BOUND STATES OF
NONLINEAR SCHRODINGER EQUATIONS
WITH POTENTIALS VANISHING AT INFINITY

By

A. AMBROSETTI, A. MALCHIODI AND D. Ruiz*

1 Infroduction
We consider a class of nonlinear Schridinger equations with potentials
(1) —e?Au+V(z)u = K(z)u?, zeR*, u>0.

The physically relevant solutions of (1) are those with finite energy, namely, those
belonging to the Sobolev space W1-2(R"). These solutions are called bound states.

A great deal of work has been devoted to finding bound states of (1), both in
the case when ¢ is arbitrary and when ¢ ~ 0. Regarding the former case, critical
point theory has been used to prove the existence of bound states u. of (1) under
suitable assumptions on V and K. For example, in [13], it is assumed that K = 1,
V > 0 and lim4|o0 V(z) = +00; and in [6], the case in which V = 1, K > (,
lim|y| 00 K(x) = ko > 0 and K tends exponentially to ko is handied. For other
results, see the book [7], which also contains an extensive bibliography. In any
case, it 1s worth pointing out that the common assumptions are

V0 wlélﬂgn V(z) > 0,
K0) d6>0 :0< K{z) <k, VzeR".

Bound states of (1) when ¢ < 1 are called semiclassical states and are relevant
for the links between classical and quantum mechanics. An important feature of
semiclassical states u. is that they concentrate as ¢ — (. By this we mean, roughly,

*Part of the work was carried out during some visits at S.I.S.S.A.
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that outside of a neighborhood of a set S, u. tends uniformly to zero as ¢ — 0. For
example, by concentration at a point z; € R" we mean that

V8>0,3e>0, R>0st u(z) <4 Viz—m0| >R, Ve <.

The existence of semiclassical states holds true under much weaker assumptions
on V and K (although one always supposes that (V3)—(K0) hold). Denote by @
the function
@ Q@) = V@K@ 0, =22
For () smooth, we say that zq is an isolated stable stationary point of @ if the Leray—
Schauder index ind(Q', 2o, 0) is different from zero. The index ind(Q’, z¢,0) of Q'
with respect to x¢ and 0 is defined as lim, o deg(Q', B,(z0),0). Here deg denotes
the topological degree and B, (xo) is the ball in R" of radius r, centered at zg. It
is easy to see that local isolated maxima and minima as well as non-degenerate
stationary points are stable.

The following is a typical result dealing with the existence of semiclassical
states; see, e.g., [5] and Chapter 8 in [2] and the references cited there.

Theorem A. Suppose that 1 < p < (n+2)/(n—2) and let V and K be
smooth and satisfy (VO) and (KO0), respectively.

(1) If u. concentrates at a point g, then (' (zq) = 0.

(ii) Conversely, if zq is an isolated stable stationary point of Q, then for all ¢ < 1,
there exists a semiclassical state of (1) concentrating at x.

We also mention that solutions concentrating on spheres have been found in
the radial case, [4].

In a recent paper [3] (see also some previous partial results in [11, 14]), the
new case in which V may decay to zero as |z| — oo has been addressed. More
precisely, it is assumed that the potentials V, K are smooth and satisfy

Ao

< < <a<
V1) 3 Ay, 41 >0 1+|9:|‘1“V(m)“A1’ 0<a<2,
(K1) 48,k >0: 0<K()<——k———

’ ' YT e
Forn > 3 and

n+2 44

s lu=2  am=3) if0<f<a,

1 otherwise,
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the following result has been proved by using critical point theory in weighted
Sobolev spaces.

Theorem B ([3]). LetV and K satisfy (V1) and (K1) respectively, and suppose
that 0 < a < 2 and p satisfies

(o) o<p<(n+2)/(n—2).

Then, for every ¢ > 0, (1) has a solution u. which is a ground state, i.e., it
is a mountain pass solution with minimal energy. Furthermore, as ¢ — 0, u.
concentrates at a global minimum of ().

Let us point out the following facts.

B Ifa>0andpf =0, one has o = (n+2)/(n—2); hence the previous
result does not apply. On the other hand, it is possible to show that if
V(z) ~ (1+|z))~%, K(z) ~ (1+ |z|)~? and (o) is violated, then there are no
ground states at all; see [3, Prop. 15].

(B.2) Under the assumptions of Theorem B, the auxiliary potential ¢} has indeed a
minimum on R™.

The main purpose of the present paper is to show that there exist bound states of
(1) for all p satisfying 1 < p < (n +2)/(n — 2), provided ¢ is sufficiently small.
We further require that V and K are smooth and satisfy

(V2) AV, >0 : [V'(z)| <V, VzeRYy

(K2) dr; >0 : ]K’(:Z:)lfﬁ)l, Vze R
Our main result is the following.

Theorem 1. Let 1 < p < (n+2)/(n—2) (if n > 3; otherwise, any p > 1
is allowed) and suppose that V and K are smooth and satisfy (V1) — (V2) and
(KO) — (K2), respectively. Moreover, let xq be an isolated stable stationary point
of Q. Then for ¢ < 1, equation (1) has a bound state which concentrates at .

We anticipate that the case in which Q has a compact set of non-isolated critical
points can also be handled; see Theorems 12 and 13.

Of course, if a = 0, i.e.,, when V is bounded away from zerc, we recover
Theorem A. A comparison with Theorem B is also in order. In Theorem 1,

¢ K does not need to decay to zero at infinity; in particular, we can deal with
the case in which K is constant.
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e The full range 1 < p < (n+2) / (n ~ 2) is allowed.

» The case & = 2 can be handled: we can deal with potentials V' such that

Ao
T+ o <V(z) < Ar

On the other hand,

e we prove the existence of solutions only for £ small enough.

e We do not find ground states (which may not exist; see remark (B.1) above),

but merely bound states.

The proof of Theorem 1 relies on arguments different from those used in {3].
Specifically, we use a perturbation method, variational in nature (see [1] and [2,
Chapter 2]) which we outline in the next section. Although the general procedure
is similar to the one used in (4, 5], several changes and different estimates are

required here, due to the fact that the potential V' decays to zero at infinity.

The paper consists of seven sections. In Sections 26, we carry out the proof

of Theorem 1. Section 7 contains some further existence results.

General Remarks and Notation
e B(y, R) denotes the ball {z € R" : |z — y| < R}.
o If J is a functional, J’ denotes its gradient.

¢ WL2(R") denotes the usual Sobolev space.

¢ In the sequel, we always take n > 3. The case n = 1,2 requires minor

changes.

e Without loss of generality, we assume that Q'(0) = 0. Hence we seek

solutions concentrating at zq = 0.
® 1,¢2,..., C1,Cq, ... denote positive, possibly different, constants.

e 0.(1) denotes a quantity such that lim._,q 0.(1) = 0.
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2 Outline of the abstract procedure and other
preliminaries

After a change of variables, we are led to study the problem
2) ~Au+V(ez)u = K(ez)uP, ue WH(R™), u>0.

If u is a solution of (2), then u(z/¢) solves (1).
Let us introduce the space FE = F,

B ={uc DR : / V(en)u?(z)da < oo}
Rn
E is a Hilbert space with scalar product and norm given, respectively, by
@ (wo)= / [Vu(z) - Vo(z) + V(ez)u(@)v(@)] dz,  |lul® = (u,u).

Since the functions in E might not belong to LP+!(R"), we need to introduce a
truncated nonlinearity. If u(s) is a real C* function such that 0 < u(s) < 1,
u(s) = 1fors < 1, u(s) = 0 for s > 2, we set T(z,u) = p (€ |u|(1 +¢|=|)?) and
define

|4 [P
p+1
where Z and ¢ are to be chosen later. For the moment, we simply take 9(p—1) > n,
which, in particular, implies that F, (z,u(z)) € L'(R") foru € E.

For u € F we set

5) I (u) = ul]? - /R ] K (ex)F.(z,u(z))dx.

@ Fe(z,u) = T(z,u) + (1= Y(z,u) &1 + elz)) 7@,

Clearly, any critical point u of I. such that |u(z)| < &(1 + |ez|)™ gives rise to a
solution of (2). Moreover, since 9(p — 1) > n, it follows that I, € C*(E,R).
Next, denote by U the unique radial positive function satisfying (see [9])

—AU+U =U?, U € W2(RM).

Setting

. A=V,

V(et) ] 1/(p—1)

zeg(z) = UMz — §)), 0= [K(EE)

one checks that z = z. ¢ satisfies

©) Az +V(et)z = K(e€)2".
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We arc now ready to describe the finite dimensional procedure used below. We

introduce the manifold
Ze=7Z ={zg¢(x): EER, |g€] <1},

and let P = P; denote the orthogonal projection onto (T, . Z)*, the orthogonal
complement (with respect to the scalar product in (3)) to the tangent space to Z at
2e,¢. Critical points of I. in the form u = z. ¢ + w, with z. € Z, will be found by
using a finite dimensional reduction which takes into account the variational nature
of the problem. For a broader discussion of this abstract perturbation method
in critical point theory, as well as for several different applications, including
nonlinear Schrédinger equations, we refer to the aforementioned monograph [2].

In the present case, we begin by studying, for every £ € R™ with |¢£| < 1, the
auxiliary equation

@) Pll(z. e +w) = 0.

Roughly speaking, (7) is first transformed into an equivalent fixed point problem
Se(w) = w. One selects a subset I', of E, whose functions satisfy appropriate
estimates and have suitable decays. Finally, one shows that, for ¢ <« 1, S, is
a contraction which maps T'. into itself and hence has a unique fixed point w, ¢
satisfying (7).

Once (7) is solved, it is a general fact that the manifold {u = z. ¢ + w. ¢} is
a natural constraint for I.; see [2, Chapter 2]. This means that for finding the
critical points of I, on E, it suffices to find critical points of the reduced (finite
dimensional) functional ®.(¢) = I.(zc ¢ + Wee).

The existence of solutions of (7) is discussed in Sections 3, 4 and 5. The study
of the reduced functional ¥, () is carried out in Section 6 and allows us to conclude
the proof of Theorem 1.

3 Solving the auxiliary equation, I

In this section, we prove some preliminary results needed to solve the auxiliary
equation (7). The following lemma provides a uniform lower bound for V' (ez + y).

Lemma 2. Let o > 0, suppose that V(z) > a|z|"* for |z| > 1, and let m > 0
be given. Then there exist £g > 0 and R > 0 such that

Vier+y)> o,  V|z| >R e<e, ye R |yl <L

z|
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Proof. Letcg > 0 and R > 0 be such that
2a \* —a .
(——) =m, m R™% < min{V(z) : |z] < 3},
360

and take ¢ < €, |2| > R and |y| < 1. Then, for [z] > 2/¢, one has ez + y > 1; and
hence

Viex +y) > a > 2 ( i >°‘

lez +y|* = ez]* \lez|+1

> a 2 a__m
ozl \3)  |a|*

On the other hand, if R < |z| < 2/e, we have |ex + y| < 3; and therefore

Viex +y) > | &

This concludes the proof. O

Next we estimate the size of I/(z. ¢). The proof is similar to that of Lemma 1
in [5], but we carry out the details since we are using a different functional space
with a different norm. Note that we can choose ¢ in the definition (4) of F', in such
a way that the functional 7, defined in (5) evaluated on 2. ¢ takes the form

(eeg) = Hleadll = [ Klen)lzeg(@)Pda.
Lemma 3. There exists C > 0 such that ||IL(z.¢)|| < Ce provided |e¢] < 1.

Proof. Let us evaluate I/ (2. ¢)[v] for an arbitrary v € E. Taking into account
that z. ¢ satisfies (6), one finds

(zee) 0] < ‘/ (ex) — V()] 2e cvdz| + l/ [K (ex) — K (e§)]2L cvdw

= (jén[v(gz) - V(Ef)]QzE’gdx) v (/I;n vzza,gdil:) 1/2

Let us estimate the first integral on the right-hand side. The change of variable
( =z — ¢ yields

®) [V(ez) = V(e€)Pregdr = | [V(e¢ +e€) = V(&) 2ec(C + €)dC.
n B
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From the definition of z ¢, it follows that

1/(p—1)
O 9 =00, o=(gea) . ¥ =V

and this makes it clear that 2. ¢(- + £) has uniform exponential decay at infinity,
provided |e£| < 1 (in this region, V and K are bounded from above and from below
by two fixed positive constants). By the regularity of V, we obtain from Taylor’s
formula

V(¢ +e€) ~ V(P < Ce*  (C>0),

and by the exponential decay of z we infer that
[ ec+26) = VEOPawel¢ + 60 < O [ ICPame(¢ + ) < O

Regarding the integral fRn v%2. ¢, we claim that there exists ¢; > 0, independent of
g, such that z. ¢(z) < ¢; V(ex), provided ¢ < 1 and |e€] < 1. This is equivalent to

10 zeg((+8) < VieC+ef), Ve<1, (el g <1

Using Lemma 2 with m = 1, z = { and y = ¢§, we deduce that

V(eC +¢6) > Tclt_ Ve<l, [¢|> R, |e€] < 1.

Since, as remarked before, z. ¢(- + £) has uniform exponential decay at infinity,
taking c sufficiently large, we have

Zee(C+8) < TcT <o V(EC+et), Ve<l, |[¢|>R, e <1.

By taking c; possibly larger, we can ensure that the preceding inequality holds for
|¢] < R, too. This shows that (10) holds and proves our claim. From (10) we infer
that

/ 2 gv7dz < c1/ V(ez)v’dz < ¢y ||vl|*.

R R™

Similar estimates hold for the terms involving the function K. This completes the

proof. 0
We now start the study of I (2. ¢).

Lemma 4. The operator I!(z.¢) : E — E is a compact perturbation of the
identity.



NONLINEAR SCHRODINGER EQUATIONS 325

Proof. The proof follows an argument from [1] but takes into account that the
potential V may tend to zero at infinity. One has

I (26.¢)[u, v] :/ [Vu - Vv + V(ex)uv — pzfygluv] dx
=(u,v) —p/zg”zluvdz,

where (u,v) is the scalar product in E. We need to prove that the operator
K(u,v) = [ zfyzluv is compact. Take u,, — ug, vm — vo in E; we claim that
K (tm, vm) = K(ug,vg).

Clearly, we can restrict ourselves to the case ug = 0, vg = 0. Observe that the
sequences u,,, v, must be bounded in E; suppose, for instance, that ||un,| < 1,
llvmll < 1.

Given § > 0, because of the exponential decay of z. ¢, we can take R > 0 such

that (ﬁm—£l>ﬂ zéf’g_l)”/2)2/" < 8/252, where S is the Sobolev constant. Then

/ 20 lumvmldz = / 2P fumvmldz + / 2 umvm|da
le—¢|<R la-¢|>R
S/| gl<Rz:.’,gllumvmldz
T — —_
2/n
-1 2
+[/| ot dw] iz ol 2
z—€[>
S/i EI<RZZE]lumvm|dx+5/2-
T— —_

Since V(ez) > v > 0 for any z, |z — £ < R, um, v, belong to W12(B(€, R)).
Moreover, u,, — 0 in W12(B(¢, R)). By the compact embedding, u,, — 0 in
L?(B(0, R)); the same holds for v,,. So, we just need to take m large enough so
that
max{z ¢(z)? ' : z € R"} [tV [dz < §/2.
B(¢, 1)

This completes the proof. O

Lemma 5. There exists C' > 0 such that if € is small enough, then PI!'(z. ;)
is uniformly invertible for all £ € R™ with |e£] < 1 and ||[PI(z.¢)] 7| < C'.

Proof. We only need to verify that there exists § > 0 such that the interval
(—8,0) does not contain any eigenvalue of PI/(z. ), provided ¢ is small enough
and |¢£| < 1.
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By direct computation using (6), we have
I(2e¢)7, 7] :f (V2 + V(ez)2® — pK (ex)2"t1)

= [ W) - Vg + - pKE [

R'ﬂ.
+p [ [K(e6) - K(en)ler
Rn
—o.() + (1= P)K(EQ) [ M < ~clalf.
Rn

Next, let
X = <ZE,5, 82’575/851, ey 825,5/(95”).

Observe that X ¢ WH2(R").
We show the following inequality:

(200, 0] > cloll?, Yoe X
Fix v € X+, and suppose that ||v|| = 1. We require the following technical result.

Claim 1. There exists R € (6='/4,¢7'/?) such that
/ [[Vol? + v¥dz < Cie'/?||v||? = Cre' /2.
R<|z—E|<R+1

Note that if [z — £| < ¢71/2 + 1, then |z| < |¢| + &7 /2 + 1. Thus, for e small, we
have Jex| < 2. Define 0 < m < min{V(z) : |z| < 2}, m < 1. Then

/ (Vo] + v2]dz < / [NUF + K(i“i)v?} do
lz—g]<e=1/241 |lz—¢l<e~1/241 m
1

< = ([V]* + V(ez)v?ldz < —1—
M Jip—g|<e~1/241 m

Note that the sum

5—1/4<R<6—1/2

> [|[Vo]? 4+ v?]dz <

1
ReN R<jz—€|<R+1 ’ m

has more than e ~1/? /2 summands (for ¢ small). Thus it is always possible to choose
REN, R € (e71/4,671/?) so that Claim 1 holds.

For any R > 0, define By = B(£, R), B§, = R* \ Bg, Cr = Bp4+1 \ Br. Now
fix R as in the previous claim, and choose xr : R* — R to be a C*° function such
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that g = 1in Bg, xgp = 0 in B, [Vxr| < 2. We decompose v as v = vy + v,
where v1 = xgrv, v2 = (1 — xg)v.
First, we estimate the norms of v; and vy. We have

nll = [ (xn¥v+v9xal? + V(e)de?) do
=/p [v*|Vxr|? + 20xrVv - Vxgldz + / [x%|Vo|* + V{ex)xRv°lde
R

Br41

=0(e'/?) +/ [[Vv]* + V (ex)v?]dz.

Bry1

In the same way, we can show that
llva|? = O(/?) + / Vol + V(ez)v?]dz.
By

We conclude that
1n lorll? + flozl® = 1+ O'72).
We also get
1=|oll? = flos)l® + ozl + 2(v1,02) = 1+ O(/?) + 2(v1,v2),

which implies (v;,v) = O(e'/?).
After these preliminaries, we decompose I (z¢ ¢)[v,v] as

(12) I/ (ze£)[vr +v2,v1 +va] = I (ze ) [o1, 1]+ I (2e,6)[v2, v2] + 217 (22,6 ) [v1, v2)-
For the last term, one has
(13) Y (ze,0) w1, v2)| = 0 (1).
Indeed, one finds that
IV (2 )1, v2]] = l/[Vul Vo, + V(ex)vive — pK(ez)zé’Elvl vo)dx

dx

<|(wi,v2)| +C ’/ pzf’g1v2
Cr

§01€1/2 (Cl > 0)

We apply Lemma 2 to obtain V(ez) — pK(ez)zf,gl(x) > 1V (ex) for any z with
|z — & > R. Using this inequality, we may estimate the second term in the
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right-hand side of (12) by

L (eeoivn sl = [ [IVeaf +V(ex) — pKe0)eZ ] do

R
Zf
B

[lVUle + %V(sw)vg} dz.

c
R

This implies
1
(14) I (7e,6)[v2, v2] > Sloa|*.

We now focus our attention to the first term on the right-hand side of (12). Observe
that, since v; has compact support, it belongs to W1?(R"). Indeed,

1 1
vide = vidr < — Viez)vide < = + Coel/?,
1 1 1
Bri: M JBriy m

where 0 < m < min{V(z) : Jz| <2}, and C2 > 0.
As mentioned above, we are concerned with the estimate of

i bnnl = [ (9ol +[Viea) - pk eo)22g 0F] do
= [ [Tl + (o) - pR(egare 2] do
+ / [V(cx) — V(e€)]vlda + p / [K(e6) — K(ex)]e g 03de.
Brt1 Br+41
We now use the boundedness of V' and K’ (see (V2) and (K2)) to conclude that
[V(ex) — V(e€)| < Melz — & and |K (ex) — K(££)| < Me|z — €|, for some M > 0.

Since x € By, and R < £~ 1/2, we obtain

(15) < Mel/2.

eunl = [ [[Vuf +Veo) - K02 0] do

Let
(u,v)e = / [Vu- Vv + V{s&)uv]dz

denote a scalar product in W*?(R") equivalent to the standard one f,,(Vu-Vo+uv)
(uniformly for |e£| < 1), and let Hu”é = (u,u); be the associated norm, also
equivalent to the standard one.

Now write v; = ¢ + w, where ¢ € X and w1 X, where 1, stands for orthogo-
nality in the (-, -)¢ sense. From [12], we have

(16) L [IvuP + ) - s (e 0?] do > ealfol
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Roughiy speaking, our aim is to show that ¢ is small compared to w, so v; turns

out to be close to w. After that, we estimate I”'(z, ¢)[v1, v1], taking into account
(15) and (16).

Claim 2. Ase — 0, one has ||9||¢ = o-(1).
Since

0z 0z 0z
-2 .8 €,§ €4
¢t (vl’ 0&; ) ¢ 0& || 04
in order to prove this claim, it suffices to evaluate (v1, 2. ¢)¢ and (v, 0z ¢/0&)e.
We first show that |(v1, 2c.¢) — (v1, 2e.¢)¢] < Ci€'/2, for some C; > 0. Indeed

¢ = (V1, 2¢,£ ) 2e g |l 26 ¢ |

3

£

[(v1,2) — (v1,2)¢| =

|
/ [V(ex) — V(e{)]v1z57§dw‘
Br41

< ( / V(ex) - V(sg)]%%dm) ( / z&dm)
Bgi1 Bri
1 1
2 2
<Cyet/? (/ vfd:v> (/ zggd:c)
Br41 Bret

SCzEl/z.

In the last formula, we have used the inequality |V (ez) — V (e€)| < Me'/? whenever
x € Bg1.

Since v = v; + v¢ and vl X with respect to the scalar product in E, we have
[(v1, 2e.¢)| = |(v2, 2¢,¢)|- Then we find

(V15 2e.£)] =[(v2, 2e,6)

< / (Vs - Vaee| + V(en)valze ] da
B

1/2 1/2
< </ |Vv2|2d.7:) </ IVzE,,EIde)
B, Bg,
1/2 1/2
+Cy ( V(em)|v2|2d:c) (/ zf’gda:> .
B, Bg

Recall that R > ¢~%. Then, because of the exponential decay of Zee and its
derivatives, taking into account that [|vo}[> < 1+ O(e!/2) (cf. (11)), we obtain
[(v1,2¢,¢)| = 0.(1). This convergence to zero is uniform in v. We conclude that
(01, 2ze,6)e] < (V15 2e,6)e — (V15 2e,6) | + [(V1, 2e,)| = 0e(1).
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In the same way, we can prove that |(vy, 8z ¢ /0&;)|e = 0. (1) foranyi =1,. ..

Claim 2 is thereby proved.

Taking into account (15), we have

1 eglonml = [
Bp1
Next, using Claim 2, we get
[ [vul+ o - oK)zt nt] de
R1
- L (V0] + [V(e6) - pK (€)o7 0] dz + 02(1),
R41

and hence

Pl = [ [V + V(e - pREe)atE 0] do+ o.(1).

Brit

This equality and (16) imply that
I (ze £)lvr, v1] 2 callwlf.
Then, using Claim 2, we deduce
a7 I (ze,0)[v1,v1] 2 callonll + 0e (1) > callonl® + 0s(1).
Finally, (17), (13) and (14) imply that

I (ze.6)[v,v] > cs|lva]]® + csllvall® + 0c(1).

[pvm? +[V(e€) — pK(Ef)zgﬁgl]vf] dz + 0s(1).

, T

Since [Jo1|* + [loa||* = 1+ O('/?) = [lv]| + O(e"/?), we get I (2z.¢)[v,v] > exllv]]®.

This concludes the proof.

O

We are now ready to transform the auxiliary equation (7) into a fixed point
problem. Specifically, solving the equation PI.(z. ¢ + w) = 0 is clearly equivalent

to finding fixed points of the map S,, defined by setting

(18) Se(w) = w — [PI!(2,¢)] " (PIL(ze + ).

Note that S, is well-defined by virtue of Lemma 5. Fixed points of S, will be
found in a suitable subset of E consisting of functions satisfying an appropriate
decay estimate, by means of Bessel functions. In the next section, we discuss some

preliminary material on this topic.
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4 Linear equation and decay estimate

Motivated by some comparison arguments we need in the sequel (see, in partic-
ular, the proof of Lemma 9), we are interested in the behavior of the radial solutions
of the linear problem

—Au+ i u=f(z]), z€R", |z|>R,
(Lr) u(z) =1, |z| = R,
u(z) = 0, |z] - oo,

where R > 0, m > 0, o € (0,2] and f : (R,+0oc) — R is positive and has a certain
decay (the exact hypotheses on f are described later).

If u(z) = u(|z|) is a radial solution of (L ), then the function u(r) is a solution
of the problem

—u”(r)—(n—l)u—lf,L) +m“r(:) =f(r), r>R,
19 u(R) =1,
u(r) = 0, 7 — +00.

Since this is a linear problem, we are interested in the solutions of the homogeneocus
equation

20) —u"(r) — (n — 1)@ )

Making the change of variables v(r) = u(r)r(*~1/2, from equations (19), (20), we
obtain, respectively,

—v"(r) + ——,———(n_i)r("_:j)v(r) + Bo(r) = fr)yr=D/2 r > R

2n v(R) = Rn-1)/2,
v(r)r—(r=1/2 4, s oo
@2 o)+ BTN e m 2D g

4r? ro
As mentioned before, we first solve the homogeneous problem. Afterwards we
use this information to study the solutions of (21); see Lemma 6 below.

Equations (20), (22) admit a two-dimensional vector space of solutions. We
denote by v, and ¥, two generators the space of solutions of (22). Then u,(r) =
= (=124 (r) and ua(r) = r~ (2124 (r) span the space of solutions of (20).
We choose u;, uy so that they are both positive and u;(r) — 0, ua(r) = +oo as
r — +0o0.
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Since equation (22) has the form v (r) = ¢(r)v(r), there cxists a constant dy # 0
such that the Wronskian v (r)¢4(r) — o1 (r)e2(r) = dy. We now show that dy is a
positive constant. Since us/u; = %2/ is positive and tends to infinity as r — +o0,
its derivative must be positive at a certain point. But (12/41)" = do /%3, and this
implies dp > 0.

The algebraic expressions defining 3, and ), depend upon the coefficient «,
and this forces us to distinguish two cases, @ < 2 and «« = 2.

Case 1: a<?2.

In this case, the functions v, 1> can be written by means of Bessel functions.
Precisely, let Bf(r), respectively Bf(r), denote the modified Bessel function of
the first kind, respectively of the second kind. Recall B} and BJ are both positive
solutions of the modified Bessel equation

Py +ry — (P + )y =0.

Furthermore, B/ is increasing and tends to infinity, while B is decreasing and

tends to zero.
By direct computation, one finds that

2vm T(2—a>/2) =2

2—«

¢1(r)=ﬁ-35‘(

o) 55 (B o)

From the asymptotics of the Besscl functions, we have

2-a

Pi(r) ~ reliem BT Pa(r) ~ re/aeFERT
Having v, and v, we then obtain
(23) ur(r) = r= DBy (), up(r) = v~ Dy (r),

the solutions of (20). Observe that u;(r) = 0, ua(r) = oo for r = +oo. In
particular, from the asymptotic behavior of Bessel functions (see [10, Sections 5.7

and 5.16.4]), one has that

(24) ui(r) ~r ¥ e TR
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Case 2: a=2.

In this case, the functions 11, ¥2 are given by

1—1/(n—2)’2+4rn_
- 3

h(r) =7 , a(r) = p TR

Observe that here we still obtain the asymptotics 11(r) — 0, ¥2(r) — oo for
T — +00.
The functions «; and u; are given by

2-n—v/(n—2)244m

2=nty/(n-2)2+am
25) w(r)=r z ) ug(r)zr2 R

Clearly, we still have that u;(r) — 0, uz(r) = +o0 as r — .

We can now state and prove the main result of the section.

Lemma 6. Let u;, us be defined as above, and let @ be a solution of problem
(Lp), where f : (R,+00) = R is a positive continuous function satisfying the
integrability condition

+oo
(26) /R ™! f(r)ua(r) dr < 4oc.

Then there exists v(R) > 0 such that §(r) < y(R)u1(r) forall r € (R, +0).

Proof. We argue by passing to problem (21), so we write v(r) = r(*~1/25(r),
f(r) = r(®=1/2f(r). In terms of 1, and f, condition (26) can be rewritten as

+o0

27 Flr)e(r) dr < +o0.
R

Variation of parameters shows that v(r) is of the form

o) =2 [zm ") fﬁ " a(s) F(s) ds — a(r) /R " (9)F(s) ds] T a1y (r) + asts (7).

where dy = 1195 — ]2 > 0is the constant given by the Wronskian and a;, a3 are
suitable constants.
Observe that
0= tim 0 0(r) = [ 2 [ )70 ds-+ | walryr =0
r~+00 do Jr
Recall that in both cases 1 and 2, we have uy(r) = ¢ (r)r—®=9/2 5 oo asr —

+00. This implies that a2 must coincide with —dl—o ; * 41 () f(s) ds. The constant
a; can be found by taking into account the boundary condition v(R) = R(»~1/2,
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We now compute the limit of the quotient v(r)/1; (r). We have

+oo -
bl ¢(< )~ tm [ et § 1 (9)7(5) ds] ra
_ 1 oo 1 R P ('r') +oo -
G Jy OISO e gt G | (e ds

In order to compute the last limit, we first note that 1 /15 is a positive decreasing
function ((v1 /12)’ = —d0/¢§ < 0). Thus, we can write

1p2 (T) : 8 8 = im Q,DQ (7’) v ,l/)l (S) 8 f 5

O <'I’}—)+oo¢ ( ) r wl( )f(S)d - 1+ wl(r) ?/)2(S)77b2( )f( )dS
D9l [+ o) Ferds
~ r—+oo wl (7" : / a(s 8) ds = hm Pa(s)f(s)ds =

Hence, we obtain

. wofr) 1 [t N
A, Vi(r)  do pa(s) f(s)ds + a1
To complete the proof, it suffices to note that v(r) /11 (r) = @(r) /uy (r). 0

5 Solving the auxiliary eguation, Il

Using the analysis carried out in the previous section, we can now choose the
set where we shall find the fixed points of the map S, defined in (18).

As before, it is always understood that |e£] < 1.

Let us introduce the set W, (R) of the functions w € E such that

Y(R) VEwi(lal), if|z| > R,
VE, if o] < R,

(28) lw(z +£)| < {

where u;(r) is defined in (23) (respectively, in (25)) if 0 < o < 2 (respectively, if
a = 2), and v(R) is the constant found in Lemma 6. Next, for [¢£] < 1 we set

L(R)={we E:|lwll<ce, weW(R)N(T:, )M},

where ¢y is a fixed positive constant to be chosen later (see (31)). Clearly, we can
choose ¢ and ¥ in equation (4) defining F,, in such way that |z, ¢(z) + w(z)| <
(1 + |ex|)~? for any w € T'.(R). Thus we have

1
Ie(Ze,g + 'U)) = %[[25,5 + 'LUH2 - ———/ K(Ew)lzs,g + w[”“dz,
p+1 Jpn
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and any critical point v = z. ¢ +w of I,, with w € I'.(R), gives rise to a solution of

(2).
By Lemma 2, given any m > 0, we can find B; > 0 such that

(29) V(ez + €f) V|z| > Ry.

> m
= l.’L'la,

The choice of m depends upon the fact that o < 2 or & = 2. In the former case,
we can take, say, m = 2. In the latter, we have to choose m sufficiently large (see
below). Furthermore, let zo(z) = 2. ¢(x + £). We note that z; depends on ¢, £, but
has uniform decay at infinity because |¢£| < 1. Hence there exists R, > 0 such that

(30) peb(z) <1/1el®, Viz| 2 Re.
Set p = max{R;, Ry }. Note that this choice is independent of ¢.

Proposition 7. S.(T-(p)) C T.(p) and is a contraction provided ¢ is
sufficiently small,

Proposition 7 is an immediate consequence of the following two lemmas.

Lemma 8. For cg large enough and for ¢ sufficiently small, one has ||S.(w)] <
cos, for all w € T (p); and S, is a contraction in T (p).

Lemma 9. For all ¢ sufficiently small, one has that S.(T':(p)) C W.(p) for
everyw € T'c(p).

Proof of Lemma 8. Let C be given by Lemma 3. Observe that by Lemma
5, ||[PIY(2:,¢)]7 ] < C" for some C' > 0. Choose

3D ¢ = 20'C
in the definition of T',. We first compute S.(w) for w € I'.. We have
St(w)[v] = v = [PI] (2e,¢)] 7 (PI (2e,6 + w)[v])-
We apply PI1/(z. ) and obtain
(32) I1PI (ze.6) [SE(w) o] ] = I1PI] (2,6)[v] — PII (ze,¢ + w)[w])]].
In the next Lemima, we estimate the above quantity.

Lemma 16. There exist C1 > 0 and 6 > 0 such that for all w € T,
(|1PI!(2e ) — PI'(2e¢ + w)|| < Cillwl||®, provided e is small enough.
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Proof. Letw;, wy € E. Since |K| < x, we have by direct computation

I (ze,€)[w, wo] — I (2e.6 + w) w1, wa]| <k

/ [(2e,e + w)P™t — zg,zl]wlwgda:
RTL

Scl/ (jw| + |w|P~ Y w, wadz
RTL

<C, U (jw] + fw|p=1)" d:c]
Rn

X |lwi |l g~ llwz | g2~ -

2/n

We now estimate the term [, [w|P~V"/2dz. Let ¢ > 1 and ¢’ = ¢/(g — 1). Then

1/a 1/
lw|(P—17/2 < (/ leq(:v—l)n/4> (/ leq'(p—l)n/4)
R’ﬂ. n Rﬂ.

Now fix ¢ so that 7 = ¢(p — )n/4 > 2. Since w € T, the expression
(Jion I} ~D7/4)L/¢" s finite. From Lemma 2, we deduce that there exists C3 > 0
so that |w(z)|7~2 < C3V (ez) (recall again that w € T';). Therefore, we have

i/q i/q
([ o=} ™ <o ( [ hopor—)
]Rn
1/q
<0 [WPvien) < Galwl,
The estimate of the term [ |w|™/2 can be carried out in the same way. a
Proof of Lemma 8 completed. Using Lemma 10 and (32), we get
|PI (ze.6) [Se(w)[e]] (| < Cullw]’[lo]l-
Then, for any wi, ws € I';, we have
(1S (w1) — Se(wa)l| NPL (2e,)] " I IPL (2e,6) (Se (w1) — Se(w2))|
1
<C' [ IPL(@) (Sitwa + s(wy — wa)fwr — wal) s
0

Thus we obtain

]
15:0) = Se(wa)l < 0" ( s hwe + s(s = wa)l) Jn — wa

for some C”, 6 > 0. Since both w; and w, belong to I'. (p), we easily find that

(33) 1Se(w) — Se(wa)l = 0e(D)|wy — wsl.



NONLINEAR SCHRODINGER EQUATIONS 337

Equation (33) yields the contraction property for S..
Next, we show that ||.S. (w)|] < ¢pe for any w € T'.. Using (33) with vy, = w and
wy = 0, we obtain
15 (w) — S (0)[| = 0= (1)]ju]-

On the other hand, by using Lemma 3 and Lemma 5, we obtain
18- O)I1 = IIPLY (ze )]~ (P (ze )l < O'[|PL(2e)l| < C'C.
Hence, we finally deduce
1Se ()| <I1Se(w) — S (O)]] + 1|5 (Ol
<o.(D)||w]] + C'Ce = 0. (V||w]| + % coe.
Since w € T {p), ||w]| < coe; hence we get
1Se ()| < 0e(1)coe + 5 coe < coe,
provided ¢ is sufficiently small. This concludes the proof. O
Proof of L.emma 9. First, let us introduce some notation. We set
w =8 (w),
Liv] = - Av+ V(ez)v — pK(em)zf’Elv,
Zeg = Dezeg, ,
1 =[lzeell ™ (I (2e,6)[@ — w] + L (226 + w), 226,
9(v) =K (2)[(2c,c +v)° — 28 — p2Pl i v] + 0 [~ Ao g + V(em)2e ]
- [—Aze,g + V(ex)ze e — K(ez)zf,g] .
Here, for brevity, the symbol Dz, . stands for a linear combination of the deriva-
tives D¢, 2c ¢, - . ., D¢, 2. ¢ (related to the projection of the equation & = S.(w) onto
(T,Z)1). With all this notation, using integration by parts and the definitions of

Il{(z + w), I (), one finds that the function & satisfies L[w] = g(w). Moreover, if
we set zo(z) = 2z ¢(z + £) (as at the beginning of this section),

wo(z) =w(z +¢),  Wolz) =w(z+¢),
Lo = —A+V(ex +ef) — pK (€ + ex)20 ™"
and

91(v) =K (ez + €€)[(20 + v)P — 2§ — pzb "

go =1 [—AZO + V(E.’L’ + 65)2'.’0] s
g3 = — Azg + Viex + e€)zg — K(ex + €£)25;

’U],
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wy satisfies
(34) Lg[wo] = go(wo) := g1(wo) + g2 — gs-
Below, for ¢ > n, we need the estimates

(35) llgo(wo)ilLer2(p,,) < 0e(1)VeE;

(36) lg0(wo)(2)] < 0e(1) VEul™, Viz| > p.

The proof of (35) and (36) are postponed to the end of this section.
Now we prove separately that fore <« 1,

37 [wo ()] < Ve, if |z| < p,
and
(38) [Wo ()] < v(p) Ve ui(jz]), if |z| > p.

Concerning the former estimate, we apply Theorem 8.24 of [8] to (34) to infer that

(39) 1ol Leo(n,) < e1ll@ollr2(By,) + c2llgo(wolllzerzm,,y (g > 7).

Using I.emma 8 and recalling that ||z, ¢|| < const., we get
(40) ”’&50“[12(32’7) S C3E.

Inserting (35) and (40) into (39), we find that |[Wo|lp=(p,) < cse + c20:(1)\/5;
(37) follows, provided that ¢ is sufficiently small.

Let us now prove (38). It is convenient to consider first the case a < 2.

From (34) and (37), it follows that @, verifies the equation

(41) Lo[wo] = go{wo),  lz| > p,
together with the boundary condition

(42) |wo(p)| < Ve

Let © be the solution of the linear problem

{-A(p +E e =veur, e > p;

(43) .
p(z) = Ve, |z| = p.

Obviously, ¢ = /€@, where Fis the solution of (L ) with R = pand f(r) = u}"?(r).
Recalling the discussion carried out in Section 4, in particular (24), we infer that
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f(r) = w*"®(r) satisfies the integrability condition (26). Hence Lemma 6 applies,
yielding
(44) o(r) <v(p) Vew(r)  (r>p).
Using (29) (with . = 2) and (30), we infer that

V(ex +ef) - pK(ez + 820 (=) > (1) /l=*  (|z} > ).
From (36), we clearly deduce that
gowo) < VEuZ®  for |z| > p.

This allows us to compare (41) — (42) with (43), yielding

[@a(r)| < p(r) =veB(r)  (r>p)

Finally, using (44), we get |@wq(r)| < v(p) V& uL(r), for r > p, proving (38) in the
case o < 2.

To complete the proof, we have to treat the case o = 2. We indicate the changes
required in the above arguments. First, we observe that the solution u, of (L) has
polynomial decay that depends on ; see (25). Therefore, if we take m sufficiently
large, the function f(r) = u"?(r) still satisfies the integrability condition (26).
Substituting the comparison problem (43) with

~Bp+ G o = Eul, Jal >,
p(z) = Ve, x| = p,
and noticing that V (ez + e€) — pK (ex + €)22 7 (z) > (m — 1) /|z|*, for |z| > p, we

can repeat the preceding arguments to obtain that (38) holds.
It remains to carry out the proofs of (35) and (36).

Proof of (35). We estimate g; (wp), g2 and gz separately. Since w € W.(p)
and u; is decreasing, wg can be estimated by

lwo(z)| < Ve if [z] < p,
[wo ()| < ¥(p) Veu(p) ifp<iz|<2p.

Moreover, one has

(45) g1 (wo)| < e1fwo ()P



346 A. AMBROSETTI, A. MALCHIODI AND D. RUIZ

From these estimates, we readily obtain
lga (wo) lar2(s,) < 5 (VE)™™
Since 2Ap > 1, we get
(46) llg1(wo)llLer2(p,,) < 0e(1) Ve, where 0.(1) -+ 0ase — 0.

Let us now estimate g». From the definition of 2. ¢ (see Section 2), its exponential
decay, and from the boundedness of V' and K’, one finds

l|2e.ell < C5 | = Azo + V(ex + e€)2ollpar2(p,,) < C-

Moreover, from Lemma 3 and Lemma 10, we have
1
12(ze g + )l Il + [ 12 G + swlullds

SN (ze I + N (2e,¢) [w]l] + /01 (I (2e.¢ + sw) — I (ze¢))[w]llds
<Cie + Cae + C3e’e < 0.(1)V/E.
In addition, since [|@|| < ¢oe (see Lemma 8) and w € I'.(p), we easily infer that
11 (ze €)@ — w]l| < Cae.
Therefore, we find that || < 0.(1)+/ and obtain
47 llgallLorz(m,,) = 0:(1) Ve.

We finally turn to gs. From the fact that —Azy + V(e€)zo = K(e€)2h, we get
g3 = [V(ex + &) — V(e€)] 20(z) + [K(e€) — K(ex)]zf(x). Using the assumption
{V2), we deduce that |g3s| < Vi € |z| |20(z)| + Ko € |z| |20(x)|?. Since zy has
exponential decay, it follows that

(48) g3l Larz(s,,) = 0e(1) Ve.
Putting together (46), (47) and (48), we find that (35) holds. O
Proof of (36). By (45) and the fact w € W, (p), we have
91 (wo)(@)] < e1 - [¥(p) VE wi(@)]*"? = 0e(DVE (m(@)*? (2l > p).

Furthermore, since zp (and its derivatives, even multiplied by polynomials in x)
decays faster than u>"?, repeating the arguments carried out above, we get

|gi] = 0e (DVE W™ (2] > p), i=1,2.

This completes the proof of (36). O
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As a consequence of the above arguments, we obtain the existence of a function
w satisfying S.(w) = w. We summarize the existence result, collecting some
properties about the dependence on £ in the next proposition.

Proposition 11. Under the assumptions of Theorem 1, there exists a unique
w € [(p) satisfying S.(w) = w. Moreover, w is differentiable with respect to £; and
there exist C1 > 0 and 6 > 0 such that

llwl| < Cie, |Vew|| < €.

Proof. The estimate on the norm of w has already been proved. We turn now to
the dependence of w on £. The equation S.(w) = w is equivalent to H (£, w, u) = 0,
where p € R* and H : R" x E x R* —» E x R" is given by

I (2e g +w) - Z?:l 1iOze ¢ /O \\ _
(w’6§1 zfyf)v‘--v(waafnzixf) }

Fix ¢ ¢ R* with |e¢£] < 1. We know that for £ sufficiently small there exists a
(locally unique) solution of H (£, w, 1) = 0 which coincides with the one found by
Proposition 7. Observe that the function H is of class C! in £, w and u. Moreover,

H(&w,u):(

we have

OH 4 ( R(eee +wlo] = DL, mi0zee/06 )
O(w,p) " (0,06, 2¢,6)5 -+ - (1,0, Ze ¢)

Using Lemma 5 and Lemma 10 and arguing as in [1], one can prove that
OH[8(we, 1) is uniformly invertible for |¢£| < 1. As a byproduct of this fact,
one obtains an estimate in norm for ;. similar to that for w.

Then, by the local uniqueness of the function w, applying the implicit function

theorem we obtain
OH

—E(Ea My w) H ’

where ¢; is independent of £ for |¢£| < 1. Without loss of generality, we can

||(w7 :u')” <c

consider the derivative with respect to £;, which gives

OH _ [ IY(z+w)[0g 2ze,e] — o5y i 2e ¢/ 06:06:
86, (w,agfzs’g), - (w,aglenzeyg) .

Since (w,pu) is bounded by cqe (see also the estimate of 7 before (47)), we
immediately find that

OH "
“—H < ca (e + 11 (2o +w)[Be2]]) -
&
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By Lemma 10, we can write

| + 04567

11 (2e.e +w) [0, 2e,ell < I (22,6) [0y 2e ]

where § is some fixed positive constant. Therefore, at this point, it is sufficient to
estimate the norm ||17 (zc ¢)[0¢, 2.¢]||- Arguing as in [5], formula (6), one finds that

Og 2ep = =0z, 26 + O(e) in E.
It follows that
12 (22,6)[0es Ze elll < ese + | I (26,6 )[Oa, 2e.¢]I-

Since O, 2.,¢ belongs to the kernel of the linearization of (6), for any function
v € E, we have

2 e )lOm 2] = [ [Vien) = V(D] @nyzego:
Rn
Reasoning as for the proof of Lemma 3, one finds

< ceelfvll.

U@JV(%) ~ V(e8))(8:: 20

Therefore, since v is arbitrary, we deduce from the last formulas that
|8, wll < cre’

for some § > 0. This concludes the proof. O

6 Proof of Theorem 1

‘We now complete the proof of Theorem 1 by showing that the reduced functional
@, has a critical point £, /e, with £ ~ 0, provided ¢ is small enough. According to
the discussion carried out in Section 2, this implies that (2) has a solution «.; and
therefore u.(z/¢) solves (1). Moreover, since u, ~ z- ¢,

and hence such a solution concentrates at zg = 0.
First of ail, let us expand the reduced functional

P (§) = Le(ze +we )
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in the variable £. To simplify notation, we write z instead of z, ¢ and w instead of
we ¢. As in [5, Subsection 4.2], we find

. (8) = CLV () [K (e8)] ™Y P + I[(2)[w] + A (€) + L. (€)
= ClQ(Sf) + [é(z)[w] + Ae(g) + ‘I’E(é)a

where § = pr—i — %, C1 is a positive constant depending only on n and p, and

MO =5 [ Ven - Vet - —= [ [Klen) ~ K,

v (6) = Slul’ - / Kew) [lz + 0~ = 2 — (p+ 1)aPu]
First of all, observe that, by Lemma 3 and Proposition 11,
I(2)[w] < Cellw]| < Cae?.
The Taylor expansions of V and K give
V(ew) = V(c€) = eV'(e€)(z — §) + O |z — &I°);

K (ex) — K(e€) = eK'(€)(z — €) + O(e?|z — ¢%).

Therefore, from elementary estimates involving the evenncss of zfE (x — &) and the
oddness of V' (c€)zx,
A+ (6)) = o(e)-

Furthermore, arguing as in the proof of Lemma 10, one finds
(¥ ()| = ol[lw][) = ole).

Hence it follows that

(49) ®.(£) = C1Q(e€) + o(e).

We remark that (49) would suffice to prove Theorem 1 in the case that z, is an
isolated local minimum or maximum. Indeed, setting ®.(£) = ®.(¢ / ¢), one finds

;I;e(g) = ClQ(é.) + 0(6)'

From this one readily deduces that :I;s(ﬁ) possesses a critical point £ ~ 0; hence
&, has a critical point £, /e with & ~ 0, yielding a solution

wlofe) ~ e (£2)

=
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concentrating at xo = 0.

In order to handle the more general case in which z is an isolated stable critical
point of ), we need to estimate the derivatives of ®. with respect to £. We write 2’
for O¢z and w' for Jzw. One has

O (I ()]} = L' (2)[2', w] + I(2)[w'].

As for Lemma 3, one can prove that ||I/(2)[2']|| = 0-(1); hence, from Proposition
11 and the fact that ||7/(2)]] < Ce (see Lemuma 3), we cbtain

|0 (I (2)[w])] = €0e(1), ase — 0.

Regarding the function A., using a change of variables, we can write

1

el (K (ez +e€) — K(e€)],

1O =5 [ Wlea+et) - ViEe)d -

where zp, as before, stands for the function z4(z) = cU(Az), with

A =V(e€) and o= (X,i?)) .

Hence

1O =5 [ [et+en) = Vel + [ Vien+e0) = Vietliom

€
p+1

J/{en[K’({-:{ +ex) — K'(e8)) 281" + A;n[K(ez + &€) — K(e€)]2b .
Using the Dominated Convergence Theorem, we obtain
IAZ(©)] = o(e).
We have also
T = (w,w)+(p+1) ‘/]; K(ez)G(z, w)dz,
where
Gz,w) = |z + wlP H(z + w) (2 +w') — 2P2' — p2P 2w — 2P’
From (K2), we infer

Q) < ol +Cr | Glew)day
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hence, using Proposition 11, we find
(50) O <Cr [ Guds+ofe).
R»

Next, let us write G(z,w) = G1(z,w)z' + G2 (z, w)w' with
Gi(z,w) =|z +wP "z + w) — 2P — pzPlw,
Ga(z,w) =|z + w|P~ (z + w) — 2P,

and estimate separately [, G1(z, w)z'dr and [, G2(z,w)w'dz. As for the former,
since G1(z,w) = |z + w[P~1(z + w) — 2P — pzP~'w = O(jw|*\P), we have

7
Gi(z,w)z'dz < ||w (1,2‘(’"1)/ i V(ex)dz.
L Grtwas < Iwligo™ [ e )

Using Holder’s inequality, we get

/ G (z,w)z'dz < |Jw]22® D ||w| (/ —Zf—dx)%
Re - Oo g~ V(e2)

Taking into account the exponential decay of 2’ as well as the fact that |[w|lc =
O('/?) and ||w|| < € (see the definition of T',), we obtain

51 G1(z,w)z'dz = o(e).
Rn

In a quite similar way, using once more that Jw’|| = 0. (1), we find

(52) Gs(z, w)w'dz < O(e)||w'|| = o(e).
"

In conclusion, from (50), (51) and (52), we have
2L(6)] = ofe).
From these estimates, it follows that
53) BL(6) = CLeQ(e8) +o(e), el < 1.
As before, we set ®,(¢) = @.(¢ /¢). Then (53) implies that, for e < 1,
ind(®.,0,0) = ind(Q’,0,0) # 0.

Hence 55 has a critical point £, ~ 0. As a consequence, the reduced functional &,
possesses a critical point £, /e with £ ~ 0, and the conclusion follows.
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7 Further results

In this final section, we discuss some extensions of Theorem 1.

Let Xy be a compact set of critical points of (). We say that X, is a stable
critical set of @ if the topological degree deg(Q’, Xy 5,0) # 0, for all smali § > 0,
where A s is a é-neighborhood of X;. Then the same arguments carried out in the
previous sections lead to the following result.

Theorem 12. Let 1 < p < (n+2)/(n — 2) and suppose that V and K are
smooth and satisfy (V1) — (V2) and (KO) — (K2), respectively. Moreover, let Xy
be a compact, stable critical set of ). Then for ¢ < 1, (1) has a bound state that
concentrates af some point of Xy.

Of course, if Xy = {z¢}, Theorem 12 is nothing but Theorem 1. However,
in the more general case covered by Theorem 12, we cannot establish a priori at
which point of X the concentration occurs.

In certain circumstances, one can also find a multiplicity result. Let ¥ be a
smooth compact manifold of critical points of ). We say that ¥ is non-degenerate
ifevery z € ¥ is a non-degenerate critical point of (| 5. Combining the arguments
used in [5] and those carried over in the present paper, one can prove the existence
of multiple solutions of (1) concentrating at points of .

Theorem 13. Ler 1 < p < (n+2)/(n — 2) and suppose that V and K are
smooth and satisfy (V1) — (V2) and (KO) — (K2), respectively. Moreover, let 3 be
either a non-degenerate compact manifold of critical points of () or a compact set
of minima/maxima of Q). Then for ¢ > 0 small, (1) has at least [(30), respectively,
cat(%, X)), solutions concentrating near points of 3.

Above, [(Y) is the cup length of ¥, defined by
I(Z)=1+sup{keN:Ja,...,a € H*(Z)\ 1, q U--- Uay # 0}

If no such class exists, we set [(X) = 1. Here A*(X) is the Alexander cohomology
of ¥ with real coefficients and U denotes the cup product. Moreover, cat(Z, £ 5) de-
notes the Lusternik—Schnirelman category of ¥ with respect to the §-neighborhood
¥s of ¥, namely, the least number & such that ¥ C Uf T;, with T; closed and
contractible in ¥5. In general, one has [(X) < cat(Z, Z;).
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Added in proofs. After this paper was completed, we became aware of the
work, P. Souplet and Qi S. Zhang, Stability for semilinear parabolic equations
with decaying potentials in R* and dynamical approach to the existence of ground
states, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), 683703, where the
Schridinger equation with a decaying potential V is studied. However, they do
not deal with semiclassical states and do not study spikes. Moreover, they only
consider radial potentials V satisfying (V) with0 < a < 2(n—1)(p — 1)/ (p + 3),
which is strictly smaller than 2.
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