ED diagnosis based on

a wide range of clinical and sociodemographic factors (Haynos, Wang

et al., 2021), current ED diagnosis based on internet activity (Sadeh-

Sharvit et al., 2020), and response to ED treatment based on pretreat-

ment clinical variables (Espel-Huynh et al., 2021). In a study by Hay-

nos, Wang et al. (2021), risk prediction models were developed for ED

persistence and presence of specific symptoms after 1 and 2 years

using a pre-existing dataset of 320 females with an established

ED. The models predicting the future presence of specific ED symp-

toms showed “fair” to “good” accuracy (mean “area under the

receiver operating characteristic curve”—AUC range: 0.71–0.89) and

better than the models predicting persistence of EDs (mean AUC

range: 0.61–0.62, “poor” accuracy). Models built utilizing a machine

learning method (ML; elastic net) also outperformed models built

using traditional logistic regression. It is important to note here that

the extent to which these models performed well in part depended on

the large number of risk factors (33 in total) included, as more infor-

mation in models improves precision. However, it is also true that

more complex models pose a challenge for eventual translation into

real world settings as they involve greater administrative burden

(Steyerberg et al., 2013). Nevertheless, these first studies demonstrate

promise for the application of ML methods to the development of

prediction models for ED outcomes, including using self-report data.

The aims of the current study were to develop the first prognostic

models for ED onset (Aim 1) and persistence (Aim 2) in the community.

Data were from adolescents (the peak age of ED onset) in the Every-

BODY cohort who completed self-report surveys over 12 months. A

previous study with this cohort observed 18.2% new onset cases

(inclusive of subthreshold disorders) over a 12 month period (Prnjak

et al., 2021). With the goal to develop models that may eventually be

translated into clinical practice, only the best available predictors were

selected for the models, based on evidence from systematic reviews

and meta-analyses. While a body of studies suggest ML is comparable

to logistic regression for building risk models (e.g., Espel-Huynh

et al., 2021), emerging evidence suggests ML is superior when models

are more complex (e.g., more predictors; Haynos, Wang et al., 2021) or

when accuracy of prediction is a priority (Wang, 2021). Hence, we

tested both approaches in order to further inform methodological

decision-making in this area. The study was conducted in alignment
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with the reporting guidelines outlined in the TRIPOD (Transparent

Reporting of a Multivariable Prediction Model for Individual Prognosis

or Diagnosis) Statement (Collins et al., 2015).

2 | MATERIALS AND METHODS

2.1 | Data source

The data were from Wave 1 and Wave 2 (i.e., the first and second

follow-up surveys) of the EveryBODY Cohort, a representative

population-based self-report study of EDs among Australian adoles-

cents. These waves were chosen as they were the most inclusive of

the predictors and outcomes of interest.

2.2 | Study population

Participants were those who attended one of eight secondary schools

in New South Wales, Australia, and participated in the online surveys

in both Wave 1 (2018) and Wave 2 (2019) of the EveryBODY study.

Four public and four private schools were included, and the sample

were demographically representative of adolescents in the State of

New South Wales. Surveys were administered at schools between

May and December based on the school's preference for roll-out.

Details of the recruitment procedures and the EveryBODY cohort have

been published previously (Prnjak et al., 2021; Trompeter et al., 2018).

The retention rate from Wave 1 to Wave 2 was 61.6%. When compar-

ing those who did versus did not participate in Wave 2, there was no

difference in gender distribution, however, Wave 2 completers were

slightly younger (14.62 vs. 15.08 years on average; p < .001,

ηp
2 = 0.021), had a slightly lower BMI percentile (50.92 vs. 53.77 on

average; p = 0.014, ηp
2 = 0.002), and were slightly more likely to have

been born in Australia (84.8% vs. 80.4%; p = 0.45, V = 0.056). These

effect sizes were all small, and largely explained by the fact that stu-

dents who were in their final year of school at Wave 1 were very diffi-

cult to recruit for the Wave 2 survey when they were no longer in

school. For Aim 1, we developed models with data from participants

who did not meet criteria for an ED at Wave 1 and who had complete

data for diagnosis at Wave 2 (N = 687). For Aim 2, we developed

models with data from participants who did meet criteria for an ED at

Wave 1 and had complete data for diagnosis at Wave 2 available

(N = 276). Approval for the study was granted by the Macquarie Uni-

versity Human Research Ethics Committee and the New South Wales

Department of Education. All participants assented to the study and

their parents/guardians provided passive informed consent.

2.3 | Study measures

2.3.1 | Outcomes

The two outcomes were (1) ED onset (meeting criteria for a probable

ED at Wave 2, but not Wave 1), and (2) ED persistence (meeting

criteria for a probable ED at Wave 1 and Wave 2). As described previ-

ously, diagnoses were determined based on self-report responses to a

range of standardized measures (including the Eating Disorder Exami-

nation Questionnaire, Fairburn & Beglin, 2008; K10 Psychological Dis-

tress Scale, Kessler et al., 2002; and Pediatric Quality of Life Scale,

Varni et al., 2003) and specific questions designed by the investigators

to assess specific diagnostic criteria (see Supporting Information File 2

for full information; Mitchison et al., 2019).

2.3.2 | Predictors

We selected predictors based on replicated evidence of their prognos-

tic value for ED onset and persistence, respectively, as summarized in

meta-analyses, systematic and expert narrative reviews (Bakalar

et al., 2015; Culbert et al., 2015; Day, Bussey, Trompeter, &

Mitchison, 2021; de Portela Santana et al., 2012; Ghaderi, 2001;

Glashouwer et al., 2019; Jacobi et al., 2004; Keel & Forney, 2013; Lie

et al., 2019; Mazzeo & Bulik, 2009; N. Micali, 2005; Stice, 2002;

Vall & Wade, 2015). As recommended, continuous variables were not

dichotomized (Fusar-Poli et al., 2018; Fusar-Poli et al., 2019).

Predictors for the models in Aim 1 (ED onset) included binary sex

(Weissman, 2019), body mass index (kg/m2; BMI) percentile adjusted

for child age and sex (Bakalar et al., 2015; Stice, 2002), days of weight

loss dieting over the preceding one month (Bakalar et al., 2015;

Stice, 2002), history of being a victim of bullying at school (Bakalar

et al., 2015; Day, Bussey, Trompeter, & Mitchison, 2021; Lie

et al., 2019), frequency of psychological distress over the preceding one

month (Bakalar et al., 2015; Culbert et al., 2015; Keel & Forney, 2013;

Stice, 2002), and severity of weight/shape concerns over the preceding

one month (Bakalar et al., 2015; Glashouwer et al., 2019; Keel &

Forney, 2013). Predictors for the models in Aim 2 (ED persistence)

came primarily from two reviews based on anorexia nervosa and bulimia

nervosa (H.-C. Steinhausen, 2002; H. Steinhausen & Weber, 2009) and

included frequency of purging, psychological distress, and perceived

social functioning over the past month.

BMI percentile was based on self-reported height and weight and

adjusted for the adolescent's sex and age. Self-report of height and

weight data in adolescents has been recommended when direct mea-

surement is impractical, because even though there is a slight ten-

dency for underestimation of weight, self-report and directly

measured data remain highly correlated (Kee et al., 2017; Sherry

et al., 2007).

Weight loss dieting was measured using an author-derived ques-

tion, “Over the past 28 days (4 weeks) how many days have you been on

a very strict weight loss diet?” and participants indicated their response

by free text. Evidence of the convergent validity of this item include

the significant association between scores on the item and scores on

measures of other disordered eating behaviors (Aouad et al., 2019);

(Pursey et al., 2020), and weight-related bullying (Day, Bussey, Tromp-

eter, Hay, et al., 2021).

History of bullying was assessed with the author-derived question

“Have you ever been bullied at school?” and participants indicated their

response by selecting “no” or “yes.” This is a similar question to that
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employed in other adolescent population-based surveys. However, in

the present study the question was prefaced with a standard defini-

tion of bullying, as recommended by bullying research experts to

improve construct validity (Day, Bussey, Trompeter, Hay, et al., 2021;

Day, Bussey, Trompeter, & Mitchison, 2021).

Psychological distress was measured using the Kessler Psychological

Distress Scale (K-10) (Kessler et al., 2002), a well-validated question-

naire frequently used in population studies, which assesses symptoms

of anxiety and depression over the last 4 weeks on 10 Likert-type

questions. Scores range from 10 to 50, with higher scores indicative

of greater distress. Internal consistency in the Aim 1 sample was

ω = 0.89 and in the Aim 2 sample was ω = 0.93.

Weight and shape concerns were assessed using the combined

items of the Weight Concern and Shape Concern subscales of the ED

Examination Questionnaire (EDE-Q) (Christopher G Fairburn &

Beglin, 2008). This combined scale has been well-validated in Australian

adolescents (J. Mond et al., 2014) and consists of 12 Likert-type items

assessing dissatisfaction, preoccupation and overvaluation with weight/

shape over the past 4 weeks. Scores are averaged across the items,

ranging from 0 to 6, with higher scores indicative of greater weight/

shape concerns. Internal consistency in the Aim 1 sample was ω = 0.92.

Purging was assessed using two separate items in the EDE-Q

(Christopher G Fairburn & Beglin, 2008) that asked participants to indi-

cate the frequency of self-induced vomiting and laxative use for weight

control purposes over the previous 28 days. These items have been

used previously in Australian adult (Mitchison et al., 2012, 2014) and

adolescent (Fatt et al., 2019; Trompeter et al., 2020) population studies.

Social functioning was assessed using the Social Functioning sub-

scale of the Pediatric Quality of Life Scale (PedsQL) short form (Varni

et al., 2003). The well-validated subscale consists of 3 Likert-type

items that assess frequency of social functioning impairment over the

previous 28 days. Scores range from 0 to 100, with higher scores indi-

cating lower levels of social functioning impairment. Internal consis-

tency in the Aim 2 sample was ω = 0.85.

2.4 | Statistical analyses

Preliminary analyses included computation of descriptive statistics for

each sample. Univariate logistic regression analyses were conducted

to examine the unadjusted relationships between each candidate pre-

dictor and the outcomes and are presented in Supporting Information

File 3.

2.4.1 | Modeling approach

Analyses were performed in R version 3.6.1 via caret (Kuhn, 2021)

and glmnet (Friedman et al., 2010) packages. To predict EDs onset

and persistence, we conducted elastic net regularized logistic regres-

sions. We chose the elastic net algorithm given its well-established

accuracy and robustness, its ability to maintain clinical interpretability

compared to less transparent ML algorithms (e.g., random forests,

neural networks), and its validity in prediction ED risk models in a

prior paper (Haynos, Wang et al., 2021). For each outcome (i.e., in Aim

1 and Aim 2), we also compared predictive accuracy of elastic net

models with nonregularized logistic regression models, as has been

done previously (Haynos, Wang et al., 2021). As per the additional

aim of this study, the ML versus logistic regression models were com-

pared based on the model performance metrics listed below (see Sup-

porting Information File for further information on interpretation of

these metrics).

All models included participants with complete data available for

outcomes (i.e., ED diagnostic information at Wave 2). Regarding miss-

ing data for predictors, there was 5.28% missingness for Aim 1 (pre-

dicting probable ED onset) and 0.87% missingness for Aim

2 (predicting persistence of probable ED). We used K-nearest neigh-

bor imputation during data preprocessing for all models. Given that,

our data were imbalanced (with fewer individuals meeting criteria for

a probable ED at Wave 2 than those not meeting criteria for a proba-

ble ED), we used upsampling to improve the balance across classes in

all models (Kuhn & Johnson, 2013).

To obtain metrics of predictive accuracy, we followed recommen-

dations (Kuhn & Johnson, 2013), and used 10-fold cross-validation

with three repetitions to select the optimal λ (shrinkage) and α (mixing)

parameters for each elastic net model; we also used the same cross-

validation procedure for logistic regression models. Repeating the

training and testing process in this way can provide more reasonable

estimates of model performance for future datasets than splitting a

sample into a single training and testing set, particularly for smaller

samples. Finally, we evaluated variable importance for all models with

the varImp() function in caret.

2.4.2 | Model performance

A standard metric for examining a model's performance is the area

under the receiver operating characteristic curve (AUC, which mea-

sures area under a curve with 1—specificity on the x-axis and

sensitivity on the y-axis). An AUC of 0.5 indicates chance-level

predictive accuracy and an AUC of 1.0 indicates perfect classification

(50–0.59 = extremely poor; 0.60–0.69 = poor; 0.70–0.79 = fair;

0.80–0.89 = good; 0.90–1.00 = excellent). We also evaluated several

other classification metrics, including the average cross-validation

estimates of: area under the precision-recall curve (AUPRC), accuracy,

positive predictive value (PPV), sensitivity, specificity, and Brier score

For more information on each of these metrics and their interpreta-

tion, see Supporting Information File 1.

3 | RESULTS

3.1 | Sample characteristics

Demographic and clinical characteristics of the subsamples included in

this study are presented in Table 1. A description of the demographic
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characteristics of the full EveryBODY cohort, which closely approxi-

mate the general adolescent population in New South Wales, have

been published elsewhere (Mitchison et al., 2022).

3.1.1 | Aim 1: ED onset

There were n = 687 participants without an ED at Wave 1, comprising

the sample for Aim 1. Just over half of this sample was male, mostly

born in Australia (84%), with an average age of 14.4 years, and with

an average BMI percentile within the Center for Disease Control

(CDC) definition of “healthy.” Wave 1 disordered eating was low in

the sample with only 1.2% scoring above the cut-off for

extreme weight and shape concerns (scoring ≥4 on the EDE-Q

combined Weight and Shape Concerns scale; Mond et al., 2014),

and at-least-weekly fasting, objective binge eating, self-induced

vomiting, and laxative use reported by only 4.5%, 5.4%, 0.6% and

0.9% of participants, respectively. At Wave 2, 116 (16.9%, 95% CI:

14.3–19.9%) of these participants had developed a probable

ED. This rate was expected based on a previous study (Prnjak

et al., 2021) using earlier waves of this cohort, and when consider-

ing the high rates of prevalence (19%–37%) for the full spectrum of

EDs globally (Hammerle et al., 2016; Micali et al., 2015).

3.1.2 | Aim 2: ED persistence

There were n = 276 participants with a probable ED at Wave 1, com-

prising the sample for Aim 2. Three quarters of this sample was

female, mostly born in Australia (84%), with an average age of

15 years, and an average BMI percentile that was within the CDC

definition of “healthy.” The probable EDs that were observed in

this sample included n = 11 with anorexia nervosa, n = 66 with

bulimia nervosa, n = 21 with binge ED, n = 39 with atypical

anorexia nervosa, n = 35 with subthreshold bulimia nervosa,

n = 11 with subthreshold binge ED, n = 37 with purging disorder,

n = 81 with night eating syndrome, and n = 12 with unspecified

feeding/ED. Only 13.8% reported having ever had seen a health

professional for a problem with their body image. At Wave 2, when

assessed 1 year later, 206 (74.6%, 95% CI: 69.2–79.4%) partici-

pants in this sample continued to meet criteria for a probable

ED. Access to treatment for a body image problem remained low,

increased only marginally to 14.9% by Wave 2.

3.2 | Model performance

3.2.1 | Aim 1: Predicting EDs onset

Model performance metrics for the logistic regression and elastic net

models predicting probable ED onset are presented in Figure 1. The

logistic regression model provided fair AUC (mean cross-validated

AUC = 0.75), with poor AUPRC (M = 0.42), fair accuracy (M = 0.76),

fair PPV (M = 0.38), poor sensitivity (M = 0.64), fair specificity

(M = 0.78), and fair Brier score (M = 0.19). The most important vari-

able in the logistic regression model was psychological distress

(β = 8.01), followed by weight/shape concerns (β = 5.81), female sex

(β = 3.50), being a bully victim (β = 2.98), BMI percentile (β = 1.82),

and strict weight loss dieting (β = 0.16).

The elastic net model showed nearly identical performance to the

logistic regression model, with fair AUC (M = 0.75), poor AUPRC

(M = 0.42), fair accuracy (M = 0.76), fair PPV (M = 0.38), poor sen-

sitivity (M = 0.63), fair specificity (M = 0.79), and fair Brier score

(M = 0.19). The most important variable was also psychological

distress (β = 0.54), followed by weight/shape concerns (β = 0.37),

female sex (β = 0.22), being a bully victim (β = 0.14), BMI percen-

tile (β = 0.02), and strict weight loss dieting (β < 0.001).

TABLE 1 Demographic characteristics and scores on predictors at
Wave 1 for participants used for Aim 1 (predicting eating disorder
onset) and Aim 2 (predicting eating disorder persistence).

Eating disorder onset

sample (Aim 1), N = 687

n (%)

Eating disorder
persistence
sample (Aim 2),
N = 276

Onset of eating

disorder after

1 year

16.9 n/a

Persistence of

eating disorder at

1 year

n/a 74.6

Sexa

Male 401 (58.4) 54 (24.5)

Female 286 (41.6) 166 (75.5)

Country of birth

Australia 577 (84.0) 232 (84.1)

Other 110 (16.0) 44 (15.9)

Bullying history 257 (41.9) 149 (64.5)

Mean (SD)

Age 14.4 (3.6) 15.0 (1.5)

BMI percentile 47.2 (30.3) 62.0 (31.0)

Strict weight loss dieting days past

month

0.5 (2.4) 4.3 (7.8)

Psychological distress 14.5 (5.8) 30.5 (10.3)

Weight and shape concerns 0.8 (1.0) 3.7 (1.7)

Purging episodes past month

Self-induced vomiting 0.1 (0.7) 1.3 (4.4)

Laxatives 0.1 (1.0) 0.8 (4.3)

Social functioning 91.0 (15.5) 71.3 (26.6)

aIncludes responses to “what is your gender: male, female” for one school

who did not want to include separate questions on biological sex and

gender.
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3.2.2 | Aim 2: Predicting EDs persistence

Model performance metrics for the logistic regression and elastic net

models predicting persistence of a probable ED are presented in

Figure 2. The logistic regression model provided poor AUC

(M = 0.62), with fair AUPRC (M = 0.76), poor accuracy (M = 0.57),

good PPV (M = 0.81), poor sensitivity (M = 0.55), fair specificity

(M = 0.61), and poor Brier score (M = 0.24). The most important vari-

able in the logistic regression model was psychological distress

(β = 3.07), followed by self-induced vomiting (β = 1.45), social func-

tioning (β = 1.27), and laxative use (β = 0.31).

The elastic net model showed nearly identical performance to the

logistic regression model, with poor AUC (M = 0.64), fair AUPRC

(M = 0.77), poor accuracy (M = 0.57), good PPV (M = 0.81), poor sen-

sitivity (M = 0.57), fair specificity (M = 0.60), and poor Brier score

(M = 0.24). The most important variable was also psychological

distress (β = 0.34), followed by self-induced vomiting (β = 0.19),

social functioning (β = 0.14), and laxative use (β = 0.03).

4 | DISCUSSION

This study presents, to our knowledge, the first general population

mixed gender prognostic models for probable ED onset and persis-

tence among adolescents. A focus was on model parsimony to

enhance translatability for eventual use in the real world. Our model

predicting probable ED onset performed well, accurately discriminat-

ing between future cases versus noncases 75% of the time, and posi-

tively identifying 64% of future cases (sensitivity) and 79% of future

noncases (specificity). However, the model predicting persistence of a

probable ED was poor, with accurate discrimination between future

cases versus noncases closer to chance levels (64%). This is likely due

F IGURE 1 Descriptive visualizations of the distribution of cross-validated model performance metrics of elastic net and logistic regression
models predicting eating disorders onset at Wave 2 based on Wave 1 data (N = 687). AUC, area under the receiver operating characteristic
curve; AUPRC, area under the precision-recall curve.
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to there being a lack of relevant predictors included in this model, an

important focus for future research.

The performance metrics for the model predicting probable ED

onset were in the range observed for established and implemented

prognostic models within other areas of health and medicine

(e.g., cancer and heart disease [Fusar-Poli et al., 2015]). Although the

values for discrimination, sensitivity and specificity were nominally

labeled as fair, poor, and fair, respectively, the acceptability of these

values in practice depends on a number of factors, including

(i) improvement in prediction provided by the model over current

practice and (ii) the cost–benefit analysis of correct versus false posi-

tive identification. In regards to EDs, we know that mental health liter-

acy (Mond, 2014), detection and treatment access (Hart et al., 2011),

and screening practice is extremely low. Furthermore, although

screening tools can detect current EDs (Hill et al., 2010; Maguen

et al., 2018), their utility in predicting future outcomes is unclear. If, by

way of example, a screening tool based on the model of onset in the

present study was to be implemented in a school setting (e.g., an

online questionnaire with just the predictors of importance, linked to

the model algorithm to determine risk score), it would have the poten-

tial to correctly discriminate between 75% of adolescents who will go

on to develop an ED in the next 12 months—a significant improve-

ment upon current school screening practices.

Psychological distress was found to be the most influential pre-

dictor within the ED onset model. Distress may be indicative of gen-

eral lack of psychological wellbeing or the presence of psychiatric

illness, including disorders other than EDs. Univariate analyses

demonstrated that for every 5 points scored higher on a measure

of psychological distress (the K-10, scoring range 0–50), the risk

for an individual developing a probable ED within the next

year increased by 75%. The role of distress in predicting ED

onset is in line with the well-established evidence of distress

(American Psychiatric Association, 2013; Hay & Williams, 2013;

Mitchison et al., 2015; Stice, 2002) and psychiatric comorbidity

F IGURE 2 Descriptive visualizations of the distribution of cross-validated model performance metrics of elastic net and logistic regression
models predicting eating disorders persistence at Wave 2 based on Wave 1 data (N = 276). AUC, area under the receiver operating characteristic
curve; AUPRC, area under the precision-recall curve.
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(Ahn et al., 2019; Singleton et al., 2019) as transdiagnostic risk fac-

tors and correlates across many psychiatric disorders, include EDs.

On the other hand, ED-specific risk factors had variable impor-

tance in the models developed. Whereas weight and shape concerns

were found to be important in the model for ED onset, weight loss

dieting and weight status were not. These findings are at odds with

the body of literature focusing on dieting and higher weight as risk

factors for development of an ED, and targets for ED prevention pro-

grams. The current findings, however, do align with major EDetiologi-

cal theory which posits that weight and shape concerns emerge prior

to the development of ED behaviors, which subsequently further

entrench weight and shape concerns, resulting in a vicious cycle

(e.g., cognitive behavioral theory; Fairburn et al., 2003). Thus, focusing

on cognitive variables (e.g., distress and weight and shape concerns) in

screening, may enable the casting of an adequately “broad net” to

pick up the majority of those who will go on to develop an ED before

that event actually occurs. On the other hand, it should be acknowl-

edged that due to our goal for model parsimony we included only one

item assessing dieting. This single item may not have tapped into the

construct of “risky dieting” as well as a full scale that has greater

scope to capture the multi-dimensionality of this behavior. In regards

to weight status not contributing significantly to onset prediction, this

may reflect that EDs in the current sample were associated with the

full spectrum of weight status from very low to very high weights

(Mitchison et al., 2019), and underscores the need to focus less on

absolute weight, (as opposed to weight change, which may be associ-

ated with disordered eating) and cognitive preoccupation with weight,

when screening for ED risk.

This study found little discernible difference in the models devel-

oped using a traditional logistic regression approach as opposed to

ML. This is similar to previous prediction research, including within the

field of EDs predicting response to treatment (Espel-Huynh et al., 2021)

and ED caseness (Krug et al., 2021). These findings suggest that, for

many purposes, simpler analytic methods may be acceptable for interro-

gating questions pertaining to outcome prediction. On the other hand,

studies with larger numbers of predictor variables have found an advan-

tage to ML approaches in terms of accuracy (Haynos, Wang

et al., 2021; Sadeh-Sharvit et al., 2020) and reducing model factors to

achieve parsimony (Krug et al., 2021). It should be noted that this study

applied only one ML approach (elastic net). Researchers in the ED field

have started to address the question of which ML approach works best

under which conditions (Krug et al., 2021), which should lead to greater

clarity for statistical planning in future.

4.1 | Strengths and limitations

A strength of this study is the application of prognostic modeling

methodology (Steyerberg et al., 2013), including the use of ML as an

analytical tool. We used a prospective design, which counters prob-

lems with retrospective recall (e.g., Krug et al., 2021), and selected

only predictors with known prognostic value, to balance model accu-

racy with parsimony. This pilot research also benefited from a large

demographically diverse and phenotypically-rich community sample

of adolescents with outcome measures inclusive of the full spectrum

of EDs.

A primary limitation of this study was the absence of several pre-

dictors which could have improved model performance. The present

study relied on secondary analyses of existing data, which precluded

preselection of the full suite of evidence-based risk factors (Steyerberg

et al., 2013) for ED onset (e.g., duration of illness, perfectionism, and

psychiatric comorbidity) or ED persistence (e.g., perfectionism, per-

ceived pressure to be thin, and age at puberty/menarche for ED onset)

(Bakalar et al., 2015; Culbert et al., 2015; Day, Bussey, Trompeter, &

Mitchison, 2021; de Portela Santana et al., 2012; Ghaderi, 2001;

Glashouwer et al., 2019; Jacobi et al., 2004; Keel & Forney, 2013; Lie

et al., 2019; Mazzeo & Bulik, 2009; Micali, 2005; Stice, 2002; Vall &

Wade, 2015). Other limitations of the current study include lack of pre-

registration, the relatively small sample size compared to other risk

model development studies, which precluded investigation into diag-

nostic and gender spectrum differences; the use of EDE-Q data for

both predictor and outcome information, which may have artificially

inflated the strength of observed relationships; and other limitations

noted in previous studies using these data, including self-report and

single-item measurement of some variables, and measurement of some

of the diagnostic criteria over a 1 month as opposed to the DSM-5

3 month time period. Of note, the models developed in this study used

population-based data and are only generalizable to community-based

settings. Further, while the model as described in this study for ED per-

sistence, once improved, will be useful in guiding decisions about

whether to intervene, it cannot guide clinicians on the type of treat-

ments that may ultimately be beneficial. A model that can guide treat-

ment decisions in this way would also be of value, and should be a goal

of future research, making use of evidence-based predictors of treat-

ment moderators.

4.2 | Clinical and public health implications and
future research

The finding that prediction of outcomes worked best when consider-

ing both transdiagnostic and ED-specific predictors emphasizes the

need to move away from a focus on single risk factors in ED predic-

tion, screening and interventions, and rather to consider multivariable

approaches capitalizing on best known risk factors, whether they be

disorder-specific or transdiagnostic. Of note, current screening instru-

ments have tended to be ED specific (Hill et al., 2010; Maguen

et al., 2018). The aim at the heart of clinical risk prediction is to trans-

late evidence into practice by producing prediction tools. These for

instance may be developed in the form of online risk calculators, such

as the well-known Framingham Risk Scores for heart disease, that can

be easily used by consumers and clinicians to guide shared decision-

making about if, when and how to commence intervention. Such

instruments are readily available for a variety of medical and psychiat-

ric (Fusar-Poli et al., 2019) outcomes but are not yet developed for

EDs. We recommend that researchers seeking to develop such
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prediction tools follow established prognostic modeling guidelines

(Hemingway et al., 2013; Hingorani et al., 2013; Riley et al., 2013;

Steyerberg et al., 2013). This involves producing highly accurate

models using large cohort data that is inclusive of all relevant

evidence-based risk factors. The next step prior to implementation of

the risk model is external validation (and re-calibration if needed) in

new cohorts which will define the parameters of the generalizability

of the prediction model, including along dimensions of gender, age,

and ethnicity/race. According to systematic reviews, external valida-

tion is an often overlooked step (Schmidt et al., 2017), limiting the util-

ity of many models. The final step is impact testing which involves the

transformation of statistical models into online calculators and testing

their uptake and effectiveness in real world settings.

5 | CONCLUSIONS

This study has provided further evidence of the feasibility of develop-

ing risk prediction models for ED outcomes and developed the first

models in a general population-based mixed gender sample of adoles-

cents. The models performed relatively well considering the limita-

tions of pre-existing data, giving confidence in future modeling work.

Researchers are encouraged to continue this work, with eventual

translation of evidence-based models to improve prevention and

treatment for youth with EDs in mind.
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