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Representing capabilities of novel semi-
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Abstract
Two novel plate-bending elements are developed and investigated in this study. Elements with 13 and 15 degree-of-
freedoms are named AT13 and AT15, respectively. These triangular elements are formulated in a semi-analytic way. For
this aim, the basic elasticity function is employed with unknown parameters. Subsequently, the trial-and-error procedure
is used to determine the unidentified constants. Besides, the achieved results are compared with those obtained by
displacement-based triangular elements with the same degrees-of-freedom (TUBA13 and TUBA15). In this research,
both stress and displacement responses of diverse structures are assessed. After performing extensive numerical studies,
the findings clearly demonstrate the superiorities of the proposed elements.
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Introduction

Conventional elasticity theories employ strain as the
only deformation measure. So, these theories do not
take the internal length scale of the material into
account. Conversely, numerical methods are usually
used to solve the edge effect problem, and among them,
the FEM is generally regarded as the most efficient and
popular one.1–4 Nevertheless, due to the inherent theo-
retical deficiencies, only poor performances can be
expected when the usual finite elements are used.5

Among these, Remešı́ková et al.6 enhanced the perfor-
mance of the triangular elements using the discrete
Lagrangian schemes. The obtained results were also
compared with those obtained experimentally. Results
demonstrated that the performance of triangular ele-
ments was extensively improved because of using the
grasshopper component for Rhinoceros. In addition to
Lagrangian schemes, the zigzag theory was also devel-
oped to assess the structural performance of elements
accurately.7–9 Recently, Yekkalam Tash and Navayi
Neya10 developed a new element to assess the perfor-
mance of thick bending plates. They showed the accu-
racy of the proposed element, and plates with different
thicknesses were evaluated. For this aim, the displace-
ment of potential techniques was employed. They found
that the ultimate deformation of the plates with differ-
ent thicknesses was moved from the center to the thin-
ner edges. In another investigation, Magnucka-Blandzi

et al.11 evaluated the flexural behavior and buckling
potential of a circular plate. By using two elements, the
three-layers plate was measured. The achieved results
illustrated the accuracy of the proposed elements to
assess the performance of bending plates. In 2018,
Zhang et al.12 utilized the finite difference method to
improve meshes’ performance in order to measure the
behavior of circular plates. Elements were established
using energy formulations. Based on the obtained
results, using energy schemes led to improving the per-
formance of bending plate elements considerably.13

In 2013, Li et al.14 utilized a wavelet way to modify
plate behavior prediction. During the integration proce-
dure, multiple boundary circumstances could be applied
forthrightly. The obtained outcomes demonstrated the

1Department of Civil Engineering, University of Texas at El Paso (UTEP),

Texas, USA
2Department of Civil Engineering, The University of British Columbia

(UBC), Vancouver, BC, Canada

*Ehsan Noroozinejad Farsangi is also affiliated to Faculty of Civil and

Surveying Engineering, Graduate University of Advanced Technology,

Kerman, Iran

Corresponding author:

Ehsan Noroozinejad Farsangi, Department of Civil Engineering, The

University of British Columbia (UBC), Vancouver, BC V6T 1Z4, Canada;

Faculty of Civil and Surveying Engineering, Graduate University of

Advanced Technology, Kerman, 7631885356, Iran.

Emails: ehsan.noroozinejad@ubc.ca; noroozinejad@kgut.ac.ir



positive role of wavelet theories in order to improve the
accuracy of bending plate elements. Levyakov and
Kuznetsov15 presented a new triangular element in
order to solve composite plates. The obtained formulas
permit one to freely measure the strain energy of the
element. Hence, the stress and strain components of the
element edges could be measured accurately. Numerical
consequences were given to illustrate the nonlinear
capacity of the proposed element. Han et al.16 used
wavelet theories to assess the behavior of bending
plates. For this purpose, a rectangular element was
used. This element was established by the combination
of both wavelet and Monte Carlo schemes. Their con-
clusion showed that using wavelet theories played an
effective role in obtaining high numerical accuracy and
converging fast. In 2010, Choo et al.17 studied the per-
formance of the triangular and rectangular plate ele-
ments. To develop new elements, the hybrid-Trefftz
model was utilized. Their achieved outcomes demon-
strated that their proposed elements were robust, accu-
rate, and free of shear locking in the thin plates.

Dey et al.18 developed a new element in order to
evaluate the behavior of composite shells under vibra-
tion. Their element could predict the displacement of a
member with low degree-of-freedoms. To show the
accuracy of the proposed element, different numerical
examples were utilized. According to the conclusion of
their study, free vibration examination of plates using
the presented element could reach highly accurate out-
comes and reduce the calculation cost. In 2012,
Dehghan and Sabouri19 used triangular and quadrilat-
eral elements in order to solve the Pennes bioheat
transfer equation. For the triangular elements, the error
was achieved when quadrature points coincided with
the nodal points. This scheme was also utilized to solve
the equations in order to calculate the temperature
influence on the thin bending plates. Zhang et al.20

evaluated the performance of triangular elements under
uniform load in a 3D piezoelectric medium. The pro-
posed models were presented simply by a linear combi-
nation of three kinds of elementary functions, linear,
trigonometric and logarithm ones. Their elements were
useful to assess the behavior of the bending plate with
highly accurate values. Recently, Geng et al.21 used a
B-spline wavelet to improve the accuracy of finite ele-
ment schemes in order to anticipate the dynamic beha-
vior of thin plates. The numerical consequences
demonstrated that both the computing efficiency and
stability of the proposed schemes were higher than
those of the conventional finite element methods. In
2018, Shirmohammadi and Bahrami22 assessed the
dynamic performance of circular plates using a spectral
element scheme. A novel formulation was projected in
the frequency field for conducting a spectral element
matrix. The obtained results showed the high accuracy
of their proposed formulation for the members under
dynamic and impact loads. To remedy this defect, the
Airy stress function was used in this study.

For researchers, the FEM is a frequently utilized
numerical approach in existing designs and simulations.23

Nonetheless, a strong process is still plagued by several
numerical issues that have yet to be resolved. One of
these is the mesh distortion sensitivity problem.24 The
convergence of stress solutions is frequently not as good
as that of displacement solutions due to the inherent the-
oretical flaws of displacement-based element models. The
discordant displacement modes,25–27 the improved strain
method,28 the selectively reduced integration system,29

the new spline FEM,30 the unsymmetric interpolation
technique,31 and natural coordinate ways32–36 have all
been proposed in the last 50 years for developing strong
finite element models that are insensitive to mesh distor-
tion. Although the preceding methods can help to
improve the FEM’s robustness, it should be noted that
most models will fail once the element form is sufficiently
distorted. In the case of a rounded quadrangle degenerat-
ing into a triangle or a concave quadrangle, for example.
Many scholars investigated alternative meshless
approaches34–42 to overcome this challenge, which has
substantially greater processing costs.

This paper is dedicated to the behavior study of four
novel plate-bending elements. All of them have triangu-
lar shapes, but two of these are stress-based, and the
others are displacement-based. Besides presenting ele-
ment formulations, a lot of problems are solved to
show the merit of the new elements. In order to find a
semi-analytic solution, the errors between the exact
displacement-based finite element and recommended
scheme are also minimized. All the obtained results
show the superior of the presented new elements.

Elements formulation

The deformed shape of a plate is defined using the
transverse displacement at the midplane (w). Having
this field variable, the rotation and the corresponding
displacements at any point could be obtained using the
following relationship, as demonstrated in Figure 1.
Where, ux and uy indicate the rotation angle between
the transverse displacement and the direction of the y-
and x-axis, respectively.

Figure 1. Displacement and rotation components of an
infinitesimal plate element.43
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In which, ux, uy, and uz indicate the displacement
components in the x, y, and z directions. Besides, the
rotational components could be achieved by ux and uy,
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Furthermore, the moments at any point are defined
as the integral through the thickness of the plate, h, of
the stresses times the distance to the midplane. Besides,
the shear forces correspond to the integrals of the out-
of-plane shear stresses and could be calculated as
follows.43
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Where, mij and qi are the moment and shear forces.
If p is a distributed transverse load, the equilibrium of
an infinitesimal element of the plate could be written in
the following form:
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These formulas can be combined as:
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The plane stress linear elastic constitutive law leads
to the following relations between moments and
curvatures:
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E, h, and v are the elastic moduli, thickness and poi-
son ratio, respectively. These relations have the com-
pact notation as m = k@ and @= fm, with f= k�1.
For simplicity, initial or thermal strains are not consid-
ered. Compared to the classical elasticity, micro-
rotation fi is introduced as a kinematic variable in
addition to displacement ui in Cosserat elasticity. The
strain eij depends on both displacement and the micro-
rotation. Hence, the latter gives rise to the curvature
kij, can be written as follows44:

eij = ui, j + eijkfk ð16Þ

kij =fj, i ð17Þ

Where, eijk is the permutation symbol. It can be eas-
ily noticed that the above equations are reduced to the
classical counterpart when the micro-rotation is
neglected. The constitutive relations between the stress
and the strain, the couple-stress, and the curvature are
defined as:

sij =Cijklekl ð18Þ

mij = Ĉijklkkl ð19Þ

In which:
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gij is the metric tensor, l and m are Lamé constants,
l is the characteristic length of the material, while a, b,
and c are the micropolar material constants. The equili-
brium equations take the forms:

sij, i + pj =0, mij, i + eijksik + qj =0 ð22Þ

Here, the pj and qj are the prescribed body force and
body couple per unit volume. Without losing general-
ity, the following forms of essential and natural bound-
ary conditions are considered:

ui + uj =0, fi � fj =0 on GD ð23Þ

sijni � sj =0, mijni �mj =0 on GN ð24Þ

GD \ GN = null and GD [ GN = ∂O ð25Þ

O is the problem domain and ∂O is the boundary of
O. Also, ni indicates the unit outward normal vector
component of ∂O and GD and GN are the portion of ∂O
prescribed with the essential and natural boundary con-
ditions, respectively. Therefore, the total potential energy
functional for a Cosserat continuum is expressed as
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It should be stated that the boundary conditions
have to be satisfied with equations (7)–(9). Moreover,
the stress and strain expressions can be simplified by
introducing the symmetric ‘‘S’’ and anti-symmetric ‘‘A’’
stress and strain tensors, namely:

sij =sS
ij +sA

ij and eij = eSij + eAij ð27Þ

Where
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Then, the constitutive relations could be rewritten as:
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In which

e= e11 e22 e33 2eS23 2eS31 2eS12
� 	

ð33Þ

s = s11 s22 s33 sS
23 sS

31 sS
12

� 	
ð34Þ

g = 2eA23 2eA31 2eA12
� 	T ð35Þ

t = sA
23 sA

31 sA
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e, s, g, and t are vectors of symmetric strain, sym-
metric stress, anti-symmetric strain, and anti-symmetric
stress components, respectively. Moreover, m and k are
the vectors of couple-stress and curvature components,
correspondingly. Cs, CA, and Cm are the corresponding
material constitutive matrices. By virtue of the above-
induced notations, the function in equation (26) for
finite element formulation can be further expressed as:
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X
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f e is the elemental load potential, Oe denotes the ele-
ment domain and Ge

N = ∂Oe \ GN. By relaxing the first
two constitutive relations in the potential energy func-
tional, the following partial Hellinger-Reissner func-
tional can be written for Cosserat continua:

PHR =
X
e

Pe
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Pe
HR=ð
Oe
�1
2
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2
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2
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In this function, s and t need neither be continuous
across the element boundary nor satisfy the equilibrium
condition. Within the element, the stress and strain
fields can be expressed symbolically as:
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s =Pb, e=BSd, t =Qa+ t, g =BAd, k=Bmd

ð41Þ

Where, P and Q are the shape function matrices for
symmetric stress, r, and anti-symmetric stress, t, respec-
tively. Also, b and a are the vectors of coefficients and
d is the vector comprising the nodal displacements and
micro-rotations. BS, BA, and Bm are the relationship
matrices between the symmetric strain, anti-symmetric
strain, curvature, and the elementwise nodal displace-
ment and micro-rotation vector, respectively.
Moreover, t is a prescribed quantity to be discussed
later. Substitution of equation (26) into the second
expression of equation (25) yields:
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2
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2
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+aTGSd� aTM+Ld+
1

2
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In which
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Here, c1 is a constant scalar arising from t. Variation of
the functional w:r:t: b and a lead to the next relations:

HSb=GSd ð44Þ

HAa=GAd�M ð45Þ

Finally, the following equation could be concluded:
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In this study, two well-known elements with 13 and
15 nodes, named TUBA13 and TUBA15, are utilized.
These elements are formulated by using the compulsory
energy scheme. Besides, the newly presented stress-
based elements are named AT13 and AT15. Figure 2
shows the proposed elements. To increase the degree of
approximation and look for the adequate distribution
of DOFs in the element, both w and wn along each side
should be uniquely defined by the DOFs presented on
that side. It should be noted that the purpose of nodes
13, 14, 15 in TA15 is to increase the accuracy of the ele-
ment to find responses inside the element. Also, shear
locking can occur in first-order, fully-integrated ele-
ments (C3D8) that are subjected to bending. This occurs
when artificial shear strain develops due to an inability
of the element edges to bend. So, to solve this issue, in

TUBA and TA elements (TA elements were established
based on well-known TUBA displacement-based ele-
ments), the mid-side nodes will follow the bending
curve, avoiding the shear strain in the horizontal plane
and shear locking, as also mentioned by Argyris et al.45

In the finite element scheme, the complementary
energy function has the next form:
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Where, P�C and V�C indicate the complementary
energy within the element and along the element
boundaries, respectively. In addition, t, s, T, U are the
thickness of the element, the stress vector, the surface
traction force vector through the element boundaries,
the displacement vector along element boundaries and
the elastic flexibility matrix, respectively. Furthermore,

Figure 2. Proposed triangular elements TA: (a) TA13 and (b)
TA15.
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for the plate, m= E
2(1+ n), l= nE

(1+ n)(1�2n). It should be
reminded that E and m are Young’s modulus and
Poisson’s ratio, respectively. Therefore, the stress vec-
tor, s, can be expressed using the Airy stress function,
u, as follows:
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At this stage, the complementary energy function can
be written in the following form:

PC=P�C+V�C=
1

2
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~R uð ÞTC ~R uð ÞtdA�
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Different parts of the last equation can be expressed by:

P�C =
1

2

ð ð1
Ae

~R uð ÞTC ~R uð ÞdA ð55Þ

V�C =�
ð1

G

(L ~R uð Þ)Ttds ð56Þ

Up to now, the element complementary energy func-
tional containing the Airy stress function is established
based on the fundamental relationships of the finite ele-
ment method. In the plate bending problems without
the body forces, the Airy stress function satisfies the fol-
lowing equation:

r4u=
∂4u
∂y4

+2
∂4u

∂x2∂y2
+

∂4u
∂x4

ð57Þ

In the first stage, the Airy stress function can be
defined in terms of unknown parameters. A general
form of this function is as follows:

u=
Xn
i=1

uibi ð58Þ

Where, n is the number of analytical solutions, and the
other parts are given below:

u= u1 u2 . . . . . . un½ � and b= ½b1 b2 . . . . . . bn�
ð59Þ

ui (i=12 n) are the number of analytical solutions for
stress function and b1 (i=12 n) (i ¼ 1–15) are the
number of unknown constants. Upon substitution of
equation (58) into equation (54), the subsequent equa-
tion will be achieved:

P�C =
1

2
bTMb ð60Þ

V�C =�bMbT ð61Þ

M=

ð ð1
Ae

STCStdA ð62Þ

Here, S and M are the matrix expressions. Having these
matrices, the plate bending analysis will be achieved.
Therefore, the matrix M can be written as follows:

M=

ð1
�1

ð1
�1

S j1, j2ð ÞTCS j1, j2ð Þt jj jdj1dj2 ð63Þ

Where, jj j is the Jacobian determinant. Besides, the fol-
lowing equation could be established:

V�C =�bTHqe ð64Þ

H=

ð1
G

STLTN tdS ð65Þ

Matrices, N and H can be obtained according to the
below relationships for TA13 and TA15:

N 13= ½
N0

1 0 0

0 N0
1 0
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8 0 0
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9 0 0
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9 0
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N0
10 0 0

0 N0
10 0
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11 0 0
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11 0

0 0 N0
11

N0
12 0 0

0 N0
12 0

0 0 N0
12

N0
13 0 0

0 N0
13 0

0 0 N0
13

ð66Þ
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N 15= ½
N0

1 0 0

0 N0
1 0

0 0 N0
1

N0
2 0 0

0 N0
2 0

0 0 N0
2

N0
3 0 0

0 N0
3 0

0 0 N0
3

N0
4 0 0

0 N0
4 0

0 0 N0
4

N0
5 0 0

0 N0
5 0

0 0 N0
5

N0
6 0 0

0 N0
6 0

0 0 N0
6

N0
7 0 0

0 N0
7 0

0 0 N0
7

N0
8 0 0

0 N0
8 0

0 0 N0
8

N0
9 0 0

0 N0
9 0

0 0 N0
9

N0
10 0 0

0 N0
10 0

0 0 N0
10

N0
11 0 0

0 N0
11 0

0 0 N0
11

N0
12 0 0

0 N0
12 0

0 0 N0
12

N0
13 0 0

0 N0
13 0

0 0 N0
13

N0
14 0 0

0 N0
14 0

0 0 N0
14

N0
15 0 0

0 N0
15 0

0 0 N0
15

�

ð67Þ

These functions are required to develop new TUBA
elements. According to the number of nodes and
degrees of freedom in these elements, stress function
can be determined. The newly developed stress-based
elements are called TA13 and TA15. After searching,
examining and matching, all stress function parameters
are found and listed in Tables 1 and 2.

At this stage, the degrees of freedom for the new ele-
ments are defined. As it is shown in Figure 2, the ele-
ment nodal displacement vector, qe, for TA13 has the
next form:

qe13 = ½ w1 wx1 wy1 wxx1 wxy1 wyy1 w2 wx2 wy2 wxx2

wxy2 wyy2 w3 wx3 wy3 wxx3 wxy3 wyy3 wn4 wn5 wn6

w7 w8 w9 wn10 wn11 wn12 w13� ð68Þ

TA15 has the following degrees-of-freedom:

qe15 = ½ w1 wx1 wy1 wxx1 wxy1 wyy1 w2 wx2 wy2 wxx2

wxy2 wyy2 w3 wx3 wy3 wxx3 wxy3 wyy3 wx4 wy4 wx5 wy5

wx6 wy6 wn7 wn8 wn9 wx10 wy10 wx11 wy11 wx12 wy12 w13

w14 w15�
ð69Þ

Having these matrices, plate bending analyses will be
obtained. After performing the required calculations,
the next result for TA13 will be found:

Table 1. Basic analytical solutions of stress function and stresses for the plane problem using TA13.

TA13 i 1 2 3 4 5 6 7 8 9 10 11

ui x2 xy y2 x3 x2y y2x y3 x4 x3y y2x2 y3x
s11 0 0 2 0 0 2x 6 years 0 0 2x2 6xy
s22 2 0 0 6x 2 years 0 0 12x2 6xy 2y2 0
sS

12 0 21 0 0 22x 22y 0 0 �3x2 24xy �3y2

i 12 13 14 15 16 17 18 19 20 21 22

ui y4 x5 x4y x3y2 y3x2 y4x x5 x6 x5y x4y2 � y4x2 y5x
s11 12x2 0 0 4x3 6yx2 12y2x 20y3 0 0 2x4 � 12y2x2 20y3x
s22 0 20x3 12x2 y 6xy2 4y3 0 0 30x4 20x3 y 12x2y2 � 2y4 0
sS

12 0 0 �4x3 26x2 y 26y2x �4y3 0 0 �5x4y 8x3y � 8y3x �5y4x

i 23 24 25 26 27

ui y6 x4y x3y2 � y3x2 y4x x5

s11 30y4 0 2x3 � 6yx2 12y2x 20y3

s22 0 12x2 y 6xy2 � 2y3 0 0
sS

12 0 �4x3 6x2y � 6y2x �4y3 0
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S13 = ½
0 0 2

2 0 0

0 �1 0

0 0 2x

6x 2y 0

0 �2x �2y

6y 0 0

0 12x2 6xy

0 0 �3x2

2x2 6xy 12x2

2y2 0 0

�4xy �3y2 0

0 0 4x3

20x3 12x2y 6xy2

0 �4x3 �6x2y

6yx2 12y2x 20y3

4y3 0 0

�6y2x �4y3 0

0

30x4

0

0

20x3y

�5x4y

2x4 � 12y2x2

12x2y2 � 2y4

8x3y� 8y3x

20y3x

0

�5y4x

30y4

0

0

0

12x2y

�4x3

2x3 � 6yx2

6xy2 � 2y3

6x2y� 6y2x

12y2x

0

�4y3

20y3

0

0

�

ð70Þ

For TA15, the subsequent result is obtained:

S15 = ½
0 0 2

2 0 0

0 �1 0

0 0 2x

6x 2y 0

0 �2x �2y

6y 0 0

0 12x2 6xy

0 0 �3x2

6xy 12x2 2x2

0 0 2y2

�3y2 0 �4xy
6xy 12x2 0

0 0 20x3

�3y2 0 0

2x 6yx 0

x2y+ y2x 6xy 20x3

�2x� 2y �3x2 � 3y2 0

2x3 +6yx2

6xy2 +2y3

�6x2y� 6y2x

0

12x2y

�4x3

20y3 0 0

0 30x4 20x3y

0 0 �5x4

2x4 +12y2x2 6x3y 20y3x

12x2y2 +2y4 6xy3 0

�8x3y� 8y3x �9x2y2 �5y4

30y3

0

0

60y2x

84x4y

�28x3 +20y3 � 3

�90x3y+14x2 �12x4y+84x3y2 �30x2y+8x3

�90xy3 +14y2 �24x2y3 +42xy4 �10y3 +24xy2

135x2y2 � 28xy 24x3y2 � 84x2y3 30xy2 � 24x2y

�75xy3

130x3y

� 65
2 x

4 + 75
4 y

4

� 225
2 xy4 504y5 �84x3y2 +30yx3 � 16x2

110x4y �504x5 �42xy4 +30y3x� 16y2

�22x5 + 45
2 y

5 0 84x2y3 � 45y2x2 +32yx

�

ð71Þ

Table 2. Basic analytical solutions of stress function and stresses for the plane problem using TA15.

TA15 i 1 2 3 4 5 6 7 8 9 10 11

ui x2 xy y2 x3 x2y y2x y3 x4 x3y y3x y4

s11 0 0 2 0 0 2x 6 years 0 0 6xy 12x2

s22 2 0 0 6x 2 years 0 0 12y2 6xy 0 0
sS

12 0 21 0 0 22x 22y 0 0 �3x2 �3y2 0

i 12 13 14 15 16 17 18 19 20 21 22

ui y2x2 y3x y4 x5 x2y + y2x x3y + y3x x5 x3y2 + y3x2 x4y y5 x6

s11 2x2 6xy 12x2 0 2x 6yx 0 2x3 + 6yx2 0 20y3 0
s22 2y2 0 0 20x3 x2y + y2x 6xy 20x3 6xy2 + 2y3 12x2y 0 30x4

sS
12 24xy �3y2 0 0 22x 2 2y �3x2 � 3y2 0 �6x2y � 6y2x �4x3 0 0

i 23 24 25 26 27

ui x5y x4y2 + y4x2 x3y3 y5x y6

s11 0 2x4 + 12y2x2 6x3y 20y3x 30y3

s22 20x3y 12x2y2 + 2y4 6xy3 0 0
sS

12 �5x4 �8x3y � 8y3x �9x2y2 �5y4 0

i 28 29 30 31 32

ui 7x4y � 5y4x + 3xy 215x3y3 + 7x2y2 22x4y3 + 7x3y4 25x2y3 + 4x3y2 13
2 x5y � 15

4 xy5

s11 260y2x 290x3y + 14x2 212x4y + 84x3y2 230x2y + 8x3 �75xy3

s22 84x4y 290xy3 + 14y2 224x2y3 + 42xy4 210y3 + 24xy2 130x3y
sS

12 �28x3 + 20y3 � 3 135x2y2 � 28xy 24x3y2 � 84x2y3 30xy2 � 24x2y � 65
2

x4 + 75
4

y4

i 33 34 35

ui
11
3 x6y � 15

4 xy6 �15x7 + 12y7 �7x3y4 + 5y3x3 � 8y2x2

s11 � 225
2 xy4 504y5 �84x3y2 + 30yx3 � 16x2

s22 110x4y �504x5 �42xy4 + 30y3x � 16y2

sS
12 �22x5 + 45

2 y5 0 84x2y3 � 45y2x2 + 32yx
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Matrices of N can be obtained in the below form:

N13= ½
N0

1 0 0

0 N0
1 0

0 0 N0
1

N0
2 0 0

0 N0
2 0

0 0 N0
2

N0
3 0 0

0 N0
3 0

0 0 N0
3

N0
4 0 0

0 N0
4 0

0 0 N0
4

N0
5 0 0

0 N0
5 0

0 0 N0
5

N0
6 0 0

0 N0
6 0

0 0 N0
6

N0
7 0 0

0 N0
7 0

0 0 N0
7

N0
8 0 0

0 N0
8 0

0 0 N0
8

N0
9 0 0

0 N0
9 0

0 0 N0
9

N0
10 0 0

0 N0
10 0

0 0 N0
10

N0
11 0 0

0 N0
11 0

0 0 N0
11

N0
12 0 0

0 N0
12 0

0 0 N0
12

N0
13 0 0

0 N0
13 0

0 0 N0
13

�

ð72Þ

N15= ½
N0

1 0 0

0 N0
1 0

0 0 N0
1

N0
2 0 0

0 N0
2 0

0 0 N0
2

N0
3 0 0

0 N0
3 0

0 0 N0
3

N0
4 0 0

0 N0
4 0

0 0 N0
4

N0
5 0 0

0 N0
5 0

0 0 N0
5

N0
6 0 0

0 N0
6 0

0 0 N0
6

N0
7 0 0

0 N0
7 0

0 0 N0
7

N0
8 0 0

0 N0
8 0

0 0 N0
8

N0
9 0 0

0 N0
9 0

0 0 N0
9

N0
10 0 0

0 N0
10 0

0 0 N0
10

N0
11 0 0

0 N0
11 0

0 0 N0
11

N0
12 0 0

0 N0
12 0

0 0 N0
12

N0
13 0 0

0 N0
13 0

0 0 N0
13

N0
14 0 0

0 N0
14 0

0 0 N0
14

N0
15 0 0

0 N0
15 0

0 0 N0
15

�

ð73Þ

Moreover, H has the next formula:

H=

ð1
Gij

STLT �Ntds+

ð1
Gjk

STLT �Ntds+

ð1
Gkl

STLT �N tds

ð74Þ

Where, Gij, Gjk, and Gkl indicate the element edges. The
direction cosines of the outer normal of each element
edge, l, and m, could be written as follows:

l=
dy

ds
: m=� dx

ds
ð75Þ

By inserting equations (74) and (75) into equation
(54), the subsequent element complementary energy
function can be found:

P�C =
1

2
bTMb� bTHqe ð76Þ

To find the solution by using the principle of mini-
mum complementary energy, PC should be minimized:

∂PC

∂b
=0 ð77Þ

After calculating the nodal displacement vector, qe,
the unknown constant vector, b can be achieved by the
next relation:

b=M�1Hqe ð78Þ

Substitution of equation (78) into equation (74) yields:

P�C =
1

2
qeTK�qe ð79Þ

K�=(M�1H)TH ð80Þ

In the last equation, matrix K* can be considered as
the equivalent stiffness matrix. This matrix can be used
in the way as the conventional finite element technique.
After finding the element nodal displacement vector,
qe, the element stresses can be written as:

s =SM�1Hqe ð81Þ
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Having the stress function for each element, stresses
of all points will be in hand. In fact, the stress value at
any point within the element can be determined by
inserting the Cartesian coordinates of that point into
equation (81).

Numerical examples

To show the accuracy of the proposed new elements,
TA13 and 1315, nine different benchmark problems are
analyzed for both stresses and displacements.
Moreover, the obtained results are compared with
those achieved using well-known displacement-based
elements (TUBA13 and TUBA15). The findings will
clearly demonstrate the qualities of the new suggested
elements in analyses of plate bending structures. All of
the used units are consistent.

Benchmark 1: In this structure, an L-shaped plate con-
taining a hole is assessed.46,47 This plate is shaped by
one-quarter of a double-symmetric frame. Load is
applied on the left side, as represented in Figure 3.
Dirichlet boundary conditions associated with symmetry
planes are imposed on the simply supported boundary
at the right-hand side. Therefore, on this side, the rota-
tion is free to occur while the transitional degree of free-
dom in two directions in the plane is fixed. The achieved
numerical results are drawn in Table 3. Regarding this
table, the obtained outcomes are compared with those
presented by TUBA13 and TUBA15 .46,47 These
outcomes reveal that the new elements have an excellent

performance in terms of both displacement and stress
responses. This could be associated with the use of
Airy’s stress function. Because, both traditional ele-
ments, TUBA13 and TUBA 15 were displacement-
based establishment elements while TA13 and TA15 are
stress-based elements. Additionally, the trial-and-error
methodology was used in this study which leads to
reducing the error between the exact values and those
obtained using the new elements, TA13 and TA15.
Besides, all findings demonstrate that increasing the
number of degrees-of-freedom leads to raising the accu-
racy of elements. For both displacements and stresses,
TA15 reaches near-exact solutions, relative to the other
elements.

Benchmark 2: In this section, another L-shaped plate
is considered, as it is demonstrated in Figure 4.46,47

This panel is considered one-quarter of a double-
symmetric frame. For this structure, Dirichlet bound-
ary conditions associated with symmetry planes are
imposed on the lower boundary and the right-hand
side. As a result, in two simple supports, the rotation
is permitted at these two sides while the transitional
degrees of freedom in the two plane directions are
fixed. A constant load in the horizontal direction
t
P
1 =� L�1 kN/mm is applied to the body. The
obtained results are represented in Table 4. Besides,
the relative error of the center L-shaped domain pate
is represented in Figure 5. Regarding Table 4 and
Figure 5, the new TA13 and TA15 have more accu-
rate stress and displacement responses. It should be
highlighted that the influences of utilizing a stress
function scheme to enhance the performance of TA
elements on displacement outcomes are more signifi-
cant than the stress consequences. This might be con-
nected to the application of Airy’s stress function.
Due to the fact that TA13 and TA15 are stress-based
elements while both traditional elements, TUBA13
and TUBA15, were establishment elements based on
displacement. The error between the exact values and
those produced utilizing the additional elements,
TA13 and TA15, was also reduced in this study by
applying the trial-and-error process.

Benchmark 3: Figure 6 shows a quarter of a 4 * 4 panel
with a circular cutout. Along x1=4 and x2=4, trac-
tion and double-traction, derived from the following
axial symmetric displacement field are prescribed46:

Table 3. Stress and displacement outcomes of a square panel
with a central circular cutout.

Element Displacement Stress Displacement
error (%)

Stress
error (%)

TUBA13 0.9388 1.23747 1.53 0.73
TA13 0.9405 1.23981 1.33 0.54
TUBA15 0.9484 1.24631 0.52 0.03
TA15 0.9509 1.24650 0.26 0.01
Exact 0.9534 1.24657 - -

Figure 3. Geometries of the left: plate with hole plate.46,47

Figure 4. Geometries of the center L-shaped domain pate.46,47
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u1
u2

� �
=

P

2mrf3
f1 �

a

1� 2vf2

� �
cos u

sin u

� �
ð82Þ

f1 = v� 1ð Þa4 + 2v� 1ð Þ 2l2 � r2 v� 1ð Þ
� 	

a2

� 4(v� 1)r2l2(2v� 1)k1
a

l

� � ð83Þ

f2 = a2 � r2 v� 1ð Þ
� 	

K0
a

l

� �
� 2lr K1

r

l

� �
ð84Þ

f3 = a2 +4l2 v� 1ð ÞK1
a

l

� �
+2al (v� 1

2
) K0

a

l

� �
ð85Þ

(r, u) Here, are the polar coordinates, a = 1 is the
radius of the cutout, r is radial stress at r = ‘, and
Kn is the n-th order modified Bessel functions of the
second kind. The obtained outcomes are reported in
Table 5. According to the achieved consequences, the
new triangular element, TA15, gives accurate results.
The application of Airy’s stress function may be related
to these accurate outcomes. Because TA13 and TA15
are stress-based elements while TUBA13 and TUBA15
were displacement-based establishment elements.
Furthermore, the study’s use of the trial-and-error
method helped to diminish the discrepancy between
exact values and results achieved by employing the
additional elements, TA13 and TA15.

Benchmark 4: Figure 7 illustrates a 60� rhombic plate,
which is subjected to a uniformly distributed transverse
loading q. The thickness (a), span width (a), and
Poisson’s ratio (m) are 0.1, 5, and 0.3, respectively. The
plate edges, AB and DC, are hard and simply sup-
ported, and the other two sides are both free. Since all
elements are skewed because of the plate’s rhombic

Figure 6. A quarter of a square panel with a central circular
cutout.

Table 4. Maximum value of stress and deformation.

Mesh N3N 16316 32332 1003100 Exact Error (%)
(16316)

Error (%)
(32332)

Error (%)
(1003100)

Stress TUBA13 0.0155 0.014 0.011 0.010 55 40 10
TA13 0.0141 0.0122 0.010 41 22 0
TUBA15 0.0135 0.012 0.010 35 20 0
TA15 0.0122 0.011 0.010 22 10 0

Displacement TUBA13 0.131 0.128 0.121 0.120 9.2 6.6 0.8
TA13 0.129 0.125 0.120 7.5 4.1 0
TUBA15 0.128 0.126 0.120 6.6 5.0 0
TA15 0.125 0.122 0.120 4.2 1.7 0

Figure 5. Relative error of the center L-shaped domain pate.

Table 5. Stress and displacement outcomes of a square panel
with a central circular cutout.

Mesh TUBA13 TA13 TUBA15 TA15

Normalized stress
434 1.21 1.18 1.11 1.09
Error (%) (434) 21.0 18.0 11.0 9.0
838 1.19 1.15 1.05 1.03
Error (%) (838) 19.0 15.0 5.0 3.0
16316 1.17 1.12 1.01 1.00
Error (%) (16316) 17.0 12.0 1.0 0.0
Normalized displacement
434 1.15 1.11 1.09 1.05
Error (%) (434) 15.0 11.0 9.0 5.0
838 1.11 1.08 1.05 1.03
Error (%) (838) 11.0 8.0 5.0 3.0
16316 1.07 1.04 1.03 1.01
Error (%) (16316) 7.0 4.0 3.0 1.0
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shape, it is a suitable problem to assess the perfor-
mances of the newly suggested elements in the oblique
meshes. The achieved numerical results are represented
in Table 6. Regarding this table, the authors’ elements,
TA13, and TA15 give very good results against a vari-
ety of the elements in terms of different stress and
deformation responses. According to this table, it can

be seen that the suggested elements have high accuracy
because of using the presented functions.

Benchmark 5: As shown in Figure 8, a square plate,
with the span-thickness ratio a/h=50 and Poisson’s
ratio m=0.3 is evaluated. This plate is subjected to a
uniformly distributed transverse load with the intensity
of q. Its top and bottom edges are hard simply-sup-
ported, and the other two are both free or soft simply
supported. For this structure, the obtained outcomes
are compared with those presented by Kant and
Gadgil.46 Their results are employed as reference solu-
tions here. In Table 7, the dimensionless displacements
and resultants are calculated at selected listed points.
Regarding this table, the proposed elements lead to
high accuracy for a triangular element with 15 nodes,
especially for a square plate. Once again, the answers
demonstrate that the suggested elements are able to
furnish the exact solutions for the plate-bending struc-
tures. Moreover, the stresses at the different points are

Table 6. The dimensionless deflections and stress resultants.

Mesh 16316 32332 1003100 Exact Error (%)
(16316)

Error (%)
(32332)

Error (%)
(1003100)

wDD
qa4 TUBA13 0.0062 0.0056 0.0047 0.0041 51.4 36.5 14.9

TA13 0.0051 0.0048 0.0045 24.6 17.1 10.5
TUBA15 0.0054 0.0050 0.0042 31.8 22.1 2.6
TA15 0.0048 0.0042 0.0040 17.0 3.1 1.4

MxC

qa2 TUBA13 0.0524 0.0512 0.0487 0.0481 9.8 6.2 1.6
TA13 0.0514 0.0501 0.0485 6.0 4.7 1.4
TUBA15 0.0513 0.0504 0.0482 6.1 5.1 1.2
TA15 0.0501 0.0486 0.0480 4.6 1.0 1.1

MyC

qa2 TUBA13 0.0538 0.0521 0.0487 0.0482 12.1 8.6 1.0
TA13 0.0511 0.0489 0.0485 6.3 1.1 0.6
TUBA15 0.0513 0.0502 0.0483 6.1 4.3 0.2
TA15 0.0498 0.0486 0.0481 3.4 0.8 0.2

TyB

qa TUBA13 0.4267 0.4248 0.4221 0.4190 1.8 1.4 0.7
TA13 0.4228 0.4202 0.4180 0.9 0.3 0.2
TUBA15 0.4251 0.4239 0.4210 1.4 1.1 0.4
TA15 0.4234 0.4221 0.4189 1.0 0.7 0.1

Figure 7. The 60� skew plate with two opposite edges is hard
simply-supported.25

Figure 8. Square plate with two opposite edges hard simply-
supported.

Table 7. The dimensionless deflections and stress.

Mesh N3N 1003100 Exact Error (%)

wDD
qa4 TUBA13 0.1057 0.1050 0.7

TA13 0.1053 0.3
TUBA15 0.1051 0.1
TA15 0.1049 0.1

MxC

qa2 TUBA13 0.0273 0.0268 1.9
TA13 0.0270 0.7
TUBA15 0.0269 0.4
TA15 0.0267 0.3

MyC

qa2 TUBA13 0.1303 0.1220 6.6
TA13 0.1298 6.3
TUBA15 0.1240 1.6
TA15 0.1228 0.6

MyD

qa2 TUBA13 0.1361 0.1300 4.6
TA13 0.1335 2.7
TUBA15 0.1320 1.5
TA15 0.1308 0.6
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represented in Figures 9 and 10. Regarding these fig-
ures, the authors’ new triangular elements, TA13 and
TA15, anticipate the stress over the plate more accu-
rately than those obtained using the previous elements.
Utilizing Airy’s stress function may be related to this.
Due to the fact that TA13 and TA15 are stress-based
elements, TUBA13 and TUBA15 were both conven-
tional elements that were established based on displace-
ment. This study also employed the trial-and-error
methodology, which helped to reduce the discrepancy
between the exact values and those produced utilizing
the additional elements, TA13 and TA15.

Benchmark 6: In this section, a skew plate is evaluated.
This plate is simply supported on all edges. As it is
demonstrated in Figure 11, this plate is assessed under a
uniform distributed load. The skew angle results in inte-
rior vertex angles of 30$ and 150$. The plate properties
are given by E=103 106, v=0.3, side length a=100,
plate thickness t=1.0 and uniform loading q=1.0. In
Table 8, the obtained results of the displacement at differ-
ent locations of a plate are represented. High accuracy for
the proposed elements is obtained from this study. It
should be stated that the achieved outcomes are also com-
pared with those obtained by conventional displacement-
based elements for the ‘‘thin’’ plate.46–48 Regarding Table
8, the proposed elements provide excellent results with the
least cost of all the elements considered in this paper.

Benchmark 7: Figure 12 shows one quadrant of a circu-
lar plate. Outcomes for the clamped and simply sup-
ported boundary conditions are computed for thick (R/
t=5/l) and relatively thin (R/t=5/0. l) plates. Besides,
simply supported boundary conditions are considered.
The material characteristics of the plate are E=10.92,
and v=0.3, which gives a plate stiffness, D, of t3, and
the uniform loading q is 1.0. Each Duk is also restrained
on a boundary segment.46 The obtained results are
compared with those presented by TUBA13 and
TUBA15, and they are shown in Table 9. According to
these consequences, both new elements, TA13 and
TA15, can improve the answers considerably. This
might be related to the application of Airy’s stress
scheme. Because TA13 and TA15 are stress-based ele-
ments, while TUBA13 and TUBA15 were
displacement-based elements. Moreover, the trial-and-
error process was applied in this investigation, which

Figure 9. Shear force distribution lengthways the edge DC.

Figure 10. Twisting moment distribution lengthways of the
lowest border AB.

Figure 11. Typical mesh for Morley skew plate example.

Table 8. Skew cantilever plate.

Deflection at location

1 2 3 4 5 6

TUBA13 0.282 0.179 0.102 0.107 0.042 0.015
Error (%) 5.05 12.25 15.70 17.06 23.00 31.80
TA13 0.287 0.186 0.114 0.115 0.049 0.018
Error (%) 3.36 8.82 5.78 10.82 12.40 18.18
TUBA15 0.292 0.198 0.115 0.112 0.047 0.019
Error (%) 1.68 2.94 4.93 13.1 16.07 13.63
TA15 0.295 0.200 0.119 0.121 0.051 0.020
Error (%) 0.67 1.96 1.64 6.20 8.90 7.91
Exact 0.297 0.204 0.121 0.129 0.056 0.022
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helped to reduce the error between the precise values
and those obtained utilizing the new elements, TA13
and TA15.

Benchmark 8: In this example, the action of a sinusoi-
dal load on two parallel sides of the original rectangu-
lar plate is considered.47 Specifically, it is considered
the scaled moments of the ‘‘symmetrical case’’ corre-
sponding to the term for m=7 in the definition of the
transverse displacement following formula:

w=
1� v2
� �
Eh3

pbm

2a
tanh

pbm

2a


 �
cosh

pmy

a


 �


�pmy

a
sinh

pmy

a


 �!
sin

pmx

a

� �
ð86Þ

where y= y� b=2 to adjust this solution to the
frame in Figure 13, a=4 and b=2. This corresponds
to having normal moments equal to

myy =
p2m2

6a3
cosh

pbm

2a


 �
sin

pmx

a

� �
! 614:979305228016 sin (5:49778714378214x)

ð87Þ

At the simply supported sides with uniform y.
Therefore, at these edges, the turning is free to occur
while the transitional degree of freedom in two direc-
tions in the plane is fixed. The distribution of applied
moments/imposed rotation is illustrated in Figure 13.
When this problem is solved with the suggested ele-
ments, the corresponding solutions are not strictly equi-
librated, because the polynomial moment field cannot
be exactly represented for the sinusoidal load.
Nevertheless, it is possible to obtain locally equilibrated
solutions by considering the problem with imposed dis-
placements, which has the same exact solution, i.e., the
sides with uniform y become clamped. In fact, the nor-
mal rotation corresponding to the exact displacements
is here imposed as previously given by:

uy=

7
1�v2
� �
Eh3

pm

2a
sech

pbm

2a


 �
pbm

a
+sinh

pbm

a


 �
 �
sin

pmx

a

� �
!7610:957276165364sin(5:49778714378214x)

ð88Þ

The values obtained for the different elements are
presented in Table 10. It is obvious that TA13 and
TA15 have better performance than TUBA13 and
TUBA15 elements.

Benchmark 9: In this example, a simply supported rec-
tangular plate is evaluated, as illustrated in Figure 14.46

It should be stated that the moments under the point
load are infinite. Table 11 shows the obtained outcomes
using TA13, TA15, TUBA13, and TUBA15 elements.
The following stress resultants are directly obtained
from the compatible curvatures, using the constitutive
relations, and their derivatives for the shear force.
Although, standard stress smoothing/recovery proce-
dures could be applied, in this study the raw results are
presented, which are those that must be used for the
computation of error bounds. The fact is that the twist-
ing moment at the intersection of the two perpendicular
sliding supports is zero because those supports imply
that the twisting curvature is zero. Hence, the funda-
mental condition is of a kinematic nature, and it is
strongly respected by any compatible solution.

Table 9. Responses of a skew plate.

Element w (3102ql4=D) My(310ql2)

TUBA13 0.7824 0.9519
Error (%) 1.52 0.73
TA13 0.7897 0.9521
Error (%) 0.60 0.70
TUBA15 0.7889 0.9575
Error (%) 0.70 0.14
TA15 0.7921 0.9581
Error (%) 0.30 0.08
Exact 0.7945 0.9589

Figure 12. Typical mesh f2or quadrant of a circular plate.

Figure 13. Double symmetry simplification of the rectangular
plate with a sinusoidal action.
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According to Table 11, the improvement influences of
the new proposed element based on the complementary
energy scheme on the displacement and stress compo-
nents outcomes are more significant, relative to those
of displacement-based elements, TUBA13 and
TUBA15.

Conclusion

In this study, two new elements were proposed for ana-
lyzing the plate bending problems. One of them had 13,
and the other one had 15 nodes. Both elements were
formulated based on Airy’s functions. To build these
elements, a complementary energy function was

employed within the element. In this energy expression,
the Airy stress function was applied as a functional
variable. In addition, some basic analytical solutions
were assigned for the stress functions. These trial func-
tions were matched with each element’s number of
DOF. After some mathematical operations, the ele-
ment equation was established. To demonstrate the
accuracy of the presented elements, several benchmarks
were solved. Comparison studies were also carried out
with two related compatible and displacement-based
elements of TUBA13 and TUBA15. All numerical
solutions indicated that accurate results could be
obtained for the displacements, as well as; the stress by
using these new elements.

In this study, the influence of shear stress is not con-
sidered which is one of the limitations of this study.
Additionally, the proposed methods are proper for thin
plates. So, it is recommended for future studies to mea-
sure and develop the Airy stress function for thick
plates considering the shear stress influence.
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