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Abstract: Glare is a kind of physiological phenomenon that influences occupants’ visual comfort.
Discomfort glare scenes in comparison to other levels of glare have been difficult to estimate and need
accurate and reliable metrics. In contemporary architecture, the glass façade is so popular since it can
remarkably minimize energy consumption in buildings and maximize daylight utilization as a natural
energy. However, it is necessary to consider occupants’ visual discomfort due to the daylighting glare
risks during the initial stage of design. Since the measured glare metrics should have an acceptable
correlation with the human subject data study, the agreement on the glare indices is complicated.
This paper presents a comparison between subjective and simulation-based analysis of discomfort
glare metrics in offices with a light shelf system. The discomfort glare metrics considered in this
study include Daylight Glare Index (DGI), CIE Glare Index (CGI), Visual Comfort Probability (VCP),
Unified Glare Rating (UGR), and Daylight Glare Probability (DGP). The parallel comparison was
conducted by using simulation and questionnaire surveys to determine which criteria are more useful
under different conditions. According to the findings, DGP yields the most reliable results in different
levels of glare based on the subjective analysis and VCP has the lowest accuracy in each stage. UGR
also has the highest accuracy rate for evaluating perceptible glare, DGI is applicable for assessing
imperceptible glare, and CGI can be an acceptable index for approximating intolerable glare. The
study results significantly reduce the complexity of the problem and can provide useful guidance for
designers to select the most reliable glare metric based on climatic conditions.

Keywords: discomfort glare; glare metrics; light shelf system; visual comfort; office buildings

1. Introduction

The design of buildings using daylighting-based strategies is very desirable [1]. Day-
lighting can significantly reduce the energy consumption of buildings and also has a
positive impact on occupants’ visual comfort [2–5], but an inappropriate daylighting-based
design can reduce this advantage [1,3,6,7]. Generally, office environments need careful
daylighting design due to their function [6,8–10]. Employees’ productivity in offices di-
rectly affects the organization’s financial efficiency and overall growth [11–13]. At the same
time, the minimum possible energy should be used in these environments [14]. Proper
design of offices’ windows is one of the practical ways to exploit daylighting in office
buildings. However, it does not provide satisfactory daylighting of deep spaces due to poor
penetration and distribution of the illumination within the space and it can result in visual
discomfort and local overheating [15,16]. Direct sunlight and high-brightness contrast also
can increase the risk of discomfort glare in office buildings [4,17–19].
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Glare is defined as “the sensation produced by luminance within the visual field that
is sufficiently greater than the luminance to which the eyes are adapted to cause annoyance,
discomfort or loss in visual performance and visibility” [16,20]. To solve this problem, light
shelves, as a popular daylighting system, can be used in various shapes [21]. To properly
design windows and sun shading devices we should consider glare risk and evaluate it via
reliable indicators. Glare is a complex phenomenon and different approaches have been
used in its evaluation to calculate the potential of causing discomfort. The following five
indices are used for evaluating discomfort glare: Visual Comfort Probability (VCP), CIE
Glare Index (CGI), Daylight Glare Index (DGI), Unified Glare Index, and Discomfort Glare
Probability (DGP) [16,22–24].

1. Visual Comfort Probability (VCP): This index initially was introduced in order to
evaluate discomfort glare probability [16,25] and then it was edited for use in various
lighting systems. VCP was only developed to evaluate typical sizes, such as ceiling-
mounted lights with uniform illumination. Therefore, it is not suitable for evaluating
non-uniform illuminance or for predicting daylight glare [26,27].

2. CIE Glare Index (CGI): To correct the mathematical inconsistencies of the British Glare
Index (BGI) for multiple glare sources, a new index was introduced, which was later
accepted by the International Commission on Illumination (CIE), and called the CIE
glare index [10,26,28].

3. Discomfort Glare Index (DGI): This index is derived from the CGI and its purpose is
to predict the glare caused by large glare sources such as a window [29]. The metric
is based on subjective ratings from human subjects in a daylit office space. The DGI
value is associated with different levels of discomfort glare. A value of 22 is considered
a logically acceptable threshold [30–32].

4. Unified Glare Rating (UGR): The value of this index varies between 10 (just impercep-
tible) and 34 (just intolerable). Similarly to the CGI, a value of 19 is usually considered
the borderline between comfortable and discomfort glare [26,33,34].

5. Daylight Glare Probability (DGP): To determine glare, DGP combines vertical
eye illuminance with elements of existing glare indices. In comparison with
the existing glare indices, DGP shows a very strong correlation with occupants’
glare perception [6,18,21,23,35]. A comparison between glare metrics values is
tabulated in Table 1.

Table 1. Comparison between recommended thresholds of discomfort glare metrics.

Level of
Discomfort Glare VCP [25,36,37] CGI [28,38,39] DGI [30,40] UGR [33,41] DGP [35,42]

just imperceptible >80 <13 <18 <13 <0.35

just acceptable 60–80 13–22 18–24 13–22 0.35–0.4

just disturbing 40–60 22–28 24–31 22–28 0.4–0.45

just intolerable <40 >28 >31 >28 >0.45

While intolerable glare is easier to assess, disturbing glare has been rather difficult to
estimate. Discomfort glare is a prevalent problem in office buildings and many research
studies have been conducted on this issue [6,16]. A large number of glare metrics have
been developed in order to correctly quantify and evaluate the different levels of glare
scenes. To enrich the literature review and classify previously published works, some of
the important published studies are classified in Table 2. The most important points of
these documents are also presented in this table.
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Table 2. List of important published works in the field (E: educational, O: office, R: residential, T: test room).

Source Methodology Type of LS LS Variable (s) Glare Day-
lighting

Considered
Metric (s) Type of Sky Window

Orientation(s)
Case Study

Dimensions (Length ×
Width × Height)

Case
Study
Space

Climate and
Region

Software
Platform

[43] Experimental Internal/
External

Width, height,
angle, and
reflectivity

× X Light uniformity All South Dimensions:
6.6 × 4.9 × 2.5 (m) T Seoul,

Korea; Dwa -

[27] Experimental,
Simulation

Internal/
External N/A X × CIE Glare Index,

VCP
Intermediate

sky
All

orientations
Dimensions:

6.6 × 3 × 3 (m) O
Johor Bahru,

Malaysia;
Af

Radiance

[7] Simulation Internal/
External

Position,
width, height,

and angle
X X UDI, ASE, and

DGP Clear sky South Dimensions:
10 × 9 × 3.5 (m) E

Tehran,
Iran;
BSk

Honeybee

[44] Experimental External Angle and
reflectivity X × Glare caused by

light reflectivity All South Dimensions:
6.6 × 4.9 × 2.5 (m) T Seoul,

Korea: Dwa -

[6] Simulation External Angle and
material X X UDI, DGP Clear sky South Dimensions:

12 × 6 × 5 (m) O Wroclaw,
Poland; Cfb DeLuminæ

[45] Simulation Internal/
External

Angle and
width × X Daylighting

performance Clear/Overcast East and west Dimensions:
18 × 6 × 4.1 (m) O Singapore;

Af Radiance

[46] Simulation Internal/
External Angle × X Daylighting

performance Clear sky South Dimensions:
12.6 × 5 × 2.3 (m) R Seoul,

Korea; Dwa Radiance

[19] Simulation Light shelf Length, angle,
and height × X UDI,

ASE, and sDA
Different
sky cloud

cover

WWR, height,
length, and

angle of light
shelves

Dimensions:
8 × 5.8 × 2.9 (m) E

Sari, Iran:
Csa.

Tehran, Iran;
BSk

Honeybee

[47] Simulation Internal/
External

Width, height,
distance from
floor and top

of the window

× X Daylighting
performance Clear sky East, West Dimensions:

7.9 × 3.2 × 2.8 (m) E Athens,
Greece; Cfa EnergyPlus

[1] Experimental,
Simulation

Internal/
External

Position, shape,
material, and

width
× X

Illuminance
values,

Daylighting
performance

Clear sky North, West Dimensions:
9 × 7 × 3.3 (m) E

Riyadh,
Saudi

Arabia;
BWh

Revit

[48] Experimental,
Simulation

Internal/
External

Reflectivity,
height, and

internal light
shelf (ILS)

curve

X X

UDI, DA, UI,
DGP,

Illuminance &
luminance

values,
Daylighting
performance

Clear sky South Dimensions:
4.6 × 8 × 3 (m) O

Ha’il, Saudi
Arabia;
BWh

Diva
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Table 2. Cont.

Source Methodology Type of LS LS Variable (s) Glare Day-
lighting

Considered
Metric (s) Type of Sky Window

Orientation(s)
Case Study

Dimensions (Length ×
Width × Height)

Case
Study
Space

Climate and
Region

Software
Platform

[49] Experimental Internal Heigh, length,
and number × X

Daylight
ratio or daylight
factor and WPI
uniformity ratio

various sky
conditions All Dimensions:

4.2 × 4.2 × 3 (m) T
Johor,

Malaysia;
Af

-

[50] Experimental,
Simulation

Internal/
External

Width, height,
distance from
floor and top

of the window

× X Daylighting
performance All type East, West Dimensions:

7.9 × 3.2 × 2.8 (m) E Athens,
Greece; Csa EnergyPlus

[51] Experimental,
Simulation

Internal/
External

Width,
mounting

height,
inclination,

and reflection
index

× X
Uniformity of

daylight
distribution, DF

Overcast South Dimensions:
7 × 7 × 3.2 (m) E Athens,

Greece; Csa Radiance

[21] Experimental,
Simulation

Internal/
External

Angle,
material, and
orientation

× X Useful Daylight
Enhancement.

Clear,
cloudy All Dimensions:

7 × 7 × 3.2 (m) E Chennai,
India; Aw Radiance

[52] Experimental External Slope angle X X
DF, glare

brightness
contrast

Clear North Dimensions:
14.9 × 8.5 × 2.9 (m) E Al-Ain,

UAE; BWh -

[53] Experimental Internal/
External

Distance from
the floor × X

Illuminance and
luminance

performance
factors

CIE interme-
diate
sky

north-east,
south-west,

and north-west
Dimensions:

29.7 × 19 × 4.3 (m) E Izmir,
Turkey; Csa -

[10] Experimental,
Simulation Internal Height, length,

and number X ×

CIE Glare Index
(CGI),

Guth Visual
Comfort

Probability
(GVCP)

Inconsistent
cloud

formations
of interme-

diate
skies

All Dimensions:
8.4 × 8.4 × 2.7 (m) O

Johor Bahru,
Malaysia;

Af
Radiance

[54] Simulation Internal N/A × X Daylight
illumination CIE overcast All Total area: 937.9 m2 O Singapore;

Af
Radiance
IES-VE

[18] Simulation
Combination
of external

and
internal

Height, angle,
and Depth X X UDI and DGP - South Dimensions:

8 × 5 × 2.8 (m) O
Penang,

Malaysia;
Af

Honeybee

[55] Simulation Internal
Position

(Vertical and
horizontal)

× X DR Clear North-west,
South-east

Dimensions:
6 × 5 × 3.5 (m) R Mashhad,

Iran; BSk Honeybee
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Considering the reviewed literature, much research has been conducted on daylighting
performance metrics and little research has been conducted on discomfort glare metrics.
Moreover, the previous studies did not present a strong correlation between predicted and
perceived visual comfort [23,24], and more extensive human-centric research is essential.
Especially during the evaluation of discomfort glare metrics, there is obvious evidence
confirming that the perceived glare in a controlled experimental environment differs from
perceived glare in field situations, since in field studies there are inevitable differences
between occupants’ emotions or behaviors, their metabolism rates, sky conditions, etc. [23].
As a result, it is currently rather difficult for the designer to decide which glare index to
use [22,56].

So, it is necessary to investigate the performance of discomfort glare metrics from
different points of view to find out the reliability rate of different glare metrics in the
evaluation of occupants’ discomfort. This study aims to focus on this important issue and
investigates the reliability of the discomfort glare metrics through simulation analysis and
subjective surveys to rate the glare indicators. The research is also attempting to identify
the most reliable glare metric for evaluating different glare scenes. For this purpose, an
existing office building in Tehran was used as a case study and a developed questionnaire
was used to collect the subjective data. Then the subjective data are compared with the
simulation analysis to find out their correlation and inform the introduction of the most
efficient discomfort glare metric in the office environment.

2. Methodology

This research aims to compare the reliability of discomfort glare metrics in order to
rate existing visual comfort indices in office environments that are located in cold semi-
arid climates. To this end, a subjective and simulation-based analysis was conducted
for this study in five main steps: (1) an initial data collection through an environmental
and climate dataset to identify the key characteristics of the case study location’s climate,
(2) collecting the human subjective data through evaluating the filled out questionnaires,
(3) simulating the case study via building simulation software, (4) normalizing the subjec-
tive and simulation-based data in order to compare the outputs directly and, (5) rating the
glare metrics in terms of their correlation with human subjective data and their reliability
in predicting glare scenes. Accordingly, the different steps of the research process are
presented in Figure 1 to better understand the research flowchart.
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2.1. Initial Data Collection
2.1.1. Climatic Data of the Case Study Location

In this research, an office building in Tehran (Iran) was selected as the case study.
According to the Köppen–Geiger climate classification [31], the B category (dry) accounts
for 82.28% of Iran. In this study, Tehran is considered an example of this climate type. The
climate characteristics of Tehran are summarized in Table 3. It is important to consider such
information during the early design stage to avoid the occupants’ discomfort [57,58].

Table 3. Köppen–Geiger climate classification of Tehran [19].

City Latitude Longitude Elevation
(m) Mean Cloud Cover Climate HDD CDD

Tehran 35.7219◦ N 51.3347◦ E 1219 44.7% Cold semi-arid (BSk) 1810 865

For running the simulation, the Tehran-Mehrabad 407,540 (ITMY) file is imported into
the simulation software (Table 4), which is available to download from the EnergyPlus
website. It should be noted that Tehran is the capital of Iran.

According to the statistics from meteorological stations collected by the Tehran Inter-
national Exhibition for 18 years, 10 July to 10 August is the overall warmest period for
Tehran, with an average temperature of 35.6 ◦C, and February is recorded as the coldest
month of the year, with an average minimum temperature of −0.7 ◦C [59]. The window
and light shelf are positioned on the south façade, since the south-facing surfaces in Tehran
receive more daylight due to the sun’s path [60], as it is illustrated in Figure 2.
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Figure 2. Sun path diagram for Tehran during a year.

Iran has three light zones and the city of Tehran belongs to the 3rd zone [61]. The
intensity of natural light during the day, throughout Iran, is between 4000 and 40,000 lux.
In Table 5, daylight distribution hours are divided into four parts. There are approximately
3800 h of sunlight per year in Tehran.
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Table 4. The weather file is provided by the EnergyPlus database for Tehran.

Weather Data
Hourly Monthly

Avg. Max. Min. Max. Min.

Dry-bulb temperature (◦C) 17.27 40 −5 30.07 3.88

Relative humidity (%) 40.57 99 3 62.99 21.92

Dew point temperature (◦C) 1.61 18.5 20 6.78 −3.5

Wind speed (m/s) 2.71 16.3 0 4.25 1.67

Direct normal radiation (Wh/m2) 206.98 775 0 299.97 120.21

Diffuse horizontal radiation (Wh/m2) 121.15 540 0 177.11 64.73

Global horizontal radiation (Wh/m2) 244.25 1069 0 364.24 117.26

Horizontal infrared radiation (Wh/m2) 340.58 489 229 409.04 274.93

Barometric pressure (Pa) 87,943.21 98,300 86,900 88,416.26 87,419.58

Table 5. Distribution of daylight illuminance in Tehran as a representative of the 3rd zone of Iran [62].

Zone <4000 Lux 4000–8000 Lux 8000–16,000 Lux >16,000 Lux

3 4923 756 1094 1977

According to weather data, the potential of global solar radiation in Tehran is signifi-
cant. Maximum and minimum direct radiation occurs in July and December, respectively.
As can be observed from Table 6, the maximum and the minimum solar radiation occur in
August and December, respectively.

Table 6. The hours of sunshine in Tehran [19].

Month Jan-
uary

Feb-
ruary March April May June July Au-

gust
Sept-

ember
Oct-
ober

Nov-
ember

Dec-
ember Annual

Number of hours 10:20 10:50 11:55 13:04 14:02 14:31 14:18 13:28 12:22 11:12 10:15 9:47 12:00

The sun’s altitude at
noon on the 21st day of
every month (Degree)

34/4 43/7 54/5 66/2 74/5 77/7 74/7 40/66 55 43/5 43/3 30/9 54/7

2.1.2. Physical Characteristics of the Case Study

It was assumed that the office unit was located in the mid-level of the building. Thus,
only the external wall with a window has heat transfer, and all of the other room enclosures
are internal ones without heat transfer. The office room was modeled using the Rhino 7
software, as presented in Figure 3.

The material characteristics of this room are based on the Iranian National Building
Regulations [63], which are tabulated in Table 7. The thermal characteristics of the construc-
tion, presented in Table 7, are based on the ASHRAE 90.1-2010 [64]. Hoseinzadeh et al. com-
pared ASHRAE and Iran’s national standard materials and determined that the ASHRAE
proposed material performs better than the other [65].

Setpoint temperatures for heating and cooling were set to 22 ◦C and 26 ◦C, respectively,
from 8:00 to 17:00 on weekdays only. It is also worth mentioning that Iranian weekdays
start from Saturday to Wednesday. On the other hand, the setback temperatures for
heating and cooling were 18 ◦C and 30 ◦C, respectively, outside of working hours. It
was presumed that five occupants with 125 W/person activity levels were in the room.
The occupants’ CLO value (level of clothing) was adapted from the Dynamic ASHRAE
55 Clothing Model [66,67]. The occupancy, lighting, and electrical equipment schedules
were set according to the weekdays in Iran, as shown in Figure 4.
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Table 7. Case study material specifications [63].

Component Material U-Value (W/m2 K)

External Wall

1-inch stucco

0.7813
8-inch concrete heavyweight

Wall insulation
0.5-inch gypsum

Roof
Roof membrane

0.2296Roof insulation
Metal decking

Floor

0.5-inch gypsum

0.1994
Attic floor

Floor insulation
0.5-inch gypsum

Window Theoretical glass 13.88

Window frame UPVC 1.6

Light shelf Aluminum 1.5

The main parameters of the base model are described in Table 8 and the reflectance
value for different surfaces of the office room is also shown in Table 9.

Table 8. Characteristics of the base model.

Attributes Unit Values

Case study type - Medium office building

Working hours - 8:00–17:00

Number of people per area ppl/m2 0.0565

Ventilation per area m3/s·m2 0.0003

Equipment loads per area w/m2 7.6424

Lighting density per area w/m2 11.8404

Window orientation - South

Dimensions of the window
(Width × Height) m 2.4 × 2

Dimensions of the office room
(Length × Width × Height) m 4 × 3.5 × 3 (m)

Location and climate of case study - Tehran (Bsk), Iran

Window to Wall Ratio (WWR) % 40%

Light shelf thickness m 0.4

The angle of the light shelf with
the window plane

◦ 90

TG (Transmission of Glass) % 0.4

LSL (Light shelf Length) m 0.4

LSH (Light shelf Height) m 0.6

The room’s electrical equipment was only available during working hours and con-
sumed 450 W constantly. A 500 Watts fluorescent lighting system was used during office
hours. Its power was controlled through an automatic dimmer. The sensor was installed in
the mid-level of the room and at desk height (0.8 m above the floor) [67].
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Table 9. Reflectance value for different surfaces of the case study [63].

Type of Surface Reflectance Values (%)

Interior wall 45

Exterior wall 70

Ceiling 70

Floor 40

Light shelf 52

Window 79

Frame of window 50

Door 29

Equipment (monitor, furniture, etc.) 20–50

2.2. Subjective Data Collection

For collecting subjective data, a developed questionnaire was used and 38 respondents
(20 men and 18 women) participated. All the participants had worked in the office for at
least 6 months. The range of subjects’ age was 20–30 years old. The questionnaire was
a modified version of the one that was already developed by Pour Ahmadi et al. [15]
and includes different aspects that can be categorized into personal information, general
lighting, and perception of glare during working hours. The participants also provided
their judgment on discomfort glare categories from imperceptible glare to intolerable glare,
as shown in Figure 5.
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2.3. Simulation Data Set

Rhinoceros is a computer-aided design (CAD) application developed by Robert Mc-
Neel & Associates and is based on the NURBS numerical model [68]. Robert McNeel
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& Associates [69] have created Grasshopper as a visual programming language plugin
for Rhino, which provides parametric evaluation [70]. The Honeybee plugin was first
introduced by Mustafa Roudsari in 2013 for energy analysis. To yield the correct answers,
selecting suitable simulation software is vital. In this study, the Grasshopper 1.0.0007
version of Rhino 6 (SR16) has been applied for developing the parametric model, and visual
analysis has been conducted with the assistance of the Honeybee version of 0.0.66 [2,71].
The simulation was conducted over 15 days, from 1 January to 15 January, under different
sky models (overcast, partly cloudy, and clear skies). In the study, the following radiance
parameters were used, as they are presented in Table 10.

Table 10. The considered radiance parameters for the simulation.

Type of Radiance Parameters Value

Ambient bounces (-ab) 2

Ambient divisions (-ad) 1024

Ambient super samples (-as) 1024

Ambient resolution (-ar) 128

Ambient accuracy (-aa) 0.25

2.4. Analysis Process

The metrics considered in this study were DGI, CGI, VCP, UGR, and DGP. The value
ranges of these metrics were adjusted based on four levels of glare (i.e., just imperceptible,
just acceptable, just uncomfortable, and just intolerable) (Table 1). To compare data results
directly, the considered glare indices were normalized and rescaled between the values of
0 and 1. This means that the smallest value (0) indicates just imperceptible glare and the
largest value (1) indicates just intolerable glare. The normalization procedure is based on
Jakubiec and Reinhart’s study (2012) [72], so accordingly, DGI was normalized by multi-
plying by a factor of 0.01452, and UGR and CGI results were normalized by multiplying
by a factor of 0.01607. The VCP results were also normalized by subtracting its value
divided by 100 from 1. Since the range value of DGP is always between 0 and 1, it does not
require normalization.

2.5. Discomfort Glare Metrics Rating Process

The normalization factors were defined according to the just intolerable level of DGP.
The human subjective data derived from questionnaires were coupled with normalized
indices to compare glare metrics with questionnaires output. Hence, the just imperceptible
answers were coupled with the range below 0.35, the range of 0.35–0.40 was coupled with
the just acceptable answers, the just uncomfortable answers were paired with the range of
0.40–0.45, and the just intolerable answers were paired with the range above 0.45.

3. Results

As mentioned in the Section 2, the data were collected from the questionnaires and
then compared to the analysis derived from the simulation. The subjective data analysis
was coupled with the normalized indicators for comparing the glare metrics with the
questionnaire output. The comparison of predicted glare metrics and perceived glare
metrics is illustrated in Figure 6, and each of the glare ranges is shown in a different color.
It is important to mention that the evaluations were conducted from 8:00 to 17:00 over six
different days (clear or sunny, partly cloudy, partly cloudy to at times cloudy, mostly or
mainly cloudy, cloudy and overcast sky).
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The subjective glare evaluation data were compared with the existing discomfort glare
metrics to determine which glare index had the best correlation with the human subjective
evaluations in each glare scene, as presented in Figure 7.
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Figure 7. Correlation of subjective evaluation and discomfort glare metrics in different glare ratings.

From the results, it is clear that in each glare scene, only one or at most two indicators
were correctly aligned with the subjective evaluation, and in some scenes, even none of the
indicators followed the subjective evaluation. The results support the previous findings
which state that there are wide contradictions between visual metrics in the evaluation
of discomfort glare. The rate of accuracy of each discomfort glare index is compared
in Figure 8.

Based on the results, DGP shows the highest accuracy rate (about 75.2%) among the
other discomfort glare metrics and VCP has the lowest accuracy rate (about 11.3%). On the
other hand, the CGI, UGR, and DGI accuracy rates are 24.7%, 27.6%, and 41.8%, respectively.
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Amongst the glare metrics, DGP is the only glare index that has an accuracy rate above 50%.
For better analysis, the simulated glare scenes were classified into four different ratings
(imperceptible, perceptible, disturbing, and intolerable) regarding subjective evaluations.
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At first, the imperceptible glare scenes were analyzed and reported, which is illustrated
in Figure 9. As can be observed from Figure 9, DGP shows a very high accuracy (36.4%)
in the evaluation of imperceptible glare and DGI also has an acceptable accuracy (29.1%).
Based on the study findings, it is evident that DGP and DGI are capable of suitable
evaluation in imperceptible glare scenes. On the other hand, VCP, UGR, and CGI have a
lower accuracy rate compared to DGP and DGI.

In perceptible glare evaluation, UGR has the most accuracy (33.1%). Accordingly, DGI
and CGI show approximately the same result for the evaluation of perceptible glare. In
the evaluation of disturbing glare, DGP has the highest accuracy rate (38.2%), followed
by DGI (23%), CGI (18.9%), DGP (11.8%), and VCP (8.1%). Finally, for the evaluation of
intolerable glare scenes, DGP has the highest accuracy rate (40.9%), and subsequently, CGI
has the highest accuracy rate after DGP (38.4%). Among the five discomfort glare metrics,
DGI has the lowest level of accuracy (1.7%) in the assessment of intolerable glare. Based on
the accuracy rate analysis, existing glare indices have different evaluation performances in
various conditions:

• DGP is the most reliable index in the evaluation of imperceptible, disturbing, and
intolerable glare conditions, but its performance for assessing perceptible glare scenes
is relatively weak. From the results, it is obvious that DGP has the highest correlation
with human subjective evaluations to a large extent.

• UGR has the highest accuracy rate for evaluating perceptible glare scenes and has an
acceptable performance in the evaluation of disturbing glare.

• DGI has very high accuracy in the assessment of imperceptible glare scenes, but it
shows weak performance in disturbing glare evaluation.

• CGI has the best performance in the assessment of annoying glare and its accuracy
rate for the rest of the glare scenes is low.

• Finally, VCP has the lowest accuracy rate in the evaluation of different glare ratings,
and it confirms the previous findings that indicated that VCP is not suitable for
assessing daylight glare.
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4. Discussion
4.1. Implications and Key Findings of the Study

In contemporary architecture, the glass façade is so popular since it can remark-
ably minimize energy consumption in buildings and maximize daylight utilization as a
natural energy. It is generally accepted that daylighting design and implementation in
buildings can improve occupants’ comfort, the efficiency of employees, and users’ mental
health [1,3,6,18,19,46,47,49,51,53,54,73]. However, it is necessary to consider occupants’
visual discomfort due to the daylighting glare risks during the initial stage of design. Based
on recent investigations, discomfort glare is a prevalent problem in many offices, due to the
wide use of glazed façades [6,52].

So, various daylighting control systems have been developed to redirect or block
the sunlight. Among different daylighting systems, light shelves have more capability
to address visual comfort demands, along with enhancing energy efficiency due to their
physical adaptation compared to fixed systems [34,71]; however, they can either be a
great opportunity or a huge threat depending on their design [27,45–47,50,74]. With the
advancement of shading device technology in office buildings, researchers have tended to
conduct more research into daylighting glare and its related issues. Accordingly, a reliable
metric is needed for evaluating glare in order to design an appropriate shading system.

Since the measured glare metrics should have an acceptable correlation with the
human subject data, the agreement on the glare indices is complicated. Although many
researchers have evaluated the current visual metrics to develop them, the existing visual
metrics have contradictions in a similar level of glare. These conflicts have stemmed from
the fact that glare is a subjective phenomenon [4,16,31]. Although many studies have
been conducted into the validation of glare indicators, no clear guidelines have yet been
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provided. So, it is relatively difficult for the designer to select the appropriate glare index
in various conditions.

From the study findings, it is clear that only one or two discomfort glare metrics were
precisely aligned with the subjective human study data, and in some cases, none of the
metrics were in agreement with the subjective evaluations. Our results support the previous
research which stated that the visual metrics have wide contradictions in the evaluation
of discomfort glare [16,18,56]. Each glare metric has its own weakness and is limited to
specific indoor environmental conditions. This is because the position and the size of the
glare source are not static during time intervals [34]. We confirmed that the accuracy rate
of DGI in evaluating perceptible, disturbing, and intolerable glare is about 13.5%. This
means that DGI overestimates glare scenes and shows a low accuracy rate in evaluating
glare scenes. Although it shows a high accuracy rate in imperceptible glare scenes [23]. The
results of this study can be added to the previous research because it presents the strengths
and limitations of existing visual metrics.

4.2. Limitations and Future Research Recommendations

The following recommendations practically express the suggestions of this research:

• According to the results, most of the current glare indices show a low correlation with
human subjective data, and there is a high contradiction between different levels of
predicted and perceived glare. Since glare is a kind of subjective phenomenon, the
policymakers on building energy codes should be encouraged to involve more human-
centered factors in regulating visual metrics, hence the contradictions are eliminated.

• For the subjective approach, we utilized a developed questionnaire to collect human
subjective data. To yield a better outcome, it is recommended to use smart building
sensors such as image-based sensing technologies and surveying methods simulta-
neously. Sensing technology helps to monitor building occupancy data and collect
occupancy-related information more precisely.

The results guide architects and building designers to select suitable indices regarding
the purpose of the project. As mentioned before, it is necessary to consider occupants’
visual discomfort due to the daylighting glare risks during the initial stage of design, and
designing an effective daylighting system is related to the building performance process,
so we propose a roadmap to policymakers for making the best decisions in the process of
building design in Figure 10.

The following limitations also can be addressed in future research:

• As mentioned before, our case study was located in a semi-arid climate and the
research outcomes can be practical in similar climates. Further studies should confirm
these novel findings by conducting research in similar climatic conditions.

• The main common feature among glare indices is their dependency on the occupants,
although the main attention of this paper is on office buildings with fixed light shelves.
Further research could be conducted to investigate the performance of glare indices in
office buildings with dynamic light shelf systems to evaluate visual metrics according
to changing conditions and compare the results with the current study’s findings,
since applying these metrics in other setups might not end with the same results.
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5. Conclusions

The analysis performed in this research shows that the existing discomfort glare
metrics need to be developed according to the subjective data to find the best correlation
between the predicting and perceiving glare evaluations. In particular, the following key
findings emerged from the study:

• According to the results, only one or two discomfort glare metrics are correlated with
human subjective data in each stage, and in some cases none of the metrics are in
alignment with the survey results. So, this finding supports the previous research
which stated that the glare indices have wide contradictions in discomfort glare
evaluations. There is no significant relationship between subjective and simulation-
based analysis of discomfort glare metrics in different glare ratings.

• At almost all different levels of glare, comparing the subjective and simulation anal-
ysis of visual criteria indicated that DGP is the most accurate and reliable index for
assessing glare and has the highest correlation with human subject data. However,
some of the discomfort glare metrics in the special condition had better performance
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in glare evaluation. For example, UGR had the highest accuracy rate for evaluating
perceptible glare level, DGI was applicable for imperceptible glare assessment, and
the best discomfort glare metric in assessing intolerable glare was CGI.

• Based on the obtained results from the comparison of glare metrics with surveying
outcomes, VCP has the least correlation with subjective evaluation and its’ assessment
accuracy in each level of glare is very low. So, VCP is not appropriate for discomfort
glare evaluation in offices with a light shelf system and needs deep research to consider
suitable human-centered design factors for development in the future.

• The study indicated that there are highly significant differences between the subjective
and simulation-based analysis of visual metrics in offices using light shelf systems.
Although, for a more accurate investigation, it would be better to consider two or
more glare indices simultaneously to alleviate this contradiction.

A set of recommendations is presented in this study that should be used by architects
during the early design stage to create more efficient places to work.
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