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1 i n t r o d u c t i o n  

We consider a class of  nonlinear Schr6dinger  equations with potentials 

(i) - E 2 A u  + V ( x ) u  = K ( x ) u  p, x ~ ~'~, u > O. 

The physically relevant solutions o f  (1) are those with finite energy, namely, those 

belonging to the Sobolev space W 1,2 (]~'~). These solutions are called bound states. 

A great deal of  work has been devoted to finding bound states of  (t) ,  both in 

the case when e is arbitrary and when e ~ 0. Regarding the former  case, critical 

point theory has been used to prove the existence o f  bound states u~ o f  (1) under  

suitable assumptions on V and K.  For  example, in [13], it is assumed that K _-- 1, 

V > 0 and limlxj~oo V(x) = +oo; and in [6], the case in which V _-- 1, K > O, 

liml~l_+oo K(x)  = k0 > 0 and K tends exponentially to k0 is handled. For  other 

results, see the book [7], which also contains an extensive bibliography. In any 

case, it is worth pointing out that the common  assumptions are 

(VO) inf V(x) > O, 
x~R ~ 

(KO) 3 n > O  : O < K ( x ) < _ ~ ,  V x e ~ .  

Bound states of  (1) when e << 1 are called semiclassical states and are relevant 

for  the links between classical and quantum mechanics.  An important feature o f  

semiclassical states u~ is that they concentrate as e --+ 0. By  this we mean, roughly, 
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that outside of  a neighborhood of  a set S, u~ tends uniformly to zero as e ~ O. For  

example, by  concentration at a point x0 E I~ ~ we mean that 

V~>O,  3 e o > O , R > O s . t .  u ~ ( x ) < s  V e < e o .  

The existence of  semiclassical states holds true under much weaker  assumptions 

on V and K (although one always supposes that (V0)- (K0)  hold). Denote  by  Q 

the function 

(Q) Q(x) = [V(x)l~ -2~(p-i), 0 - p + 1 n 
p - 1  2 

]?or Q smooth, we say that x0 is an isolated stable stationary point of  Q if  the L e r a y -  

Schauder index ind(Q', xo, O) is different f rom zero. The index ind(Q', xo, O) of  QI 

with respect to x0 and 0 is defined as l imr~0 deg(Q', Br(xo), 0). Here deg denotes 

the topological degree and Br(xo) is the ball in ]~'~ of  radius r,  centered at x0. It 

is easy to see that local isolated maxima and minima as well as non-degenerate 

stationary points are stable. 

The following is a typical result dealing with the existence of  semiclassical 

states; see, e.g., [5] and Chapter 8 in [2] and the references cited there. 

T h e o r e m  A.  Suppose that 1 < p < (n + 2) / ( n -  2) and let V and K be 

smooth and satisfy (V0) and (K0), respectively. 

(i) I f  u~ concentrates at a point  Xo, then Q'(xo) = O. 

(ii) Conversely, i f  xo is an isolated stable stationary point  o f  Q, then for  all e << 1, 

there exists a semiclassical state of  (1) concentrating at xo. 

We also mention that solutions concentrating on spheres have been found in 

the radial case, [4]. 

In a recent paper [3] (see also some previous partial results in [11, 14]), the 

new case in which V may decay to zero as Ix] --+ oc has been addressed. More  

precisely, it is assumed that the potentials V, K are smooth and satisfy 

A0 
(Vl )  3 Ao, A1 > 0 : 1 + Ix[ ~ -< V(x)  < Ai ,  0 < a < 2, 

(Kt )  

For n > 3 and 

3fl, k > O: 0 < K(x )  <_ - -  i+]xl  

i 2 c r =  , - - 2  - 2 ) '  
i f O < / 3  < a~ 

otherwise, 
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the following result has been proved by  using critical point theory in weighted 

Sobolev spaces. 

T h e o r e m  B ([3]). Let  V and K satisfy (V1) and (K1) respectively, and suppose 

that 0 <_ ~ < 2 and p satisfies 

(~) ~ < p < (~ + 2) / (n - 2 ) .  

Then, f o r  every e > 0, (1) has a solution u~ which is a ground state, i.e., it 

is a mountain pass  solution with minimal  energy. Furthermore,  as e -+ O, u~ 

concentrates at a global minimum o f  Q. 

Let  us point  out the following facts. 

(B.1) If  a > 0 and /3 = 0, one has a = (n + 2) / ( n -  2); hence the previous 

result does not apply. On the other hand, it is possible to show that i f  

V(x)  ~ (1 + Ix[) -~,  K ( x )  ~ (1 + [xD -/3 and (a) is violated, then there are no 

ground states at all; see [3, Prop. 15]. 

(B.2) Under  the assumptions of  Theorem B, the auxiliary potential Q has indeed a 

minimum on ]~n 

The main purpose of  the present paper is to show that there exist bound states of  

(1) for  all p satisfying 1 < p < (n + 2) / (n - 2), provided e is sufficiently small. 

We further require that V and K are smooth and satisfy 

(v2) 3 v 1 > 0 :  IV'(z)l<_E, V x c ~ ;  

(K2)  3 ~ i  > o : IK'(x)l  ~ /~1, V ~ E ~ n  

Our main result is the following. 

T h e o r e m  1~ Let  1 < p < (n + 2 ) / ( n - 2 )  ( i f  n > 3; otherwise, any p > 1 

is al lowed) and suppose that V and K are smooth and satisfy (V1) - (V2) and 

(K0) - (K2), respectively. Moreover, let xo be an isolated stable stationary point  

o f  Qi Then f o r  e << 1, equation (1) has a bound state which concentrates at xo. 

We anticipate that the case in which Q has a compact  set of  non-isolated critical 

points can also be handled; see Theorems 12 and 13. 

Of  course, i f  a = 0, i.e., when V is bounded away f rom zero, we recover  

Theorem A. A comparison with Theorem B is also in order. In Theorem 1, 

. K does not need to decay to zero at infinity; in particular, we can deal with 

the case in which K is constant. 
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o The full range 1 < p < (n + 2) / (n - 2) is allowed. 

| The  case c~ = 2 can be handled: we can deal with potentials V such that 

A0 
1 + [xl 
- - < _ _ V ( x ) < A t .  

On the other hand, 

�9 we prove  the existence of  solutions only for e small enough. 

�9 We do not find ground states (which may  not exist; see remark  (B. I) above), 

but mere ly  bound states. 

The p roof  of  Theorem 1 relies on arguments different f rom those used in [3]. 

Specifically, we use a perturbation method,  variational in nature (see [1] and [2, 

Chapter  2]) which we outline in the next section. Although the general procedure 

is similar to the one used in [4, 5], several changes and different est imates are 

required here, due to the fact  that the potential  V decays to zero at infinity. 

The  paper  consists o f  seven sections. In Sections 2-6 ,  we carry out the proof  

of  T h e o r e m  1. Sect ion 7 contains some further existence results. 

General  Remarks  and Notation 

�9 B(y, R) denotes the ball  {x E N" : Ix - Yl < R}. 

�9 I f  J is a functional,  J~ denotes its gradient. 

�9 W1,2(/I~ ~) denotes the usual Sobolev space. 

�9 In the sequel, we always take n > 3. The  case r~ = 

changes.  

�9 Without  loss of  generality, we assume that Q'(0) = 0. 

solutions concentrat ing at x0 = 0. 

o 

1 2 requires minor 

Hence  we seek 

ca, c2, . . . ,  C1, C2 , . . .  denote positive, possibly different, constants. 

o~ (1) denotes a quantity such that lim~_§ o~ (1) = O. 
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2 Out l ine  of  the abstract  procedure  and  other  
pre l iminar ies  

(2) 

I f  u is a solution of  (2), then u(x/e) solves (1). 

Let  us introduce the space E = Et ,  

E = {u e vl'2(]I~n): f V(ex)u2(z)dx < oo}. 
JR 

After a change of  variables, we are led to study the problem 

--A21, "{- V(Ex) 'u,  = K ( c z ) u  p, "11, c:: W 1 , 2 ( ~ n ) ,  '/z > 0. 

E is a Hilbert  space with scalar product  and norm given, respectively, by  

(3) (u, v) = s  [Vu(x) - Vv(x) + V(ex)u(x)v(x)] dx, Ilull 2 = (u, u). 

Since the functions in E might  not belong to L p+* (IR n), we need to introduce a 

truncated nonlinearity. I f  #(s) is a real C ~~ function such that 0 < #(s) _< 1, 

#(s) -- I for  s < 1, #(s) = 0 for s > 2, we set T (x ,u )  = # (a-~lul(1 + elx]) e) and 

define 

]Uq- [p-i- 1 
(4) Fe(x,u) = T(x ,u )  p +- - - - -~  + (1 - T (x ,u ) )  ~(1 + clx[) -~ 

where ~ and # are to be chosen later. For  the moment ,  we simply take #(p - 1) > n, 

which, in particular, implies that F~(x,u(x)) E LI(N n) for  u E E.  

For  u E E we set 

z t (~ )=~  2 f (5) IMI - K ( ~ z ) F ~ ( x ,  u ( ~ ) ) a z .  
JR n 

Clearly, any critical point u o f  I t  such that ]u(x)] < ~(1 + ]~x]) -~ gives rise m a 

solution of  (2). Moreover,  since #(p - 1) > n, it follows that It E C2(E, ~). 
Next, denote by  U the unique radial positive function satisfying (see [9]) 

- A U  + U = U v, U r W~'2(~n). 

Setting 

z t , d x )  = ~ u ( ~ , ( z  - ~)), 

one checks that z = zt,~ satisfies 

(6) 

[ Y@'~) ] 1/(p--1) 
~r = [ K ( c ~ ) J  

, A = [v(e~)] 1/2, 
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We are now ready to describe the finite dimensional procedure used below. We 

introduce the manifold 

z~ : z --  {z~,((~) : ~ ~ m, lEVI < 1}, 

and let P = P~ denote the orthogonal projection onto (Tz~,~ Z) J , the orthogonal 

complement  (with respect to the scalar product  in (3)) to the tangent space to Z at 

z~,~. Critical points of  I~ in the form u = z,:,~ + w, with z~,~ c Z, will be found by 

using a finite dimensional reduction which takes into account the variational nature 

of  the problem. For a broader discussion o f  this abstract perturbation method 

in critical point theory, as well as for several different applications, including 

nonlinear SchrSdinger equations, we refer to the aforementioned monograph [2]. 

In the present case, we begin by studying, for  every ~ E ~'~ with le~] <_ 1, the 

auxiliary equation 

(7) Pl~(z~,r + w) = O. 

Roughly speaking, (7) is first transformed into an equivalent fixed point problem 

S,. (w) = w. One selects a subset FE of  E,  whose functions satisfy appropriate 

estimates and have suitable decays. Finally, one shows that, for e << 1, S~ is 

a contraction which maps F~ into itself and hence has a unique fixed point w~,~ 

satisfying (7). 

Once (7) is solved, it is a general fact that the manifold {u = z~,~ + wE,~ } is 

a natural constraint for I~; see [2, Chapter 2]. This means that for  finding the 

critical points of  I~ on E,  it suffices to find critical points of  the reduced  (finite 

d i m e n s i o n a l ) f u n c t i o n a l  ~ (~) = I~ (z~,~ + w~,~ ). 

The existence of  solutions of  (7) is discussed in Sections 3, 4 and 5. The study 

of  the reduced functional ~ (~) is carried out in Section 6 and allows us to conclude 

the proof  of  Theorem 1. 

3 Solving the auxiliary equation, I 

In this section, we prove some preliminary results needed to solve the auxiliary 

equation (7). The following lemma provides a uniform lower bound for V(e:x + y). 

L e m m a  2.  Let  ~ > O, suppose  that  V ( x )  > alxl-"~ f o r  Ixl > 1, and  let m > 0 

be given.  Then  there exis t  Co > 0 and  R > 0 such  that 

Tn 
v ( ~ x  + y) > - -  Vlxl ~ R, ~ ~ o ,  y c n~ ~, lyl ~ 1. 
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P r o o f .  Let  Co > O and R > 0 be  such that 

and take e < e0, ix] > R and ]y[ _< 1. Then, for  Ix] > 2/e,  one has ex + y > 1; and 

hence 

v ( ~ x  + y) > rex + yl ~ > ~ l x [  ~ I~xr + 1 

a _ m 

On the other hand, i f  R < Ixl < 2/e,  we  have lex + yl < 3; and therefore 

m m 

r ( e x  + y) > k-a > Ixl--~" 

This concludes the proof.  [] 

Next  we est imate the size o f  I~' (z~,e). The  p roof  is similar  to that o f  L e m m a  1 

in [5], but we carry out the details since we  are using a different functional space 

with a different norm. Note  that we can choose ~) in the definition (4) o f  F~ in such 

a way  that the functional I~ defined in (5) evaluated on z~,e takes the fo rm 

__ 1 2 f I~(z,,e) ~rlz~,~][ - K(cx)lz~,~(x)lp+ldx. 
JR n 

L e m m a  3. There exists C > 0 such that [lI~(z~,e)]] <_ Cz provided leVI _< 1. 

P r o o f .  Let  us evaluate I~(z~,e)[v] for  an arbitrary v C E.  Taking into account  

that z~,~ satisfies (6), one finds 

'I" (zc,~)[v]' <_ l~  [V(cx) - V(c~)]z~,~vdx + ~n[K(cx) - K(c~)]zP~vdx 

<- ( fR,[V(sx)-  V(s~)]~ze,~dx) U2 (fR, v2z~,,dx) U~ 

/ r \ 1/2 
+ 

Let  us est imate the first integral on the r ight-hand side. The change of  variable 

= x - ~ yields 

( 8 )  JRfn[V(Ex) -- V(c~)]2zv'~dx = JR f n [ v ( ~ r  -'[- s - V ( s 1 6 2 1 6 2  -[- e ) d ~  ". 
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From the definition of z~,r it follows that 

(V(e~) ~ ~/(~-~) ~ 
(9) z~ ,dr  + ~) = ~ u ( ~ ( r  ~ = k K - - - ~ ]  ' v ( ~ 0 ;  

and this makes it clear that z~,r (- + ~) has uniform exponential decay at infinity, 

provided [e~] _< 1 (in this region, V and K are bounded from above and from below 

by two fixed positive constants). By the regularity of  V, we obtain from Taylor's 

formula 

Iv(~r + c~) - v(~,~)l 2 _< c c  ~ ( c  > o), 

and by the exponential decay of z we infer that 

~otv(~r + ~r - v(~)]~z~,~(r + ~)dr < c~ ~ f Iq~z~,dr + ~)dr _< c~ ~ 

Regarding the integral f~t~ vez~,~ , we claim that there exists ca > O, independent of 

e, such that z~,r < ca V(ex),  provided e << 1 and [e~] <_ 1. This is equivalent to 

(lO) z~,~(f+~)<_clV(~r v ~  << 1, r  I~1 < 1. 

Using Lemma 2 with m = 1, x = r and y = e~, we deduce that 

1 
V(er + e~) >__ Ir V c << 1, Ir > R, ]e~[ <_ 1. 

Since, as remarked before, z~,~ (- + ~) has uniform exponential decay at infinity, 

taking c sufficiently large, we have 

c 
z~,a(r + , 9  _< ~ < c, v(er  + e,1), v e << 1, Ir > R, le,~l < L 

By taking ca possibly larger, we can ensure that the preceding inequality holds for 

]r _< R, too. This shows that (10) holds and proves our claim. From (10) we infer 

that 

f~,~zc'sv2dx <-cl ~,~ V(ex)v2dx <-c2 [[v][ 2 

Similar estimates hold for the terms involving the function K. This completes the 

proof. [] 

We n o w  start the study of I~'(z~,~). 

L e m m a  4. The operator I~'(z~,r : E --+ E is a compact perturbation o f  the 
identity. 
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Proof .  The proof follows an argument from [1] but takes into account that the 

potential V may tend to zero at infinity. One has 

// f _ p--1 ;~ (z~,~)[,,,v] : [ w .  vv + V(~x)~,v pz~,~ ~.,] dx 
d 

- p f zP~ 'uvdx' ~(U~ V) 

where (u, v) is the scalar product in E. We need to prove that the operator 

K(u, v) = f zP~luv is compact. Take u,~ ~ u0, vm ~ v0 in E;  we claim that 

g ( u , , ,  vm) --+ K(uo, vo). 
Clearly, we can restrict ourselves to the case u0 = 0, v0 = 0. Observe that the 

sequences urn, Vm must be bounded in E; suppose, for instance, that inureD] < 1, 

li~mii--< 1. 
Given 8 > 0, because of  the exponential decay of  z~,r we can take R > 0 such 

that (ft~-~l>n z(P--1)n/2) 2 / n * , ~  < ~/2S 2, where S is the Sobolev constant. Then 

f , - 1  / ~  v-1 / ~  v-1 z,,r [umvmldx+ z~,r lumv,,ldx z~,r [umvm[dx = -~l<n -~[>n 

J(x p-1 <- -~]<_R z~,~ [UmVm[dx 

[ ] 2/,~ 
I f z(P-1)n/2dxl + LJ,.-eI>  ~,e _[ Ilu~lb,-IlvmllL- 

__ f p--1 j,: z~ ~ I~m~ld~ + ,S/2. 
t x - r  ' 

Since V(ex) > 7 > 0 for any x, [x - ~1 < R, urn, vm belong to W1,2(B(~,R)). 
Moreover, Z~ m _x 0 in Wa,2(B(~, R)). By the compact embedding, um --+ 0 in 

L2(B(0, R)); the same holds for Vm. So, we just need to take m large enough so 

that 

max{z~,e(x) v--~ : x C ~"} / lu,~vmldx < ~/2. 
JB (~,R) 

This completes the proofi [] 

L e m m a  5. There exists C' > 0 such that if e is small enough, then P!~'(z~,~) 
is uniformly invertible for all ~ C ~ with [e([ < I and  I[[PI'(z~,e)]-' [[ _< C'. 

Proof .  We only need to verify that there exists 0 > 0 such that the interval 
( -0 ,  O) does not contain any eigenvalue of  PI"(z~,~), provided e is small enough 

and leVI _< 1. 
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By direct computation using (6), we have 

• z] = f ( I w ?  + v ( ~ ) ~  ~ - ;~:(~x)z ~+~) 

: + 

+ ;  fRo[K(~O - K(ex)]z~+ ~ 

Next, let 

x = <z~,~, Oz~,do~l, . . . ,  oz~,dO~,>. 

Observe that X C W1'2(I~).  

We show the following inequality: 

i;'(z~,~)[~,v] > ~llvll ~, V v E X  • 

Fix v E X • and suppose that [[vl] = 1. We require the following technical result. 

C l a i m  1. There exists R E (e-1/4,e  - l /2)  such that 

[]Vv[2 + v2]dx < Clel/2[[v][ 2 = C1E 1/2. 
<]x-(I<R+I 

Note that i f  Ix - ~1 < e-a/2 + 1, then Ix[ < ]([ + e -1/2 + 1. Thus, for  e small, we 

have lexl < 2. Define 0 < m < min{V(x) : Ix[ _< 2}, m < 1. Then 

~lx_([<e_i/2+l[]Vvl2 + v2]dx <- ~x_r [[Vv[2 + V(amX) v2] dx 

< - [lVvl 2 + V(~z)~2]dx <_ - .  m _~[<e-1/2+1 ?~t 
Note that the sum 

e-1/4<R<e-1/2 /R 1 
[IVvl 2 + ~2]dx _< - -  

REN < I x - ~ l < R + l  m 

has more  than e -  1/2/2 summands (for e small). Thus it is always possible to choose 

R E N, R E (e-1/4,e  -1/2) so that Claim 1 holds. 

For  any R > 0, define BR = B(~, R), B~ = N ~ \ BR, CR = BR+I \ BR. Now 

fix R as in the previous claim, and choose XR : R ~ --+ N to be a C c~ function such 
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= = c [VX~[ < 2. We d e c o m p o s e  v as v = vl + v.~, that X/~ 1 in B n ,  Xn 0 in  BR+I, 
where  vl = Xnv, v2 = (1 - Xn)v. 

First,  we es t imate  the no rms  of  v~ and  v2. We  have 

[Iv~ll ~ = , ~ .  ( I x ~ W  + v V x ~ l  2 + V(cx)x~v 2) dx 

= [v21Vx~[ 2 + 2vx~Vv-Vx~]dx + [x~lVvl + 
R R-~-I 

+ fBR+  [IVvl= + V(cx)v2]dx" 

In  the same way, we can  show that 

Iiv2112 = O ( ~ 1 / 2 )  Jr- fB [IVvl2 + V(cx)v2]dx 

We conc lude  that 

(11) Ilvlll 2 + liv2112 = 1 + O(e'/2). 

We also get 

1 = Ilvll 2 = Ilvlll 2 + IIv2II 2 § 2(Vl,V2) ~-- 1 + 0 ( s  1/2) + 2('01,V2) , 

which impl ies  (vl, v2) = 0(~1/2). 
After  these p re l iminar ies ,  we  d e c o m p o s e  I~' (z~,~)[v, v] as 

( l  2) I~'(z~,~)[vl + v2, Vl "1- '/32] : /EtI(ZE,~)[Yl, Vl ] "~- I~t/(Ze,~)[V2, V2] ~- 21 tJ (Ze ,~ ) [V l ,  V2]. 

For  the last  term, one  has 

(13) lI~'(zc,~)[vl,v2]l = o~(1). 

Indeed,  one  finds that 

= f[vv,  +,(EX)Vl112 - p I ( ( E x ) z p ~ l v l v 2 l d x  

c p - 1  2 <_l(va,v2)l+C pz~,~ v [dx 
R 

<_C~s (Ct > 0). 

We apply  L e m m a  2 to ob ta in  V(ex) - pK(ex)z~,~l(x) >_ �89 for  any  x wi th  

[x - ~[ > R. U s i n g  this inequal i ty ,  we  m a y  es t imate  the second  te rm in  the 
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right-hand side of  (12) by 

. / u t  z ~r ~ ~ i r,. lVv l + dx 
7< 

This implies 

(14) 

(15) 

Let  

fH/% ",r  sjLv ,v ] >_ I1  11 

We now focus our attention to the first term on the fight-hand side of  (12). Observe 

that~ since ~1 has  compact  support, it belongs to W 1,e (/R,~). Indeed, 

f v~dx= fe  v~dx < 1-- /B V(~x)v2xdx < 1+-- C2e 1/2, 
R +~ m R + z  m 

where 0 < m < min{Y(x) : Ixl < 2}, and C~ > 0. 

As mentioned above, we are concerned with the estimate of  

[" /Z "" 

= J; [ I ~ V l l 2  q - [V(c,)--pK(~,)zP~l]v~] dx 
R+l 

We now use the boundedness of  V ~ and K ~ (see (V2) and (K2)) to conclude that 

]V(~z) - V(e~) I < Melx - ~[ and IK(cx) - K(c~)[ <_ Mclx - ~1, for some M > 0. 

Since x r Bn+x and R < e -~/2, we obtain 

l~'(ze,~)[vl,v~] - ~ n  [ [Vvl]2 + [V(~) -pK(~)zP(~ l jv~ ]  dx < M~ 1/2. 

f 
(u, v)~ = J [ W -  W + V(~)uv]  dx 

denote a scalaxproduct in W 1,~ ( ~ )  equivalent to the standard one f~ ~ (Vu. Vv + uv) 
(uniformly for ]e~] < 1), and let flul[~ = (u, u)~ be the associated norm, also 

equivalent to the standard one. 

Now write vl = r + w, where r r X and w_L~X, where • stands for orthogo- 

natity in the (-, ?)~ sense. From [12], we have 
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Roughly  speaking, our a im is to show that r is small  compared  to w, so vl  turns 

out to be  close to w. After  that, we est imate I'~'(z~,~)[vl, v~], taking into account  

(15) and (16). 

C l a i m  2. As  E ~ O, one has 11r = o~(1). 

Since 

az~,~'~ az~,~ az~,~ ]2 
r  (Vl,Z~,~)~z~,~llz~,~ll~ ~ + vl, o~, j~ ~ o~ ' 

in order to prove this claim, i t  suffices to evaluate (v l ,  z~,~)~ and (vl, Oz~,~/O~i)~. 
We first show that I(vl, z~,~) - (vl ,  z~,~)~l _< Cle 1/2, for some C1 > O. Indeed 

I / ,  

I (V l ,Z ) -  (v , ,zh i  = L [V(~x) - v (~) ]~ ,~ ,~d~ 
R + I  

<c2el /2 .  

In the last formula,  we have used the inequality I V(ex)  - V(e() l  _< M e  1/2 whenever  

x E BR~I.  

Since v = v~ + v2 and v_l_X with respect  to the scalar product  in E, we have 

I(vl, z~,~)l = I(v2, z~,~)l. Then we find 

<_ f [IVv~. Vz~,~l + y(ex)lv~lz~,d dx 
JB  

Recall  that R > e-�88 Then, because of  the exponential  decay  of  z~,r and its 

derivatives, taking into account  that !lv~l[ 2 <_ 1 + o ( e  1/2) (cf. (11)), we obtain 

[(vl,z~,~)l = o~(1). This convergence to zero is uniform in v. We conclude that 

I(VI, Ze,()( I ~_~ I(Vl, Ze,~)( -- (Vl,Ze,()I -t- I(Vl, Ze,()l = Oe(l).  
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In the same way, we can prove that [(Vl, 0%~,~/O~i ) [~ = 0 e (1) for any i = 1 , . . . ,  n. 

Claim 2 is thereby proved. 

Taking into account (15), we have 

I;'(Ze'()[~l' U1] = L [1~7vl]2 -~[V(~)-PK(~)zPe'#l]v21] dz + oe(1). 
R+I 

Next, using Claim 2, we get 

= JR+I  [I'wI2 + [V('~)- pj~(~.~).~p~'].2]. + Oe(1), 

and hence 

R-bl 

This equality and (16) imply that 

x"(z~,~)[Vl,Vl] >_ c2llw[l~. 

Then, using Claim 2, we deduce 

(17) [;'(Ze,~)[Vl, Vl] --~ C311Vl [l~ -~ Oe(~) 2 C4[IVl [I 2 -[- o~(1). 

Finally, (17), (13) and (!4) imply that 

Ye'(z~,~)[v,v] >_ e~llvll[ 2 + ctllv2[I ~ + oe(1). 

Since [Ivlll 2 + IIv211 ~ = 1 + o(~1/2)  = Ilvll + o(c~/2) ,  we get I~'(z~,e)[v,v] >_ cvllv[[ 2. 
This concludes the proof. [] 

We are now ready to transform the auxiliary equation (7) into a fixed point 

problem. Specifically, solving the equation PI~ (z~,e + w) = 0 is clearly equivalent 

to finding fixed points of the map S~, defined by setting 

( 1 8 )  s ~ ( ~ , )  = ~ - [P1; ' (z~ ,~ ) ]  - 1  ( . p 1 " ( ~ . ~  + ~)). 

Note that S~ is well-defined by virtue of Lemma 5. Fixed points of S~ will be 

found in a suitable subset of  E consisting of functions satisfying an appropriate 

decay estimate, by means of  Bessel functions. In the next section, we discuss some 

preliminary material on this topic. 
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4 L i n e a r  e q u a t i o n  a n d  d e c a y  e s t i m a t e  

Motivated by some comparison arguments we need in the sequel (see, in partic- 

ular, the proof  of  Lemma  9), we are interested in the behavior of  the radial solutions 

o f  the linear problem 

(LR) 

m 

u ( x )  = 1, Ixl = n ,  

u(x) ~ o, Ixl ~ co, 

Ixl > R, 

where R > 0, m > 0, a E (0, 2] and f : (R, +co) --+/~ is positive and has a certain 

decay (the exact hypotheses on f are described later). 

If  u(x) = u(]x[) is a radial solution of  (Ln),  then the function u(r) is a solution 

of  the problem 

(19) 

- u " ( r )  - (n - 1)~'(~) ~(~) - 7 -  + m ro = Y(~), 
u(R) = 1, 

u( r )  -+ 0, 

r > R ,  

r --+ +co. 

Since this is a linear problem, we are interested in the solutions of  the homogeneous  

equation 

(20) - u " ( r )  (n - 1)u'(r)  - + m u(r__~) = o. 
r r c~ 

Making the change of  variables v(r) = u(r)r (n-1)/2, f rom equations (19), (20), we 

obtain, respectively, 

- v " ( r )  + (n-~)(2n-3)v(r) + r~xv(r) = f ( r ) r  (n-UI2, r > R, 
(21) v(R) = R (~- 1)/2, 

v(r)r -(n-1)/2 --4 O, r --~ +co; 

( n -  1 ) ( n -  3)v(r  ) + m V ( r )  = O. 
(22) - v " ( r )  + 4r 2 r ~ 

As mentioned before, we first solve the homogeneous  problem. Afterwards we 

use this information to study the solutions of  (21); see Lem m a  5 below. 

Equations (20), (22) admit a two-dimensional vector space of  solutions. We 

denote by ~bl and r two generators the space of  solutions of  (22). Then u 1 (r) = 

r-(n-1) /2r  (r) and u2(r) = r- (n-D/2r  span the space of  solutions of  (20). 

We choose ul ,  u: so that they are both positive and ul(r)  -+ O, u2(r) -+ +co as 

r -+ +oo. 
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Since equation (22) has the folan v"( r )  = q ( r ) v ( r ) ,  there exists a constant do r 0 

such that the Wronskian r (r)r (r) - r (r)r (r) = do. We now show that do is a 

positive constant. Since u 2 / u l  = ~2/r is positive and tends to infinity as r --~ -boo, 

its derivative must be positive at a certain point. But ( r 1 6 2  = do/r and this 

implies do > 0. 

The algebraic expressions defining r and r depend upon the coefficient a, 

and this forces us to distinguish two cases, a < 2 and c~ = 2. 

C a s e  1: c , < 2 .  

In this case, the functions ~bl, r can be written by means o f  Bessel functions. 

Precisely, let B [ ( r ) ,  respectively Bff ( r ) ,  denote the modified Bessel function o f  

the first kind, respectively of  the second kind. Recall B [  and B ~  are both positive 

solutions of  the modified Bessel equation 

r2y '' + ry '  - (r 2 + ~2)y = O. 

Furthermore,  B [  is increasing and tends to infinity, while B g is decreasing and 

tends to zero. 

By direct computation, one finds that 

) r  = ~ .  P ~  \2 - ,~ ,.(~-,~1/', , e = 2 - ,~' 

( ) ~b2(r) = x/~" B [  \ 2 -  a r (2-~) /2  g -  n 2 

From the asymptotics of  the Besscl functions, we have 

r (r) ~ rcx/~e 2-~ , •2(r ) ,.~ ra /4e  2--  . 

Having r and 02, we then obtain 

(23) u l ( r )  = r - ( n - 1 ) / 2 r  u2(r) = r -(n-  1)/2r 

the solutions o f  (20). Observe that u l ( r )  -4 0, u2(r )  -~ to  for  r -+ + to .  In 

particular, f rom the asymptotic behavior of  Bessel functions (see [10, Sections 5.7 

and 5.16.4]), one has that 

(24) u l ( r )  ~ r~  ~ e - ' - ' - ~  ~ �9 
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C a s e  2: a = 2 .  

In this case, the functions r r are given by 

~ - ~ 4 ~  1 + ~ 4 m  
~'1 (r) = r 2 , r (r) = r 2 

Observe that here we still obtain the asymptotics r  --+ 0, r ~ ~ for 

r --+ q-(x~. 

The functions ul and u2 are given by 

( 2 5 )  u l ( r )  = ~ , ~ , 2 ( r )  = ~ 

Clearly, we still have that ul(r)  --~ O, u2(r) --4 +cx~ as r --~ cx~. 

We can now state and prove the main result of  the section. 

L e m m a  6. Let ul, us be defined as above, and let ~ be a solution o f  problem 

(LR), where f : (R, + ~ )  ---r /~ is a positive continuous funct ion satisfying the 

integrability condition 

(26) r~-a f ( r )u2(r )  dr < +co. 

Then there exists 7(R) > 0 such that ~(r) < ~/(R)Ul (r) f o r  all r E (R, + ~ ) .  

P r o o f .  We argue by  passing to problem (21), so we write v(r) = r( '~-l) /2~(r) ,  

f ( r )  = r (~- l ) /2 f ( r ) .  In terms o f r  and f ,  condition (26) can be rewritten as 

(27) f ( r ) r  dr < +c~. 
R 

Variation of  parameters shows that v(r) is of  the form 

v(r) = -~ r (r) r ds - r r ( s ) f ( s )  ds + a~r + a2r 

where do = r162 - r r > 0 is the constant given by the Wronskian and a l ,  a2 are 

suitable constants. 

Observe that 

- 1  ~ ] 0=r~+e~lim r--(n-1)/2v(r)= [ JR I~-0 f ~1(8)f(8)ds-t-a2 ~2(r)r -(n-l)~2. 

Recall that in both cases 1 and 2, we have u2(r) = r  ~ +oe as r --+ 

+oo. This implies that a2 must coincide with - ~  f + ~  r ( s ) f ( s )ds .  The constant 

al can be found by taking into account the boundary condition v(R)  = R ('~-1)/2. 
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We now compute the limit of the quotient v(r)/r (r). We have 

Iim r r-++~do r ~2(r) f+~r + a l  

1 ~ o c  1 lim ~b2(r)f+oo 
= doo r (8)?(s)  d8 ~- a 1 -}- ~0 r-++oo r (r) e l  ( s ) f ( s )  d8. 

In order to compute the last limit, we first note that ~/)1/r is a positive decreasing 

function ((r162 = -do/r < 0). Thus, we can write 

0 <  lim r  f~ r_++oor ) r lim %(r)  +~176 
-- rq+c~o r (r) ~)2 (s) 

< lim ~b2( r ) r  +~176 ~+oo --r--++cv r r r = r~+oolim r = O. 

Hence, we obtain 

r]l+mo~ ~)1 (r)  -- d o ~)2 (8)] ' (8)  d8 q t- a l .  

To complete the proof, it suffices to note that v(r)/r (r) = -~(r)/ul(r). [] 

g S o l v i n g  t h e  a t tx i l i ary  e q u a t i o n ,  I I  

Using the analysis carried out in the previous section, we can now choose the 

set where we shall find the fixed points of  the map & defined in (18). 

As before, it is atways understood that le{I _< 1. 

Let us introduce the set W~ (R) of the functions w �9 E such that 

(28) 

f 
JT(R) v/TUl(Ix[), i f l x l > R ,  

Iw(x+~)l _< 
(V'7, if [x I < R, 

where ul (r) is defined in (23) (respectively, in (25)) if 0 5_ a < 2 (respectively, if 

a = 2), and 7(R) is the constant found in Lemma 6. Next, for leVI < 1 we set 

r~ (n )  = {w �9 E :  ]lwll _< e0~, ~ �9 w~(n) n (Tz~,)• 

where co is a fixed positive constant to be chosen later (see (31)). Clearly, we can 

choose e and ~ in equation (4) defining F~, in such way that Iz~g(x) + w(x)l < 
e(1 + lex[) -e  for any w ~ F~(R). Thus we have 

Ie(ae,,  ~ -~- W) = 1 1 s K(sx)Iz~,g + wlV+ldx, ~l[z~,e + < l  2 v + l o 
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and any critical point u = z~,~ + w of  I~, with w c F~(R), gives rise to a solution of  

(2). 

By  Le mma  2, given any r~ > 0, we can find/~1 > 0 such that 

m 
(29) V(ex + er _ ixl-- 7, v I< ~ R,, 

The choice o f  ra depends upon the fact that c~ < 2 or a = 2. In the former  case, 

we can take, say, m = 2. In the latter, we have to choose m sufficiently large (see 

below). Furthermore,  let zo(z) = z~,~(a: + {). We note that z0 depends on e, ~, but 

has uniform decay at infinity because ]e~] _< 1. Hence there exists R= > 0 such that 

(30) PzoP-I(x) S ~/1~1 ~, v I~1 > & .  

Set p = max{R1,/g2 }. Note that this choice is independent of  e. 

P r o p o s i t i o n  7. S~(F~(p)) c r~(p) and is a contraction provided e is 

sufficiently small. 

Proposition 7 is an immediate  consequence o f  the following two lemmas. 

L e m m a  8o For co large enough and for  e sufficiently small, one has [IS, (w)ll 
eoe, f o r  all w E r~ (p); and S,  is a contraction in P~ (p). 

L e m m a  9, For all e sufficiently small, one has that S~(FE(p)) C )/V~(p) f o r  

every w E F~ (p). 

P r o o f  of  L e m m a  8. Let  C be given by Lem m a  3. Observe that by L e m m a  
P I "  --1 Cl  5, I1[ ~ (&,r [[ < for some C'  > 0. Choose 

(31) co = 2C 'C 

in the definition of  P~. We first compute S~ (w) for w c F~. We have 

i i  - -  1 tt 

We apply PI"(&,~)  and obtain 

(32) IIPr'(z~,~) [ s ; ( ~ ) M  ] [I = IIPz;'(z~,e)[v] - pz;'(z~,~ + ~)[v])ll. 

In the nex t  Lemma,  we estimate the above quantity. 

L e m m a  10. There exist C1 > 0 and 6 > 0 such that for  all w C P~, 

P I "  ~ " ~z~,~) - PI~ (&,r + w)l ] _< Clllwll a, providede  is small enough. 
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P r o o f .  Let  wl, w2 E E. Since IKI < ~, we have by direct computat ion 

<_C1 s  + IwlP-1)wlw2dz 

x IlwlllL2* 11~211L- 

We now estimate the term fR~ Iwl (p-1)~/2dx- Let  q > 1 and q' = q / ( q  - 1 ) .  Then 

~ ,w,(P--1)n/2 ~ (~ ]w]q(p--1)n/4)l/q (~, ,w]q'(p--1)n/4)l/q' 

Now fix q so that ~- = q ( p -  1)n/4  > 2. Since w C F~, the expression 

(fR~ Iwlq'(P-~)'~/4) ~/q' is finite. F rom L e m m a  2, we deduce that there exists C3 > 0 

so that Iw(x)l ~-2 < C3V(ex) (recall again that w E F~). Therefore,  we have 

(s ,wlq(p-~)n/4) x/q <_C4 ( f  lwlZlwl~--2) ~/q 

<_c~ ( f  lwley(ex)) l/q <_ C~llwll ~/q 

The estimate of  the term f Iw] ~/e can be carried out in the same way. [] 

P r o o f  o f  L e r n m a  8 c o m p l e t e d .  Using L e m m a  10 and (32), we get 

IlPI'/(z~,~) [S'Aw)[v]] II _< Clllwll~llvll �9 

Then, for any wl,  we e F~, we have 

IIS~(wa) - S~(w2)ll <ll[rz~"(z~,~)]-xll IlPI"(z~,e)(S~(wx) - S~(w2))ll 

f01 f "  i < C  lip ~ (z) (St(we + s(wl - we))[w~ - w23) lids. 

Thus we obtain 

I[Se(Wl) -- Se(W2)I[ < C H ( max  Ilw2 4- s(wl - w2)ll IIw, - ~oell 
- \~e[0,1] 

for some C", 5 > O. Since both wl and we belong to F~(p), we easily find that 

(33) IIS~(w~) - S,(w2)[I = o~(1)llwa - well. 
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Equation (33) yields the contraction property for S~. 

Next, we show that ][S~(w)[ I _< c0e for any w E F~. Using (33) with Wl = w and 

w2 = O, we obtain 

I I s~ (~ )  - s~(o) l l  = o~(1)H~[I. 

On the other hand, by using Lemma 3 and Lemma 5, we obtain 

Us~(o)l[ = ] ] [PI~'(z~,~)]- l (pI '~(z~,r  <_ C'llPg(z~,r <_ c'-Ce. 

Hence, we finally deduce 

fls~(w)Jr _<lls~(~) - s~(o) l f  + Hs~(O)H 
1 

Since w E re(p), Hwll _< c0e; hence we get 

HSe(w)I I < o~(1)c0e + �89 < Coe, 

provided e is sufficiently small. This concludes the proof. [] 

P r o o f  o f  L e m m a  9. First, let us introduce some notation. We set 

=s~(~), 
L[v] = - A v  + V(ex )v  - pK(ex)z~,-~Zv, 

#s,~ = D~ze,~, 

= l l ~ s l l  -= (g'(z~,~)[~ - w] + g(z~,~ + w), ~,~), 
p--1 ~(v) =K(~x)[(z~,~ + v)" - zLe - p~,~  v] + v [ -zx~ ,e  + V ( ~ x ) ~ , d  

_ + - K(ex)4  ] 
Here, for brevity, the symbol Dez~,e stands for a linear combination of  the deriva- 

tives De~ z~,~,. . . ,  De. z~,~ (related to the projection of  the equation ~ = S~ (w) onto 

(T~Z)• With all this notation, using integration by parts and the definitions of  

I~(z + w), l~'(z), one finds that the function N satisfies L[~] = 9(w).  Moreover, i f  

we set z0 (x) = z~,e (x + () (as at the beginning of  this section), 

wo(z )  = ~ ( z  + ~), ~o(x )  = ~ ( x  + ~), 

Lo = - A  + V(ex  + e~) - pK(r  + ex)z~ -1 

and 

a~ (v) = K ( ~ x  + c0[(~o + ~ F  - z~ - pzo~-~ v], 

92 =~ [-A~o + v ( e z  + e~)~o], 

a3 = - ~Szo + V ( c z  + e~)zo - K ( ~ x  + e~)z~; 
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Z~o satisfies 

(34) Lo[~o] = go(wo) := .ql (wo) + g2 - g3- 

Below, for q > n, we need the estimates 

(35) II,q0(w0)llLq/2(B2~) _< o~(1)v~; 

(36) [go(wo)(x)[ <_ o~(1) v~  u~ ̂ p, Y Ix I > p. 

The proof of  (35) and (36) are postponed to the end of  this section. 

Now we prove separately that for e << 1, 

(37) I~0(x)l < v~, if Ixl <_ p, 

and 

(38) I~0(x)l _< 7(p) v~ ~, (Ixl), if Ixl _> p. 

Concerning the former estimate, we apply Theorem 8.24 of  [8] to (34) to infer that 

(39) [l~0llL~(. .)  _< ~lll~011zJ~CB~) + c211.q0(w0)IIL~/2(B=o) (q > n). 

Using Lemma 8 and recalling that [[z~,~ II _< const., we get 

Inserting (35) and (40) into (39), we find that II~011L~(e~) _< ca~ + c2o~(1)v'~; 
(37) follows, provided that c is sufficiently small. 

Let us now prove (38). It is convenient to consider first the case a < 2. 

From (34) and (37), it follows that z~0 verifies the equation 

(41) L0[zv0] = go(Wo), Ixl > p, 

together with the boundary condition 

(42) I~0(p)l _< x/~. 

Let ~ be the solution of  the linear problem 

.2Ap 
- - ' ~  +" ]-X~ ~ (t o ~- V/~ 'U'I ' I/I > p; 

(43) / ~ ( x )  = ,/~, I=1 = p. 

Obviously, q) = v ~ ,  where ~ is the solution of  (L n) with R = p and f (r) = u~ A; (r). 

Recalling the discussion carried out in Section 4, in particular (24), we infer that 
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f ( r )  = u2^p(r) satisfies the integrability condition (26). Hence Lemma 6 applies, 

yielding 

(44) 

Using (29) (with rn = 2) and (30) ,  we infer that 

V ( s x  + s~) - p K ( s x  + e~.)z~- t(x) >_ (1)/Ixl ~ (Ix[ > p). 

From (36), we clearly deduce that 

/ ~  ~2Ap g0(w0) _< Ve " l  for Ix[ > p. 

This allows us to compare (41) - (42) with (43), yielding 

I~0(r)l _ ~(r) = v~  ~(r) (r > p). 

Finally, using (44), we get I~00")1 < "~(p) v~  u~(r), for r > p, proving (38) in the 

case c~ < 2. 

To complete the proof, we have to treat the case a = 2. We indicate the changes 

required in the above arguments. First, we observe that the solution u 1 of  (LR) has 

polynomial  decay that depends on m; see (25). Therefore,  if we take m sufficiently 

large, the function f ( r )  = u'~AV(r) still satisfies the integrability condition (26). 

Substituting the comparison problem (43) with 

~(x)  = , / / ,  Ixl = p, 

and noticing that V(e:x + e() - p K ( c x  + e()z  g-1 (x) _> (m - 1)/Ix[ ~, for Ixl > p, we 
can repeat the preceding arguments to obtain that (38) holds. 

It remains to carry out the proofs of  (35) and (36). 

P r o o f  o f  (35) .  We estimate 91 (w0), 92 and g:: separately. Since w C We (p) 

and ul is decreasing, wo can be estimated by 

Iw0(x)l _< v ~  i f  Ix[ < p, 

Iw0(x)l _< i fp  < Ixl < 2p. 

Moreover,  one has 

(45) 191 (w0)l ~ ~11w0(~)l 2Ap 



340 A. AMBROSETrI, A. MALCHIODI AND D. RUIZ 

From these estimates, we readily obtain 

[[ga(w0)[l/.q/~(B=.) < c3 (v~)  2^p 

Since 2 A p > 1, we get 

(46) [Igl(wo)llLq/=(m.) < o~(1) x/if, where o~(1) --+ 0 as r ~ 0. 

Let us now estimate g2. From the definition of  z~,e (see Section 2), its exponential 

decay, and from the boundedness of V' and K ' ,  one finds 

II~,~ll <_ c ;  II - A~o + w(~x + e~)~011L,/=(,3=~) _< c .  

Moreover, from Lemma 3 and Lemma 10, we have 

~o 1 I"  t z I t ,E(z . , e  + w)l[ _<lE(z~,e)ll + . ,  ,,e + sw)[w]llds 

_<llI'(z~,e)ll + IlI"(z~,e)[w]ll + II(1"(z~,e + ~ )  - Y'(z~,e))[w]llds 

__~Cle -~- C2s q- C3crE _~ o~(1)v~. 

in addition, since [l~ll < co~ (see Lemma 8) and w E F~ (p), we easily infer that 

III"(z~,~)[~ - w]ll ___ C4~. 

Therefore, we find that [~1 < o~(1)v/~ and obtain 

(47) IIg211L~/=(B=,,) = o~(1) v~. 

We finally turn to ga. From the fact that -Azo  + V(e~)zo = K(e~)z  p, we get 

.q3 = [V(ex + e() - V(e()] Zo(X) + [K(e() - K(ex)]zg(x) .  Using the assumption 

(V2), we deduce that I.q31 _< Vx ~ Ixl Iz0(x)l + Ko e Ix I Izo(x)l p. Since z0 has 
exponential decay, it follows that 

(48) IIg311L~.(~2.) = o~(1) v~. 

Putting together (46), (47) and (48), we find that (35) holds. [] 

P r o o f  o f  (36). By (45) and the fact w E I/V~ (p), we have 

I g ~ ( w o ) ( x ) l  <_ CI" [7(P) V ~ U l ( X ) ]  2Ap = o,(1)v/~ (?~I(X)) 2Ap (IX[ ~* P)" 

Furthermore, since z0 (and its derivatives, even multiplied by polynomials in x) 
. 2Ap decays faster than ,a 1 , repeating the arguments carried out above, we get 

Ig~l =o~(1)v~u~ ^p (Ixl >P) ,  i = 1 , 2 .  

This completes the proof of  (36). [] 
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As a consequence of  the above arguments,  we obtain the existence of  a function 

w satisfying Se (w) = w. We summarize  the existence result, collecting some 

propert ies about  the dependence  on ( in the next proposit ion.  

Proposition 11. Under the assumptions o f  Theorem 1, there exists a unique 

w E F(p) satisfying S~ (w) = w. Moreover, w is differentiable with respect to ~; and 

there exist C1 > 0 and 5 > 0 such that 

Ilwll < cle,  IIV~wll _< c,~ J. 

P r o o f .  The est imate on the norm o f w  has already been proved.  We turn now to 

the dependence o f w  on ~. The equation S~(w) = w is equivalent to H(~, w, #) = 0, 

where # E R n and H : 1~ n x E • I~ n -+ E • I~ '~ is given by  

H(~,~,;,)  = ( s;(~,~ + w) - E ~  ;,,O~,~lO~, "~ 
(~o, a~, ~=,~),..., (~, 0~o ~,~) ) 

Fix ~ E /t~ n with levi < 1. We know that for e sufficiently small there exists a 

(locally unique) solution of  H(~, w, #) = 0 which coincides with the one found by  

Proposit ion 7. Observe  that the function H is o f  class C 1 in ~, w and #. Moreover,  

we have 

(r ) OH .[~, ~,] = ~ (~,~ + ~)[~1 - E~=~ .~0~ ,~ /0~  
o(~,F,) (v, o~, ~,~), . . . ,  (v, o~ ~,~) " 

Using I_~mma 5 and L e m m a  10 and arguing as in [1], one can prove  that 

OH/O(w~, #) is uniformly invertible for  ]e~] < 1. As a byproduct  o f  this fact, 

one obtains an est imate in norm for # similar to that for w. 

Then,  by the local uniqueness o f  the function w, applying the implici t  function 

theorem we obtain 
OH w) 

I1(~,~,)11 _< ~ -ff((r , 

where ci is independent  o f  ~ for ]e~] < 1. Without loss of  generality, we  can 

consider the derivative with respect  to ~i, which gives 

= " + w ) [ O a z ~ , d - ~ = ~ m O  z~,~/O(,O(~ 

O~i 2 2 �9 

Since (w, iz) is bounded by c2e (see also the est imate of  r I before  (47)), we 

immedia te ly  find that 

0 ~  _< c3 (~+ II~'(z~,~ +w)[0~,z]ll). 
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By Lemma 10, we can write 

]lz'J(z~,r + w)[0r z~,r _< IlI'J(z~,e)[Oeiz~,dl[ + e4e ~, 

where ~ is some fixed positive constant. Therefore,  at this point, it is sufficient to 

estimate the norm ][I~' (z~,~)[Or z~,dNo Arguing as in [5], formula (6), one finds that 

8~lze,~ = -8~1z~,~ + O(e) in E.  

It follows that 

Since Oxl z~,e belongs to the kernel of  the linearization of  (6), for any function 

v E E,  we have 

1;'(z~,~)[ax~z~,~,v] = f [ V ( e x )  - V(~)](8~z~,~)v. 
JR n 

Reasoning as for the proof  of  Lemma  3, one finds 

Therefore,  since v is arbitrary, we deduce from the last formulas that 

IlO,:,~ll _< cTe ~ 

for some 5 > 0. This concludes the woof .  [] 

6 P r o o f  o f  T h e o r e m  1 

We now complete the proof  of  Theorem 1 by showing that the reduced functional 

@, has a critical point (~/e, with ~ ~ 0, provided e is small enough. According to 

the discussion carried out in Section 2, this implies that (2) has a solution u~; and 

therefore u~(x/e)  solves (1). Moreover,  since u~ ,,~ z~,~, 

and hence such a solution concentrates at x0 = 0. 

First of  all, let us expand the reduced functional 

e~(~) = z~(~ + ~ ,~)  
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in the variable 4- To simplify notation, we write z instead of  z~,r and w instead of  

we,r As in [5, Subsection 4.2], we find 

�9 ~(4) : CI[V(~4)]~  -~ / (p -1 )  + Z'(z)Ew] + i~(4) + ~ ( ~ )  

: C1Q(e4) + I~(z)[w] + A~:(4) + !P~(4), 

where 0 = v+~ - "= C~ is a positive constant depending only on n and p, and p--1 2 ~ 

l fR 1 /R [K(gx) - K(x~4)]zP+I' h~-(4) = ~ [ Y ( ~ ) -  V(c~)]z ~ -  p+----~ ~ 

First of  all, observe that, by Lemma  3 and Proposition 11, 

If(z)[w] _< ~e l lw l l  _< c ~  ~. 

The Taylor expansions of  V and K give 

V ( e x )  - v ( ~ )  = e v ' ( e ~ ) ( x  - 4) + O ( e ~ l x  - 41~); 

Therefore,  from elementary estimates involving the evenness of  zy,~ (x - ~) and the 

oddness of  V t (~4)x, 

IA.~:(4)! -- o(E). 

Furthermore, arguing as in the proof  of  Lemma l 0, one finds 

1~'~(4)1 = o( l l~ l l )  = o(~). 

Hence it follows that 

(49) ' ~ ( 4 )  = O l Q ( c 4 )  + o(~). 

We remark that (49) would suffice to prove Theorem 1 in the case that x0 is an 

isolated local minimum or maximum. Indeed, setting (~ (4) = ~ (4 / c), one finds 

~ ( 4 )  = C1Q(4) + o(~). 

From this one readily deduces that (P~(~) possesses a critical point 4~ "~ 0; hence 

4'e has a critical point 4~/e with 4~ "" 0, yielding a solution 
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concentrating at x0 = 0. 

In order to handle the more general case in which x0 is an isolated stable critical 

point o f  Q, we need to estimate the derivatives of  ~ with respect to ~. We write z' 

for O~z and w' for O~w. One has 

or = z;'(z)[~', ~1 + r(z)[~']. 

As for Lemma 3, one can prove that []I~J(z) [z']ll = o~ (1); hence, from Proposition 

t l  and the fact that [lI~'(z)]t _< Cr (see L e m m a  3), we  obtain 

]O~([~(z)[w])l = ~oe(1), as c -4 0. 

Regarding the function At, using a change of  variables, we can write 

where z0, as before, stands for the function Zo(X) = crU(Ax), with 

Hence 

A 2 = V ( e ~ )  a n d  a = \ K ( e ~ ) ]  

A'~(~) = 2  fR.  [ V J ( e ( + e x ) -  V'(e()]z~ + ~ [V(ex + e ~ ) -  V(s()]zoz' o 

p + 1 [ K ' ( r  + ex) - K ' (e() ]z  p+z + ,~[K(ex + c() - K(E()]zgz;. 

Using the Dominated Convergence Theorem, we obtain 

We have also 

where 

IA'~(~)[ = o(~). 

~2~(~) = (w,w') + (p+ 1) s  K(sx)G(z ,w)dz ,  

a(= ,w)  = I~ + ~ l ' -~ ( z  + ~ ) ( z '  + ~o') - z p z '  - pzp- l z 'w  - zpw '. 

From (K2), we infer 

I%(~)1 _< Ilwl[llw'll + c~ s  C(z, w)dx; 
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hence, using Proposition 11, we find 

(50) Ik~'~(~)] <_ C7 f G(z,w)dx + o(:). 
J R  n 

Next, let us write G(z, w) = G: (z, w)z' + G2 (z, w)w' with 

G: (z, w) =]z + wl p-1 (z + w) - z p - pzP-:w, 

a2(z, w) =lz + wl"-: (z + w) - zp, 

and estimate separately fRn G: (z, w)z'dx and f•,, G2 (z, w)w'dx. As for the former, 
since G: (z, w) = rz + w[ p-1 (z + w) - zp - pzP-lw = O(Iwl2^p)), we have 

fro el(Z, ~)z'dx < ,l~ll~(p-:) ~o wz' v/V-(~dz" - 

Using HSlder's inequality, we get 

1 
Z 12 ~ "2 

Taking into account the exponential decay of z' as well as the fact that ]lwHoo = 

O(: :/2) and Jlwll _< : (see the definition of F~), we obtain 

(51) f G:(z ,w)z 'dx = o(c). 
JR  r ~  

In a quite similar way, using once more that [[w'[] = o~(1), we find 

(52) f a~(z, ~,)~'dx < 0(~)11,-0'11 = o(:). 
JR n 

In conclusion, from (50), (51) and (52), we have 

1%(,91 = o(~). 

From these estimates, it follows that 

(53) ~'~(~) = C::Q'(:r + o(:) ,  ler _< 1. 

As before, we set ~ ( ~ )  = ff~(~/~). Then (53) implies that, for : << 1, 

ind(~':, O, O) = ind(Q', O, O) -fi O. 

Hence ~ has a critical point ~ ,-~ 0. As a consequence, the reduced functional @~ 
possesses a critical point ~ / :  with ~ ,-, 0, and the conclusion follows. 
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7 F u r t h e r  resu l t s  

In this final section, we discuss some extensions of  Theorem 1. 

Let 2(0 be a compact set of  critical points of  Q. We say that 2(o is a stable 

critical set of  Q if  the topological degree deg(Q ~, 3(0,~, 0) # 0, for all small (~ > 0, 

where X0,, is a &neighborhood of  2(0. Then the same arguments carried out in the 

previous sections lead to the following result. 

T h e o r e m  12. Let 1 < p < (n + 2) / (n - 2) and suppose that V and K are 

smooth and satisfy (V1) - (V2) and (K0) - (K2), respectively. Moreover, let 2(0 

be a compact, stable critical set of  Q. Then for e << 1, (1) has a bound state that 

concentrates at some point of  2(o. 

Of course, if  2(o = {x0}, Theorem 12 is nothing but Theorem 1. However, 

in the more general case covered by Theorem 12, we cannot establish a priori at 

which point of  2(0 the concentration occurs. 

In certain circumstances, one can also find a multiplicity result. Let E be a 

smooth compact manifold of  critical points of  Q. We say that ~ is non-degenerate 

i f  every z E E is a non-degenerate critical point of  Q I x l .  Combining the arguments 

used in [5~ and those carried over in the present paper, one can prove the existence 

of  multiple solutions of  (1) concentrating at points of  ~. 

T h e o r e m  13. Let 1 < p < (n + 2) / (n - 2) and suppose that V and K are 

smooth and satisfy (V1) - (V2) and (K0) - (K2), respectively. Moreover, let E be 

either a non-degenerate compact manifold of critical points of  Q or a compact set 

of  minima/maxima of  Q. Then for e > 0 small, (1) has at least/(Y~), respectively, 

eat ( ~, X6 ), solutions concentrating near points of  E. 

Above, l(X) is the cup length of E, defined by 

l (Z)  = i--~ sup{]~ E N : ~OLI,. . .  ,~,~ E /~*(~]) \ l ,  OL 1 L3"''[_JOL/r # 0}. 

If  no such class exists, we set l(E) = 1. Here Lr* (E) is the Alexander cohomology 

of  E with real coefficients and LA denotes the cup product. Moreover, eat(E, E ~) de- 

notes the Lustemik-Schnirelman category of  E with respect to the &neighborhood 

E~ of  E, namely, the least number k such that E c LA~ Ti, with Ti closed and 

contractible in E6. In general, one has l(E) _< eat(E, ~ ) .  
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A d d e d  in proofs .  After this paper was completed, we became aware of  the 
work, R Souplet and Qi S. Zhang, Stability for semilinear parabolic equations 
with decaying potentials in N n and dynamical approach to the existence of ground 
states, Ann. Inst. H. Poincar6 Anal. Non Lin6aire 19 (2002), 683-703,  where the 
Schrtdinger equation with a decaying potential V is studied. However, they do 
not deal with semiclassical states and do not study spikes. Moreover, they only 
consider radial potentials V satisfying (V1) with 0 _< c~ < 2(n - t)(p - 1) / (p  + 3), 
which is strictly smaller than 2. 
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