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Abstract 

 

Compelling evidence has identified the kynurenine pathway (KP) as an avenue to predict, 

diagnose, and measure the progression of neurodegenerative diseases, such as Alzheimer’s 

disease (AD).  Because of this, the KP may offer promising directions for the development of 

novel and precise treatment options for individuals experiencing metabolic dysregulation and 

cognitive challenges.  The overarching aim of this thesis was to characterise the relationship 

between the KP and AD risk by profiling a variety of minimally invasive biofluids from healthy 

adults across the lifespan, as well as older adults at risk of AD.  This aim was interrogated 

across three studies that are presented in Chapters 2, 3, and 4, and bookended by a general 

introduction and general discussion (Chapters 1 and 5, respectively).  Chapter 2 systematically 

mapped the state of the targeted metabolomics literature and meta-analysed normative data for 

tryptophan (TRP) and kynurenine (KYN) quantified from the serum and plasma; Chapter 3 

applied a validated analytical method to quantify the major biologically active KP metabolites 

of healthy adults in a range of human biofluids; and Chapter 4 analysed the full suite of KP 

metabolites in the serum and urine of older adults with and without risk of AD to assess their 

responsivity to treatment from interventional data.  A major outcome from this thesis was to 

generate normative data on the KP, as achieved in Chapters 2 and 3.  The normative metabolite 

concentrations reported in these studies may serve as an essential component of developing 

routine diagnostic tests for inflammation-based diseases as we move towards incorporating KP 

into point-of-care testing.  Chapter 2 also sought to contextualise the KP research landscape by 

mapping study characteristics and evaluating studies in terms of analytical rigour and 

methodological validation; and determine the relationship between metabolite, sample matrix, 

biological sex, participant age, and study age.  The findings reported in Chapter 2 improve the 

availability and quality of the data summarising the normative KP profile.  Chapter 3 utilised 

correlation analyses to calculate the strength of association between all major biologically 

active KP metabolites across serum, plasma, saliva, and urine.  A total of three significant and 

novel relationships were found involving saliva and urine, including a negative correlation 

between anthranilic acid (AA) in serum and urine.  Chapter 4 sought to expand on the findings 

of Chapter 3 by examining the theragnostic potential of KP markers in relation to cognitively 

healthy older adults who were considered at risk of AD and undergoing curcumin therapy.  

Findings indicate that KYN levels within the serum were found to increase as neocortical 

amyloid load increased in the brain in females, and cognitive testing scores were found to 

improve as concentrations of TRP in serum and AA in urine increased.  The findings regarding 
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AA are in line with those reported in Chapter 3, which showed that AA levels in the serum 

decrease as urine levels increase, suggesting that excreting AA via the urine may be protective 

in terms of cognitive outcomes.  Within-group analyses showed that these correlations occurred 

within the curcumin treatment group only, and not the placebo group, regardless of AD risk.  

Taken together, this suggests that serum TRP and urine AA may be useful proxy markers of 

cognitive function and may have utility in monitoring response to treatment in future 

interventional studies.  Collectively, the findings reported in this thesis make an important 

contribution to the development of point-of-care testing for diagnostic, prognostic, and 

theragnostic purposes in an AD-risk setting.  The outcomes seed new directions for pragmatic 

biomarker discovery in the fields of AD prevention, risk reduction, and the monitoring of 

responsivity to treatment.  
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Chapter 1: General Introduction 

 

Foreword:  

In this chapter, an introduction to detecting and monitoring Alzheimer’s disease risk via non-

invasive or minimally invasive biomarkers is provided.  A general overview of Alzheimer’s 

disease aetiology and pathophysiology is described, as well as population incidence in an 

Australian setting.  The role of the kynurenine pathway and its major metabolites in 

Alzheimer’s disease pathophysiology is outlined.  Diagnosis of Alzheimer’s disease is 

described in terms of possible biological markers for disease, and the potential prognostic, 

diagnostic, and theragnostic role of the kynurenine pathway biomarkers is argued. 
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1.1 Dementia and Alzheimer’s Disease 

Dementia is a clinical syndrome involving impairments in cognition, such as executive 

function, perception, memory, and language, and reduced functional independence [1], 

resulting in significant individual, social, healthcare, and economic burden of disease [2, 3].  In 

2021, it was estimated that between 386,200 and 472,000 Australians were living with 

dementia, and this number is projected to increase to 849,000 by 2058 [4].  Due to the 

increasing prevalence of dementia, the Australian economy will incur a cost of over one trillion 

dollars in the next four decades [1].  Of the projected dementia diagnoses in Australia over the 

next forty years, it is estimated that between 50–70 % of cases will be attributed to Alzheimer’s 

disease (AD) [5, 6].  The dementia syndrome for AD is hallmarked by deficits in episodic 

memory (event-based memory), and the pathophysiological process underlying this initiates 

long before these clinical symptoms emerge forming what is known as the preclinical 

asymptomatic and prodromal symptomatic phases of AD, the latter of which is referred to as 

mild cognitive impairment (MCI) [7]. 

 

1.2 Alzheimer’s Disease Aetiology and Pathophysiology 

AD may be described as either familial or sporadic.  Familial AD has been attributed 

to approximately 1 % of all AD cases, and is typically associated with the relatively younger 

onset of the disease [8].  Familial AD is caused by the inheritance of autosomal dominant 

mutations of PSEN1, PSEN2, or APP genes, that encode proteins presenilin 1, presenilin 2, and 

amyloid precursor protein, respectively [9].  Over 95 % of AD cases are attributed to sporadic 

AD, which typically occurs after 65 years of age [9].  Sporadic AD has been linked to non-

modifiable and modifiable risk factors.  Age and the high-risk genetic variant apolipoprotein 

E-ε4 (APOE-ε4) are non-modifiable risk factors of concern [10].  Relative risk of AD with 

APOE-ε4 is associated with a dose-response, where an increasing number of APOE-ε4 alleles 

can increase the relative risk of AD onset from 20 % to 90 %, and reduce mean age at onset 

from 84 to 68 [11].  Recent genome-wide association studies have also identified nine other 

genetic loci associated with sporadic AD, including ABCA7, EPHA1, CD33, CD2AP, MS4A4 

and MS4A6E, PICALM, CLU, BIN1, and CR1 [12].  Despite identifying these loci, the genetic 

effect attributable to individual loci is approximately 50 %, indicating that there may be 

additional risk genes linked to sporadic AD that have not yet been identified [12]. 
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While familial and sporadic AD differ in disease aetiology, they are thought to share 

some overlapping pathophysiology.  The assumption of shared pathophysiology is particularly 

in relation to amyloid-beta [Aβ] in the context of the amyloid cascade hypothesis [13].  

1.2.1 Major Proteinopathies in AD 

The amyloid cascade hypothesis is concerned with  Aβ peptides, which are metabolic 

products consisting of 35 to 43 amino acids [14].  Aβ plaques are primarily composed of the 

extracellular aggregation of Aβ peptides, which are produced as a by-product of the enzymatic 

cleavage of amyloid precursor protein (APP) [14-16] via the amyloidogenic or non-

amyloidogenic pathway [14] (Figure 1.1).  While the Aβ40 isoform is the most common, the 

Aβ42 isoform exhibits greater neurotoxicity and a greater tendency to aggregate and form Aβ 

plaques [14, 17].  Although Aβ is present in healthy ageing brains, it is thought that the 

elevation of the Aβ load, coupled with a greater ratio of neurotoxic Aβ42 to Aβ40, is linked to 

cognitive decline, neurodegeneration, and the onset of AD [18]. 

 

 

Figure 1.1. Schematic depiction of APP cleavage, adapted from Querfurth & LaFerla (2010). 

In the amyloidogenic pathway, APP is cleaved at the catalytic core by β-secretase BACE1 to 

produce C99 and sAPPβ.  C99 is then digested by γ-secretase to form Aβ peptides and amyloid 

intracellular domain [14].  In the non-amyloidogenic pathway, APP is cleaved by α-secretase 

to generate sAPPα and C83.  C83 is then cleaved by γ-secretase to release amyloid 

intracellular domain and extracellular p3 [14]. 
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The amyloid cascade hypothesis for AD was officially proposed by Hardy and Higgins 

in 1992 [13].  According to this hypothesis, neurofibrillary tangles would then follow as a direct 

result of the deposition of Aβ plaques [13].  Neurofibrillary tangles are largely composed of 

hyperphosphorylated filaments of the tau protein, associated with assembling microtubules [13, 

19].  Hyperphosphorylation of insoluble tau results in the proteins polymerising into paired 

helical filaments and forming cytotoxic intracellular neurofibrillary tangles [13, 14, 19, 20].  

Neurofibrillary changes exhibit a well-defined distribution pattern throughout the AD brain 

[21].  Together with Aβ plaques, neurofibrillary tangles may initiate gliosis, a process where 

astrocytes and microglia in close proximity to the plaques proliferate in efforts to mediate 

neurotoxicity [22]. 

The amyloid cascade hypothesis has dominated therapeutic developments for AD for 

the past three decades [23-25].  However, the role of the amyloid cascade hypothesis in AD 

clinical outcomes has been hotly contested.  Recent findings have brought into question the 

diagnostic (and therapeutic) value of Aβ, as anti-Aβ drugs and drugs which seek to reduce Aβ 

production only show modest clinical benefits in people with AD [26, 27].  Additionally, anti-

Aβ drug semagacestat was linked to significant adverse events, including skin cancer and 

infections [28].  It has been hypothesised that Aβ may interact with various other pathological 

factors, as reviewed (for example) in the neuroinflammation hypothesis [29], the tau hypothesis 

[30], the oxidative stress hypothesis [31], the cholinergic hypothesis [32], and the metabolic 

dysfunction hypotheses [33, 34] (Figure 1.2).  It is reasonable to suggest that Aβ may be acting 

in parallel with other pathophysiologies that commonly co-occur such as alpha-synuclein [27, 

35], and may not be an accurate indicator of clinical relevance. 
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Figure 1.2. Schematic depiction of AD pathophysiology, adapted from on Ji et al., (2013).  

Stage A describes the formation of Aβ plaques and neurofibrillary tangles, where abnormal 

levels can collect between and within neurons and impair cell function (Stage B).  Stage C 

describes a series of immunological mechanisms observed in AD, including 

neuroinflammation, oxidative stress, and excitotoxicity.  Microglia are the main 

immunocompetent cells of the central nervous system and play a key role in these processes.  

It is well known that the motile processes of microglia act to survey the local brain parenchyma.  

Recent evidence suggests that the communication between non-activated microglia may 

regulate the number of functional synapses in the central nervous system and modulate 

synaptic activity in this way [36, 37]. 

 

1.2.2 Neuroinflammation, Oxidative Stress, and Excitotoxicity in AD 

Neuroinflammation is a key element of AD pathophysiology where immunological 

mechanisms interact with proteinopathies such as Aβ and neurofibrillary tangles [38, 39].  Once 

activated by pathologies such as Aβ plaques and neurofibrillary tangles, microglia migrate to 

the site of the trigger to initiate an innate immune response as directed by pathogen-associated 
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molecular patterns or danger-associated molecular patterns [40].  The initial pro-inflammatory 

response is helpful in initiating phagocytosis and microglia to clear the proteinopathy debris 

[41, 42].  However, the excessive deposition of the Aβ plaques and neurofibrillary tangles 

ultimately compromises the microglial plaque clearance mechanisms, therefore contributing to 

the progression of neuroinflammation and AD pathophysiology. 

The chronic activation of glial cells results in the release of toxic by-products such as 

reactive oxygen species and nitric oxide [43].  The high concentrations of nitric oxide have 

been linked to neuronal toxicity and this upregulation has been observed in the AD brain [44, 

45].  Oxidative stress has been linked to synaptic loss and neurodegeneration in AD through 

the formation of non-nitrated Aβ [46-48].  This oxidative stress is linked to the accumulation 

of Aβ plaques and neurofibrillary tangles [49, 50].  Chronic oxidative stress promotes 

neuroinflammation, leading to the increased deposition of Aβ plaques and neurofibrillary 

tangles [51].  In turn, inflammatory mediators may stimulate the upregulation of β-secretase 

BACE1 and subsequent APP processing, creating a vicious pathophysiological cycle [52]. 

Moreover, many of the previously mentioned pathophysiologies and disease-risk genes 

may contribute to excitotoxicity, which is defined as the loss of neurons due to decreased 

energy production and subsequent overexcitation of the neuron [53].  These alterations lead to 

the neurotoxicity of glutamate and the subsequent overexcitation of the N-methyl-D-aspartate 

(NMDA) receptors in a tonic manner [53].  The excitability that occurs as a result of excessive 

NMDA activation may enhance the vulnerability of local neurons in AD, leading to neuronal 

loss and degradation [54, 55].  Together, the neuroinflammation, oxidative stress, and 

excitotoxicity accounts for AD provide strong evidence for the role of immunological 

perturbations in disease pathophysiology [39]. 

 

1.3 The Kynurenine Pathway 

Recent findings have demonstrated that various metabolic pathways may contain 

promising diagnostic, prognostic, and therapeutic targets for major neurodegenerative diseases 

[34].  The metabolism of the essential amino acid tryptophan is one such pathway.  Tryptophan, 

an essential amino acid obtained through dietary sources, is responsible for the de novo 

synthesis of the neurotransmitter melatonin and its precursor serotonin.  These 

neurotransmitters play a key role in the sleep-wake cycle and mood control.  Specifically, the 

role of melatonin is well-characterised in modulating dopamine release and reuptake in the 

sleep-wake cycle, while serotonin plays an integral role in emotional regulation [56].  The 

production of serotonin and melatonin is highly dependent on the levels of available tryptophan 
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and the functionality of the kynurenine pathway (KP), which plays a key role in metabolising 

the amino acid.  As part of the KP, tryptophan is catabolised into the metabolite kynurenine.  

The neuroactive substances produced by this pathway may be neuromodulatory, 

immunomodulatory, or vasoactive in effect (Figure 1.3). 

 

Figure 1.3. Abbreviated schematic depicting the neurotoxic and neuroprotective branches of 

the KP, adapted from Tan et al. (2012).  The KP produces many biologically active molecules 

including 3-hydroxykynurenine (3-HK), quinolinic acid (QA) and kynurenic acid (KA).  These 

molecules act on N-methyl-D-aspartate receptors (NMDAr) to provide neuroprotective or 

neurotoxic effects, and are regulated by rate-limiting enzymes indoleamine 2,3-dioxygenase 

(IDO) and Trp 2,3-dioxygenase [37, 57].  An abbreviated depiction of the neuroprotective 

branch is illustrated in blue, while the neurotoxic branch is illustrated in red. 

 

Tryptophan metabolism and the KP have been proposed as the link between 

neurological dysfunction, inflammation, and neurotoxicity [58].  Neuroinflammation has been 

directly linked to tryptophan metabolism [58].  The presence of pro-inflammatory cytokines, 
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including interferon-gamma (IFN-γ), have been observed to mobilise the metabolism of 

tryptophan toward the KP as opposed to neurotransmitter synthesis via the activation of rate-

limiting enzyme IDO [58, 59].  The upregulation of this pathway results in the increased 

production of neurotoxic metabolites, including QA, an agonist of the NMDA receptor, and 

the decreased production of neuroprotective metabolites, including KA (Figure 1.3).  The KP-

mediated changes in neurotransmitter levels observed in pro-inflammatory environments 

indicates that there is a link between the KP, excitotoxicity, inflammation, and 

neurotransmission that is yet to be fully investigated in the context of biomarker discovery. 

1.3.1 The Kynurenine Pathway in AD 

The KP is the subject of increasing efforts to understand the role of neuromodulatory 

metabolites in AD pathophysiology [59].  Specifically, mounting evidence has linked QA-

associated neuroinflammation to the development and onset of AD [59] (Figure 1.4).  KA also 

exhibits strong immunomodulatory functions.  While largely considered neuroprotective, the 

actions of KA vary depending on whether inflammatory or homeostatic conditions are present 

[60].  While QA and KA are considered the most relevant KP metabolite in terms of biological 

neurotoxicity [61], there are various other neuroactive metabolites in the KP that have been 

implication in neuropsychiatric and neurodegenerative diseases.  For example, 3-HK is 

considered a free-radical generator and neurotoxic compound as it plays a key role in oxidising 

interacting molecules [62].  3-hydroxyanthranilic acid (3-HAA) exhibits various 

immunomodulatory effects and generates free-radicals.  This metabolite readily auto-oxidises 

molecules to generate highly reactive species [63].  Alongside 3-HK and 3-HAA, anthranilic 

acid (AA) also possesses redox-modulating activity [64].  It is important to note that various 

KP metabolites may act to produce an additive immunomodulatory effect [65], which supports 

the case for using these neuromodulatory metabolites as measures of AD risk and progression. 
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Figure 1.4. Schematic depiction of the role of the KP in AD pathophysiology, adapted from 

Guillemin et al. (2003).  The accumulation of neurotoxic QA, as well as the increased 

expression of rate-limiting enzymes such as IDO, has been well-documented in the AD brain 

[66-69].  Transgenic mouse studies and human studies have shown that rate limiting KP 

enzymes are often co-localised with these proteinopathies [67, 68].  Further, Aβ42 has been 

shown to induce IDO, therefore resulting in a significant increase in the production of QA by 

microglia and macrophages [70, 71].  The formation of tau and neurofibrillary tangles have 

been observed to increase in a dose-dependent manner following exposure to QA [72].  QA 

also has a role in inducing the expression of several chemokines and pro-inflammatory 

cytokines, therefore amplifying the pro-inflammatory cascade [71]. 
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Furthermore, the link between KP metabolites, neuroinflammation, and 

neurodegeneration is observable within the peripheral metabolome.  These KP metabolite 

changes have been directly linked with biomarker evidence for neurodegeneration [73].  For 

instance, a recent study implicated an interaction between KP, neurofilament light chain (NFL; 

a biomarker for neurodegeneration), and traditional AD hallmarks.  Specifically, NFL and 

Aβ42 were positively correlated with the kynurenine to tryptophan ratio, reflecting significant 

IDO upregulation [73].  When participants in this research were stratified by their neocortical 

Aβ load (NAL), which is considered one indicator for AD risk, associations between KP 

metabolites and Aβ in the plasma were pronounced in individuals with high NAL [73].  This 

growing body of evidence has inspired drug development initiatives to inhibit rate-limiting 

enzymes within the KP for multiple diseases including AD [59].  In turn, this also raises the 

prospect for further biomarker discovery initiatives for the KP in AD. 

 

1.4 Biomarker Discovery and AD Diagnosis 

There are many potential targets within AD’s pathology for developing biological 

markers (biomarkers).  The term biomarker refers to biological characteristics that may be 

objectively evaluated and used as an indicator of normal and pathogenic biological process 

[74].  In cases of AD, pathophysiological abnormalities precede clinical symptoms and are 

detectable by in vivo biomarkers.  Currently, five AD biomarkers have been validated for 

inclusion in diagnostic criteria, largely concerned with Aβ plaques and tau-related 

neurodegeneration; three of which are imaging measures and two are CSF fluid analytes (Table 

1.1) [75]. 
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Table 1.1. Validated AD biomarkers that may be used modern in diagnostic criteria. 

Biofluid or 

Tissue 

Biomarker Method of 

Detection 

            Evidence for Use 

CSF Aβ42 Spinal Tap → AD diagnosis has had a focus on disease fluid biomarkers and Aβ due to the 

predominance of the amyloid cascade hypothesis [76]. 

→ CSF Aβ42 has an inverse relationship with amyloid plaque load [77, 78]. 

Brain Aβ42 Positron 

Emission 

Tomography 

(PET) 

→ Pittsburgh Compound B (PiB), a thioflavin T, has been used in PET scans to image 

Aβ in neuronal tissues. 

→ People with AD show a marked retention of PiB in areas containing large amounts 

of amyloid deposits, such as the association cortex. 

→ PiB retention is typically increased within the frontal, parietal, temporal, and 

occipital cortices, as well as the striatum [79]. 

→ In cortical areas, PiB retention is correlated inversely with F18 fluorodeoxyglucose 

(FDG) [79]. 

→ PET studies are considered the gold standard and are increasingly being used to aid 

early detection of dementia, or where a clinical diagnosis is challenging [80, 81]. 

Brain Glucose 

Hypometabolis

m 

PET → Metabolism, including glucose uptake, is reduced in AD [81]. 

→ Multiple PET studies which have used the glucose metabolic tracer, FDG [81].  

These studies have identified distinctive patterns and metabolic abnormalities 

within the AD brain. 
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→ PET studies have shown that people with AD demonstrate a characteristic pattern 

of glucose hypometabolism temporo-parietally, with hypermetabolism occurring 

frontally as a compensatory mechanism [80, 82, 83]. 

→ FDG PET has been able to distinguish the condition from healthy controls with 93 

to 94 % sensitivity and specificity ranging between 93 to 99 % [84, 85]. 

CSF p-tau and t-tau Spinal Tap → The final major category for AD biomarkers is concerned with tau-related 

neurodegeneration [75, 76]. 

→ The first major biomarker is concerned with increased levels of CSF 

phosphorylated tau (p-tau) and total tau (t-tau) [86]. 

Brain Neurodegenera

tion 

Magnetic 

Resonance 

Imaging (MRI) 

→ The second major AD biomarker is concerned with measuring brain atrophy 

through structural MRI studies [87]. 
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While these biomarkers have been validated for the inclusion in AD diagnostic criteria 

[88], there has been a shift in preference to move away from invasive, potentially risky 

procedures in diagnosing and managing chronic conditions [89].  This is especially the case in 

older adults, who are particularly vulnerable to minor stressor events such as spinal taps [90].  

Furthermore, there have not yet been any cost-effectiveness analyses for the appropriate use of 

neuroimaging in the diagnosis of dementia published within the literature [91].  While PET 

scans have high diagnostic accuracy, health economics studies have indicated that adding it to 

the standard diagnostic protocol for AD would yield limited benefit in exchange for high costs 

[92].  The high cost of these diagnostic measures is reflected in Australia’s response to 

dementia across 2018–2019, where $3 billion in spending was directly attributed to dementia.  

Specifically, spending on hospital services amounted to $383 million, while spending out-of-

hospital medical services amounted to $99.2 million [4].  Accessibility has also been perceived 

as a significant barrier to medical care by older adults, specifically those that are homebound, 

regional, and remote [93, 94].  Travel-specific considerations include lack of public 

transportation, lack of wheelchair accessible vehicles, high cost of transportation services, and 

remoteness [93]. 

A potential avenue in this field is point-of-care testing (POCT).  POCT is defined as 

medical diagnostic testing that is performed at the time and place of patient care being 

delivered.  A key example of POCT is the application of personal glucometers to measure blood 

glucose [95].  It has been proposed that future analytes for POCT may include low-molecular 

weight metabolites, although a core limitation is bioanalytical performance [96].  The risk 

posed by invasive procedures, coupled with the health economics perspective and accessibility 

issues, stress the need for non-invasive or minimally invasive biomarkers for AD diagnosis, 

monitoring responsivity to treatment, and risk measurement; promising avenues include blood, 

urine, and saliva.  Developing these biomarkers may improve patient outcomes and lessen the 

economic burden of medical diagnostics, hence alleviating the projected cost of over one 

trillion dollars incurred by the Australian government in the next four decades [1]. 

Several blood plasma biomarkers for AD have been identified, including Aβ, tau 

protein, and neurofilament light chain (Table 1.2) [76].  These findings support the investment 

into identifying a minimally invasive, cost-effective blood-based biomarker for AD [97-99].  It 

is essential to mention that plasma biomarkers also have cost-benefit advantages, as well as 

promising scalability, meaning that healthcare services may cover costs and thus the general 

public may have broader access [99]. 
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Table 1.2. Current evidence for minimally and non-invasive biomarkers for AD. 

Biofluid Biomarker or Assay             Evidence for Use 

Plasma Aβ42:Aβ40 → Recent clinical trial data suggest that the antibody-based removal of cerebral Aβ plaques may 

facilitate the clearance of tau tangles and slow cognitive decline [100]. 

→ The difference in the plasma ratio of Aβ42 to Aβ40 in Aβ-positive and Aβ-negative individuals is 

modest, indicating that it may not be an efficient tool [99, 101-103].   

Plasma p-tau → The increase in phosphorylated tau-181 concentrations in the plasma is approximately threefold, 

showing high diagnostic accuracy for AD (ranging from 85 to 95 %) [100, 104, 105]. 

Urine Genetic Analysis → A recent study has coupled experimental and computational methods to identify urine-based 

biomarkers for AD. 

→ Tissue-based gene expression data within the brain were analysed to identify genes that may 

encode urine-excretory proteins that might act as candidate protein biomarkers for AD. 

→ Three genes were differentially expressed in the urine of AD patients (secreted phosphoprotein-1; 

gelsolin; insulin-like growth factor-binding protein 7) [106]. 

→ A recent transgenic mouse model (APP(swe)/PSEN1dE9) found thirteen proteins in the urine 

which may enable the detection of AD prior to Aβ deposition [107]. 

Saliva p-tau, t-tau, Aβ, and 

Alpha-Synuclein 

→ Saliva is also a rich source of potential biomarkers for AD detection and offers several practice 

advantages over CSF taps and venepuncture. 

→ Total tau, phosphorylated tau, Aβ, and alpha-synuclein proteins have all been detected within the 

saliva during preliminary investigations [108]. 
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Despite these promising biomarkers, developing accurate and specific blood 

biomarkers for AD is challenging, largely attributed to the fact that the peripheral circulation 

is not continuous with the brain extracellular fluid due to the blood-brain barrier and therefore 

does not experience the free exchange of molecules [76].  For instance, CSF levels of neuronal 

tau are measured at approximately 300 pg/mL, while plasma levels are measured at 5 pg/mL 

[109].  Further, the small concentrations of brain proteins which can enter the blood must be 

quantified in a medium containing high levels of common plasma protein, which introduces 

significant risk of interference during analytical detection.  The minute concentrations of brain 

proteins present in the blood are also susceptible to being filtered by the kidneys, metabolised 

in the liver, or degraded by proteases.  Together, these factors introduce variability that is 

difficult to account for in analytical or clinical studies [109, 110].  This is in comparison to 

metabolomics, which measures the unique biochemical profile within specific sample matrices 

and is not limited to describing the protein composition of the matrix.  Minimally invasive 

routes, including biomarker identification in urine and saliva, are less studied (Table 1.2).   

Although these core CSF and plasma biomarkers reflect the central pathophysiology of 

AD, the pathogenic heterogeneity of the disease, and often unspecific nature of the clinical 

symptomology, presents diagnostic difficulties [76].  There are also difficulties in correlating 

primary biomarker data with the clinical syndrome and disease progression [35].  For these 

reasons, there is an urgent need for new accurate and specific biomarkers to act as diagnostic 

tools across the AD continuum [76].  For instance, it is hypothesised that evidence of a subtle 

cognitive decline forms the final stage of pre-clinical AD, suggesting that the individual is 

approaching the border zone with MCI, which further increases AD risk [7, 111, 112] [113].  

Therefore, identifying, understanding, and characterising these early disease phases before 

symptom onset is essential for early diagnosis and preventing future deterioration and decline.   

 

1.5 Developing KP Biomarkers for AD 

Developing and validating KP-specific biomarkers for AD poses many challenges with 

respect to the current literature published within the field, as there is extensive variability in 

terms of cohort characteristics and samples studied.  It is essential to quantify these differences, 

as the KP metabolic complement is known to be affected by numerous factors.  For example, 

sex disparities in KP metabolism have been observed due to the differential actions of 

gonadocorticoids [114].  This has been exemplified in a recent study exploring the serum 

concentrations of KP metabolites including TRP, KYN, 3-HK, 3-HAA, AA, QA, and picolinic 
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acid (PA) in older adults.  All participants were recruited from the Kerr Anglican Retirement 

Village Initiative in Ageing Health (KARVIAH Cohort), had normal global cognition, and 

were categorised into groups based on their neocortical amyloid load (NAL).  The low NAL 

group (NAL-; n = 65) and the high NAL group (NAL+; n = 35) were grouped using a standard 

uptake value ratio (SUVR) cut-off of 1.35.  Findings showed that higher levels of kynurenine 

and neurotoxic AA were found in the female NAL+ subset [114].  This highlights both the 

influence of biological sex in AD pathogenesis, and the role of these KP metabolites as 

potential blood biomarkers for AD.  Moreover, a 2021 study by Whiley and colleagues reported 

a reduction in the bioavailability of KP metabolites in the urine of individuals living with AD.  

Specifically, data indicate significantly lower concentrations of 5-hydroxyindoleacetic acid (5-

HIAA), KA, TRP, xanthurenic acid (XA), and the TRP/KYN ratio.  A decreasing trend in 

concentrations was observed in order of clinical diagnosis (healthy to MCI to dementia) [115], 

supporting the use of the KP as a measure of AD risk.  This thesis will go on to further explore 

the KARVIAH Cohort dataset in Chapter 4. 

Concentrations of KP metabolites within the saliva of AD patients are lesser known.  

Nonetheless, KP metabolites are detectable within the saliva and have been measured in 

clinical cohorts, including diabetic patients [116, 117].  It is also of interest to note that the KP 

profile varies within samples obtained from individual participants.  Studies have found that 

the information contained in peripheral samples, such as urine and serum, are statistically 

independent [118].  It is strongly suggested that future research should seek to control for and 

clarify factors such as sex differences, lifestyle factors, and inter-sample variation when 

investigating the role of the KP in AD risk. 

In recognition of the importance of the KP in improving health outcomes, the 

relationship between the KP and AD risk should be specifically determined.  Mapping the 

sophisticated metabolic signature of the KP across sample types and cohorts may: 

(i) Inform our understanding of underlying molecular mechanisms of AD, allowing 

the sub-classification of diseases according to the metabolic phenotype of the 

affected individual; 

(ii) Provide precise prognostic and diagnostic biomarkers; and  

(iii) Reveal appropriate biomarkers for a specific and targeted drug response [119]. 
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1.6 Thesis Aims and Objectives 

Compelling evidence has identified the KP as an avenue to predict, diagnose, and 

measure the progression of neurodegenerative diseases [120].  This provides promising 

directions for the development of novel and precise treatment options for individuals 

experiencing metabolic dysregulation and cognitive challenges.  However, the complex 

interrelationship between the KP and AD risk has not been characterised, in part due to a lack 

of understanding of:  

i) How normal KP function is characterised across the lifespan;  

ii) A lack of evidence from ‘at-risk’ cohorts; and  

iii) The heterogeneous and unvalidated methods used and the incomplete datasets 

available. 

This thesis will address these research gaps by developing and applying validated 

targeted metabolomics approaches to assess the diagnostic accuracy of the KP as a non-

invasive biomarker for AD risk across various sample types and cohorts.  Outcomes from this 

research aims to show or predict the relationship between the KP and AD risk.  There are three 

aims to this thesis that will be addressed across three studies: 

Aim 1:  Appraise and characterise the existing literature on how KP metabolites are 

measured and establish a set of normative data;  

Aim 2:  Identify and develop a validated analytical method to quantify KP metabolites 

in the liquid biopsies of healthy adults in a range of human biofluids going 

beyond blood samples; and 

Aim 3:  Analyse KP metabolites in the serum and urine of older adults at risk and not 

at risk of AD and assess their responsivity to treatment from clinical trial data. 

Aim 1 will be carried out in the form of a systematic review and meta-analysis of KP 

function in healthy individuals from case-control and methodological validation studies 

(Chapter 2); Aim 2 will be investigated in the form of an empirical study conducted on the 

plasma, serum, saliva, and urine from healthy adults (Chapter 3); and Aim 3 will be 

investigated using archival data obtained from older adults participating in a clinical trial from 

the KARVIAH Cohort classified as at-risk and not-at-risk of AD via amyloid PET scan 

(Chapter 4).   

The overarching aim of this thesis is to profile a variety of non-invasive and minimally 

invasive biofluids from healthy adults across the lifespan, as well as older adults at risk of AD, 

to characterise the relationship between the KP and AD risk.  The purpose of this is to seed 

new directions for pragmatic biomarker discovery in the fields of AD risk prediction and the 
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monitoring of responsivity to treatment.  As an additional note, this thesis will benefit from 

using analytical methods which have been objectively validated for diagnostic accuracy, and 

controlling for sex differences, lifestyle factors, and inter-sample variation. 
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Chapter 2: Validating the Instruments and Methodologies Used 

for the Quantification of Tryptophan and Kynurenine in Human 

Biofluids: A Systematic Review and Meta-Analysis 

 

 

Foreword:   

In this chapter, a normative dataset is generated from the published literature on the kynurenine 

pathway in healthy volunteer participants extracted from cross-sectional and methodological 

validation studies.  Study characteristics were mapped, and studies were evaluated in terms of 

analytical rigour and methodological validation.  Meta-analysis of variance between 

instruments, sample matrices, and metabolites was conducted.  Regression analyses were 

applied to determine the relationship between metabolite, sample matrix, biological sex, 

participant age, and study age.  The chapter is currently being prepared as a stand-alone journal 

article manuscript and first will be submitted to the preprint server bioRvix.  A pilot study on 

the research conducted for this chapter was completed as part of a formative assessment for 

unit Experimental Design and Analysis B as part of the Master of Research degree. 

 

Metri, N.J., Butt, A., Murali, A., Steiner-Lim, G.Z., Lim, C.K. (in preparation).  Normative 

data on serum and plasma tryptophan and kynurenine concentrations from 8,089 individuals 

across 120 studies: A systematic review and meta-analysis.  bioRxiv. 
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2.1 Introduction 

 
Tryptophan (TRP), an essential amino acid, is largely derived from dietary proteins 

such as meat and dairy [121].  Peripheral concentrations of TRP are determined by the 

production of neurotransmitters serotonin and melatonin, and the balance between levels of 

dietary intake and the rate of removal from the plasma as part of protein biosynthesis [122].  

Under normal physiological conditions, however, over 90 % of dietary tryptophan in the liver 

is metabolised along the kynurenine pathway (KP) into a variety of biologically active 

downstream metabolites (see Figure 2.1) [123, 124].  The KP has been implicated in an array 

of diseases, including depressive and psychotic disorders [125], neurodegenerative diseases 

[126], autoimmune diseases [127], cardiovascular diseases [128], renal diseases [129], 

metabolic disorders [130], gastrointestinal disease and distress [131], and cancers [132].  TRP 

metabolism and the KP have gained much interest in recent times given their role in modulating 

both innate and adaptive immune responses and inflammation [133, 134].  Given the link 

between the KP and multiple diseases, it has been suggested that the thorough analytical 

profiling of KP metabolites may improve patient care outcomes by revealing prognostic, 

diagnostic, and theragnostic biomarkers [135]. 

Figure 2.1. Abbreviated schematic depicting the major metabolites and enzymes of the KP, 

adapted from Tan et al. (2012) [57].  
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Meta-analytic evidence has shown extensive profiling of KP metabolites across various 

clinical cohorts within the plasma, serum, urine, and cerebrospinal fluid [125, 136-139].  This 

has been reported through various modes of detection (MODs), metabolites studied, sample 

matrices, and geographical locations.  Despite the breadth of these data, there is a lack of 

information on healthy and younger cohorts (e.g., aged ≤ 50 years) with normal metabolic 

functioning.  Inter-sample variation in KP profiling is also less characterised.  For example, 

studies have found that the information contained in peripheral samples, such as serum and 

urine, are statistically independent [140].  Changes in the KP profile across the lifespan are 

even less characterised.  These literature gaps are emphasised by the heterogeneity in 

methodological and analytical quality of the reported literature.  Together, these factors mean 

that there is an absence of normative KP data, across the lifespan and across geographical 

regions, that is of high methodological and analytical rigour that may be referred to as a 

benchmark in future studies, clinical or otherwise. 

The purpose of this study was to generate a set of KP normative values for the purpose 

of informing future biomarker investigations.  This meta-analysis and systematic review 

therefore aimed to: (i) characterise and map the characteristics of studies reported within the 

literature, including MOD, metabolites studied, sample matrices, and geographical location; 

(ii) calculate normative means for TRP and kynurenine (KYN) across MOD, sample matrices, 

and geographical location; (iii) critically appraise the methodologies and data reported within 

the literature, in terms of author-reported methodological validation and through an 

independent risk of bias assessment; (iv) ascertain variance in sensitivity between MOD; and 

(v) determine the relationship between metabolite, biofluid, age, sex, and study year. 

 

2.2 Methods and Materials 

 

2.2.1 Study Protocol 

This systematic review and meta-analysis was prospectively registered with the 

PROSPERO International Database of Systematic Reviews on 26 December 2021 

(#CRD42021293595), and followed the recommendations of the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses Statement (PRISMA) [141].  It is anticipated that this 

review will provide insight into the evidence required to inform the outcomes of biomarker 

development research.    
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software (EndNote™ X9; Thomson Reuters, CA, USA).  Using EndNote, duplicate references 

were removed, and remaining titles and abstracts were screened against study inclusion and 

exclusion criteria by the primary reviewer.  The titles and abstracts of the remaining records 

were screened and if there was any doubt regarding their eligibility, the full text was retrieved 

for clarification.  20 % of articles deemed eligible to the primary reviewer were then confirmed 

by two independent reviewers to ensure inclusion criteria were met. 

2.2.4 Eligibility Criteria 

Inclusion criteria for clinical and/or analytical studies included: (i) quantifying KP 

metabolites, including TRP and KYN, in human biofluids including whole blood, blood serum, 

blood plasma, urine, saliva, sebum, tears, sweat, cerebrospinal fluid, and faeces via targeted 

metabolomic approaches; (ii) clinical case-control studies which included a healthy control 

group or analytical studies including only healthy adults with no known neurological, 

psychological, or medical condition; (iii) reported in the English language; (iv) using liquid 

chromatography (LC) coupled to mass spectrometry (MS), electron capture dissociation 

(ECD),  spectroscopy, or enzyme-linked immunosorbent assays (ELISA); and (v) cross-

sectional, observational studies with no intervention administered or methodological validation 

studies. 

Exclusion criteria for publications included: (i) conference proceedings and papers, 

articles in press, editorials, letters, notes, short surveys, pre-prints, book chapters, and book 

series; (ii) publications that explore TRP or KYN identification and/or quantification in 

nutritional supplements, animals, food products, or following an intervention such as TRP 

loading or depletion; (iii) studies which explore TRP or KYN quantification in clinical cohorts 

only and did not include a healthy control group; and (iv) studies which utilise untargeted 

metabolomics due to potential imprecision in the metabolites characterised.  

2.2.5 Data Extraction 

Data extraction was then completed by the authorship team and double-checked by a 

second independent reviewer.  Any disagreements were resolved by reviewing and discussing 

the articles with the research team.  Study characteristics were extracting including author, year 

of publication, the instrument of detection, and the number of samples analysed.  

Concentrations of TRP and/or KYN in the biofluids of healthy adults were also extracted.  In 

clinical studies, only data related to healthy controls were extracted and reported.  The 

chromatographic conditions were extracted from eligible studies into standardised tables.  To 

ensure the analytical rigour of the data, validation parameters of interest included: (i) 
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determining the robustness of the method by testing the variation in the instrumental 

parameters; (ii) limits of quantification (LOQ); (iii) limits of detection (LOD); (iv) precision; 

(v) accuracy of the method via recoveries for determining true values; (vi) assessment of the 

analyte’s stability; (vii) calibration curve to test the response for a variety of standards; and 

(viii) the specificity such as matching the retention times of the samples and the standards 

[142]. 

2.2.6 Risk of Bias Evaluation 

As not one appropriate tool was available to assess the methodological quality of 

studies, this was evaluated using a combination of tools, including the QUADOMICS tool 

[143], the QUADAS tool [144], and the Joanna Briggs Institute Checklist for Analytical Cross 

Sectional Studies [145].  The adapted tool consisted of six items which account for the 

particular methodological challenges posed by metabolomic approaches (Appendix B).  Items 

were either scores as Yes, No, or NA/Unknown.  Studies were then given an overall appraisal 

as either high quality or low quality by the authorship team. 

2.2.7 Statistical Analyses 

Studies were grouped via the MOD reported, by metabolite (TRP or KYN), by sample 

matrix, and by geographical region (America, Asia, Australia, Europe, Middle East).  Findings 

from pooled data were compared by utilising established estimation and approximation 

methods reported in the literature [146].  Regarding this data set, this was mostly concerned 

with the conversion of median and interquartile range to mean and standard deviation (SD).  

Weighted mean (± SD) concentrations of TRP and KYN were calculated per MOD, sample 

matrix, and by geographical region reported.  Variance in sensitivity between instruments was 

ascertained by a two-way ANOVA followed by Tukey’s multiple comparison test.  Only 

sample matrices with over 20 studies reported were included into the meta-analysis to ensure 

that there was enough statistical power to detect an effect.  To determine the relationship 

between metabolite, biofluid, age, sex, and study year, an adjusted weighted-variance Ordinary 

Least Squares (OLS) regression analysis was performed.  All statistical analyses were 

performed using GraphPad Prism v 9.0.0 (GraphPad Software, Inc., CA, USA) and Stata™ 

v17 (StataCorp, Texas, USA). 
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2.3 Results 

The search strategy identified 11,241 publications.  Following the application of the 

criteria, 531 full-text articles were assessed, of which 22.60 % (N = 120) met the inclusion 

criteria (Figure 2.2).  Serum and plasma were the only sample matrices with over 20 studies 

reported for subsequent inclusion in the meta-analysis.  Due to small sample sizes (and 

consequently a high level of variability), urine, CSF, saliva, tears, faeces, and whole blood 

studies were not synthesised and will not be discussed further. 

  Figure 2.2. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

flow diagram detailing the search, identification, screening, and eligibility processes. 
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2.3.1 Study Characteristics 

This meta-analysis reported on a grand total of 120 studies including 8,089 participants 

(N = 120; n = 8,089; Table 2.2).  All citations are listed in Table 2.2.  Studies were reported 

from across five regions, including America, Asia, Australia, Europe, and Middle East, and 31 

countries in total.  Studies were most reported from China (23.33 %; n = 28).  The mean age 

across all studies was 47.35 ± 15.65 and 77.67 % of participants were female. 

Regarding the quantification of TRP, a total of eight sample matrices were reported 

within the literature.  This included serum (n = 54), plasma (n = 48), urine (n = 15), 

cerebrospinal fluid (CSF; n = 6), saliva (n = 2), tears (n = 1), faeces (n = 1), and whole blood 

(n = 1).  A total of six sample types were reported in the quantification of KYN: serum (n = 

34), plasma (n = 33), urine (n = 7), CSF (n = 6), saliva (n = 2), and faeces (n = 1).  The most 

common MOD across metabolites reported within the literature included mass spectrometry 

(MS; n = 80).  Other modes of detection reported include fluorescence detection (FL), ultra-

violet visible spectroscopy (UV-Vis), ELISA, photo diode array (PDA), ECD, and 

electrochemiluminescence (ECL).  The characteristics of the TRP and KYN quantification 

methods used in the included studies are described in Table 2.3, including MOD, column phase 

and diameter, particle size, mobile phases, flow rate, injection volume, column temperature, 

program time, and detection wavelength (where applicable). 
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Chen et al., 2010 

[160] 
Clinical UV-Vis + FL Australia CSF, Serum 35 NR 35.80 (3.00) 

Chen et al., 2020 

[161] 
Clinical MS China Plasma 75 32M, 43F 37.19 (9.66) 

Cheng et al., 2015 

[162] 
Clinical MS China Saliva 28 0M, 28F NR 

Clarke et al., 2009 

[163] 
Clinical UV-VIS + FL Ireland Plasma 26 26M, 0F 32.20 

Colle et al., 2020 

[164] 
Clinical MS France Plasma 214 90M, 124F 45.50 (NR) 

Crotti et al., 2019 

[165] 
Clinical UV-VIS + FL Italy Plasma 5 NR NR 

Cseh et al., 2019 

[166] 
Analytical MS Hungary Plasma 8 NR NR 

Curto et al., 2016 

[167] 
Clinical MS Italy Serum 35 27M, 8F 44.80 (7.64) 

Curto et al., 2016 

[168] 
Clinical MS Italy Serum 84 15M, 69F 40.40 (9.43) 

Domingues et al., 

2015 [169] 
Clinical MS Brazil Plasma 38 NR NR 

Doolin et al., 2018 

[170] 
Clinical MS Ireland Plasma 37 18M, 19F 80.86 (10.78) 

Eniu et al., 2019 

[171] 
Clinical MS Romania Serum 26 0M, 26F NR 

Fekkes et al., 1998 

[172] 
Clinical FL Netherlands Plasma 17 17M, 0F 70.10 (1.30) 

Fitzgerald et al., 

2008 [173] 
Clinical FL Ireland Plasma 33 0M, 33F 41.30 (12.80) 

Frick et al., 2004 

[174] 
Analytical UV-Vis + FL Austria Serum 43 22M, 21F 66.3 
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Fukushima et al., 

2014 [175] 
Clinical MS Japan Serum 27 12M, 15F 26.50 (5.60) 

Furtado et al., 

2017 [176] 
Clinical MS Brazil Plasma 18 7M, 11F NR 

Galla et al., 2021 

[177] 
Analytical MS Hungary Urine 10 NR NR 

Geisler et al., 2015 

[178] 
Clinical UV-Vis + FL Austria Serum 100 58M, 42F 49.00 (11.40) 

Gevorkian et al., 

2015 [179] 
Clinical ECD USA Plasma 140 72M, 68F 50.80 (8.80) 

Girgin et al., 2020 

[180] 
Clinical UV-Vis + FL Turkey Serum 30 20M, 10F 37.0 (1.30) 

Gomez-Gomez et 

al., 2017 [181] 
Clinical MS Spain Urine 25 2M, 23F NR 

Gulaj et al., 2010 

[182] 
Clinical UV-Vis + FL Poland Plasma 18 5M, 13F 76.17 (7.30) 

Hajsl et al., 2020 

[183] 
Clinical MS Czech Republic Plasma 25 14M, 11F NR 

Han et al., 2018 

[184] 
Clinical MS China Serum 30 21M, 9F NR 

Henykova et al., 

2016 [185] 
Analytical MS Czech Republic Serum 18 4M, 14F NR 

Huang et al., 2022 

[186] 
Clinical MS China Serum 62 36M, 26F 43.40 (1.30) 

Huang et al., 2021 

[187] 
Clinical MS China Urine 40 NR NR 

Islam et al., 2020 

[188] 
Clinical UV-Vis Bangladesh Serum 248 102M, 146F NR 

Jang et al., 2022 

[189] 
Clinical MS South Korea Serum 35 32M, 3F 24.66 (2.99) 
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Kim et al., 2015 

[190] 
Clinical MS South Korea Plasma 70 44M, 26F 63.20 (8.90) 

Kim et al., 2009 

[191] 
Clinical UV-Vis + FL South Korea Plasma 174 78M, 96F 32.49 (10.69) 

Klatt et al., 2021 

[192] 
Clinical MS Australia Serum 93 49M, 44F NR 

Koch et al., 1979 

[193] 
Analytical ECD USA 

Urine, Plasma, 

Serum 
11 NR NR 

Krasnova et al., 

2000 [194] 
Clinical ECD Russia Serum 10 NR NR 

Kurgan et al., 2022 

[195] 
Clinical MS Turkey Saliva 20 8M, 12F 39.60 (6.70) 

Leichtle et al., 

2012 [196] 
Clinical MS Germany Serum 58 26M, 32F NR 

Li et al., 2011 

[197] 
Clinical FL China Serum 100 52M, 48F NR 

Lim et al., 2017 

[198] 
Clinical MS Australia Serum 49 14M, 35F 45.29 (11.70) 

Lionetto et al., 

2021 [199] 
Clinical MS Italy Serum 239 87M, 152F NR 

Liu et al., 2018 

[200] 
Analytical ECD China Plasma NR NR NR 

Lorite et al., 2007 

[201] 
Clinical UV-Vis + FL Spain Serum 5 NR NR 

Lu et al., 2019 

[202] 
Clinical MS Singapore Serum 76 NR NR 

Ma et al., 2009 

[203] 
Clinical UV China Plasma 10 NR NR 

Malhotra et al., 

2017 [204] 
Clinical MS USA Plasma 10 4M, 6F 44.00 (12.00) 
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Meng et al., 2022 

[205] 
Clinical MS China Serum 96 96M, 0F 78.01 (6.99) 

Michel et al., 2020 

[206] 
Clinical MS Germany Serum 20 13M, 7F NR 

Mierzchala et al., 

2020 [207] 
Clinical MS Poland Serum 30 NR NR 

Mu et al., 2012 

[208] 
Clinical FL China Serum 110 58M, 52F NR 

Myint et al., 2007 

[209] 
Clinical UV-Vis + FL Korea Plasma 80 40M, 40F 39.06 (8.75) 

Myint et al., 2007 

[210] 
Clinical UV-Vis + FL Korea Plasma 189 76M, 113F 32.49 (10.69) 

Nakatsukasa et al., 

2011 [211] 
Clinical MS Japan Tears, Plasma 34 17M, 17F NR 

Naz et al., 2019 

[212] 
Clinical MS Sweden Serum 39 19M, 20F NR 

Ogawa et al., 2018 

[213] 
Clinical FL Japan Plasma 217 100M, 117F 41.20 (13.90) 

Oh et al., 2017 

[214] 
Clinical MS South Korea Urine 163 NR 50.92 (15.39) 

Ohashi et al., 2013 

[215] 
Analytical MS Japan Serum 19 8M, 11F 23.60 (3.50) 

Onesti et al., 2019 

[216] 
Clinical MS Belgium Plasma 146 0M, 146F NR 

Palabiyik et al., 

2016 [217] 
Clinical UV-Vis + FL Turkey Serum 30 13M, 17F 36.00 (2.00) 

Panitz et al., 2021 

[218] 
Clinical MS Germany Serum 43 19F, 24M NR 

Pertovaara et al., 

2005 [219] 
Clinical UV-Vis + FL Finland Serum 309 170M, 139F 45.00 (11.00) 
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Primiano et al., 

2020 [220] 
Clinical MS Italy Urine 12 4M, 8F NR 

Ren et al., 2011 

[221] 
Clinical FL China Serum 120 62M, 58F NR 

Roca et al., 1999 

[222] 
Clinical UV-Vis Spain Plasma 29 13M, 16F NR 

Rodrigues et al., 

2021 [223] 
Clinical MS UK CSF, Plasma 20 NR NR 

Ruoppolo et al, 

2014 [224] 
Clinical MS Italy Serum 76 35M, 41F NR 

Saito et al., 1979 

[225] 
Clinical UV-Vis + FL Japan Serum 8 NR NR 

Saito et al., 2022 

[226] 
Clinical MS Japan Serum 59 29M, 30F 52.50 (7.93) 

Sakaguchi et al., 

2011 [227] 
Analytical FL Japan Urine 7 7M, 0F NR 

Schwieler et al., 

2020 [228] 
Clinical MS Sweden CSF 13 5M, 8F 40.40 (14.60) 

Shi et al., 2019 

[229] 
Clinical MS China Plasma 11 8M, 3F 51.09 (10.77) 

Smolenska et al., 

2020 [230] 
Clinical MS Poland Plasma 27 NR NR 

Sorgdrager et al., 

2017 [231] 
Clinical MS Netherlands Serum 406 163M, 243F 42.90 (14.70) 

Sorgdrager et al., 

2019 [232] 
Clinical MS Belgium CSF, Serum 39 18M, 21F 71.30 (10.70) 

Souissi et al., 2022 

[233] 
Clinical UV-Vis Tunisia Plasma 50 NR NR 

Sousa et al., 2021 

[234] 
Clinical UV-Vis + FL Portugal Urine 6 6M, 0F NR 
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Sultana et al., 2012 

[235] 
Analytical UV-Vis Pakistan Plasma 10 10M, 0F NR 

Sun et al., 2021 

[236] 
Clinical MS China Plasma 401 163M, 238F 53.15 (6.64) 

Sun et al., 2020 

[237] 
Clinical MS China Faeces 38 24M, 14F 56.85 (10.99) 

Suzuki et al., 2012 

[238] 
Clinical MS Japan Serum 85 48M, 37F NR 

Suzuki et al., 2010 

[239] 
Clinical MS Japan Serum 45 34M, 11F 63.40 (9.40) 

Suzuki et al., 2011 

[240] 
Clinical MS Japan Serum 64 39M, 25F NR 

Taherizadeh et al., 

2020 [241] 
Clinical MS Iran Plasma 37 20M, 17F 64.24 (13.08) 

Tcherkas et al., 

2001 [242] 
Clinical ECD Russia Serum 16 NR NR 

Tezcan et al., 2022 

[243] 
Clinical MS Turkey Serum 80 38M, 42F 35.09 (7.09) 

Tong et al., 2018 

[244] 
Clinical MS China Plasma 18 NR NR 

Trepci et al., 2021 

[245] 
Clinical MS Sweden CSF 80 39M, 41F NR 

Tuka et al., 2021 

[246] 
Clinical MS Hungary Plasma 34 0M, 34F 30.50 (12.77) 

Uchikura et al., 

2003 [247] 
Analytical ECL Japan Plasma 10 NR NR 

Valko et al., 2019 

[248] 
Clinical FL Slovakia Urine 51 35M, 16F 36.60 (10.90) 

Van Faassen et al., 

2019 [249] 
Clinical MS Netherlands Plasma 68 35M, 33F NR 
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Walser et al, 1993 

[250] 
Clinical MS USA Serum 22 12M, 10F NR 

Wang et al., 2019 

[251] 
Analytical MS China Plasma 475 189M, 286F 58.67 (6.30) 

Wang et al., 2018 

[252] 
Clinical MS China Serum 298 NR 62.00 (17.00) 

Widner et al., 2000 

[253] 
Clinical MS Austria Serum 20 10M, 10F NR 

Wu et al., 2022 

[254] 
Clinical MS China Serum 10 NR NR 

Wu et al., 2020 

[255] 
Clinical MS China Serum 36 6M, 30F 65.83 (7.30) 

Wu et al., 2018 

[256] 
Clinical MS China Serum 135 42M, 93F 66.99 (6.77) 

Xu et al., 2012 

[257] 
Clinical MS China Plasma 25 9M, 16F 32.12 (8.15) 

Yan et al., 2017 

[258] 
Analytical MS Australia Urine 10 6M, 4F NR 

Yao et al., 2010 

[259] 
Clinical ECD USA Plasma 30 18M, 12F NR 

Yilmaz et al., 2020 

[260] 
Clinical MS USA Urine 29 13M, 16F 79.12 (6.28) 

Yoshitake et al., 

2007 [261] 
Analytical FL Japan Urine 7 NR NR 

Zhang et al., 2020 

[262] 
Clinical MS China Serum 79 42M, 37F 28.85 (9.43) 

Zhao et al., 2011 

[263] 
Analytical UV-Vis + FL China Urine NR NR NR 

Zhen et al., 2011 

[264] 
Clinical UV-Vis China Plasma 20 10M, 10F NR 
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Zhou et al., 2022 

[265] 
Clinical MS China Plasma 60 30M, 30F 30.10 (11.50) 

Zhou et al., 2019 

[266] 
Clinical MS China Serum 72 41M, 31F 36.30 (11.90) 

Note. ECD: Electron Capture Detector; ECL: Electrochemiluminescence;  FL: Fluorescence Detection; MOD: Mode of Detection; MS: Mass Spectrometry; SD: Standard 

Deviation; UV-Vis: Ultraviolet-Visible Spectroscopy. 
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Chen et al., 

2019 

MS C18 100 × 3.0 1.8 0.1 % FA in 

water, v/v 

100 % ACN 0.3 2 30 NA 5 

Chen et al., 

2010 

UV-Vis + 

FL 

C18 NR NR 0.1M AA 

(pH 4.65) 

NR 1 30 22 KYN: 360 

TRP: Ex/Em 

285/365 

NR 

Chen et al., 

2020 

MS C18 100 × 2.1 1.7 A: 0.1% FA 

in water 

FA, ACN, 

water 

0.2 – 0.4 1 40 NA NR 

Cheng et al., 

2015 

MS C18 100 × 2.1 1.7 10mM AF ACN  in 

water (95:5), 

2mM AF 

0.2 10 45 NA NR 

Clarke et al., 

2009 

UV-VIS + 

FL 

C18 150 × 2.0 2 50mM 

Acetic Acid, 

100mM ZA, 

3 % (v/v) 

ACN 

NR 0.3 20 30 KYN: 330 

TRP: Ex/EM 

254/404 

30 

Colle et al., 

2020 

MS C18 100 × 2.1 1.7 0.1 % FA in 

water 

0.1 % FA in 

ACN 

0.5 5 40 NA NR 

Crotti et al., 

2019 

UV-VIS + 

FL 

C18 250 × 4.6 5 ACN, 0.005 

Phosphate 

Buffer 

(15:85 v/v) 

NR 1 NR NR KYN: 360 

TRP: Ex/Em 

285/345 

NR 

Cseh et al., 

2019 

MS C18 150 × 4.6 5 200mM ZA 

(pH 6.2) 

NR 1.2 20 NR KYN: 200 – 

800 

TRP: Ex/Em 

300/495 

NR 

Curto et al., 

2016 

MS PFP 100 × 2.1 2.6 0.1 % FA in 

water 

100 % 

MeOH 

0.3 80 25 NA 16 

Curto et al., 

2016 

MS PFP 100 × 2.1 2.6 0.1 % FA in 

water 

100 % 

MeOH 

0.3 80 25 NA 16 

Domingues 

et al., 2015 

MS HILIC 100 × 4.6 2.7 10mmol/L 

AA 

ACN, 10 % 

10mmol/L 

AA (60:40, 

v/v) 

0.5 5 NR NA NR 

Doolin et al., 

2018 

MS NR NR NR NR NR NR NR NR NA NR 

Eniu et al., 

2019 

MS AAA-MS 250 × 3.0 NR AA in water 10mM AF in 

MeOH 

0.25 5 35 NA 24 
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Fekkes et al., 

1998 

FL C18 150 × 3.0 5 NR NR 0.6 NR 28 NR NR 

Fitzgerald et 

al., 2008 

FL C18 150 × 2.0 NR 50mmol/L 

Acetic Acid, 

100mL/L 

ZA, 3 % 

(v/v) ACN 

NR NR NR NR Ex/Em 

254/404 

NR 

Frick et al., 

2004 

UV-Vis + 

FL 

C18 NR NR NR NR 0.9 NR NR KYN: 360 

TRP: Ex/Em 

285/365  

NR 

Fukushima 

et al., 2014 

MS C18 250 × 2.0 5 Water/ACN 

(80:20), 0.1 

% Acetic 

Acid 

ACN/water 

(80:20), 

0.1% Acetic 

Acid 

0.16 50 40 NA NR 

Furtado et 

al., 2017 

MS C18 75 × 2.1 1.7 0.2 % FA in 

water 

0.2 % FA in 

ACN 

0.9 5 50 NA 5 

Galla et al., 

2021 

MS C18 150 × 2.1 5 0.2 % FA in 

water 

02 % FA in 

ACN 

0.6 15 15 NA NR 

Geisler et 

al., 2015 

UV-Vis + 

FL 

C18 NR 5 15mmol/L 

Acetic Acid-

SA (pH 4.0) 

NR NR NR NR KYN: 360 

TRP: Ex/Em 

286/366 

NR 

Gevorkian et 

al., 2015 

ECD C18 250 × 4.6 5 NR NR 0.7 – 1.2 NR 35 NA NR 

Girgin et al., 

2020 

UV-Vis + 

FL 

NR NR NR 15mM pH 

6.5 

Monopotassi

um 

Phosphate, 

0.7 % ACN 

NR 0.8 NR NR KYN: 360 

TRP: Ex/Em 

286/Em 

NR 

Gomez-

Gomez et 

al., 2017 

MS C18 100 × 2.1 1.7 NR NR 0.3 NR NR NA NR 

Gulaj et al., 

2010 

UV-Vis + 

FL 

C18 150 × 2.1 NR KYN: 0.1M 

Acetic Acid, 

0.1M AA, 2 

% ACN 

TRP: 50mM 

Acetic Acid, 

NR 0.2 NR NR KYN: 365 

TRP: Ex/Em 

254/404 

NR 
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0.25M ZA, 

1.2 % ACN 

Hajsl et al., 

2020 

MS C18 150 × 2.1 5 0.1 % FA 0.1 % 

FA/ACN 

(v/v) 

0.25 20 40 NA 20 

Han et al., 

2018 

MS CR-I(+) 150 × 3.0 5 Ethanol, 

Water, TFA 

(50:50:0.4, 

v/v/v/) 

ACN, TFA 

(100:0.4, 

v/v) 

0.4 5 15 NA 13 

Henykova et 

al., 2016 

MS C18 100 × 2.1 1.8 0.1 % FA MeOH 0.3 10 30 NA NR 

Huang et al., 

2022 

MS NR NR NR NR NR NR NR NR NA NR 

Huang et al., 

2021 

MS C18 150 × 4.6 3.5 Water ACN 0.42 5 31 NA 24 

Islam et al., 

2020 

UV-Vis C18 NR NR 0.1 % FA in 

water 

0.1 % FA in 

ACN 

0.8 5 NR NR NR 

Jang et al., 

2022 

MS C18 100 × 2.1 1.8 0.1 % FA in 

water 

ACN 0.5 5 40 NA NR 

Kim et al., 

2015 

MS C18 100 × 2.1 3 0.2 % Acetic 

Acid in 

water 

0.2 % Acetic 

Acid in 

ACN 

0.2 3 40 NA NR 

Kim et al., 

2009 

UV-Vis + 

FL 

C18 100 × 4.7 NR TRP: 57.2g 

Na2HPO412

H2O, 60mL 

ACN in 

water 

KYN: 

250mM ZA 

in water 

TRP: 420 

water/280 

CAN/320 

MeOh 

KYN: 9 % 

ACN 

NR NR NR KYN: 365 

TRP: Ex/Em 

340/440 

NR 

Klatt et al., 

2021 

MS C18 50 × 2.1 1.8 0.1 % FA in 

water 

0.1 % FA in 

ACN 

NR NR NR NA NR 

Koch et al., 

1979 

ECD C18 150 × 4.0 10 0.5M AA, 15 

% MeOh 

McIlvaine 

buffer, 20 % 

MeOh 

1 20 NR NA NR 

Krasnova et 

al., 2000 

ECD C18 250 × 4.0 5 MeOh, 

Sodium 

Hydrophosp

NR 0.7 20 NR NA NR 



 54 

hate, Sodium 

Dihydrophos

phate, 

0.002M 

EDTA 

Kurgan et 

al., 2022 

MS C18 10 × 2.1 3 Su (0.1 % 

FA) 

MeOh Su 

(0.1 % FA) 

0.3 10 15 NA NR 

Leichtle et 

al., 2012 

MS NR NR NR 1/1 

Visopropano

l/water 

NR 0.08 25 NR NA NR 

Li et al., 

2011 

FL C18 250 × 4.6 5 10 % ACN 

in water 

(v/v) 

NR 1 20 NR Ex/Em 

285/353 

NR 

Lim et al., 

2017 

MS C18 100 × 2.1 1.8 50mM SA, 

25mM ZA, 

2.25 % ACN 

10 % ACN 0.75 20 38 NA NR 

Lionetto et 

al., 2021 

MS F5 100 × 2.1 2.6 0.2 % FA 100 % ACN 0.3 10 NR NA NR 

Liu et al., 

2018 

ECD C18 250 × 4.6 4 Acetate 

Buffer, 

MeOh (4:1, 

v/v) 

NR 1 20 NR NA NR 

Lorite et al., 

2007 

UV-Vis + 

FL 

C18 244 × 4.0 5 Phosphate NR 0.8 100 NR KYN: 360 

TRP: Ex/Em 

285/365 

NR 

Lu et al., 

2019 

MS C18 100 × 2.1 1.7 30 % ACN, 

0.1 % FA, 

10mmol/L 

AF 

95 % ACN, 

0.1 % FA, 

10mmol/L 

AF 

0.5 5 40 NA NR 

Ma et al., 

2009 

UV C18 125 × 4.0 5 50mmol/L 

SA, 6 % 

ACN (v/v) 

NR 0.8 20 25 KYN: 360 

TRP: 302 

NR 

Malhotra et 

al., 2017 

MS NR NR NR NR NR NR NR NR NR NR 

Meng et al., 

2022 

MS HILIC 150 × 2.1 2.6 75 % ACN, 

7.5 % AF, 

0.5 % FA 

NR 0.25 2 20 NA NR 
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Michel et al., 

2020 

MS C18 NR NR Water 0.1 % FA in 

ACN 

NR NR NR NA 8 

Mierzchala 

et al., 2020 

MS C18 50 × 1.0 1.8 0.1 % FA in 

water 

0.1 % FA in 

ACN 

0.07 3 50 NA NR 

Mu et al., 

2012 

FL C18 150 × 4.6 5 0.1mol/L 

Monopotassi

um 

Phosphate, 

MeOh 

(85:15, v/v) 

NR 1 20 25 Ex/Em 200 – 

450/250 - 

500 

12 

Myint et al., 

2007 

UV-Vis + 

FL 

C18 100 × 4.7 5 50mM ZA, 

Acetic Acid, 

1.0 % ACN 

NR 1 100 NR KYN: 365 

TRP: Ex/Em 

340/440 

NR 

Myint et al., 

2007 

UV-Vis + 

FL 

C18 100 × 4.7 NR TRP: 57.2g 

NA2HPO41

2H2O, 

160mL ACN 

in water 

KYN: 

250mM ZA 

in water 

TRP: 420 

water/280 

ACN/320 

MeOh 

NR NR NR KYN: 365 

TRP: Ex/Em 

340/440 

 

NR 

Nakatsukasa 

et al., 2011 

MS C8 50 × 1.2 3 25mM FA 60 % ACN 

in water 

0.25 5, 2 40 NA NR 

Naz et al., 

2019 

MS C18 100 × 2.1 1.8 2.1 % FA in 

water 

0.1 % FA in 

95 % ACN 

0.3 7.5 NR NA NR 

Ogawa et al., 

2018 

FL C18 100 × 2.1 NR NR NR NR NR NR NR NR 

Oh et al., 

2017 

MS T3 100 × 2.1 3 0.1 % FA 0.1 % FA in 

ACN 

0.2 NR 30 NA NR 

Ohashi et al., 

2013 

MS C18 250 × 2.0 5 Water, ACN 

(80:20), 0.1 

% Acetic 

Acid 

ACN, Water 

(80:20), 0.1 

% Acetic 

Acid 

0.16 50 40 NA NR 

Onesti et al., 

2019 

MS NR NR NR NR NR NR NR NR NR NR 

Palabiyik et 

al., 2016 

UV-Vis + 

FL 

C18 250 × 4.6 5 15mM 

Phosphate, 

NR 0.8 100 NR KYN: 360 

TRP: Ex/Em 

286/366 

NR 
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27mL/L 

ACN 

Panitz et al., 

2021 

MS C18 150 × 3.6 3 0.1 % FA in 

water 

0.1 % FA in 

ACN 

0.3 2 NR NR NR 

Pertovaara et 

al., 2005 

UV-Vis + 

FL 

C18 50 × 2.1 5 15mmol/L 

SA in Acetic 

Acid, 

27mL/L 

ACN 

NR 0.9 10 NR KYN: 360 

TRP: Ex/Em 

266/366 

NR 

Primiano et 

al., 2020 

MS NR NR NR NR NR NR NR NR NA NR 

Ren et al., 

2011 

FL C18 250 × 4.6 5 10 % ACN 

(v/v) 

NR 1.2 20 25 Ex/Em 

285/353 

NR 

Roca et al., 

1999 

UV-Vis C18 150 × 3.9 4 0.14M SA, 

0.5mL/L 

TEA 

60 % ACN 

in water 

NR NR NR 254 NR 

Rodrigues et 

al., 2021 

MS NR TRP: 100 × 

3.0 

KYN: 150 × 

2.1 

TRP: 2.5 

KYN: 3 

0.1 % FA in 

water 

0.1 % FA in 

ACN 

TRP: 0.3 

KYN: 0.2 

NR TRP: 5 

KYN: 25 

NA NR 

Ruoppolo et 

al, 2014 

MS C18 150 × 4.6 5 NR NR NR NR NR NA NR 

Saito et al., 

1979 

UV-Vis + 

FL 

CK-10-S 300 × 4.6 NR NR NR 0.73 NR 60 KYN: 280 

TRP: Ex/Em 

280/340 

60 

Saito et al., 

2022 

MS PFP 100 × 2.1 1.9 0.3 % FA in 

water 

0.3 % FA in 

MeOh 

0.3 5 45 NA 10 

Sakaguchi et 

al., 2011 

FL C18 150 × 4.6 5 MeOh, 

water, TFA 

(2.5:97.5:0.0

5, v/v) 

MeOh, 

water, TFA 

(60:40:0.05, 

v/v) 

1 20 30 Ex/Em 

280/320 

NR 

Schwieler et 

al., 2020 

MS C18 150 × 2.1 1.8 0.6 % FA in 

water 

0.6 % FA in 

MeOh 

0.3 3 50 NA 13 

Shi et al., 

2019 

MS C18 NR NR Methanol, 

0.1 % FA in 

water (95:5, 

v/v) 

NR 0.2 10 25 NA 4 
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Smolenska 

et al., 2020 

MS Hydro-RP 50 × 2.0 2.5 0 % to 60 % 

ACN 

NR 0.2 NR 275 NA 12 

Sorgdrager 

et al., 2017 

MS C18 100 × 2.1 3 0.2 % FA in 

water 

ACN 0.3 NR 25 NA NR 

Sorgdrager 

et al., 2019 

MS C18 100 × 2.1 2.5 NR NR NR 0.15 NR NA NR 

Souissi et 

al., 2022 

UV-Vis C18 150 × 4.6 5 15mM 

Phosphate 

Buffer, 10.6 

% ACN 

NR 1.2 NR 30 KYN: 360 

TRP: 280 

KYN: 3 

TRP: 5 

Sousa et al., 

2021 

UV-Vis + 

FL 

C18 NR 3 20mM AF in 

0.01 % FA 

in water, 

ACN, 

Ethanol 

(95/2/3, 

v/v/v)  

NR 0.7 10 25 KYN: 365 

TRP: Ex/Em 

280/348 

27 

Sultana et 

al., 2012 

UV-Vis C18 250 × 4.6 NR Water, ACN 

(90:10, v/v) 

NR 1.5 20 25 273 NR 

Sun et al., 

2021 

MS C18 50 × 4.6 2.7 80 % 

MeOh/20 % 

water, 2.5 

mM AF in 

MeOh 

NR 1.6 15 20 NA NR 

Sun et al., 

2020 

MS C18 100 × 2.1 1.7 10mmol/L 

Ammonium 

Acetate, 0.1 

% FA in 

water 

0.1 % FA in 

ACN 

0.3 10 40 NA 10 

Suzuki et al., 

2012 

MS T3 150 × 2.1 5 5mM AF 

with 0.01 % 

TFA, MeOh 

(80:20, v/v) 

0.2 NR NR NR NA NR 

Suzuki et al., 

2010 

MS C18 150 × 0.5 3 2.1 % FA 2.1 % FA, 

40 % ACN 

0.012 NR NR NA NR 

Suzuki et al., 

2011 

MS C18 150 × 0.5 3 2.1 % FA 2.1 % FA, 

40 % ACN 

0.012 NR NR NA NR 
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Taherizadeh 

et al., 2020 

MS NR NR NR NR NR 1 NR NR NA 60 

Tcherkas et 

al., 2001 

ECD C18 250 × 4.0 5 0.01 – 

0.02M 

Sodium 

Dihydrogenp

hosphate, 

0.01 – 0.02 

Disodium 

Hydrogenph

osphate, 10 

% - 19 % 

MeOh (v/v), 

2mM 

Na2EDTA 

NR 0.7 20 26 NA 60 

Tezcan et al., 

2022 

MS C18 50 × 4.6 5 0.1 % FA in 

water (v/v) 

0.1 % FA in 

ACN (v/v) 

NR 30 350 NA 5 

Tong et al., 

2018 

MS C18 50 × 2.1 5 0.1 % FA 0.1 % FA in 

ACN 

0.5 5 40 NA 3.5 

Trepci et al., 

2021 

MS C18 150 × 2.1 1.8 0.6 % FA in 

water 

0.6 % FA in 

MeOh 

0.3 NR 50 NA 13 

Tuka et al., 

2021 

MS PFP NR NR FA in water, 

MeOh 

NR NR NR NR NA NR 

Uchikura et 

al., 2003 

ECL C18 150 × 4.6 NR ACN, 10mM 

KH2PO4 

NR 1 10 50 NA NR 

Valko et al., 

2019 

FL C18 250 × 4.0 5 15 % ACN NR 0.8 40 30 Ex/Em 280 – 

315/350 – 

425  

30 

Van Faassen 

et al., 2019 

MS C18 150 × 2.0 3 10mmol/L 

AA in 0.1 % 

FA 

0.1 % FA in 

95 % ACN 

0.3 50 NR NA 8.5 

Walser et al, 

1993 

MS C18 250 × 4.6 NR 0.02M 

Sodium 

Phosphate 

MeOh NR NR NR NA NR 

Wang et al., 

2019 

MS C18 150 × 4.6 5 0.1 % FA in 

water, 0.1 % 

HFBA 

0.1 % FA in 

ACN, 0.1 % 

HFBA 

0.8 1 50 NA NR 



 59 

Wang et al., 

2018 

MS PFP 150 × 2.1 2.5 0.1 % FA in 

water 

MeOh 0.230 10 15 NA NR 

Widner et 

al., 2000 

MS NR NR NR NR NR NR NR NR NA NR 

Wu et al., 

2022 

MS C18 150 × 2.1 5 NR NR NR 10 NR NA NR 

Wu et al., 

2020 

MS NR NR NR NR NR NR NR NR NA NR 

Wu et al., 

2018 

MS NR NR NR NR NR NR NR NR NA NR 

Xu et al., 

2012 

MS C18 150 × 4.6 5 0.2 % FA, 

0.005 % 

HFBA 

0.1 % FA in 

ACN, 0.005 

% HFBA 

0.8 NR 50 NA NR 

Yan et al., 

2017 

MS C18 100 × 2.1 2.7 0.2 % FA in 

water (v/v) 

0.1 % FA in 

ACN (v/v) 

0.18 NR NR NA 8.5 

Yao et al., 

2010 

ECD C18 250 × 4.6 5 10.3gL-1 

Sodium 

Pentane 

Sulfonate, 

5mL-1 

Acetic Acid 

MeOh/ACN/

Isopropanol 

(8/1/1), 8gL-

1 Lithium 

Acetate, 

20mL-1 

Acetic Acid 

NR NR 35 NA NR 

Yilmaz et 

al., 2020 

MS NR NR NR NR NR NR NR NR NA NR 

Yoshitake et 

al., 2007 

FL C18 250 × 4.6 5 0.04 % 

TFA/MeOh 

(99:1, v/v) 

0.04 % 

TFA/MeOh 

(90:10, v/v) 

1 20 21 - 25 NR 75 

Zhang et al., 

2020 

MS C18 150 × 4.6 5 5mM AF in 

MeOh/water 

(45:55, v/v) 

NR 0.5 NR 35 NA NR 

Zhao et al., 

2011 

UV-Vis + 

FL 

C18 250 × 4.6 5 20mmol/L 

NaAc, 

30mmol/L 

HAc, 3 % 

MeOh  

20mmol/L 

NaAc/HAc, 

10 % MeOh, 

19 % ACN 

1 50 25 KYN: 365 

TRP: Ex/Em 

292/340 

30 

Zhen et al., 

2011 

UV-Vis C8 150 × 4.6 5 10mmol/L 

Acetate 

NR 0.6 25 25 KYN: 360 

TRP: 302 

8 
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Buffer, ACN 

(94:6, v/v) 

Zhou et al., 

2022 

MS C18 150 × 4.6 5 MeOh/water 

(45:55, in 

0.005mol/L 

AF) 

MeOh/water 

(35:65, in 

0.005mol/L 

AF) 

0.5 NR 35 NA NR 

Zhou et al., 

2019 

MS C18 150 × 4.6 5 MeOh/water 

(45:55, in 

5mM AF) 

MeOh/water 

(35:65, in 

5mM AF) 

0.5 NR 35 NA NR 

Note: AA: Ammonium Acetate; ACN: Acetonitrile; AF: Ammonium Formate; Ex/Em: Excitation/Emission; FA: Formic Acid; HFBA: Heptafluorobutyric Acid; MeOh: Methanol; PFP: 

Pentafluorophenyl; PP: Potassium Phosphate; SA: Sodium Acetate; TFA: Trifluoroacetic Acid; ZA: Zinc Acetate. 
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2.3.2 Risk of Bias Evaluation and Method Validation 

Risk of bias varied across the reported studies and the breakdown of the appraisal is 

detailed for each study and item in Table 2.4.  Over half of the included studies clearly defined 

their criteria for inclusion (59.17 %; n = 71), while only 28.33 % of studies (n = 34) described 

the study subjects and setting in detail.  Majority of studies sufficiently described the type of 

sample (65.83 %; n = 79) and the handling and pre-analytical processing of the samples (72.5 

%; n = 87).  Only 34.17 % (n = 41) of included studies sufficiently described their 

methodological conditions.  Indeed, 84.17 % (n = 101) of included studies reported their 

statistical analysis.  Overall, 51.67 % (n = 62) of studies were subjectively appraised to be of 

high quality. 

Reporting of independent method validation was highly varied (Table 2.5).  Overall, 

80.83 % (n = 73) of studies reported at least one parameter of their independent methodological 

validation.  Most commonly, LOD was reported in 44.17 % (n = 53) studies.  This was closely 

followed by the presentation of calibration curves (39.17 %; n = 47).  Robustness of the 

methodology was least commonly validated in only 10.83 % (n = 13) of studies. 
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Fitzgerald et al., 2008 Y N Y N Y Y High 

Frick et al., 2004 N N Y N N Y Low 

Fukushima et al., 2014 N N Y Y N Y Low 

Furtado et al., 2017 N N Y Y N Y Low 

Galla et al., 2021 N N N Y Y N Low 

Geisler et al., 2015 Y N N N Y Y Low 

Gevorkian et al., 2015 N N N Y U Y Low 

Girgin et al., 2020 Y N Y Y N Y High 

Gomez-Gomez et al., 2017 Y N Y Y Y Y High 

Gulaj et al., 2010 Y N Y N Y Y High 

Hajsl et al., 2020 N N Y Y N Y Low 

Han et al., 2018 N N N Y Y Y Low 

Henykova et al., 2016 N N Y Y Y N Low 

Huang et al., 2022 Y Y Y N N Y High 

Huang et al., 2021 N N Y Y Y Y High 

Islam et al., 2020 Y N Y Y U Y High 

Jang et al., 2022 Y N N Y Y Y High 

Kim et al., 2015 Y N Y Y N Y High 

Kim et al., 2009 Y Y N N U Y Low 

Klatt et al., 2021 N N N N N Y Low 

Koch et al., 1979 N N N Y Y N Low 

Krasnova et al., 2000 N N N N Y N Low 

Kurgan et al., 2022 Y Y Y Y Y Y High 

Leichtle et al., 2012 Y N N Y N Y Low 

Li et al., 2011 Y N Y Y Y Y High 

Lim et al., 2017 Y Y Y Y Y Y High 

Lionetto et al., 2021 Y Y Y Y N Y High 

Liu et al., 2018 Y Y Y Y N Y High 

Lorite et al., 2007 Y N N N Y Y Low 
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Lu et al., 2019 N N Y N N N Low 

Ma et al., 2009 N Y Y Y Y Y High 

Malhotra et al., 2017 N Y Y Y N Y High 

Meng et al., 2022 Y Y Y Y N Y High 

Michel et al., 2020 Y N Y Y N Y High 

Mierzchala et al., 2020 N N Y Y N Y High 

Mu et al., 2012 Y N Y Y Y Y Low 

Myint et al., 2007 Y Y Y N N Y High 

Myint et al., 2007 Y Y Y N N Y High 

Nakatsukas et al., 2011 Y N Y Y N Y High 

Naz et al., 2019 Y Y N N N N Low 

Ogawa et al., 2018 N Y Y Y N Y High 

Oh et al., 2017 N N Y Y N Y Low 

Ohashi et al., 2013 N N Y Y Y Y High 

Onesti et al., 2019 Y Y N Y N Y High 

Palabiyik et al., 2016 Y N Y Y N Y High 

Panitz et al., 2021 N Y N Y N Y Low 

Pertovaara et al., 2005 N N N N N Y Low 

Primiano et al., 2020 Y N Y N N Y Low 

Ren et al., 2011 Y N Y Y N Y High 

Roca et al., 1999 Y N Y U N Y Low 

Rodrigues et al., 2021 Y N Y Y N Y High 

Ruoppolo et al., 2014 Y N Y U U Y Low 

Saito et al., 1979 N N N N N N Low 

Saito et al., 2022 N N N Y N Y Low 

Sakaguchi et al., 2011 N N N Y Y N Low 

Schwieler et al., 2020 Y Y Y Y Y Y High 

Shi et al., 2019 Y Y N Y N Y High 

Smolenska et al., 2020 Y N N N N Y Low 
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Sorgdrager et al., 2017 Y N Y N N Y Low 

Sorgdrager et al., 2019 Y Y N N N Y Low 

Souissi et al., 2022 Y N N N N Y Low 

Sousa et al., 2021 Y N N Y Y Y High 

Sultana et al., 2012 N N N N Y Y Low 

Sun et al., 2021 Y N N N N Y Low 

Sun et al., 2020 Y Y Y Y N Y High 

Suzuki et al., 2012 N Y N Y N Y Low 

Suzuki et al., 2010 N Y Y Y N Y High 

Suzuki et al., 2011 N Y N Y N Y Low 

Taherizadeh et al., 2020 Y N Y Y N Y High 

Tcherkas et al., 2001 N N Y Y N N Low 

Tezcan et al., 2022 Y N N Y N Y Low 

Tong et al., 2018 Y N N Y Y Y High 

Trepci et al., 2021 Y N Y Y N Y High 

Tuka et al., 2021 N N Y Y Y Y High 

Uchikura et al., 2003 N N N Y N N High 

Valko-Rokytovska et al., 2019 Y N Y Y Y Y High 

Van Faassen et al., 2019 N N Y Y Y Y High 

Walser et al., 1993 N N Y Y N N Low 

Wang et al., 2019 N Y Y Y N Y High 

Wang et al., 2018 Y Y Y N U Y High 

Widner et al., 2000 N N N N N Y Low 

Wu et al., 2022 N Y N Y N Y Low 

Wu et al., 2020 Y N Y Y N Y High 

Wu et al., 2018 Y N Y Y N Y High 

Xu et al., 2012 Y N Y Y N Y High 

Yan et al., 2017 N N N Y Y N Low 

Yao et al., 2010 Y N Y Y N Y High 
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Yilmaz et al., 2020 N N Y Y N Y Low 

Yoshitake et al., 2007 N N N Y Y N Low 

Zhang et al., 2020 Y N Y N N Y Low 

Zhao et al., 2011 N N N Y Y Y Low 

Zhen et al., 2011 Y N Y Y Y Y High 

Zhou et al., 2022 Y Y Y N N Y High 

Zhou et al., 2019 Y Y Y Y N Y High 

Total 

(%) 

71 

(59.17) 

34 

(28.33) 

79 

(65.83) 

87 

(72.5) 

41 

(34.17) 

101 

(84.17) 

62 

(51.67) 
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Eniu et al., 

2019 
✓ ✓ NR NR NR ✓ ✓ NR 

Fekkes et 

al., 1998 
NR NR NR NR NR NR NR NR 

Fitzgerald et 

al., 2008 
NR NR NR NR NR NR NR NR 

Frick et al., 

2004 
NR NR NR NR NR NR NR NR 

Fukushima 

et al., 2014 
✓ NR NR NR NR NR NR NR 

Furtado et 

al., 2017 
NR ✓ NR ✓ ✓ ✓ ✓ NR 

Galla et al., 

2021 
✓ ✓ ✓ ✓ ✓ ✓ ✓ NR 

Geisler et 

al., 2015 
NR NR NR NR NR NR NR NR 

Gevorkian 

et al., 2015 
✓ NR NR NR NR NR NR NR 

Girgin et al., 

2020 
NR NR NR NR NR NR NR NR 

Gomez-

Gomez et 

al., 2017 

NR NR NR NR NR NR NR NR 

Gulaj et al., 

2010 
NR NR NR NR NR ✓ NR NR 

Hajsl et al., 

2020 
✓ ✓ NR ✓ ✓ NR NR NR 

Han et al., 

2018 
✓ ✓ ✓ ✓ ✓ ✓ NR NR 

Henykova et 

al., 2016 
✓ NR ✓ ✓ ✓ ✓ ✓ NR 

Huang et al., 

2022 
NR NR NR NR NR NR NR NR 

Huang et al., 

2021 
NR ✓ NR ✓ ✓ ✓ ✓ NR 

Islam et al., 

2020 
NR NR NR NR NR NR NR NR 

Jang et al., 

2022 
NR ✓ NR NR NR ✓ ✓ NR 

Kim et al., 

2015 
NR NR NR NR NR NR NR NR 

Kim et al., 

2009 
NR ✓ NR NR NR NR NR NR 

Klatt et al., 

2021 
NR NR NR ✓ NR NR NR NR 

Koch et al., 

1979 
NR ✓ NR NR ✓ NR NR NR 

Krasnova et 

al., 2000 
NR NR ✓ NR NR ✓ NR NR 

Kurgan et 

al., 2022 
NR NR NR NR NR ✓ ✓ NR 

Leichtle et 

al., 2012 
NR NR NR NR NR NR NR NR 

Li et al., 

2011 
✓ ✓ NR NR ✓ ✓ NR NR 
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Lim et al., 

2017 
NR NR NR NR NR NR NR NR 

Lionetto et 

al., 2021 
✓ NR NR NR NR NR NR NR 

Liu et al., 

2018 
✓ ✓ NR ✓ ✓ ✓ NR NR 

Lorite et al., 

2007 
NR ✓ ✓ NR NR ✓ ✓ ✓ 

Lu et al., 

2019 
NR ✓ NR ✓ ✓ ✓ NR NR 

Ma et al., 

2009 
NR ✓ NR ✓ ✓ ✓ NR NR 

Malhotra et 

al., 2017 
NR NR NR NR NR NR NR NR 

Meng et al., 

2022 
NR ✓ ✓ NR NR ✓ ✓ ✓ 

Michel et 

al., 2020 
NR NR NR ✓ ✓ ✓ ✓ NR 

Mierzchala 

et al., 2020 
NR ✓ ✓ NR NR ✓ ✓ NR 

Mu et al., 

2012 
✓ ✓ NR ✓ ✓ ✓ ✓ NR 

Myint et al., 

2007 
NR ✓ ✓ NR NR ✓ ✓ ✓ 

Myint et al., 

2007 
✓ NR NR NR NR NR NR NR 

Nakatsukasa 

et al., 2011 
NR ✓ ✓ NR NR ✓ ✓ ✓ 

Naz et al., 

2019 
✓ ✓ NR NR NR ✓ ✓ ✓ 

Ogawa et 

al., 2018 
✓ ✓ NR NR NR ✓ ✓ ✓ 

Oh et al., 

2017 
✓ ✓ ✓ ✓ ✓ ✓ ✓ NR 

Ohashi et 

al., 2013 
NR ✓ NR NR NR ✓ ✓ NR 

Onesti et al., 

2019 
NR NR NR NR NR ✓ NR NR 

Palabiyik et 

al., 2016 
✓ ✓ NR NR NR ✓ ✓ ✓ 

Panitz et al., 

2021 
✓ ✓ NR NR NR ✓ ✓ ✓ 

Pertovaara 

et al., 2005 
✓ ✓ NR NR NR ✓ ✓ ✓ 

Primiano et 

al., 2020 
NR NR NR NR NR NR NR NR 

Ren et al., 

2011 
✓ NR NR ✓ ✓ ✓ NR NR 

Roca et al., 

1999 
✓ NR ✓ ✓ NR ✓ ✓ ✓ 

Rodrigues et 

al., 2021 
NR NR ✓ ✓ NR NR ✓ NR 

Ruoppolo et 

al, 2014 
NR NR NR NR NR NR NR NR 

Saito et al., 

1979 
NR NR NR NR NR NR NR NR 
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Saito et al., 

2022 
NR ✓ NR ✓ ✓ NR NR NR 

Sakaguchi et 

al., 2011 
✓ ✓ NR ✓ ✓ ✓ NR NR 

Schwieler et 

al., 2020 
✓ ✓ ✓ ✓ ✓ ✓ ✓ NR 

Shi et al., 

2019 
✓ NR NR NR NR NR NR NR 

Smolenska 

et al., 2020 
NR NR NR NR NR NR NR NR 

Sorgdrager 

et al., 2017 
NR NR ✓ ✓ NR ✓ NR NR 

Sorgdrager 

et al., 2019 
NR NR NR NR NR NR NR NR 

Souissi et 

al., 2022 
NR NR NR NR NR NR NR NR 

Sousa et al., 

2021 
NR ✓ ✓ ✓ ✓ ✓ ✓ NR 

Sultana et 

al., 2012 
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Sun et al., 

2021 
NR NR NR ✓ ✓ ✓ ✓ NR 

Sun et al., 

2020 
NR NR NR NR NR NR NR NR 

Suzuki et 

al., 2012 
✓ NR NR NR NR NR NR NR 

Suzuki et 

al., 2010 
NR NR NR NR ✓ ✓ ✓ NR 

Suzuki et 

al., 2011 
NR NR NR NR ✓ ✓ ✓ NR 

Taherizadeh 

et al., 2020 
NR NR NR NR NR NR NR NR 

Tcherkas et 

al., 2001 
NR NR NR NR NR NR NR NR 

Tezcan et 

al., 2022 
✓ NR NR NR NR NR NR NR 

Tong et al., 

2018 
NR ✓ NR ✓ ✓ NR ✓ NR 

Trepci et al., 

2021 
NR NR NR NR NR ✓ ✓ NR 

Tuka et al., 

2021 
NR ✓ NR ✓ ✓ ✓ ✓ ✓ 

Uchikura et 

al., 2003 
NR NR NR ✓ NR ✓ NR NR 

Valko et al., 

2019 
NR ✓ NR ✓ ✓ ✓ NR NR 

Van Faassen 

et al., 2019 
✓ ✓ ✓ ✓ ✓ NR ✓ NR 

Walser et al, 

1993 
NR NR NR NR NR NR NR NR 

Wang et al., 

2019 
NR NR NR NR NR NR NR NR 

Wang et al., 

2018 
NR NR NR NR NR NR NR NR 

Widner et 

al., 2000 
NR NR NR NR NR NR NR NR 
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Wu et al., 

2022 
NR NR NR NR NR NR NR NR 

Wu et al., 

2020 
NR NR NR NR NR NR NR NR 

Wu et al., 

2018 
NR NR NR NR NR NR NR NR 

Xu et al., 

2012 
NR NR NR NR NR NR NR NR 

Yan et al., 

2017 
NR ✓ ✓ ✓ ✓ ✓ ✓ NR 

Yao et al., 

2010 
NR NR NR NR NR NR NR NR 

Yilmaz et 

al., 2020 
✓ NR NR ✓ NR NR NR NR 

Yoshitake et 

al., 2007 
✓ ✓ NR ✓ ✓ ✓ NR NR 

Zhang et al., 

2020 
NR NR NR NR NR NR NR NR 

Zhao et al., 

2011 
✓ ✓ ✓ ✓ ✓ ✓ NR NR 

Zhen et al., 

2011 
✓ ✓ NR ✓ ✓ ✓ ✓ NR 

Zhou et al., 

2022 
NR NR NR NR NR NR NR NR 

Zhou et al., 

2019 
NR NR NR NR NR NR NR NR 

Total 

(%) 

35 

(29.17) 

47 

(39.17) 

23 

(19.17) 

43 

(35.83) 

39 

(32.50) 

53 

(44.17) 

44 

(36.67) 

13 

(10.83) 
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2.3.3 Analysis of Variance 

All grand means, MOD means, and region means for TRP and KYN are summarised 

in Table 2.6.  The weighted grand mean concentration of TRP in serum across all MODs was 

calculated to be 60.52 ± 15.38 M (see Figure 2.3).  Mean reported TRP serum content in 

America, Asia, Australia, Europe, and the Middle East were 49.66 ± 2.75 M, 60.30 ± 8.69 

M, 67.26 ± 11.19 M, 60.73 ± 10.66 M, and 54.01 ± 18.44 M, respectively.  Mean reported 

TRP content detected in the serum by MS, FL, and ECD were 60.39 ± 19.24 M, 63.63 ± 15.36 

M, and 63.04 ± 20.23 M, respectively.  In comparison, the weighted grand mean 

concentration of TRP in plasma was calculated to be 51.45 ± 10.47 m (Figure 2.4).  Mean 

reported TRP plasma content in America, Asia, Australia, Europe, and the Middle East were 

34.68 ± 9.90 M, 53.81 ± 9.95 M, 42.87 ± 8.51 M, 52.92 ± 12.06 M, and 34.82 ± 10.52 

M, respectively.  Mean reported TRP content detected in the plasma by MS, FL, and ECD 

were 50.07 ± 16.65 M, 59.26 ± 15.02 M, and 26.49 ± 14.17 M, respectively.  MOD 

accounts for 2.96 % of the total variance seen within the data, F(2, 6542) = 114.16, p < .001.  

Sample matrix accounted for 3.23 % of the total variance seen within the data, F(1, 6542) = 

248.93, p < .001.  The interaction between MOD and sample matrix accounted for 1.53 % of 

the total variance seen in the data F(2, 6542) = 58.94, p < .001. 

The weighted grand mean concentration of KYN in serum across all MODs was 

calculated to be 1.96 ± 0.51 M (Figure 2.5).  Mean reported KYN serum content in Asia, 

Australia, Europe, and the Middle East were 1.68 ± 0.43 M, 2.43 ± 0.59 M, 2.07 ± 0.52 M, 

and 1.56 ± 0.62 M, respectively.  Mean reported KYN content detected in the serum by MS 

and UV-Vis were 1.90 ± 0.73 M and 2.22 ± 0.69 M, respectively.  In comparison, the 

weighted grand mean concentration of KYN in plasma across all MODs was calculated to be 

1.82 ± 0.54 M (Figure 2.6).  Mean reported TRP plasma content in America, Asia, Australia, 

Europe, and the Middle East were 0.94 ± 0.24 M, 1.61 ± 0.34 M, 2.12 ± 0.52 M, 2.29 ± 

0.73 M, and 1.53 ± 0.72 M, respectively.  Mean reported KYN content detected in the 

plasma by MS and UV-Vis were 1.91 ± 0.87 M and 1.95 ± 0.54 M, respectively.  MOD 

accounts for 1.30 % of the total variance seen within the data, F(1, 3868) = 51.37, p < .001.  

Sample matrix accounted for 0.71 % of the total variance seen within the data, F(1, 3868) = 

27.96, p < .001.  The interaction between MOD and sample matrix accounted for 0.79 % of the 

total variance seen in the data, F(1, 3868) = 31.25, p < .001. 
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2.3.4 Regression Analyses 

Outcomes from the adjusted weighted-variance OLS regressions including non-

standardised β-coefficients and 95 % CIs are listed in Table 2.7, for TRP and KYN 

concentrations in serum, plasma, and blood, assessing predictors of biological sex, age, and 

study year, with p-values for statistically significant outcomes bolded.  In summary, female 

sex, age, and study year were negatively correlated with TRP concentrations measured within 

the serum.  Age and study year were also negatively correlated with TRP concentrations 

measured within the plasma, although no significant interaction was observed between 

biological sex and the concentrations measured.  Across both serum and plasma, biological 

sex, age, and study year were correlated with TRP concentrations measured within the serum.  

These trends were repeated when considering KYN, although age was positively correlated 

with KYN concentrations.  Interestingly, biological sex was not correlated with both TRP and 

KYN concentrations within the plasma. 

 

Table 2.7. Adjusted weighted-variance OLS regression analyses for TRP and KYN.  TRP 

blood and KYN blood are the pooled sample sizes of serum and plasma studies. 

 β-Coeff [95 % CI] p 

TRP Serum 

Female Sex -0.22 [-0.39, -0.05] .012 

Age -0.20 [-0.38, -0.01] .036 

Study Year -1.37 [-1.67, -1.08] <.001 

 TRP Plasma  

Female Sex -0.03 [-0.08, 0.02] .266 

Age -0.74 [-0.86, -0.61] <.001 

Study Year -1.58 [-1.87, -1.30] <.001 

 TRP Blood  

Female Sex -0.14 [-0.19, -0.09] <.001 

Age -0.55 [-0.65, -0.45] <.001 

Study Year -1.35 [-1.55, -1.16] <.001 

 KYN Serum  

Female Sex -0.05 [-0.05, -0.04] <.001 

Age 0.01 [0.00, 0.01] .002 

Study Year -0.08 [-0.08, -0.07] <.001 

 KYN Plasma  

Female Sex -0.00 [-0.00, 0.00] .431 

Age 0.02 [0.01, 0.02] <.001 
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Study Year -0.08 [-0.10, -0.07] <.001 

 KYN Blood  

Female Sex -0.02 [-0.02, -0.02] <.001 

Age 0.01 [0.01, 0.01] <.001 

Study Year -0.11 [-0.12, -0.11] <.001 

 

2.4 Discussion 

Compelling evidence has identified certain KP metabolites as ideal targets for precision 

medicine initiatives [120], although these initiatives are currently limited by the availability 

and quality of the data summarising the KP profile [267, 268].  The current study addressed 

this gap by systematically mapping study characteristics according to MOD, metabolites 

studied, sample matrices, and geographical location, and calculating normative means across 

these variables.  The methodologies and risk of bias reported within the literature were also 

critically appraised, the variance between MODs was ascertained, and the relationship between 

metabolite, biofluid, age, sex, and study year were determined.   

The TRP and KYN metabolomic studies reported within this meta-analysis indicate 

that the most common MOD is MS (n = 80).  This is in comparison to the popular but lesser 

common FL and UV-Vis.  Qualitative appraisal of the data suggested that there was no link 

between study age and MOD.  High resolution MS is commonly used in lipidomics [269], 

proteomics [270], and precision pharmacology [271].  It is thought that MS offers significant 

advantages in terms of sensitive analytical profiling [272], and that FL and UV-Vis MODs are 

limited in their sensitivity by the light-emitting capacity of the metabolite [273].  Nonetheless, 

the photophysical properties of TRP and KYN are well-characterised, and it is generally 

accepted that TRP and KYN are moderate emitters of intrinsic fluorescence and thus suitable 

for light-based detection [274].  FL and UV-Vis are suitable MODs for the analytical profiling 

of KP metabolites despite their less frequent use in the literature.  Certain MOD averages 

reported within this meta-analysis, such as ECD, indicate extreme outliers.  This may be due 

to the small number of studies reported within the literature, all of which vary in sample size. 

It is essential to flag that MOD accounted for a small, but statistically significant 

proportion of the total variance within the data (2.96 %; p < .001).  The MS means generally 

aligned best with the weighted grand mean calculations, which may be due to its greater 

sensitivity and specificity (i.e., accuracy and less variability across studies), given that the 

weighted mean accounted for the larger number of studies utilising MS.  For example, the 

weighted grand mean concentration of TRP in serum across all MODs was calculated to be 
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60.52 ± 15.38 M, while that in MS-specific studies was 60.39 M.  In plasma, the weighted 

grand mean concentration of TRP was 51.45 ± 10.47 M, while the MS-specific mean was 

50.07 M.  This trend was also observed within KYN in serum (grand mean concentration of 

1.96 ± 0.51 M versus an MS-specific mean of 1.90 M) and KYN in plasma (grand mean 

concentration of 1.82 ± 0.54 M versus an MS-specific mean of 1.91 M).  This suggests that 

MS consistently produces the most accurate results in measuring TRP and KYN.  Sample 

matrix (serum vs. plasma) accounted for 0.71 % of the total variance (p < .001); a small 

proportion (albeit statistically significant) indicating their comparability.  The interaction 

between MOD and sample matrix accounted for a small 0.79 % of the total variance (p <.001) 

suggesting that choice of MOD should not affect the comparability of results between serum 

and plasma.  Considering that the intra-coefficient and inter-coefficient of variation for a single 

assay will typically vary within an acceptable range of 3–7 %, the < 1% variation between 

sample types, and the interaction between sample type and MOD observed here at the 

population level is negligible.  These are novel findings, and the correlation between serum 

and plasma is further explored in Chapter 3 of this thesis. 

Despite the significant variance observed, the findings reported in this meta-analysis 

are generally comparable to those reported within the literature.  For instance, Geisler and 

colleagues [178] reported a mean TRP concentration of 67.41 ± 2.04 M and KYN 

concentration of 1.78 ± 0.08 M in the serum of 100 (42 % female) healthy adults.  The 

variation in region means across the America, Asia, Australia, Europe, and Middle East regions 

may be attributed to dietary quality.  For instance, across serum and plasma TRP and KYN 

concentrations, American and Middle Eastern data were consistently lower than the grand 

population mean.  It is generally well-understood that high protein and fat intake may increase 

the availability of TRP in the plasma and hence upregulate the KP, and vice versa [37]. 

Furthermore, this meta-analysis reported on a total of eight sample types for the 

quantification of TRP, including serum (n = 54), plasma (n = 48), urine (n = 15), cerebrospinal 

fluid (CSF; n = 6), saliva (n = 2), tears (n = 1), faeces (n = 1), and whole blood (n = 1).  By 

comparison, six sample types were reported in the quantification of KYN, including serum (n 

= 34), plasma (n = 33), urine (n = 7), CSF (n = 6), saliva (n = 2), and faeces (n = 1).  Only 

serum and plasma TRP and KYN concentrations were meta-analysed to quantify the 

associations between the two matrices that are often used interchangeably [275].  Despite the 

heavy focus on metabolomic profiling within the blood, these results suggest that there is a 

growing interest in minimally invasive sample types, including saliva and urine.  For instance, 
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the majority (66.67 %) of the TRP urine papers have been published since 2015 [152, 177, 181, 

187, 214, 220, 234, 248, 258, 260], while all included TRP saliva studies were published within 

this timeframe [162, 195].  Saliva metabolomics is an emerging field of metabolomic research 

due to the diversity of metabolites present and the relative ease in sampling including 

decentralised approaches [276].  Interest in saliva metabolomic profiling has also piqued due 

reductions in the LOD of MS technologies and thus the improving analytical sensitivity [272].  

Urine is also of interest in the field of biomarker discovery research as it is non-invasive, readily 

obtained in large quantities, and generally has high patient compliance [277].  Further, urine 

may provide a relatively richer matrix for analysis, given that concentrations of metabolites are 

often higher in the urine (due to their excretion) when compared to serum [278].  In states of 

homeostasis, this indicates that urine may be more susceptible to metabolic changes when 

compared to the serum [278].   Therefore, saliva and urine present rich matrices for simple 

disease diagnostics in a minimally invasive and generally inexpensive manner [276].  Future 

studies should thus seek to profile the KP metabolome within the saliva and urine across a 

broader range of metabolites than those presented within this meta-analysis and should seek to 

identify any correlations with traditional biofluids of interest such as serum and plasma (the 

primary aim of Chapter 3). 

Moreover, while efforts are being made to improve the accuracy and sensitivity of KP 

metabolomics approaches, there are significant limitations, as detected by the author-reported 

validation parameters and the independent risk of bias assessment.  Overall, 80.83 % (N = 73) 

of studies reported at least one parameter of their independent methodological validation, 

chosen in compliance with the guidelines for pharmaceutical and biotechnology industries 

[142].  Certain validation parameters were reported infrequently, such as robustness, defined 

as the ability of an analytical assay to obtain replicable values despite minor variations in the 

chromatographic conditions.  Despite the dedicated experimental designs for robustness testing 

of LC-MS instruments reported within the literature [279], this parameter was only reported in 

10.83 % of the included studies.  Risk of bias appraisal also questioned the reliability of the 

results reported here.  Overall, only 51.67 % of studies included in this meta-analysis were 

subjectively appraised to be of high quality.  This was largely linked to poor reporting of 

methodological conditions (only reported in 34.17 % of included studies).  It is generally 

acknowledged that MS data presents various complexities linked to the various independently 

developed acquisition methods, diverse workflows, and non-standardised manual curation 

[280].  Interestingly, the studies which were appraised to be of low quality often reported 
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significant deviations from the calculated grand population mean [167, 184, 193, 208, 254].  

While this suggests that the results presented in this chapter should be interpreted with caution, 

this meta-analysis featured a very large sample size and TRP and KYN means are generally 

considered statistically reliable. 

Regression analyses indicated various findings that may have implications for 

biomarker discovery research.  Interestingly, age of the study (study year) was negatively 

correlated with concentrations of TRP and KYN within the serum and plasma.  While this 

finding has not been directly replicated within the literature, it may be hypothesised that this is 

attributed to dietary changes.  Changes in socio-economic status, urbanisation, and population 

growth have been linked to dietary and nutritional change in various regions including Asia 

and South America [281-283].  This may also be attributed to the increased analytical 

sensitivity, chromatographic separation efficiency, and speed which were developed and 

reported across 2000 to 2010 [284].  For example, most of the included studies published 

beyond 2020 have reported the use of use of columns with sub-2μm particles, ranging from 

1.6–1.9 μm [148, 155, 161, 164, 189, 192, 207, 212, 226, 228, 237, 245].  Sub-2 μm particles 

have demonstrated significant gains in terms of faster chromatographic analysis, reduced peak 

dispersion and increased sensitivity, increased efficiency, and improved resolution [285, 286].  

The optimisation of these conditions may be leading to the more selective measurement of 

metabolites. 

Across the serum and plasma, multiple negative correlations were observed: increased 

percentage female biological sex (relative to male) was correlated with lower levels of TRP 

and KYN concentrations compared to male sex, while TRP concentrations decreased as age 

increased.  The significant negative correlation between biological sex and TRP and KYN 

concentrations is generally accepted within the literature, where the concentrations in healthy 

females are often lower than that of healthy males [178].  In comparison, a positive correlation 

was observed between age and KYN concentrations, meaning that KYN concentrations in the 

serum and plasma increased with advancing age.  The negative correlation between age and 

TRP concentrations is also supported by literature that shows the increased degradation of TRP 

in older age [287].  Furthermore, a recent study conducted in older adults identified a negative 

association between TRP and age, alongside a positive association between KYN and age [288, 

289], suggesting that KP metabolites are strong predictors of age.  These findings, together 

with those in the literature, help with the accurate profiling of the KP metabolome in diseases 

which show sex and age specific differences, such as AD.  Age and sex specific data are 
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required for the development of accurate prognostic, diagnostic, and theragnostic biomarkers, 

as summarised in Table 2.2. 

Strengths of the present study include a broad eligibility criteria and thorough search 

strategy that detected ample records; the inclusion of only normative data; the inclusion of only 

targeted metabolomics data to ensure that precise metabolites have been profiled; and rigorous 

appraisal of the risk of bias and the validation parameters applied for methodological appraisal.  

Furthermore, this study had a large sample size (n = 8,089) of relatively younger (< 50 years) 

adults (47.35 ± 15.65), suggesting that it is statistically powered to detect accurate results.  

However, there was an unequal distribution of sexes, with 77.67 % of participants being of 

female biological sex.  Moreover, meta-analysis was limited to serum and plasma data due to 

insufficient sample size in other minimally invasive sample types such as saliva or urine; a 

potential avenue for future empirical studies (see Chapters 3 and 4).  This meta-analysis was 

also limited to only TRP and KYN concentrations, and future studies should seek to assess 

other biologically active KP metabolites, including KA and QA (as covered in Chapters 3 and 

4).  Majority of the normative data presented in the literature is investigated within cohorts that 

are deemed healthy as screened against a singular health concern.  For example, many clinical 

studies focused on neurodegenerative disease will comment on metabolite concentrations in 

reportedly healthy older adults, screened only against neurodegenerative criteria, and without 

regard for other important considerations such as cardiovascular health or autoimmune 

diseases.  This suggests that there may be some ambiguities in classifying normative data 

within the literature from the meta-analytic approach employed here.  Nonetheless, this review 

was intended to inform future empirical research and method development studies and 

successfully synthesised pilot data. 

Findings from this systematic review and meta-analysis have highlighted multiple 

future avenues for research.  Importantly, future studies should seek to investigate and control 

for the relationship between geographical location and metabolite concentration, as well as 

clarify the relationship between study age and findings.  Normative data should also be grouped 

into age and biological sex-specific brackets to ensure accuracy and specificity when being 

used for biomarker purposes.  Specifically, studies should seek to report the metabolic profile 

of males and females separately, although the differences may not appear statistically 

significant within small sample sizes.  Moreover, future method development studies should 

seek to standardise acquisition methods, workflows, and manual curation methods to improve 

the comparability of methodologies before moving into clinical and at-risk cohorts.  Finally, 

future studies should consider comprehensively profiling the full KP metabolome (all major 



 84 

metabolites) within an array of biological sample matrices and should seek to identify any 

correlations between samples to determine the diagnostic accuracy of the KP across a range of 

inflammatory health conditions. 
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Chapter 3: Tryptophan Metabolic Profiling in the Minimally 

Invasive Biofluids of Healthy Adults: Approach for Biomarker 

Discovery in Clinical Research 

 

Foreword:   

In this chapter, all major biologically active metabolites within the kynurenine pathway were 

profiled in the serum, plasma, saliva, and urine of healthy adults in an effort to generate 

normative data.  Data are reported descriptively and a correlation matrix for all data was 

calculated.  Correlations were used to calculate the strength of association between all ten 

individual metabolite concentrations across the four sample types.  This chapter is framed in 

the context of the thesis with reduced repetition of background information and a tailored 

discussion to improve readability.  The chapter is currently being prepared as a stand-alone 

journal article manuscript that will initially be submitted to the preprint server bioRvix. 

 

Metri, N.J., Christofides, K., Bustamante, S., Low, M., Steiner-Lim, G.Z., Lim, C.K (in 

preparation).  Tryptophan metabolic profiling in the minimally invasive biofluids of healthy 

adults: Approach for biomarker discovery in clinical research.  bioRvix. 
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3.1 Introduction 

Tryptophan (TRP) metabolism and the kynurenine pathway (KP) have gained much 

interest in recent times given their role in health and disease via modulation of both innate and 

adaptive immune responses and inflammation [133, 134].  Given the link between the KP 

alterations and multiple diseases (see Chapters 1 and 2 for more detail), it has been suggested 

that the thorough characterisation of KP analytes may improve patient disease outcomes by 

revealing appropriate prognostic, diagnostic, and theragnostic biomarkers [290]. 

Meta-analyses have profiled KP metabolites across various clinical cohorts within the 

plasma, serum, urine, and cerebrospinal fluid [125, 136-139], and across the serum and plasma 

in healthy individuals (Chapter 2).  Select studies have also profiled KP metabolites within the 

saliva of clinical cohorts [116].  Compared to the breadth of these clinical data, few studies 

have reported on the KP profile in the urine and saliva of healthy and younger cohorts (e.g., 

aged ≤ 50 years), as identified in Chapter 2.  There is also a need to profile the KP within a 

cohort that has been comprehensively screened for all major illnesses, as this is a gap in the 

current literature (discussed in Chapter 2).  Further, as also seen in Chapter 2, it is very rare for 

these studies to comprehensively map sample types together to see how they may compare.  

Specifically, no studies compared TRP and KYN concentrations within the saliva and urine. 

The majority of KP metabolomic studies report on levels of TRP and kynurenine 

(KYN).  However, biologically active downstream metabolites including kynurenic acid (KA), 

anthranilic acid (AA), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid (3-HAA), 

xanthurenic acid (XA), quinolinic acid (QA), and picolinic acid (PA) are not routinely assessed 

[125, 137-139].  Inter-sample variation in KP profiling is also less characterised, which is 

significant as studies have reported that the metabolite concentrations detected in separate 

peripheral samples, such as serum and urine, are statistically independent [140]. 

The present study aimed to identify and develop an analytical method to quantify KP 

metabolites, beyond TRP and KYN, in the liquid biopsies of healthy adults in a range of human 

biofluids going beyond blood samples.  Objectives included examining KP metabolites in the 

liquid biopsies (blood plasma and serum, saliva, and urine) of healthy adults via an 

observational cross-sectional study design at one timepoint.  The primary outcome from this 

research included the characterisation of normal KP function across minimally invasive sample 

types. 
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3.2 Methods and Materials 

3.2.1 Study Setting & Participants 

Recruitment and data collection were conducted from August to November 2022 in the 

HEADBOX Lab at the NICM Health Research Institute, Western Sydney University, 

Westmead campus.  Human research ethics approval for the procedure followed by this study 

was granted by the Western Sydney University Human Research Ethics Committee (H14815).  

Written informed consent was obtained from all participants in accordance with the Declaration 

of Helsinki.  Biosafety approval was granted by the Western Sydney University Biosafety and 

Radiation Safety Committee (B14819). 

Participants recruited were twenty adults with self-reported good general health and 

wellbeing assessed against the following inclusion criteria: (i) aged between 18 and 50 years; 

(ii) of good general health and wellbeing as determined by the research team based on 

participant self-report and the Short Form 36 Health Survey Questionnaire (SF-36); and (iii) 

English fluency; the SF-36 was modified for conciseness and therefore no cut-off score was 

applied.  If required, participant responses were discussed with the wider research team for 

concordance in determining eligibility.  Given this was a proof-of-concept study, a formal 

statistical power calculation was not performed [291]. 

For sample collection, all participants were instructed to: (i) to avoid moisturising their 

skin the day of sample collection; (ii) avoid eating, smoking, or brushing their teeth in the hour 

before sample collection; and (iii) rinse their mouth with water ten minutes prior to saliva 

collection.  Participants then provided blood, saliva, and urine  samples that were processed 

within 30 minutes of collection, and all samples were stored at at -80 oC until further analysis 

[292, 293]. 

3.2.2 Materials 

A tourniquet was applied to the participant’s arm (over the bicep muscle, proximal to 

the elbow).  The prominent veins were located and palpated on the ante-cubital area.  Warm 

packs were used if locating a prominent vein proved difficult.  A 23 G × 19 mm butterfly needle 

with lure, one 10 mL SST™ II vacutainer collection tube, one 10 mL EDTA vacutainer 

collection tube, and vacutainer standard holder (Becton, Dickinson, and Company, USA) were 

used to collect two 10 mL tubes of whole blood from each participant.  Blood samples were 

weighed and centrifuged at 4 oC for 10 minutes at 2500 rpm to separate the serum and plasma.  

Serum and plasma (500 μL) were aliquoted into 1500 μL Eppendorf tubes using 1000 μL 

pipette tips. 
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1mL of saliva was collected into 15mL Eppendorf tubes through passive drool.  

Participants were advised that they should spit into the jar until the amount of liquid saliva (not 

bubbles) reached the 1 mL fill line.  Protein concentration within the saliva was quantified 

using a Pierce BCA Protein Assay Kit (ThermoScientific, Massachusetts, USA). 

Mid-stream urine was collected into a sterile 50 mL Sarstedt collection container.  

Samples were then centrifuged for 10 minutes at 2500 rpm and 4 °C.  Following centrifuging, 

500 μL of the contents of the supernatant layer was aliquoted into 1500 μL Eppendorf tubes 

using 1000 μL pipette tips. 

3.2.3 Reagents 

All reagents used, including formic acid (FA), methanol (MeOH), and water, were of 

analytical mass spectrometry-grade and purchased from ChemSupply, NSW, Australia.  Upon 

preparation, all solvents were sonicated (PowerSonic410, Thermoline Scientific, NSW, 

Australia) for 20 minutes prior to use.  

3.2.4 Extraction of Polar Metabolites 

10 μL of mixed internal deuterated standards consisting of 10 μM dTRP , dKYN, dAA 

and d5HIAA (CDN Isotopes, Canada) was dispensed into a 1500 μL Eppendorf tube.  Then, 

50 μL of plasma/serum/urine or 500 μL saliva was added to the Eppendorf tube containing the 

internal standards and vortexed thoroughly. 40 μL of MS-grade water containing 0.1 % formic 

acid (FA) was added to the tube, followed by 400 μL of freezer cold MS-grade methanol.  The 

mixture was incubated in a -20 °C freezer for one hour to allow protein precipitation.  

Following complete protein precipitation, the mixture was centrifuged at 12,000 g for 10 

minutes at 4 °C.  The supernatant was collected into a 1500 μL Eppendorf tube and dried in a 

Speedvac concentrator (Savant DNA120 Speedvac Concentrator, ThermoScientific, 

Massachusetts, USA) on a high setting for 45 minutes until pelleted.  Following concentration, 

the plasma, and serum residue was reconstituted in 100 μL of water containing 0.1 % FA.  

Saliva residue was reconstituted in 50 μL of water containing 0.1 % FA for a 4 concentration.  

Urine residue was reconstituted in 500 μL of water containing 0.1 % FA.  100 μL of the 

reconstituted urine residue was pipetted into a separate tube containing 900 μL of water 

containing 0.1 % FA to make a final 1/1000 dilution.  The mixture was vortexed thoroughly to 

ensure that the residue was completely dissolved within the mobile phase, then transferred in 

whole to glass LC vials fitted with glass vial inserts (Shimadzu, Kyoto, Japan). 
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3.2.5 Metabolomic Analysis 

Biospecimen analysis was conducted on a liquid chromatograph mass spectrometer 

(LCMS-8040; Shimadzu, Kyoto, Japan).  Samples were chromatographed isocratically using a 

Luna 3 µm PFP(2) 100Å 100  2 mm column (Cat. #00D-4447-B0 Phenomenex, Australia), 

with a mobile phase consisting of 0.1 % FA in water at 0.3mL/min and solvent phase consisting 

of MS-grade 100% MeOH.  Acquisitions were performed in ESI positive ionisation mode using 

an optimized protocol for establishing settings for each of the analytes individually, then 

collectively. Multiple-reaction-monitoring (MRM) parameters for each metabolite were 

established using commercial standards (Thermo Fisher Scientific, Massachusetts, USA) that 

were prepared at a concentration of 100 µM and run individually.  Detected collision energies 

and mass/charge ratio (m/z) values were used to optimise ion fragmentation needed for the 

detection of low-level metabolites using the onboard method optimisation tool. Once individual 

MRM parameters were established for each metabolite, a combined MRM file for all the KP 

metabolites was piloted with the gradient elution of the solvent phase optimised to the 

following: 10 % at 0–7 minutes, 60 % at 7–8 minutes, 100 % at 8–8.5minutes, 10 % at 8.5–10 

minutes (stop at 10 minutes).  10 µM of TRP was used as a positive control and was run at the 

beginning and end of each batch on each day.  This positive control running standard was used 

to monitor within-day and between-day coefficients of variation.  Determination of the limit of 

detection for each metabolite was based on a visual evaluation of the signal-to-noise ratio and 

the peaks detected.  This analytical methodology is currently undergoing further validation 

testing and is being prepared for publication as a separate methodological validation study. 

3.2.6 Statistical Methods and Variables 

A data-driven approach was applied to the de-identified data in Stata™ v17 (StataCorp, 

Texas, USA).  Potential confounders and effect modifiers, such as biological sex and age, were 

present although not controlled for due to the small sample size and proof-of-concept nature of 

this study.  Data are reported descriptively and a correlation matrix for all data (sample types 

and KP metabolites) was calculated.  Non-parametric Spearman correlations were used to 

calculate the strength of association between individual metabolite concentrations across 

sample types. 
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3.3 Results 

3.3.1 Participant Demographics and Metabolite Concentrations 

A total of 20 healthy participants were recruited for biological sample collection, 

ranging from 21 to 46 years of age.  Blood was not able to be drawn from four participants 

(total N = 16), while one participant was unable to provide saliva and another urine (total N = 

19).  Participant demographics are presented in Table 3.1.  Mean blood, saliva, and urine 

metabolite concentrations are presented in Tables 3.2–3.4.   

 

Table 3.1.  Participant demographics including age, sex, smoking status, and BMI.   

 Participants (N = 20) 

Mean Age (SD) 28.3 (7.8) 

Sex (F/M) 10/10 

Smoking Status (Y/N) 2/18 

Mean BMI (SD) 27.7 (6.4) 
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Table 3.2. Mean blood metabolite concentrations in serum and plasma for CRE, TRP, KYN, 

3-HK, KA, 3-HAA, AA, XA, PA, and QA.   

Metabolite Mean (SD) (N = 16) 

 Serum Plasma 

CRE (M) 78.60 (24.18) 69.11 (20.47) 

Male 98.93 (16.01) 78.83 (19.45) 

Female 58.27 (7.22) 59.40 (17.43) 

TRP (M) 68.00 (14.99) 57.68 (15.89) 

Male 76.24 (9.67) 63.93 (11.94) 

Female 59.76 (15.26) 51.44 (17.59) 

KYN (M) 3.70 (0.84) 2.62 (0.54) 

Male 3.81 (0.58) 2.69 (0.24) 

Female 3.58 (1.08) 2.55 (0.75) 

3-HK (nM) 50.47 (6.27) 42.19 (5.30) 

Male 51.32 (3.79) 44.09 (5.09) 

Female 49.61 (8.26) 40.28 (5.11) 

KA (nM) 35.50 (30.91) 21.39 (7.49) 

Male 33.75 (16.02) 24.73 (7.94) 

Female 37.25 (42.23) 18.04 (5.61) 

3-HAA (nM) 21.07 (16.03) 19.73 (6.76) 

Male 26.72 (17.69) 21.77 (6.54) 

Female 15.43 (12.85) 17.68 (6.77) 

AA (nM) 172.60 (261.48) 76.18 (30.46) 

Male 110.00 (67.98) 78.98 (19.47) 

Female 235.21 (364.60) 73.39 (39.89) 

XA (nM) 16.46 (21.49) 10.07 (7.65) 

Male 18.34 (20.75) 11.44 (7.57) 

Female 14.58 (23.48) 8.70 (7.99) 

PA (nM) 144.18 (203.41) 225.21 (125.86) 

Male 140.57 (193.01) 165.56 (83.52) 

Female 147.80 (226.66) 284.85 (137.26) 

QA (nM) 485.14 (91.39) 431.03 (82.33) 

Male 517.40 (48.84) 462.99 (74.67) 

Female 452.88 (114.60) 399.08 (81.32) 

Note.  3-HAA: 3-Hydroxyanthranilic Acid; 3-HK: 3-Hydroxykynurenine; AA: Anthranilic Acid; CRE: 

Creatinine; KA: Kynurenic Acid; KYN: Kynurenine; PA: Picolinic Acid; QA: Quinolinic Acid; TRP: 

Tryptophan; XA: Xanthurenic Acid. 
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Table 3.3. Mean saliva metabolite concentrations for CRE, TRP, KYN, 3-HK, KA, 3-HAA, 

AA, XA, PA, and QA. 

Metabolite Mean (SD) (N = 19) 

Protein (mg/L) 1345.39 (302.07) 

Male 1380.27 (290.02) 

Female 1306.63 (327.81) 

CRE (M) 2.98 (2.02) 

Male 3.11 (2.39) 

Female 2.83 (1.65) 

TRP (M/mg Protein) 6.66 (6.26) 

Male 6.02 (6.73) 

Female 7.37 (6.01) 

KYN (nM/mg Protein) 81.53 (138.95) 

Male 59.20 (124.57) 

Female 101.06 (156.13) 

3-HK (nM/mg Protein) 0.78 (1.04) 

Male 0.56 (0.85) 

Female 1.02 (1.22) 

KA (nM/mg Protein) 326.80 (251.03) 

Male 274.79 (321.54) 

Female 384.59 (135.39) 

3-HAA (nM/mg Protein) 50.01 (59.97) 

Male 42.78 (60.31) 

Female 58.04 (62.15) 

AA (nM/mg Protein) 951.49 (1063.70) 

Male 787.37 (1087.62) 

Female 1133.83 (1069.54) 

XA (nM/mg Protein) 77.28 (67.78) 

Male 64.47 (73.65) 

Female 91.51 (61.65) 

PA (nM/mg Protein) 448.04 (374.34) 

Male 368.62 (369.39) 

Female 536.28 (380.97) 

QA (nM/mg Protein) 94.01 (61.88) 

Male 89.89 (67.85) 

Female 98.60 (58.23) 

Note.  3-HAA: 3-Hydroxyanthranilic Acid; 3-HK: 3-Hydroxykynurenine; AA: Anthranilic Acid; CRE: 

Creatinine; KA: Kynurenic Acid; KYN: Kynurenine; PA: Picolinic Acid; QA: Quinolinic Acid; TRP: 

Tryptophan; XA: Xanthurenic Acid. 
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Table 3.4. Mean urine metabolite concentrations for CRE, TRP, KYN, 3-HK, KA, 3-HAA, 

AA, XA, PA, and QA. 

Metabolite Mean (SD) (N = 19) 

CRE (mM) 14.61 (10.08) 

Male 16.95 (10.26) 

Female 12.50 (9.95) 

TRP (M/mM CRE) 4.56 (2.44) 

Male 4.27 (1.85) 

Female 4.82 (2.95) 

KYN (M/mM CRE) 0.42 (0.25) 

Male 0.31 (0.14) 

Female 0.51 (0.29) 

3-HK (nM/mM CRE) 59.62 (54.27) 

Male 42.18 (20.05) 

Female 75.31 (70.39) 

KA (M/mM CRE) 1.40 (0.75) 

Male 1.06 (0.41) 

Female 1.70 (0.88) 

3-HAA (nM/mM CRE) 106.01 (96.62) 

Male 66.59 (74.82) 

Female 141.50 (103.63) 

AA (nM/mM CRE) 1.89 (2.54) 

Male 1.07 (1.44) 

Female 2.62 (3.13) 

XA (nM/mM CRE) 0.20 (0.11) 

Male 0.17 (0.03) 

Female 0.23 (0.14) 

PA (nM/mM CRE) 28.65 (41.18) 

Male 20.45 (34.32) 

Female 36.03 (47.09) 

QA (nM/mM CRE) 583.22 (370.81) 

Male 492.79 (284.43) 

Female 664.60 (433.07) 

Note.  3-HAA: 3-Hydroxyanthranilic Acid; 3-HK: 3-Hydroxykynurenine; AA: Anthranilic Acid; CRE: 

Creatinine; KA: Kynurenic Acid; KYN: Kynurenine; PA: Picolinic Acid; QA: Quinolinic Acid; TRP: 

Tryptophan; XA: Xanthurenic Acid. 
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3.3.2 Correlation Analyses 

The correlation matrix for all ten metabolites across all four sample matrices is 

presented in Figure 3.1.  Blue cells refer to a negative correlation and red cells a positive 

correlation, with 0 indicating no relationship.  The strength of the relationship is indicated by 

the intensity of the colour as noted in the scale.  A total of eight significant correlations were 

found across sample matrices (Table 3.5).  These included positive correlations between CRE 

serum and plasma, TRP serum and plasma, KYN serum and plasma, KA serum and plasma, 

KA saliva and urine, 3-HAA saliva and plasma, and PA plasma and saliva; and a negative 

correlation between AA serum and urine.  

Figure 3.1.  Non-parametric Spearman correlation matrix metabolites across all four sample 

matrices for the 10 metabolites quantified; red = positive correlation; blue = negative 

correlation.  Note.  3-HAA: 3-Hydroxyanthranilic Acid; 3-HK: 3-Hydroxykynurenine; AA: 

Anthranilic Acid; CRE: Creatinine; KA: Kynurenic Acid; KYN: Kynurenine; PA: Picolinic 

Acid; QA: Quinolinic Acid; TRP: Tryptophan; XA: Xanthurenic Acid; SER: Serum; PL: 

Plasma; SAL: Saliva; UR: Urine. 
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Table 3.5.  Statistically significant Spearman’s correlation coefficients (ρ), 95 % CI and p-

values across sample matrices. 

Correlation ρ(df) 95 % CI p 

CRE Serum vs. Plasma 0.6235(30) 0.1694, 0.8592 .0115 

TRP Serum vs. Plasma 0.7206(30) 0.3357, 0.8993 .0023 

KYN Serum vs. Plasma 0.7824(30) 0.4556, 0.9233 .0006 

KA Serum vs. Plasma 0.6206(30) 0.1648, 0.8580 .0120 

KA Saliva vs. Urine 0.6863(36) 0.3094, 0.8768 .0017 

3-HAA Serum vs. Plasma 0.6799(30) 0.2630, 0.8829 .0048 

AA Serum vs. Urine -0.7157(33) -0.8974, -0.3267 .0027 

PA Plasma vs. Saliva 0.6235(33) 0.1694, 0.8592 .0115 

 

 

3.4 Discussion 

This proof-of-concept study was the first research to compare nine KP metabolites and 

creatinine within the serum, plasma, saliva, and urine of healthy adults (aged 18 to 50 years), 

and report on sex-specific data.  Sex-specific data were not able to be calculated in the meta-

analysis reported in Chapter 2 due to reporting style of the data, and therefore this was a novel 

contribution by the present study. 

Serum and plasma concentrations of TRP observed here were elevated when compared 

to those reported within Chapter 2 (Table 2.7).  Evidence from the meta-analysis reported in 

Chapter 2 has shown that the mean concentration of TRP in the serum and plasma of healthy 

adults is 60.52 M and 51.45 m, respectively.  This is in comparison to the serum and plasma 

concentrations reported within this study (68.00 m, and 57.68 m, respectively).  However, 

when compared to the Australian data presented in Chapter 2 (Table 2.7; 67.26 m), the TRP 

serum values reported in this study (68.00 m) align well.  Saliva concentrations observed here 

were also significantly higher when compared to the normative data reported within other 

cross-sectional studies (6.66 m/mg protein vs. 0.24–1.50 m [162, 195]).  As discussed in 

Chapter 2, urine TRP concentrations are extremely varied with high levels of between-study 

variability, meaning that data could not be meaningfully synthesised.  Therefore, future studies 

should seek to clarify this by assessing this in larger cohorts and controlling for major 

influencing factors such as diet. 

The KYN concentrations within the serum and plasma reported in this study are also 

elevated when compared to the normative data reported in Chapter 2 (Table 2.6).  Evidence in 
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the meta-analysis reported in Chapter 2 has shown concentrations of 1.96 M within the serum 

and 1.82 M within the plasma.  In comparison, this study has reported relatively higher 

concentrations (3.70 M and 2.62 M within the serum and plasma, respectively).  However, 

when compared to the Australian data presented in Chapter 2 (Table 2.7; 2.43 M in the serum 

and 2.12 M in the plasma), these values are in closer agreement.  Saliva concentrations were 

also elevated when compared to those reported within the literature [154, 195].  Urine KYN 

concentrations within the literature are varied, as reported within the meta-analysis, but the 

results presented within this empirical study are comparable [177, 263].   

The values reported within this empirical study align closely with the Australian 

specific data presented in the meta-analysis (Chapter 2; Table 2.6).  This supports the 

hypothesis that dietary factors (i.e., linked to geographical location) may play an important role 

in the up-regulation or down-regulation of the KP [281-283].  Further, this current study 

showed elevated concentrations of TRP and KYN within the serum (relative to the plasma), 

which are in accordance with the meta-analysis reported in Chapter 2 and the wider literature.  

Studies have reported that the metabolome profiles of serum and plasma are distinct, with many 

metabolites showing significantly higher concentrations within the serum relative to the plasma 

[275, 294]. 

There is little consensus within the reported literature on the normative concentrations 

of 3-HK, KA, 3-HAA, AA, XA, PA, and QA within the serum, plasma, saliva, and urine of 

healthy adults.  While these concentrations are often profiled in disease cohorts, including 

psychiatric, neurological, and neurodegenerative diseases (NDDs) such as Alzheimer’s disease 

(AD) [295, 296], there is a scarcity of information characterising normal KP function across 

the lifespan.  Novel data generated from the current study is essential for providing a 

benchmark for future investigations assessing the full gamut of KP metabolites in clinical and 

at-risk cohorts across a range of sample types.  A priority for future research is to profile these 

metabolites in a larger sample with a wider age range (i.e., full lifespan including children and 

older adults) to characterise the transition from healthy to at-risk to disease states. 

A major outcome from this study was to determine whether a correlation existed 

between traditional sample matrices of interest, including serum and plasma, and novel, 

minimally invasive matrices, such as saliva and urine.  In terms of the relationship between KP 

metabolites in serum and plasma, a total of five significant positive correlations were found for 

CRE, TRP, KYN, KA, and 3-HAA.  The strong relationship between serum and plasma for 

TRP and KYN replicates what we observed in the meta-analysis reported in Chapter 2.  Despite 
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the differences in absolute concentration of KP metabolites in the serum compared to the 

plasma (serum is often higher), a high overall correlation has been observed in human serum 

and plasma metabolite profiles [275]. 

Interestingly, a total of three significant and novel relationships were found involving 

saliva and urine.  This included a positive correlation between KA in saliva and urine and PA 

in saliva and plasma, and a negative correlation between AA in serum and urine.  KA belongs 

to the neuroprotective branch of the KP and is often decreased centrally (within the cerebral 

cortex) and peripherally (within the serum) of people living with an NDD, potentially reflecting 

the state of neuroinflammation [297, 298].  KA concentrations in the saliva and urine were 

more closely related than KA in the serum and plasma (r = .6863 vs. .6206), and interestingly, 

KA levels in saliva and urine were not associated with KA in the serum and plasma.  KA, as a 

metabolite is largely excreted from the body in the urine, and studies exploring inflammatory 

conditions have found increased KA excretion within the urine [299].  While no specific causal 

relationship has been observed, this may suggest that the decreased concentrations of KA 

observed in people with NDDs could be linked to decreased rates of excretion within the urine.  

Speculatively, this may suggest that urinary KA, and by extension, salivary KA, are both 

promising options for monitoring the state of inflammation within the body.   

PA is another endogenous metabolite that has been shown to possess an array of 

immunological and neuroprotective effects in the central nervous system [300].  Recent 

research has shown that plasma levels of PA in people living with AD are inversely correlated 

with neurotoxic tau in the cerebrospinal fluid (CSF) [120].  Considering the relationship 

between the levels of PA in the saliva and plasma, further investigation examining the use of 

salivary PA in AD contexts is warranted.  There are several advantages of this, for example, it 

could be speculated that levels of PA in the saliva (which correlate to the plasma) are inversely 

related to levels of neurotoxic tau in the CSF [120].  In this instance, lower levels of PA in the 

saliva may be indicative of greater AD pathophysiology within the central nervous system, 

although this would require extensive validation from future research.  Nevertheless, indexing 

tau neurotoxicity through measuring PA in the saliva would eliminate the need for a spinal tap 

to obtain CSF.  This is especially important in older adults who are particularly vulnerable to 

minor stressor events such as spinal taps [90].  The role of AA in health and disease is debated, 

with some studies reporting attenuation of inflammation and oxidative stress [301], with others 

reporting that elevated circulating levels of AA in the plasma increases dementia risk by up to 

40 % [302].  Our observation shows that the levels of AA in the serum are inversely associated 

with AA levels in the urine in a healthy state; this will be explored further in Chapter 4. 
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The correlations observed between saliva and urine, saliva and plasma, and serum and 

urine can be contextualised by the complex biochemical matrix in the body that extends beyond 

tissue or fluid borders [303].  It has been proposed that comprehensive approaches that combine 

the analysis of multiple sample matrices, and the correlations between them, are required to 

generate an integrative understanding of the body’s metabolic processes [303].  While several 

studies have collected KP metabolomic data across several sample types (see Chapter 2), 

between-fluid correlation networks are less common in the KP-context.  For example, plasma 

concentrations of several KP metabolites have been shown to significantly correlate with their 

respective levels within the CSF [120].  Although the relationship between central and 

peripheral KP concentrations is well-characterised, little is known about the between-fluid KP 

correlations in the saliva and urine.  The current study adds new knowledge on these 

relationships by being the first study reported within the literature to observe a positive 

correlation between urine and saliva.  Future studies should seek to clarify any sex-specific 

differences in the identified correlations. 

Strengths of the present study include being the first to map the profile of all nine major 

KP metabolites, alongside CRE, in the serum, plasma, saliva, and urine of healthy adults.  This 

study was also the first to consider a between-fluid correlation matrix in healthy adults.  While 

promising, this was a small, proof-of-concept study that should be replicated in a larger cohort 

and include other specimen types (such as sebum), to clarify the relationship between central 

and peripheral KP markers.  Additionally, the analytical profiling methods used in this study 

are yet to be independently validated according to the criteria discussed in Chapter 2 (currently 

being prepared for publication as a separate method validation study).  Future studies should 

seek to further clarify the nature and mechanism of this relationship in a KP context.  

Comprehensively profiling the salivary and urinary metabolome in healthy adults, as well as 

people who are at-risk of diseases such as AD, is an essential pre-requisite for accurate 

biomarker discovery research. 
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Chapter 4: Measuring Response to Treatment Using Kynurenine 

Pathway Biomarkers in People With and Without AD Risk 

 

Foreword: In this chapter, all major biologically active metabolites within the kynurenine 

pathway were profiled in the serum and urine of cognitively healthy older adults who had their 

risk of Alzheimer’s disease characterised.  Data presented are from at two timepoints (before 

and after a 12-month curcumin intervention).  Group differences in the mean change of 

cognitive scores, Alzheimer’s disease risk pathology, and serum kynurenine pathway 

metabolites were assessed.  Between-group differences in urine metabolites were assessed at 

endpoint only.  Correlation analyses were conducted to determine the relationship between 

metabolites, biospecimen types, and clinical markers.  The chapter is currently being prepared 

as a stand-alone journal article manuscript that will be first submitted to the preprint server 

bioRvix. 

 

Metri, N-J., Chatterjee, P., Goozee, K., James, I., Shen, K., Sohrabi, H.R., Shah, T., Asih, 

P.R., Dave, P., ManYan, C., Taddei, K., Martins, R.N., Steiner-Lim, G.Z., Lim, C.K (in 

preparation).  Measuring response to treatment using KP biomarkers: A sub-study of a 12-

month randomised controlled trial of curcumin for cognitive function in people with and 

without AD risk.  bioRvix. 
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4.1 Introduction 

4.1.1 KP Profiling in AD Risk 

The kynurenine pathway (KP) has been implicated in an array of diseases, including 

neurodegenerative diseases such as Alzheimer’s disease (AD) and its clinically relevant 

prodromal phase mild cognitive impairment (MCI) [126].  In neuroinflammatory conditions 

such as AD, the KP is significantly upregulated.  This upregulation has been linked to the 

increased production of neuroactive metabolites that may be immunomodulatory, 

neuroprotective, or neuroactive in effect [304].  It is essential to flag that the up regulation of 

the KP manifests both centrally within the central nervous system and peripherally within 

circulation [305-307]. 

It is generally thought that the preclinical-AD phase is characterised by relatively higher 

levels of neocortical-amyloid load (NAL), and that this accumulation may commence up to 

three decades prior to any clinically-recognisable cognitive decline [304, 308, 309].  Higher 

ratios of core KP metabolites, tryptophan (TRP) and kynurenine (KYN), have been observed 

within the serum and plasma of both AD and MCI cohorts [310, 311].  This is clinically relevant 

as this ratio is inversely correlated with cognitive performance [310].  A recent study conducted 

in the KARVIAH Cohort (outlined in Chapter 1) explored the potential for KP upregulation in 

cognitively normal older adults with higher NAL as detected by positron emission tomography 

(PET) [304].  That study was conducted on the baseline data from participants enrolled in a 12-

month double-blind placebo-controlled clinical trial investigating the therapeutic efficacy of 

ingesting oral curcumin on cognitive function and NAL.  In that study, the authors adjusted for 

age and AD risk genes and found higher levels of KYN and anthranilic acid (AA) in at-risk 

females, but not males [304], providing insight into the role of the KP on disease 

pathophysiology and sex differences.  Curcumin therapy is relevant to the KP as it has been 

shown to have a direct relationship with indoleamine 2,3-dioxygenase (IDO), a regulator of the 

KP.  For instance, multiple curcumin studies have highlighted the inhibition of IDO [312, 313], 

suggesting that the KP may have potential in measuring the therapeutic response of 

interventions, however, it has not been investigated in this theragnostic context to date. 

The KP profile is not well-characterised across sample types, such as urine.  Numerous 

studies have shown that the targeted metabolic profiling of urine may provide a potential 

biomarker panel for cognitive dysfunction [115, 314, 315].  For example, a recent study 

exploring the spectrum of clinical diagnosis found lower levels of TRP in the urine of 

participants with AD compared to healthy controls [115].  Interestingly, a decreasing trend in 
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concentrations was observed in accordance with the spectrum of clinical diagnosis (e.g., 

healthy vs. MCI vs. AD) [115].  While this trend was also observed within the serum [115], 

other studies have found that the information contained in peripheral samples, such as urine 

and serum, are statistically independent [118].  Furthermore, defining biomarkers that may 

predict treatment response is an essential aspect of developing personalised and point-of-care-

testing (POCT) [316].  For instance, TRP has been previously identified as a sensitive 

biomarker for treatment response in personalised cancer treatments [316].  To date, no such 

studies have been reported in the context of the AD-risk trajectory. 

4.1.2 Aims and Objectives 

The current study utilised archival data collected from the KARVIAH Cohort in New 

South Wales, Australia (2015) [304, 317].  The overarching goal of this study was to assess 

response-to-treatment in a clinical trial to determine whether the KP may be considered a 

marker for treatment responsivity in an AD-risk context.  We conducted a sub-study on the 

clinical trial data from the curcumin intervention study and aimed to evaluate the predictive 

role of KP metabolites by exploring: (a) whether there were any differences in the serum and 

urine KP profiles post-curcumin intervention; and (b) the clinical and pathological relevance 

of any KP perturbations by assessing their relationship with cognition, as measured by the 

Mini-Mental State Examination (MMSE), and AD risk determined by PET NAL standardised 

uptake value ratio (SUVR) values.   

 

4.2 Methods and Materials 

4.2.1 Participants 

Volunteers (N = 206) underwent screening for inclusion in the KARVIAH Cohort, a 

healthy older cohort that was screened for AD risk factors.  Inclusion criteria for participants 

included no objective cognitive impairment as confirmed by a score of ≥26 on the Montreal 

Cognitive Assessment (MoCA) [318]; aged between 65 to 90 years; of good general health and 

wellbeing with no known significant cerebral vascular disease and corrected vision and 

hearing; and fluent in English [304, 317].  Exclusion criteria included uncontrolled 

hypertension (systolic > 170 mmHg or diastolic > 100 mmHg); severe depressive illness as 

measured by the Depression, Anxiety, and Stress Scale (DASS); an acute functional psychiatric 

illness; lifetime history of a psychotic disorder such as schizophrenia; lifetime history of stroke; 

or the diagnosis of dementia according to the revised criteria determined by the National 

Institute on Aging (Alzheimer’s Association) [304, 317, 319]. 
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Volunteers who met the criteria for the KARVIAH cohort (n = 134) underwent blood 

collection and neuroimaging, as well as further neuropsychometric testing using the MMSE 

score to confirm normal global cognition (≥26) [304, 320].   Cognitively normal volunteers 

were included in the current study (n = 97).  Their participation was ethically reviewed by the 

Macquarie University Human Research Ethics Committee, NSW, Australia (No. 5201701078) 

and the Bellberry Human Research Ethics Committee, NSW, Australia (No. 2012-09-1086).  

Use of the archival data was approved by the Western Sydney University Human Research 

Ethics Committee, NSW, Australia (No. H14815).  All participants provided written informed 

consent prior to participating. 

4.2.2 Intervention 

Participants were enrolled in a 12-month intervention double-blind placebo-controlled 

clinical trial (full details reported in the ANZCTR: ACTRN12613000681752).  During the 

study, participants ingested oral curcumin (BCM-95™, 1.5mg daily) or a biologically inactive 

placebo.  Following the completion of the trial period, participants were re-assessed using the 

same testing batter and neuroimaging. 

4.2.3 Sample Collection and Genotyping 

Study participants fasted overnight for ten hours prior to blood collection (80 mL) using 

standard venepuncture approaches and processing techniques for blood serum [317].  Bloods 

were collected at baseline and endpoint.  Midstream urine was collected at the time of blood 

collection only at endpoint as the decision was made to include urine analytes as tertiary 

outcome measures partway through the trial.  Urine was collected into a sterile collection 

container and centrifuged for 10 minutes at 2500 rpm and 4 °C.  All samples were collected in 

2015 and stored at -80 oC until they were thawed and analysed for KP metabolites in 2017. 

Apolipoprotein E (APOE) was genotyped using purified gDNA extracted from 500 μL 

whole blood.  Participant samples were genotyped and profiled for the ε2, ε3, and ε4 APOE 

variants as per the TaqMan SNP genotyping assays for rs7412 (C 904973) and rs429358 (C 

3084793; AB Applied Biosystems by Life Technologies, Victoria, Australia) [304]. 

4.2.4 Neocortical Amyloid-β Load and Hippocampal Volumes via PET and MRI 

Study participants underwent neuroimaging within three months of sample collection 

at the Macquarie Medical Imaging facility in Sydney, Australia.  Neuroimaging measures 

included PET using 18F-Florbetaben (FBB) and magnetic resonance imaging (MRI) [304].  

FBB was administered via intravenous bolus over 30 seconds while seated in a rested position 

(n = 100).  Images were acquired over a twenty-minute scan via five-minute acquisitions, 



 103 

beginning fifty minutes post-injection.  NAL was calculated as the average SUVR (cut-off 

1.35) of the ligand within the anterior and posterior cingulate, lateral occipital, lateral temporal, 

superior parietal, and frontal regions normalised with that in the cerebellum using CapAIBL 

[304, 321, 322].  Participants were grouped into either the ‘at risk’ group (NAL+) or the ‘not 

at risk’ group (NAL-).  Participants who met all standard MRI inclusion and exclusion criteria 

(n = 96) underwent MRI using a General Electric 3Tesla Scanner (Model 750W), as previously 

described but not reported further here [304, 323]. 

4.2.5 Reagents and Metabolomic Analysis 

All KP metabolite standards and reagents used were analytical mass-spectrometry 

reagent grade and purchased from Sigma-Aldrich (St Louis, Missouri, USA).  Deuterated 

internal standards were purchased from Medical Isotopes, Inc (Pelham, New Hampshire, 

USA).  Serum samples were prepared for KP metabolite analyses using the additional volume 

of 10 % (w/v) TCA. 

KP metabolites TRP, KYN, AA, 3-hydroxykynurenine (3-HK), and 3-

hydroxyanthranilic acid (3-HAA) were analysed simultaneously using ultra-high performance 

liquid chromatography (20 μL injection volume), as reported elsewhere [324].  Kynurenic acid 

(KA) separation was carried out following injection (10 μL) into a Poroshell RRHT C18 column 

(1.8 μM, 2.1 × 100 mm; Agilent Technologies, Inc, Santa Clara, California, USA) using 

fluorescence detection with an Ex/Em of 344/388 nm and 1.5-minute retention time, as 

published previously [304].  Concentrations were analysed using Agilent OpenLAB CDS 

ChemStation (v C.01.04) [304].  Picolinic acid (PA) and quinolinic acid (QA) were analysed 

using a combination of electron-capture negative-ion gas chromatography coupled with mass 

spectrometry (GCMS), as described elsewhere [325].  Minor modifications were made using 

an Agilent 7890 A GC system coupled with an Agilent 5975 C mass spectrometry detector and 

an Agilent 7693 A autosampler (Agilent Technologies, Inc, Santa Clara, California, USA) 

[304].  Agilent GC/MSD ChemStation (v. 02.02.1431) was used to determine concentrations. 

4.2.6 Statistical Analysis 

A data-driven approach was applied to the de-identified data in Stata™ v17 (StataCorp, 

Texas, USA).  Normality checks were performed for all variables via visual inspection of 

histograms prior to statistical analyses to determine whether parametric of non-parametric 

approaches should be used.  To compare participant baseline characteristics, two-tailed 

independent groups t-tests with equal variances assumed were used for all continuous variables 
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(age, education, MMSE), and chi-squared tests were conducted for categorical variables (sex, 

APOE-ε4 status, amyloid PET AD risk). 

The concentrations of various enzymes and ratios were also calculated.  IDO was 

calculated by dividing KYN concentrations by TRP concentrations, while kynurenine 

aminotransferase (KAT) was calculated by dividing KA concentrations by KYN 

concentrations.  3-HK concentrations were divided by KYN concentrations to quantify 

kynurenine 3-monooxygenase (KMO), while kynureninase (KYNU) was quantified by 

dividing 3-HAA concentrations by 3-HK.  3-hydroxyanthranilic acid dioxygenase (3-HAO) 

was quantified by dividing QA by 3-HAA, and the QA-KA ratio (QKR) was calculated by 

dividing QA by KA. 

Two-tailed independent groups t-tests with equal variances assumed were then used to 

assess the group differences (curcumin vs. placebo) in the mean difference of MMSE scores 

and amyloid PET SUVR values, as well as KP serum metabolite concentrations; appropriate 

non-parametric analysis was performed for any variables violating normality assumptions and 

reported accordingly below.  Between-group differences in urine KP metabolites were assessed 

at endpoint only.  Exploratory post-hoc tests were conducted for significant outcomes and 

stratified for AD risk (positive vs. negative amyloid PET) and sex.  Participant characteristics 

including differences in KP concentrations at baseline were checked as effect modifiers and 

confounders against all variables and controlled for where necessary.  Mean differences, SDs, 

95 % confidence intervals, and effect sizes are reported; medians and ranges are reported for 

non-parametric assessments.   

To determine the relationship between KP biospecimen types (serum and urine) and 

any clinical relevance of findings, correlation analyses were also conducted for continuous 

variables including MMSE, PET, and KP metabolites across and within groups.  Non-

parametric Spearman’s correlations were used for all correlational analyses.  Statistically 

significant results were stratified by sex and AD risk.  This study was exploratory in nature, 

thus no correction for multiple comparisons was applied and all tests were conducted two-

tailed (α = 0.05).   

 

4.3 Results 

4.3.1 Participant Demographics and Clinical Characteristics 

Participant demographics, clinical characteristics, and their statistical comparisons are 

detailed in Table 4.1.  There were no significant differences between groups indicating 
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successful randomisation and good compatibility between individuals randomised to curcumin 

and placebo groups at baseline. 

 

Table 4.1.  For placebo and curcumin groups, baseline participant demographics, clinical 

characteristics, and their statistical comparisons. 

Participant Characteristics Curcumin 

(n = 48) 

Placebo 

(n = 49) 

p 

Age, years mean ± SD 79.04 ± 6.01 79.27 ± 5.23 0.845 

Education, years mean ± SD 14.33 ± 2.86 14.76 ± 3.65 0.529 

Baseline MMSE, mean ± SD 28.48 ± 1.15 28.69 ± 1.16 0.362 

Sex, F:M (% F) 33:15 (68.75) 33:16 (67.35) 0.882 

APOE Status, Pos:Neg (% Pos) 8:40 (16.67) 11:38 (22.45) 0.473 

PET, Normal:Amyloid (% Amyloid) 33:15 (31.25) 34:15 (30.61) 0.946 

Note.  The low NAL group (NAL-; n = 65) and the high NAL group (NAL+; n = 35) were grouped using a 

standard uptake value ratio (SUVR) cut-off of 1.35.   

 

4.3.2 Mean Changes in Clinical Characteristics and Serum KP Metabolite Concentrations 

Change in PET score was found to be positively skewed with one significant outlier 

present (z = 6.679), thus non-parametric analysis was used (Mann-Whitney U-test) and the 

outlier was removed; removal of the outlier did not affect the final statistical result.  All other 

data were found to be normally distributed, thus parametric analysis was utilised.  Other than 

baseline levels of AA, there was no evidence of effect modification or confounding from 

baseline participant characteristics, so these were subsequently not controlled in further 

analyses (apart from AA). 

Table 4.2 details the outcomes and estimations of all MMSE and PET scores, as well 

as KP concentrations within the serum.  Data are presented as mean change (endpoint minus 

baseline) with standard deviation and 95 % confidence interval for placebo and curcumin 

groups.  The between groups difference (curcumin minus placebo) is shown together with 

degrees of freedom (df), p-value (bolded for statistical significance at p < 0.05, two-tailed), and 

Cohen’s d. 

As shown in Table 4.2, the mean change in TRP (p = 0.033) and KYN (p = 0.030) 

differed significantly between groups from baseline to endpoint.  The significant changes in 

TRP and KYN were driven by a greater increase in the treatment group after 12-months 

curcumin treatment, relative to placebo.  The larger increase in the curcumin group (cf. placebo) 

in KYN was in females only (p = .045).   
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There was a mean reduction in AA concentration from baseline to endpoint that was 

greater in the placebo compared to curcumin group.  Given that the placebo group had 

significantly higher AA levels at baseline, baseline AA scores were subsequently controlled 

for using ANCOVA, which indicated that the group differences in AA at endpoint were 

explained by the higher baseline levels in the placebo group, F(3, 61) = 15.06, p < 001; p group 

= .902; p baseline AA < .001; p group*baseline = .884).  Changes in AA were not associated with sex 

differences.  Post-hoc analyses stratified by AD risk, revealed no significant differences 

between curcumin and placebo group in the change in TRP, KYN, and AA concentrations (all 

p > .077)
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Table 4.2.  Outcomes and estimations of all MMSE scores, amyloid PET SUVR value, and KP concentrations within the serum.  Data are presented 

as mean change (endpoint minus baseline), standard deviation, and 95 % confidence interval for placebo and curcumin groups.  TRP and KYN 

are presented in M, while KA, 3-HK, 3-HAA, AA, PA, and QA are reported in nM. 

 Mean Change (Endpoint – Baseline) Between Group Difference    

 Curcumin 

MDiff ± SD 

[95 % CI] 

Placebo 

MDiff ± SD 

[95 % CI] 

Curcumin – Placebo 

MDiff 

[95 % CI] 

p df Cohen’s d 

MMSE 0.31 ± 1.29 

[-0.06, 0.69] 

0.18 ± 1.52 

[-0.25, 0.62] 

0.13 

[-0.36, 0.53] 

0.655 95 0.67 

PET* -1.12 

[-1.33, -0.36] 

-1.10 

[-1.35, -0.40] 

 0.738 95 0.03 

3-HK 2.57 ± 120.15 

[-32.32, 37.45] 

-15.00 ± 31.61 

[-24.08, -5.92] 

17.56 

[-17.69, 52.82] 

0.325 95 0.20 

3-HAA -11.55 ± 9.07 

[-14.19, -8.92] 

-12.71 ± 8.15 

[-15.05, -10.39] 

1.16 

[-2.32, 4.63] 

0.511 95 0.13 

AA -8.66 ± 12.02 

[-12.15, -5.17] 

-15.12 ± 18.69 

[-20.49, -9.75] 

6.46 

[0.12, 12.81] 

0.046 95 0.41 

KYN 0.46 ± 0.43 

[0.33, 0.58] 

0.28 ± 0.38 

[0.17, 0.39] 

0.18 

[0.02, 0.34] 

0.030 95 0.45 

TRP 4.41 ± 7.25 

[2.31, 6.52] 

1.56 ± 5.61 

[-0.05, 3.18] 

2.85 

[0.24, 5.46] 

0.033 95 0.44 

PA -7.90 ± 54.10 

[-23.97, 8.17] 

-20.87 ± 74.99 

[-42.64, 0.91] 

12.97 

[-13.92, 39.85] 

0.341 92 0.20 

QA 41.86 ± 128.85 7.33 ± 104.43 34.52 0.156 92 0.30 
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[3.59, 80.12] [-22.99, 37.66] [-13.43, 82.47] 

KA -14.43 ± 26.99 

[-22.26, -6.59] 

-15.89 ± 18.14 

[-21.10, -10.68] 

1.47 

[-7.79, 10.72] 

0.754 95 0.06 

IDO  5.42 ± 12.44 

[1.81, 9.03] 

4.43 ± 8.16 

[2.09, 6.77] 

0.99 

[-3.24, 5.22] 

0.644 95 0.09 

KAT -9.21 ± 9.99 

[-12.11, -6.31] 

-8.47 ± 7.24 

[-10.54, -6.39] 

-0.74 

[-4.25, 2.77] 

0.675 95 -0.09 

KMO -9.59 ± 43.07 

[-22.09, 2.92] 

-11.16 ± 13.29 

[-14.98, -7.34] 

1.57 

[-11.22, 14.37] 

0.808 95 0.05 

KYNU -0.08 ± 0.07 

[-0.10, -0.06] 

-0.10 ± -0.07 

[-0.12, -0.08] 

0.01 

[-0.01, 0.04] 

0.302 95 0.21 

3-HAO 3.32 ± 1.29 

[2.92, 3.72] 

3.34 ± 1.31 

[2.94, 3.75] 

-0.02 

[-0.58, 0.53] 

0.934 84 -0.02 

QKR 2.76 ± 4.08 

[1.54, 3.97] 

2.20 ± 4.57 

[0.87, 3.53] 

0.56 

[-1.22, 2.33] 

0.536 92 0.13 

* Non-parametric analysis with reporting of median, range, N, and effect size calculated as z/N. 

Note. MMSE: Mini-Mental State Examination; PET: Positron Emission Tomography; 3-HK: 3-Hydrokynurenine; 3-HAA: 3-Hydroxyanthranilic Acid; AA: Anthranilic 

Acid; KYN: Kynurenine; TRP: Tryptophan; PA: Picolinic Acid; QA: Quinolinic Acid; KA: Kynurenic Acid; IDO: Indoleamine Dioxygenase; KAT: Kynurenine 

Aminotransferase; KMO: Kynurenine 3-Monooxygenase; KYNU: Kynureninase; 3-HAO: 3-Hydroxyanthranilic Acid Dioxygenase; QKR: QA/KA Ratio 
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4.3.3 Group Differences in Urine KP Metabolite Concentrations 

All urine KP metabolites did not follow a normal distribution, thus non-parametric tests 

(Mann-Whitney U-tests) were utilised for all metabolites.  Table 4.3 details the outcomes and 

estimations of all KP concentrations within the urine from endpoint (12 months) only.  Data 

are presented as median and range for placebo and curcumin groups together with the N, p-

value (bolded for statistical significance at p < 0.05, two-tailed), and effect size.  There was a 

significant difference for AA only (p = .016), with greater urine concentrations in the curcumin 

group compared to the placebo group at 12-months; this was apparent in men (p = .010), but 

not women, and did not differ with AD risk. 
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Table 4.3.  Outcomes and estimations of all KP concentrations within the urine at endpoint (12 months).  Data are presented as median and range 

for placebo and curcumin groups, together with relevant p-value, N, and effect size.  TRP and KYN are reported in M/mM CRE, while KA, 3-

HK, 3-HAA, AA, PA, and QA are reported in nM/mM CRE. 

 Curcumin 

Median 

[Range Min, Max] 

Placebo 

Median 

[Range Min, Max] 

p N Effect size: 

z/N 

TRP 5.31 

[0.92, 13.82] 

5.00 

[1.97, 16.57] 

0.596 35 .10 

KYN 0.36 

[0.13, 1.23] 

0.45 

[0.12, 1.07] 

0.855 35 -.03 

KA 1.36 

[0.82, 2.65] 

1.25 

[0.55, 2.04] 

0.094 35 -.28 

HK 58.67 

[0.00, 518.83] 

116.02 

[13.23, 346.29] 

0.337 35 .16 

3-HAA 713.21 

[191.99, 2872.46] 

673.85 

[218.95, 1921.62] 

0.843 35 .03 

AA 40.65 

[23.72, 182.86] 

32.93 

[13.65, 64.49] 

0.016 35 -.41 

PA 250.52 

[139.13, 447.49] 

261.47 

[114.98, 461.77] 

0.466 35 -.12 

QA 1910.04 

[1160.37, 8360.61] 

1909.01 

[743.72, 5721.23] 

0.791 35 -.04 

IDO 81.74 

[19.59, 216.57] 

66.21 

[29.06, 170.87] 

0.974 35 .01 

KAT 2.94 3.20 0.466 35 -.12 
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[0.85, 10.46] [1.07, 12.42] 

KMO 148.51 

[0.00, 592.72] 

259.56 

[77.82, 473.22] 

0.136 35 .25 

KYNU 0.36 

[0.13, 1.23] 

0.45 

[0.12, 1.07] 

0.855 35 -.03 

3-HAO 2.71 

[0.83, 9.73] 

2.97 

[1.43, 6.77] 

0.691 35 -.07 

QKR 1398.39 

[711.27, 5230.67] 

1567.97 

[782.66, 4974.98] 

0.233 35 .20 

Note. 3-HK: 3-Hydrokynurenine; 3-HAA: 3-Hydroxyanthranilic Acid; AA: Anthranilic Acid; KYN: Kynurenine; TRP: Tryptophan; PA: Picolinic Acid; QA: Quinolinic 

Acid; KA: Kynurenic Acid; IDO: Indoleamine Dioxygenase; KAT: Kynurenine Aminotransferase; KMO: Kynurenine 3-Monooxygenase; KYNU: Kynureninase; 3-HAO: 

3-Hydroxyanthranilic Acid Dioxygenase; QKR: QA/KA Ratio 
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4.3.4 Correlation Analyses 

Non-parametric Spearman correlations were used to calculate the strength of 

association between all significant findings from Table 4.2 (TRP, KYN, AA) and Table 4.3 

(AA).  KP metabolites in the serum and urine were correlated with MMSE scores and PET 

SUVR values across groups (curcumin and placebo), and separately within groups. 

Significant correlations from the mean difference data (endpoint – baseline) across and 

within groups are depicted in Table 4.4 for the serum KP markers.  Across groups, KYN was 

positively correlated with amyloid PET SUVR values in the mean difference data (endpoint – 

baseline; p =.027); this relationship was not present at the individual group level (both p > 

.089).  Serum KYN concentrations were positively correlated with PET SUVR values in female 

participants only (p = .004).  A significant positive correlation was found between change in 

MMSE scores and change in serum AA concentrations in the placebo group only (p = .041); 

this did not differ with sex or AD risk.  There were no significant associations between the 

change in PET and MMSE values with the change in serum TRP concentrations either across 

groups or within groups.   

 

Table 4.4.  Significant correlation outcomes from the mean difference data (endpoint – 

baseline) across and within groups, including MMSE, PET, and KP metabolites in serum. 

Correlation Group rho p 

PET vs. KYN in Serum Across Groups .2267 .027 

MMSE vs. AA in Serum Placebo .2928 .041 

Note: AA: Anthranilic Acid; KYN: Kynurenine; MMSE: Mini-Mental State Examination; PET: Positron 

Emission Tomography. 

 

Statistically significant correlation outcomes from the endpoint data across and within 

groups are depicted in Table 4.5 including both serum and urine KP markers.  Across groups, 

MMSE scores at endpoint were positively correlated with TRP concentrations in serum (p = 

.001) and AA concentrations in urine (p = .001).  These relationships were found in the 

curcumin group only (Table 4.5) and did not differ with sex or AD risk.  There were no further 

significant correlations across or within groups for endpoint serum TRP, KYN, AA, or urine 

AA with MMSE or PET values.  
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Table 4.5.  Significant correlation outcomes from the endpoint data across and within groups, 

including MMSE, PET, and KP metabolites in serum and urine. 

Correlation Group ρ p 

MMSE vs. TRP in Serum Across Groups .3224 .001 

MMSE vs. AA in Urine Across Groups .5581 .001 

MMSE vs. TRP in Serum Curcumin .4020 .005 

MMSE vs. AA in Urine Curcumin .7242 .001 

Note: MMSE: Mini-Mental State Examination, TRP: Tryptophan, AA: Anthranilic Acid 

 

4.4 Discussion 

This was the first study to assess response-to-treatment in a clinical trial to determine 

whether the KP may be considered a viable biomarker for treatment responsivity in people with 

and without risk of AD.  While the present research is a sub-study of an archival dataset, this 

is the first to characterise the KP profile in urine in the KARVIAH cohort [326]. 

Overall, no positive results were observed in this clinical trial in terms of improvements 

in cognitive outcomes (as measured by MMSE) or AD risk (as measured by amyloid PET as a 

continuous variable) linked to a 12-month curcumin intervention.  Between-group analyses 

indicated that an increase in TRP and KYN concentrations was greater in the curcumin group 

relative to placebo, irrespective of AD risk.  KYN increases were apparent in women only.  

However, the reduction in concentrations of AA in the serum were larger in the placebo than 

the curcumin group, which were linked to higher levels at baseline, regardless of sex or AD 

risk.  There were greater AA concentrations in the curcumin compared to placebo group in the 

urine at endpoint, this was apparent in men and not women, and was irrespective of AD risk. 

Curcumin therapy is relevant to the KP as it has been shown to have a direct relationship 

with IDO, the first major rate-limiting enzyme in the KP.  The upregulation of the KP reported 

in the present study is contrary to the current understanding reported in the literature, however, 

these findings are largely generated from preclinical research, and have highlighted the 

inhibition of IDO [312, 313].  In general, it is understood that curcumin supplementation 

inhibits the KP [327], and this known pharmacological mechanism cannot be reconciled with 

our observation of elevated concentrations of TRP and KYN in the treatment group following 

12-months oral curcumin.  Nevertheless, our findings were in an otherwise healthy cohort with 

normal global cognition (MMSE ≥26) [304, 320], justifying raised levels of TRP and KYN.  

Further research is required in human participants to replicate this finding and elucidate the 

underling mechanism to bridge the gap with this preclinical work.  



 114 

A significant positive correlation was observed between change in KYN concentrations 

and NAL across (but not within) groups, indicating that KYN levels within the serum increase 

as NAL increases in the brain of cognitively normal older adults, irrespective of curcumin 

treatment.  Importantly, this relationship was observed only in female participants.  Our finding 

is in accordance with the literature that has identified elevated KYN in cognitively healthy 

females at risk of AD and KYN as a significant and independent predictor of NAL-associated 

AD risk [326].  The link between changes in amyloid in the neocortex and serum KYN has 

been attributed to the increased degradation of TRP (as a precursor to KYN) and hence the 

upregulation of the KP in females who are at risk of AD [326].  This finding is difficult to 

reconcile with our observation that both serum TRP and KYN increased with curcumin 

treatment.  Nevertheless, the isolated effect observed in females reported in this study is 

supported by the wider literature that has reported both the general influence of biological sex 

on the KP profile in the serum [328].  Findings suggest that KYN warrants further exploration 

as a minimally invasive biomarker for AD-risk in older, cognitively normal females. 

MMSE scores at endpoint were higher with increased concentrations of TRP in serum 

and AA in urine.  This was reported across groups but appears to be driven by the increases in 

the curcumin group.  No significant sex-specific correlations were reported for this 

relationship, as supported by the findings reported within the literature [326], and findings did 

not differ with AD risk.  While the clinical trial had a negative outcome (indicated by no 

significant changes in MMSE scores or PET NAL attributed to curcumin treatment), findings 

suggest that serum TRP and urine AA may be proxies for cognitive function and potentially as 

markers of response-to-treatment associated with curcumin intervention in older people with 

and without a risk of AD.  This finding is in accordance with the findings in Chapter 2 that 

show that TRP concentrations in the serum and plasma decrease with increasing age, and the 

general literature that shows that higher levels of TRP may be protective of cognition.  For 

instance, research has shown that TRP loading (in the form of enriched foods) improves 

nocturnal sleep, mood, total antioxidant capacity levels, as well as melatonin and serotonin 

levels in older adults; all correlated with AD risk [329]. 

In the Framingham study, greater levels of plasma AA increase the risk of incident 

dementia in older people by up to 40 % after controlling for sex, education, age, APOE-ε4 

status, and total homocysteine levels [302].  Here, we observed that better cognitive function 

in older people was linked to more AA in the urine.  Taken together with our observation in 

Chapter 3 that serum and urine levels of AA are inversely related, this suggests that excreting 

AA (rather than retaining) may offer some protective benefits on cognition, particularly for 
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men.  Given that findings come from correlational analyses and that little is known about the 

physiological relevance of AA in health and disease, further research is required to implicate 

causality and identify the mechanism by which AA is linked to cognitive (dys)function and 

clarify sex-specific effects.   

Strengths of the present study include being the first to assess treatment responsivity in 

people at risk of AD by comprehensively assessing interventional data and determining 

response-to-treatment by the KP.  This was also the first study explore the clinical and 

pathological relevance of any KP profile alterations by assessing their relationship with 

cognition in the form of MMSE test scores and AD pathophysiology in the form of NAL 

measured by PET.  It is important to reiterate that the clinical trial reported in this study did not 

have any positive results in terms of improved cognitive or pathophysiological outcomes.  This 

has implications for the KP findings given the lack of variability in clinical and pathological 

outcomes (e.g., MMSE ≥ 26).  Future research should seek to clarify response-to-treatment in 

studies which have had positive primary outcomes to improve the veracity of the data and link 

KP activity to functional changes.  Moreover, the MMSE is not considered a sensitive tool to 

detect cognitive changes in cognitively healthy older adults, as well as older adults with MCI 

[330].  This suggests that the potentially subtle cognitive changes occurring in cognitively 

healthy older adults may not have been adequately measured and characterised, potentially 

explaining the negative effects on cognition reported in this trial.  Future research should seek 

to utilise a comprehensive neuropsychological test battery with composite cognitive domain 

scores to delineate any domain-specific changes associated with curcumin intervention and link 

these to KP biomarkers [331].  As this was an exploratory study and there were no between-

group differences at baseline, demographics (including age and APOE status) were not adjusted 

for.  Future research should seek to consider a wide range of potential confounders and effect 

modifiers beyond those reported in this study and adjust for these potential confounders or 

effect modifiers using an appropriate regression model (as done in other studies assessing the 

KARVIAH cohort [326]). 

Nonetheless, the aim of this study was to assess treatment responsivity in people with 

and without risk of AD, and promising KP metabolites for determining response-to-treatment 

were successfully identified (TRP, KYN, and AA), together with sex-specific effects.  Future 

studies should focus on exploring other interventions with potentially larger effect sizes and 

extending the research across the AD pathology continuum (e.g., healthy vs. at-risk vs. MCI 

vs. AD). 
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5. General Discussion  

 

Foreword: 

In this chapter, a general discussion is provided that contextualises the findings from the overall 

thesis with each of the individual aims.  First, the normative data generated from Chapters 2 

and 3 are discussed, followed by the prognostic and theragnostic markers from Chapter 4.  

Overall, a variety of non-invasive and minimally invasive biofluids (including serum, plasma, 

saliva, and urine) were profiled in healthy adults across the lifespan, as well as in older adults 

with and without risk of AD undergoing treatment in a clinical trial.  This chapter highlights 

that the thesis achieved its overarching aim of seeding new directions for pragmatic biomarker 

discovery in the fields of AD risk prediction and the monitoring of responsivity to treatment.  

Future directions for research are proposed.  
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This thesis aimed to characterise the relationship between the kynurenine pathway (KP) 

and Alzheimer’s disease (AD) risk through profiling a variety of minimally invasive biofluids 

from healthy adults across the lifespan, as well as older adults at risk of AD.  This aim was 

interrogated through three studies that systematically mapped the state of the targeted 

metabolomics literature and meta-analysed normative data for tryptophan (TRP) and 

kynurenine (KYN) within the serum and plasma (Chapter 2); applied a validated analytical 

method to quantify the major biologically active KP metabolites (beyond TRP and KYN) of 

healthy adults in a range of human biofluids (Chapter 3); and analysed the full suite of KP 

metabolites in the serum and urine of older adults with and without risk of AD to assess their 

responsivity to treatment from interventional data (Chapter 4).  These aims were successfully 

met through their respective chapters, and their separate and combined findings are discussed 

below. 

A major outcome from this thesis was to generate normative data on the KP.  A 

summary of these norms and region means for TRP and KYN in the serum and plasma 

generated within Chapter 2 is presented in Table 5.1.  A list of the mean KP metabolite 

concentrations in the serum, plasma, saliva, and urine of healthy adults is presented in Table 

5.2.  Generating normative ranges, such as those presented in Tables 5.1 and 5.2, is an essential 

component of developing routine diagnostic tests.  Normative data are needed not only to 

benchmark and evaluate clinical tests as we move towards incorporating KP into point-of-care 

testing (POCT) [332], but also add great value for researchers for future clinical, diagnostic, 

prognostic, and theragnostic studies who may look to these data as a guideline in characterising 

their KP results. 

 

Table 5.1.  Normative data generated including grand mean concentrations and region mean 

concentrations for TRP and KYN across serum and plasma (Chapter 2).  Values presented are 

mean and SD (M). 

 TRP Serum TRP Plasma KYN Serum KYN Plasma 

Grand Mean 60.52 (15.38) 51.45 (10.47) 1.96 (0.51) 1.82 (0.54) 

America Mean 49.66 (2.75) 34.68 (9.90) NR 0.94 (0.24) 

Asia Mean 60.30 (8.69) 53.81 (9.95) 1.68 (0.43) 1.61 (0.34) 

Australia Mean 67.26 (11.19) 42.87 (8.51) 2.43 (0.59) 2.12 0.52) 

Europe Mean 60.73 (10.66) 52.92 (12.06) 2.07 (0.52) 2.29 (0.73) 

Middle East Mean 54.01 (18.44) 34.82 (10.52) 1.56 (0.62) 1.53 (0.72) 
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Table 5.2.  Normative metabolite concentrations in the serum, plasma, saliva, and urine of 

healthy Australian adults for CRE, TRP, KYN, 3-HK, KA, 3-HAA, AA, XA, PA, and QA 

(Chapter 3). 

 Seruma Plasmaa Salivab Urinec 

CRE 78.60 (24.18) 69.11 (20.47) 2.98 (2.02) 14.61 (10.08) 

TRP 68.00 (14.99) 57.68 (15.89) 6.66 (6.26) 4.56 (2.44) 

KYN 3.70 (0.84) 2.62 (0.54) 81.53 (138.95) 0.42 (0.25) 

3-HK 50.47 (6.27) 42.19 (5.30) 0.78 (1.04) 59.62 (54.27) 

KA 35.50 (30.91) 21.39 (7.49) 326.80 (251.03) 1.40 (0.75) 

3-HAA 21.07 (16.03) 19.73 (6.76) 50.01 (59.97) 106.01 (96.62) 

AA 172.60 (261.48) 76.18 (30.46) 951.49 (1063.70) 1.89 (2.54) 

XA 16.46 (21.49) 10.07 (7.65) 77.28 (67.78) 0.20 (0.11) 

PA 144.18 (203.41) 225.21 (125.86) 448.04 (374.34) 28.65 (41.18) 

QA 485.14 (91.39) 431.03 (82.33) 94.01 (61.88) 583.22 (370.81) 

Note.  3-HAA: 3-Hydroxyanthranilic Acid; 3-HK: 3-Hydroxykynurenine; AA: Anthranilic 

Acid; CRE: Creatinine; KA: Kynurenic Acid; KYN: Kynurenine; PA: Picolinic Acid; QA: 

Quinolinic Acid; TRP: Tryptophan; XA: Xanthurenic Acid. 

aSerum and plasma values are presented as means and SD.  CRE, TRP, and KYN means are 

presented in M.  3-HK, KA, 3-HAA, AA, XA, PA, and QA means are presented in nM. 

bSaliva values are presented as means and SD.  CRE means are presented in M.  TRP is 

presented in M/mg protein, while KYN, 3-HK, KA, 3-HAA, AA, XA, PA, and QA are 

presented in nM/mg protein. 

cUrine values are presented as means and SD.  CRE means are presented in mM.  TRP, KYN, 

and AA are presented in M/mM CRE.  3-HK, 3-HAA, AA, XA, PA, and QA are presented 

in nM/mM CRE. 

 

Alongside the normative data presented in Table 5.1, the systematic review and meta-

analysis reported in Chapter 2 successfully appraised and characterised the existing literature 

on how and where KP metabolites are measured.  Regarding mode of detection (MOD), mass-

spectrometry (MS) was identified as the most common modality reported within the literature 

and was also best aligned with the weighted grand mean calculations.  However, there was 

limited variability between MODs (< 3 %), suggesting that the choice of MOD is not essential 
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to the successful and standardised quantification of TRP and KYN in the serum and plasma, 

which may increase their uptake and utilisation as potential POCT. 

Despite not being meta-analysed, Chapter 2 highlighted the growing interest in 

profiling the metabolome of minimally invasive sample types beyond blood.  For instance, the 

majority (66.67 %) of the TRP urine papers have been published since 2015 [152, 177, 181, 

187, 214, 220, 234, 248, 258, 260], while all included TRP saliva studies were published within 

this timeframe [162, 195].  Across all MODs and sample matrices reported in Chapter 2, 

significant limitations in the methodological rigour were identified, alongside potential bias in 

approximately half of the included studies.  While the risk of bias suggests that the data 

presented in Chapter 2 should be interpreted with caution, regression analyses suggested 

various associations that may have strong implications for future biomarker research.  For 

instance, TRP and KYN concentrations were found to decrease in studies that were published 

more recently.  It is speculated that this may be linked to changes in socio-economic status, 

urbanisation, dietary quality, and/or the increased analytical sensitivity reported recently [281-

284].  Moreover, the correlations between metabolite, biological sex, and age reported in 

Chapter 2 are in accordance with pre-existing literature [287].  The findings reported in this 

chapter improve the availability and quality of the data summarising the normative KP profile 

and support the initiative to identify a suitable KP target for precision medicine approaches. 

The findings in the systematic review and meta-analysis reported in Chapter 2 

highlighted that future studies should aim to profile KP metabolites beyond TRP and KYN in 

minimally invasive sample types; should seek to investigate and control for the relationship 

between biological sex, age, and geographic location and metabolite concentrations; and should 

also seek to identify any associations with traditional sample matrices of interest (i.e., serum 

and plasma).  These directions for research became the objectives for the empirical research 

conducted and reported in Chapter 3, which successfully contributed to developing an 

analytical method to quantify KP metabolites in the liquid biopsies of healthy adults in human 

biofluids (going beyond blood samples).  Alongside the normative data presented in Table 5.2, 

a total of three significant and novel relationships were found involving saliva and urine.  This 

included a positive correlation between kynurenic acid (KA) in saliva and urine and picolinic 

acid (PA) in saliva and plasma; and a negative correlation between anthranilic acid (AA) in 

serum and urine.  While little is known about the between-fluid saliva and urine associations 

in a metabolomics setting, Chapter 3 adds new knowledge to these relationships by being the 

first to observe a positive correlation between KA in urine and saliva. 
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The aim of Chapter 4 was to expand on the findings of the previous empirical study 

reported in Chapter 3 by examining the theragnostic potential of KP markers in relation to AD 

risk, which was successfully achieved.  This next sub-study utilised archival clinical trial data 

from a 12-month curcumin intervention to determine whether the KP may be considered a 

marker for treatment responsivity in an AD-risk context.  While no positive results were 

observed in terms of improvements in cognitive outcomes or AD risk, serum TRP and KYN 

increased with curcumin treatment over 12-months, compared to controls.  KYN levels within 

the serum were found to increase as neocortical amyloid load (NAL) increased in the brain in 

females, irrespective of treatment group.  This is in accordance with the literature that has 

identified elevated KYN in cognitively healthy females at risk of AD and KYN as an 

independent predictor of amyloid deposition in the neocortex [326], hence supporting the role 

of KYN as a minimally invasive biomarker for NAL in older cognitively healthy females.  

Further, MMSE scores were found to increase (i.e., improve, indicating better cognitive 

outcomes) as concentrations of TRP in serum and AA in urine increase.  These AA findings 

are in line with those reported in Chapter 3 which showed that AA levels in the serum decrease 

as urine levels increase, suggesting that excreting AA via the urine may be protective in terms 

of cognitive outcomes.  Together, the findings presented in Chapters 3 and 4 support those 

reported from the Framingham study, that higher levels of AA in the blood is associated with 

greater dementia risk [302].  Within-group analyses showed that these correlations occurred 

within the curcumin treatment group only, and not the placebo group (despite the overall 

negative outcome from the trial), regardless of AD risk.  Taken together, this suggests that 

serum TRP and urine AA may be useful proxy markers of cognitive function, and may have 

utility in monitoring response to treatment in either curcumin interventional studies or in 

studies exploring older people with and without risk of AD.   

In conclusion, the findings reported in this thesis provide important directions for the 

development of POCT for diagnostic, prognostic, and theragnostic purposes in an AD setting.  

Together, the outcomes reported seed new directions for pragmatic biomarker discovery in the 

fields of AD prevention, risk reduction, and the monitoring of responsivity to treatment.  Future 

studies should seek to comprehensively profile the salivary and urinary metabolomes in 

multiple cohorts along the AD pathophysiology continuum and clarify response-to-treatment 

in studies which have had positive primary outcomes to further explore the potential of KP 

metabolites as theragnostic markers. 
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Appendices 

 

Appendix A. Statement of Authorship 

 
Study 1 (Chapter 2):  NJM and CKL conceptualised this study.  NJM performed the database 

searches and record screening.  NJM, ASB, and AM performed the data extraction and risk of 

bias appraisals.  NJM and CKL performed the data analyses and interpretation of outcomes.  

The chapter was drafted and finalised by NJM following critical revisions by GSL and CKL. 

 

Study 2 (Chapter 3): NJM, CKL, and GSL conceptualised this study.  Collection protocol for 

the biospecimens was developed and optimised by NJM, GSL, and CKL.  Biospecimens were 

collected by NJM and GSL.  Samples were extracted and prepared for analysis by NJM, and 

analysed by NJM and KC.  The analytical methods (including sample extraction) were 

developed and optimised by KC and SB.  Technical oversight was provided by ML.  NJM and 

CKL performed the data analyses and interpretation of outcomes.  The chapter was drafted and 

finalised by NJM following critical revisions by GSL and CKL. 

 

Study 3 (Chapter 4): This study utilised archival data from a study conceptualised and 

analysed by PC, KG, IJ, KS, HRS, TS, PRA, PD, CMY, KT, RNM, and CKL.  This sub-study 

was conceptualised by NJM, CKL, and GSL.  NJM, CKL, and GSL performed the data analysis 

and interpretation of outcomes.  The chapter was drafted and finalised by NJM following 

critical revisions by GSL and CKL. 
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Appendix B. Risk of Bias Evaluation 

 
The following items are adapted from the Joanna Briggs Institute Critical Appraisal 

Checklist for Analytical Cross-Sectional Studies, the Quality Assessment of Diagnostic 

Accuracy Assessment (QUADAS), and the QUADOMICS Tool.  All items should be scored 

as either Y, N, or NA/UNKNOWN. 

 

1. Were the criteria for inclusion in the sample clearly defined? (JBI) 

The authors should provide clear inclusion and exclusion criteria that they developed prior to 

the recruitment of the study participants.  The inclusion and exclusion criteria should be 

specified with sufficient detail and all the necessary information critical to the study.  In the 

instance of healthy cohorts, the general definition of ‘healthy’ and the screening tools used to 

determine this should be described e.g., cognitively healthy older adults, metabolically healthy 

younger adults. 

 

2. Were the study subjects and the setting described in detail? (JBI) 

The study sample should be described in sufficient detail so that other researchers can 

determine if it is comparable to the population of interest to them.  The authors should provide 

a clear description of the population from which the study participants were selected or 

recruited, including demographics, location, and period.  In the instance of healthy cohorts, the 

authors should describe the age, biological sex, and geographical location of the cohort. 

 

3. Was the type of sample used fully described? (QUADOMICS) 

To score positively in this item, the report should present a details description of the type of 

sample e.g., serum, plasma, urine, saliva, etc.  Moreover, the authors should specifically list 

the type of plasma specimen (e.g., EDTA, heparin, citrate) or urine specimen (e.g., midstream 

urine).  Clinical and physiological factors should also be described e.g., fasting status. 

 

4. Were the handling of specimens and pre-analytical procedures reported in 

sufficient detail and similar for the whole sample? (QUADOMICS) 

To score positively on this item, the study should describe any process related to the pre-

analytical handling of the samples that could affect the results (e.g., number of freezing cycles, 

timing and storage of specimens, time from blood draw until centrifugation and storage, details 

on centrifugation conditions). 
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5. Was the execution of the index test described in sufficient detail to permit 

replication of the test? (QUADAS & QUADOMICS) 

The assay used to determine the concentrations of the metabolites in the samples should be 

described thoroughly.  A citation to a technical article is not considered sufficient detail.  In 

terms of mass spectrometry, description of the use of particular technologies (e.g., column 

chromatography, capillary electrophoresis) should be outlined.  Analytical variability of the 

test should be described and controlled.  The authors should explicitly describe the degree of 

instrument or observer variation and the methods used to control this variation e.g., validation 

parameters such as sensitivity, specificity, and calibration curves.  A chromatogram should be 

provided. 

 

6. Was the statistical analysis reported? (JBI) 

The methods section should be details enough for reviewers to identify which analytical 

techniques were used and how specific confounders were measured.  For example, the authors 

should state whether regression or stratification analysis was used. 

 

OVERALL APPRAISAL: High Quality / Low Quality 

 




