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CHAPTER 1

Introduction

The aim of this Thesis is the development and application of theoretical

models to describe molecular systems interacting with a solvating

environment.1–60 From the theoretical point of view, a full Quantum

Mechanical (QM) description of this kind of systems would be particularly

challenging, because a large number of degrees of freedom would need to be

taken into account. Luckily, in most cases, a QM description of the whole

system is not necessary, because the environment modifies but not

determines the investigated property, which is instead connected to the

molecular target. This is the fundamental idea behind the so-called focused

models.61–63 Within this formalism, the total system is partitioned into two

portions: the target fragment, which is described at high level of theory

(usually QM), and the environment (solvent), which is treated by means of a

less sophisticated description.

The idea is thus very general, and encompasses a wide variety of methods.

What concretely distinguishes one focused model from another, is the

particular way in which the environment interacts with the target fragment,

and vice versa.62 Such interaction can be limited to electrostatics (including

polarization) or may retain the most quantum forces.8

The most widespread focused models are the QM/classical

approaches,1,2,61,64–66 in which the molecular fragment is described at the QM

level, whereas the environment is treated by means of classical mechanics,

either at the continuum or at the atomistic level. In particular, when an
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Classical Embedding Methods 1.1

atomistic description is exploited, strong specific interactions, such as

Hydrogen Bonding, can be accurately modeled, thus overcoming the

well-known limits of the continuum description. Atomistic Molecular

Mechanics (MM) force fields are used for the classical part, resulting in the

so-called QM/MM methods.1,8 In most QM/MM approaches, the QM and

MM parts interact at an electrostatic level, by including mutual polarization

between the two regions in polarizable embedding approaches. Therefore,

purely quantum forces, such as Pauli repulsion and dispersion, are neglected,

although they may play a significant role in many systems/processes.

Quantum interactions may be described by exploiting quantum-embedding

approaches,67–81 which are usually based on the partitioning of the density of

the system into two parts: an active part, which leads the property, and an

inactive one, which perturbs the active moiety, in a focused model fashion.

Thus, target-environment interactions are retained at the QM level.

In this Thesis, different embedding methods, ranging from QM/MM to

quantum embedding are developed and applied to different properties:

polarizability, first hyperpolarizability and hyperfine coupling constants. In

this chapter, the theoretical foundations of the approaches are presented and

discussed, and a theoretical overview of the studied properties is reported.

1.1. Classical Embedding Methods

QM/classical approaches are characterized by a reduced computational

scaling with respect to system size as compared to a full QM treatment of

the whole system, which quickly becomes unfeasible from the computational

point of view.82–84 In fact, the computational cost associated to these

approaches is almost the same as the corresponding QM calculation of the

isolated molecule. Thus, QM/classical approaches enable efficient

calculations of all kinds of chemical systems where a division into a target

region (treated using quantum mechanics) and its environment (treated

classically) is possible. One example of such a system is the case of a solute

in a solvent, which is usually partitioned into two layers.

QM/classical models can be divided into main classes, depending on the way

the classical portion is modelled. The classical part can be described in terms

of a continuum, polarizable dielectric (the most popular approach being the

2



Classical Embedding Methods 1.1

Polarizable Continuum Model – PCM61,63–66,85–103). Alternatively, the

atomistic nature of the environment can be retained, overcoming the

common limitations of continuum approaches in which specific solute-solvent

interactions cannot be described.

1.1.1. QM/Molecular Mechanics Models

QM/MM methods1,2,8,9 were first developed by Warshel & Levitt, who

received the Nobel Prize in 2013, together with Karplus.1 One of the crucial

differences with respect to continuum approaches is that within the classical

MM portion a fully atomistic description is retained. This automatically

implies that specific QM-MM interactions, such as Hydrogen Bonds, can be

adequately modelled. However, such a feature is not gained for free: in fact,

whereas QM/PCM61,64–66 implicitly includes the statistical average of the

possible configurations of the environment, QM/MM approaches need an

explicit sampling of the phase space. Such a sampling is usually carried out

by firstly performing a Molecular Dynamics (MD) simulation, and then

extracting some uncorrelated snapshots, whose number can vary depending

on the property under consideration, until convergence is reached.50,54,104–113

Therefore, the computational cost associated with a QM/MM simulation

intrinsically increases. However, in this way, the dynamical aspects of

embedding phenomena can be taken into account, thus providing a physically

consistent picture.

The interaction between the QM and the MM portions is usually limited to

the electrostatics. Three possible formulations have been proposed in the

literature:

Mechanical embedding treats the interactions between the QM and the

MM part at the MM level. The method requires an accurate set of

parameters such as atom-centered point charges.

Electrostatic embedding, the QM Hamiltonian is modified by including

the interaction between the potential generated by the MM fixed charges

and the QM electron density:

H int
QM/MM =

EE charges∑
i

qiVi(ri), (1.1)

3



Focus on MM Polarizable Embedding 1.2

where the sum runs over the MM charges qi and Vi(ri) is the QM

potential calculated at charge positions ri. The quality of electrostatic

embedding results crucially depends on a proper choice of for MM fixed

charges representing the MM electron density. The polarization of the

QM fragment due to the MM charge distribution is automatically taken

into account.

Polarizable Embedding differently from QM/EE, mutual polarization

between QM and MM portions is taken into account. In particular, the

density of the QM region is modified by the presence of the MM

portion, which in turn is polarized by the QM density, in a

self-consistent manner. This introduces and recovers one of the most

relevant aspects of PCM, namely the mutual polarization between the

QM and the classical part, by introducing a non-linear contribution in

the QM Hamiltonian. Clearly, polarizable embeddings are the most

sophisticated QM/MM approaches, and in recent years have become

the golden standard for embedded systems.

1.2. Focus on MM Polarizable Embedding

Different polarizable embeddings have been proposed previously in the

literature based on different polarizable FFs, namely Drude model,55,114–120

Induced dipoles,6,121 AMOEBA,122,123 Fluctuating Charge

(FQ)50–52,60,104–111,124–128 and FQ Fluctuating dipoles (FQFµ).128–133

In Drude model,55,114–120 the MM polarization is taken into account by

considering an induced electric dipole at each MM site, which is defined in

terms of a couple of charges, of the same magnitude but opposite sign, linked

by a harmonic spring. The first charge is located at the nucleus of the MM

atom, whereas the second is mobile, so that polarization arises from the

competition between the forces acting on the charges, i.e. the harmonic

potential and the electrostatic interactions with the remaining

environment.134

In the Induced dipole formalism, polarization effects are treated by including

induced dipoles on each MM atom. Therefore, each atom is endowed with an

isotropic atomic polarizability, from which the induced dipoles are originating

4



Focus on MM Polarizable Embedding 1.2

as a response to the external environment. The induced dipole formalism is

the basis of different polarizable QM/MM approaches, which mainly differs

for the treatment of the purely electrostatic part of the force field. In

QM/ID,33,35,113,135–140 QM/MMPol18,31,32 and QM/Discrete Reaction Field

(DRF),141–146 fixed charges are also considered, whereas in QM/Polarizable

Embedding (PE)56–58 and QM/AMOEBA54,112,147–151 also other terms in the

multipolar expansion are included.

1.2.1. Fluctuating Charges

In the Fluctuating Charges (FQ) force field152–154 each atom of the MM

portion is endowed with an electric charge (q). Such charges are not fixed but

can vary (fluctuate) in accordance with the Electronegativity Equalization

Principle (EEP),155,156 which provides a minimum principle based on the

consideration that at equilibrium the electronegativity of each atom have the

same value.157 The FQ force field50–52,104–111,124–126 can be rigorously defined

in conceptual density functional theory (CDFT),158–163 because it is based on

atomic electronegativity (χ) and chemical hardness (η), which are the first

and the second energy derivatives with respect to the charge, respectively.

By exploiting EEP, the FQs can be defined as the constrained minimum of

the following functional expression (F ):

F (q, λ) = E0 +
∑
i

[
χiqi + ηiq

2
i +

∑
j>i

Jijqiqj

]
+ λ
(∑

i

qi −Qtot

)
, (1.2)

where i runs over the number of atoms, J is the interaction kernel between

the FQs and Qtot is the total charge. The constraint, imposed by Lagrangian

multiplier λ, preserves the total charge.

Generally, the formalism adopted is based on the assumption that if it is

present more than one molecule, each molecule is constrained to assume a

fixed total charge (Qα) that have to sum to the total charge of the whole

system (Qtot). In this way, the electronegativity of each atom in the same

molecule will be the same but will have in general different values among

5



Focus on MM Polarizable Embedding 1.2

different molecules. The functional that has to be minimized became:164

F (q, λ) =
∑
α,i

qα,iχα,i +
1

2

∑
α,i

∑
β,j

qα,iJαi,βjqβ,j +
∑
α

λα
∑
i

(
qα,i −Qα

)
= q†χ+

1

2
q†Jq+ λ†q

(1.3)

where α and β run over the different molecules. Differentiating eq.1.3 with

respect to charges and Lagrange multipliers, the constrained minimum

conditions are obtained:
∑

β,j Jαi,βjqβj + λα = −χαi∑
i qαi

= Qα

(1.4)

By switching to a matrix-vector formalism:(
J 1λ

1†
λ 0

)(
q

λ

)
=

(
−χ

Q

)
The linear system then reads:

Mqλ = −CQ, (1.5)

where qλ is a vector containing charges and Lagrange multipliers, whereas CQ

is a vector containing total charge constraints and electronegativity of each

atom.

The FQ force field can be coupled to a QM description in a QM/MM

framework.50 At the Hartree-Fock level, the global energy functional reads as:

F (D,q, λ) = TrhD+
1

2
TrDG(D)

+ q†χ+
1

2
q†Jq+ λ†q+ q†V(D),

(1.6)

where h and G are the common one- and two-electron matrices and D is the

QM density matrix. q†V(D) represents the electrostatic interaction between

the charges and the electric potential due to the QM density. To obtain the

FQs, we differentiate the functional in Eq. 1.6 with respect to the charges and

the langrangian multipliers, yielding to the following set of linear equations:

Mqλ = −CQ −V(D), (1.7)

6
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Differently from Eq. 1.4, an additional term, modeling the interaction with

the QM density (V(D)) is present. The QM Fock matrix (Fµν in the AO

basis {χµ}), which is obtained by differentiating the energy functional in Eq.

1.6 with respect to the density matrix, is also modified by the electrostatic

interaction with the FQ charges:

Fµν =
∂F

∂Dµν

= hµν +Gµν(D) +
∑
i

qiVµν,i (1.8)

Differently from non-polarizable QM/MM, in which the QM/MM contribution

to the Fock matrix is fixed because the charges are constant, and it can be

computed once at the beginning of the Self Consistent Field (SCF) procedure,

in QM/FQ, the charges depend on the QM density, and thus the QM/MM

contribution to the Fock matrix has to be computed at each SCF step. In

this way, the mutual polarization between the QM and FQ parts is taken into

account.

1.2.2. Fluctuating Charges and Dipoles

A pragmatical extension of FQ model has been proposed in the last few

years: the Fluctuating Charges and Dipoles (FQFµ) approach.128–133 In this

force field, atomic fluctuating dipoles (µ) are included in the MM portion in

addition to the fluctuating charges (q). In this way, out of plane polarization,

which contributes to model the anisotropy of the electrostatic interaction, is

automatically taken into account. Charge values are defined by the same

charge equilibration as FQ, but their values depend also on the interaction

with dipoles. The peculiarity of FQFµ with respect to all the aforementioned

polarizable MM methods, stands in the fact that both the FQs and Fµs vary

as a response to both the external electric potential and electric field.

In FQFµ, charges (q) and dipoles (µ) are described by Gaussian distribution

functions (ρqi(r), ρµi
(r)):

ρqi(r) =
qi

π3/2R3
qi

exp

(
− |r− ri|2

R2
qi

)
,

ρµi
(r) =

|µi|
π3/2R3

µi

n̂i · ∇

[
exp

(
− |r− ri|2

R2
µi

)]
,

(1.9)

7



Focus on MM Polarizable Embedding 1.2

where Rqi and Rµi
are the widths of the corresponded Gaussian distribution

functions centered at ri, and n̂i is the versor that indicates the dipole direction.

The total energy E associated with a distribution of charges and dipoles is

equal to:

E(q, µ) =
∑
i

qiχi +
1

2

∑
i

qiηiqi +
1

2

∑
i

∑
j ̸=i

qiT
qq
ij qj

+
∑
i

∑
j ̸=i

qiT
qµ
ij µj +

1

2

∑
i

∑
j ̸=i

µ†
iT

µµ
ij µj −

1

2

∑
i

µ†
iα

−1
i µi,

(1.10)

where χ is the atomic electronegativity, η the chemical hardness, and α is

the atomic polarizability. T terms represent the charge-charge (T qq
ij ), charge-

dipole (Tqµ
ij ) and dipole-dipole (Tµµ

ij ) interaction kernels. For the gaussian

distributions defined in Eqs. 1.9, they can be written as:

Tqq
ii =

1

|rij|
erf

(
|rij|
Rqi−qj

)
,

Tqµ
ij = ∇rjT

qq
ij = − rij

|rij|3

[
erf

(
|rij|
Rqi−µj

)
− 2|rij|√

πRqi−µj

exp

(
−|rij|
Rqi−µj

)2]
,

Tµµ
ij = −∇rjT

qµ
ij

= −3rij × rij − |rij|21
|rij|5

[
erf

(
|rij|
Rµi−µj

)
− 2|rij|√

πRµi−µj

exp

(
− rij
Rµi−µj

)2]

+
4√

πR3
µi−µj

rij × rij
|rij|2

exp

(
− |rij
Rµi−µj

)2

,

(1.11)

where R(q/µ)i−(q/µ)j
=

√
R2

(q/µ)i
+R2

(q/µ)j
. The charge-dipole and the

dipole-dipole interaction kernels are therefore defined as the first and the

second derivatives oh the charge-charge kernel. When ri tends to rj the three

interaction kernels are:

lim
rij→0

Tqq
ij = Tqq

ii = ηi =
2√

πRqi−qi

,

lim
rij→0

Tqµ
ij = Tqµ

ii = 0,

lim
rij→0

Tµµ
ij = Tµµ

ii =
1

αi

=

√
2

π

1

3R3
µi

.

(1.12)

8
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Therefore, charge and dipole distributions (Rqi and Rµi
, respectively) can

directly be computed in terms of ηi and αi:

Rqi =

√
2

π

1

ηi

Rµi
=

(√
2

π

1

3
αi

) 1
3

(1.13)

As a consequence, FQFµ equations are defined in terms of three parameters

only: electronegativity, chemical hardness and polarizability for each atom

type.

The energy expression presented in eq.1.10 then reads:

E(q,µ) =
∑
i

qiχi +
1

2

∑
i,j

qiT
qq
ij qj +

∑
i,j

qiT
qµ
ij µ

†
j +

1

2

∑
i,j

µ†
iT

µµ
ij µj

= χ†q+
1

2
q†Tqqq+ q†Tqµµ+

1

2
µ†Tµµµ

(1.14)

Similarly to FQ, to satisfy the Electronegativity Equalization Principle (EEP),

the total molecular charge is constrained to Qtot.

Similarly to FQ force field, Eq. 1.14 can be translated to the molecular case,

by properly avoiding the charge transfer between different molecules. In this

case, the energy functional (F ) can be rewritten as:

F (q,µ, λ) = E(r,q,µ) +
∑
α

λα
∑
i

qα,i −Qα

=
∑
α,i

qα,iχα,i +
1

2

∑
α,i

∑
β,j

qα,iT
qq
αi,βjqβ,j +

∑
α,i

∑
β,j

qα,iT
qµ
αi,βjµ

†
β,j

+
1

2

∑
α,i

∑
β,j

µ†
α,iT

µµ
αi,βjµβ,j +

∑
α

λα
∑
i

qα,i −Qα

= χ†q+
1

2
q†Tqqq+ q†Tqµµ+

1

2
µ†Tµµµ+ λ†q,

(1.15)

By differentiating eq.1.15 with respect to FQFµ variables (charges, dipoles and

Lagrange multipliers) the constrained minimum condition is obtained:
∑

β,j T
qq
αi,βjqβ,j + λα +

∑
β,j T

qµ
αi,βjµβ,j = −χα,i∑

β,j T
µµ
αi,βjµβ,j +

∑
β,j T

qµ
αi,βjqβ,j = 0∑

α,i qα,i = Qα

(1.16)

9



Focus on MM Polarizable Embedding 1.2

which can be recast as:


Tqq 1λ Tqµ

1†
λ 0 0

−Tqµ†
0 Tµµ,




q

λ

µ

 =


−χ

Q

0

 (1.17)

MQλ = −CQ, (1.18)

where Qλ vector contains charges, dipoles and Lagrangian multipliers, whereas

CQ vector contains total charge constraint and atomic electronegativity.

The QM/FQFµ approach can be defined by exploiting the same strategy

proposed for QM/FQ. Thus, for an HF description of the QM portion, the

global energy functional is:

F (D,q, µ, λ) = TrhD+
1

2
TrDG(D)

+ χ†q+
1

2
q†Tqqq+ q†Tqµµ+

1

2
µ†Tµµµ+ λ†q

+ q†V(D)− µ†E(D),

(1.19)

where V(D) is the electric potential and E(D) is the electric field. Thus,

similarly to QM/FQ, the QM/MM interaction energy is limited to

electrostatics.

To solve for FQFµ variables, we differentiate Eq. 1.19 with respect to charges,

dipoles and lagrangian multipliers. Thus, the linear system defined in eq.1.18,

now reads:

MQλ = −CQ − S(D). (1.20)

where S(D) is a vector which contains the QM potential and electric field.

By finally differentiating the functional defined in eq. 1.19 with respect to the

density matrix elements in the AO basis set, the QM Fock is obtained:

Fµν =
∂F

∂Dµν

= hµν +Gµν(D) +
∑
i

qiVµν,i −
∑
j

µjEµν,j (1.21)

where both the charges and the dipoles have to be updated at each SCF cycles,

due to their explicit dependence on the QM density.

10



Non-electrostatic interactions 1.3

1.3. Non-electrostatic interactions

In all the aforementioned QM/MM approaches, the QM/MM interaction is

treated at the purely electrostatic level, with the inclusion of mutual

polarization effects in polarizable QM/MM methods. Non-electrostatic

interactions are usually included in the QM/MM modeling by means of

classical, parameterized functions. The most used approach is the

Lennard-Jones potential (VLJ),
165 which reads:

VLJ(r) = 4ϵ

[(
σ

r

)12

−

(
σ

r

)6]
, (1.22)

where r is the distance between two interacting atoms, ε is the depth of the

potential well, and σ is the distance at which the atom-atom potential energy

V is zero.

Clearly, a classical, parameterized function, as the one in Eq. 1.22, only

affects the total energy of the QM/MM system. In fact, contrary to the

electrostatic term which acts as an external potential in the Hamiltonian in

both electrostatic and polarizable embeddings, the Lennard-Jones energetic

term is only added to the total energy of the system, because it does not

depend on the QM density but only on atom positions. As a consequence,

only indirect contributions to molecular properties are considered, because a

parametrized function does not directly affect the Hamiltonian, its

derivatives and response equations. Such an approximation might be justified

in case of polar embeddings. However, non-electrostatics dominates the

interaction between many biological systems and it is indeed the leading

force in many chemical reactions.166

For this reason, in the last years, different approaches have been developed to

describe both Pauli repulsion and quantum dispersion in QM/MM

approaches.56–58,167–175 Among them, in this thesis, we focus on a novel

approach to describe Pauli repulsion,133 which is general enough to be

coupled to any description of the electrostatic interaction. In particular, it

has been coupled to non-polarizable, FQ and FQFµ force fields.176,177

In such a model, each MM molecule is endowed with a set of s-type Gaussian

functions, which simulate the density of the MM portion (ρMM). The repulsion

energy term is then written as the opposite of an exchange integral between
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Non-electrostatic interactions 1.3

the QM ρQM and MM density. This approximation is justified by the fact that

the repulsive penetration energy terms in the Van der Waals is almost twice

the attractive exchange interaction. Therefore, the QM/MM repulsion energy

terms Erep
QM/MM reads:178,179

Erep
QM/MM =

1

2

∫
dr1 dr2
r12

ρQM(r1, r2)ρMM(r2, r1). (1.23)

To define the ρMM, the aforementioned s-type Gaussian functions are located

over bond and lone pair MM regions, as first proposed in Ref. 169. The ρMM

is then defined as:

ρMM(r1, r2) =
∑
R

ξ2Re
−βR(r1−R)2 · e−βR(r2−R)2 , (1.24)

where R runs over the centroids of the s-type Gaussian functions, whereas

β and ξ are two free parameters of the model, which can be determined by

reproducing the exchange-repulsion energy contribution calculated by some

energy decomposition analysis (EDA).180–182

By substituting eq. 1.24 in eq.1.23, the working expression for QM/MM Pauli-

repulsion is finally obtained:

Erep
QM/MM =

1

2

∑
R

∫
dr1 dr2
r12

ρQM(r1, r2) ·
[
ξ2Re

−βR(r1−R)2 · e−βR(r2−R)2
]
(1.25)

The energy expression in eq.1.25 can be rewritten as:

Erep
QM/MM =

1

2
TrDQMK(DMM) (1.26)

where K is the exchange integral and DQM/MM are the QM and MM

densities. Due to the fact that DMM is a fixed parameterized quantity, the

QM Hamiltonian is modified by an additional term to the one-electron

integrals:

h̃µν = hµν +
1

2
Kµν(DMM) (1.27)

This explicit contribution to the QM Hamiltonian propagates to the

calculation of molecular properties and spectra, through the definition of

suitable analytical procedures. This method, is first applied to the

calculation of the quantum Pauli repulsion interaction energy of molecular

12



Quantum Embedding Methods 1.4

systems in aqueous solution.176 It has been extended to spectroscopy starting

from a formulation of QM/MM terms for Electron Paramagnetic Resonance

(EPR) Hyperfine Coupling Constant.177 Also this Pauli repulsion energy

term formulation has been considered to show that density confinement

needs to be included to get a physically consistent picture of

solvatochromism.128 In Chapter 1 of this thesis the model has been applied

to non-linear optical response properties for which repulsion forces can

indeed be important to the determination of a solute’s (Hyper)-Polarizability

as electrostatic interactions, even for a solvent as polar as water.183

1.4. Quantum Embedding Methods

Highly accurate results can be obtained by exploiting polarizable QM/MM

approaches, eventually coupled to a refined treatment of non-electrostatic

interactions. However, the quality of a QM/MM embedding strongly depends

on the values assigned to the parameters defining the model (e.g. χ and η in

QM/FQ approach). Also, as we have shown above, the inclusion of

non-electrostatic interactions at a mixed quantum-classical level is far from

trivial and requires ad-hoc models to mimic the quantum nature of such

energy terms.

To overcome such limitations of atomistic QM/classical approaches, quantum

embedding methods can be exploited.67–70,70–81

In such approaches, the entire system is treated by resorting to a QM

description, thus, all the interactions are retained at the purely QM level.

The reduction in computational cost with respect to a QM calculation on the

whole system is obtained by partitioning the system in at least one active

and one inactive part. In the fashion of focused models, only the active

wavefunction/density is usually optimized, whereas the inactive

wavefunction/density remains frozen.

Different Quantum Embedding Models have been presented in literature. Most

embedding theories are developed within the framework of density functional

theory (DFT) due to the favourable compromise between computational cost

and accuracy.75,184,185 Among the many developed methods, the most exploited

is probably the Frozen Density Embedding model.186–191 FDE describes a QM

complex system based on the partitioning of the electronic density into at
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least two subsystems, each described by a separate electronic density. The two

subsystems may be just two molecules, a solute and the surrounding solvent,

or any other partition of a chemical system. The FDE method is based on

the assumption that one of the two densities may be kept frozen, while the

total energy is variationally optimized with respect to the other density. By

construction, in the embedding potential, defining the interaction between the

two portions, a nonadditive kinetic energy potential is introduced.78,80,81

In this thesis, a novel quantum embedding method based on DFT theory is

proposed, named Multilevel DFT (MLDFT).192 Such an approach has its

theoretical foundations in multilevel Hartree-Fock (MLHF),193 in which a

complex system is partitioned into an active and an inactive portions. Such a

partitioning is performed by decomposing the density matrix into its two

components by means of a Cholesky decomposition.194–196 While the

obtained active density is optimized in the field of the inactive density, the

latter kept frozen during the SCF procedure. In the following MLHF and

MLDFT models are detailed.

1.4.1. Multilevel Hartree-Fock

The starting point of MLHF is the HF energy expression for a closed-shell

molecule in the molecular orbitals (MO) basis:

E = TrhD+
1

2
TrDG(D) + hnuc, (1.28)

where D is the MO density matrix, h is the one-electron operator, G the two-

electron repulsion integrals matrix and hnuc contains the nuclear repulsion.

Particularly D for a set of orthogonal MOs is given by:(
1oo 0ov

0vo 0vv

)
in which o indicates the occupied MOs, whereas v the virtual ones. The density

matrix that represents a closed-shell system with Ne electrons must satisfy the

conditions of idempotency, symmetry and trace197

DT = D

TrD =
1

2
Ne

D2 = D

(1.29)
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A density matrix D for Ne-electron closed-shell system, that fulfills the

conditions presented in eq.1.29, can be partitioned into an active part, DA,

and an inactive (environment) one, DB. This is the starting point of the

MLHF approach.193 In particular, in a standard HF calculation, an initial

density is usually constructed by means of the Superposition of Atomic

Densities (SAD) approach.198 However, the resulting SAD density is not an

idempotent density, thus it cannot be decomposed. Two potential solutions

to this problem can be exploited: (i) the McWeeny purification scheme to

make idempotent a general density matrix;199–201 (ii) construct the Fock

matrix from the SAD density, diagonalize the HF equations, use the resulting

MOs to construct a density matrix which is idempotent by definition.

Independently from the selected method to obtain the starting idempotent

density matrix, in MLHF, the active DA and the inactive densities DB are

generated by a partial Cholesky decomposition:194,195

D = DA +DB (1.30)

In particular, the exploited Cholesky decomposition provides a set of

orthonormalized occupied active orbitals, which can be used to construct the

active density matrix. The inactive density matrix is instead obtained by

reverting Eq. 1.30. Both DA and DB satisfy the conditions of symmetry,

trace and idempotency, in particular, the requirement of idempotency for the

sum of the two densities is equivalent to requiring orthogonality between the

active and inactive orbital fragments. Therefore, by construction, the active

and inactive MOs are orthogonal by definition, preserving the Pauli principle.

Finally, the active virtual MOs are instead constructed in terms of

orthonormalized projected atomic orbitals, which have been shown to be

among the most localized virtual MOs.202

By exploiting the partitioning introduced in Eq. 1.30, Eq. 1.28 can be

rewritten as:

E(DA,DB) = TrhDA +
1

2
TrDAG(DA)

+ TrhDB +
1

2
TrDBG(DB)

+ TrDAG(DB) + hnuc

(1.31)
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The structure of the active and inactive density matrices in the MO basis can

be expressed as:

DA =

oA oB vA vB
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 DB =

oA oB vA vB
0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


where oA and oB represent the active and inactive occupied space respectively,

and vA and vB the active and inactive virtual space, respectively. Due to the

structure of DA, itS dimension can be reduced to NA, where NA = oA + vA is

the number of the total active MOs, as:

DA
r =

oA vA(
1 0

0 0

)

Eq.1.31 can finally be rewritten as:

E(DA,DB) = E(DA
r ,D

B)

= TrhrD
A
r +

1

2
TrDA

r Gr(D
A
r )

+ TrhDB +
1

2
TrDBG(DB)

+ TrDA
r Gr(D

B) + hnuc,

(1.32)

where the quantities highlighted with r are expressed in the active MO basis.

The effective Fock matrix for the optimization of the active density matrix

reads:

Feff ,r = Fr(D
A
r ) +Gr(D

B), (1.33)

where Fr(D
A) is the MO Fock matrix of the active part only. Being DB

fixed during the SCF cycles, the Gr(D
B) term entering the Fock is thus a

one-electron term, which can be computed once at the beginning of the SCF

procedure in the AO basis, and then converted in the updated MO basis

during the SCF. Differently from most QM/MM approaches, in MLHF

electrostatics and Pauli repulsion interactions are automatically taken into

account at the HF level. However, since the inactive density is kept frozen

during the optimization of the active density, the active-inactive mutual
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polarization is neglected. However, a large part of such interaction is

recovered by the initial diagonalization of the Fock matrix constructed on the

basis of the SAD density matrix.

1.4.2. Multilevel Density Functional Theory

In this section, we present a novel multilevel approach entirely based on

Density Functional Theory (DFT), namely Multilevel DFT (MLDFT).133

The MLDFT conceptually differs from the other quantum embedding

methods in DFT framework because the partitioning in different subsystems

is performed on the density matrix instead of the density function as, for

instance, in FDE.186–191 Similarly to MLHF,193 the density of the system

under investigation (active) is optimized, whereas the environment (inactive)

density is kept frozen during the active fragment optimization procedure.

The choice of the partitioning is arbitrarily and depends on the specific

features of the system and in particular from the properties one wishes to

simulate. The starting point to derive the MLDFT energy expression is the

DFT expression for the electronic energy of the system:

E =TrhD +
1

2
TrDJ(D)− 1

2
cxTrDK(D) + (1 + cx)Ex + Ec

=TrhD +
1

2
TrDJ(D)− 1

2
cxTrDK(D)

+ (1− cx)

∫
ρ(r)εx(ρ(r)) dr+

∫
ρ(r)εc(ρ(r)) dr

where D is the density matrix, h is the one-electron operator, whereas J and

K are the Coulomb and the Exchange matrices, respectively. Ex and Ec terms

are DFT exchange and correlation energies; ρ(r) is the DFT density function

and εx, εc are the exchange and correlation energy densities, respectively. The

coefficient cx defines if the DFT functional used is pure (cx = 0), or hybrid

(cx ̸= 0).

The DFT density ρ(r) can be expressed in terms of the density matrix: (D)

as:

ρ(r) =
∑
µν

Dµνχµ(r)χν(r) (1.34)

where {χµ} are the AO basis functions.

Generally the total DFT energy is minimized in the AO basis. In order to

reformulate the minimization in the MO basis, the same strategy present for
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Multilevel Hartree-Fock in the previous section can be used. Within the

MLDFT framework, the subdivision of the entire system into two fragments

is based on the following decomposition of the density D and ρ(r):

D = DA +DB , ρ(r) = ρA(r) + ρB(r) , (1.35)

where, A correspond to the active layer, whereas B indicates the inactive

one. As stated above, the active and inactive densities are usually defined on

a physico-chemical basis. In case of a molecule embedded in an external

environment, it is natural to define the target molecule as the active

fragment, whereas the environment system is included the inactive part.

Notice, however, that the partitioning in Eq. 1.35 is arbitrary and strongly

depends on the method which is selected to mathematically decompose the

total density matrix D. Similarly to MLHF, a Cholesky decomposition of the

total density is performed for the active occupied MOs, from which the active

density DA is calculated.193–196 The procedure ensures the all active and

inactive orbitals are orthogonal.

Now using Eq. 1.35, the total electronic energy in Eq. 1.34 can be written as:

E = TrhDA + TrhDB

+
1

2
TrDAJ(DA) +

1

2
TrDBJ(DB) + TrDAJ(DB)

− cx

(
1

2
TrDAK(DA) +

1

2
TrDBK(DB) + TrDAK(DB)

)
+ (1− cx)

∫
ρ(r)εx(ρ(r)) dr+

∫
ρ(r)εc(ρ(r)) dr , (1.36)

where the symmetry of J and K matrices have been used. Differently from

MLHF, the latter term is not linear in the densities of the two subsystems.

Therefore such a contribution can not be directly separated in two

contributions that depend on ρA and ρB only. In order to get a deeper

physico-chemical vision of Eq. 1.36, the last two terms can be written by

using a trivial identity for the exchange-correlation energy density

(εxc = εx + εc):
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∫
[ρA(r) + ρB(r)]εxc(ρ

A(r) + ρB(r)) dr

=

∫
[ρA(r) + ρB(r)]εxc(ρ

A(r) + ρB(r)) dr

+

∫
ρA(r)εxc(ρ

A(r)) dr−
∫
ρA(r)εxc(ρ

A(r)) dr

+

∫
ρB(r)εxc(ρ

B(r)) dr−
∫
ρB(r)εxc(ρ

B(r)) dr

+

∫
ρA(r)εxc(ρ

B(r)) dr−
∫
ρA(r)εxc(ρ

B(r)) dr

+

∫
ρB(r)εxc(ρ

A(r)) dr−
∫
ρB(r)εxc(ρ

A(r)) dr. (1.37)

Substituting Eq. 1.37 into Eq. 1.36, and reorganizing the different terms:

E[DA;DB] = TrhDA +
1

2
TrDAJ(DA)− 1

2
cxTrD

AK(DA)

+ (1− cx)

∫
ρA(r)εx(ρ

A(r)) dr+

∫
ρA(r)εc(ρ

A(r)) dr

+ TrhDB +
1

2
TrDBJ(DB)− 1

2
cxTrD

BK(DB)

+ (1− cx)

∫
ρB(r)εx(ρ

B(r)) dr+

∫
ρB(r)εc(ρ

B(r)) dr

+ TrDAJ(DB)− cxTrD
AK(DB)

+ (1− cx)

(∫
ρA(r)εx(ρ

B(r)) dr+

∫
ρB(r)εx(ρ

A(r)) dr

)

+

(∫
ρA(r)εc(ρ

B(r)) dr+

∫
ρB(r)εc(ρ

A(r)) dr

)
+ EAB

non−add

(1.38)

where

EAB
non−add =

(1− cx)

(∫
ρ(r)εx(ρ(r)) dr−

∫
ρ(r)εx(ρ

A(r)) dr−
∫
ρ(r)εx(ρ

B(r)) dr

)
+

∫
ρ(r)εc(ρ(r)) dr−

∫
ρ(r)εc(ρ

A(r)) dr−
∫
ρ(r)εc(ρ

B(r)) dr

(1.39)
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In Eq. 1.38 the first four lines define the energy of the active and inactive

fragments, whereas the last three lines define the active-inactive interaction,

including non-additive Enon−add term due to the non-linearity of DFT

functionals. Similarly to MLHF, in MLDFT the density of the inactive part

DB (and ρB(r)) is kept frozen, acting as an external field on the active

fragment density.

The total DFT Fock matrix is given by:

Fµν = hµν + Jµν(D)− cxKµν(D)

+ (1− cx)

∫
vx(ρ(r))χµ(r)χν(r) dr+

∫
vc(ρ(r))χµ(r)χν(r) dr , (1.40)

where, vx(ρ(r)) and vc(ρ(r)) are the exchange and correlation potential

densities, respectively. By introducing the partitioning in Eq. 1.35, Eq. 1.40:

Fµν = hµν + Jµν(D
A) + Jµν(D

B)− cx
(
Kµν(D

A) +Kµν(D
B)
)

+ (1− cx)

∫
vx(ρ

A(r) + ρB(r))χµ(r)χν(r) dr

+

∫
vc(ρ

A(r) + ρB(r))χµ(r)χν(r) dr . (1.41)

By exploiting an identity similar to Eq. 1.37 for the exchange-correlation

potential density (vxc = vx + vc), the last two terms in Eq. 1.41 become:

∫
vxc(ρA(r) + ρB(r))χµ(r)χν(r) dr

=

∫
vxc(ρA(r) + ρB(r))χµ(r)χν(r) dr+

+

∫
vxc(ρA(r))χµ(r)χν(r) dr−

∫
vxc(ρA(r))χµ(r)χν(r) dr+

+

∫
vxc(ρB(r))χµ(r)χν(r) dr−

∫
vxc(ρB(r))χµ(r)χν(r) dr . (1.42)

Reorganizing the terms in Eq. 1.41, the working expression for the MLDFT
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Fock matrix can be obtained:

Fµν = hµν

2eA

+Jµν(D
A)− cxKµν(D

A)

+
∫
vxc(ρ

A(r))χµ(r)χν(r) dr

2eB

+Jµν(D
B)− cxKµν(D

B)

+
∫
vxc(ρ

B(r))χµ(r)χν(r) dr

2enon−add

{
+
∫
[vxc(ρ(r))− vxc(ρ

A(r))− vxc(ρ
B(r))]χµ(r)χν(r) dr

(1.43)

where, the two-electron contributions of A and B fragments and the interaction

term AB are highlighted as 2eX , {X = A,B,AB}. Note that 2eB is a one-

electron contribution being DB (and consequently ρB(r)) constant during the

active density optimization.

There are two main advantages of using MLDFT compared to full DFT:

1. in MLDFT, at each cycle, only the active exchange term is to be

computed, because the exchange integral of the inactive fragment,

constant during the optimization, is computed at the first SCF cycle

only.

2. MLDFT SCF procedure can be performed in the MO basis of the

active part only, thus intrinsically reducing the computational time as

previously observed for the MLHF method.193

1.4.3. Extension of MLHF and MLDFT to Open-Shell Systems

In this thesis, the described MLHF and MLDFT are further extended to the

calculation of the electronic structure of open-shell systems. To this end, the

unrestricted formalism is exploited, and the resulting methods are called

unrestricted MLHF (UMLHF) and unrestricted MLDFT (UMLDFT).

The starting point to derive UMLHF/UMLDFT is the expression of the energy

E[Dα,Dβ] for open-shell systems in the unrestricted formalism:
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E[Dα,Dβ] = E[Dα] + E[Dβ]

= TrhDα +
1

2
TrDαJ(Dα +Dβ)

− cx

(
1

2
TrDαK(Dα)

)
+ (1− cx)

∫
ρα(r)εx[ρ(r)]dr

+

∫
ρα(r)εc[ρ(r)]dr

+ TrhDβ +
1

2
TrDβJ(Dα +Dβ)

− cx

(
1

2
TrDβK(Dβ)

)
+ (1− cx)

∫
ρβ(r)εx[ρ(r)]dr

+

∫
ρβ(r)εc[ρ(r)]dr

(1.44)

E[Dα,Dβ] is split into two terms, Eα and Eβ, which refer to α and β spin. The

Dσ are spin density matrices (with σ = α, β), h is the one-electron operator,

and J and K are Coulomb and exchange matrices, respectively. Equation 5.1

is formulated for a generic DFT functional, where ρσ(r) are spin DFT density

functions and εx, εc indicate exchange and correlation energy densities per unit

particle. The UHF equations can easily be recovered by imposing cx = 1 and

εc = 0. The total density matrix D can be obtained from α and β spin density

matrices as D = Dα +Dβ.

Similarly to the closed shell case,192,193 unrestricted MLHF/MLDFT are

formulated by separating the total system into active (A) and inactive (B)

parts. From a mathematical point of view, the separation is performed by

decomposing spin-density matrices into active Dσ
A and inactive Dσ

B

contributions:

Dα = Dα
A +Dα

B ⇒ ρα(r) = ραA(r) + ραB(r)

Dβ = Dβ
A +Dβ

B ⇒ ρβ(r) = ρβA(r) + ρβB(r) (1.45)

A similar partitioning applies to DFT spin density functions (ρα(r), ρβ(r)).

22



Quantum Embedding Methods 1.4

Note that in general Dα
X ̸= Dβ

X , {X = A,B}. By substituting Eq. 5.2 into

Eq. 5.1, we obtain:

E[Dα
A,D

α
B,D

β
A,D

β
B] = E[Dα

A,D
α
B] + E[Dβ

A,D
β
B]

(1.46)

where E[Dσ
A,D

σ
B] ({σ = α, β}) is given by:

E[Dσ
A,D

σ
B] =

Eσ
A

TrhDσ
A + 1

2
TrDσ

AJ(DA)

−1
2
cxTrD

σ
AK(Dσ

A) +
∫
ρσA(r)εxc(ρA(r))dr

Eσ
B

+TrhDσ
B + 1

2
TrDσ

BJ(DB)

−1
2
cxTrD

σ
BK(Dσ

B) +
∫
ρσB(r)εxc(ρB(r))dr

Eσ
int

+TrDσ
AJ(DB)− cxTrD

σ
AK(Dσ

B)

+
∫
ρσA(r)εxc(ρB(r))dr+

∫
ρσB(r)εxc(ρA(r))dr

Eσ
non−add

+
∫
ρσ(r)εxc(ρ(r))dr

−
∫
ρσ(r)εxc(ρA(r))dr−

∫
ρσ(r)εxc(ρB(r))dr

(1.47)

In Eq. 5.4, εc+(1− cx)εx is substituted by εxc to make the notation compact,

and energy terms are separated into active and inactive contributions (Eσ
A,B).

Also, the coupling terms are divided into a purely interaction energy term,

Eσ
int, and a non-additive contribution Eσ

non−add, which originates from the non

linearity of εx and εc. It is worth noting that the non-additive energy terms

vanish for UMLHF. As expected, the partitioning of the different terms in

Eq. 5.4 is coherent with the MLDFT formulation for closed shell systems (see

Ref.192).

As already discussed in the Introduction, the energy of the active fragment A

is optimized while the inactive density B is kept fixed to the value resulting

from the partitioning in Eq. 5.2. Therefore, the UMLHF/MLDFT spin-Fock

matrix (F σ
µν , in the AO basis {χµ}) can easily be recovered by differentiating

the energy in Eq. 5.4 with respect to the active density (Dσ
A, ρ

σ
A), i.e.:
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F σ
µν = hσµν

2eσA

+Jµν(DA)− cxKµν(D
σ
A)

+
∫
vσxc(ρ

A(r))χµ(r)χν(r) dr

2eσB

+Jµν(DB)− cxKµν(D
σ
B)

+
∫
vσxc(ρ

B(r))χµ(r)χν(r) dr

2eσnon−add

+
∫
[vσxc(ρ(r))− vσxc(ρ

A(r))− vσxc(ρ
B(r))]

χµ(r)χν(r) dr

(1.48)

where we have used the compact notation vxc = (1 − cx)vx + vc. The two-

electron contributions to the Fock matrix can be are grouped into different

2eX terms, with X = A,B. 2eσnon−add is due to the non-linearity in the DFT

functional, and again vanishes for UMLHF. Finally, note that 2eσB accounts for

the frozen fragment, of which the density (DB, ρ
B(r)) does not change along

SCF cycles. Therefore, 2eσB is a constant one-electron contribution, which

is computed only once, at the beginning of the SCF procedure, similarly to

MLHF/MLDFT.192,193

1.4.4. Coupling with an outer layer described with

MM force fields

The UMLHF(UMLDFT) can be coupled to an additional MM(FQ) layer. To

this end, we introduce the total energy of the system:

E = EUMLHF(DFT) + EMM + Eint
UMLHF(DFT)/MM , (1.49)

where EUMLHF (DFT ) is given in Eq. 5.4, whereas EMM and Eint
UMLHF(DFT)/MM

are MM and UMLHF(DFT)/MM interaction energies, respectively.

Electrostatic and polarizable QM/MM embedding differ from the way the

interaction energy is specified (in our case Eint
UMLHF(DFT)/MM); electrostatic

embedding approaches limit the description to electrostatic forces only,

whereas mutual QM/MM polarization is modelled in polarizable embedding

approaches.8,62 In particular, non-polarizable embedding methods place fixed

charges on MM atoms, which polarize the QM density. Different polarizable
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QM/MM approaches exist;56,58,127,129,131,203,204 in this work we exploit

QM/Fluctuating Charges (FQ),62,205 where each MM atom is assigned an

atomic electronegativity (χ) and chemical hardness (η), which give rise to

electric charges (q) as a response to the atomic chemical potential.52,62,152–154

Therefore, for both non-polarizable UMLHF(DFT)/MM or polarizable

UMLHF(DFT)/FQ, the UMLHF (DFT)/MM interaction energy can be

written as follows:

Eint
UMLHF(DFT)/MM =

∑
i

qiVi(D
α +Dβ) , (1.50)

where Vi(D
α +Dβ) is the electric potential generated by the total QM spin-

density (i.e. both active and inactive contributions) on the i−th charge (qi). In

the case of non-polarizable QM/MM, qi values are fixed, whereas in QM/FQ

they are obtained by minimizing the following energy expression:

E [Dα
A,D

β
A,D

α
B,D

β
B,q,λ] = EUMLHF(DFT)[D

α
A,D

α
B]

+ EUMLHF(DFT)[D
β
A,D

β
B]

+
1

2
q†
λMqλ + q†

λCQ

+ q†
λV(Dα +Dβ), (1.51)

where EUMLHF(DFT)[D
α
A,D

α
B] and EUMLHF(DFT)[D

β
A,D

β
B] due to the total α-

and β spin-densities, respectively. In Eq. 1.51, qλ indicates a vector

collecting FQ charges and a set of Lagrangian multipliers, which ensure

charge conservation on each fragment composing the MM layer (e.g. on each

solvent molecules for solvated systems). The M matrix is the interaction

kernel between the FQ charges, which also contains the Lagrangian blocks,110

and the vector CQ accounts for the interaction between permanent moments,

i.e. χ and charge constraints Q on each FQ moiety. The FQ charges

equilibrated for the UMLHF(DFT)/FQ systems are obtained by minimizing

the energy functional in Eq. 1.51. This procedure yields the following set of

linear equations:

Mqλ = −CQ −V(Dα +Dβ) . (1.52)

In parallel, UMLHF(DFT)/MM spin Fock matrices are defined as follows:

F σ
µν = F σ,UMLHF(DFT)

µν +
∑
i

qiVi,µν . (1.53)
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where F
σ,UMLHF(DFT)
µν is defined in Eq. 1.43. As for energy contributions, the

additional QM/MM term is fixed and computed only at the first SCF cycle in

case of non-polarizable QM/MM, whereas it changes in QM/FQ, because FQ

charges depend on QM densities. Therefore, UMLHF(DFT)/FQ contribution

to the Fock matrix needs to be updated at each SCF cycle, thus introducing

mutual polarization effects between UMLHF(DFT) and FQ layers.

1.5. Properties Under Investigation

In this work, the multiscale models presented in the previous sections have

been applied to different kind of molecular properties, such as: polarizability,

first-hyperpolarizability and the Hyperfine Coupling Constant (hcc) of open

shell systems.

1.5.1. Polarizability and First Hyperpolarizability

The discipline of nonlinear optics was born in 1875 when John Kerr first

discovered that a material became birefringent when it was placed in an

electric field: the refractive index was different in the directions parallel and

perpendicular to the field.206 Subsequently, such an effect (and many others)

were understood in terms of the induced polarization which atoms and

molecules sustain in the presence of a static or dynamic (oscillating) electric

field.207–221

Figure 1.1. Scheme of a non-linear optical phenomenon occurring

under the action of an external electric field.

Under the action of an external field E(t), the dipole moment can be expressed

as a Taylor series:
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µ(t) = αE(t) +
1

2
βE(t)E(t) +

1

6
γE(t)E(t)E(t) + ... (1.54)

α is the dipole polarizability and governs the linear effect, and β,γ, ..., are

the so-called dipole first, second, ..., hyperpolarizabilities, describing non-linear

phenomena. Note that such quantities are generally n-elements tensors.

From the QM point of view, a general external electric field is usually seen as

an external perturbation associated to a specific frequency:

H = H0 + V (t),

V (t) = −µ · E(t)eϵt,
(1.55)

where H0 is the molecular Hamiltonian, µ is the dipole moment and ϵ is an

infinitesimal contribution that lead V (t) to zero for t→ −∞. To find a solution

for the described problem, it is necessary consider V (t) as a small perturbation

and apply the time-dependent perturbation theory. In this framework the N -th

order wave function is:

|ΨN(t)⟩ =
∑
n

dNn e
−iEnt/ℏ |n⟩ (1.56)

The expectation value of dipole moment can be written as a sum of perturbed

dipole moments

⟨Ψ(t)|µ|Ψ(t)⟩ = ⟨µ⟩0 + ⟨µ⟩1 + ⟨µ⟩2 + . . . , (1.57)

where the perturbed dipole moments are obtained as expectation values of the

proper perturbed wavefunctions:

⟨µ⟩0 = ⟨0|µ|0⟩ ,

⟨µ⟩1 = ⟨Ψ0|µ|Ψ1⟩+ ⟨Ψ1|µ|Ψ0⟩ ,

⟨µ⟩2 = ⟨Ψ0|µ|Ψ2⟩+ ⟨Ψ1|µ|Ψ1⟩+ ⟨Ψ2|µ|Ψ0⟩ ,

(1.58)

where |0⟩ is the eigenvector of the time-independent molecular Schrodinger

equation, whereas the zero-order, first-order and second-order wave function
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expressions are:

|Ψ0⟩ = e−iE0t/ℏ |0⟩

d1m(t) =
1

h

∑
ω1

⟨m|µi|0⟩Eω1
i

ωm0 − ω1 − iϵ
ei(ωm0−ω1)teϵt

d2m(t) =
1

h2

∑
ω1ω2

∑
n

⟨m|µi|n⟩ ⟨n|µj|0⟩Eω1
i Eω2

j

(ωm0 − ω1 − ω2 − i2ϵ)(ωn0 − ω2 − iϵ)
ei(ωm0−ω1−ω2)te2ϵt

(1.59)

where Eω1
i is the i -component of oscillating electric field at ω1 frequency.

Polarizability

The first-order polarization is obtained from ⟨µ⟩1 expression by including the

zero-order as well as the first-order correction to the wavefunction:

⟨µ⟩1i = ⟨ψ0|µ|ψ1⟩+ ⟨ψ1|µ|ψ0⟩

=
∑
ω1

1

ℏ
∑
n

[
⟨0|µi|n⟩ ⟨n|µj|0⟩
ωn0 − ω1 − iϵ

+
⟨0|µj|n⟩ ⟨n|µi|0⟩
ωn0 − ω1 + iϵ

]
Eω1

β e−iω1teϵt.
(1.60)

where it has been assumed that [Eω1 ]∗ = E−ω1 . By a direct comparison with

Eq.1.54, the QM formula for the linear dipole polarizability can be identify as:

αα,β(−ω;ω) =
1

ℏ
∑
n

[
⟨0|µi|n⟩ ⟨n|µj|0⟩
ωn0 − ω1 − iϵ

+
⟨0|µj|n⟩ ⟨n|µi|0⟩
ωn0 + ω1 + iϵ

]
(1.61)

It is clear that such a formula can be used directly as it stands for practical

computations of the optical polarization once the excitation energies and

transition moments of the system are known. For the two terms in the

sum-over-states expression in Eq.1.61 that involve the ground state (n = 0),

the transition frequency ωn0 is null. The two terms are of opposite sign and

therefore cancel out. The positive infinitesimal ϵ has been added in the

perturbation not only to avoid singularities or divergence in the

time-integration step of the expansion coefficients dn above but also to avoid

divergences in the linear response function itself. The imaginary term in the

denominator of Eq.1.61 can safely be neglected in the calculation of α(−ω;ω)
for external frequencies far from the excitation energies of the molecular

system. Since the set of eigenstates |n⟩ can be chosen as real, without loss of
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generality, the linear response function is real in the non-resonant region.

The working formula will in this case take the form:

αα,β(−ω;ω) =
1

ℏ
∑
n ̸=0

[
⟨0|µi|n⟩ ⟨n|µj|0⟩

ωn0 − ω1

+
⟨0|µj|n⟩ ⟨n|µi|0⟩

ωn0 + ω1

]
. (1.62)

First Hyperpolarizability

The explicit formula for the linear polarizability is identified from the linear

polarization. In the same way, the corresponding formula for the first

hyperpolarizability can be derived from the second-order polarization

equation. The starting point is the ⟨µ⟩2 expression presented above 1.58. By

inserting the first-order (ψ1) and the second-order (ψ2) correction to the

wavefunction, three terms can be recognized:

⟨ψ0|µ|ψ2⟩ =

=
∑
ω1ω2

1

ℏ2
∑
np

⟨0|µi|n⟩ ⟨n|µj|p⟩ ⟨p|µk|0⟩Eω1
j Eω2

k

(ωn0 − ω1 − ω2 − i2ϵ)(ωp0 − ω2 − iϵ)
e−i(ω1+ω2)te2ϵt

⟨ψ1|µ|ψ1⟩ =

=
∑
ω1ω2

1

ℏ2
∑
np

⟨0|µj|n⟩ ⟨n|µi|p⟩ ⟨p|µk|0⟩Eω1
j Eω2

k

(ωn0 + ω1 + iϵ)(ωp0 − ω2 − iϵ)
e−i(ω1+ω2)te2ϵt

⟨ψ2|µ|ψ0⟩ =

=
∑
ω1ω2

1

ℏ2
∑
np

⟨0|µk|n⟩ ⟨n|µj|p⟩ ⟨p|µi|0⟩Eω1
j Eω2

k

(ωn0 + ω1 + ω2 + iϵ)(ωp0 + ω2 + iϵ)
e−i(ω1+ω2)te2ϵt,

(1.63)

where, again, [Eω]* = E−ω equality has been adopted. Considering that j

and k are merely summation indices, by the use of the Einstein summation

convention, Eqs. 1.63 can be forced to be intrinsically symmetric without

altering the physical polarization operating with 1
2

∑
P1,2 which performs the

summation of terms obtained by permuting the pairs (j, ω1) and (k, ω2). By

introducing the operator P1,2, which permutes the couples (j, ω1) and (k, ω2),
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the second-order polarization becomes:

⟨µ⟩2 = ⟨ψ0|µ|ψ2⟩+ ⟨ψ1|µ|ψ1⟩+ ⟨ψ2|µ|ψ0⟩

=
1

2

∑
ω1ω2

1

ℏ2
∑

P1,2

∑
np

[
⟨0|µi|n⟩ ⟨n|µj|p⟩ ⟨p|µk|0⟩

(ωn0 − ω1 − ω2 − i2ϵ)(ωp0 − ω2 − iϵ)

+
⟨0|µj|n⟩ ⟨n|µi|p⟩ ⟨p|µk|0⟩

(ωn0 + ω1 + iϵ)(ωp0 − ω2 − iϵ)

+
⟨0|µk|p⟩ ⟨p|µj|n⟩ ⟨n|µi|0⟩

(ωn0 + ω1 + ω2 + i2ϵ)(ωp0 + ω2 + iϵ)

]
Eω1

j Eω2
k e−i(ω1+ω2)te2ϵt

(1.64)

and, by comparison with Eq.1.54, the expression for the first

hyperpolarizability can be identified as:

βαβγ(−ωσ;ω1, ω2) =
1

ℏ2
∑

P1,2

∑
np

[
⟨0|µi|n⟩ ⟨n|µj|p⟩ ⟨p|µk|0⟩

(ωn0 − ωσ − i2ϵ)(ωp0 − ω2 − iϵ)

+
⟨0|µj|n⟩ ⟨n|µi|p⟩ ⟨p|µk|0⟩

(ωn0 + ω1 + iϵ)(ωp0 − ω2 − iϵ)

+
⟨0|µk|p⟩ ⟨p|µj|n⟩ ⟨n|µi|0⟩

(ωn0 + ωσ + i2ϵ)(ωp0 + ω2 + iϵ)

]
.

(1.65)

Analogously with the linear response, if all incidental frequencies (ω1, ω2) are

non-resonant then the first hyperpolarizability will be real, which is

equivalent to associate ϵ = 0 in Eq.1.65 Therefore, the expression for the first

hyperpolarizability can be written in a more compact form:

βαβγ(−ωσ;ω1, ω2) =
1

ℏ2
∑

P−σ,1,2

∑
np

⟨0|µi|n⟩ ⟨n|µj|p⟩ ⟨p|µk|0⟩
(ωn0 − ωσ)(ωp0 − ω2)

. (1.66)

where P−σ,1,2 denote the sum of the six terms one gets by permuting pairs of

(i,−ωσ), (j, ω1) and (k, ω2). Similarly to polarizability, we can split Eq.1.66

as:

βαβγ(−ωσ;ω1, ω2) =
1

ℏ2
∑

P−σ,1,2

[∑
np ̸=0

⟨0|µi|n⟩ ⟨n|µj|p⟩ ⟨p|µk|0⟩
(ωn0 − ωσ)(ωp0 − ω2)

+
∑
p ̸=0

⟨0|µi|0⟩ ⟨0|µj|p⟩ ⟨p|µk|0⟩
−ωσ(ωp0 − ω2)

+
∑
n̸=0

⟨0|µi|n⟩ ⟨n|µj|p⟩ ⟨0|µk|0⟩
−(ωn0 − ωσ)ω2

+
⟨0|µi|0⟩ ⟨0|µj|0⟩ ⟨0|µk|0⟩

ωσω2

]
,

(1.67)
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where
1

ωσω2

=
1

ω1ω2

− 1

ωσω1

(1.68)

cancels all the permutations presented in Eq.1.67. Finally, by interchanging

i,−ωσ and j, ω1 in the second term and k, ω2 and j, ω1 in the last contribution

of Eq. 1.67, the expression of first hyperpolarizability can be rewritten in a

compact way as:

βαβγ(−ωσ;ω1, ω2) =
1

ℏ2
∑

P−ω,1,2

∑
n,p ̸=0

⟨0|µi|n⟩ ⟨n|µ̄j|p⟩ ⟨p|µk|0⟩
(ωn0 − ωσ)(ωp0 − ω2)

. (1.69)

where µ̄ = µ− ⟨0|µ|0⟩ is the fluctuation dipole moment.

Born Oppenheimer Approximation

In this work, all calculations of nonlinear optical vibrational phenomena have

been carried out within the framework of the Born-Oppenheimer (BO)

approximation.222,223 Within the BO approximation, molecular polarizability

and first hyperpolarizability (both static and frequency-dependent) can be

split in three different terms: the purely electronic contribution of the

molecule at equilibrium geometry, the pure vibrational correction and the

zero-point vibrational correction.224–227 The BO approximation is based on

the assumption that the motions of nuclei and electrons can be treated

separately, and so their wavefunctions. This is a physically-based

approximation, considering that nuclei are heavier than electrons. By

assuming that the complete set of vibronic product states can be considered

as the exact states of the molecular systems, the polarizability (α(−ω;ω))
can be written as225–227

ααβ(−ω;ω) =
1

ℏ
∑
K,k ̸=0

[
⟨0, 0|µi|K, k⟩ ⟨k,K|µj|0, 0⟩

ωK,k − ω

+
⟨0, 0|µj|K, k⟩ ⟨k,K|µi|0, 0⟩

ωK,k + ω

]
,

(1.70)

whereK runs over electronic states, whereas k runs over vibrational one. ℏωK,k

indicates the energy difference between the K, k and 0, 0 vibronic states. To

simplify Eq.1.70, we consider that the energies involved in electronic transitions

are much larger than those involved in vibrational excitations. Thus, ωK,k ≈
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ωK,0. By then splitting the sum in Eq.1.70 in electronic and nuclear excitations,

we obtain:

ααβ(−ω;ω) =

=
1

ℏ
∑
K ̸=0

⟨0|

[
⟨0|µi|K⟩ ⟨K|µj|0⟩

ωK0 − ω
+

⟨0|µj|K⟩ ⟨K|µi|0⟩
ωK0 + ω

]
|0⟩

+
1

ℏ
∑
k ̸=0

[
⟨0|µ00

i |k⟩ ⟨k|µ00
j |0⟩

ωk0 − ω
+

⟨0|µ00
j |k⟩ ⟨k|µ00

i |0⟩
ωk0 + ω

]
,

(1.71)

where µ00 = ⟨0|µ|0⟩. The last two terms represent the pure vibrational

contribution.209,211 The former term in Eq.1.70 is the corresponding

electronic contribution to the polarizability averaged over the ground

vibrational state. The latter contribution is usually divided into two terms,

one corresponding to the purely electronic contribution as obtained at the

equilibrium geometry, and one arising from the averaging of the polarizability

over the vibrational ground state. Such a term is referred to as the zero-point

vibrational averaging correction to the polarizability.

To conclude, under the BO approximation, both the total molecular

polarizability and first hyperpolarizability are expressed as a sum of the three

aforementioned contributions:

α = αeq +∆ZPα + αv

β = βeq +∆ZPβ + βv
(1.72)

where eq is the electronic contribution to the property calculated at the

equilibrium geometry of the molecule, ∆ZP the zero-point vibrational

averaging contribution, and v the pure vibrational contribution.

The largest contribution to the total property is the electronic term (αeq or

βeq), and generally, both the pure vibrational and the zero-point corrections

are neglected, although they may also play an important role when

comparing computed data with experiments.224 Therefore, in the following,

we focus on the computational techniques exploited to obtain the αeq and

βeq. In particular, in this thesis, polarizabilities and

first-Hyperpolarizabilities of selected organic dyes dissolved in aqueous

solutions have been calculated. To this end, QM/FQ and QM/FQFµ

approaches coupled to the quantum-Pauli Repulsion method described above

have been exploited.133
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By resorting to an SCF description of the QM portion, the two investigated

properties have been obtained by exploiting the response theory formalism,

because sum-over-state expressions are practically unfeasible from the

computational point of view. In this framework, dynamic polarizability

(α(−ω;ω)) and first hyperpolarizability (β(−2ω;ω, ω)) are calculated

as:228,229

α(−ω;ω) = TrµP(1)

β(−2ω;ω, ω) = 2TrµP(2)
(1.73)

where µ is the electric dipole moment integral matrix and P(1) and P(2) are

the first and second-order perturbed density matrices respectively. A generic

second-order density matrix is obtained by solving perturbed equations up to

the second order; however, when only one dynamic perturbation is involved,

it is possible to avoid the solution of the second-order coupled perturbed

equations by using an iterative procedure to reconstruct the density

matrix.228–230 Thus, only the first-order perturbed density matrix P(1) is

constructed, by resorting to linear response theory and by solving the

first-order CPHF/CPKS equations.178

To calculate the first order perturbed density matrices, the first-order Coupled

Perturbed Hartree-Fock or Kohn-Sham (CPHF-CPKS) equations need to be

solved: [(
Ã B̃

B̃∗ Ã∗

)
− ω

(
1 0

0 −1

)](
X

Y

)
= −

(
QX

QY

)
(1.74)

where, 1 is the identity matrix, (X,Y) is the linear response vector (from

which the perturbed density matrix is computed) and (QX,QY) is the

perturbed gradient vector. Ã and B̃ matrices are defined, in a general

DFT/MM framework, as:231

Ãai,bj = (ϵa − ϵi)δabδij + (ai|bj) + fxc
ai,bj + CMM

ai,bj

B̃ai,bj = (ai|bj) + CMM
ai,bj

(1.75)

where (ai|bj) are two Coulomb integrals and ϵ are the molecular orbital

energies, and fxc is the DFT XC contribution. CMM instead defined the

QM/MM contribution, and its expression depends on the exploited

embedding method, and it is different from zero for polarizable embedding

33



Properties Under Investigation 1.5

models only. For QM/FQ, it reads:232

CFQ
ai,bj =

Nq∑
P

(∫
R3

ϕa(r)
1

|r− rp|
ϕi(r)dr

)
· qTP (ϕb, ϕi), (1.76)

where qTP are the perturbed fluctuating charges adjusted to the transition

density PT
K = XK +YK . For QM/FQFµ an extra term due to the presence

of fluctuating dipoles appears in CMM :232

CFQ
ai,bj =

Nq∑
P

(∫
R3

ϕa(r)
1

|r− rp|
ϕi(r)dr

)
· qTP (ϕb, ϕi)

−
Nq∑
P

(∫
R3

ϕa(r)
(r− rp)

|r− rp|3
ϕi(r)dr

)
· µT

P (ϕb, ϕi).

(1.77)

Perturbed charges (qT ) and perturbed dipoles (µT ) are obtained trough the

system of equations:
Tqq 1λ Tqµ

1†
λ 0 0

−Tqµ†
0 Tµµ




q

λ

µ

 =


−V(PT

K)

0

E(PT
K),

 (1.78)

where

V (PT
K) = −

∑
ai

PT
K,ai

∫
R3

ϕa(r)
1

|r− rp|
ϕi(r)dr,

E(PT
K) =

∑
ai

PT
K,ai

∫
R3

ϕa(r)
(r− rp)

|r− rp|3
ϕi(r)dr.

(1.79)

The right hand side of Eq.1.78 contains both the electric potential and field

due to the perturbed density matrix PT
K . Once CPHF/KS equations are

solved, α(−ω;ω) and β(−2ω;ω, ω) can be calculated. The electrostatic terms

in QM/FQ and QM/FQFµ, affect response properties both directly, through

explicit terms in Eq.1.75 and by altering molecular orbitals. As a contrary,

the QM/MM Pauli repulsion term instead gives no explicit, direct

contribution, thus it is affecting the molecular properties only indirectly, i.e.

by modifying the Molecular Orbitals (MOs) of the QM portion; however it is

is worth remarking that the impact of QM/MM Pauli repulsion on the QM

MOs can be crucial.232
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1.5.2. Hyperfine Coupling Constant

EPR spectroscopy has emerged as the most effective technique to detect and

characterize organic free radicals in different conditions and

environments.233,234 To effectively simulate such a property, the spin

Hamiltonian, which describes the interaction between the electron spin (S)

and an external magnetic field (B) is usually introduced:

HS = µBS⃗ · g · B⃗ +
1

ℏγI
S⃗ ·A · µ⃗I (1.80)

where µBS⃗ · g · B⃗ is the Zeeman interaction between the electron spin and the

external magnetic field. Such a contribution is written in terms of the Bohr

magneton µB and g = ge13 + ∆gcorr (ge = 2.0022319). ∆gcorr is a correction

introduced to take into account the relativistic mass (∆gRM), the gauge first-

order corrections (∆gC) and a term arising from the coupling of the orbital

Zeeman (OZ) and the spin–orbit coupling (SOC) operator.235,236 Finally, the

hyperfine interaction between S and the nuclear spin I is defined in terms of

the the hyperfine coupling tensor A (last term in Eq. 1.80) Such a tensor

defined for each nucleus X can be written as:

A(X) = AX13 +Adip(X) (1.81)

where Adip(X) is the dipolar term (a zero-trace tensor). Interestingly,

Adip(X) = 0 in isotropic media (e.g. solutions). AX is the Fermi-contact

interaction, an isotropic contribution also known as hyperfine coupling

constant (hcc). Its expression is given in terms of the spin density (ρX) at

nucleus X:

AX =
4π

3
µBµXgegX ⟨SZ⟩−1 ρα−β

X (1.82)

where ρα−β
X can be obtained as:

ρα−β
X =

∑
µν

Pα−β
µν ⟨χµ(r)|δ(r− rX)|χν(r)⟩ (1.83)

Pα−β is the difference between α and β density matrices. In this framework,

hccs have been evaluated by exploiting UMLHF and UMLDFT, as coupled

with an additional layer treated at the MM level. Obviously, the
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UMLHF(DFT) hccs are computed for the active part only. Thus, the

difference between α and β density matrices in Eq. 1.83 only refers to active

spin-density matrices.

36



CHAPTER 2

Overview of the Attached Papers

In Paper 1, a computational study of polarizabilities and first

hyperpolarizabilities of different organic acids in aqueous solutions is

reported. In particular, we focus on solute-water interactions, and how they

affect solute’s linear and non-linear electric response properties. To this end,

the polarizable QM/FQ and QM/FQFµ approaches are used. In particular,

as amply explained in the previous Chapter, both charges and dipoles

dynamically respond to the solute’s QM electron density, and viceversa, thus

introducing mutual polarization effects. In addition, we also considered

quantum confinement effects treated by endowing solvent molecules with a

parametric electron density, which exerts Pauli repulsion forces upon the

solute. Through the application and testing on a set of aromatic molecules in

solution we show that, for both polarizabilities and first hyperpolarizabilities,

the resulting values arise from a delicate balance between electrostatics,

hydrogen-bonding, and non-electrostatic solute solvent interactions.

Paper 2 introduces a novel density matrix-based multilevel approach within

the framework of density functional theory (DFT). In the resulting multilevel

DFT, the system is partitioned into an active and an inactive fragment, and

all interactions between the two parts are retained at the DFT level. In

particular, electrostatics, polarization and Pauli repulsion interactions are

quantum-mechanically described. Thus, differently from the method

proposed in Paper 1, there is no need of specific parametrization (for χ, η

(and α) for FQ(Fµ)). The partitioning of the total system into the two parts
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is performed upon the density matrix, differently from alternative quantum

embedding approaches based on DFT, such as FDE. The orthogonality

between the two parts is maintained by solving the Kohn-Sham equations in

the MO basis for the active part only, while keeping the inactive density

matrix frozen. This results in intrinsic reduction of the computational cost.

To show the quality of the proposed method, application to aqueous

solutions of methyloxirane and glycidol is proposed.

In Paper 3 a novel multiscale approach is presented, which can describe the

electronic structure of open-shell molecular systems embedded in the external

environment. This method is based on the coupling of multilevel Hartree-Fock

(MLHF) and Density Functional Theory (MLDFT), suitably extended to the

unrestricted formalism, to Molecular Mechanics (MM) force fields (FF). As

for its restricted counterpart (MLDFT), the system is divided into active and

inactive parts, thus describing the most relevant interactions (electrostatic,

polarization and Pauli repulsion) at the quantum level. The partitioning isin

this case performed upon the α and β density matrices, and orthogonality is

maintained within each spin-density. The Kohn-Sham equations are solved

in the MO basis for the active part only, while keeping the inactive α and β

density matrices frozen. A surrounding MM part, which is formulated in terms

of non-polarizable or polarizable FQ, is included. The polarizable FQ part in

this case responds to the whole density of the UMLDFT portion, i.e. active +

inactive densities. In this way, a physically consistent treatment of long-range

electrostatics and polarization effects is introduced. Finally, the approach is

extended to the calculation of hyperfine coupling constants of nitroxyl radicals

in aqueous solution, which are used as spin-probes in many applications due

to their highly sensitivity to the external environment.
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ABSTRACT: We present a computational study of polarizabilities and hyper-
polarizabilities of organic molecules in aqueous solutions, focusing on solute−water
interactions and the way they affect a molecule’s linear and non-linear electric
response properties. We employ a polarizable quantum mechanics/molecular
mechanics (QM/MM) computational model that treats the solute at the QM level
while the solvent is treated classically using a force field that includes polarizable
charges and dipoles, which dynamically respond to the solute’s quantum-mechanical
electron density. Quantum confinement effects are also treated by means of a
recently implemented method that endows solvent molecules with a parametric
electron density, which exerts Pauli repulsion forces upon the solute. By applying the
method to a set of aromatic molecules in solution we show that, for both polarizabilities and first hyperpolarizabilities, observed
solution values are the result of a delicate balance between electrostatics, hydrogen-bonding, and non-electrostatic solute solvent
interactions.

■ INTRODUCTION

The investigation of non-linear optical properties of molecular
systems has for long been of particular interest owing to the
peculiar optical behavior of materials that possess a high non-
linear response, which have found applications in fields such as
signal processing and telecommunications.1 In parallel with
experimental advances, a significant amount of effort has been
devoted to the development of computational protocols to aid
in both predicting and rationalizing the non-linear optical
response a molecule or material in the condensed phase.
In fact, the problem of accurately simulating electric

response properties of molecular systems in solution has
been the object of many studies over the years, with research
effort focusing on increasing the accuracy of the quantum
mechanics (QM) methods employed for the simulation of the
light−matter interaction, which is at the origin of the response,
as well as investigating different strategies to incorporate
environmental effects into the calculation, particularly in the
case of molecules in liquid solutions.2−9

Ab initio calculations typically rely on a choice of a model to
treat electron-correlation effects coupled to a suitable basis set,
and different levels of theory have been explored in the
literature.10−24 The electronic component alone is sometimes
not enough to properly reproduce both the linear and non-
linear optical response of molecules, and vibrational effects can
be quite relevant. Several studies have delved into this problem
and offered computationally efficient solutions.5,25−27 When it
comes to the modeling of environmental properties, the
literature has mostly focused on ways to model the purely

electrostatic component of the solute−solvent interaction,
both to produce general solvation models, and as it pertains to
the calculation of linear and non-linear optical properties
themselves.28−35

Because electrostatic interactions are long-range, an atom-
istic description of the solvent that properly accounts for the
effect upon the solute has to include a large number of
molecules. This fact, combined with the large configurational
space of the solute−solvent system that should be sampled,
makes a fully quantum-mechanical description computationally
prohibitive. Mixed quantum-classical focused models that treat
the solute quantum-mechanically while resorting to a classical
description of the solvent, which can be treated as either a
continuum or by preserving the atomistic detail and describing
the latter using molecular mechanics (MM) models, are a
suitable alternative.36−39 In the most basic formulation, QM/
MM models only account for the electrostatic solute−solvent
interaction, modeling the solvent by means of fixed charges.37

However, solvent polarization effects are crucial, especially if
one is interested in linear and non-linear optical proper-
ties,40−45 because otherwise the solvent remains insensitive to
the polarization effects induced upon the molecule by the
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probing electric field. Polarizable embedding methods establish
a mutual polarization between the QM solute and its
environment, and the solute−solvent interactions directly
affect the former’s response properties.41−43,46−49

In recent years, we have implemented a polarizable QM/
MM method that endows solvent atoms with charges (FQ)
and possibly dipoles (Fμ) that are allowed to fluctuate in
response to the solute’s electrostatic potential.42,46,50,51 We
have shown how the model can have tremendous success in
describing a wide array of spectroscopic properties of
molecules in water, a highly polar solvent that can form
hydrogen bonds with the solute. The properties we have
studied include Raman spectroscopy and Raman optical
activity,51,53 electronic and vibrational absorption and circular
dichroism,53−56 two-photon absorption,57 optical rotation,58,59

and electronic paramagnetic resonance.60 The model describes
electrostatic interactions through its fluctuating charges and
dipoles that dynamically respond to changes in the solute’s
electronic density and has recently been extended to the
treatment of non-electrostatic dispersion and repulsion
effects.60−62 These effects can be critical in determining linear
and non-linear electronic properties of a system.63 The
quantum repulsion exerted by the solvent upon the solute’s
electron density, in particular, has the effect of confining it
within the cavity occupied by the solute and is therefore
expected to reduce the latter’s polarizability and hyper-
polarizability. Commonly employed solvation models, includ-
ing the popular polarizable continuum model (PCM)36 only
account for solute−solvent electrostatics and therefore are
missing any confinement effect due to repulsion forces. Note
that alternative embedding methods that treat some solvent
molecules quantum-mechanically can include repulsion effects
naturally through the quantum treatment. These methods
often include a classical solvent layer, resulting in a QM/QM/
MM paradigm. The QM/FQ and related paradigms, however,
find their strength in being “focused” models, where only the
properties of the solute and solute−solvent interactions are
accurately treated, while the properties of the solvent itself are
not of interest, which helps limit the computational cost.
For these reasons, electrostatic, polarization, and quantum

repulsion effects are all expected to be particularly relevant in
the case of non-linear electric response properties, and it is
therefore worth exploring the importance of these effects on
model systems, both to confirm these intuitions and highlight
the shortcomings in standard calculations based on environ-
mental models, which often neglect one or more of these
effects, as well as the magnitude of the errors that would be
committed. To this end, we show how different solvation
forces contribute to the overall linear and non-linear optical
response on a set of six aromatic molecules in solution by
employing different electrostatic models based on the QM/
FQ(Fμ) paradigm, further enriched by the inclusion of
repulsion forces. This is the first time this solvation model is
applied to non-linear optical response properties. We show
that repulsion forces can indeed be just as important, if not
even more so, to the determination of a solute’s (hyper)-
polarizability as electrostatic interactions, even for a solvent as
polar as water. In the next section, the theoretical model is
briefly recalled in its various components followed by a
description of the computational protocol and the analysis of
the results. A summary of the work and future perspectives
conclude the manuscript.

■ THEORETICAL BACKGROUND
Molecular polarizabilities and hyperpolarizabilities can be
related to the microscopic response of a molecular system to
an external electric field E(t), represented by an induced dipole
moment μ(t):

t E EE( )
1
2

( e e )t ti i= ̃ + *̃ω ω−
(1)

t t t( ) cos( ) cos(2 )0 2μ μ μ μω ω= + + + Δω ω (2)

where ω is the frequency of the monochromatic incident light,
and Ẽ is the complex constant amplitude of the field. The
Fourier amplitude in eq 2 can be rewritten as a Taylor
expansion with respect to the external electric field.64 In
particular, second harmonic generation (SHG), i.e., the
generation of a photon at 2ω as a result of the interaction
with an incident ω photon reads:64

E E
1
4

( 2 ; , ):2μ β ω ω ω= −ω ω ω
(3)

The first hyperpolarizability β is a third-rank tensor that can
be described by a 3 × 3 × 3 matrix, whose 27 components are
not independent and can be reduced assuming Kleinman’s
symmetry.65

By exploiting the response theory formalism, the first-order
hyperpolarizability ( 2 ; , )β ω ω ω− can be calculated as66,67

P( 2 ; , ) 2 tr (2)β μω ω ω− = (4)

where μ is the electric dipole moment integral matrix and P(2)

is the second-order density matrix. A generic second-order
density matrix is obtained by solving perturbed equations up to
the second order; however, when only one dynamic
perturbation is involved, it is possible to avoid the solution
of the second-order coupled perturbed equations by using an
iterative procedure to reconstruct the density matrix.66−68

Hyperpolarizabilities produced by QM calculations are
three-indices tensor quantities. Any meaningful comparison
between calculated and experimental data must refer to certain
rotational invariants that can be obtained from the full tensor,
depending on the specifics of the experimental setup one
wishes to reproduce. In this work, we compare our results with
those obtained from hyper-Rayleigh scattering (HRS)69,70

experiments presented in ref 71. In that work, a comparison
between computed and experimental results was done by
referring to the following quantity:

( )
i k

ikk kik kki

2

∑ ∑β β β β| | = + +
i

k
jjjjjj

y

{
zzzzzz

(5)

Therefore, we refer to the same quantity for the sake of
comparison between calculated and experimental data, as was
also done in a previous work.72 However, it is worth noticing
that alternative definitions for HRS values have been proposed
in the literature, giving computed results directly comparable
with experimental data.20,70,73

In the following, within tables and figures, we use the
notation β( − 2ω; ω, ω) in order to emphasize the particular
type of frequency dependence; however, note that the
presented values always refer to eq 5.
Molecules in solution interact dynamically with the solvent

through both electrostatic and non-electrostatic forces. The
solute−solvent interaction energy depends on the solute’s
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electronic density, which is affected by the probing electro-
magnetic field. Therefore, an embedding model that seeks to
capture solvation effects upon a measured linear and non-linear
electric response property should take the dynamical aspects of
the mutual solute−solvent interaction into account. In this
work, we employ the fully atomistic QM/FQ and QM/FQFμ
models to describe the electrostatic interactions between the
solute and solvent, while resorting a recently implemented
model to account for Pauli repulsion effects, the details of
which are recalled in the following section.
Solvation Model. As explained above, in this work, we are

adopting a multiscale QM/MM approach to describe solvent
effects on a QM solute. In particular, the interaction energy
EQM/MM
int between the QM and MM layers is formulated as

E E E EQM/MM
int

QM/MM
ele

QM/MM
pol

QM/MM
rep= + + (6)

where EQM/MM
ele and EQM/MM

pol are the electrostatic and
polarization contributions, respectively, whereas the last term
EQM/MM

rep is the Pauli repulsion, which acts a density
confinement. It is worth remarking that we are not including
any QM/MM dispersion interaction term. Because of the
nature of QM/FQ being a focused model, by neglecting
dispersion effects, the solute electronic density is not allowed
to delocalize toward the solvent. It is however worth remarking
that dispersion plays only a minor role in aqueous solutions,
although eq 6 can be extended to account for such an
interaction,47,60,62,74 though of course it may be quite relevant
for other solvents.
In order to treat the electrostatic QM/MM coupling, two

different polarizable QM/MM approaches were considered,
namely, QM/FQ42,46,52,53,57,59 and QM/FQFμ.50,51,75 In the
former, each atom of the MM portion is endowed with a
charge (q), which can vary in agreement with the electro-
negativity equalization principle (EEP), i.e., a charge flow
occurs between two atoms at a different chemical potential. FQ
force field is defined in terms of two atomic parameters,
namely, electronegativity (χ) and chemical hardness (η). The
latter (QM/FQFμ) is instead a pragmatical extension of FQ, in
which fluctuating atomic dipoles (μ) and fluctuating atomic
charges (q) are associated to each MM atom.50 Charges values
are defined by the same charge equilibration as FQ, but their
values depend also on the interaction with dipoles. The
peculiarity of FQFμ stands in the fact that both FQ’s and Fμ’s
vary according to the electric potential and electric field.
In order to model Pauli repulsion, an approach recently

proposed by some of the present authors is used.60−62 There,
each MM molecule is endowed with a set of s-type Gaussian
functions, which mimic the presence of a QM density in the
MM portion (Pauli repulsion interaction is a purely quantum
effect due to Pauli principle). In our approach, the repulsion
energy term is written as the opposite of an exchange
integral:63,76,77

E
r
r r

r r r r
1
2

d d
( , ) ( , )1 2

1 2 2 1QM/MM
rep

12
QM MM∫ ρ ρ=

(7)

In order to define the density ρMM , we localize fictitious
valence electron pairs for MM molecules in bond and lone pair
regions and represent them by s-Gaussian-type functions. The
expression for ρMM becomes

r r( , ) e e1 2
R

R
r R r R

MM
2 ( ) ( )R 1 R 2

2 2∑ρ ξ= ·β β− − − −
(8)

where R runs over the centers of the Gaussian functions used
to represent the fictitious MM electrons. The β and ξ
parameters are generally different for lone pairs or bond pairs,
their values being adjusted to the specific kind of environment
(MM portion) to be modeled. See ref 61 for their definition in
the case of the water molecule. By substituting eq 8 in eq 7, the
QM/MM repulsion energy reads

E
r
r r

r r
1
2

d d
( , )

e e

R

1 2
1 2

R
r R r R

QM/MM
rep

12
QM

2 ( ) ( )R 1 R 2
2 2

∫∑ ρ

ξ

= ·

[ · ]β β− − − −
(9)

It is worth noticing that, in this formalism, QM/MM Pauli
repulsion energy is calculated as a two-electron integral.
Equation 9 is general enough to hold for any kind of MM
environment (solvents, proteins, surfaces, etc.). The nature of
the external environments is specified by defining the number
of different electron-pair types and the corresponding β and ξ
parameters in eq 8. Finally, the formalism is general so that it
can be coupled to any kind of QM/MM approach.
All of the components of this solvation model require a

specific parametrization.

■ COMPUTATIONAL DETAILS
For this work, we have selected six organic molecules (Figure
1) from ref 72, for which experimental measurements of their

first hyperpolarizability values in aqueous solutions exist.71 All
QM and QM/MM calculations were performed using a locally
modified version of Gaussian16 computational chemistry
package78 and employed the B3LYP,79−81 CAM-B3LYP,82

and M06-2X83 density functionals in combination with the 6-
311++G(d,p) basis set. Polarizable QM/MM calculations were
performed with the fluctuating charge model (FQ)42,46,84−86

with and without fluctuating dipoles (FQFμ).50 QM/FQ

Figure 1. Structures of the molecules studied. The green spheres
depicted close to the oxygen atoms represent the virtual sites (VS, vide
inf ra).
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calculations were performed using two distinct parametriza-
tions, the one by Rick et al.,84−86 which we here denote as FQa,
and the one by Giovannini et al.,60 denoted as FQb.
Hyperpolarizabilities are reported in esu.87 In order to
compute hyperpolarizabilities with the QM/MM methodology
described above, we followed a multistep procedure, which is
here summarized:

1. Geometry optimization of the solute molecules. The
structure of each system was optimized using the CAM-
B3LYP density functional and by including solvent
effects by means of the PCM.88−90

2. Calculation of atomic charges and definition of virtual
sites. From the same CAM-B3LYP/PCM calculations on
the optimized structures, we obtained the RESP atomic
charges91−93 and locations for the virtual sites (VS),
which model the presence of non-bonding electron
pairs. VS have a fixed position with respect to generating
atoms and allow us to refine the description of
hydrogen-bonding interactions. The positions were
obtained by evaluating the centroids of Boys orbi-
tals.94,95

3. Classical MD simulations in aqueous solutions. Each
solute molecule was placed in a cubic box and then
surrounded by water molecules under periodic boundary
conditions (PBC). To sample the solute−solvent
configuration space, a classical MD simulation on each
system was run as detailed in ref 72.

4. Extraction of snapshots from the MD simulation. From
each MD run, a total of 200 snapshots was extracted to
be used in the QM/MM calculations for each system.
For each snapshot, a solute-centered sphere with radius
of 15 Å of explicit water molecules was cut.

5. Polarizable QM/MM calculations. The QM/MM
calculations of static and dynamic polarizabilities and

hyperpolarizabilities were performed on the full set of
structures extracted from the MD. The results obtained
for each spherical snapshot were extracted and averaged
to produce the final value.

■ NUMERICAL RESULTS

Effect of Repulsion on the MOs. In this section, we wish
to provide a more in-depth analysis of the effect of quantum
repulsion and how it enters the computational results. As
stated earlier, the addition of quantum repulsion affects the
molecular orbitals (MO) of the system. This change then
propagates to response equations and therefore computed
electric response properties. Changes in the MOs caused by
repulsion can be appreciated by plotting the matrix J that
relates one set of MOs into the other:

J C SCrep norep= †
(10)

where Crep is the MO coefficient matrix calculated at the QM/
FQFμ level with Pauli repulsion, S is the atomic orbital overlap
matrix, and Cnorep is the MO matrix calculated at the same level
without Pauli repulsion.
We performed this analysis for a randomly selected snapshot

of the molecule 1, and the result can be seen in Figure 3 where
higher absolute values are represented by a darker square. As
expected, occupied orbitals remain mostly unaffected, though
this is not true in general (in particular for MO = 34 and MO =
35, which change somewhat, see Figure 2). Many virtual
orbitals are instead mixed up, as is evident from Figure 3 and
Figure 2. The latter figure shows isovalue plots of selected
MOs with and without repulsion as well as the difference in the
squared MOs to help visualize the regions of space where
changes are most pronounced. In fact, the J matrix becomes so
sparse in the block involving the first 100 virtual orbitals that it

Figure 2. Selected molecule 1 molecular orbitals for a randomly chosen snapshot extracted from the MD simulation. QM/FQFμ and QM/
FQFμ+rep orbitals and their difference are depicted.
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is barely visible in the figure. This is true up to a point, with
very high energy orbitals remaining unaltered.
It is worth investigating whether these changes how much

these changes actually affect the density derivatives since they
are what actually gives the hyperpolarizabilities according to eq
4. Given the large number of components, we only look at
derivatives along the z component of the electric field.
Derivatives with respect to the other components can be
found in the Supporting Information. The first-order density
derivative P(1) (with respect to an electric perturbation along
the z direction) is non-zero only in the occupied-virtual block.
The difference between the two blocks (with and without

repulsion) is shown on the left panel in Figure 4. Indeed, while
differences are generally negligible, some deviations are
observed, particularly in the blocks corresponding to the
lowest-energy virtual orbitals that are most affected by
repulsion. The same analysis can be carried out for the density
second derivative P(2), but this time only the occupied-
occupied and virtual-virtual blocks are non-zero. Components
belonging to higher energy occupied orbitals show a marked
difference, while for virtual orbitals, we can draw a similar
conclusion as for P(1), whereupon only the block involving
virtual orbitals that are actually affected by repulsion
propagates to density derivatives.

Polarizability. We begin our investigation by studying the
effect of water on static and dynamic polarizabilities.
Figure 5 reports the computed values for both the static α(0;

0) and dynamic α( − ω; ω) polarizability, evaluated with three
different DFT functionals for the isolated and solvated
molecules, with and without considering quantum repulsion
effects. We start by looking at how a change in the underlying
electronic structure model, i.e., the chosen density functional,
affects the results, in order to verify that conclusions about
solvation effects are consistent and do not depend too much
on the functional. It can be immediately seen that the dynamic
polarizabilities are substantially higher by about 1.7 units,
compared with the static values (see the Supporting
Information for tables reporting the numerical values).
Solvation electrostatics leads to a significant and uniform
increase in the polarizability values for all systems, and the
magnitude is rather uniform among the three functionals. It
should be noted that the inclusion of repulsion effects into the
calculation brings about a significant decrease in the property,
by about 8%, and this decrease is actually quite consistent and
varies very little among the molecules. Nor are repulsion effects
particularly affected by a change in DFT functional, even with
the addition of a long-range correction as in CAM-B3LYP.
This is not surprising since repulsion effects as modeled in this
work directly influence the ground-state density of each

Figure 3. J matrix of a randomly snapshot extract from MD
simulation (see eq 10)

Figure 4. Difference between the density matrix derivatives with and without Pauli repulsion of a randomly snapshot of molecule 1 extracted from
MD simulation. The first derivative P(1) is on the left panel, and the second derivative P(2) is on the right panel. Derivatives are taken with respect to
the z component of the electric field.
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system, though they do not directly affect the response
functions, for which long-range corrections play their most
important role.

It is interesting to perform a more in-depth analysis of the
different roles of electrostatics and non-electrostatics in
determining the polarizability of the solvated systems. As

Figure 5. Static (left) and dynamic (right) polarizabilities of molecules 1−6 evaluated at 1064 nm in vacuo and in solution (with and without
repulsion effects) with three different density functionals: M06-2X (top), B3LYP (middle), and CAM-B3LYP (bottom).

Figure 6. Static (left) and dynamic (right) polarizabilities of molecules 1−6 evaluated at 1064 nm in vacuo and in solution (with and without
repulsion effects) with three different models for the electrostatic component: FQa (top), FQb (middle), and FQFμ (bottom).
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discussed in the Theoretical Background section, there are
different sets of parameters to choose from when performing a
QM/FQ calculation. Originally, parameters derived by Rick et
al.84 (hereby denoted as FQa) were the first to be developed,
though they tend to underestimate the solvent polarization.
New parameters specifically designed for QM/FQ calculations
were recently adopted,60 which allow for a higher solvent
polarization. This may not necessarily result in better
agreement with experimental values because a higher solvent
polarization tends to have an opposite effect compared to the
introduction of repulsion forces; therefore, underestimating
solvent electrostatics may lead to a favorable error cancellation
whenever repulsion effects are neglected. It is therefore
interesting to compare values obtained with the different
electrostatic models with and without repulsion effects. It is
worth reiterating that QM/FQ results are always averages
computed over a large set of snapshots obtained from a
classical MD, and in order for the results to be reliable, they
must be at convergence with respect to the number of
snapshots. In the Supporting Information, we show that our
results are indeed at convergence. In Figure 6, we present
results obtained with the CAM-B3LYP functional only. Indeed,
as is evident from the results, going from FQa to FQb, which
leads to an increase in the electrostatics due to the
parametrization, does have an opposite effect with respect to
repulsion, though the magnitude is not comparable as the FQb

parameters lead to computed polarizabilities which are about 2
units higher, whereas the reduction due to repulsion effects is
significantly stronger. As mentioned in the Theoretical
Background section, the basic FQ model can only account
for in-plane polarization of solvent molecules; however, out-of-
plane solvent polarization may not in principle be disregarded.
The FQFμ model overcomes this limitation. Polarizabilities

were therefore also evaluated using this electrostatic model
with and without repulsion effects. The increase in polar-
izability that we observe, when going from the FQb to the
FQFμ values, is of the same order of magnitude as the
difference between the FQb values and the gas-phase results.
Therefore, out-of-plane polarization effects, which can only be
taken into account if solvent molecules are endowed with
fluctuating dipoles, should not be neglected. It is interesting to
note that, if we compare the FQb+rep results with the vacuum
values (bottom panels in Figure 6), we see that they are very
close to the gas-phase values. If the solution values that include
all effects were simply compared to those for the isolated
molecules, one might erroneously conclude that solvent effects
are negligible. Our results show that the role of solvation in
determining a system’s polarizability rests on a delicate balance
of different effects, none of which can be regarded as
negligible; therefore, the use of a solvation model with the
capability to include all such effects not only in the description
of the system’s ground state but also of its response properties
is crucial. It should finally be remarked that solvation models
that only treat one of these effects might lead to wrong
computed values.

First Hyperpolarizabilities. We now move to first
hyperpolarizabilities, which, being third-order properties, are
expected to be much more sensitive to the polarizable
environment of the molecule and thus a better probe for the
different solvation effects.
As in the case of polarizabilities, gas-phase values are single-

point calculations on the optimized structures while QM/FQ
results are averages over the structure extracted from the
classical MD.
The solvation effect observed for the average value is the

result of changes on each of the extracted MD snapshots.

Figure 7. Difference between QM/FQ β( − 2ω; ω, ω) (in esu) with and without repulsion for molecule 1 calculated for different snapshots
extracted from the MD and for different functionals: CAM-B3LYP, B3LYP, and M906-2X. Values are shown both as they vary across the snapshots
(left) and as interval distributions (right).
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Before commenting on the averages, we therefore analyze the
hyperpolarizability values for all snapshots with the different
solvation models. Figure 7 reports the difference between the
hyperpolarizability values of molecule 1 calculated with the
QM/FQb model with and without repulsion for all snapshots.
Data are also collected into distribution diagrams. The plots
show the range of variability in MD time of the calculated
property, which depends on the spatial arrangement of the
solvent molecules around the solute as well as its instantaneous
conformation. Our dynamical atomistic approach to the
solvation phenomenon is able to give insight into such a
variability, whereas mean-field approaches would instead focus
on the average value only. Though the average effect of the
hyperpolarizability is of course functional-dependent, it can be
readily seen from the plots that they are highly correlated, i.e.,
given one snapshot if a high or low repulsion effect is obtained
for one functional, a similar result will be observed when using
the other two. One thing that stands out is that the effect of
repulsion is very dishomogeneous across the snapshots, where
some have almost no effect and others presenting a decrease in
hyperpolarizability that is almost as high as the average value of
the property itself.
Figure 8 reports the average values of the dynamical

hyperpolarizabilities β( − 2ω; ω, ω) computed with three

functionals, with and without quantum repulsion, as well as the
experimental values obtained by means of hyper-Rayleigh
scattering (HRS) measurements in ref 71. Numerical values for
the solvated system are also reported in Table 1 for an easier
reading.
Comparing gas-phase values with electrostatics-only solvated

values (whether obtained with the FQb or the FQFμ model),

Figure 8. Dynamic hyperpolarizabilities of molecules 1−6 evaluated
at 1064 nm in vacuo and in solution (with and without repulsion
effects) evaluated with different functionals and solvation models.
Experimental data from Ray et al.71
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we see that, in some cases, the computed property can even
double in value. However, as was observed for polarizabilities,
repulsion has a the opposite effect; however, in this case, the
decrease is much more pronounced, being on average about
20%, compared to 8% of simple polarizabilities. This result
emphasizes the important role played by repulsion effects in
determining high-order electric properties of systems in the
condensed phase and suggests that any quantitative calculation
of such properties for systems in solution should not neglect
them. The final result is the product of a delicate balance
between these opposing effects, though all values in solution
are larger than the corresponding gas-phase results. These
results speak to a large extent about the fact that one must be
careful when evaluating the performance of any solvation
model that only accounts for electrostatics, such as plain QM/
FQb or the popular polarizable continuum model (PCM).
Results that are closer to the experiment might be achieved by
lowering the solvent’s polarization through a careful para-
metrization of the method, such as an increase in the
dimension of the PCM cavity or tinkering with the FQ
parameters, though this would only be so because of a fruitful
and artificial error cancellation. The compensation between
electrostatic and non-electrostatic forces, however, is not
consistent across different molecular properties (as can be seen
by simply comparing the data in Figure 6 for polarizabilities
and Figure 8 for hyperpolarizabilities); therefore, error
cancellation will not work for all properties leading to a
systematic error in the results.
Finally, we can compare our calculations experimental data.

We see that, in some cases, the QM/FQb+rep model
apparently leads to a greater error compared to the simpler
QM/FQb purely electrostatic model. This is observed for all
systems except for molecule 2 when using the CAM-B3LYP
and M06-2X functionals, though not in the case of the B3LYP
functional where molecule 1 is also an exception. The inclusion
of polarizable dipoles in the solvent’s description leads to a
further increase in the computed values, as observed in the case
of static and dynamics polarizabilities and, with the exception
of molecule 2, produces values that are much closer to their
experimental counterparts if repulsion is also included.

■ CONCLUSIONS AND PERSPECTIVES
In this paper, we have presented a computational study of
polarizabilities and hyperpolarizabilities of molecules in
aqueous solutions. We dissected the solute−solvent interaction
into its electrostatic and non-electrostatic components and
then compared computed results with experimental findings to
assess the role of each interaction. As a solvation model, we
employed our recently developed polarizable QM/MM
method based on fluctuating charges and dipoles (FQ and
FQFμ) enriched by solute−solvent repulsion effects to the
calculation of polarizabilities and hyperpolarizabilities of
organic molecules in water. By dissecting the magnitude and
role of each component of the solvation phenomenon as it
applies to the set of studied systems, we showed that QM/FQ
and QM/FQFμ models for solvation electrostatics can be
combined with our recently implemented quantum repulsion
model to successfully calculate linear and non-linear electric
response properties of systems in solution in a “focused”
solvation model paradigm. This is possible owing to the
model’s ability to be extended to high-order properties through
the propagation of the solute−solvent interaction terms at all
orders of the QM response functions. Our results show that all

of the different effects we considered contribute to the
computed value in similar measures, meaning that none of
them can be safely neglected. In particular, the modeling of
electrostatic effects with the FQ method leads to an expected
increase in the computed polarizability values compared to the
isolated molecule, which is further intensified by the addition
of polarizable dipoles in the solute’s description. Repulsion has
an effect that is similar in magnitude but opposite in sign;
therefore, the evaluation of such properties is the result of a
delicate balance between all these contrasting forces, which in
principle must all be included in the model and treated as
accurately as possible. While numerically decent results might
be obtained by neglecting repulsion altogether and tinkering
with the magnitude of the solvent polarization (or removing it
altogether as is done with standard non-polarizable QM/MM
methods), this approach should not be regarded as “safe” or
generally transferable to a wide array of systems for which the
one effect or the other may dominate. Our results therefore
underline the complexity of the forces at play within a water
solution, which, far from being simply a highly polar substance
with the ability to form hydrogen bonds, can influence a
solute’s properties through effects such as quantum repulsion
and electronic polarizability, which can be almost as important
as the presence of hydrogen bonds themselves.
This work’s results notwithstanding, much work remains to

be done in this field. To fully appreciate the improvements
offered by such refined models over more standard method-
ologies, a wide benchmark over a wider set of systems and
solvents should be performed to estimate the expected error of
the model for a given functional and basis set. In addition, a
much wider array of response properties, particularly those
involving a magnetic or mixed electric and magnetic response
such as nuclear magnetic shields or optical rotatory dispersion
should be investigated to fully appreciate the power of the
method. Finally, one type of solvent effect that was neglected
in this work is that, due to electron dispersion, while it has
been shown to be negligible in the case of water,47,60,62,74 it can
be expected to be particularly relevant for solvents such as
benzene, and models to include this effect in the evaluation of
high-order response properties in an efficient manner should
be investigated and will be the object of future work.
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ABSTRACT: Following recent developments in multilevel embed-
ding methods, we introduce a novel density matrix-based multilevel
approach within the framework of density functional theory (DFT).
In this multilevel DFT, the system is partitioned in an active and an
inactive fragment, and all interactions are retained between the two
parts. The decomposition of the total system is performed upon the
density matrix. The orthogonality between the two parts is
maintained by solving the Kohn−Sham equations in the MO
basis for the active part only, while keeping the inactive density
matrix frozen. This results in the reduction of computational cost.
We outline the theory and implementation and discuss the
differences and similarities with state-of-the-art DFT embedding
methods. We present applications to aqueous solutions of
methyloxirane and glycidol.

1. INTRODUCTION

The study of the energetics and physico-chemical properties of
large molecular systems is one of the most challenging
problems in quantum chemistry.1 Many processes of chemical
interest take place in solution,2−6 in biological matrices,7,8 or at
the interfaces between different materials.9−11 The large size of
such systems poses theoretical and computational challenges
because high-level correlated electronic structure methods are
usually unfeasible because of their high computational cost and
unfavorable scaling.12,13 A good compromise between accuracy
and computational cost is provided by density functional
theory (DFT),14,15 which accounts for electron correlation in
an approximate way. Because of the proven reliability of the
results that can be obtained at the DFT level, it has become the
most widely used approach for describing the electronic
structure of large systems.
DFT permits the investigation of much larger systems than

offered by highly correlated methods. However, it cannot be
routinely applied to systems constituted by more than 500
atoms, unless implementations through graphical processing
units are exploited.16 The practical limit of 500 atoms makes
applications of DFT to biological matrices, interfaces, and
solutions particularly cumbersome and, in some cases, even
impossible. For these reasons, several approximations have
been developed in the past. The nature of any approximation
aimed at reducing the computational cost of a calculation is
often rooted in the information that one seeks to extract from a
simulation. If one is interested in the interaction between two
complex medium-sized subsystems and how they influence
each other, then, one might seek a partition method which

accurately models both moieties with a computational cost
comparable to treating both systems separately. More often
than not, however, one is more interested in modeling only a
small part of a larger chemical system, while the rest is only
relevant in as much as it can alter the physical and chemical
properties of the smaller region. This is the case of systems
embedded in an external environment, whose properties are
modified by the latter, the archetypal example being a molecule
dissolved in a solvent. For these problems, the system may be
partitioned into two or more regions which are then treated at
different levels of accuracy, and different approaches may be
more or less suitable depending on the specificities of the
system/environment. In the special case of systems in solution,
particular success has been enjoyed by methods belonging to
the family of the so-called focused models,17−20 which are
extremely useful when dealing with the property of a moiety or
a chromophore embedded in an external environment.
In focused models, the target molecule is described at a

higher level of theory with respect to the environment, which
acts as a perturbation on the target system. Among the
different focused models that have been developed in the past,
the large majority belongs to the family of quantum mechanics
(QM)/classical approaches, in which the target is treated at the
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QM level. The environment is instead described classically, by
means of either continuous descriptions, such as the
polarizable continuum model,17,18 or by retaining its atomistic
nature in the so-called QM/molecular mechanics (QM/MM)
approaches.21−24 In all these methods, however, the interaction
between the two parts of the whole system is usually described
by classical electrostatics20,25−27 and very rarely by including
the interactions of the quantum nature, such as Pauli repulsion
and dispersion.28−30 Also, QM/classical methods allow for the
treatment of very large systems; however, their accuracy
crucially depends on the quality of the parametrization of the
classical fragments. In order to avoid such a variability,
quantum embedding methods can be exploited.31−48 In these
approaches, the whole system is treated by resorting to a QM
description; thus, Pauli repulsion effects are introduced in the
modeling. The reduction in the computational cost is then
achieved by partitioning the system in at least one active and
one inactive part. The former is described at a higher level of
accuracy, whereas the latter may be kept frozen or described at
a lower level of theory. Different approaches have been
proposed in the past, ranging from projection-based methods,
such as DFT-in-DFT or HF-in-DFT,39,46,47,49,50 to frozen
density embedding (FDE).48,51−57 Quantum embeddings have
become a popular choice to overcome the aforementioned
shortcomings of QM/classical approaches; however, the
partitioning of the electronic degrees of freedom for the
whole system into the two layers is theoretically far from trivial.
In fact, all such partitioning methods can be thought of as
being based upon the same basic idea. However, the partition
of the electronic degrees of freedom may be performed on
molecular orbitals, the density function, or the density matrix.
Which basis set must be used to expand the density and
wavefunction of the different regions is also an important
factor. All these choices lead to drastically different methods
which have their unique advantages and complications (vide
inf ra). In addition, all quantum-embedding approaches based
on DFT suffer from the complication of the exchange−
correlation functionals being nonlinear, which leads to
nonadditive energy terms in the partitioned equations.
In this paper, we are proposing a novel quantum embedding

approach defined in a DFT framework. We denote this method
multilevel DFT (MLDFT), due to its similarity with multilevel
Hartree−Fock (MLHF),58,59 and multilevel coupled-clus-
ter12,60 that we have recently developed. Similar to FDE, in
MLDFT, the system is partitioned into an active and an
inactive region, and all the interactions are retained between
the two parts. The MLDFT conceptually differs from the
aforementioned quantum embedding methods because the
partitioning is performed on the density matrix instead of the
density function as in FDE.61 As a consequence, the
nonadditive term in MLDFT does not contain any kinetic
energy term, thus avoiding the theoretical complications
present in FDE (vide inf ra). Also, the MLDFT equations are
defined in the MO basis of the active fragment only. This
feature automatically allows for savings in the computational
cost because the inactive MOs are not involved in the self-
consistent field (SCF) procedure. In this paper, we derive
MLDFT, and we apply the method to ground state (GS)
energies of aqueous solutes. The results are compared, in all
cases, to full DFT, in order to assess the quality of the
multilevel partition.
The manuscript is organized as follows. In the next section,

DFT theory is formulated in the MO basis, and MLDFT

equations are presented with a particular focus on the
computational savings that can be expected. Theoretical
comparison with other quantum embedding approaches is
also discussed. Then, after a brief section reporting on the
computational details of the method, MLDFT is applied to
selected aqueous systems, with emphasis on comparison with
full DFT results. Conclusions and perspectives of the present
work end the manuscript.

2. THEORY
Our starting point is the DFT expression for the electronic
energy of the system
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∫
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Here, D is the one-particle density matrix expanded in the
atomic orbital (AO) basis {χμ}, and h is the one-electron
operator, whereas J and K are Coulomb and exchange
matrices, respectively. The Ex and Ec terms are DFT exchange
and correlation energy functionals; ρ(r) is the DFT density
function, and εx and εc are the exchange and correlation energy
densities per unit particle, respectively. The coefficient cx
defines whether pure DFT (cx = 0) or hybrid DFT functionals
(cx ≠ 0) is used. Note that in the second equality in eq 1, it is
implied that we are restricting the treatment to semilocal
possibly hybrid functionals that are commonly used in
quantum chemistry.
The energy defined in eq 1 is usually minimized in the AO

basis. It is also possible to reformulate the minimization in the
MO basis, which is the strategy employed in this work,
similarly to what was presented for the Hartree−Fock case by
Sæther et al.58 This can be accomplished by parametrizing the
density matrix D in terms of an antisymmetric rotation matrix,
in which only the nonredundant occupied-virtual rotations are
considered.58

2.1. Multilevel DFT. The MLDFT method belongs to the
family of the so-called focused models. The part of the system
which is under investigation (active) is described accurately,
whereas the remaining (inactive) part remains frozen during
the optimization of the active fragment. The choice of the
partitioning intimately depends on the specificities of the
system, its chemical nature, and the properties one wishes to
simulate. Like other QM/QM methods, the details of the
partitioning largely define the nature of the method, with its
advantages as well as the limitations that arise from the
simplifications that bring about the sought-after computational
savings. Within the MLDFT formalism, the separation of the
system into two parts is based on the following decomposition
of the density matrix D, which in turn defines the separation of
the density function ρ(r) as well

ρ ρ ρ= + ⇒ = +D D D r r r( ) ( ) ( )A B A B (3)
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where A and B indicate the active and inactive fragments,
respectively. As stated above, the active and inactive densities
are usually defined on a physico-chemical basis. In case of a
molecular system in solution, it is natural to define the solute
as the active fragment, whereas the solvent molecules are
treated as the inactive part. It is crucial to notice that the
partitioning in eq 3 is mathematical and therefore has some
level of arbitrariness; that is, there is no unique way to perform
the separation purely based on physico-chemical properties of
the system. Therefore, a choice has to be made at this point. In
this work, the partitioning is performed by means of Cholesky
decomposition of the total density matrix for the active
occupied MOs, from which the active density matrix DA is
calculated, similarly to what was done in previous works
presenting alternative multilevel methods.12,58,60,62,63 One
advantage of this procedure is that it ensures the all active
and inactive orbitals are orthogonal and remain so during all
the subsequent SCF procedure performed on the active
subsystem.64

Now using eq 3, the total electronic energy in eq 1 can be
written as

i
k
jjj

y
{
zzz

∫ ∫ρ ε ρ ρ ε ρ

[ ] = +
+ + +

− + +

+ − +

E

c

c

D D hD hD

D J D D J D D J D

D K D D K D D K D

r r r r r r

; Tr Tr

1
2

Tr ( )
1
2

Tr ( ) Tr ( )

1
2

Tr ( )
1
2

Tr ( ) Tr ( )

(1 ) ( ) ( ( ))d ( ) ( ( ))d

A B A B

A A B B A B

x
A A B B A B

x x c

(4)

where the symmetry of J and K matrices has been used. So far,
the method is analogous to the recently proposed MLHF
approach.58 However, in MLDFT, the last two terms are not
linear in the densities of the two subsystems; therefore, we
cannot directly split them into distinct contributions arising
from ρA(r) and ρB(r). In order to acquire a physical
understanding of eq 4, we rewrite the last two terms by
using this trivial identity for the exchange−correlation energy
density (εxc = εx + εc)
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Substituting eq 5 into 4 and reorganizing the different terms
we obtain
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where
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In eq 6, the first four lines define the energy of the active and
inactive fragments, whereas the last three lines define the
active−inactive interaction. In MLDFT, the density matrix of
the inactive part DB (and ρB(r)) is frozen, and therefore, it acts
as an external field on the active fragment. Therefore, only the
energy terms containing the B labels are fixed during the SCF
procedure. In this regard, the MLDFT is similar in
construction to FDE approaches.52,55,61 However, as it can
be noticed from eq 7, one crucial difference is that the
nonadditive energy terms do not involve the kinetic energy
functional, thus allowing for a computational advantage with
respect to common FDE approaches, which need to
specifically employ nonadditive kinetic terms. This advantage
stems from the fact that in MLDFT, the separation of the
system into two subsystems is performed on the total density
matrix, rather than the density function. However, one
disadvantage with respect to FDE is that for MLDFT, we are
forced to select a suitable decomposition algorithm [Cholesky/
projected atomic orbitals (PAOs) are used in this work for
active occupied and virtual orbitals, respectively], and the
results may depend on it, while FDE does not need to make
this choice. The total DFT Fock matrix is given by
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where vx(ρ(r)) and vc(ρ(r)) are the exchange and correlation
potential densities, respectively. Using the partitioning in eqs 3
and 8 we get
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We exploit the same identity of eq 5 for the exchange−
correlation potential density (vxc = vx + vc). In this way, the last
two terms in eq 9 become
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Reorganizing the terms in eq 9, we can obtain the working
expression for the MLDFT Fock matrix
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where the two-electron contributions of A and B fragments and
the interaction term AB are highlighted as 2eX,μν, {X = A, B,
AB}.
There are two main advantages of using MLDFT compared

to full DFT. First, the HF exchange contribution is usually the
most expensive term in most hybrid functionals. In MLDFT,
only the active exchange term is to be computed at each SCF
cycle, whereas the exchange integral of the inactive fragment is
computed at the first SCF cycle only, as it is constant during
the optimization. Second, the MLDFT SCF procedure can be
performed in the MO basis of the active part only, thus
intrinsically reducing the computational time as previously
observed for the MLHF method.58

2.2. Comparison between MLDFT and Other Quan-
tum-Embedding Methods. As stated above, in MLDFT, the
density matrix of the whole system is partitioned into active
and inactive fragment densities (see eq 3), from which the
active and inactive density functions are calculated. The
inactive density matrix is kept frozen during the SCF cycles
and enters the active Fock matrix as a one-electron term. The
MLDFT shares many similarities with FDE meth-
ods;42−45,52,54,61 however, some relevant differences are
present, some of which are mentioned in the previous section.
First, due to the partitioning performed on the density matrix
instead of the density function as in FDE, we avoid the
problems arising in the definition of the nonadditive kinetic
potential terms that enforce Pauli exclusion between the
electrons of the various subsystems in FDE. This is clearly
evident in the definition of the nonadditive energy terms in eq
7, which are only due to the intrinsic nonlinearity of the DFT
exchange−correlation functionals. However, a choice needs to
be made on the decomposition algorithm to partition the
density matrix.
One other difference that is worth mentioning is that if the

decomposition is applied to the fully converged DFT density
matrix, then, the MLDFT energy corresponds to the exact
DFT energy of the full system, and it is in fact completely
independent on the decomposition algorithm. This feature is
shared with projection-based approaches, though the philos-
ophy of MLDFT conceptually differs from DFT-in-DFT
methods.35,39,41,46,47,49 Of course, the point of MLDFT is to
avoid a full DFT calculation on the entire system and instead
find a way to approximate the total density matrix, which is
then partitioned and the density of the active subsystem is then
optimized through a subsequent SCF procedure while the
density matrix of the inactive part is kept frozen. In this work,
this initial full density matrix is obtained through superposition
of molecular densities51,65 followed by Fock matrix diagonal-
ization, although we should emphasize that the method is
general and a different choice may be made. Within this
procedure, the solute−solvent and solvent−solvent polar-
ization energy terms are only introduced in the starting full
Fock diagonalization step. In projection-based approaches, a
DFT calculation on the whole system is performed, and the
occupied orbitals are then localized. The localized MOs are
then assigned to the active or inactive fragments, based on a
population threshold.50 Neither step is required in MLDFT, in
which a starting Fock matrix is diagonalized and the obtained
density matrix is decomposed into fragment densities. This
explains why the SCF procedure on the active subsystem has
to be performed in the MO basis of the active fragment only,
which is defined in terms of the full AO basis set. We do not
perform any basis set truncation which is instead usually
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applied in projection-based approaches. This feature automati-
cally allows for saving the computational cost because the
inactive MOs are not involved in the SCF procedure.

3. COMPUTATIONAL DETAILS
The DFT and MLDFT are implemented in a development
version of the electronic structure program eT v.1.0.66 In
particular, the DFT grid is constructed using the widely
employed Lebedev grid,67 with the radial quadrature proposed
in ref 68. All the calculations are performed using a quadrature
of 25th order, and the radial threshold is set to 10−5. The DFT
functionals are implemented using the LibXC library.69,70

The MLDFT calculation follows this computational
protocol:

1. Construction of the initial density matrix by means of
superposition of molecular densities,51,65 followed by the
diagonalization of the initial Fock matrix.

2. Partitioning of the new density matrix into A and B
densities, using Cholesky decomposition for the active
occupied orbitals and PAOs for active virtual orbi-
tals.12,58,60,62−64,71,72 We refer the reader to ref 63 for the
full details on this partitioning of the density matrix. The
inactive density matrix is obtained by subtracting the
active density matrix from the total one.

3. Calculation of the constant energy terms and the one-
electron contributions due to the inactive density matrix
B entering in eqs 6 and 11.

4. Minimization of the energy defined in eq 6 in the MO
basis of the active part A only, until convergence is
reached. All the equations reported in Section 2, which
are expressed in the AO basis set, can be transformed in
the active MO basis by using the active MO coefficients.

To show the robustness of MLDFT, three different
functionals are used: LDA,73 GGA (PBE74), and hybrid
(B3LYP75). These are combined with three different basis sets:
6-31G, 6-31G*, and aug-cc-pVDZ.

4. NUMERICAL APPLICATIONS
In this section, the MLDFT is applied to some test cases to
show the accuracy and the performance of the method.
Solvation is one of the main physico-chemical phenomena in
which such approaches can be exploited. We show the results
of coupling MLDFT with two alternative, fully atomistic,
strategies to model aqueous solutions. The first consists of a
static modeling, which uses small clusters composed of the
solute and a small number of surrounding water molecules. As
an alternative, we apply MLDFT to snapshots extracted from a
molecular dynamics (MD) simulation. In the latter framework,
the dynamical aspects of the solvation phenomenon are
retained, as those arising from the combination of conforma-
tional changes in the solute and the surrounding solvent. In

addition, long range interactions are taken into account. This
latter modeling of the solvation phenomenon has been amply
and successfully exploited by some of us within the framework
of QM/MM approaches.20,30,76−78

In the following sections, the combination of MLDFT to the
two aforementioned solvation approaches is tested, with
application to two relatively small molecules, that is,
methyloxirane and glycidol in aqueous solution, which have
been studied in the literature both theoretically and
experimentally.27,79−89 Such systems are chosen not only for
their simplicity but also because methyloxirane is a rigid
molecule, whereas glycidol is not. Therefore, in the latter case,
the results depend on the selected QM level, and the approach
used to solvation and conformational flexibility, which is
instead discarded in the case of methyloxirane. In this way, we
can dissect the various effects and highlight the quality of the
MLDFT approach in details.

4.1. Cluster Models. 4.1.1. Methyloxirane/Water Clus-
ters. The first studied solute is methyloxirane (MOXY), which
is one of the smallest molecules that exhibits a chiral carbon.
We have selected different clusters constituted by MOXY and
one or two water molecules (see Figure 1) that have been
previously studied by Su and Xu86 to explain the unique
characteristics of MOXY in aqueous solution.86,89

The two different conformers for the cluster composed of
MOXY and one water molecule (MOXY + 1w) are depicted in
Figure 1a. In the 1w-syn structure, water interacts with MOXY
through hydrogen bonding on the same side of the methyl
group, whereas the opposite occurs for the 1w-anti structure.
In both cases, MOXY is the active fragment, and water is the
inactive moiety in MLDFT calculations.
GS energy differences between DFT and MLDFT

calculations are depicted in Figure 2, panel (a), left. Raw
data are reported in Table S1 given in Supporting Information.
We see that the error between MLDFT and full DFT is below
1 mHartree (<0.628 kcal/mol), irrespective of the combination
of functional/basis set employed. The error due to the
MLDFT partitioning is well below the chemical accuracy (i.e. 1
kcal/mol).
In the right panel of Figure 2a, DFT and MLDFT energy

differences between 1w-anti and 1w-syn conformers are
reported for all the considered combinations of the func-
tional/basis set. The raw data are reported in Table S1 in the
Supporting Information. We see that DFT and MLDFT values
almost coincide. In particular, LDA and PBE functionals
predict 1w-syn to be the most stable conformer, both at DFT
and MLDFT levels, independently of the selected basis set.
Notice however that the energy difference between the two
conformers decreases either as GGA functionals are employed
or diffuse/polarization basis sets are used. The inclusion of HF
exchange makes 1w-anti the most stable conformer, if
polarization/diffuse functions are considered. However, for

Figure 1. Structure of conformers methyloxirane/water clusters. MLDFT partition is constructed so that methyloxirane is the active part whereas
the water molecules are the inactive fragments.
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all the considered combinations of the functional/basis set,
MLDFT and DFT values are almost perfectly in agreement,
with the largest discrepancy being reported for B3LYP/aug-cc-
pVDZ (0.08 kcal/mol). These findings clearly show that for
this system, MLDFT is able to catch small energy differences,
which are again well below the chemical accuracy.
We now turn to the clusters composed of MOXY and two

water molecules (MOXY + 2w, Figure 1b). Three main
conformers are considered, according to Su and Xu:86 2w-syn,
2w-anti, and 2w-bi. The first two conformers differ from the
position of water molecules, being both placed on the same
side with respect to the methyl group in case of 2w-syn or on
the opposite side for 2w-anti. In 2w-bi, the two water
molecules are instead placed on the opposite sides of the
epoxyl oxygen atom. In all MLDFT calculations, MOXY is the
active moiety, whereas the two water molecules are inactive.
In Figure 2b, left, GS energy differences between DFT and

MLDFT for the three conformers are reported. The raw values
associated with the data plotted in Figure 2b are given in Table
S2 in the Supporting Information. The MLDFT and DFT
results are, also in this case, in very good agreement with an
absolute error below 1 kcal/mol for all combinations of
functional/basis sets. However, the absolute deviation between
DFT and MLDFT energies is larger than for the previous case

(see Figure 2a). In particular, the MLDFT error is larger for
2w-syn and 2w-anti than for 2w-bi, for which it is in line with
what we have shown above for MOXY + 1w clusters (∼0.1−
0.3 kcal/mol). The increase in the error may be justified by the
fact that 2w-syn and 2w-anti feature one water molecule that is
linked to another water molecule by means of intermolecular
hydrogen bonding. The density matrix of the inactive
fragments (the two water molecules) is kept frozen; therefore,
the water molecule that is not directly bonded to the solute
remains in its frozen electronic configuration, resulting in a
larger error in the total energy. Such an hypothesis is
confirmed by the fact that the error increases when the diffuse
aug-cc-pVDZ basis set is used, and the same does not occur for
2w-bi, where both water molecules are directly linked to
methyloxirane through hydrogen bonding interactions.
The MLDFT-DFT deviations in energy differences between

each conformer and 2w-syn are shown in Figure 2b, right. We
note small discrepancies between MLDFT and full DFT;
however, also in this case, they are below the chemical
accuracy, with the maximum error reported by PBE/6-31G*
(∼0.35 kcal/mol). The error in the energy differences between
the conformers is lower than for the total GS energies reported
in Figure 2b, left.

Figure 2. (a) (Left) 1w-syn and 1w-anti total energy differences between MLDFT and DFT. (Right) MLDFT and DFT energy difference between
1w-anti and 1w-syn. (b) (Left) 2w-syn, 2w-anti, and 2w-bi total energy differences between MLDFT and DFT. (Right) MLDFT-DFT difference
on relative energies of 2w-anti and 2w-bi with respect to 2w-syn.
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4.1.2. Glycidol/Water Clusters. MOXY is a rigid molecule,
so the different solvated conformers mainly differ by the
position of the water molecules. In this section, we show how
MLDFT can treat flexible solutes, and to this end, we have
selected glycidol (GLY), which is a derivative of MOXY, where
one hydrogen of the methyl group is replaced by the OH
group (see Figures 3−5). In all MLDFT calculations, the GLY

moiety is the active fragment and the water molecules are the
inactive part. The presence of the hydroxyl group makes
glycidol flexible up to the point that eight different conformers
can be located in the gas phase potential energy surface
(PES).79,84

To build up a glycidol/water clusters, different structures
constituted by GLY and one, two, and three water molecules
were constructed, by following the strategy reported in ref 84.
Such structures are depicted in Figures 3−5. We note that the

different structures not only differ by the position of the water
molecules but also by the conformation of glycidol. In
particular, the six conformers constituted by GLY and one
water (GLY + 1w) are characterized by a different position of
the water molecule. The latter interacts via hydrogen bonding
with both the hydroxyl and epoxyl groups (1w-I and 1w-II),
with the epoxyl group only (1w-III and 1w-IV) or with only
the oxygen atom of the hydroxyl group (1w-V and 1w-VI).
The inclusion of additional water (GLY + 2w) results in ten
different conformers, which are shown in Figure 4. These
contain three or four center bridges (conformers 2w-I, 2w-II,
2w-IV, 2w-V, 2w-VI, 2w-VII, and 2w-VIII) or are conformers
where the two water molecules interact via hydrogen bonding
with the epoxyl and hydroxyl groups (conformers 2w-III, 2w-
IX, and 2w-X). If three explicit water molecules are added to
GLY (GLY + 3w), the conformational search provides eight
main conformers, which are graphically depicted in Figure 5.
Similarly to the previous case, some of them contain three or
four center bridges (conformers 3w-I, 3w-II, 3w-V, and 3w-
VI), whereas in conformers 3w-IV, 3w-VII, and 3w-VIII, a five
center bridge is present. In all cases, water molecules that are
not involved in bridges interact with GLY through hydrogen
bonding interaction. Conformer 3w-III is instead characterized
by a three center bridge and by the remaining water molecules
hydrogen bonded to the bridge water.
We now move to discuss GS energy differences between

DFT and MLDFT (see Figure 6a, raw data are given in Tables
S3−S5 in the Supporting Information).
In Figure 6, panel (a), MLDFT - DFT GS energy differences

for all the different conformers of GLY + 1w, GLY + 2w, and
GLY + 3w water clusters are shown. The error reported by
MLDFT is below 0.1 mH (<0.627 kcal/mol) when applied to
GLY + 1w, at all the selected levels of theory. In particular,
energy differences are perfectly in line with what is shown in
Figure 2a, left panel, in case of MOXY + 1w clusters. Moving
to GLY + 2w conformers, the agreement between DFT and
MLDFT is almost perfect at all levels of theory, being the
energy difference below 0.8 kcal/mol in all cases. We also see
that at the B3LYP/aug-cc-pVDZ level, for 2w-I and 2w-II, the
difference between MLDFT and full DFT is larger than for the
other conformers (>0.1 mH, 0.627 kcal/mol). This is due to
the specific spatial arrangement of water molecules, which
create a four-center bridge connecting GLY hydroxyl and
epoxyl groups (see Figure 4).
As stated above for MOXY + 2w clusters, MLDFT accounts

for all the interactions between active and inactive parts, with
the exception of dispersion; however, the inactive fragment(s)
are described by a frozen density matrix. Therefore, polar-
ization and charge transfer (and dispersion) effects are
neglected in the inactive region. For 2w-I and 2w-II, we can
speculate that such interactions may play a relevant role
because the two inactive water molecules are hydrogen
bonded. Also, their role is clearly increased when diffuse and
polarization functions are included in the basis set (aug-cc-
pVDZ) because such functions enhance the effects of these
interactions. This does not occur in case of other conformers
because of the different spatial arrangement of the solvent
molecules.
We now focus on GLY + 3w conformers. The agreement

between MLDFT and the reference full DFT values is
generally worse than in the previous cases (see the right
panel of Figure 6a). However, the average error is of about
0.67 kcal/mol (∼0.1 mH), that is, again well beyond the

Figure 3. Structures of the six conformers of glycidol + 1 water
clusters. In MLDFT calculations, the glycidol moiety is active whereas
the water molecule is inactive.

Figure 4. Structures of the ten conformers of glycidol + 2 waters
clusters. In MLDFT calculations, glycidol is active whereas water
molecules are inactive.

Figure 5. Structures of the eight conformers of glycidol + 3 waters
clusters. In MLDFT calculations, glycidol is active whereas water
molecules are inactive.
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chemical accuracy. The largest discrepancy is shown by 3w-III
for all the functionals (LDA, PBE, or B3LYP) in combination
with aug-cc-pVDZ (∼1.2 kcal/mol). Again, this can be
explained by considering the spatial arrangement of water
molecules around GLY (see Figure 5). Similar to 2w-I and 2w-
II, the effect of charge transfer and polarization interactions,
which are neglected by the partitioning of the inactive density
matrix in MLDFT, may play a relevant role. Such effects are
larger for 3w-III; however, they affect also other conformers
which are characterized by a four/five center bridge. It is also
worth noticing that the MLDFT error is expected to increase
with the size of the studied system because the energy is an
extensive quantity. Such a trend is in fact reported for both
MOXY and GLY clusters.
Let us now discuss the MLDFT-DFT energy deviations for

the energy differences between each conformer of the GLY
clusters and 1w-I, 2w-I, and 3w-I, which are reported in Figure
6b. Raw data are given in Tables S3−S5 in the Supporting
Information.
For the GLY + 1w system, both MLDFT and DFT predict

1w-I to be the most stable at all levels of theory, whereas the
relative populations of the other conformers strongly depend
on the theory level (see Figure 6b, left panel). In particular, the
energy differences of each conformer with respect to 1w-I

decrease as larger basis sets are employed and also by moving
from LDA to PBE and B3LYP. The error between MLDFT
and DFT is instead almost constant (in absolute value) for all
different combinations of the basis set and DFT functional,
and in all cases, MLDFT correctly reproduces the trends
obtained at the reference full DFT level.
The same considerations outlined above for GLY + 1w

conformers also apply to GLY + 2w ones (see Figure 6b,
middle panel). In fact, by moving from LDA to B3LYP and by
including polarization and diffuse functions in the basis set,
MLDFT errors with respect to DFT reference values decrease.
The largest DFT-MLDFT discrepancy is reported for 2w-X at
the B3LYP/aug-cc-pVDZ level (−0.55 kcal/mol). This is due
to the fact that the largest error is associated to the GS energy
of the most stable conformer 2w-I (see left panel of Figure 6a)
for this combination of the DFT functional/basis set. However,
as already reported for all the other studied systems, the error
in the relative energies of the different conformers is always
lower than the corresponding error in the total energies.
Finally, also in case of GLY + 3w clusters, the agreement

between DFT and MLDFT is almost perfect, with errors
ranging from −0.6 to 0.6 kcal/mol. The maximum error is
observed for 3w-III at the PBE/aug-cc-pVDZ level (0.53 kcal/
mol), whereas the minimum is reported for 3w-VII at the

Figure 6. (a) GLY + 1w (left), GLY + 2w (middle), and GLY + 3w (right) GS energy differences between MLDFT and reference DFT values. (b)
MLDFT-DFT energy deviations for the energy differences between each conformer of GLY + 1w conformers and 1w-I (left), GLY + 2w
conformers and 2w-I (middle) and GLY + 3w conformers and 3w-I (right). All values are reported in kcal/mol.
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B3LYP/6-31G* level (error < 0.01 kcal/mol). Therefore, also
for these systems, MLDFT provides a reliable description of
the relative energies of the different conformers. The only
notable exceptions are conformers 3w-III and 3w-IV at the
LDA/6-31G and B3LYP/6-31G levels, respectively. As a final
comment, we note that although the MLDFT error on total
GS energy can be larger than 1 kcal/mol, relative energies of
the different conformers are accurately predicted, with an error
that is always below 1 kcal/mol.
4.2. Toward a Realistic Picture of Solvation. In the

previous sections, we have presented and discussed solute−
solvent structures obtained by modeling the solvation
phenomenon in aqueous solution by means of the so-called
cluster approach,90 in which only the closest water molecules
are explicitly treated at the QM level. However, this picture is
not realistic, being a strongly approximate way of modeling
solvation. In fact, any dynamical aspect of solvation is
neglected as well as, more importantly, long range interactions
which are especially relevant for polar environments such as
water. In this section, we show how MLDFT may be coupled
to approaches that have been developed to model solvation
more realistically. In particular, we will apply MLDFT to a
randomly selected structure extracted from a classical MD
simulation performed on both MOXY and GLY in aqueous
solution. In this way, the atomistic details of solvation are
retained, and dynamical aspects could easily be introduced by
repeating the calculations on several structures. A closer
investigation of the latter aspect is beyond the scope of our first
work on MLDFT and will be the topic of further studies.
Let us start with MOXY. We have selected one random

snapshot extracted from a MD simulation, which was
previously reported by some of the present authors.82,91,92

Note that MOXY is a rigid molecule; therefore, a single
snapshot well represents its conformational structure (Figure
7).

In MLDFT calculations, MOXY is the active fragment and it
is treated at the B3LYP/6-31+G* level. The inactive part is
constituted by the 50 closest water molecules, which are
described at the B3LYP/6-31G level. The reference full DFT
calculation is instead performed by using the B3LYP
functional, in combination with the 6-31+G* basis set for
MOXY and the 6-31G one for water molecules.
In order to quantify the accuracy of MLDFT, we compute

the solvation energy Esolv, which is defined as

= − −E E E Esolv tot MOXY w (12)

where Etot, EMOXY, and Ew are the total, MOXY, and water GS
energies, respectively. Note that EMOXY is calculated in the gas
phase, and thus, it is the same in both full DFT and MLDFT
calculations. Etot and Ew are defined differently in the two
approaches; in MLDFT, Ew is calculated at step 1 of the
computational protocol (see Section 3), whereas in full DFT, it
refers to the GS energy of the 50 water molecules.
Computed energy values for MOXY are reported in Table 1

for both DFT and MLDFT. We first notice that the MLDFT

error on the total energy Etot is larger than what is found for
clusters (see previous sections). This is not surprising because
the error of the method scales with the number of the water
molecules in the inactive part. Such discrepancies are primarily
due to the neglect of polarization and charge-transfer
interactions in the inactive solvent water molecules because
their density matrix remains fixed in MLDFT. The largest
contribution to the error on total energy is due to Ew. In fact,
MLDFT Ew differs from full DFT of about the same extent as
total energies. Such differences between MLDFT and DFT are
reflected by the computed solvation energy, which can be
taken as a measure of the accuracy of MLDFT. For the studied
snapshot, the agreement between MLDFT and DFT is almost
perfect (−12.30 vs −12.48 kcal/mol), and the error is of about
0.2 kcal/mol.
The same analysis may be applied to glycidol, for which the

snapshots were extracted from MD simulations previously
reported by some of us.79 We recall that GLY is a flexible
solute, of which the main conformers may be identified by
means of two dihedral angles δ1 and δ2 [see Figure 8, panel
(a)]. Seven most probable conformers have been selected [see
Figure 8 panel (b)].
The MLDFT partition has been done so that GLY is the

active fragment and treated at the B3LYP/6-31+G* level,
whereas water molecules are inactive and described at the
B3LYP/6-31G level. All the reference full DFT calculations are
performed by using the B3LYP functional in combination with
the 6-31+G* basis set for the solute and the 6-31G one for the
water molecules.
The DFT and MLDFT energies (Etot, EGLY, Ew, and Esolv) are

reported in Table S6 in the Supporting Information. Overall,
MLDFT total energies are higher than DFT values of about
0.02−0.03 Hartree. The reasons of this discrepancy are the
same as reported for MOXY.
The DFT and MLDFT solvation energies are graphically

compared in Figure 9. We observe that all MLDFT values are
almost in perfect agreement with the reference full DFT data.
The average discrepancy is of about 0.7 kcal/mol (∼1 mH),
with the largest discrepancy reported for conformer 5 (1.1
kcal/mol). Notice that in this study, we only include the GLY
moiety in the active part. Similar calculations performed at the

Figure 7. Selected structure of MOXY + 50 water molecules, as
extracted from MD. In MLDFT calculations, MOXY is the active part
and water molecules are inactive.

Table 1. DFT and MLDFT Total GS Energies (Etot) of
MOXY + 50 Water Molecules Snapshot Depicted in Figure
7a

DFT MLDFT

Etot −4013.1956 −4013.1660
EMOXY −193.1079 −193.1079
Ew −3820.0681 −3820.0382
Esolv −0.0196 −0.0199

aEMOXY, Ew, and Esolv are also reported. All values are given in Hartree.
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MLHF level58 needed to insert at least five water molecules in
the active fragment to reach the same level of accuracy.

5. SUMMARY AND CONCLUSIONS
In this work, we report a novel density-based multilevel
approach based on the DFT treatment of the electronic
structure problem. In MLDFT, the full system is partitioned in
two layers, one active and one inactive. MLDFT stands apart
from methods based on a similar paradigm because of the

choice of partitioning an initial density matrix into active and
inactive parts, instead of the density function. The MLDFT
SCF procedure is then performed in the MO basis of the active
subsystem only. This is the source of the reduction in
computational cost because the density matrix of the inactive
fragments is kept frozen during the optimization of the density.
The MLDFT was applied to aqueous methyloxirane and

glycidol, for which two different approaches to solvation were
discussed. First, the so-called cluster approach is employed,
which models solvation in terms of minimal clusters composed
of the solute and a small number of water molecules. Second, a
more realistic picture is considered, which focuses on randomly
selected snapshots extracted from MD simulations. For all
studied structures, the computed data confirm that MLDFT is
able to correctly reproduce reference full DFT values, with
errors which are always ≤1 kcal/mol. Because of its favorable
computational scaling, MLDFT can be coupled to more
realistic approaches to solvation, that is, it can treat a large
number of representative snapshots extracted from MD
simulations, so to effectively take into account the dynamical
aspects of solvation.
In this first presentation of the approach, we have limited the

analysis to GS energies. However, MLDFT has the potential to
be extended to the calculation of molecular properties and
spectra. In particular, the analytical evaluation of molecular
gradients will allow for MLDFT geometry optimizations.
However, this extension is not trivial because in order to
guarantee the continuity of the PES, the same pivots must be

Figure 8. (a) Definition of δ1 and δ2 dihedral angles of GLY; (b) δ1 and δ2 values for the selected GLY + 50 water molecules snapshots extracted
from MD; (c) molecular structures of the seven selected snapshots. In MLDFT calculations, GLY is the active part, whereas water molecules are
inactive.

Figure 9. DFT and MLDFT solvation energies (Esolv) for the different
conformers graphically depicted in Figure 8. Values are given in kcal/
mol.
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imposed in the Cholesky decomposition. The calculation of
molecular geometries and properties will be the topic of future
communications. Also, the active and inactive parts can be
described at two different levels of theory, for instance, using
two different DFT functionals. Similarly to projection-based
approaches, the active and inactive regions can also be treated
at the HF and DFT levels, respectively, thus allowing for post-
HF calculations on the active part only.50 Such extensions will
be the topic of future communications.
The method will also be further developed by focusing on

some technical aspects, which are worth being improved. For
instance, in the current implementation, the DFT grid is
homogeneous in the whole space. However, it is reasonable to
assume that the grid can be downgraded further away from the
active part, because within the focused model paradigm, we
only seek to accurately model the effect of the environment on
the properties of the active subsystem, rather than the intrinsic
properties of the environment itself. Technical refinements of
the current implementation are in progress and will be
discussed in future communications.
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5.1. Abstract

We present a novel multiscale approach to study the electronic structure of

open-shell molecular systems embedded in an external environment. The

method is based on the coupling of multilevel Hartree-Fock (MLHF) and

Density Functional Theory (MLDFT), suitably extended to the unrestricted

formalism, to Molecular Mechanics (MM) force fields (FF). Within the ML

region, the system is divided into active and inactive parts, thus describing

the most relevant interactions (electrostatic, polarization and Pauli

repulsion) at the quantum level. The surrounding MM part, which is

formulated in terms of non-polarizable or polarizable FFs, permits a
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physically consistent treatment of long-range electrostatics and polarization

effects. The approach is extended to the calculation of hyperfine coupling

constants, and applied to selected nitroxyl radicals in aqueous solution.

5.2. Introduction

The theoretical description of large molecular systems in the condensed phase

at high level of accuracy is challenging, due to the substantial number of

degrees of freedom (electronic and nuclear) that need to be treated

computationally. However, the complexity can be drastically reduced by

partitioning the total system into smaller, interacting, subsystems.237–239

Solvated molecules, drugs interacting with biological matrices (e.g. DNA and

proteins), or molecular systems adsorbed on metal surfaces are generally

tackled in this way,8,52,62,132,205 by resorting to “focused” computational

approaches. There, the total system is partitioned into layers, which are

treated at a different degree of sophistication.

The most used focused approaches are defined in the framework of

QM/classical methods, where the attention is focused to the QM layer,

whereas the rest of the system is described in terms of classical physics.

Generally, the atomistic nature of the whole system is retained, such as in

QM/molecular mechanics (QM/MM) approaches.1,8 The interaction between

the QM and classical moieties is modelled in terms of classical electrostatics

and, in some cases, mutual polarization effects are considered.62 Only few

examples exist, where purely QM interactions, such as Pauli repulsion and

dispersion forces, are coherently introduced in the QM/classical

modeling,58,128,133,176 even though they play a crucial role in many

systems.240,241 Also, the quality of QM/classical methods strongly depends

on the quality of the MM description, which is generally determined by the

availability and reliability of parameter sets.242

As an alternative to QM/classical methods, quantum embedding approaches

can be exploited.67,69,70,75,77,79–81,243–246 There, both subsystems are described

quantum-mechanically, generally at different level of accuracy. The advantage

of quantum vs classical embedding is twofold: (i) target-environment

interactions are treated at the QM level and, (ii) a full QM description does

not require any parametrization, therefore quantum embedding approaches
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can potentially be applied to any kind of interacting systems at the same

level of accuracy. The price to pay consists of a generally larger

computational cost of quantum vs classical embedding, that may limit, even

substantially, the size of actually treatable systems. For this reason, the

development of computationally effective yet physically consistent approaches

is mandatory. The recently proposed Multilevel HF (MLHF)193 and

Multilevel DFT (MLDFT)192 approaches, which are coherently rooted in the

context of Hartree-Fock (HF) and Density Functional Theory (DFT), are a

remarkable example of this class of methods.192,193,247–249 MLHF and MLDFT

lay on common theoretical foundations, being based on a decomposition of

the total density matrix into active and inactive contributions.192,193 There,

HF or DFT equations are reformulated in terms of active and inactive

density matrices, and the molecular orbitals (MO) coefficients of the active

part only are optimized in the Self Consistent Field (SCF) procedure. The

inactive density matrix is kept fixed and gives rise to an effective field, which

interacts with the active part (see Refs.193 and192 for more details).

The partitioning of the system that is featured in MLHF/DFT allows to

substantially extend the size of chemical systems that may be afforded by HF

and especially DFT. However, this gain in size may not be sufficient to treat

realistic systems in the condensed phase, i.e. surrounded by an external

environment. To this end, quantum embedding approaches may benefit from

the coupling with an outer layer described in terms of classical physics, e.g.

by means of MM force fields.250,251 Remarkably, the coupling is physically

grounded, because long-range interactions are dominated by electrostatics

and polarization (and dispersion, which is however described neither by HF

nor by DFT). Such forces can effectively be described at low computational

cost by polarizable MM force fields. In the resulting approach, electrostatics,

polarization and Pauli repulsion interactions are accurately described at the

QM level within the MLHF/MLDFT region, whereas long-range interactions

are effectively taken into account by means of a polarizable MM level.250 As

a consequence, the novel class of methods gains advantage from the

physico-chemical features of both approaches.

In this paper, we integrate classical MM force fields,1,8 either within the

electrostatic or polarizable embedding schemes (the latter based on the

Fluctuating Charge (FQ) force field52,62,110,205,252), with a novel class of
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multilevel approaches, which extend MLHF and MLDFT to open-shell

systems. They are based on a unrestricted formulation, which exploits a

partition of both α and β spin-densities in active and inactive contributions.

Therefore, the computational saving with respect to full HF or DFT

descriptions is achieved by keeping frozen the inactive spin-density matrices,

which only perturb active densities. The resulting unrestricted MLHF

(UMLHF) and UMLDFT are able to account for electrostatic (polarization)

forces and Pauli repulsion between active and inactive QM regions, whereas

long-range electrostatic and polarization terms are effectively taken into

account at a low computational cost through the interaction with the FQ

layer. To show the potentialities of the resulting

UMLHF(UMLDFT)/MM(FQ) method, it is challenged to compute hyperfine

coupling constants (hcc) of selected molecular spin-probes.253–258 Since hccs

are particularly sensitive to the probes’ external environment,259–261 they

represent an ideal test bed for the novel multiscale multilevel approach.

The manuscript is organized as follows. In the next section we report the

theoretical derivation of UMLHF(UMLDFT)/MM(FQ). The method is then

applied to simulate hcc of Nitrogen atom of PROXYL and TEMPO radicals in

aqueous solution, by exploiting a hierarchy of classical embedding approaches.

A summary and a discussion of the future perspective of this work end the

manuscript.

5.3. Theory

In this section, the fundamentals of UMLHF(UMLDFT)/MM(FQ) are

reported. We first focus on the extension of MLHF/MLDFT to the

unrestricted case, thus defining UMLHF and UMLDFT. Then, the way they

are coupled with an outer classical, atomistic layer is detailed, by specifying

the method either within the electrostatic or polarizable embedding scheme.

In the latter case, the coupling with the FQ force field is discussed. Last, the

approach is developed for the calculation of hyperfine coupling constants.
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5.3.1. Unrestricted MLHF and MLDFT

The starting point to derive UMLHF/UMLDFT is the expression of the energy

E[Dα,Dβ] for open-shell systems in the unrestricted formalism:

E[Dα,Dβ] = E[Dα] + E[Dβ]

= TrhDα +
1

2
TrDαJ(Dα +Dβ)

− cx

(
1

2
TrDαK(Dα)

)
+ (1− cx)

∫
ρα(r)εx[ρ(r)]dr

+

∫
ρα(r)εc[ρ(r)]dr

+ TrhDβ +
1

2
TrDβJ(Dα +Dβ)

− cx

(
1

2
TrDβK(Dβ)

)
+ (1− cx)

∫
ρβ(r)εx[ρ(r)]dr

+

∫
ρβ(r)εc[ρ(r)]dr

(5.1)

E[Dα,Dβ] is split into two terms, Eα and Eβ, which refer to α and β spin. The

Dσ are spin density matrices (with σ = α, β), h is the one-electron operator,

and J and K are Coulomb and exchange matrices, respectively. Equation 5.1

is formulated for a generic DFT functional, where ρσ(r) are spin DFT density

functions and εx, εc indicate exchange and correlation energy densities per unit

particle. The UHF equations can easily be recovered by imposing cx = 1 and

εc = 0. The total density matrix D can be obtained from α and β spin density

matrices as D = Dα +Dβ.

Similarly to the closed shell case,192,193 unrestricted MLHF/MLDFT are

formulated by separating the total system into active (A) and inactive (B)

parts. From a mathematical point of view, the separation is performed by

decomposing spin-density matrices into active Dσ
A and inactive Dσ

B

contributions:
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Dα = Dα
A +Dα

B ⇒ ρα(r) = ραA(r) + ραB(r)

Dβ = Dβ
A +Dβ

B ⇒ ρβ(r) = ρβA(r) + ρβB(r) (5.2)

A similar partitioning applies to DFT spin density functions (ρα(r), ρβ(r)).

Note that in general Dα
X ̸= Dβ

X , {X = A,B}. By substituting Eq. 5.2 into

Eq. 5.1, we obtain:

E[Dα
A,D

α
B,D

β
A,D

β
B] = E[Dα

A,D
α
B] + E[Dβ

A,D
β
B]

(5.3)

where E[Dσ
A,D

σ
B] ({σ = α, β}) is given by:

E[Dσ
A,D

σ
B] =

Eσ
A

TrhDσ
A + 1

2
TrDσ

AJ(DA)

−1
2
cxTrD

σ
AK(Dσ

A) +
∫
ρσA(r)εxc(ρA(r))dr

Eσ
B

+TrhDσ
B + 1

2
TrDσ

BJ(DB)

−1
2
cxTrD

σ
BK(Dσ

B) +
∫
ρσB(r)εxc(ρB(r))dr

Eσ
int

+TrDσ
AJ(DB)− cxTrD

σ
AK(Dσ

B)

+
∫
ρσA(r)εxc(ρB(r))dr+

∫
ρσB(r)εxc(ρA(r))dr

Eσ
non−add

+
∫
ρσ(r)εxc(ρ(r))dr

−
∫
ρσ(r)εxc(ρA(r))dr−

∫
ρσ(r)εxc(ρB(r))dr

(5.4)

In Eq. 5.4, εc+(1− cx)εx is substituted by εxc to make the notation compact,

and energy terms are separated into active and inactive contributions (Eσ
A,B).

Also, the coupling terms are divided into a purely interaction energy term,

Eσ
int, and a non-additive contribution Eσ

non−add, which originates from the non

linearity of εx and εc. It is worth noting that the non-additive energy terms

vanish for UMLHF. As expected, the partitioning of the different terms in

Eq. 5.4 is coherent with the MLDFT formulation for closed shell systems (see

Ref.192).
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As already discussed in the Introduction, the energy of the active fragment A

is optimized while the inactive density B is kept fixed to the value resulting

from the partitioning in Eq. 5.2. Therefore, the UMLHF/MLDFT spin-Fock

matrix (F σ
µν , in the AO basis {χµ}) can easily be recovered by differentiating

the energy in Eq. 5.4 with respect to the active density (Dσ
A, ρ

σ
A), i.e.:

F σ
µν = hσµν

2eσA

+Jµν(DA)− cxKµν(D
σ
A)

+
∫
vσxc(ρ

A(r))χµ(r)χν(r) dr

2eσB

+Jµν(DB)− cxKµν(D
σ
B)

+
∫
vσxc(ρ

B(r))χµ(r)χν(r) dr

2eσnon−add

+
∫
[vσxc(ρ(r))− vσxc(ρ

A(r))− vσxc(ρ
B(r))]

χµ(r)χν(r) dr

(5.5)

where we have used the compact notation vxc = (1 − cx)vx + vc. The two-

electron contributions to the Fock matrix can be are grouped into different

2eX terms, with X = A,B. 2eσnon−add is due to the non-linearity in the DFT

functional, and again vanishes for UMLHF. Finally, note that 2eσB accounts for

the frozen fragment, of which the density (DB, ρ
B(r)) does not change along

SCF cycles. Therefore, 2eσB is a constant one-electron contribution, which

is computed only once, at the beginning of the SCF procedure, similarly to

MLHF/MLDFT.192,193

We further point out that UMLHF and MLDFT equations directly follow

from the partitioning of total spin-densities into active and inactive

contributions. Similarly to their close shell counterparts, their accuracy

depends on the approach which is exploited to carry out the decomposition

in Eq. 5.2. Different choices are possible, however in the present work the

initial set of active occupied molecular orbitals (MOs) are obtained through a

partial limited Cholesky decomposition of Dσ.195,202 The procedure is

detailed in Ref.,249 however its extension to open-shell systems is not

straightforward. In fact, for UMLHF/MLDFT the Cholesky decomposition

needs to be performed twice, i.e. for both Dσ
A (σ = α, β) spin-densities. Dσ

A

can be written in the AO basis {µ, ν} as follows:262
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Dσ
A,µν =

∑
IJ

Dσ
µI

(
D̃σ

IJ

)−1

Dσ
νJ

=
∑
I

Lσ
µIL

σ
νI (5.6)

where the diagonal elements I and J are decomposed, the D̃ submatrix

contains the selected diagonal elements, and LαI are the Cholesky orbitals.

Diagonal elements are selected so that pivots correspond to the AOs

belonging to a pre-defined set of active atoms. As a result of the

decomposition, the active Cholesky occupied MOs are obtained and the

active spin-density matrices Dσ
A are trivially constructed (see Eq. 5.6). The

active virtual space can be defined in terms of projected atomic orbitals

(PAOs),263,264 which are obtained by projecting out occupied components

from the subset of AOs centered on the active atoms. Possible linear

dependencies are removed by Löwdin orthonormalization (see also Ref.248).

In the practical implementation, UML calculations follow this protocol:

1. Generation of the guess AO densities (Dα and Dβ) by superposition of

atomic densities (SAD).

2. Construction of initial Fock Matrices from the SAD density and

diagonalization, so to obtain initial idempotent spin-densities.

3. Partitioning of the spin-density matrices (α and β) into active A and

inactive B spin-densities (Dα
A, D

β
A and Dα

B, D
β
B). As discussed in the

previous section, for occupied orbitals this step is performed by partial

Cholesky decomposition. Virtual orbitals are instead obtained by means

of PAOs or by decomposing the virtual density by using the Cholesky

algorithm. Notice that the whole procedure generates orthogonal MOs

between the active and inactive parts. For the active part, the resulting

MOs are used to transform matrices from the AO to the MO basis of the

active part only.

4. Calculation of constant energy terms and one-electron contributions due

to the spin-density matrices of the inactive part (see Eqs. 5.4 and 5.5).

5. Energy minimization (Eq. 5.4) in the MO basis of the active part only,

until convergence is reached.
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5.3.2. Coupling with an outer layer described with

MM force fields

The UMLHF(UMLDFT)/MM(FQ) is defined by starting from the total energy

of the system, i.e.:

E = EUMLHF(DFT) + EMM + Eint
UMLHF(DFT)/MM , (5.7)

where EUMLHF (DFT ) is given in Eq. 5.4, whereas EMM and Eint
UMLHF(DFT)/MM

are MM and UMLHF(DFT)/MM interaction energies, respectively.

Electrostatic and polarizable QM/MM embedding differ from the way the

interaction energy is specified (in our case Eint
UMLHF(DFT)/MM); electrostatic

embedding approaches limit the description to electrostatic forces only,

whereas mutual QM/MM polarization is modelled in polarizable embedding

approaches.8,62 In particular, non-polarizable embedding methods place fixed

charges on MM atoms, which polarize the QM density. Different polarizable

QM/MM approaches exist;56,58,127,129,131,203,204 in this work we exploit

QM/Fluctuating Charges (FQ),62,205 where each MM atom is assigned an

atomic electronegativity (χ) and chemical hardness (η), which give rise to

electric charges (q) as a response to the atomic chemical potential.52,62,152–154

Therefore, for both non-polarizable UMLHF(DFT)/MM or polarizable

UMLHF(DFT)/FQ, the UMLHF (DFT)/MM interaction energy can be

written as follows:

Eint
UMLHF(DFT)/MM =

∑
i

qiVi(D
α +Dβ) , (5.8)

where Vi(D
α +Dβ) is the electric potential generated by the total QM spin-

density (i.e. both active and inactive contributions) on the i−th charge (qi). In

the case of non-polarizable QM/MM, qi values are fixed, whereas in QM/FQ

they are obtained by minimizing the following energy expression:

E [Dα
A,D

β
A,D

α
B,D

β
B,q,λ] = EUMLHF(DFT)[D

α
A,D

α
B]

+ EUMLHF(DFT)[D
β
A,D

β
B]

+
1

2
q†
λMqλ + q†

λCQ

+ q†
λV(Dα +Dβ), (5.9)
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where EUMLHF(DFT)[D
α
A,D

α
B] and EUMLHF(DFT)[D

β
A,D

β
B] due to the total α-

and β spin-densities, respectively (see Eq. 5.4). In Eq. 5.9, qλ indicates a

vector collecting FQ charges and a set of Lagrangian multipliers, which ensure

charge conservation on each fragment composing the MM layer (e.g. on each

solvent molecules for solvated systems). TheMmatrix is the interaction kernel

between the FQ charges, which also contains the Lagrangian blocks,110 and the

vector CQ accounts for the interaction between permanent moments, i.e. χ

and charge constraints Q on each FQ moiety.

The FQ charges equilibrated for the UMLHF(DFT)/FQ systems are obtained

by minimizing the energy functional in Eq. 5.9. This procedure yields the

following set of linear equations:

Mqλ = −CQ −V(Dα +Dβ) . (5.10)

In parallel, UMLHF(DFT)/MM spin Fock matrices are defined as follows:

F σ
µν = F σ,UMLHF(DFT)

µν +
∑
i

qiVi,µν . (5.11)

where F
σ,UMLHF(DFT)
µν is defined in Eq. 5.5. As for energy contributions, the

additional QM/MM term is fixed and computed only at the first SCF cycle in

case of non-polarizable QM/MM, whereas it changes in QM/FQ, because FQ

charges depend on QM densities. Therefore, UMLHF(DFT)/FQ contribution

to the Fock matrix needs to be updated at each SCF cycle, thus introducing

mutual polarization effects between UMLHF(DFT) and FQ layers.

5.3.3. Hyperfine Coupling Constants

To highlight the potentialities of UMLHF(DFT)/MM(FQ), in this paper we

focus on hyperfine coupling constants. The hyperfine interaction between

electron spin S and nuclear spin I can be calculated in terms of the hyperfine

coupling tensor A, which for a given nucleus X reads:235,236

A(X) = AX13 +Adip(X) (5.12)

In Eq. 5.12, the dipolar contribution Adip(X) is a zero-trace tensor and

vanishes in isotropic media (e.g. solutions). The AX denotes the so-called

hyperfine coupling constant (hcc), which is connected to the spin density

(ρX) at nucleus X through the following equation:
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AX =
4π

3
µBµXgegX ⟨SZ⟩−1 ρα−β

X (5.13)

where µB is the Bohr magneton, ge is the free electron g-factor (ge =

2.0022319), whereas µX and gX refers to nucleus X. The ρα−β
X reads:

ρα−β
X =

∑
µν

Dα−β
µν ⟨χµ(r)|δ(r− rX)|χν(r)⟩ (5.14)

Dα−β is the difference between α and β density matrices. The UMLHF(DFT)

hccs are computed for the active part only. Therefore, the difference between α

and β density matrices in Eq. 5.14 only refers to active spin-density matrices,

which are calculated by minimizing UMLHF(DFT) energy in Eqs. 5.4-5.5.

When the outer MM layer is considered, the active spin-densities entering Eq.

5.14 are obtained by minimizing the UMLHF(DFT)/MM energy (see Eqs. 5.9

-5.11).

5.4. Computational Details

In the following sections, UMLDFT is applied to the calculation of hccN of

PROXYL and TEMPO nitroxyl radicals in aqueous solution (see Fig. 5.1).

Such systems are characterized by the presence of the N-O group, which has

been amply exploited as ”spin probe” for structural studies of macro

molecular systems.258 In particular, in order to take into account the

dynamical aspects of the solvation phenomenon, we resort to the

computational protocol suitably designed by us for the study of aqueous

systems.62 First, classical MD simulations of the spin labels in water are

performed according to Ref.177 in order to accurately sample the phase-space.

From the classical trajectories, 200 uncorrelated snapshots are extracted and

spherical droplets centered on the solutes’ center of mass are cut (radius = 13

Å).

In line with previous studies,250 for each snapshot the radical (TEMPO or

PROXYL) and the water shell closer than 3.5 Å with respect to the solute

center of mass are described at the UMLDFT level (on average, 30 water

molecules are included in the UMLDFT layer). The remaining water

molecules are classically described by means of the polarizable FQ force field,

by exploiting the parameters reported in Ref.177 To test the quality of the
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Figure 5.1. PROXYL (left) and TEMPO (right) molecular

structures. The atoms involved in the out-of-plane angle are

highlighted in cyan in both radicals.

UMLDFT description, different active/inactive partitions are considered by

including 0, 2, 5 or 10 water molecules in the active part (MLDFTnw,

n ∈ [0, 2, 5, 10]). Such molecules are the closest to the radical center of mass

(C.M.) or the N-O group (-NO). The remaining water molecules in the

UMLDFT region are treated as inactive. The radical is treated at the

PBE0/N07D265 level, whereas the QM water molecules (either active or

inactive) are described at the PBE0/6-31G level. We denote this

combination as PBE0/N07D/6-31G(w). Moreover, virtual orbitals are

determined by using the PAOs algorithm.

Finally, PROXYL and TEMPO hccN are calculated as an average of the 200

uncorrelated snapshots. All calculations are performed by using a development

version of the electronic structure code eT .266

5.5. Numerical Applications

Testing of the computational approach To first demonstrate the

reliability of the computational approach, a random snapshot is extracted

from MD simulations, and hccN are computed. To quantify the role of

long-range electrostatics interactions, hccN are also computed by removing

the MM layer (see Fig. 5.2a-b). The model systems exploited in the analysis

are depicted In Fig. 5.2a-b; TEMPO is colored in red, UMLDFT water

molecules in cyan, and the MM layer in grey. Additional calculations are

performed by exploiting the N07D basis set to describe all the system, thus

quantifying the effect of polarization and diffuse functions on water
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molecules, as compared to PBE0/N07D/6-31G(w) calculations (full and

patterned boxes in Fig. 5.2c-d). Also, comparison with calculations where

the UMLDFT region is treated at the full DFT level is proposed (labeled as

fullDFT, fullDFT/TIP3P and fullDFT/FQ, respectively), that in order to

quantify the quality of the ML partitioning. All the results obtained with the

different models are summarized in Fig. 5.2 for TEMPO (see also Tab. S1 in

the Supporting Information - SI). The corresponding data for PROXYL are

given in Fig. S1 in the SI, together with the associated raw data in Tab. S2.

We first focus on the effect of including additional water molecules in the active

fragment. Independently of the basis set exploited, TEMPO and PROXYL

hccN are not particularly affected by nw. In fact, a maximum difference of 0.1

Gauss between 0w and 10w is reported for both radicals, independently of the

method used to select the active water molecules (i.e. with respect to the N-O

group or the radical C.M.). These data suggest that the most relevant short-

range solute-solvent interactions are correctly taken into account by UMLDFT.

Long-range electrostatics (including polarization) plays instead a crucial role,

with contributions ranging from 0.85 to 1.3 Gauss when the water molecules

are described by means of the polarizable FQ force field (see Fig. 5.2e).

When the non-polarizable TIP3P force field is instead used, only a minor

shift of the computed hccN with respect to the values computed for the small

cluster is reported (see Fig. 5.2d). This clearly shows the crucial role of

long-range polarization effects in the description of hccN of solvated radical

species. The data depicted in Fig. 5.2c-e also demonstrate that the water

molecules described at the QM level can be treated by using the cheaper

6-31G basis set (i.e. without the need of including polarization and diffuse

functions), being the largest difference between full and UML PBE0/N07D or

PBE0/N07D/6-31G(w) results less than 0.1 Gauss.

5.5.1. PROXYL and TEMPO in aqueous solution

On the basis of the benchmarking results reported above,

UMLDFT/PBE0/N07D/6-31G(w)/FQ is then applied to the calculation of

hccN of both PROXYL and TEMPO on the whole set of 200 uncorrelated

snapshots extracted from MD runs. Computed UMLDFTnw/FQ results are
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Figure 5.2. Molecular structure of the randomly selected

TEMPO snapshot as described at the UMLDFT (a) and

UMLDFT/MM (b) levels. (c-e) hccN (Gauss) calculated at

the UMLDFTnw(/TIP3P,/FQ) and full DFT(/TIP3P, /FQ) levels.

Water molecules included in the UMLDFT layer are selected

with respect to the N-O group or C.M. Horizontal red lines

correspond to full PBE0/N07D (c-e), PBE0/N07D/TIP3P (d) and

PBE0/N07D/FQ (e) results.
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reported in Tab. 5.1, together with associated standard errors (se) at 67%

confidence interval. The latter are computed as:

se =
σ√
Nsnap

(5.15)

where σ is the standard deviation for the 200 uncorrelated snapshots (Nsnap).

PROXYL TEMPO

UMLDFTNO/FQ 16.0 ± 0.1 16.5 ± 0.1

UMLDFT0w/FQ 15.3 ± 0.1 16.2 ± 0.1

N
-O

UMLDFT2w/FQ 15.3 ± 0.1 16.4 ± 0.1

UMLDFT5w/FQ 15.4 ± 0.1 16.2 ± 0.1

UMLDFT10w/FQ 15.4 ± 0.1 16.2 ± 0.1

C
.M

. UMLDFT2w/FQ 15.3 ± 0.1 16.3 ± 0.1

UMLDFT5w/FQ 15.3 ± 0.1 16.2 ± 0.1

UMLDFT10w/FQ 15.3 ± 0.1 16.2 ± 0.1

”Best” QM/MM267 15.5± 0.1 16.3± 0.1

Exp. 16.4268 17.3269

Table 5.1. Calculated UMLDFTnw/FQ hccN (Gauss) average

values for PROXYL and TEMPO in aqueous solution. Values

are averaged over 200 uncorrelated snapshots extracted from MD

runs. ”Best” QM/MM results are reproduced from Ref.,267 whereas

experimental data are taken from Refs.268,269

We first note that the inclusion of water molecules in the active region only

marginally affects the computed hccN values, in agreement with the

benchmark analysis discussed above for the random snapshot. We also

investigate the dependence of hccN on the out of plane dihedral angle

involving C-C-N-O atoms, i.e. the Nitrogen atom pyrimidalization (see Fig.

5.1), which has previously been reported to crucially affect the description of

hccN of the studied radical species.177,270 Computed data at the

UMLDFT0w/FQ level are depicted in Fig. 5.3 for PROXYL (left) and

TEMPO (right). hccN hugely varies as a function of the OOP angle, ranging

from about 12 to 26 Gauss. Note that such a variability is the main reason
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why 200 snapshots are required to converge the property (see top panel in

Fig. 5.3), and also demonstrates that a reliable sampling of the

radical/solvent phase-space is required to reliable model this property.

Figure 5.3. Computed UMLDFT0w/FQ hccN values (Gauss) for

PROXYL (left) and TEMPO (right) in aqueous solution as a function

of the out of plane angle (see inset).

The data in Tab. 5.1 show that for both radicals, UMLDFT0w/FQ and

UMLDFT10w/FQ provide almost the same computed hccN, independently of

how the active water molecules are selected (i.e. with respect to the N-O

group or the C.M.). This is in line with previous observations reported in

Fig. 5.2. Such results can be further investigated by plotting the difference

between hccN values computed by exploited the two approaches (∆hccN), as

a function of the OOP angle (see Fig. 5.4, where UMLDFT10w(N-O) is

considered). For most snapshots the two approaches give similar hccN values

(∆hccN = 0 Gauss). However, large differences, ranging from -0.7 to 1.1

Gauss, with a standard deviation of 0.3 Gauss, are reported for specific

values of the out-of-plane angle for both PROXYL and TEMPO. Fig. 5.4

also reports absolute values of the error between the two approaches,

together with their gaussian convolution. For TEMPO (left panel of Fig.

5.4), the largest discrepancies are reported for the region near ±20 degrees,

and the gaussian convolution shows a minimum at about 0 degrees. A

different situation occurs for PROXYL, for which maxima are located at -20

and 10 degrees. These results show that although average hccN values

computed by UMLDFT0w and UMLDFT10w(N-O) are similar for both

radical species, a large fluctuation is reported as a function of the snapshot.

This confirms that an appropriate sampling of the phase-space is required,

and that the dynamical aspects of the solvation phenomenon need to
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accurately be taken into account. In addition, it is worth noting that

additional polarization effects which are considered by including the closest

water molecules in the active region, do not play a crucial role in determining

the final average results. However, the present analysis clearly show that

such effects need to be accurately investigated when multilevel methodologies

are employed, as already reported by some of us for excitation energies.250

Figure 5.4. Computed UMLDFT0w/FQ - UMLDFT10w(N-O)

∆hccN (Gauss) for PROXYL (left) and TEMPO (right) in aqueous

solution as a function of the out-of-plane angle. Histograms and

gaussian convolutions of the absolute ∆hccN values are also given.

Covalently bonded fragments The results reported in the previous

sections assume active and inactive regions to be non-covalently bonded.

However, UMLDFT can in principle be applied to covalently bonded

fragments. To demonstrate the method’s potentialities, the active space is

reduced to the N-O group only, and the remaining atoms of the radicals are

included in the inactive UMLDFT region, together with selected water

molecules. This approach is denoted as UMLDFTNO/FQ, and computed

hccN are reported in Tab. 5.1. UMLDFTNO/FQ results differ of about 0.7

(PROXYL) and 0.3 (TEMPO) Gauss with respect to UMLDFT10w/FQ data,

which can be taken as reference. However, as already reported above, average

values may hinder larger complexity from the solvation dynamics point of

view. For this reason, in Fig. 5.5 UMLDFTNO/FQ-UMLDFT10w(N-O)/FQ

differences as a function of the OOP angle are reported for PROXYL (left)

and TEMPO (right). Absolute error distributions are also given as

histograms and their convolution with a gaussian-type function is plotted.

Both PROXYL and TEMPO ∆hccN distributions are comparable to those
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Figure 5.5. Computed UMLDFT10w(N-O)/FQ - UMLDFTNO

∆hccN (Gauss) as a function of the out of plane angle for PROXYL

(left) and TEMPO (right) in aqueous solution. Histograms and

gaussian convolutions of absolute ∆hccN values are also given.

already commented in Fig. 5.4. However, in the present case ∆hccN values

show very large variability, from -0.6 to 1.6 Gauss, with a standard deviation

of about 0.5 and 0.4 Gauss for PROXYL and TEMPO, respectively. The

UMLDFT is able to provide average hccN values in good agreement with

reference results by only considering a minimal active portion. Such features

may be particularly useful for the extension of the approach to correlated

Hamiltonians, which can be exploited to describe the active fragment.

Comparison with experimental data We finally move to compare

computed and experimental data (see Table 5.1). It has been reported in

previous studies that DFT has strong limits at reproducing hccN values, due

to inappropriate account of electron correlation.177,271 However UMLDFT

results are in good agreement with most accurate QM/MM results reported

by some of us,177 and which are labeled as “best QM/MM” in Table 5.1.

Such data were obtained by describing water molecules at the FQ level, with

the further (and substantial) inclusion of Pauli repulsion and dispersion

contributions, as computed at the QM level.128,133,176,177 The discrepancy

between UMLDFT and experimental data is similar to “best QM/MM”

results (1.1 ± 0.2 Gauss for PROXYL and 1.1 ± 0.2 Gauss). A proper

account of electron correlation, e.g. by resorting to correlated coupled cluster

calculations, is expected to reduce the computed error.177 However,

computed UMLDFT/FQ differences between PROXYL and TEMPO hccN

values (0.9 Gauss) are perfectly in agreement with experimental findings (0.9
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Gauss), thus demonstrating that our approach can reliably describe different

radical species.

5.6. Summary, Conclusions and Future

Perspectives

In this work, we have introduced a novel class of multiscale QM/classical

approaches aimed at describing the electronic properties of open shell

systems. The methods are based on the coupling of multilevel HF/DFT,

which are extended to the unrestricted formalism, with an outer region

described at the classical MM level. Similarly to MLHF and MLDFT, UML

methodologies are based on a partition of the QM layer into an active and an

inactive part. The partitioning is performed on the initial spin-density

matrices through a partial Cholesky decomposition of the occupied MOs, and

virtual orbitals are obtained by means of PAOs. Note that the active

occupied MOs may be further refined by means of a localization procedure

targeted to specific molecular regions assigned to the active fragment. To this

purpose, the energy-based approach developed by some of us can be extended

to the unrestricted formalism.249 The UML methods substantially reduce the

computational cost associated with common ab-initio calculations, because

only the active subsystem MOs enter the SCF procedure, whereas the

inactive density is kept fixed.

UMLHF/DFT are coupled to an outer MM layer described in terms of non-

polarizable or polarizable force fields. In this way, not only the computational

cost is further reduced, but a correct physico-chemical description of the main

interactions is preserved. Indeed, the MM part allows for an effective modeling

of long-range electrostatics (and polarization forces) in a multiscale fashion.

To test the quality of the approaches, they are applied to compute hccN of

PROXYL and TEMPO radicals dissolved in aqueous solution. First, the

quality of the designed computational protocol is tested on a single snapshot,

demonstrating the necessity of including long-range polarization by

comparing UMLDFT/TIP3P and UMLDFT/FQ results. Then, PROXYL

and TEMPO hccN are calculated as an average on a set of uncorrelated

snapshots extracted from classical MD runs, which allow to correctly take
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into account the dynamical aspect of the solvation phenomenon. The

computed data are perfectly in agreement with the best computational

estimates proposed in the literature for the same systems and correctly

reproduce the experimental findings, thus demonstrating the reliability of the

developed methods for real-case systems. Also, we showcase the flexibility of

UMLDFT/MM partitioning by including the nitroxyl group only in the

active part, i.e. by considering covalently bonded fragments. Although in

this case computed hccN are not perfectly in agreement with our best

estimates, such a flexibility paves the way to the extension to a coupled

cluster treatment of the active part, that in order to take into account

electron correlation, which may largely affect the electronic properties of

open-shell systems.177,271

On the other hand, the developed approach can also be extended to treat

linear response properties of open-shell systems by means of time-dependent

DFT (TD-DFT) formulations. Also, UMLDFT/MM is here tested on

aqueous solutions, however the model is general enough to be applied to

different solvents,242 or different embedding environments, such as biological

matrices or nanostructured materials. Finally, UMLDFT may also be

coupled to more sophisticated polarizable force fields, which improve the

description of specific anisotropic interactions.129
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5.8. Supporting Information

hccN for PROXYL and TEMPO calculated at the UMLDFTnw(/TIP3P; /FQ)

levels, and associated graphical representation for PROXYL.

PBE0/N07D PBE0/N07D/6-31G(w)

UMLDFTnw Gas-phase FQ TIP3P Gas-phase FQ TIP3P

0w 13.1 14.0 13.1 13.2 14.1 13.2

N
-O

2w 13.2 14.1 13.1 13.2 14.2 13.2

5w 13.2 13.7 13.2 13.3 14.2 13.3

10w 13.2 13.7 13.2 13.2 14.2 13.2

C
M

2w 13.2 13.7 13.2 13.2 14.2 13.2

5w 13.2 13.7 13.2 13.2 14.2 13.3

10w 13.1 13.6 13.1 13.2 14.1 13.2

Full DFT 13.2 14.1 13.8 13.2 14.1 13.8

Table 5.2. Calculated UMLDFTnw(/TIP3P; /FQ) hccN for

TEMPO, which different selections of active water molecules.

PBE0/N07D PBE0/N07D/6-31G(w)

UMLDFTnw Gas-phase FQ TIP3P Gas-phase FQ TIP3P

0w 18.6 18.4 18.7 18.8 19.1 18.8

N
-O

2w 18.5 19.0 18.6 18.7 19.0 18.8

5w 18.4 18.8 18.4 18.5 18.8 18.5

10w 18.4 18.9 18.5 18.5 18.7 18.5

C
M

2w 18.6 19.0 18.7 18.6 18.8 18.7

5w 18.5 19.0 18.6 18.7 18.9 18.7

10w 18.4 18.9 18.4 18.5 18.7 18.5

Full DFT 18.3 18.8 18.5 18.5 18.9 18.7

Table 5.3. Calculated UMLDFTnw(/TIP3P; /FQ) hccN for

PROXYL, which different selections of active water molecules.
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Figure 5.6. hccN (Gauss) calculated at the

UMLDFTnw(/TIP3P,/FQ) and full DFT(/TIP3P, /FQ) levels

for PROXYL. Water molecules included in the UMLDFT layer

are selected with respect to the N-O group or C.M. Horizontal

red lines correspond to full PBE0/N07D, PBE0/N07D/TIP3P and

PBE0/N07D/FQ results.
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CHAPTER 6

Summary, Conclusions and Future

Perspectives

This thesis focused on the development and application of different multiscale

models, which differ on the way the interactions between the target molecule

and the environment are defined. The proposed methodologies belong to two

different families: (i) QM/MM and (ii) quantum embedding approaches. By

focusing on the first class, we have introduced different QM/MM embeddings

with the associated interaction potentials, ranging from mechanical to

polarizable embeddings, in which the mutual polarization between the QM

and MM parts is taken into account. Among them, we deep in the theoretical

details of two polarizable QM/MM approaches, namely QM/FQ and

QM/FQFµ. In QM/FQ, each MM atom is endowed with a charge, which

varies as a response to the external potential. In QM/FQFµ an additional

dipole moment is placed at the atoms’ positions, and linearly dependent on

the external field. In this way, anisotropic interactions can accurately be

described. From an algorithmic point of view, the QM/FQFµ response

matrix is four times bigger than the QM/FQ one (Tqq block). As a

consequence, by inverting the response matrix, QM/FQ can treat 64 times

bigger systems than QM/FQFµ at the same computational cost.

As commented above, QM/FQFµ provides a refined description of QM/MM

interactions with respect to QM/FQ and other polarizable embedding

models. However, also in this case, QM/MM interactions are limited to an

electrostatic description, therefore neglecting both Pauli repulsion and
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dispersion effects, which are intrinsically of QM nature. The common

strategy to include these forces is by calculating the Lennard-Jones potential.

Contrary to the electrostatic term, which acts as an external potential in the

Hamiltonian, the Lennard-Jones energy is merely added to the total energy

of the system, because it does not depend on the QM density. Thus, its

inclusion only gives indirect contributions to molecular properties, because it

does not directly affect the Hamiltonian, its derivatives and response

equations.

Few strategies have been proposed to include dispersion and repulsion effects

in a QM/MM framework. Among them, in Paper 1, the QM/MM quantum

Pauli-repulsion framework developed by our research group,176,177 and based

on the explicit calculation of the exchange integral between the QM and a

ficticious MM density, has been applied to the calculation of polarizabilities

and first-hyperpolarizability of organic molecules in aqueous solutions. In

this work, QM/MM electrostatics is classically described by using both FQ

and FQFµ force fields. The robustness of the approach is demonstrated for

different organic acids dissolved in aqueous solution. The computed results

clearly show that, as expected, polarizabilities and first-hyperpolarizabilities

are particularly sensitive to the external environment. Indeed, the final

numerical value is the result of a delicate balance between electrostatics,

hydrogen-bonding, and non-electrostatic target-embedding interactions. Only

by a physically consistent description of these interactions, as provided by

our hybrid QM/MM approach, reliable results can be obtained. The reported

reliability of the approach paves the way for its extensive application to

different properties and spectroscopies, as for instance Raman and

Hyper-Raman. In fact, the two aforementioned spectroscopies explicitly

depend on the geometrical derivatives of polarizabilities and

hyper-polarizabilities. Therefore, an accurate description of these two

properties is mandatory to yield a reliable modeling of such spectroscopies.

In Paper 2, we have introduced a novel quantum embedding approach

within the framework of density functional theory, named multilevel DFT.

Similarly to its HF counterpart, in MLDFT the system is partitioned into an

active and an inactive fragment. While the active density is optimized in the

field of the inactive fragment, the inactive density remains frozen. In this

way, the computational cost is intrinsically reduced. Also, additional saving
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is obtained by solving the SCF equations in the MO basis of the active part

only. MLDFT shares many similarities with other quantum embedding

methods based on DFT, such as the FDE method. However, in MLDFT the

active-inactive partitioning is performed on the density matrix, whereas in

the FDE formalism it is obtained at the density function level. In FDE, this

causes the need of defining a non-additive kinetic potential term that

enforces Pauli exclusion between the electrons of the various subsystems. On

the other hand, in MLDFT the density matrix decomposition needs to be

performed by means of a decomposition algorithm, which may be

mathematically well-defined, but may not have any particular physical

meaning. However, if the decomposition is applied to the fully converged

DFT density matrix, then, the MLDFT energy corresponds to the exact

DFT energy of the full system, thus being completely independent of the

decomposition algorithm.

The introduction of MLDFT paves the way for an accurate description of

many different properties and spectroscopies of molecular systems embedded

in generic external environments. In order to apply the method to open-shell

subsystem, in Paper 3, ML-based methods (MLHF and MLDFT) are

extended to the unrestricted formalism. Also, in order to further extend the

applicability of ML-based methods, we have proposed their coupling with an

additional MM layer, which can be either polarizable (at the FQ level) or

non-polarizable. Such an extension is indeed physically-grounded: while

short-range interactions may be characterized by purely quantum effects,

such as Pauli repulsion, and a quantum description is therefore a natural

choice, long-range interactions are usually dominated by electrostatics, which

can accurately be described at the MM level. The results presented in Paper

3 clearly show that the proposed UMLHF(DFT)/MM approach can

accurately describe the properties of open-shell systems, such as hyperfine

coupling constants, which are particularly sensitive to the external

environment.

To conclude, in this Thesis, we have laid the foundations of different

theoretical approaches based either on QM/MM or on multilevel partitioning

of embedded system. Such methods paves the way for a physically-consistent

and cost-effective description of the properties of complex systems. In

particular, the MLDFT/MM approach developed in Paper 3 is particularly
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promising, because it retains the most relevant physical interactions at an

accurate level of theory in all regions. In fact, within the core region

described at the MLDFT level, the interactions (electrostatics, polarization

and Pauli repulsion) are quantum-mechanically described. Long-range terms,

which can be reasonably approximated by electrostatics (and polarization),

are accurately described at the MM level. Dispersion is the only missing

interaction energy term, which is not accounted for in our modeling. The

further inclusion of such a term is particularly challenging, because it is

related to a second-order expansion of the intermolecular interaction.

However, its consideration is expected to further increase the accuracy of the

proposed methods to describe real systems.

91



Bibliography

[1] Warshel, A.; Levitt, M. J. Mol. Biol. 1976, 103, 227–249.

[2] Warshel, A.; Karplus, M. J. Am. Chem. Soc. 1972, 94, 5612–5625.

[3] Warshel, A. Ann. Rev. Bioph. Biom. 2003, 32, 425–443.

[4] Gao, J.; Xia, X. Science 1992, 258, 631–635.

[5] Vreven, T.; Morokuma, K.; Farkas, Ö.; Schlegel, H. B.; Frisch, M. J. J.
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