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ABSTRACT
The aim of this study is to investigate the impact of different logistic 
regression estimators applied to RDS studies via simulation and the 
analysis of empirical data. Four simulated populations were created with 
different connectivity characteristics. Each simulated individual received 
two attributes, one of them associated to the infection process. RDS 
samples with different sizes were obtained. The observed coverage of 
three logistic regression estimators were applied to assess the association 
between the attributes and the infection status. In simulated datasets, 
unweighted logistic regression estimators emerged as the best option, 
although all estimators showed a fairly good performance. In the empiri
cal dataset, the performance of weighted estimators presented an unex
pected behavior, making them a risky option. The unweighted logistic 
regression estimator is a reliable option to be applied to RDS samples, 
with a performance roughly similar to random samples and, therefore, 
should be the preferred option.
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Introduction

Respondent-driven sampling (RDS) is a chain-referral sampling method based on the key 
principle that the best recruiter for a hard-to-reach, marginalized or hidden population is 
a member of this very population (Heckathorn, 1997). It is similar to snowballing in that it 
begins with an initial pool of participants who then refer others from their personal networks. 
However, it reduces common snowballing biases by including a seed recruitment process and 
estimation methodology that addresses these issues (Johnston & Sabin, 2010). The method’s 
success in recruiting individuals from hard-to-reach populations is well accepted, and major 
international organizations have advocated its use, including the Centers for Disease Control 
and Prevention (Lansky & Mastro, 2008) and the World Health Organization (Johnston et al., 
2013). Its appeal for research investigating rare and elusive populations is greatly due to its 
ability to reduce biases in situations where probability sampling is not possible (Johnston & 
Sabin, 2010).
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As an estimation method, it is based on the assumption that the size of an individual’s contact 
network is related to the probability of this individual being recruited to the sample. For this reason, 
the accepted procedure is to weight individuals as the inverse value of their network size, resulting 
in individuals with smaller networks, and therefore less likely to being recruited, receiving higher 
weights in prevalence studies (Gile et al., 2015).

The performance of RDS prevalence estimators has been assessed in many studies, using 
different methods, particularly simulations (Goel & Salganik, 2010; Mills et al., 2014), with varying 
results.undefined In general, studies have shown an intermediate to high performance of RDS 
prevalence estimators (Mills et al., 2014; Rocha et al., 2016; Sperandei et al., 2018). However, almost 
all currently proposed estimators for RDS-driven studies aim to estimate the prevalence of a given 
condition in the population of interest. The identification of factors associated with that condition 
has been seldom addressed. In order to address this, (Bastos et al., 2018) proposed a model-based 
estimator, called RDS-B, which can be used to estimate both prevalence and associated factors. 
Notwithstanding the capacity of RDS-B to estimate associated factors, the authors used the 
estimator in its simplest form to estimate prevalence and did not fully address the underlying 
characteristics of the modeling process.

Several researchers who have analyzed RDS-based datasets have applied simple logistic regression 
estimators to assess the putative association between covariates and outcomes, irrespective of the 
varied study designs and the very characteristics of the method, especially the underlying network 
structures (Do et al., 2018; Liu et al., 2018; Toro-Tobón et al., 2018). Conversely, others try to use 
some form of weighted logistic regression, adding weights obtained from actual networks (Hotton 
et al., 2018; Ndori-Mharadze et al., 2018; Szwarcwald et al., 2018). However, the influence of such 
sampling weights has not been assessed beyond what has been defined as the basic diagnostic tools to 
double-check either the sound or improper use of the standard RDS procedures (Gile et al., 2015).

The purpose of this paper is to address this gap in knowledge by assessing the performance of 
three logistic regression models in estimating RDS-based samples generated by simulations. These 
estimators were then applied to a real-life RDS sample data from an empirical study on Brazilian 
transgender women (2,846 participants).

Methods

Simulation

A total of four connected populations (N = 10,000) were simulated using two random graph 
models, with and without the simulation of nested subpopulations. The random graphs used and 
the main parameters for each population were as follows:

● Erdös-Rényi random networks without subpopulations (ER1): the simplest random graph 
structure, initially proposed by Erdös and Rényi (1959), where links between two members of 
the population were established at random, with a fixed probability (P). P was set at 0.0025;

● Erdös-Rényi random networks with nested subpopulations (ER2): this population is similar to 
the previous (ER1). However, instead of one population, five subpopulations were nested 
within the P set at 0.0125. Only ten individuals in each of the five subpopulations were allowed 
to connect with other subpopulations. They were chosen at random.

● Barabási-Albert scale-free networks without nested subpopulations (BA1): the scale-free model 
created by Barabási and Albert (1999), also known as the ‘richer get richer’, follows a power-law 
distribution for connectivity. In summary, the population starts with one individual and every 
new individual entering the population has the probability of linking with old members propor
tionally to the connectivity degree (i.e. number of contacts) of each individual. It generates few 
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individuals with extremely high connectivity degrees and the majority of the population with few 
connections. The parameter needed is the number of links each new individual will establish 
when joining the population. In this simulation, such links were set to 12.5.

● Barabási-Albert scale-free networks with nested subpopulations (BA2): five subpopulations 
with 2,000 individuals each were generated to construct this population. Subsequently, ten 
individuals from each subpopulation with the highest degree were chosen to link randomly 
across these subpopulations.

All parameters were set in order to obtain, whatever the model, a mean connectivity degree of 20, 
irrespectively of the population under analysis.

Explanatory variables

To assess the performance of logistic estimators emulating actual associations, two binary expla
natory variables were added as attributes of each individual, apart from the infected/not-infected 
status (see infection process below). For the sake of the present study they were designated: E1 and 
E2. Each one presents 50% randomly distributed positive and negative cases. Over time, the 
infection process unfolds and each individual in the population with a positive E1 variable will 
have the chance of being infected two times. The purpose of this mandatory rule is to impose 
a statistical association between E1 and the disease, whereas E2 will be excluded with any relation
ship with the putative disease.

Infection processes

Four infection processes were simulated to emulate the dissemination of a particular disease in each 
of the populations. All processes are variations of the classical Susceptible-Infected (SI) model, 
where the infected individual does not recover from the disease (i.e. the classic R component is 
absent). In the first process, individuals were selected at random and defined as ‘infected’. The other 
three processes were dependent on network contacts. All three started with some randomly selected 
individuals defined as ‘infected’. However, unlike the first process, from there on the infection 
followed through the network contacts in successive waves. In each wave, all individuals connected 
to the infected ones had a probability of 0.005 to be infected. This infection rate was selected to 
avoid a surge (i.e. an out of control increase of the infected population). Each newly infected 
individual could infect their contacts in subsequent waves. All infected individuals kept infecting 
their contacts until the desired prevalence was reached. The infection prevalence was set at 30%.

Processes started with 10, 100, and 500 infected individuals, creating infections dependent on 
network connectivity. In the case of 10 initially infected individuals, all those infected ‘individuals’ 
were more closely related to the network of the initial individuals, given each individual would 
generate, on average, an infected ‘tree’ (or equivalent branching process) of about 300 individuals. 
In the case of 500 initially infected individuals, there would be a lower network connectivity 
dependency, with expected ‘trees’ of only six individuals each. Also, the random process can be 
considered a particular case, where the process starts with 3,000 infected individuals (preva
lence = 30% of 10,000). These processes simulate diseases that depend on interaction between 
susceptible and infected individuals.

Sampling process

Benchmark samples were obtained based on a simple random process, applied to each combination 
of population versus simulated infection pattern.
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RDS samples were obtained simulating an RDS classic study. All RDS sampling processes were 
launched using three randomly selected individuals (‘seeds’). Each seed recruited randomly from 
their network one to three contacts, with probabilities of 0.40, 0.40, and 0.20, respectively. These 
probabilities were based on empirical data from a study with drug users from Belo Horizonte, Brazil 
(unpublished data). Each recruited individual repeats the process, recruiting additional individuals 
from their network, and this pattern is repeated until the desired sample size was obtained. It is 
essential to highlight that, although similar to the infection process previously described, each 
individual in the population recruits only one to three individuals. In contrast, in the infection 
process, they keep infecting other individuals until the process reaches a dead end/it´s exhausted.

No homophily-related bias was explicitly incorporated into the recruitment process, although 
previous studies have suggested that homophily may influence the process (Gile et al., 2015). The 
simulated samples were designed to reproduce a ‘perfect world’, following the RDS pristine 
assumptions as originally proposed by its originator, Douglas Heckathorn. Seeds are recruited 
randomly, each recruiter recruits randomly among their contacts, no recruitee refuses to participate 
and all report their network size accurately.

In all cases, 1,000 samples with three sample sizes (100, 250, and 500 individuals) were obtained 
from each combination of population and infection and applied to all three logistic estimators.

Logistic estimators

Three variations of logistic regression estimators were applied to the abovementioned simulated 
data. For each one, a model with both variables and interaction was fitted.

The first, used on both RDS and random samples, was the logistic regression estimator 
(Sperandei, 2014), with the frequentist likelihood estimator. It will be named here the ‘unweighted 
logistic’, given the other two estimators are weighted.

The second type of regression, called here ‘RDS-weighted logistic’, takes into consideration the 
study design and weightings of each individual using the same form of weighting used in RDS-I and 
RDS-II estimators (Heckathorn, 1997, 2002; Salganik & Heckathorn, 2004). It weighs results from 
the simulations proportionally to the inverse of the reported degree (i.e. the number of connections) 
of each individual (Volz & Heckathorn, 2008).

The third type of regression estimator, called ‘RDS-B’ (Bastos et al., 2018), is a Bayesian version 
of the RDS-weighted logistic, where weakly informative priors are set to the coefficients (Gelman 
et al., 2008), and the weighted likelihood, called pseudo-likelihood, is combined with the prior using 
Bayes theorem. It yields a pseudo-posterior distribution (Savitsky & Toth, 2015). Posterior means 
were used in order to make a comparison among estimators, and 95% credible intervals were used 
to represent uncertainty.

In the case of randomly selected samples, only the unweighted logistic estimator was used, 
defining a benchmark performance.

Performance assessment

The performance assessment was accomplished by the observed coverage metric, also known as 
coverage probability (Dodge et al., 2003). This is the proportion of times the confidence interval of 
each estimator contains the populational parameters simulated. It means that, for the coefficient of 
E1, the OR confidence interval contains the parameter 2 simulated for each population. For this 
coefficient, the confidence interval also needs to exclude the value of 1, meaning a significant 
coefficient. The rationale for this second criterion is to avoid too wide confidence intervals might be 
improperly considered as indicators of an acceptable performance. For the coefficients of E2 and the 
interaction E1xE2, the OR confidence interval must contain the value of 1, meaning a non- 
significant interval, which is the simulated situation. For these two coefficients, the complementary 
probability (1 – coverage) will be used as an estimate of type-I error probability. Finally, 
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a combination of E1, E2, and interaction results will be built to investigate the probability of 
a combined correct estimation from the model, meaning a significant E1 coefficient and non- 
significant coefficients for E2 and interaction E1 x E2. The word ‘significant’ here was used in 
a broad sense, related to the usual 95% confidence interval, although we acknowledge that in 
Bayesian models these definitions are not strictly adequate.

All performances were compared to the random samples’ performance for each combination of 
population and infection.

Real-Life, empirical data

All four estimators were subsequently applied to the Divas Research dataset (Bastos et al., 201 
8undefined), which is a large RDS-based study conducted across 12 cities in Brazil that collected 
data from 2,846 transgender women.

The entire dataset was merged and considered for the sake of the present study as one popula
tion, from where the expected parameters were estimated. Four variables were considered in this 
study to assess the performance of the estimators. HIV status (positive x negative) was considered 
the main outcome. The two explanatory variables considered were whether the person had acted as 
a sexual worker anytime in their life (explanatory variable 1 – E1) and whether the person had 
moved from their place of birth anytime during life (E2). E1 is expected to be related to HIV status, 
while E2 is not. The fourth variable was the reported number of contacts (network degree), which 
was used in RDS estimations. A total of 2,548 individuals were used to avoid missing information in 
any of the variables considered.

From this population, samples were extracted with sizes of 100, 250, and 500 individuals. First, 
1,000 random samples of each sample size were used as benchmarks, similar to what was done in 
the simulation. Second, 1,000 samples were drawn following the RDS process. As the objective here 
is to observe the impact of real-world constraints and bottlenecks in the sampling procedure, these 
samples were extracted respecting the original RDS sampling from the dataset. Real seeds were 
randomly selected and the original recruitment trees were followed from each seed until the desired 
sample size was reached. By doing this, each sample used was a subsample of the original dataset, 
presenting all the characteristics found in real-life sampling.

Again, similarly to the process used in the simulation, the sample results were compared to the 
observed result from the population, and the number of correct estimations was counted.

The Divas study received ethics approval from the Escola Nacional de Saúde Publica (CAAE 
49359415.9.0000.5240). All participants signed an informed consent form to take part in the study. 
The dataset was provided in an unidentified form and no additional approval was necessary for the 
current study.

All simulations and analyses used R software, version 3.4.4 (R Core Team, 2021) and its libraries 
igraph (Csardi & Nepusz, 2006)), survey (Lumley, 2004), and arm (Gelman & Su, 2018).

Results

Results of the simulated populations can be seen in Figure 1. Red dots represent infected 
individuals, while blue dots represent non-infected individuals. A considerably different pattern 
can be noted between the two random graph models used and an even more dramatic effect 
between clustered and non-clustered populations. Comparing ER and BA networks, it is clear 
that highly connected individuals, located on the external borders of the figure, have a higher 
chance of becoming infected in the BA model. In ER models, as the distribution of degrees does 
not present heavy tails, the infection is more uniformly spread. The same pattern can be 
observed in models with subpopulations well defined, with one additional characteristic: the 
clustered nature of these models resulted in parts of the population being almost untouched by 
infection.
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Table 1 presents the main characteristics of each simulated population as well as the Divas 
dataset. It can be noted that all main characteristics were successfully simulated. The Barabási- 
Albert models showed a discrepancy between the average and the median degree due to the 
asymmetric nature of the model degree’s distribution.

The simulated prevalence ranged from 14.6% (ER2) to 17.2% (BA1), very close to the desired 
value (15%). Regarding true ORs observed in the population, general logistic models fitted to the 
whole population (one for each population) detected significant ORs for variable E1, all between 
1.95 and 2.05, after adjusting for E2 and the interaction. For variable E2, true ORs ranged from 0.81 

Figure 1. Populations created. Blue vertices and edges are for non-infected individuals. Red vertices and edges are for infected 
individuals. A: ER1 model. B: BA1 model. C: ER2 model. D: BA2 model.

Table 1. Main characteristics of simulated and Divas populations.

Population

Characteristic ER1 ER2 BA1 BA2 Divas

Mean Degree 20.03 19.95 19.99 19.95 20.21
Median Degree 20.0 20.0 14.0 14.0 10.0
Min – Max Degree 4–37 5–39 10–541 10–247 2–100
Infection Prevalence (%) 30.2–31.6* 30.4–31.9* 30.0–33.0* 29.8–32.5* 29.98
E1 Prevalence (%) 50 50 50 50 76.4
E2 Prevalence (%) 50 50 50 50 60.9
E1 Odds Ratio 1.97–2.00* 1.98–2.05* 1.97–2.05* 1.98–2.04* 1.83
E2 Odds Ratio 0.90–1.01* 0.85–1.10* 0.76–1.09* 0.83–1.04* 1.26
E3 Odds Ratio 0.95–1.33* 0.94–1.21* 0.92–1.45* 0.98–1.40* 1.31

* Values represent the minimum and maximum range across the four types of infection
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to 1.10, all of them non-significant, as expected. Lastly, for the interaction factor (E1xE2), true ORs 
varied from 0.90 (ER1) to 1.20 (BA2). These results confirm the simulation process was adequate. 
Regarding the Divas population, a pattern towards a power-law distribution of connectivity and 
a clustered behavior is expected, given the way the population was created, joining samples from 
twelve cities. This means that no individual will recruit out of their own city. Overall, the Divas 
dataset was most similar to the BA2 simulated population.

Figure 2 presents observed coverage probability results according to the network model, infec
tion process, sample size, and estimators used for coefficient E1 alone. The most evident effect was 
related to the sample size. The bigger the sample size, the higher the coverage. Regarding estimators 
themselves, three of them had similar performances, with a slightly better performance obtained by 
the traditional logistic estimator applied to RDS samples. The estimator with the worst performance 
was the weighted-logistic estimator. However, even this estimator did not perform substantially 
below the logistic estimator applied to random samples (taken here as the benchmark) and could be 
considered a satisfactory estimator. In regards to the effect of network models, it can be observed 
that populations without heavy tails in the distribution of degrees (ER1 and ER2) present very small 
difference between estimators, while heavy tail distributions of degree inside the population (BA1 
and BA2) seems to affect heavily the weighted estimators (RDS and Bayes) and favor the 
unweighted estimator applied to RDS samples. The presence of subpopulations (ER2 and BA2) 
had little to no effect on the estimators’ performance for E1 or the analysis of the combined 
coefficients. Lastly, it is interesting to note that, in Barabási-Albert model-based populations, the 
unweighted estimator applied to RDS samples presented a better performance when the infection 
was not random even when compared to random samples.

The Type-I error rate for the combined coefficients shows a general trend for an addictive effect, 
showing a certain independence between the coefficients error (Figure 3). Irrespective of the type of 
infection, sample size, network model or estimator, the probability for both coefficients was close to 
the expected value of 5%, appearing close to 10% due to addictive effect. Only for BA networks, 
under random infection, with n = 500 (and to a lesser extent with n = 250), the error rate was above 
this threshold, especially for the unweighted estimator applied to RDS samples.

Figure 2. Observed coverage probability results according to the combination of network models (each subgraph, as labelled), 
sample size (100, 250, 500) and infection process (10s, 100s, 500s, Rand).
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When the analyses of all three coefficients are combined, it is possible to notice the general 
performance of the estimators to find the ‘right answer’ from the samples: a significant E1 
coefficient with a confidence interval containing the simulated E1 effect plus non-significant E2 
and interaction coefficients. Figure 4 illustrates how results are very similar to those for the E1 
coefficient, given the general stability of E2 and interaction results. The results for the random 
infection were the most affected, especially by the higher type-I error rate.

Figure 3. Type-I error rate for the E2 and the interaction coefficients according to network models (each subgraph, as labelled), 
sample size (100, 250, 500) and infection process (10s, 100s, 500s, Rand).

Figure 4. Observed coverage probability results for the combination of coefficients according to network models (each subgraph, 
as labelled), sample size (100, 250, 500) and infection process (10s, 100s, 500s, Rand).
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An exciting result was observed when the estimators were applied to the Divas dataset. The 
random samples behaved as expected, with a proportional increase in coverage for the E1 coefficient 
according to the sample size (Figure 5). In the same way, the unweighted estimator presented 
a similar behavior when applied to RDS samples compared to random samples. However, weighted 
estimators presented a somewhat strange behavior, with unusual high coverage for smaller samples 
(compared to random), and smaller improvements with increasing size, especially the RDS-B, 
which demonstrated a drop when the sample reached 500 individuals. This pattern was the same for 
the combination of all coefficients.

When looking at the type-I error rate (Figure 6), they were well below the expected for the 
sample size of 100 and around 5% for the unweighted logistic estimator, either applied to random or 
RDS samples. The weighted estimators showed a higher error rate, especially for the RDS-weighted 
logistic estimator, which reached more than 40% with sample size of 100. This may correspond to 
a high probability of obtaining wrong results when using this estimator.

Discussion

The RDS method has been widely used and recommended as a sampling method to recruit hard-to- 
reach populations, such as people who use substances, sex workers, transgender individuals, among 
others (Marpsat & Razafindratsima, 2010). Although its ability to find and recruit members of these 
‘hidden’ populations is uncontroversial, its use as an estimator method is still disputed (Sperandei 
et al., 2018). Moreover, the use of model-based estimators to study relationships between response 
and explanatory variables has been poorly assessed, especially in regard to the basic question of 
when to use sampling weightings (Schonlau & Liebau, 2012). These issues notwithstanding, 
researchers have used traditional logistic estimators or some form of weighted logistic applied to 

Figure 5. Observed coverage probability for E1 and all coefficients combined according to sample size and estimator.
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RDS samples. A quick survey of the Pubmed database identified 70 studies published between 2018 
and 2019 applying logistic regression models to RDS samples, with 48.6% (n = 34) using 
unweighted estimators, 44.3% (n = 31) using some form of weighting with network degrees, and 
7.1% (n = 5) presenting both weighted and unweighted models. This pattern highlights the evident 
lack of consensus in the current literature on which type of estimator should be used. The current 
study addressed this issue by testing which of the models currently being employed in studies using 
the RDS method is most effective in assessing associations between variables. In addition, the 
current study provided the degree of reliability of different models in order to equip researchers 
with better tools to evaluate results of RDS studies.

Our simulations have demonstrated not only the impact of data and population characteristics 
but also the estimator used on results of an RDS study. Here it is important to note that our 
results do not suggest that RDS is as good as a random sample in representing the characteristics 
of the population. In fact, previous studies have identified the limitations of RDS in achieving this 
(Sperandei et al., 2018). However, results from the simulation, respecting all assumptions of the 
RDS method, as well as real RDS data suggest that unweighted logistic regression is an effective 
method for estimating associations between variables. Clearly, the more the data moves away 
from the method’s assumptions, the less effective the performance of the estimators will be – 
which would be true for any estimator used –, and this was demonstrated in the results when the 
models were applied to real data. And here lies an important contribution of the current study: it 

Figure 6. Type-I error rate for the E2 and the interaction coefficients according to sample size and estimator.
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provides an overview of what would happen in ‘the real world’ where the methodological 
assumptions of RDS are not always followed, for the most different reasons. Although some 
interactions with other factors must be considered, it seems that weighted and unweighted 
estimators performed relatively well when compared to logistic regression applied to random 
samples.

To the best of our knowledge, only one study assessed the impact of weights used on RDS 
sample estimates from logistic regression models (or any other form of model estimates) using 
a simulation approach, and, similarly to our results, it concluded that unweighted estimators 
perform better than the weighted ones (Avery et al., 2019). However, the lack of a clear 
structure in the simulated network connections and the absence of real data to reflect real 
sampling problems, in comparison to ‘perfect’ simulated samples, left many issues unaddressed. 
First, Avery et al.’s (2019) study used only simple logistic models, with just one explanatory 
variable, not considering the effect of interaction between explanatory variables on the result. 
Second, this study confounded clustering with homophily, when they are, in fact, different 
concepts (Rocha et al., 2016; Sperandei et al., 2018). Clustering represents the phenomenon of 
individuals being more connected to their similar ones (in one or more characteristics such as 
age, geography, etc.), whereas homophily relates to preferential recruitment, where people 
choose to recruit those peers with particular characteristics (that the recruiter may also possess 
or with which they have a close relation), instead of recruiting randomly (Lu et al., 2012). In the 
present study, we addressed these limitations by creating populations based on theoretical graph 
models, controlling the connectivity process. From the results, comparing the two models used 
here, it is clear the impact of the nature of connectivity on the performance of estimators, which 
is reinforced by previous research on simple prevalence estimators (Rocha et al., 2016; 
Sperandei et al., 2018). Of course, this theoretical approach falls short of real life challenges, 
as demonstrated by classic ethnographic studies such as the comprehensive mapping of actual 
social networks of people who sell, share and use substances, in Bushwick, Brooklyn, NYC, USA 
(Friedman et al., 2006).

In addition, we used an adapted concept of ‘coverage probability’ to reflect not only the 
identification of correct estimation of the E1 coefficient but also the simultaneous identification 
of E2 and the E1xE2 interaction, representing the proportion of correct estimation for the complete 
hypothesis. It represents a more restrictive criterion compared to the usual coverage because it 
requires all three hypotheses (E1, E2, E1xE2) being true at the same time.

In this dataset, the random samples acted as a benchmark to what would be expected, given that, 
for any population, random samples are considered the gold standard sampling method. The results 
show the expected increase in coverage according to the sample size. The most exciting finding was 
the performance of the unweighted logistic estimator applied to RDS samples, which showed 
similar results compared to random samples, sometimes even better. The results with real data 
represent a decreased performance in comparison to simulation results, showing the effects of 
differences between theoretical sampling procedures and real ones; however, it still performs well 
and is a good alternative to be used with RDS samples, similarly to what Avery et al. (2019) found.

On the other hand, weighted estimators presented a somewhat aberrant behavior, especially the 
RDS-B, which presented higher coverage with smaller samples. At a lower intensity, the RDS- 
weighted estimator also showed an unexpectedly high power with the 100 samples, but the increase 
with bigger sample sizes was not so considerable. This behavior, also partially observed in the 
performance of unweighted logistic, is probably related to the differences in simulated and real 
sampling procedures. In relation to the type-I error rate, the RDS-weighted estimator showed a very 
high result, representing a big chance of a wrong result.

Several studies have demonstrated the advantages of weighting procedures for the simple 
prevalence of RDS estimators (Goel & Salganik, 2010; Mills et al., 2014; Sperandei et al., 2018). 
However, the present results demonstrate that weighting may not be the best option when it comes 
to regression coefficient estimates, making the unweighted estimator the preferable one instead.
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Strengths and limitations

Simulations can only approximate the characteristics of the real world, their success being depen
dent on previous knowledge about the population being simulated. Models must reduce the 
complexity and dimensionality of phenomena under analysis in order to make them amenable to 
different analytic strategies and the interpretation of their findings (Weisberg, 2012). This knowl
edge, in the case of hard-to-reach populations, can be very restricted. The use of real data allowed us 
to observe what happens when RDS is applied in the real world.

In our simulated scenarios, RDS sampling followed best practices described for the method, with 
putative random selection of seeds (usually absent in the vast majority of empirical studies), long 
recruitment trees, and each recruiter ‘selecting’ randomly amongst their peers (Salganik & 
Heckathorn, 2004; Volz & Heckathorn, 2008). In practice, it is common to see ‘non-generative 
seeds’ (i.e. seeds that do not recruit any peers [Reisner et al., 2010]), recruitment trees with mixed 
length, and true homophily, with recruiters choosing selectively amongst their peers (Li et al., 2018). 
Also, time, resource, and logistical constraints are common, and their impacts on estimation are 
unknown (Truong et al., 2013; Valois-Santos et al., 2020). Considering a large sample as a population, 
and using real recruitment trees as RDS samples, is not a perfect approach. However, we argue that it 
is one of the best possible ways of assessing RDS estimators in real life. In addition, these limitations 
notwithstanding, the simulation presented here confirms the capacity of RDS sampling, with the use 
of unweighted estimators, to perform exceptionally well in circumstances where probability sampling 
is not possible, which is frequently the case among rare and elusive populations.

Conclusion

In summary, this study suggests that unweighted logistic regression is the best option to be used 
with RDS samples, particularly when the basic assumptions of the RDS method are duly respected 
(what may or may not be observed in the field). Indeed, even in real RDS samples, it may achieve 
a performance that is surprisingly equivalent to the random sampling performance in assessing 
associations. These findings suggest that the RDS method is applicable to a broader spectrum of 
research designs, even where true random sampling is nothing but an elusive goal. This therefore 
goes beyond hard-to-reach or elusive populations to include studies with other population groups 
where random sampling of participants may not be feasible.
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