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Abstract

Flavour Physics is a a sector of physics able to test the Standard Model of elementary particles with
extreme precision. In fact, in the past fifty years lots of theoretical predictions of SM parameters and
Flavour observables have been found to perfectly agree with the experiments. At present, however, this
does not seem to be true in two fundamental cases, both related to semileptonic flavour transitions.
On the one hand, the inclusive and exclusive determinations of the Cabibbo-Kobayashi-Maskawa
parameter |Vcb| are in tension with each other. This fact is often referred to as the |Vcb| puzzle. On
the other hand, a non-negligible discrepancy holds beteween the expectations and the measurements
of the so-called Flavour Anomalies R(D(∗)) and R(K(∗)), which are the τ/µ and the µ/` ratios of the
branching fractions of the semileptonic B → D(∗)`ν and B → K(∗)`+`− decays, respectively.

In this Thesis we will firstly describe a novel, non-perturbative and model-independent approach,
i.e. the Dispersive Matrix method, to describe the hadronic Form Factors entering in the semileptonic
charged-current B decays. Our most important findings are that both the |Vcb| puzzle and the R(D∗)
anomalies are strongly lightened by applying the Dispersive Matrix method to the B → D∗`ν decays,
as will be described in Part I. In particular, for what concerns the CKM matrix element, this is in
complete agreement with the indirect UTfit prediction for |Vcb|.

Then, we will extend the discussion to the analysis of Beyond the Standard Model effects in Flavour
Physics, mainly motivated by the strong and still remaining R(K(∗)) anomalies. In particular, in Part
II we will show the impact of several flavour observables on two explicit models, the Composite Higgs
scenarios and the LeptoQuarks ones. A fundamental link exists between this Part and the previous
one since, as we will explicitly appreciate, in the Beyond the Standard Model studies the Standard
Model parameters are directly involved, thus the most precise are the theoretical estimates of these
parameters, the strongest will be the bounds on the New Physics effects eventually affecting the flavour
sector.

In the last Part, we will move to the study of the phenomenology of Dark Matter. Without any
doubt, explaining the origin of the Dark Matter abundance is, at present, one of the most important
and intriguing challenges of theoretical physics. In Part III we will firstly analyze the proofs of the
existence of Dark Matter and then we will describe in detail the Weakly Interacting Massive Particle
scenario. We will then show how Dark Matter and the Flavour problem can be related. To this end, we
will study another model involving the thermal decays of Dark Matter. It assumes the existence of a
precise flavour structure and the introduction of the LeptoQuarks, previously described in the context
of Flavour Physics, in order to generate interactions between the Dark Matter and the Standard Model
particles. As we will see in detail, both these scenarios will allow us to explain the observed value of
the Dark Matter abundance.

This thesis is based on the work contained in the papers [1–12].
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Chapter 1

Introduction

The Standard Model of particle physics is the fundamental theory of ElectroWeak and Strong in-
teractions. It has allowed people in the past fifty years to develop a huge series of predictions with
extraordinary precision, being in complete agreement with the experiments. However, the Standard
Model has to be considered an Effective Field Theory which is valid only at low energies, i.e. below a
certain energy cutoff. In fact, there exist several issues, which we are going to divide into two distinct
categories, which do not find a clear explanation in this framework. On the one hand, we have several
experimental evidences of phenomena not described by the Standard Model, namely the existence of
Dark Matter in the Universe, the observed asymmetry between baryons and anti-baryons and finally
the problem of the non-vanishing neutrino mass. On the other hand, there are many theoretical
arguments that call for an extension of the Standard Model, i.e. the non-inclusion of gravitational
interactions in the Standard Model, the absence of a precise justification of the equality in magnitude
of proton and electron charges and then the problem of Naturalness, related to the observed Higgs
mass.

For all these reasons, at present there is a constant effort to look for and study possible extensions
of the Standard Model, namely Beyond the Standard Model scenarios, both on the experimental side
and on the theoretical one. The final goal of these efforts is thus to find an UltraViolet completion of
the Standard Model, i.e. a more fundamental theory in which we recover the Standard Model itself
at low energies. In other words, we can think of the Standard Model as a particular case of a more
general theory of Nature, in which in principle new interactions and new particles may emerge at high
energies.

Experimental data plays a fundamental role in this game, since they indicate the places where, in
principle, New Physics effects can emerge. In this sense, without any doubt one of the most interesting
fields to be investigated is Flavour Physics. Precision measurements of flavour observables allow and
will constantly allow us not only to test many properties of the Standard Model, say for instance the
unitarity of the Cabibbo-Kobayashi-Maskawa matrix, but at the same time to find possible deviations
with respect to the theoretical predictions within the Standard Model. Any such discrepancy, in fact,
can be read as a potential and clear hint of New Physics affecting low-energy processes.

In the last twenty years an increasing amount of attention has been addressed to B physics, which
studies the properties of B mesons and that will be enriched by new measurements of extraordinary
precision in the next decades. In this Thesis, we will first of all focus our attention on the semilep-
tonic charged-current B decays, with particular attention given to the B → D(∗)`ν decays. These
processes are of capital importance since they allow to extract the Standard Model parameters from
experimental data with high precision and, at the same time, to test possible New Physics effects. In

1



2 CHAPTER 1. INTRODUCTION

fact, two phenomenological problems have arisen in the recent years. On the one hand, two differ-
ent measurements of the Cabibbo-Kobayashi-Maskawa matrix element |Vcb| – the exclusive and the
inclusive determinations – are in tension with each other. This issue is the so-called |Vcb| puzzle. On
the other hand, these b→ c transitions can give evidence to the existence of Lepton Flavour Univer-
sality Violation effects, since the theoretical estimates and the measurements of the τ/µ ratios of the
branching fractions of these decays are in tension to each other.

As it is valid for all the semileptonic charged-current decays of mesons and hadrons, a central role
in the theoretical estimate of the decay widths is played by the hadronic Form Factors, which encode
all the informations about the strong dynamics of the quarks and are only functions of the momentum
transfer. The question is: can the way in which these functions are parametrized be the cause of the
aforementioned tensions? This will be the topic of the first Part of this Thesis, in which we will present
a novel, non-perturbative and completely model-independent way to describe the Form Factors in the
whole kinematical range, by using the results of the available Lattice Quantum-ChromoDynamics
computations. We anticipate that our strategy allows us to lighten both the |Vcb| puzzle and the
Lepton Flavour Universality Violation problem with respect to previous studies present in literature.

The B → D(∗)`ν decays, however, are not the only processes characterized by tensions between
theory and experiments. A possible way to explain this kind of discrepancies, when present, is to
assume the existence of New Physics effects. In this case, one can pursue two different approaches,
i.e. to study Flavour Physics under an Effective Field Theory approach, which is completely model-
independent, or through explicit New Physics models. The central question is whether some type of
Beyond the Standard Model physics at the TeV scale can or cannot accomodate the existing tensions
in the flavour sector.

This will be the topic of the second Part of this Thesis, which will thus face Flavour Physics
from a Beyond the Standard Model point of view. In fact, we will describe the New Physics effects
that all the possible flavour operators, which may arise in an extension of the Standard Model, can
induce on low-energy processes in Flavour Physics. We will consider many ∆B = 1, 2 transitions, for
instance radiative B decays and B̄−B mixings, in order to compute the most important experimental
constraints on New Physics coming from flavour observables. Furthermore, our findings will be applied
to specific Beyond the Standard Model scenarios, such as the Composite Higgs one, and we will also
investigate the flavour structure that these models can have. Let us finally highlight that, as it will be
repeated several times throughout this work, the first and the second Parts of this Thesis are deeply
related to each other. In fact, the more precise are the theoretical estimates of the Standard Model
parameters (which is the goal of each precision physics study), the more stringent will be the bounds
on New Physics affecting the flavour sector.

Note that this kind of theoretical studies is of capital importance in view of the incredible improve-
ment in luminosities expected at future colliders. To make one example, the European community has
developed a Future Circular Collider (FCC) programme [13–16], in accordance to the scientific strat-
egy promoted by CERN, which consists both in a luminosity-frontier highest-energy lepton collider
and in an energy-frontier hadron collider to be built in the next decades. What will be the physics
opportunities of FCC? It will allow to uniquely study the properties of the ElectroWeak gauge bosons
and the Higgs field and to develop a series of precision measurements sensitive to tiny deviations from
the Standard Model. Moreover, FCC will give us the possibility to observe new particles with an
extension in energy with respect to LHC by a factor of ∼ 6. Fundamental examples are offered by
Composite Higgs and Supersymmetric models, where for instance the gluinos will be discovered up to
masses of close to 20 TeV and the vector modes in CH models up to masses close to 40 TeV. Summary
plots for these scenarios are given in Figure 1.1. Note that this example is clearly not exhaustive, since
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Figure 1.1: On the left side, current LHC and projected future High Luminosity LHC and FCC direct
discovery reaches for heavy composite vector resonances decaying to dileptons or gauge boson pairs
are shown. ξ is defined as the ratio of the Higgs vacuum expectation value and the compositeness
scale. On the right side, direct FCC-hh 2σ and 5σ discovery reach for the supersymmetric sparticles

are shown. Taken from [13].

many other examples of New Physics degrees of freedom, i.e. axions, sterile neutrinos and Z
′

gauge
bosons, result to be affected by the direct discovery potential of FCC. Thus, for all these reasons we
will investigate which will be the reach on NP coming from the future experiments in Flavour Physics
and we will compare them with the prospects coming from these colliders.

A second fundamental challenge of particle physics, that also calls for an extension of the Standard
Model as mentioned before, is the explanation of the observed abundance of Dark Matter in our
Universe. In fact, while the existence of Dark Matter is a matter of fact, since it is confirmed by
several astrophysical and cosmological probes, its nature is not clear. At present, the main hypotheses
are that Dark Matter has an elementary or an extended nature.

In the third and last Part of this Thesis, we will investigate in detail the first possibility, which has
attracted an incredible amount of attention from the experimental point of view in the development of
direct and indirect searches for Dark Matter particles. We will firstly focus on one of the main attractive
models proposed over the past decades, i.e. the Weakly Interacting Massive Particle (WIMP) scenario,
which is able to reproduce the abundance of Dark Matter assuming its mass at the O(TeV) scale. We
will try to close definitively the window on the WIMP paradigm by updating theoretical computations
of their thermal masses and investigating the discovery potential of future experiments. Second, we will
attempt a connection with the previous Parts of the Thesis, investigating possible relations between
Dark Matter phenomenology and specific models of Flavour Physics. In this sense, we will propose
a new model based on the thermal decays of Dark Matter, which is particularly intriguing since, as
we will show, can be related to LeptoQuarks, new heavy degrees of freedom coupled to quarks and
leptons which could have a central role in Beyond the Standard Model scenarios of flavour processes.
The model of thermal decays constitutes a fundamental link between the study of Dark Matter and
the one of Flavour Physics inside this Thesis, giving thus rise to an overall organic structure.

Among the various experimental strategies to look for Dark Matter particles, direct production at
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Figure 1.2: The 95% confidence level mass reach [17] for several Beyond the Standard Model particles,
expected at the High Luminosity LHC (solid bars) and at the FCC proton-proton machine (shaded
bars), is shown. This plot is taken from [9]. The potential discovery reach of a muon collider with

center of mass energies equal to 10, 14 and 30 TeV are reported as horizontal lines.

colliders is one of the most important ones and will be deeply studied. In this Thesis, we will give
particular emphasis to muon colliders [9], which are another example of the central role that future
colliders will have to give a new insight on theoretical physics studies in the following decades. The
muon collider strategy has to be considered as complementary to the FCC one. The fundamental idea
is that muons can be made to collide in a compact ring without limitations coming from synchrotron
radiation, while they are at the same time elementary and point-like particles. Thus, the center
of mass collision energy can be entirely used to give rise to high-energy processes. Muon colliders
are particularly effective in detecting ElectroWeak signals expected for purely ElectroWeak charged
states. Figure 1.2, which is somehow complementary to Figure 1.1, shows this in detail. Here, the
projected High Luminosity LHC mass reach and the 100 TeV FCC proton-proton collider one on
several Beyond the Standard Model states are reported. Composite Higgs fermionic top-partners
T and supersymmetric particles have been considered and, for each particle, the highest possible
mass reach is reported. Note that the muon collider reach, displayed as horizontal lines for center of
mass energies equal to 10, 14 and 30 TeV, exceeds the one of FCC for several Beyond the Standard
Model candidates. A very similar example in this sense is then offered by the Weakly Interacting
Massive Particles. They are perfect targets for experimental studies at muon colliders, given the
pure ElectroWeak signals produced by their interactions. We will thus discuss about the important
interplay existing between Dark Matter phenomenology and Collider Physics.

So, to summarize, the Thesis is organized as follows. In the first Part we will firstly investigate
exclusive semileptonic B decays within the Standard Model. Then, we will extend the discussion
to a more general perspective on Flavour Physics beyond the Standard Model in the second Part,
analysing the relevant ∆F = 1, 2 transitions both in a model-independent and in a model-dependent
way. Finally, in the last Part we will focus on Dark Matter phenomenology and we will look for
possible connections with Flavour Physics in the context of New Physics scenarios.



Chapter 2

The Standard Model and its flavour
structure

The Standard Model (SM) of elementary particles describes three of the four fundamental forces exist-
ing in Nature, i.e. the strong, the weak and the electromagnetic interactions. It has been successfully
tested during the past seventy years, since its theoretical predictions have been confirmed to an ex-
traordinary level of precision and accuracy by the quasi-totality of the experiments. In this Section we
will mainly review the flavour structure of the SM, specializing then the discussion on the fundamen-
tals of the theory of ElectroWeak (EW) interactions. In this sense, the mechanism of production of the
fermion masses will be presented, as well as the physical origin of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix and its impact on the Unitarity Triangle. Finally, we will show also the main physical
properties and peculiarities of the Higgs boson.

2.1 The SM Lagrangian

The SM is characterized by a SU(3) × SU(2) × U(1) symmetry group and the general expression of
its renormalizable Lagrangian can be written as

LSM = Lg + Lf + LH + LY , (2.1)

where we have defined the following four Lagrangian substructures:

Lg = −1

4
GaµG

aµν − 1

4
W b
µνW

bµν − 1

4
BµνB

µν , (2.2)

Lf =
∑

f

ψ̄f iD
µ
(f)γµψf , (2.3)

LH = (Dµ(H)H)†(Dµ
(H)H)− V (H), (2.4)

LY = Y u
ij Q̄

i
Lu

j
RH

c + Y d
ijQ̄

i
Ld

j
RH + Y `

ijL̄
i
L`
j
RH. (2.5)

Eq. (2.2) contains the gauge interactions. Gµν , Wµν and Bµν are the field strength tensors for the
SU(3), SU(2) and U(1) symmetry groups, respectively, and can be expressed in terms of the single
gauge fields as

Gaµν = ∂µg
a
ν − ∂νgaµ + gsf

ajk
SU(3)g

j
µg

k
ν ,

W b
µν = ∂µW

b
ν − ∂νW b

µ + g2f
bαβ
SU(2)W

α
µW

β
ν ,

5
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Bµν = ∂µBν − ∂νBµ.

a, j, k = 1, · · · , 8 and b, α, β = 1, 2, 3 represent, respectively, the indices in the adjoint representations
of SU(3) and SU(2), whose structure constants are labeled as fSU(3) and fSU(2). Then, Eq. (2.3)
represents all the fermions present in the SM, namely three generations of quarks and leptons. To be
more specific, f = {QiL, uiR, diR, LiL, `iR} (i is the generation index), where the QiL represent the left-
handed SU(2) quark doublets, the uiR the diR are the right-handed up-type and down-type quarks, the
LiL represent the left-handed SU(2) lepton doublets and finally the `iR are right-handed leptons. We
have also defined the covariant derivative Dµ

(f) ≡ ∂µ − igsgµaTa(f) − ig2W
µiT i(f) − ig1Y

(f)Bµ, where

Ta(f) and T i(f) are the SU(3) and SU(2) generators in the representation chosen for the fermion ψf
and Y (f) is its hypercharge. Eq. (2.4) describes the Higgs boson H, which is a scalar SU(2) doublet
with unit hypercharge. Thus, the covariant derivative here reads Dµ

(H) ≡ ∂µ− ig2W
µ iτ i/2− ig1B

µ/2,

where τ i (i = 1, 2, 3) are the Pauli matrices. V (H) represents the Higgs potential, whose explicit
expression can be found in the following Section. Finally, Eq. (2.5) describes the Yukawa interactions,
where we have introduced the Yukawa matrices Y u

ij , Y
d
ij , Y

`
ij and we have defined Hc ≡ iσ2H∗.

Since it will be of fundamental importance in this Thesis, let us focus our attention on the flavour
quantum numbers of the fields involved in the SM Lagrangian (2.1). The fermion part (2.3), the
Higgs one (2.4) and the gauge one (2.2) are invariant under a global U(3)QL × U(3)uR × U(3)dR ×
U(3)LL×U(3)`R symmetry group, often referred to as U(3)5 symmetry group. This is not true for the
Yukawa terms (2.5). In fact, focusing for instance on the quark case, the Yukawa couplings break the
U(3)QL × U(3)uR × U(3)dR ≡ U(3)3 group to the U(1)B one, which corresponds to the conservation
of the baryonic number B.

2.2 ElectroWeak Interactions in the Standard Model

In this Section we will review the main properties of the ElectroWeak (EW) interactions within the
SM. In particular, we will investigate the phenomenon of ElectroWeak Symmetry Breaking (EWSB),
which is responsible for giving mass to SM fermions. In what follows, we will specialize our discussion
only on the quark sector. We will also mention the origin and the physical meaning of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix.

2.2.1 Quark mixing and mass terms

In the previous Section 2.1, we have reviewed the matter content of the SM. A brief summary of the
SM fermions can be found in Table 2.1, where we have specified their quantum numbers under the
SM SU(3)× SU(2)× U(1) symmetry group. Note that the hypercharge Y can be found through the
simple relation

Q =
Y

2
+ I3,

where Q is the electric charge of a given particle and I3 is the third component of the weak isospin.

It is clear from Table 2.1 that the quantum numbers of the quarks through the three generations
are exactly the same. In fact, the physical property that allows us to distinguish them one from
another is the mass. The Particle Data Group [18] quotes the following values:

mu = 2.16+0.49
−0.26 MeV, mc = 1.27± 0.02 GeV, mt = 172.76± 0.30 GeV,

md = 4.67+0.48
−0.17 MeV, ms = 93+11

−5 MeV, mb = 4.18+0.03
−0.02 GeV.
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SU(3) SU(2) U(1)

QL 3 2 +1/6
uR 3 1 +2/3
dR 3 1 -1/3
LL 1 2 -1/2
`R 1 1 -1

Table 2.1: Quantum numbers of the SM fermions.

The u-, d- and s-quark masses are estimated in the MS scheme at a scale µ ≈ 2 GeV, while the c- and
the b-quark masses are the “running” masses in the same scheme [18]. Moreover, note that the value
of the top mass is based on published direct measurements.

But how are these masses generated within the SM? The answer to this question is given by the
so-called Brout-Englert-Higgs mechanism [19–21]. We start from the Higgs field H, which has been
introduced in Eq. (2.5). We recall that the Higgs is a scalar weak isospin doublet with hypercharge
Y = 1, which can be written as

H =

(
φ+

φ0

)
=

(
π1+iπ2√

2
v+σ+iπ3√

2

)
. (2.6)

The complex fields φ+ and φ0 are the two components of the isospin doublet and can be expressed in
terms of the real fields σ and ~π = (π1, π2, π3). In Eq. (2.6) we have made explicit the Higgs expectation
value v ' 246 GeV at the minimum of the potential

V (H) ≡ −µ
2

2
H†H +

λ

4!
(H†H)2. (2.7)

In this way, σ and ~π have a precise physical meaning: they represent the fluctuations of the field
around this stationary point. Finally, by using the expression (2.6) we can re-write the weak isospin
doublet Hc (appearing in Eq. (2.5)), which has hypercharge Y = −1, as

Hc ≡ (iσ2)H∗ =

(
φ0∗

−φ+

)
=

(
v+σ−iπ3√

2

−π1+iπ2√
2

)
, (2.8)

At this point, the EWSB allows us to give mass to the quarks. To see this, it is sufficient to set
σ = ~π = 0 (keeping only v 6= 0) and then re-express the Yukawa Lagrangian terms (2.5) as

LM = mu
ij ū

i
Lu

j
R +md

ij d̄
i
Ld

j
R + h.c. (2.9)

The mass matrices mu
ij and md

ij will be, in general, non-diagonal. One can show that, however, we
can diagonalize a generic matrix A by using two unitary matrices. Hence, the diagonal form Adiag is
related to the original one A through the relation

Adiag = U †LAUR (2.10)

where the unitarity matrices UL and UR respect by definition the relations

ULU
†
L = I, URU

†
R = I.
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Furthermore, one can also isolate all the phases eventually present in Adiag in order to make it a
real matrix with all the eigenvalues positive-definite. This simple argument allows us to obtain the
physical masses of the up-type and down-type quarks of each of the three generations through the
diagonalization of the mass matrices mu

ij and md
ij , namely

UuLm
umu†Uu†L = URm

u†muU †R = (mu
diag)2, (2.11)

UuLm
uUu†R = mu

diag. (2.12)

Analogous equations hold in the down-type quark sector.

2.2.2 The Cabibbo-Kobayashi-Maskawa matrix

The unitarity transformations induced by the matrices U
{u,d}
L and U

{u,d}
R have a precise impact on the

quark fields. In particular, they allow us to define a mass eigenstate basis where

ũL,R = UuL,RuL,R, d̃L,R = UdL,RdL,R. (2.13)

The important feature of these transformations is that they rotate quarks with different electric charges
and with different chiralities in different ways. Note that, for the left-handed fermions, we can re-
express the above transformations as

ũL = VCKMU
d
LuL, d̃L = UdLdL, (2.14)

where we have introduced the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix [22, 23] in the
following way

VCKM ≡ UuLUd†L . (2.15)

The physical meaning of the CKM matrix is clear from Eq. (2.15): it describes quark mixing in
EW interactions. For this reason, the usual way to write it is

VCKM =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 . (2.16)

Clearly, the dimension of this matrix depends on the number of existing quark generations and it can
be described by four different parameters. This last point can be understood through the following
argument. In the most general situation of a NxN unitary matrix, we have N(N − 1)/2 Euler angles
and N2 − N(N − 1)/2 − (2N − 1) independent phases. Setting N = 3, we are left with three Euler
angles, that we will call θ12, θ13 and θ23, and one independent phase, which will be denoted as δ.
Thus, an alternative parametrization of the matrix (2.16) is

VCKM =




C12C13 S12C13 S13e
−iδ

−S12C23 − C12S13S23e
iδ C12C23 − S12S13S23e

iδ S23C13

S12S23 − C12S13C23e
iδ −C12S23 − S12S13C23e

iδ C23C13


 (2.17)

where we have defined C12 = cos θ12, S12 = sin θ12 and so analogously for the other couples of
subscripts. This formulation, often called the standard parametrization, emphazises that the CKM
matrix is very similar to the identity one. In fact, the Euler angles have been experimentally measured
and they have low values. From a mathematical point of view, the limit of zero angles brings exactly
to VCKM = I. As suggested by the presence of the phase δ, the 3x3 CKM matrix is in general
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complex. In particular, if δ 6= 0 there is a violation of CP symmetry in EW interactions. In fact, one
can verify this statement by applying a CP transformation on the mass terms in Eq. (2.9) before the
quark rotations (2.13)-(2.14). CP invariance is preserved only if the mass matrix is real. In this way,
we have transferred the criterion for CP violation from the mass matrix to the CKM matrix.

Another possible way to describe the CKM matrix is offered by the so-called Wolfenstein parametriza-
tion [24]. The physical hint at the basis of this alternative formulation is that, since S13 � S23 �
S12 � 1, it is reasonable to develop a perturbative expansion in powers of S12. To be more specific,
we introduce four new parameters λ, A, η and ρ, defined as

λ ≡ S12 ' Vus,
Aλ2 ≡ S23 ' Vcb,

Aλ3(ρ− iη) ≡ S13e
−iδ ' Vub,

where the last relation holds for small δ. By putting all the ingredients together, we have the new
form

VCKM =




1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O(λ4), (2.18)

from which it is now evident that CP non-conservation is condensed in the terms of order λ3 or higher.
In conclusion, we can also consider higher order corrections in Eq.(2.18). By way of example, including
terms O(λ5) we obtain the expression

VCKM =




1− λ2/2− λ4/8 λ+O(λ7) Aλ3(ρ− iη)
−λ+A2λ5[1− 2(ρ+ iη)]/2 1− λ2/2− λ4(1 + 4A2)/8 Aλ2 +O(λ8)

Aλ3(1− ρ̄− iη̄) −Aλ2 +Aλ4[1− 2(ρ+ iη)]/2 1−A2λ4/2


 (2.19)

where ρ̄ and η̄ are slightly modified versions of the Wolfenstein parameters ρ and η and are related to
them through the relations

ρ̄ =

(
1− 1

2
λ2

)
ρ, η̄ =

(
1− 1

2
λ2

)
η. (2.20)

2.2.3 The Unitarity Triangle

The unitarity of the CKM matrix (namely V †CKMVCKM = I) allows us to write down several orthog-
onality relations. Recalling Eq. (2.16), an example is offered by the relation

V ∗ubVud + V ∗cbVcd + V ∗tbVtd = 0. (2.21)

As the CKM matrix is in general complex, this expression can be interpreted as the sum of three
vectors in the (ρ̄, η̄) complex plane. These vectors can be mapped in a triangle. The sides, the angles
and also the area of the this triangle are physical quantities at all the effects, since their are invariant
under an arbitrary change of phases of the quark fields.

To be more specific, the angles are defined in the following way:

α ≡ arg[−VtdVubV ∗udV ∗tb] = arg(−Qubtd), (2.22)

β ≡ arg[−VcdVtbV ∗cbV ∗td] = arg(−Qtbcd), (2.23)

γ ≡ arg[−VudVcbV ∗ubV ∗cd] = arg(−Qcbud). (2.24)
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Figure 2.1: The unitarity triangle (2.21).

The quartets Qρiσj are rephasing invariant quantities, defined as

Qρiσj ≡ VρiVσjV ∗ρjV ∗σi, ρ 6= σ, i 6= j. (2.25)

The above angles, which satisfy the simple relation α+β+γ = π, allows us to write down the equation
of the unitarity triangle by taking the relation (2.21) and dividing it by the VcdV

∗
cb term, obtaining

− VudV
∗
ub

VcdV
∗
cb

− VtdV
∗
tb

VcdV
∗
cb

= Rbe
iγ +Rte

−iβ = 1 ' (ρ̄+ iη̄) + (1− ρ̄− iη̄). (2.26)

The graphical representation of the triangle can be found in Figure 2.1. Note that in the previous
expression we have also defined the quantities

Rb ≡ |
VudV

∗
ub

VcdV
∗
cb

| =
√
ρ̄2 + η̄2, Rt ≡ |

VtdV
∗
tb

VcdV
∗
cb

| =
√

(1− ρ̄)2 + η̄2.

Finally, the area is directly related to CP violation in EW decays. First of all, recalling Eq.(2.21),
we can multiply this expression by V ∗cdVcb and, then, take the imaginary parts. In this way we obtain
that

ImQudcb = −ImQcbtd.

Considering all the orthogonality relations, we find also that the imaginary parts of all the quartets are
equal, up to a sign. Thus, in the Standard Model |ImQ | gives the strenght of CP violation. Secondly,
we are interested in computing the area A∆ of the unitarity triangle in Figure 2.1. As the height h of
this triangle is given by

h = |VudV ∗ub| sin γ,
we have that

A∆ =
|VcdV ∗cb| × h

2
=

1

2
|ImQudcb |. (2.27)

Thus, since all the |ImQ | are equal, all the unitarity triangles have the same area. Moreover, their
area is a precise and quantitative test of CP non-conservation in EW decays.
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2.2.4 Masses of the gauge bosons and weak interactions after EWSB

As explained before, EWSB is realized by setting σ = ~π = 0 (keeping only v 6= 0) in Eqs. (2.6)
and (2.8). In addition to the fermion masses, EWSB allows us to give masses to the gauge bosons.
By expanding the covariant derivatives in the Higgs Lagrangian (2.4), one can demonstrate that the
expressions of the W± and Z bosons read

m2
W =

g2v2

4
, m2

Z =
m2
W

cos2 θw
, (2.28)

where we have introduced the weak mixing angle θw, whose sine and cosine can be expressed as

sin θw =
g1√
g2

1 + g2
2

, cos θw =
g2√
g2

1 + g2
2

.

After the EWSB previously discussed, we can also write down the following interaction terms in
the Lagrangian:

Lint = − g2√
2

(
W+µJµ,charged +W−µJ†µ,charged

)
− g1 cos θWA

µJµ,EM −
g2

cos θW
ZµJµ,neutral (2.29)

where the electro-magnetic, the neutral and the charged currents are defined as

JµEM =
∑

f

Qf f̄iγ
µfi, (2.30)

Jµneutral =
∑

f

[
(I3f −Qf sin2 θW )f̄ iLγ

µf iL −Qf sin2 θW f̄
i
Rγ

µf iR
]
, (2.31)

Jµcharged = ūiLV
ij
CKMγ

µdjL + ν̄iLγ
µ`iL, (2.32)

respectively. Note that in the above Equations the quark fields are described in the basis of the mass
eigenstates (2.14).

In conclusion, in Eq. (2.29) a key feature of the SM emerges: while the weak neutral currents are
invariant under the transformations defined in Eq. (2.13), the weak charged ones are modified by the
rotations induced by the unitarity matrices UL and UR. In fact, these interactions couple quarks with
different electric charges. Thus, the Flavour Changing Charged Currents (FCCCs) are proportional
to the CKM matrix and are generated at tree-level, while the Flavour Changing Neutral Currents
(FCNCs) are present only at loop level.

2.3 The properties and the misteries of the Higgs boson

As clear from the previous Sections, the Higgs boson, defined in Eq. (2.6), has a central role in the
SM since it gives masses to the elementary particles through the EWSB. In the summer of 2012, an
extraordinary discovery for High Energy Physics has been achieved: a new scalar particle with the
mass of 125 GeV has been observed for the first time at LHC [25, 26]. This was precisely the Higgs
boson. From the theoretical point of view, this has determined the triumph of the Brout-Englert-Higgs
mechanism of the mass generation of the SM particles. At the same time, this discovery has given rise
to one of the fundamental problems of the SM, i.e. the Naturalness issue or hierarchy problem.

A näıve explanation of this problem is offered by an Effective Field Theory (EFT) approach to the
SM, that will be reviewed in depth in the following Chapter for its application to Flavour Physics.
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The basic idea is that the SM is an effective theory of Nature, valid only at infrared (IR) energies. A
more general theory of Nature, which is identical to the SM in the limit of low energies, thus exists.
From the formal point of view, after having defined an ultraviolet (UV) energy scale as ΛUV (i.e. the
energy scale at which new particles/interactions arise), we can then express the SM Lagrangian as

LSM,eff =
∑

i

CiΛ
4−di
UV Oi, (2.33)

where each SM operator Oi has dimension di and is accompanied by a specific Wilson Coefficient
(WC) Ci. The Higgs mass term, that we have written in the r.h.s. of Eq. (2.7), is the only operator in
the SM having dimension 2. Hence, from an EFT point of view it will be enhanced by a factor Λ2

UV.
Since the experiments tell us that the Higgs mass is 125 GeV, if the UV scale is very high the only
way to recover the measured value is to impose a very small WC. In order words, a non-negligible fine
tuning emerges. To be more specific with numbers, we would have to require C ∼ 10−28 for ΛUV equal
to the Grand Unification Theory (GUT) scale, namely ΛUV ∼ 1016 GeV. This issue is also referred to
as the radiative instability of the Higgs.

Figure 2.2: The SM loops contributing to the Higgs boson mass.

There is an alternative way to approach the problem of the radiative instability of the Higgs, that
we are going to briefly mention. As we have explained in the previous Sections, EWSB is necessary
to give a mass to the SM particles since the mass terms for these degrees of freedom are forbidden
by the SM SU(2) × U(1) symmetry. For this reason, the masses of both fermions and vectors are
proportional to the Higgs expectation value v ' 246 GeV, since they have to vanish if we recover the
SU(2)×U(1) symmetry. This proportionality holds also at loop-level since it comes from a symmetry
argument, thus we can state that all the SM masses are protected from hypothetical uncontrolled
radiative corrections. This argument is not true for the Higgs boson, which is the only scalar particle
of the SM and has no symmetry protecting its mass term from being large. In other words, the Higgs
mass is subject to radiative corrections which are proportional to the masses of the particles inside the
loops. At this point, note that in the SM the only one-loop contributions to the Higgs mass are the
ones in Figure 2.2. However, if new heavy degrees of freedom arise at an UV scale ΛUV, new diagrams
will appear in addition to the SM ones. Following a Renormalization Group (RG) argument, one can
demonstrate that a precise relation exists between the SM Higgs mass and the Higgs mass at the scale
ΛUV, namely

m2
h(ΛIR) ' m2

h(ΛUV)− κΛ2
UV log

[
ΛUV

ΛIR

]
, (2.34)

where ΛIR is the typical low energy scale at which the SM is the correct theory of Nature and κ is
an appropriate numerical factor that comes from the RG equations. Also in this formulation a non-
negligible fine tuning arises, since, if the UV scale is very high, a very precise cancellation among the
two terms in the r.h.s. of Eq. (2.34) is needed in order to obtain the measured Higgs mass.
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In order to solve the hierarchy problem, one has to invoke the existence of New Physics (NP) effects
arising at the TeV scale. The NP models of interest can be either weakly or strongly coupled. On
the one hand, the major example of the first kind of scenarios is, without any doubt, Supersymmetry
(SUSY). In this case, the loop quadratic divergences will be zero thanks to the presence of the sparticle
loops. Thus, no radiative instability is present in this case. On the other hand, another possible
solution, belonging to the second class of NP models, is offered by Composite Higgs (CH) theories. In
this case, the assumption is that the Higgs boson is not an elementary field, but instead a composite
bound state of a new strongly interacting sector. Since it is a bound state, in this case the Higgs will
not be sensitive to UV effects, thus being free of the radiative instability problem. The CH scenarios
will be more deeply investigated in Part II of this Thesis. To conclude, note that in both these
examples, a symmetry has been introduced - supersymmetry, and the shift symmetry of Goldstone
bosons - that protects the Higgs mass term from radiative corrections.
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Chapter 3

The role of the Form Factors in
B → D(∗)`ν decays

In this Part, we will analyze in detail the semileptonic decays of the B mesons i.e. transitions whose
final states are characterized by the presence of both leptons and hadrons. We will focus our attention
on the FCCC processes, which, as explained in Chapter 2, are proportional to and thus offer the
opportunity to determine the CKM matrix elements, which are free parameters of the SM. In this
Chapter, we will focus on the heavy-to-heavy semileptonic B meson decays, namely B → D(∗)`ν
transitions (where ` denotes a generic lepton). In particular, we will illustrate the state-of-the-art and
the central role of the hadronic Form Factors for phenomenology. Moreover, we will introduce and
deeply describe a new method to describe them in the whole kinematical range.

3.1 The |Vcb| puzzle and the R(D(∗)) anomalies

At present, exclusive semileptonic B → D(∗)`ν decays are among the most important and challenging
processes in the phenomenology of flavour physics. In fact, they allow to determine the SM parameters
with high precision. In this sense, there are two reasons that justify their importance.

On the one hand, we have the so-called |Vcb| puzzle, i.e. the tension between the inclusive [27–30]
and the exclusive values of the CKM matrix element |Vcb| [31–38]. Very synthetically, the difference
between these two determinations is that, while the inclusive one comes from B → Xc`ν decays,
where Xc is a generic charmed meson (in other words, we are taking into consideration all possible
final charmed mesons), the exclusive one is measured by choosing a specific B decay channel into
a charmed meson. To be more specific, we can obtain exclusive estimates of |Vcb| from different

decay channels, i.e. B → D(∗)`ν, Bs → D
(∗)
s `ν, B → J/ψ`ν and finally Λb → Λc`ν. Note that in

principle there are also further transitions that can be considered to this end, namely the ones involving
excited mesons and baryons. Following the last 2021 report by the FLAG Collaboration [39], we have
that |Vcb|excl × 103 = 39.36 ± 0.68 (computed from B → D(∗)`ν decays), while the last inclusive
determination [30] corresponds to |Vcb|incl = 42.16± 0.50. Thus, a ∼ 3.3σ discrepancy exists between
these two estimates.

On the other hand, a discrepancy exists between the theoretical expectation value and the mea-
surements of the ratios R(D(∗)) [40], which are defined as

R(D(∗)) ≡ Γ(B → D(∗)τν)

Γ(B → D(∗)`ν)
, (3.1)

17
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where ` is a light lepton (` = e, µ). The state-of-the-art for the R(D(∗)) anomalies can be seen in
Figure 3.1, where the red area represents the average of all the measurements performed by Belle,
BaBar and LHCb [41–49]. HFLAV quotes the following values for this average:

R(D)exp = 0.339± 0.026± 0.014, R(D∗)exp = 0.295± 0.010± 0.010, (3.2)

where the first error is statistical, while the second one is systematic. For what concerns the theoretical
expectations, HFLAV takes into consideration the results of the computations in [50–52]. The first
two results bring to the black cross in Figure 3.1, while the last one is the blue cross. The arithmetic
average in this case is:

R(D)th = 0.298± 0.003, R(D∗)th = 0.252± 0.005. (3.3)

By comparing the Eqs. (3.2)-(3.3), one can see that R(D) and R(D∗) exceed the SM predictions by
1.4σ and 2.9σ, respectively. Considering the R(D)-R(D∗) correlation of -0.38, the total difference with
the SM predictions reported above corresponds to about 3.4σ.

Note that the ratios R(D(∗)) have a precise physical meaning, namely they are a test of Lepton
Flavour Universality (LFU), which is one of the pillars of the SM. According to this principle, all the
three types of charged lepton particles (namely the electrons, the muons and the taus) interact in the
same way with the gauge bosons, independently of their generation. In other words, in the SM the
gauge interactions are LFU. Any hint of violation of this principle can thus be interpreted, in a very
clear way, as a hint of New Physics.
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0.25
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0.4R
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Figure 3.1: Correlation plot of R(D)-R(D∗) given by the HFLAV Collaboration [40] in the Spring
2021. The red area represents the world average of all measurements, while the blue and the black
crosses are the two SM predictions described in the text. The plot shows a ∼ 3.4σ tension between
theory and experiments.
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3.2 The role of the hadronic Form Factors

From the theoretical point of view, the extraction of |Vcb| from exclusive B → D(∗)`ν decays and the
theoretical estimates of the R(D(∗)) ratios depend on the value and the shape of the Form Factors
(FFs) entering the matrix elements and amplitudes. These functions encode the non-perturbative
strong interactions between the quarks and, in principle, can be determined through lattice QCD
(LQCD) computations. Let us now describe more specifically how the FFs influence the B → D(∗)`ν
decays and, in what follows, we will analyze separately the production of D and D∗ mesons.

3.2.1 FFs and differential decay width of B → D`ν decays

Defining the vector current V µ ≡ b̄γµc, the structure of the hadronic matrix element reads

〈D(pD) |V µ |B(pB)〉 = f+(q2)

(
pµB + pµD −

m2
B −m2

D

q2
qµ
)

+ f0(q2)
m2
B −m2

D

q2
qµ, (3.4)

where

f0(q2) =
q2

m2
B −m2

D

f−(q2) + f+(q2). (3.5)

and qµ = pµB − pµD is the momentum transfer. The two FFs in Eq. (3.4) are constrained by the
kinematical relation

f0(0) = f+(0), (3.6)

which is a straightforward consequence of Eq. (3.5) at zero momentum transfer and ensures that
the hadronic matrix element (3.4) is finite at the kinematic endpoint. Note that the axial current
Aµ ≡ b̄γµγ5c gives zero-contribution to B → D`ν decays, as dictated by the Wigner-Eckart theorem.

A direct computation gives the final expression of the differential decay width

dΓ

dq2
=
G2
F |Vcb|2η2

EW

24π3

(
1− m2

`

q2

)2

×
[
|~pD|3

(
1 +

m2
`

2q2

)
|f+(q2)|2 +m2

B|~pD|
(

1− m2
D

m2
B

)2
3m2

`

8q2
|f0(q2)|2

]
,

(3.7)

where GF is the Fermi constant, ~pD the 3-momentum of the D meson, i.e.

|~pD| =
[(

m2
B +m2

D − q2

2mB

)2

−m2
D

]1/2

, (3.8)

ηEW = 1 + α ln(MZ/mB)/π ' 1.0066 the leading electromagnetic correction and m` the mass of the
produced lepton. In the limit of produced massless lepton, the expression (3.7) simplifies to

dΓ

dq2
' G2

F |Vcb|2η2
EW

24π3
|~pD|3|f+(q2)|2. (3.9)

Another way to express the result (3.9) is

dΓ

dw
' G2

F |Vcb|2η2
EW

48π3

4rm3
D (mB +mD)2 (w2 − 1)3/2

(1 + r)2
|f+(w)|2, (3.10)
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where r ≡ mD/mB and we have also introduced the recoil variable w, defined as the scalar product of
the 4-velocities of the B and the D mesons, i.e. w ≡ vB · vD. This definition can be naturally adopted
also for the B → D∗ case. It is then straightforward to verify that the following one-to-one relation
holds between the momentum transfer and the recoil

q2 = m2
B +m2

D(∗) − 2mBmD(∗)w. (3.11)

3.2.2 FFs and differential decay width of B → D∗`ν decays

The B → D∗ case is more complicated than the B → D one since the D∗ is a vector meson and, thus,
is characterized by a polarization vector ε. According to the Wigner-Eckart theorem, both the vector
the axial current give a non-zero contribution, namely

〈D∗(p, ε)|c̄γµ (1∓ γ5) b|B̄(pB)〉 = − 2

mB +mD∗
εµαβγε

∗αpβqγV (q2)

± i 2mD∗

q2
(ε∗ · q)qµA0(q2) (3.12)

∓ i

mB −mD∗
[(mB −mD∗)ε

∗µ − (ε∗ · q)(p+ pB)µ]A1(q2)

∓ i 2mD∗

q2
(ε∗ · q)

[
q2

m2
B −m2

D∗
(p+ pB)µ − qµ

]
A3(q2) ,

where we can also re-express A3(q2) as

2mD∗A3(q2) = [(mB +mD∗)A1(q2)− (mB −mD∗)A2(q2)]. (3.13)

The four FFs V (q2), A1(q2), A2(q2), A0(q2) can be re-expressed in terms of a new set of FFs, called
f(q2), g(q2),F1(q2), P1(q2), through the relations

V (w) =
mB +mD∗

2
g(w) , (3.14)

A1(w) =
f(w)

mB +mD∗
, (3.15)

A2(w) =
1

2

mB +mD∗

(w2 − 1)mBmD∗

[(
w − mD∗

mB

)
f(w)− F1(w)

mB

]
, (3.16)

A0(w) =
1

2

mB +mD∗√
mBmD∗

P1(w) , (3.17)

where we have used Eq. (3.11).
The FFs are characterized by the following kinematical constraints (KCs). The first one applies

at zero recoil and reads
F1(1) = (mB −mD∗)f(1). (3.18)

Instead, the second one applies in the opposite regime, namely at maximum recoil

P1(wmax) =
F1(wmax)

(1 + wmax)(mB −mD∗)
√
mBmD∗

, (3.19)

where

wmax =
m2
B +m2

D∗

2mBmD∗
,
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under the assumption that the mass of the final state lepton is negligible. The latter KC (3.19) comes
from requiring that A3(q2 = 0) = A0(q2 = 0) (recall that zero momentum transfer is equivalent to
maximum recoil). This condition ensures that the hadronic matrix element (3.12) is finite at the
kinematic endpoint. On the contrary, the former KC (3.18) has a different physical origin. At zero
recoil the D∗ meson is at rest, thus we lose one degree of freedom (namely one of its helicities). One
can explicitly demonstrate that this condition can be rephrased into the KC (3.18).

In conclusion, starting from the matrix element (3.12) we are able to compute the differential decay
width of semileptonic B → D∗ decays. It is interesting to note that the produced D∗ strongly decays
into a Dπ pair and, thus, we have a four-body final state. The various helicity angles θl, θv, χ are
defined in Fig. 3.2. Thus, the differential decays width reads

dΓ(B → D∗(→ Dπ)`ν)

dwd cos θ`d cos θvdχ
=
G2
F |Vcb|2η2

EW

4(4π)4
3mBm

2
D∗

√
w2 − 1

(
1− 2rw + r2

)

·B(D∗ → Dπ)
{

(1− cos θ`)
2 sin2 θv|H+|2

+ (1 + cos θ`)
2 sin2 θv|H−|2 + 4 sin2 θ` cos2 θv|H0|2

− 2 sin2 θ` sin2 θv cos 2χH+H−
− 4 sin θ`(1− cos θ`) sin θv cos θv cosχH+H0

+ 4 sin θ`(1 + cos θ`) sin θv cos θv cosχH−H0

}
,

(3.20)

where we have neglected the mass of the lepton and introduced the helicity amplitudes

H0(w) =
F1(w)√

m2
B +m2

D − 2mBmDw
, H±(w) = f(w)∓mBmD∗

√
w2 − 1 g(w). (3.21)

In order to obtain the final forms of the four differential decay widths dΓ/dx (where x = w, cos θl, cos θv, χ),
we have simply to integrate on three of them in the expression (3.20). For instance, a simple calculation
leads to the following expression for dΓ/dw

dΓ

dw
=
G2
F |Vcb|2η2

EWm
2
D∗

48π3mB

√
w2 − 1

[
2 q2(w)

(
f(w)2 +m2

Bm
2
D∗
(
w2 − 1

)
g(w)2

)
+ F1(w)2

]
, (3.22)

where q2(w) can be read from Eq. (3.11).
In conclusion, let us mention what happens in the case of production of a massive lepton, i.e. the

τ . Eq. (3.20) takes a much more complicated form, however this goes beyond the scope of this Thesis
since no measurement of the fourfold differential decay width in case of production of a τ -lepton is
available at present. On the contrary, it is of capital importance to derive in this case the theoretical
expression of dΓτ/dw ≡ dΓ(B → D∗τν)/dw, since it will directly enter in the computation of the
R(D∗) ratio (recall its definition in Eq. (3.1)). One can demonstrate that

dΓτ
dw

=
dΓτ,1
dw

+
dΓτ,2
dw

, (3.23)

where we have defined

dΓτ,1
dw

=

(
1− m2

τ

q(w)2

)2(
1 +

m2
τ

2q(w)2

)
× dΓ

dw
,

dΓτ,2
dw

=
G2
F |Vcb|2η2

EWm
5
B

32π3

m2
τ (m2

τ − q(w)2)2r3(1 + r)2(w2 − 1)3/2P1(w)2

q(w)6
.

Here r ≡ mD∗/mB and dΓ/dw has been written in Eq. (3.22).
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Figure 3.2: Representation of the semileptonic B → D∗`ν decay. θ` is the angle between the lepton
and the direction opposite the B meson in the virtual W boson rest frame. θv is the angle between the
D meson and the direction opposite the B meson in the D∗ rest frame. χ is the angle between the two
decay planes spanned by the W − ` and D∗−D systems in the B meson rest frame. Taken from [37].

3.3 The Dispersive Matrix approach to the Form Factors

As clear from Eqs. (3.9)-(3.20), a correct description of the hadronic FFs is of crucial importance in
order to compute the differential decay widths in a correct way. As explained in the previous Section,
these functions encode all the informations about the strong interactions between the quarks and, in
principle, can be computed on the lattice. In this sense, an improvement of the theory, mainly if not
uniquely, for exclusive B decays is expected from progress in LQCD calculations of the relevant FFs.

One is, however, limited by the cutoff effects induced by the presence of a quark as heavy as the
b-quark in calculations done at a finite lattice spacing a. Actually, most of the numerical simulations
with heavy quarks are performed at a larger than about 0.05 fm, so that for the physical b-quark
mass we have mba & 1 and an extrapolation in mb from unphysical values is necessary. In this
context, discretisation errors affect the value of the FFs at zero recoil and make it difficult to study
their momentum dependence at large recoil, namely at small q2. For this reason, in some cases the
dependence of the FFs on q2 in the whole allowed kinematical region is supplemented by using also
the results of QCD sum rules calculations at small q2.

Let us make an explicit example. Results for the B → D`ν FFs from LQCD [53,54], together with
their uncertainties and correlations, are only available in the range 9.3 GeV2 . q2 . 11.7 GeV2, much
smaller than the physical range, 0 . q2 . 11.7 GeV2. The same situation holds for the momentum-
dependence of the FFs in B → D∗`ν decays, where the results of the first computation on the lattice
has recently appeared [55]. However, also in this case the kinematical region is always restricted at
small recoil, namely in the region w ≤ 1.17. In order to supply the lack of information from explicit
LQCD calculations of the FFs in the full kinematical range, both the experimental analyses (in order
to account for efficiencies and response functions) and the theoretical studies have to assume some
parameterisation of the FFs. It is well possible then that the extraction of |Vcb| from experiments is
biased by the theoretical model adopted in the fits of the data.

In the past, some pioneering works [56–60] were devoted to the determination of model-independent
bounds on the FFs entering in semileptonic charged-current decays of hadrons through the knowledge
of the two-point functions Πµν

V (q) = i
∫
d4x eiq·x 〈0|T{V µ†(x)V ν(0)} |0〉, where V µ(x) is the vector cur-
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rent responsible for the transition under consideration. To be more specific, the authors derived precise
constraints on the hadronic FFs from QCD dispersion relations, by exploiting the analiticity and pos-
itivity properties of Πµν

V (q). They used a QCD calculation of the aforementioned two-point function,
by including both the perturbative contributions to two loops and the leading non-perturbative ones
in their computation. These findings have then inspired the development of some parametrizations
of the hadronic FFs, used in most of the phenomenological analyses present in literature. The three
most popular parameterisations are called Boyd-Grinstein-Lebed (BGL) [61–63], Bourrely-Caprini-
Lellouch (BCL) [64] and Caprini-Lellouch-Neubert (CLN) [65, 66], after the name of the authors. In
order to give an overview of their features, BGL uses the same dispersive approach of Refs. [56–59] to
constrain the FFs from first principles. The key idea is to develop power series expansions of the FFs
and, then, to fit the available experimental and/or LQCD data to obtain bounds on the coefficients
of the expansions. Although it is quite similar to BGL, BCL is characterized by a different structure
of the power series expansion of the FFs, in order to ensure the proper scaling of the FFs themselves
at large momentum transfer. Finally, CLN uses again dispersion relations to obtain bounds on the
shape of the FFs and, then, combine them with the heavy quark symmetry, in order to provide new
relations between the FFs near zero recoil.

In what follows we will deeply describe a novel way to describe the FFs in a non-perturbative
and model-independent way, called the Dispersive Matrix Method (DMM). The original proposal was
contained in the pioneering work by L. Lellouch [60]. It applies the dispersive techniques originally
proposed in refs. [56–59] directly to lattice data and introduces a formalism to take into account the
errors of the lattice results. In spite of the use of the FFs derived from first principles in LQCD,
the proposal of Ref. [60] relies, for the unitarity constraints, on the perturbative calculation of the
two-point current correlation functions. To our knowledge, in spite of the large use of the dispersive
techniques discussed above, no one has systematically used the lattice two-point correlators computed
non perturbatively in numerical simulations to constrain the FFs in semileptonic decays, not even
in the original work [60]. Then, here we are going to present an extended study of the two- and
three-point lattice correlation functions which will be used, together with the dispersive techniques,
to constrain the lattice predictions for the FFs entering in semileptonic B → D(∗)`ν decays.

3.3.1 Two-point correlation functions

The bounds on the different FFs are derived from the two-point functions of suitable currents. The
starting point is the Fourier transform of the T-product of two hadronic currents, which generalizes
the definition of the hadronic vacuum polarization (HVP) tensor. Assuming x0 > 0 we have

∫
d4x eiq·x 〈0|T{Jµ†(x)Jν(0)} |0〉 =

∫
d4x eiq·x

∑

n

〈0| Jµ†(x) |n〉 〈n| Jν(0) |0〉

=
∑

n

∫
d4x eiq·xe−ipn·x 〈0| Jµ†(0) |n〉 〈n| Jν(0) |0〉

=
∑

n

(2π)4δ(4)(q − pn) 〈0| Jµ†(0) |n〉 〈n| Jν(0) |0〉 ,

(3.24)

where pn the 4-momentum of the intermediate n-particle state. A similar result can be derived for
the case x0 < 0. The completeness sum runs over all possible intermediate hadronic states and in

particular we will focus our attention onto either a single-particle B
(∗)
c -meson state or two-particle

states composed by a B-meson and a D(∗)-meson. The link between the two-particle states appearing
in the completeness sum (3.24) and the classification of the FFs introduced in Eqs. (3.4)-(3.12) is given
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by the substitution
〈D(∗)|Jµ|B〉 → 〈BD(∗)|Jµ|0〉 , (3.25)

which can be simply realised by inverting the sign of pD(∗) and by analytic continuation of the FFs
in q2 from m2

` ≤ q2 ≤ (mB −mD(∗))2 to (mB + mD(∗))2 ≤ q2 ≤ ∞. Thus, the amplitudes entering
in semileptonic decays are strongly correlated to the T-product in Eq. (3.24), which is the reason why
the latter is so important to constrain the FFs.

At this point, the Fourier transform of the T-product defines the following HVP tensors:

Πµν
V (q) = i

∫
d4x eiq·x 〈0|T{V µ†(x)V ν(0)} |0〉 (3.26)

= (qµqν − gµνq2) Π1−(q2) + qµqν Π0+(q2) ,

Πµν
A (q) = i

∫
d4x eiq·x 〈0|T{Aµ†(x)Aν(0)} |0〉 (3.27)

= (qµqν − gµνq2) Π1+(q2) + qµqν Π0−(q2) ,

where V µ, Aµ are the vector and the axial 4-currents defined in the previous Section. Furthermore, the
subscripts 0±,1± represent spin-parity quantum numbers of the intermediate states. The quantities
Π0± ,Π1∓ are called polarization functions. In particular, the term proportional to Π0+ (Π0−) represents
the longitudinal part of the HVP tensor with vector (axial) 4-currents, while the term proportional
to Π1− (Π1+) is the transverse contribution to the HVP tensor with vector (axial) 4-currents. Note
finally that by inserting a completeness sum between the vector or axial 4-currents we are able to
relate these expressions to Eq. (3.24). Thus, it is straightforward to state that the FFs introduced
in Eqs. (3.4)-(3.12) enter in the imaginary parts of the polarization functions, accordingly to their
spin-parity quantum numbers.

The imaginary parts of the longitudinal and transverse polarization functions are related to their
derivatives with respect to q2 by the dispersion relations

χ0+(q2) ≡ ∂

∂q2
[q2Π0+(q2)] =

1

π

∫ ∞

0
dz
z ImΠ0+(z)

(z − q2)2
,

χ0−(q2) ≡ ∂

∂q2
[q2Π0−(q2)] =

1

π

∫ ∞

0
dz
z ImΠ0−(z)

(z − q2)2
, (3.28)

χ1−(q2) ≡ 1

2

(
∂

∂q2

)2

[q2Π1−(q2)] =
1

π

∫ ∞

0
dz
z ImΠ1−(z)

(z − q2)3
,

χ1+(q2) ≡ 1

2

(
∂

∂q2

)2

[q2Π1+(q2)] =
1

π

∫ ∞

0
dz
z ImΠ1+(z)

(z − q2)3
.

In what follows we will denote by χ a generic susceptibility. From a dimensional point of view note
that the longitudinal (scalar/pseudoscalar) susceptibilities χ0± are dimensionless, while the transverse
(vector/axial) ones have dimension [E]−2, where E is an energy. The imaginary parts of the polar-
ization functions receive both one-particle and two-particle contributions, whose analytic expressions
can be directly found in Appendix A.

3.3.2 Dispersive bounds from the DMM

First of all, let us describe the general ideas behind the dispersive method of Refs. [56]- [59] thanks to
which one can obtain bounds for a generic FF f(q2). We define

t± = (mB ±mD(∗))
2 (3.29)
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and we use the analytic continuation of the amplitudes from the kinematical decay region, where
m2
` ≤ q2 ≤ t−, to the single-meson or pair production region, where m2

Bc
≤ q2 or t+ ≤ q2. By means

of the dispersion relations we can use the two-point correlation functions computed in QCD to obtain
the constraints on f(q2) and then use analyticity to translate these constraints into the physical FFs
relevant for semileptonic decays.

The dispersion relations that we will consider in this work have already been introduced in
Eqs. (3.28). We also recall that the derivatives of the various polarization functions can be determined
in perturbative QCD only for values of q2 that are far from the region of production of resonance
states, namely

(mb +mc)ΛQCD � (mb +mc)
2 − q2, (3.30)

where mb and mc are the bottom and charm quark masses, respectively. A possible choice is thus also
the value q2 = 0, which has been widely used in the past, particularly in all the calculations that used
the perturbative expression of the susceptibilities χ(q2). On the contrary, with a non-perturbative
determination of the two-point correlation functions we can use the most convenient value of q2 at
disposal, namely the value which will allow the most stringent bounds on the FFs.

By inserting a complete set of states with the same quantum numbers of a generic current J we
have1

ImΠ0±,1∓ =
1

2

∑

n

∫
dµ(n)(2π)4δ(4)(q − pn)| 〈0| J |n〉 |2 , (3.31)

where dµ(n) is the measure of the phase space for the set of states n. As the completeness sum is
semi-positive definite, we can restrict our attention to a subset of hadronic states and thus produce a
strict inequality. This consideration allows us to re-write the dispersion relations for χ(q2) as

1

π χ(q2)

∫ ∞

t+

dt
W (t)|f(t)|2

(t− q2)3
≤ 1, (3.32)

where f(t) is the generic FF and W (t) is a computable function that depends on the particular
FF under consideration and is related to phase space factors. These have been given explicitly in
Eqs. (A.7)-(A.10) for all the possible bilinears in Appendix B.

We can now use analyticity to turn the result (3.32) into a constraint for the semileptonic region.
To achieve this goal, it is necessary that the integrand is analytic below the pair-production threshold
t < t+. To this end, we define the conformal variable z as

z(t, ts) ≡
√
t+ − t−

√
t+ − ts√

t+ − t+
√
t+ − ts

, (3.33)

which is real for ts < t+, zero for t = ts and a complex number on the unitary circle for t ≥ t+. We
can remove the poles of the integrand of Eq.(3.32) by multiplying it by appropriate powers of the
z(t, ts)s, as determined by the positions ts of the sub-threshold poles. Each pole has a distinct value
of ts, and the product z(t, ts1)k1z(t, ts2)k2 . . . removes all of them. Hence, we re-express Eq. (3.32) as

1

π

∫ ∞

t+

dt

∣∣∣∣
dz(t, t0)

dt

∣∣∣∣×
∣∣∣Φ̃(t, t0)P (t)f(t)

∣∣∣
2
≤ 1, (3.34)

where t0 is an arbitrary point that we will define below. Here we have introduced the Blaschke factor
P (t), which is a product of many quantities of the form (3.33) at the position of the sub-threshold

1For simplicity we omit Lorentz indices and other complications that are immaterial for the present discussion.
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poles (i.e., ts ≤ t+), and the outer function Φ̃(t, t0), which is defined for the vector/axial channel for
instance as

Φ̃(t, t0) = P̃ (t)

[
W (t)

|dz(t, t0)/dt|χ1±(q2)(t− q2)3

]1/2

. (3.35)

In the last expression P̃ (t) represents a product of the z(t, ts)’s and
√
z(t, ts)’s that remove the sub-

threshold singularities and cuts in the kinematical part W (t). Regarding the choice of t0 in Eq. (3.34),
there are several possibilities which may be more or less convenient depending on the quantity at
hand. In this Thesis, we will always choose t0 = t−, so that the allowed kinematic interval [0, t−]
corresponds to the range [zmax, 0].

(a) (b)

Figure 3.3: Sketch of the analytic structure of the hadronic form factors as function of t (left panel)
or as function of z (right panel). The green line represents the region relevant for semileptonic decays.
The blue points are the isolated poles coming from one-particle states. In conclusion, the red branch
cut in the left panel is caused by multi-particle states, i.e. states of two or more particles. This branch

cut translates in the unit circle |z| = 1 in the right panel.

The DMM allows us to translate the information given by the susceptibility χ(q2) into a bound
on the FFs in the following way. Firstly, we make the transformation

1 + z

1− z =

√
t+ − t
t+ − t−

, (3.36)

or

z =

√
t+−t
t+−t− − 1

√
t+−t
t+−t− + 1

, (3.37)

which exactly corresponds to z = z(t, t−), see Eq. (3.33). We thus map the complex t-plane into
the unit disc in the variable z, whereas the integral around the cut in Eq. (3.34) becomes an integral
around the unit circle. A graphical representation of the situation is shown in Figure 3.3 for clarity.

Then, a generic integral of the form given in Eq. (3.32) can be written as an integral over z [59]- [60]

1

2πi

∫

|z|=1

dz

z
|φ(z, q2)f(z)|2 ≤ χ(q2) , (3.38)
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where the kinematical functions φ(z, q2) for the different form factors entering B → D(∗) decays will
be specified in Eq. (3.45) below. At this point, by introducing an inner product defined as

〈g|h〉 =
1

2πi

∫

|z|=1

dz

z
ḡ(z)h(z) , (3.39)

where ḡ(z) is the complex conjugate of the function g(z), the inequality (3.38) can simply be written
as

0 ≤ 〈φf |φf〉 ≤ χ(q2) , (3.40)

where we have also used the positivity of the inner product. Following Refs. [59]- [60], we also define
the function gt(z) as

gt(z) ≡
1

1− z̄(t)z , (3.41)

where z̄(t) is the complex conjugate of the variable z(t) defined in Eq. (3.37) and z is the integration
variable of Eq. (3.39). It is then straightforward to show that

〈gt|φf〉 = φ(z(t), q2) f (z(t)) , 〈gtm |gtl〉 =
1

1− z̄(tl)z(tm)
. (3.42)

At this point, let us introduce the matrix

M =




〈φf |φf〉 〈φf |gt〉 〈φf |gt1〉 · · · 〈φf |gtn〉
〈gt|φf〉 〈gt|gt〉 〈gt|gt1〉 · · · 〈gt|gtn〉
〈gt1 |φf〉 〈gt1 |gt〉 〈gt1 |gt1〉 · · · 〈gt1 |gtn〉

...
...

...
...

...
〈gtn |φf〉 〈gtn |gt〉 〈gtn |gt1〉 · · · 〈gtn |gtn〉



. (3.43)

The values t1, · · · , tn will correspond to the squared 4-momenta at which the FFs have been computed
non-perturbatively and that will be used as inputs for constraining the FF in regions non-accessible
to the calculation. Note that the first matrix element in (3.43) is the quantity directly related to
the susceptibility χ(q2) through the dispersion relations, see Eq. (3.40). Taking for instance into
consideration the B → D case, in terms of the longitudinal and transverse susceptibilities χ0+(q2) and
χ1−(q2) we have that:

〈φ0f0|φ0f0〉 ≤ χ0+(q2) ,

〈φ+f+|φ+f+〉 ≤ χ1−(q2) , (3.44)

where φ0,+ are kinematical functions

φ0(z, q2) =

√
2nI
3

√
3t+t−

4π

1

t+ − t−
1 + z

(1− z)5/2

(
ρ(0) +

1 + z

1− z

)−2(
ρ(q2) +

1 + z

1− z

)−2

,

φ+(z, q2) =

√
2nI
3

√
1

π(t+ − t−)

(1 + z)2

(1− z)9/2

(
ρ(0) +

1 + z

1− z

)−2(
ρ(q2) +

1 + z

1− z

)−3

, (3.45)

where nI is an isospin Clebsch-Gordan factor and

ρ(q2) ≡
√
t+ − q2

t+ − t−
. (3.46)
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When analyticity does not hold, i.e. when a FF has, for instance, N poles at t = tP1, tP2, · · · ..., tPN ,
it is sufficient to modify the kinematical function φ according to

φ(z, q2)→ φP (z, q2) ≡ φ(z, q2)× z − z(tP1)

1− z̄(tP1)z
× · · · × z − z(tPN )

1− z̄(tPN )z
(3.47)

and the previous definitions will continue to be valid.
The positivity of the inner products (3.42) guarantees that the determinant of the matrix (3.43)

is positive semi-definite, namely
det M ≥ 0. (3.48)

This condition can be rephrased in the second order inequality

α〈gt|φf〉2 + 2β〈gt|φf〉 ≤ γ , (3.49)

with

α ≡ det M{(1,1),(2,2)} ,

β ≡
n∑

i=1

(−1)1+i det M{(1,1),(2,i+1)}〈gti |φf〉 , (3.50)

γ ≡ χ(q2) det M{(1,1)} −
n∑

i,j=1

(−1)i+j det M{(1,1),(i+1,j+1)}〈gti |φf〉〈gtj |φf〉 ,

where M{(i1,j1),(i2,j2),··· } is the minor obtained by deleting the rows i1, i2, · · · and the columns j1, j2, · · · .
Calling ∆ the discriminant of the inequality (3.49), one can show that

∆ = det M{(1,1)} × det M{(2,2)} ≡ ∆1 ×∆2, (3.51)

so that at the end the relevant quantities will only be α, β,∆1,∆2. Note that α and ∆2 are t-
independent, i.e. they are given numbers once the susceptibility χ(q2) and the lattice QCD inputs are
chosen. On the contrary, β and ∆1 are t-dependent. Moreover, only the quantities β and ∆2 depend
on the chosen value of q2.

At this point, since ∆1 ≥ 0 by construction, the inequality (3.49) will have an acceptable solution
only when ∆2 ≥ 0. If this condition, that we will call unitarity filter, is satisfied, by expressing the
scalar product 〈gt|φf〉 according to Eq. (3.42) we obtain the following unitarity constraints on the FF
f(t)

flo(t, q
2) ≤ f(t) ≤ fup(t, q2) , (3.52)

where

flo(up)(t, q
2) ≡ −β(t, q2)∓

√
∆1(t) ∆2(q2)

αφ(z(t), q2)
. (3.53)

Thus, thanks to the dispersive bounds in Eqs. (3.52), by using a direct lattice measurement of the FFs
at the points t1, t2, . . . , tn and the two-point functions of the suitable currents we can constrain the
FFs in regions of momenta not accessible to lattice simulations. Explicit analytical expressions for
flo(up)(t, q

2), which are very useful for their direct numerical evaluation, are given in Appendix C. Let
us stress also that the unitarity filter ∆2(q2) ≥ 0 is t-independent, which implies that, when it is not
satisfied, no prediction for f(t) is possible at any value of t.

In the phenomenological applications present in this Thesis, we will always use the results of the
computation of the FFs performed by other Collaborations. On the contrary, we have computed for
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the first time on the lattice the susceptibilities relevant for the semileptonic B decays. In Appendix
D the central ideas for their non-perturbative computations are shown and discussed.

In conclusion, we point out an interesting feature of the dispersive approach based on the ma-
trix (3.43). When the momentum transfer t coincides with one of the data points, i.e. when t→ tj , the
determinant ∆1(q2)→ 0 and the quantity β/α→ φ(z(tj), q

2)f(z(tj)), so that flo(up)(t, q
2)→ f(z(tj)).

In other words, the FF f(t), obtained from the dispersive matrix method, reproduces exactly the given
set of data points.

3.3.3 Statistical and systematic errors in the presence of kinematical constraints

Let us now discuss the treatment of the statistical errors and of the systematic effects when the
bounds on the values of the FF f(t) are derived using the values f(ti) computed at the points ti with
i = 1, 2, . . . , n, and the appropriate susceptibility χ. Without any loss of generality, we consider in
this Section the case of the semileptonic B → D decays, in which case we deal with the scalar f0(t)
and vector f+(t) FFs. Recall that they have to fulfill the kinematical constraint (3.6).

Eq. (3.53) allows us to compute the lower/upper bounds of f0(+)(t) once we have chosen our set of
input data, i.e. {χ0+(1−), f0(+)(t1), · · · , f0(+)(tn)}. Thus, the input data set is made of 2n+2 quantities:
the n values of the scalar FF f0, the n values of the vector FF f+ and the two susceptibilities χ0+ and
χ1− . For sake of simplicity we are considering the same number of data points for both the scalar and
the vector FFs evaluated at the same series of values ti (i = 1, · · · , n). Our goal is to propagate the
uncertainties related to these quantities into the evaluation of the FFs f0(+)(t) at a generic value of t.

In Ref. [60] L. Lellouch proposed a solution to this problem. His idea is as follows. Let us assume
that the two FFs f+(t), f0(t) are distributed according to a normalized probability distribution, call it
Pin(f+, f0)[dnf+][dnf0]. Since the FFs have to respect both the unitarity filters and the KC between
them, we can define the measure

dµ(f+, f0) ≡ [dnf+][dnf0]× θ
(
∆+

2

)
θ
(
∆0

2

)
θ
(
f0,up(0, q

2)− f+,lo(0, q
2)
)
θ
(
f+,up(0, q

2)− f0,lo(0, q
2)
)
,

(3.54)
where θ(x) is the Heaviside theta function. At this point, we can also define the probability that the

form factor f+(0)(t) takes a value inside an arbitrary interval [κ
+(0)
lo , κ

+(0)
up ] at momentum transfer t,

given that f+(0)(0) ∈ [max[f+,lo(0), f0,lo(0)],min[f+,up(0), f0,up(0)]]. These two probabilities (the one
for f+ and the one for f0) allow then to plot confidence level bounds for each of the two FFs, assigning
to them a precise statistical meaning.

In what follows we propose, instead, the following method, which is different from the one of
Ref. [60]. We start by building up a multivariate Gaussian distribution with mean values and covari-
ance matrix given respectively by {f0(t1), · · · , f0(tn), f+(t1), · · · , f+(tn)} and Σij = ρijσiσj , where
f0(+)(ti) are the FFs extracted on the lattice, σi are the corresponding uncertainties, and ρij is their
correlation matrix (including also correlations between the two FFs). Since we are going to use data
produced by other groups, that provide their values of f0(+)(ti), σi and ρij , we generate Nboot boot-
strap events according to the expected probability distributions. In this case we generate Nboot values
of the non-perturbative susceptibilities χ0+(1−) through normal distributions defined by their mean
values and standard deviations2.

Then, for each bootstrap event we consider the (n + 1) × (n + 1) matrices M0 and M+ (see
Eq. (3.43)) corresponding to the scalar and vector FFs, respectively. The positivity condition (3.51)

2If we have, instead, direct access to the data of the simulations, we can generate by ourself jackknife or bootstrap
sets of all the quantities defined above. At the same time we use the non-perturbative susceptibilities evaluated on the
same jackknife/bootstrap sets used to compute the values of the form factors f0(+)(ti).



30 CHAPTER 3. THE ROLE OF THE FORM FACTORS IN B → D(∗)`ν DECAYS

implies that both ∆0
2 and ∆+

2 should be positive. Thus, we compute ∆
0(+)
2 and verify their signs. If

either ∆0
2 or ∆+

2 results to be negative for a specific bootstrap, then the event is eliminated from the
sample. From the physical point of view, this step can be read as a consistency check between all the
input data, namely the susceptibilities and the FFs for that particular bootstrap. At the end of the
procedure, we will be left with Ñboot ≤ Nboot events.

In order to satisfy the KC between the FFs, in the subset of the Ñboot events satisfying the unitarity

filters ∆
0(+)
2 ≥ 0, we select only the N∗boot ≤ Ñboot events for which the dispersive bands for f0 and f+

overlap each other at zero momentum trasfer. This corresponds to impose the conditions

f0,up(0, q
2) > f+,lo(0, q

2) ,

f+,up(0, q
2) > f0,lo(0, q

2) , (3.55)

where flo,up(t, q
2) were defined in Eq. (3.53) for a generic FF f . Omitting for simplicity the argument

q2 at which the susceptibilities χ0(+) are calculated, the conditions (3.55) can then be rephrased as

∣∣φ+(z(0))β+(0)− φ0(z(0))β0(0)
∣∣ ≤

√
∆1(0)

[
φ+(z(0))

√
∆+

2 + φ0(z(0))
√

∆0
2

]
. (3.56)

As already said, the above condition select N∗boot ≤ Ñboot events. For each of the N∗boot events we
define

f∗lo(0) = max[f+,lo(0), f0,lo(0)] ,

f∗up(0) = min[f+,up(0), f0,up(0)] , (3.57)

so that, putting f(0) ≡ f0(0) = f+(0), one has

f∗lo(0) ≤ f(0) ≤ f∗up(0) . (3.58)

We now consider the FF f(0) to be uniformly distributed in the range given by Eq. (3.58) and we
add it to the input data set as a new point at tn+1 = 0. To be more precise, for each of N∗boot events
we generate N0 values of f(0) with uniform distribution in the range [f∗lo(0), f∗up(0)], obtaining a new

sample having N boot = N∗boot ×N0 events, each of them satisfying by construction both the unitarity

filters ∆
0(+)
2 ≥ 0 and the KC (3.6).

We then consider two modified (n+ 2)× (n+ 2) matrices, M0
C and M+

C , that have one more row
and one more column with respect to matrices M0 and M+ and contain the common FF f(tn+1 = 0),
namely matrices of the form

MC =




〈φf |φf〉 〈φf |gt〉 〈φf |gt1〉 · · · 〈φf |gtn〉 〈φf |gtn+1〉
〈gt|φf〉 〈gt|gt〉 〈gt|gt1〉 · · · 〈gt|gtn〉 〈gt|gtn+1〉
〈gt1 |φf〉 〈gt1 |gt〉 〈gt1 |gt1〉 · · · 〈gt1 |gtn〉 〈gt1 |gtn+1〉

...
...

...
...

...
...

〈gtn |φf〉 〈gtn |gt〉 〈gtn |gt1〉 · · · 〈gtn |gtn〉 〈gtn |gtn+1〉
〈gtn+1 |φf〉 〈gtn+1 |gt〉 〈gtn+1 |gt1〉 · · · 〈gtn+1 |gtn〉 〈gtn+1 |gtn+1〉




. (3.59)

For any point t at which we want to predict the allowed dispersive band of the FF f(t) (which
can be either f0(t) or f+(t)) without directly determining it on the lattice, we compute the matrix
MC and using Eq. (3.53) we get flo(t) and fup(t). This can be done for each of the N0 events. Let us
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indicate the result of the k-th extraction by fklo(t) and fkup(t), respectively. Then, for each of the N∗boot
events the lower and upper bounds f lo(t) and fup(t) can be defined as

f lo(t) = min[f1
lo(t), f

2
lo(t), . . . , f

N0
lo (t)] ,

fup(t) = max[f1
up(t), f

2
up(t), . . . , f

N0
up (t)] . (3.60)

At this point we can generate the bounds of the form factor f(t). To achieve this goal, we combine

all the N∗boot results f
i
lo,up(t) (i = 1, · · · , N∗boot) to generate the corresponding histograms and fit

them with a Gaussian Ansatz. From these fits we extract the average values flo(up)(t), the standard
deviations σlo(up)(t) and the corresponding correlation factor ρlo,up(t) = ρup,lo(t), namely

flo(up)(t) =
1

N∗boot

N∗boot∑

i=1

f
i
lo(up) , (3.61)

σ2
lo(up)(t) =

1

N∗boot − 1

N∗boot∑

i=1

[
f
i
lo(up)(t)− flo(up)(t)

]2
, (3.62)

ρlo,up(t) = ρup,lo(t) =
1

N∗boot − 1

N∗boot∑

i,j=1

[
f
i
lo(t)− flo(t)

] [
f
j
up(t)− fup(t)

]
. (3.63)

Note that in the above procedure we are assuming that the bootstrap values of the FFs at each
value of the momentum transfer are Gaussian distributed. From the practical point of view, we have
explicitly verified for each decay channel we have taken into consideration that this is a very good
approximation. In fact, we have checked that the distributions of the FFs events at different t values
are well reproduced by Gaussian distributions. To giva an explicit example, in Chapter 4 we will
analyze in depth this point for the B → D∗`ν decays.

3.3.4 Combination of the lower and upper bounds for each FF

After the steps described before, for any choice for t we obtain from the bootstrap events (pseudogaus-
sian) distributions for f0,lo(t), f0,up(t), f+,lo(t) and f+,up(t) as well as the corresponding mean values,
standard deviations and correlations. We combine them according to the following procedure.

Let us consider a single bootstrap event in which fL is the lower bound and fU is the upper one
for a generic FF at the given value of t (for sake of simplicity we omit the t-dependence for a while).
We associate to the FF f a flat distribution between fL and fU , i.e.

P (f) =
1

fU − fL
Θ(f − fL)Θ(fU − f) , (3.64)

where f = f0(+), fU = f0(+),up, fL = f0(+),lo and Θ is the Heaviside step function. The mean value
and the variance associated to the distribution (3.64) are respectively given by

1

fU − fL

∫ fU

fL

df f Θ(f − fL) Θ(fU − f) =
fU + fL

2
, (3.65)

1

fU − fL

∫ fU

fL

df

(
f − fU + fL

2

)2

Θ(f − fL) Θ(fU − f) =
(fU − fL)2

12
. (3.66)
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It is however necessary to average over the whole set of bootstrap events. Since the lower and the
upper bounds of a generic FF are strongly correlated, we adopt a multivariate Gaussian distribution
to describe them, i.e.

PLU (fL, fU ) =

√
detC−1

2π
e−

1
2 [C−1

LL(fL−flo)2+2C−1
LU (fU−fup)(fL−flo)+C−1

UU (fU−fup)2] , (3.67)

where flo(up) represents the mean of the lower (upper) bound over all the bootstrap events, given by
Eq. (3.61), and C is the covariance matrix

C =




σ2
lo ρlo,up σloσup

ρup,lo σloσup σ2
up


 (3.68)

with σlo(up) and ρlo,up = ρup,lo being given by Eqs. (3.62) and (3.63), respectively. In Eq. (3.67) the
normalization has been chosen so that

∫ +∞

−∞

∫ +∞

−∞
dfU dfL PLU (fL, fU ) = 1 . (3.69)

Using the product of the distributions (3.64) and (3.67) we can compute the final values of the form
factor f(t) and its variance σ2

f (t) as

f(t) =
flo(t) + fup(t)

2
, (3.70)

σ2
f (t) =

1

12
[fup(t)− flo(t)]2 +

1

3

[
σ2
lo(t) + σ2

up(t) + ρlo,up(t)σlo(t)σup(t)
]
. (3.71)

In conclusion, let us highlight here that the overall procedure described above can be easily ex-
tended also to the FFs f(q2), g(q2),F1(q2), P1(q2) entering B → D∗`ν decays, keeping in mind that in
this case these FFs have to respect the KCs shown in Eqs. (3.18)-(3.19).

3.3.5 What if only a small percentage of the bootstraps survive to the filters?

In some of the analyses of the lattice data that we are going to present we have encountered the
following phenomenon. As clear from the previous discussion, for some of the bootstrap events no
solution can be found, either because ∆2 < 0 or because there is no overlap between the regions allowed
by the KCs. This may obviously happen for a statistical fluctuation of the sample at hand. When,
however, the fraction of rejected bootstrap events is large, say much larger than 50%, we have to
implement a procedure to increment the percentage of accepted bootstraps, otherwise it is legitimate
to doubt about the statistical reliability of the final result for the FFs.

At present, we have developed two possible strategies to solve this problem.

• On the one hand, we can use a different statistical approach, like the skeptical one discussed in
Refs. [67,68]. The basic idea is the following. Probability theory helps us in building up a model
in which the values and uncertainties of the physical quantities about which we are in doubt are
allowed to vary from the nominal ones. Obviously, the model is not unique, as not unique are the
probability distributions that can be used. The simplest choice consists in enlarging the reported
standard deviations σi of the measured points, by assuming the true standard deviations, call
them σti , are related to the σi by a factor ri, one for each of the measured points, i.e. σti = ri σi,
whereas the average values f̄i are the same. All the points i are treated democratically and
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fairly, i.e. our prior belief of each ri has expected value equal to one; its prior distribution
does not depend on the point; we are skeptical, and hence each ri has a priori a wide range of
possibilities described by a probability distribution, with a prior 100% standard uncertainty on
ri, i.e. σ(ri)/E[ri] = 1.

The simplest model is to introduce a Gamma probability distribution for the variable r ≥ 0

Pskept(r) =
1

B Γ(A)

( r
B

)A−1
e−r/B . (3.72)

The parameters A and B are fixed by imposing that this distribution has both mean value and
variance equal to 1. A simple calculation shows that this request corresponds to the choice
A = B = 1, i.e. Pskept(r) = e−r. At this point, we slightly modify the procedure previously
described, namely we build up a multivariate Gaussian distribution whose covariance matrix
now is

Σij = ρijσiσj × r2, (3.73)

where the σ’s are the uncertainties of the measured points in the numerical simulation and ρij
the corresponding correlation matrix.

Thus, according to Eq. (3.72) we extract Nr values of r and, for each of them, Nb bootstrap
events for both the FFs values and the susceptibilities. To decide whether a single bootstrap
event is accepted or rejected, let us fix the bootstrap event, i.e. the i-th event Ni, and we consider
N r
i values of r. We check the unitarity constraint for all the FFs for each of the N r

i events, then,
we compute the lower and the upper bounds for the survived N̂ i

r ≤ N i
r events and check whether

the KCs are verified or not. This second step will leave us with Ñ i
r ≤ N̂ i

r bootstraps. Our
prescription is thus the following: the event Ni is considered as accepted if Ñ i

r 6= 0, namely if
there exists at least one value of r which passes both the unitarity and the KC filters. Adopting
this ansatz, we see that a much larger fraction of the generated events is accepted.

At this point, we combine the values of the accepted r in a unique value. We proceed in three
steps. For each bootstrap we compute the mean value of r over the Ñ r

i extractions. Then, we
find the r (among the Ñ r

i extracted) closest to that mean value. Finally, we save the event
corresponding to that r as representative of the bootstrap that we have fixed. Note that in this
way we are guaranteed that the new bootstrap events will pass both the unitarity and the KC
filters.

• On the other hand, we can adopt an iterative procedure. The idea is as follows. We start from
a given dataset of points for the FFs and generate a sample of bootstrap events according to
the their correlations. Then, we apply the unitarity filters of the DMM to the FFs. If they are
satisfied only by a reduced number of bootstraps, on the subset of surviving events we recalculate
the mean values, uncertainties and correlations of the FFs. The changes in the mean values and
uncertainties turn out to be quite small, while the application of the unitarity filters has its major
impact on the correlations among the FFs. Then, we repeat the generation of the bootstrap
sample using the new input values and we apply again the unitarity filters. This procedure is
repeated until the percentage of survived bootstraps is & 95%.

It is clear that the same approach has to be developed also to properly take into account the KCs.
Thus, we apply again the iterative procedure to increase each time the percentage of surviving
events after imposing the filters corresponding to the KCs. Also in this case, we require a fraction
of surviving events & 95% after imposing all the filters.
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3.3.6 Final observations

In order to conclude this Section, let us develop some final observations on the DMM.

First of all, with respect to the original proposal by L. Lellouch [60] and other previous studies,
the main novelties in our procedure are as follows:

i) The non-perturbative determination of the relevant two-point current correlation functions on
the lattice which are then used to implement the dispersive bounds;

ii) The possibility of implementing the constraints from the two-point correlation function computed
non-perturbatively also in regions where the perturbative calculations used in previous analyses
are non reliable and could not be used;

iii) The reduction of lattice artefacts in the two-point correlation functions using fixed-order per-
turbation theory on the lattice and in the continuum;

iv) A quite simpler treatment of the lattice uncertainties with respect to the method proposed in
Ref. [60];

v) A new approach to a realistic estimate of the systematic errors present at small values of q2,
namely at large momenta of the final meson, based on the skeptical approach and/or the iterative
procedure.

Secondly, it is interesting to compare the DMM with the other parametrizations introduced at
the beginning of this Section, namely BGL, BCL and CLN. All the quantitative details about these
parametrizations can be found in the Appendix B. With respect to BGL, BCL and CLN, we highlight
the following important improvements:

i) Since no series expansion of the FFs at low-z is performed, the DMM is independent of any
truncation error that, on the contrary, can occur in BGL, BCL or CLN. For completeness, note
that according to Refs. [50,51,69] the truncation problem can be controlled in BGL and in BCL
by imposing the unitarity bounds on the coefficients of the power series expansion of the FFs
(these bounds are represented by Eq. (B.2) and Eq. (B.7) for BGL and BCL, respectively) and
by repeating the fits at different truncation orders;

ii) Contrarily to BGL or BCL, where a truncated fit might be distorted by events which do not
fulfill unitarity, in the DMM unitarity is built-in, hence a unitarity check of FFs data is developed
independently of a particular parameterization. For completeness, also this problem can be
controlled in BGL and BCL by imposing the unitarity bounds and by repeating the fits at
different truncation orders;

iii) Having a set of lattice data for a FF evaluated at a series of values q2
j of the squared 4-momentum

transfer (j = 1, ..., N), the DMM reproduces exactly each of the data point when q2 → q2
j . In

other words, it behaves like a fitting procedure passing exactly for the given data set.

iv) Finally, contrarily to CLN, the DMM is entirely based on first principles (i.e. LQCD evaluation
of 2- and 3-point Euclidean correlators) and thus is independent of any approximate symmetry,
as for instance the Heavy Quark Effective Theory (HQET).

For all these reasons, the DMM seems to us a very intriguing and interesting strategy for the
description of the FFs in the whole kinematical range. However, for completeness, let us mention
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also one theoretical limitation that affects this method. As clearly stated above, the DMM allows to
compute the lower/upper bounds of a FF through Eq. (3.53) once we have chosen our set of input
data. This set is composed by the susceptibility of a given spin-parity quantum channel and by
the LQCD determinations of the FF at some values of the momentum transfer. Now, there is not
a straightforward way to include the experimental determinations of the differential decay width of
a given process among the aforementioned input data. In other words, it is not straightforward to
include these measurements inside the original matrix in Eq. (3.43). Some preliminary results can be
found in [70] in the case of production of a pseudoscalar meson. However, it will be very important
for the future to overcome this problematic issue in a systematic way, by including also the cases of
production of a vector meson or a baryon.

Let us now describe in detail the results of the phenomenological application of the DMM to the
semileptonic B → D(∗)`ν decays.
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Chapter 4

The DMM analysis of the b→ c quark
transitions

In this Chapter we will firstly apply the Dispersive Matrix approach to describe the FFs entering in
the B → D(∗)`ν decays in the whole kinematical range. As stated in Chapter 3, for the B → D(∗)`ν
decays the kinematical regions accessible to LQCD calculations are still restricted to small values of
the recoil. In this Thesis, in fact, we will make use of lattice computations in final form for B → D`ν
decays [71] and for the B → D∗`ν ones [55], whose results are available at non-zero, although small,
recoil. 1 Our fundamental assumption relies on a different treatment of the lattice results and of the
experimental measurements. To be more specific, our approach is to use lattice calculations alone,
combined with unitarity, to determine the dependence of the FFs on the momentum transfer. Then,
we compute the theoretical expectations of the differential decay widths, to be compared with the
experiment in order to determine |Vcb|. In what follows, we will treat separately the B → D`ν and
the B → D∗`ν cases separately. Moreover, we will extend our analysis to other semileptonic heavy-

to-heavy B decays, namely the Bs → D
(∗)
s `ν transitions. This study, in fact, will allow us to obtain

new exclusive determinations of the CKM matrix elements |Vcb|, as well as to develop further tests of
LFU.

4.1 |Vcb| and R(D) from B → D`ν decays

Here we study semileptonic B → D decays in order to extract |Vcb| and the ratio R(D) through the
DMM. The inputs are the FNAL/MILC data [71], summarized in the Table 4.1. There exists another
lattice computation performed by the HPQCD Collaboration [73], however the HPQCD values of the
FFs are compatible with the FNAL/MILC results within larger uncertainties. For this reason, they
will not be considered in the following. For what concerns the susceptibilities, we use the results of
our non-perturbative lattice computation, whose basic ideas have been described in Appendix D and
whose results are contained in the last column of Table D.1.

In order to write down the matrices in Eq. (3.43) (or, equivalently, in Eq. C.3) for f+,0(z), we need
the following kinematical functions

φ+(z) =
8r2

mB

√
16

3π

(1 + z)2
√

1− z
[(1 + r)(1− z) + 2

√
r(1 + z)]

5 , (4.1)

1Note that, in the latter case, new results of LQCD computations of the FFs are expected by the JLQCD Collabo-
ration [72].

37
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FNAL/MILC data

f+(1) 1.1994(095)

f+(1.08) 1.0941(104)

f+(1.16) 1.0047(123)

f0(1) 0.9026(072)

f0(1.08) 0.8609(077)

f0(1.16) 0.8254(094)

Table 4.1: Values of the LQCD computations of the FFs f+,0(w) as reported by FNAL/MILC Collab-
oration in [71].

φ0(z) = r(1− r2)

√
16

π

(1− z2)
√

1− z
[(1 + r)(1− z) + 2

√
r(1 + z)]

4 (4.2)

with r ≡ mD/mB. Note that they coincide with the expressions (3.45) under the choices q2 = 0 and
nI = 2. Each of these kinematical functions is then modified according to Eq. (5.6) using the poles in
Table III of [69].
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Figure 4.1: The bands of the FFs entering B → D`ν decays computed through the DMM. The colour
code is (lower) violet band for f0(z), (higher) gray one for f+(z). The blue points are the FNAL/MILC
data [71], summarized in Table 4.1.

In Fig. 4.1 we show the bands of the FFs resulting from the DMM. In order to obtain these bands
we had to use the sceptical approach, since only the ∼ 15% of bootstraps is accepted. Following
the prescription described in the previous Section and extracting 100 values of r (common to both
FFs), we are able to recover all the generated bootstraps, which then contribute to the final bands
of the FFs. The extrapolation at zmax is crucial in order to analyse experimental data. The matrix
description gives the result

f(zmax) = 0.674± 0.026, (4.3)

which is compatible with the Light Cone Sum Rule (LCSR) estimate [74]

f(zmax)LCSR = 0.65± 0.08.
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4.1.1 Extraction of |Vcb|
In order to obtain an updated value of |Vcb| from B → D decays, we put together our description
of the lattice FFs in the whole kinematical range and the experiments. Let us briefly describe the
experimental state-of-the-art. The most recent measurement of the differential decay width dΓ/dw,
see Eq.(3.10) for its theoretical expression, has been performed at Belle [75]. In Table II of this work,
the authors report the results of the measurements, dividing the kinematical region into 10 bins in the
recoil variable w. The correlation matrix of the systematic errors is also given. Following the procedure
used in [76] to extract |Vcd| and |Vcs| in the case of the semileptonic D → π`ν and D → K`ν decays,
we then re-express Eq. (3.9) as

|Vcb| =
√
dΓ

dq2
|exp ×

24π3

G2
F η

2
EW |~pD|3|f+(q2)|2th

. (4.4)

Hence, we generate Nboot bootstraps of the experimental differential decay width for every bin in w
through a multivariate Gaussian distribution and similarly we extract Nboot bootstrap events for the
FFs f+,0(w) for each of the bins wi (i = 1, · · · , 10). The mean value and the covariance matrix of the
distribution can be directly computed through our DMM. Finally, we compute |Vcb| for each recoil bin
through the expression (4.4).

Let us now fix a particular bin. In order to extract a mean value and uncertainty for |Vcb|, we
fit the histogram of these events with a normal distribution and save the values of the corresponding
marginalized parameters. We then have 10 values of the CKM matrix element, one for each w bin.
In order to compute the average of these quantities by taking appropriately into consideration the
correlations, calling C the covariance matrix and |Vcb|i (i = 1, · · · , 10) the values of the CKM matrix
element for each bin, it is sufficient to compute [77]

|Vcb| =
∑10

i,j=1(C−1)ij |Vcb|j∑10
i,j=1(C−1)ij

, σ2
|Vcb| =

1∑10
i,j=1(C−1)ij

. (4.5)

The above formulæ can be used since the distributions of the bootstrap events of |Vcb| for each bin
are approximately Gaussian. Now, the application of Eq. (4.5) gives us the following result for |Vcb|

|Vcb| × 103 = 41.0± 1.2, (4.6)

which is compatible with the most recent inclusive determination |Vcb|incl = (42.16± 0.50) · 10−3 [30]
at the 0.9σ level. In Fig. 4.2 we show the 10 values of the CKM matrix element, one for each w bin,
and the final band corresponding to Eq. (4.6).

4.1.2 Determination of the R(D) ratio

Finally, let us compute a theoretical estimate of the ratio R(D), defined in Eq. (3.1). Since in the
B → D case we have only two FFs to deal with, we can write the rather compact expression

R(D) =

∫ (mB−mD)2

m2
τ

dq2|~pD|3f2+(q2)
(

1− m2
τ

q2

)2 [
1 +

m2
τ

2q2 +
m2
B

| ~pD|2

(
1− m2

D

m2
B

)2
3m2

τ

8q2
f2
0 (q

2)

f2
+(q2)

]

∫ (mB−mD)2

0
dq2|~pD|3f2+(q2)

, (4.7)

where mτ is the mass of the τ lepton and we have considered the electron and the muon as massless.
Using the bootstrap events for the FFs extracted as explained before, we compute Nboot values of the
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Figure 4.2: Values of the CKM matrix element |Vcb| resulting from the combination of the sceptical
matrix description of the FFs and the experimental data by Belle. The orange band represents the
result of the weighted mean described in the text.

ratio R(D), and fit the histogram of these events with a normal distribution, in order to obtain the
expectation value and the uncertainty, as in Fig. 4.3. Our prediction is

R(D) = 0.296± 0.008.
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Figure 4.3: The orange bins represent the PDF of the bootstrap events for R(D). The dashed blue curve is the
best Gaussian fit of the bootstraps themselves.

4.2 |Vcb| and R(D∗) from B → D∗`ν decays

Let us now apply the non-perturbative DMM to the semileptonic B → D∗`ν decays. At present,
the inputs for our matrices are the final results of the LQCD computations of the FFs provided by
the FNAL/MILC Collaborations [55]. There, in the ancillary files, the authors give the synthetic
values of the FFs g(w), f(w),F1(w) and F2(w) at three non-zero values of the recoil variable (w− 1),
namely w = {1.03, 1.10, 1.17}, as well as their correlations. The FF F2(w) is directly related to the
pseudoscalar FF P1(w), which we will refer to hereafter, through the relation P1(w) = F2(w)

√
r/(1+r),
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where r ≡ mD∗/mB. All the FNAL/MILC inputs are summarized in Table 4.2. Recall that these FFs
have been introduced in Eqs. (3.14-3.17).

FNAL/MILC data

g(1.03) (GeV−1) 0.372 (14)

g(1.10) (GeV−1) 0.331(13)

g(1.17) (GeV−1) 0.291(17)

f(1.03) (GeV) 5.80(11)

f(1.10) (GeV) 5.52(11)

f(1.17) (GeV) 5.27(16)

FNAL/MILC data

F1(1.03) (GeV2) 18.85(36)

F1(1.10) (GeV2) 17.67(42)

F1(1.17) (GeV2) 16.62(67)

P1(1.03) 0.978(29)

P1(1.10) 0.860(29)

P1(1.17) 0.763(39)

Table 4.2: Values of the LQCD computations of the FFs g(w), f(w),F1(w) and P1(w) as reported by
FNAL/MILC Collaborations in [55].

In order to write down the matrices in Eq. (3.43) (or, equivalently, in Eq. C.3) for the four FFs of
interest, we need the following kinematical functions

φf (z) = 4
r

m2
B

√
2

3π

(1 + z)(1− z)3/2

[(1 + r)(1− z) + 2
√
r(1 + z)]

4 ,

φg(z) = 16 r2

√
2

3π

(1 + z)2

√
1− z [(1 + r)(1− z) + 2

√
r(1 + z)]

4 ,

φF1(z) = 4
r

m3
B

√
1

3π

(1 + z)(1− z)5/2

[(1 + r)(1− z) + 2
√
r(1 + z)]

5 , (4.8)

φP1(z) = 16 (1 + r)r3/2

√
1

π

(1 + z)2

√
1− z [(1 + r)(1− z) + 2

√
r(1 + z)]

4

As for the B → D channel, the locations of the various B
(∗)
c poles are taken from Table III of Ref. [69]

and the values of the susceptibilities are shown in the last column of Table D.1.

At this point, we start from a total of 12 data points for the FFs and generate a sample of 105

bootstrap events according to the given correlations. Then, we apply the unitarity filters of the DMM
to all the FFs. They are satisfied only by a reduced number of bootstraps, namely the percentage of
the surviving events is ∼ 1% after imposing the three unitarity constraints on g, P1 and (f,F1). It
is thus necessary to implement one of the procedures explained in the previous Section in order to
increase the percentage of the accepted events. We choose the iterative procedure to achieve this goal.
For this reason, on the subset of surviving events we recalculate the mean values, uncertainties and
correlations of the FFs. The changes in the mean values and uncertainties turn out to be quite small,
while the application of the unitarity filters has its major impact on the correlations among the FFs.
We then repeat the generation of the bootstrap sample using the new input values and we apply again
the unitarity filters. The overall procedure is iterated until the percentage of the accepted bootstraps
is & 95%.

Recall that we have also to impose the two KCs that relate the FFs f and F1 at w = 1 and
the FFs F1 and P1 at w = wmax = (1 + r2)/(2r), shown in Eqs. (3.18)-(3.19). We apply again the
iterative procedure to increase each time the percentage of surviving events after imposing these filters,
requiring again a fraction of surviving events & 95%. The resulting dispersive bands of the FFs are
shown in the whole range of values of the recoil w in Fig. 4.4. In particular, the extrapolations of the
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FFs at w = wmax read

f(wmax) = 4.19± 0.31 GeV , (4.9)

g(wmax) = 0.180± 0.023 GeV−1 , (4.10)

F1(wmax) = 11.0± 1.3 GeV2 , (4.11)

P1(wmax) = 0.411± 0.048 . (4.12)

Our results can be compared with the results coming from LCSR [74] at q2 = 0. In [74], the theoretical
predictions are given in terms of the FFs V,A1, A2, appearing in the matrix element (3.12). Thanks
to Eqs. (3.14-3.17), their results can be rephrased as

f(wmax)|LCSR = 4.37± 0.66 GeV ,

g(wmax)|LCSR = 0.19± 0.04 GeV−1 ,

F1(wmax)|LCSR = 16.0± 2.1 GeV2 .

While the results for f(wmax) and g(wmax) are compatible to each other, wee see a ∼ 2σ tension in
F1(zmax). This will have an important impact in the determination of both |Vcb| and the R(D∗) ratio.
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Figure 4.4: The bands of the FFs g(w), f(w), F1(w) and P1(w) computed by the DMM after imposing both the
unitarity filter and the two KCs (3.18)-(3.19). The FNAL/MILC values [55] used as inputs for the DMM are

represented by the black diamonds.

Let us now discuss in detail the hypothesis of Gaussianity of the distribution of the bootstrap
events of the FFs. In other words, let us discuss why the assumption that the distribution of the
surviving events is Gaussian is a good approximation. We point out that the percentage of surviving
events rapidly increases towards 100% after applying the Gaussian approximation at each step of the
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iterative procedure. This is reassuring concerning the impact of the deviations from Gaussianity. In
fact, if the filters would produce a non-negligible amount of non-Gaussian events (probably in the tails
of the multivariate distribution), we would have observed a slow increase of the surviving events after
each iteration and a saturation of the final percentage significantly below the 100% level.

We have performed a further check concerning the iterative procedure. Since the number of
surviving events after the application of both the unitarity filters and the KCs is very limited, we have
increased significantly the initial number of events from 105 to 107. In this way after the first iteration
the number of surviving events is ' 2500, which may represent an acceptable size of the sample. In
Fig. 4.5 we compare the DMM bands obtained after the first iteration starting from 107 events with
those previously shown in Fig. 4.4, i.e. after the fifth iteration corresponding to a final sample with
105 events. The differences are quite limited.
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Figure 4.5: The bands of the FFs g(w), f(w), F1(w) and P1(w) computed by the DMM after the first iteration
starting from 107 initial events (corresponding to ' 2500 surviving events) and after the fifth iteration (corre-
sponding to a final sample with 105 events). The black diamonds represent the FNAL/MILC values [55] used

as inputs for the DMM.

4.2.1 Extraction of |Vcb|
Let us now use the dispersive bands of the FFs to extract |Vcb| from the experimental data. For
what concerns the experimental state-of-the-art, at present we have at our disposal two different
measurements of the differential decay widths, both performed by the Belle Collaboration [37, 78].
The authors report the results of the measurements of the differential decay widths dΓ/dx, where x
is one of the four kinematical variables of interest (x = w, cos θl, cos θv, χ), by dividing the available
region for each variable into 10 bins. The numerical values of these bins can be found in Table II
of [37]. Recall that the various helicity angles are defined in Fig. 3.2.
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Hence, we have globally 40 points for each of the two different measurements [37, 78]. The cor-
relation matrices of the errors are also presented for both the measurements. Our strategy is thus
the following. First of all, we compute the Nboot bootstraps of theoretical dΓ/dx from the expres-
sion (3.20) using the dispersive bands of the FFs, i.e. by generating Nboot values of the FFs for each
of the experimental bins through a multivariate Gaussian distribution. Then, we also generate an
independent set of Nboot bootstrap values of the experimental differential decay widths for all the
bins. For each of them, we fit the histogram of the resulting Nboot estimates of |Vcb| with a normal
distribution and save the corresponding mean value and uncertainty. Thus, we find 10 values of the
CKM matrix element for each of the four kinematical variables (w, cos θl, cos θv, χ) and for each of the
two experiments [37,78], which are then averaged through the Eq. (4.5).

In Fig. 4.6 we show the bin-per-bin distributions of |Vcb| for each kinematical variable x and for
each experiment, together with their final weighted mean values. The latter ones are collected also
in Table 4.3 together with the corresponding values of the reduced χ2-variable, χ2/(d.o.f.), being the
number of d.o.f. equal to 9. The important issue is that anomalous underestimates of the mean values
of |Vcb| can be observed in the case of some of the variables x, which correspond also to large values
of the reduced χ2-variable. This effect is well-known in literature and has been studied by Giulio
D’Agostini in [79]. According to him, it can happen that ”best fits to data which are affected by
systematic uncertainties on the normalization factor have the tendency to produce curves lower than
expected if the covariance matrix of the data points is used in the definition of the χ2”. In particular,
this bias becomes unacceptable if the normalization error is large or a large number of data points are
fitted.

experiment |Vcb|(x = w) |Vcb|(x = cosθl) |Vcb|(x = cosθv) |Vcb|(x = χ)

Ref. [37] 0.0399 (12) 0.0411 (16) 0.0416 (16) 0.0414 (17)

χ2/(d.o.f.) 1.72 1.10 1.21 1.45

Ref. [78] 0.0392 (9) 0.0399 (13) 0.0393 (11) 0.0418 (13)

χ2/(d.o.f.) 1.62 2.41 3.77 0.79

Table 4.3: Mean values and uncertainties of the CKM element |Vcb| obtained by the correlated average (4.5)
for each of the four kinematical variables x and for each of the two experiments [37, 78] adopting the original
covariance matrices of the Belle experiments. The corresponding values of the reduced χ2-variable, χ2/(d.o.f.),

are also shown.

We now illustrate a procedure that helps to overcome the possible aforementioned underestimation
of |Vcb|. For each of the two Belle experiments, we consider the relative differential decay rates given
by the ratios (dΓ/dx)/Γ (where again x = w, cos θl, cos θv, χ) for each bin by using the experimental
data. In this way, we guarantee that the sum over the bins is exactly independent (bootstrap by
bootstrap) of the choice of the variable x. Hence, we compute a new correlation matrix using the
bootstrap events for the ratios (dΓ/dx)/Γ. The new correlation matrix has, by construction, four
eigenvalues equal to zero, because the sum over the bins of each of the four variables x is always equal
to unity. In other words, the number of independent bins for the ratios is 36 and not 40 for each
experiment. Then, a new covariance matrix of the experimental data is constructed by multiplying
the new correlation matrix by the original uncertainties associated to the measurements.

At this point, we repeat the whole procedure for the extraction of |Vcb| using the new experimental
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Figure 4.6: The bin-per-bin estimates of |Vcb| and their weighted means for each kinematical variable x and for
each experiment adopting the original covariance matrices of the Belle experiments. The blue squares and the
red circles correspond respectively to the first [37] and to the second [78] set of the Belle measurements. The
dashed blue (red) bands are the weighted averages in the case of the blue squares (red circles) for each variable

x.

covariance matrices. In Fig. 4.7 we show the new bin-per-bin distributions of |Vcb| for each kinematical
variable x and for each experiment, together with their final weighted mean values. The latter ones
are collected also in Table 4.4. A drastic improvement of the values of the reduced χ2-variable is
obtained for each of the kinematical variable x and for each of the two Belle experiments.

experiment |Vcb|(x = w) |Vcb|(x = cosθl) |Vcb|(x = cosθv) |Vcb|(x = χ)

Ref. [37] 0.0405 (9) 0.0417 (13) 0.0422 (13) 0.0427 (14)

χ2/(d.o.f.) 1.01 0.89 0.66 0.72

Ref. [78] 0.0394 (7) 0.0409 (12) 0.0400 (10) 0.0427 (13)

χ2/(d.o.f.) 1.21 1.36 1.99 0.38

Table 4.4: The same as in Table 4.3, but using the new experimental covariance matrices described in the text.

Then, the eight mean values of |Vcb| in Table 4.4 have to be averaged to obtain a final estimate.
In order to avoid that the D’Agostini bias may affect our final result, we have decided to follow the
conservative strategy described in Ref. [80]. To be more specific, we assign to all the |Vcb| estimates
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Figure 4.7: The same as in Fig. 4.6, but using the new experimental covariance matrices described in the text.

in Table 4.4 the same weight. Let us now define κ ≡ |Vcb| to simplify the discussion. We assume
that the observable κ has a distribution f̂(κ) given by f̂(κ) = (1/N)

∑N
k=1 f̂k(κ). Here f̂k(κ) is the

distribution provided by the bootstrap sample related to the k-th determination of the CKM matrix
element, which is then characterized by central value κk and standard deviation σk. Thus we estimate
the central value and the error for the observable κ through the mean value and the standard deviation
of the distribution f̂(κ), which are given by the formulæ

µκ =
1

N

N∑

k=1

κk , (4.13)

σ2
κ =

1

N

N∑

k=1

σ2
k +

1

N

N∑

k=1

(κk − µκ)2 , (4.14)

where the second term in the r.h.s. of Eq. (4.14) accounts for the spread of the values of |Vcb| corre-
sponding to the various kinematical variables and experiments. We obtain for each of the two Belle
experiments the averages

|Vcb| = (41.8± 1.5) · 10−3 Ref. [37] (4.15)

= (40.8± 1.7) · 10−3 Ref. [78] (4.16)

and by combining the two Belle experiments the final estimate

|Vcb| = (41.3± 1.7) · 10−3 , (4.17)
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which is compatible with the most recent inclusive determination |Vcb|incl = (42.16±0.50) ·10−3 [30] at
the 0.5σ level. Without the modification of the experimental covariance matrices (i.e. using the eight
mean values shown in Table 4.3) the final estimate of |Vcb| would have read

|Vcb| = (40.5± 1.7) · 10−3 ,

which is still compatible with the most recent inclusive determination at the 1σ level.
At this point, let us note that there is another way to determine an exclusive value of |Vcb| from

semileptonic B → D∗ decays. Starting from the unitarity bands of the FFs plotted in Figure 4.4, we
can compute the theoretical expectation of the total decay width and we can then compare it with
its measurements. From the experimental point of view, in fact, the Belle Collaboration has given its
estimate of the branching ratio of semileptonic B → D∗ decays for each of the two analyzes, namely
B(B → D∗`ν) = (4.95±0.11±0.22)×10−2 [37] and B(B → D∗`ν) = (5.04±0.02±0.16)×10−2 [78,81].
Taking into consideration these values, our final results of the study of the total decay width read

|Vcb| = (42.9± 1.8) · 10−3 Ref. [37] (4.18)

= (43.3± 1.6) · 10−3 Ref. [78, 81] (4.19)

Note that these values are by construction independent of all the correlations coming from the theory
or from the experiment, since it is based on the analysis of the total decay width. Moreover, the values
in Eq. (4.18) and Eq. (4.19) are compatible with the results coming from the study of the differential
decay widths, namely the values in Eq. (4.15) and Eq. (4.16), respectively. According to us, this
agreement is a strong indication of the robustness of our final estimate of |Vcb|, shown in Eq. (4.17).

Going back to Fig. 4.7, few comments naturally follow:

a) in the top left panel the value of |Vcb| exhibits some dependence on the specific w-bin. The value
obtained adopting a constant fit is dominated by the bins at small values of the recoil, where
direct lattice data are available and the lenght of the momentum extrapolation is limited;

b) in the bottom left panel the value of |Vcb| deviates from a constant behavior, as it is also signaled
by the large value of the corresponding reduced χ2-variable for the second set of the Belle mea-
surements. Instead of a constant fit, we try a quadratic one of the form |Vcb|

[
1 + δB cos2(θv)

]
,

suggested by the structure of the differential decay rate dΓ/dcos(θv) within the Standard Model.
If the dependence of the experimental and theoretical decay rates upon cos(θv) were the same,
then the parameter δB would identically vanish. Instead we get a non-vanishing value of the
parameter δB, namely: |Vcb| = (41.1± 1.4) · 10−3 and δB = 0.144± 0.074 for the first set [37] of
the Belle measurements, and |Vcb| = (40.8 ± 1.0) · 10−3 and δB = 0.184 ± 0.050 for the second
set [78]. The values of |Vcb| are consistent with each other and also with the corresponding values
obtained adopting a constant fit and shown in the fourth column of Table 4.4.

Both observations may be related to a different w-slope of the theoretical FFs based on the lattice
results of Ref. [55] with respect to the Belle experimental data [37,78]. This crucial issue (a kind of a
new slope puzzle) needs to be further investigated by forthcoming calculations of the FFs at non-zero
recoil expected from the JLQCD Collaboration as well as by future improvements of the precision of
the experimental data.

In conclusion, let us highlight the main features of our procedure to extract |Vcb| from exclusive
experiments. First of all, contrarily to other analyses present in literature, we choose to keep distinct
the lattice and the experimental data. In other words, only LQCD computations are used in order to
derive the allowed unitarity bands of the FFs as functions of the recoil thanks to the DMM. This is a
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key issue since, by construction, theoretical computations of the FFs on the lattice are SM-like. This
is not guaranteed for the experimental data which, in principle, can contain NP contributions. Thus,
the experimental measurements are considered only for determining bin-per-bin estimates of |Vcb|. It
can happen that the values of |Vcb| deviate from a constant behavior and this will be signaled by a
large value of the reduced χ2-variable. This is in fact the case for the dΓ/dcos(θv) distribution. As
clearly discussed above, in that case the substitution of a constant fit with a quadratic one does not
change the final value of |Vcb|, while pointing towards the existence of a different bin-dependent NP
effect. This is demonstrated by the non-vanishing values of the δB parameters. Secondly, in our study
the pseudoscalar FF P1(z) plays a central role in the determination of |Vcb|, although not explicitly
appearing in Eq. (3.20) in the massless lepton limit. In fact, the KC (3.19) allows us to constrain the
F1(w) band obtaining a better precision in the region not explored by lattice computations, i.e. at
large values of w.

4.2.2 Determination of the R(D∗) ratio and the polarization observables

By using the unitarity bands of the FFs we can compute the pure theoretical expectation values of the
ratio R(D∗), defined in Eq. (3.1), as well as some polarization observables, namely the τ -polarization
Pτ (D∗) and the longitudinal D∗-polarization FL(D∗). The expressiopns of these latter quantities in
terms of the FFs can be read directly from [69,82,83]. Our final results thus read

R(D∗) = 0.275± 0.008 , (4.20)

Pτ (D∗) = −0.529± 0.007 , (4.21)

FL(D∗) = 0.414± 0.012 (4.22)

to be compared with the experimental values

R(D∗)|exp = 0.295± 0.011± 0.008 Ref. [40] , (4.23)

Pτ (D∗)|exp = −0.38± 0.51+0.21
−0.16 Ref. [84] , (4.24)

FL(D∗)|exp = 0.60± 0.08± 0.04 Ref. [85] . (4.25)

While the theoretical and the experimental values of Pτ (D∗) are in agreement (mainly due to the larger
experimental uncertainty), the compatibility for R(D∗) and FL(D∗) is at the ∼ 1.3σ and ∼ 2.1σ level,
respectively. Note that the R(D∗) anomaly results to be smaller with respect to the ∼ 2.5σ tension
stated by HFLAV Collaboration [40]. In conclusions, our findings are summarized in Fig. 4.8.

4.3 The DMM applied to the Bs → D
(∗)
s `ν decays

In this Section we will apply the DMM to semileptonic Bs → D
(∗)
s `ν decays. From the theoretical

point of view, these transitions are completely equivalent to the B → D(∗)`ν ones, the only difference
is that the quark spectator is a strange quark rather than a light one. In particular, one can define
the FFs of interest for these transitions in a completely analogous way to Eqs. (3.4) and (3.12). For

reasons of clarity, we will denote the FFs entering in semileptonic Bs → D
(∗)
s `ν with a s superscript.

Note that these transitions are very important since they allow us to obtain complementary exclusive
determinations of |Vcb| and to further test LFU in ∆B = 1 transitions.
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Figure 4.8: The contour plots of the DMM results for the ratios R(D) and R(D∗), obtained respectively
in Ref. [3] and in this work, compared with those corresponding to the experimental world averages from

HFLAV [40].

4.3.1 LQCD computations of the FFs and application of the DMM

The FFs entering semileptonic Bs → D
(∗)
s `ν` decays have been computed on the lattice by the HPQCD

Collaboration in Refs. [86,87], where the authors have made available the results of BCL fits of the FFs
extrapolated to the physical b-quark point and to the continuum limit. The BCL fits of Refs. [86,87]
provide the FFs in their whole kinematical range, but, as far as statistical and systematic effects are
concerned, LQCD computations are more precise and accurate at high values of q2. Moreover, we want
to use our DM method in order to extrapolate the shape of the FFs in their whole kinematical range,
minimizing in this way the impact of any assumption about the momentum dependence of the FFs.
Therefore, we select only three values of q2 in the high-q2 regime, namely at q2 ≈ {0.7, 0.85, 1.0}·q2

max,
where q2

max = 11.6 GeV2 for the Bs → Ds`ν` decays and q2
max = 10.6 GeV2 for the Bs → D∗s`ν` decays.

Thus, from the marginalized values of the BCL coefficients we reconstruct the FFs in the high-q2 regime
in order to use them as inputs for the DM method. The mean values and uncertainties of the LQCD
inputs are collected in Table 4.5 for the Bs → Ds`ν` decays and in Table 4.6 for the Bs → D∗s`ν`
decays.

q2 (GeV2) fs+(Bs → Ds) f s0 (Bs → Ds)

8.5 1.021(28) 0.834(12)

10.0 1.108(34) 0.873(13)

11.6 1.209(41) 0.917(15)

Table 4.5: Values of the vector fs+(q2) and scalar fs0 (q2) FFs for the Bs → Ds`ν` decays, evaluated at q2 =

{8.5, 10.0, 11.6} GeV2 using the BCL fit computed by the HPQCD Collaboration in Ref. [86].

We now apply the DM approach to the description of the FFs entering the semileptonic Bs →
D

(∗)
s `ν` decays. The non-perturbative values of the dispersive bounds corresponding to the b → c

transition are the same ones adopted for the semileptonic B → D(∗)`ν decays, namely the ones in the
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q2 (GeV2) fs(Bs → D∗s) gs(Bs → D∗s) Fs1(Bs → D∗s) P s1 (Bs → D∗s)
7.1 5.40(22) 0.341(35) 18.01(75) 0.781(42)

8.9 5.73(22) 0.369(38) 18.91(70) 0.861(45)

10.6 6.09(22) 0.401(44) 19.81(73) 0.949(51)

Table 4.6: Values of the FFs fs, gs,Fs1 and P s1 for the Bs → D∗s`ν` decays, evaluated at q2 =
{7.1, 8.9, 10.6} GeV2 using the BCL fit computed by the HPQCD Collaboration in Ref. [87]. The FF P s1 is

dimensionless, while the FFs fs, gs and Fs1 are given in units of GeV, GeV−1 and GeV2, respectively.

last column of Table D.1. The kinematical functions associated to the semileptonic FFs reads

φfs0 (z, 0) = 2r(1− r2)

√
2nI
π

(1− z2)
√

1− z
[(1 + r)(1− z) + 2

√
r(1 + z)]

4 , (4.26)

φfs+(z, 0) =
16r2

mBs

√
2nI
3π

(1 + z)2
√

1− z
[(1 + r)(1− z) + 2

√
r(1 + z)]

5

with r ≡ mDs/mBs , and

φfs(z, 0) = 4
r∗
m2
Bs

√
nI
3π

(1 + z)(1− z)3/2

[
(1 + r∗)(1− z) + 2

√
r∗(1 + z)

]4 ,

φgs(z) = 16r2
∗

√
nI
3π

(1 + z)2

√
1− z

[
(1 + r∗)(1− z) + 2

√
r∗(1 + z)

]4 ,

φFs1(z, 0) = 2
r∗
m3
Bs

√
2nI
3π

(1 + z)(1− z)5/2

[
(1 + r∗)(1− z) + 2

√
r∗(1 + z)

]5 , (4.27)

φP s1 (z, 0) = 8(1 + r∗)r
3/2
∗

√
2nI
π

(1 + z)2

√
1− z

[
(1 + r∗)(1− z) + 2

√
r∗(1 + z)

]4

with r∗ ≡ mD∗s/mBs . In Eqs. (4.26)-(4.27) nI is a factor counting the number of spectator quarks

and it is equal to nI = 1 for the Bs → D
(∗)
s `ν` decays [63]. For what concerns the poles, we refer to

Appendix A of Ref. [86] for the Bs → Ds`ν` decays and to Table XII of Ref. [87] for the Bs → D∗s`ν`
decays.

At this point, we can implement the unitarity filters and the kinematical constraints in the DMM
framework through a bootstrap analysis. For both decays the 100% of the generated bootstraps
survive to the unitarity filters and this holds as well for each separate spin-parity quantum channel.
The above results are not surprising. Indeed, the values of the dispersive bounds in Table D.1 are
very conservative ones, since they sum up the contribution of all spectator quarks, both the light u-
and d-quarks as well as the strange and the charm quarks. Thus, assuming small SU(3)F breaking
effects in the FFs, we consider the alternative case in which the kinematical functions (4.26)-(4.27)
are evaluated using nI = 3. This is equivalent to leave unchanged all the kinematical functions, but
to divide the dispersive bounds by three. The net result is that, as in the previous case, almost the
100% of the generated bootstraps survive to the new unitarity filters. Therefore, neither the skeptical
nor the iterative procedures described in the previous Chapter need to be applied.

The resulting DM bands of the FFs are shown in Figs. 4.9 and 4.10. The extrapolations of the
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FFs at maximum recoil, which are important for the phenomenological applications which will be
discussed in a while, read

fs+(wmax) = fs0 (wmax) = 0.666± 0.012 , (4.28)
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and

fs(w∗max) = 4.42± 0.30 GeV, (4.29)

gs(w∗max) = 0.261± 0.044 GeV−1, (4.30)

Fs1(w∗max) = 14.9± 1.3 GeV2, (4.31)

P s1 (w∗max) = 0.551± 0.048 , (4.32)

which are consistent with the values of the BCL fits performed by the HPQCD Collaboration in
Refs. [86, 87], as shown in Figs. 4.9-4.10.

4.3.2 Determination of |Vcb|
As far as the experimental measurements are concerned, the integrated branching fractions for both
the Bs → Ds`ν` and the Bs → D∗s`ν` processes have been determined in Ref. [88]. This allows us to
determine |Vcb| for the two channels using the theoretical estimate of the branching ratios based on
the DM bands of the semileptonic FFs.

In Ref. [88] the LHCb Collaboration provided also a set of data concerning the differential decay

rate dΓ(Bs → D
(∗)
s `ν`)/dp⊥, where p⊥ is the component of the final Ds-meson momentum (i.e.,

after the strong decay of the D∗s -meson in the case of the Bs → D∗s`ν` decays) perpendicular to the
flight direction of the Bs-meson. The LHCb Collaboration carried out its own estimate of |Vcb| by

performing fits of the experimental data on dΓ(Bs → D
(∗)
s `ν`)/dp⊥ based on either CLN or truncated

BGL parameterizations of the semileptonic FFs. We make use of the latter fit to reconstruct the

experimental data for dΓ(Bs → D
(∗)
s `ν`)/dw and to get a further determination of |Vcb|.

Moreover, in Ref. [89] a different LHCb analysis produced the values of the unfolded decay widths
for the Bs → D∗s`ν` processes integrated in seven w-bins and normalized to the total decay rate. These
data, together with the total branching fraction from Ref. [88], allow us to determine |Vcb| adopting
a bin-per-bin strategy, analogously to the B → D(∗) cases.

Let us examine these three different strategies in detail.

• |Vcb| from the integrated branching ratios of the Bs → D
(∗)
s `ν` decays

The LHCb Collaboration has measured the ratios of the branching fractions of the semileptonic

Bs → D
(∗)
s µν decays with respect to the B → D(∗)µν ones [88]. These measurements read

B(Bs → Dsµν)

B(B → Dµν)
= 1.09± 0.05± 0.06± 0.05 = 1.09± 0.09 , (4.33)

B(Bs → D∗sµν)

B(B → D∗µν)
= 1.06± 0.05± 0.07± 0.05 = 1.06± 0.10 , (4.34)

where the first error is statistical, the second one is systematic (including the uncertainty related to
the choice of the CLN or BGL parameterization) and the third one is due to uncertainties of external
inputs used in the measurements. Note that the LHCb data indicate that SU(3)F breaking effects
on the branching ratios do not exceed the ∼ 10% level. Then, the LHCb Collaboration adopted the
measured values of B(B → D(∗)µν) from PDG [90] to determine for the first time the branching ratios

B(Bs → D
(∗)
s µν), obtaining

B(Bs → Dsµν) = (2.49± 0.12± 0.14± 0.16) · 10−2 = (2.49± 0.24) · 10−2 , (4.35)
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B(Bs → D∗sµν) = (5.38± 0.25± 0.46± 0.30) · 10−2 = (5.38± 0.60) · 10−2 , (4.36)

where the third error includes also the uncertainty related to the normalization of the branching
fractions.

Using the latest PDG value for the Bs-meson lifetime, τBs = (1.516± 0.006) · 10−12 s [90], one has

ΓLHCb(Bs → Dsµν) = (1.08± 0.10) · 10−14 GeV , (4.37)

ΓLHCb(Bs → D∗sµν) = (2.34± 0.26) · 10−14 GeV . (4.38)

Thus, since

Γ(Bs → D(∗)
s µν) =

∫
dq2 dΓ

dq2
(Bs → D(∗)

s µν) ,

we can use the DM bands for the FFs given in Figs. 4.9 and 4.10 to estimate the theoretical value of
the total decay widths modulo |Vcb|2, obtaining

[
Γ(Bs → Dsµν)/|Vcb|2

]DM
= (6.04± 0.23) · 10−12 GeV , (4.39)

[
Γ(Bs → D∗sµν)/|Vcb|2

]DM
= (1.39± 0.11) · 10−11 GeV . (4.40)

In this way from Eqs. (4.37) -(4.38) we get the values

|Vcb| · 103 = 42.3± 2.1 from Bs → Ds`ν` decays , (4.41)

= 41.0± 2.8 from Bs → D∗s`ν` decays . (4.42)

• |Vcb| from the differential decay rates of the Bs → D
(∗)
s `ν` decays

In Ref. [88] the LHCb Collaboration fitted the p⊥ distribution for both the Bs → Ds`ν` and
the Bs → D∗s`ν` processes by describing the semileptonic FFs either through a CLN or a truncated
BGL parameterizations. The experimental data are not presented explicitly. Instead, the LHCb
Collaboration provides the results of their own fits of the experimental data, i.e. their estimate of |Vcb|
and of the marginalized values of the parameters entering the CLN or the BGL parameterizations,
together with the correlation matrix relating all these quantities to each other.

Using the results of their BGL fit we can reconstruct the experimental values of the differential

decay width dΓexp(Bs → D
(∗)
s `ν`)/dw in a series of 14 values of the recoil w. Then, using the DM

bands for the FFs given in Figs. 4.9 and 4.10 we evaluate the corresponding theoretical expectations

modulo |Vcb|2, i.e. dΓDM(Bs → D
(∗)
s `ν`)/dw, to get a bin-per-bin estimate of |Vcb|, viz.

|Vcb|j ≡
√
dΓexp/dwj
dΓDM/dwj

j = 1, 2, ..., 14 . (4.43)

The results for |Vcb|j are shown in Fig. 4.11 as the black dots.
Using Eq. (4.5) with Nbins = 14, we determine the value of |Vcb| from a constant fit, obtaining the

results

|Vcb| · 103 = 42.4± 1.9 from Bs → Ds`ν` decays , (4.44)

= 41.9± 2.2 from Bs → D∗s`ν` decays , (4.45)

shown in Fig. 4.11 as the red bands.
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Figure 4.11: Bin-per-bin estimates of |Vcb| given by Eq. (4.43) using the LHCb data of Ref. [88] for the
Bs → Ds`ν` (left panel) and Bs → D∗s`ν` (right panel) decays. The red bands correspond to the results (4.44)

(left panel) and (4.45) (right panel) obtained from the constant fit.

• |Vcb| from the Bs → D∗s`ν` data of Ref. [89]

In Ref. [89] a different LHCb experiment has provided the values of the ratios

∆rj ≡
∆Γj(Bs → D∗sµν)

Γ(Bs → D∗sµν)
j = 1, 2, ..., 7 (4.46)

between the decay rate ∆Γj(Bs → D∗sµν) integrated in each of seven w-bins with the total decay rate
Γ(Bs → D∗sµν). The experimental data are collected in Table 4.7 and compared with the corresponding
predictions of the DM method based on the FFs of Fig. 4.10 obtained starting from the lattice inputs
of Table 4.6. Our DM results turn out to be consistent with the corresponding ones calculated by
HPQCD Collaboration in Ref. [87].

j-bin 1 2 3 4 5 6 7

∆wj 0.1087 0.0601 0.0524 0.0505 0.0509 0.0588 0.0853

∆rLHCb
j 0.183(12) 0.144(8) 0.148(8) 0.128(8) 0.117(7) 0.122(6) 0.158(9)

∆rDM
j 0.1942(82) 0.1534(45) 0.1377(28) 0.1289(18) 0.1212(20) 0.1241(40) 0.1405(110)

Table 4.7: Values of the ratios ∆rj given in Eq. (4.46) for each of the seven experimental w-bins of Ref. [89].
The w-bins and their widths ∆wj are given in the second and third rows, respectively. The forth row collects
the experimental data from Ref. [89]. The last row corresponds to the theoretical results obtained using the FFs

shown in Fig. 4.10 and determined by the DM method starting from the lattice inputs of Table 4.6.

In Fig. 4.12 the differential decay rates ∆rj/∆wj = (∆Γj/∆wj)/Γ are compared for each of the
seven w-bins with the corresponding experimental data of Ref. [89]. It can be seen that the shape of
the theoretical predictions is consistent with the one of the experimental data within ≈ 1 standard
deviation.
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Figure 4.12: The differential decay rate ∆rj/∆wj = (∆Γj/∆wj)/Γ, integrated for each of the seven experi-
mental w-bins of Ref. [89] and normalized by the total decay rate, versus the recoil variable w. The red dots
represent the LHCb experimental data of Ref. [89], while the black triangles are the predictions based on our

DM approach starting from the lattice inputs of Table 4.6.

Using the experimental value (4.38) for the total decay rate Γ(Bs → D∗sµν) we can compute the
experimental values of the (partially) integrated decay rate ∆Γj for each w-bin as

∆Γexpj = ∆rLHCb
j · ΓLHCb(Bs → D∗sµν) . (4.47)

The covariance matrix Γexpij for the decay rates ∆Γexpj is evaluated by considering a sample of events

for the ratios ∆rLHCb
j generated according to the experimental covariance matrix RLHCb

ij provided in

Ref. [89] and a Gaussian distribution for ΓLHCb(Bs → D∗sµν) with mean value Γ = 2.34 · 10−14 GeV
and standard deviation σΓ = 0.26 · 10−14 GeV. The latter distribution is uncorrelated with those of
the ratios ∆rLHCb

j , since it comes from a different LHCb experiment. A simple calculation yields

Γexpij = RLHCb
ij

[
Γ

2
+ σ2

Γ

]
+ ∆rLHCb

i ∆rLHCb
j σ2

Γ
. (4.48)

Notice that, since the sum of the ratio ∆rLHCb
j over the seven w-bins is equal to unity by construc-

tion, the covariance matrix RLHCb
ij must have a null eigenvalue, so that the number of independent bins

is six. This does not occur for the original covariance matrix provided in Ref. [89]. Thus, we generate
a sample of events for the seven w-bins using the multivariate Gaussian distribution corresponding
to the original covariance matrix of the ratios. Then, for each event we normalize the ratios by their
sum over the bins and recalculate the covariance matrix, which has now properly a null eigenvalue.
In what follows we make use of the corrected covariance matrix RLHCb

ij , though the numerical impact
of the correction on the determination of |Vcb| turns out to be negligible.

Using the DM bands of the FFs we now evaluate the theoretical predictions ∆ΓDMj (and the

corresponding covariance matrix ΓDMij ) that can be compared with the experimental ones (4.47) to
obtain the value of |Vcb| for each of the seven w-bins, namely

|Vcb|j ≡
√

∆Γexpj

∆ΓDMj
. (4.49)
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The results for |Vcb|j are shown in Fig. 4.13 as the black dots. The covariance matrix Cij for the quan-
tities |Vcb|j can be calculated using (uncorrelated) samples of events for ∆Γexpj and ∆ΓDMj generated

according to their respective covariance matrices Γexpij and ΓDMij .

Finally, we determine the value of |Vcb| from a constant fit with Nbins = 7. This procedure leads
to the result

|Vcb| · 103 = 38.6± 2.7 , (4.50)

shown in Fig. 4.13 as the red band. It can be seen that the central value of Eq. (4.50) lies well below
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Figure 4.13: Bin-per-bin estimates of |Vcb| given by Eq. (4.49) using the LHCb data of Ref. [89]. The red and
green bands correspond respectively to the values (4.50) and (4.52). They are obtained by a constant fit, using

for the experimental data ∆Γexpj the covariance matrices (4.48) (red bands) and (4.51) (green bands).

the bin-per-bin data. This problem is well-known in literature [79] and it has the same origin of the
one that we have already addressed for the B → D∗`ν decays. The issue is related to the fact that
best fits to data which are affected by an overall normalization uncertainty (like in our case σΓ for the
quantities ∆Γexpj ) have the tendency to produce curves lower than expected if the covariance matrix

of the data points is used in the definition of the χ2-variable. In particular, in Ref. [79] it was shown
that in the case of a fit to a constant, a negative bias can be obtained, the absolute size of which is
proportional to the number of degrees of freedom, to the square of the normalization uncertainty (i.e.,
to σ2

Γ
) and to the differences between individual data points (i.e., in our case to the differences among

the ratios ∆rLHCb
j ). In other words the observed negative bias is due to the term ∆rLHCb

i ∆rLHCb
j σ2

Γ
appearing in the r.h.s. of Eq. (4.48).

The above term, however, is necessary to guarantee the property
∑Nbins

i,j=1 Γexpij = σ2
Γ
, which follows

from the fact that
∑Nbins

j=1 ∆rLHCb
j = 1 (or equivalently

∑Nbins
j=1 ∆Γexpj = Γ)2. Thus, since both the

number of degrees of freedom and the normalization error σΓ cannot be modified, we neglect the
differences between the ratios ∆rLHCb

j in the covariance matrix Γexpij by adopting the following modified
covariance matrix

Γ̃expij = RLHCb
ij

[
Γ

2
+ σ2

Γ

]
+

1

N2
bins

σ2
Γ
, (4.51)

which still fulfills the property
∑Nbins

i,j=1 Γ̃expij = σ2
Γ
. Using the modified covariance matrix Γ̃expij the

2Notice that also the relation
∑Nbins
i,j=1 R

LHCb
ij = 0 holds as well, as we have explicitly checked.
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constant fit yields now the result

|Vcb| · 103 = 41.2± 2.4 , (4.52)

shown in Fig. 4.13 as the green band. The previous negative bias is now removed.

4.3.3 Lepton Flavour Universality and polarization observables

Analogously to what done for the B → D(∗)`ν decays, we now compute the theoretical values of the

τ/µ ratios R(D
(∗)
s ), the τ -polarization Pτ (D∗s) and the D∗s longitudinal polarization FL(D∗s) using the

DM bands of the FFs of Figs. 4.9 and 4.10 and developing a bootstrap analysis. Our results are

R(Ds) = 0.298 (5) , R(D∗s) = 0.250 (6) , (4.53)

Pτ (D∗s) = −0.520 (12) , FL(D∗s) = 0.440 (16) , (4.54)

which can be compared with the corresponding results obtained before in the case of the semileptonic
B → D(∗)`ν` decays, namely R(D) = 0.296 (8), R(D∗) = 0.275 (8), Pτ (D∗) = −0.529 (7) and
FL(D∗) = 0.414 (12). It follows that SU(3)F breaking effects are negligible for all the above quantities
except R(D∗) and R(D∗s), which differ by ≈ 10%. Such a difference can be understood as a consequence
of the different shapes of the semileptonic FFs entering the B(s) → D∗(s)`ν` decays.

4.4 Final observations

Let us here summarize our results of the DMM study of semileptonic charged current B → D(∗)`ν
decays and develop final comments and observations.

For what concerns the CKM matrix element |Vcb|, our final results can be summarized as

• for the B → D case:

|Vcb| × 103 = 41.0± 1.2; (4.55)

• for the B → D∗ case:

|Vcb| × 103 = 41.3± 1.7; (4.56)

• for the Bs → Ds case:

|Vcb| × 103 = 42.4± 2.0; (4.57)

• for the Bs → D∗s case:

|Vcb| × 103 = 41.4± 2.6. (4.58)

Note that the last two results come from an average of the results (4.41) and (4.44) for the semileptonic
Bs → Ds`ν` decays and the results (4.42), (4.45) and (4.52) for the semileptonic Bs → D∗s`ν` decays.

As already stated before, all these determinations are compatible with the most recent inclusive
determination |Vcb|incl = (42.16 ± 0.50) · 10−3. Let us now compare our value with other exclusive
estimates. From the study of B → D`ν decays, some of the results present in literature are

|Vcb|excl × 103 = 40.49± 0.97 [50] ,

|Vcb|excl × 103 = 41.0± 1.1 [91] ,

|Vcb|excl × 103 = 40.1± 1.0 [92] .
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All these determinations are compatible with and very similar to our result in Eq. (4.55), although
in the analyses of Refs. [50, 91, 92] the lattice and the experimental data are fitted all together to
constrain the shape of the FFs. We recall that in our study, instead, the two sources of information
are always kept separate. It seems that in this case the two approaches bring to the same final result
for |Vcb|. Let us finally highlight that Refs. [50, 92] use also the experimental data [93] published by
BaBar Collaboration in their fits. Despite of this, Ref. [92] explicitly states that the fit is dominated
by the more precise Belle data [75].

On the contrary, some results from the study of B → D∗`ν decays read

|Vcb|excl × 103 = 39.6+1.1
−1.0 [51] ,

|Vcb|excl × 103 = 39.56+1.04
−1.06 [94] ,

|Vcb|excl × 103 = 38.30± 0.8 [92] ,

where the authors had implemented BGL-like analyses of the same experimental data, without the
use of the FNAL/MILC final data in [55]. Moreover, in [55] the authors develop a combined BGL fit
of their LQCD and the experimental data, obtaining

|Vcb|excl × 103 = 38.40± 0.74 [55] .

All these determinations are compatible with each other, although there is a non-negligible tension with
the inclusive value. Note also that these mean values are quite different from the one in Eq. (4.56).
For our understanding, the reason of this discrepancy is the different shapes of the FFs induced
by, on the one hand, the LQCD data plus unitarity and, on the other hand, the measurements of
the differential decay widths. This is a key point and reflects the importance of keeping distinct
the LQCD and the experimental data in B → D∗`ν decays. In conclusion, for what concerns the

B → D
(∗)
s `ν processes, the final results in Eqs. (4.57)-(4.58) are compatible with other exclusive

determinations from these transitions, i.e. |Vcb|LHCb · 103 = 42.3± 0.8± 0.9± 1.2 = 42.3± 1.7 [88] and
|Vcb|HPQCD · 103 = 42.7± 2.3 [87].

Let us summarize our findings for the LFU observables. For what concerns the R(D(∗)) anomalies,
in Figure 4.8 we have compared the DMM results R(D) = 0.296±0.008 and R(D∗) = 0.275±0.008 with
the corresponding experimental world averages from HFLAV [40]. Our theoretical expectations are
compatible with the experimental averages (3.2) at the ∼ 1.4σ level. Let us note that FNAL/MILC
Collaborations have obtained a result for R(D∗) which is very similar to ours, namely R(D∗) =
0.273 ± 0.010 [55]. As the authors explicitly state in their work, this value is obtained with the
imposition of both the KCs in Eqs. (3.18)-(3.19). Now, recalling the theoretical determinations in
Eq. (3.3), we note a non-negligible tension between these values and the experimental ones in the
R(D∗) case. This is again due to the different slopes of the FFs induced by experiments with respect
to the ones dictated by the combination of LQCD data plus unitarity. We have also determined the
DMM estimates of the ratios R(Ds) = 0.298(5) and R(D∗s) = 0.250(6), which have not been measured
yet. We note that possible SU(3)F breaking effects can affect R(D∗) and R(D∗s) at the ≈ 10% level.



Chapter 5

The DMM perspective on
heavy-to-light B(s) decays

In this Chapter, we will firstly study in detail the semileptonic heavy-to-light decays, i.e. the B → π`ν`
and Bs → K`ν` decays, which allow to obtain exclusive determinations of the CKM matrix elements
|Vub|. We will address also the LFU issue for these decays. In the last Section, we will develop a
comparison between the final DMM estimates of |Vcb| and |Vub| and the determination of the same
CKM matrix elements in the Unitarity Triangle Analysis (UTA) framework.

5.1 The DMM applied to the B → π`ν` and Bs → K`ν` decays

Let us now focus our discussion on the semileptonic heavy-to-light B decays, namely the B → π`ν` and
Bs → K`ν` transitions. Since many years these processes are very intriguing mainly because a long-
standing tension affects the inclusive and the exclusive determinations of the CKM matrix element
|Vub|. In fact, the most recent version of the FLAG report [39] quotes for the exclusive estimate of
|Vub| the value |Vub|excl · 103 = 3.74 (17) from B → π`ν` decays, while the inclusive determination
performed by HFLAV [95] reads |Vub|incl · 103 = 4.19 (12) (+11

−12), implying a ∼ 2σ discrepancy between
them. However, a recent measurement of the inclusive value of |Vub| made by Belle [96] has changed
the picture. In fact, the collaboration has presented the result of an average over four theoretical
calculations (BLNP [97], DGE [98], GGOU [99], ADFR [100,101]), which reads

|Vub|incl · 103 = 4.10± 0.09± 0.22± 0.15 [0.28] , (5.1)

where the first two errors represent the statistical and systematic uncertainties respectively, the
third one denotes the theoretical model uncertainty and the fourth one (in parenthesis) is their sum
in quadrature. The FLAG review [39] then quotes the inclusive value |Vub|incl · 103 = 4.32 (29),
which differs from the exclusive one by ' 1.7 standard deviations. To have in mind other nu-
merical estimates of |Vub|, the last PDG review [90] quotes for its exclusive and inclusive deter-
minations the values |Vub|excl · 103 = 3.70 (10)exp (12)th = 3.70 (16) from B → π`ν` decays and
|Vub|incl · 103 = 4.13 (12)exp (+13

−14)th (18)model = 4.13 (26), which differ by ' 1.4 standard deviations.
The aforementioned tension seems to be thus reduced, however a new model-independent exclusive
estimate of |Vub| can help in shedding a new light on this issue and further reducing the difference
between the inclusive and the exclusive estimates.

New analyses of the exclusive b → u transitions, claiming that their exclusive determinations of
|Vub| are consistent with the estimate (5.1) at the 1− 1.5σ level, also appeared [102–104]. Note that

59
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the latter results were obtained by adopting for the hadronic Form Factors (FFs) the BCL or the
Bharucha-Straub-Zwicky (BSZ) [105] parameterizations or the Padé approximants [106].

Our aim is, instead, to perform for the first time a study of these transitions through the DMM,
which has been described in the previous Chapter. To this end, the FFs are taken from the results
of the RBC/UKQCD [107] and FNAL/MILC [108] Collaborations for the B → π`ν` decays, and
from RBC/UKQCD [107], HPQCD [109] and FNAL/MILC [110] Collaborations for the Bs → K`ν`
decays. For what concerns the susceptibilities, instead, the final results of their non-perturbative
computation can be found in Appendix D. For this reason, in what follows we will show the results of
the DMM to the description of the FFs, then we will focus the discussion on the extraction of |Vub|
from the experimental data and on the determination of LFU observables.

5.1.1 State-of-the-art of the LQCD computations of the FFs

As briefly stated before, the FFs entering semileptonic B → π decays have been studied by the RBC/
UKQCD [107] and the FNAL/MILC [108] Collaborations. In the case of theBs → K transition several
LQCD computations of the FFs are available, namely from the RBC/UKQCD [107], HPQCD [109]
and FNAL/MILC [110] Collaborations. For both channels the lattice computations of the FFs are
available in the large-q2 region, 17 GeV2 . q2 ≤ q2

max ≡ (mB(s)
−mπ(K))

2. Note that these decays
are pseudoscalar-to-pseudoscalar transitions exactly as the B → D ones, thus the definition of the
hadronic FFs is the same of Eqs. (3.4)-(3.5).

The authors of Ref. [107] provide synthetic LQCD values of the FFs (together with their statistical
and systematic correlations) at three values of q2 in the large-q2 regime, namely q2 = {19.0, 22.6, 25.1}
GeV2 for the B → π transition and q2 = {17.6, 20.8, 23.4} GeV2 in the case of the Bs → K transition.
These data can be directly used as inputs for our DMM. In the other works [108–110] the results of BCL
fits of the FFs extrapolated to the continuum limit and to the physical pion point are available. Thus,
from the marginalized BCL coefficients we evaluate the mean values, uncertainties and correlations of
the FFs at the three values of q2 given in Ref. [107]. The LQCD results used as inputs for our DMM
are collected in Tables 5.1 and 5.2 for the B → π and Bs → K decays, respectively. In the next future
new LQCD computations of the FFs are expected to become available [111,112].

For both B → π and Bs → K decays we have also combined all the LQCD determinations of the
FFs corresponding to the same values of the momentum transfer. Starting from N computations of

the FFs with mean values x
(k)
i and uncertainties σ

(k)
i (k = 1, · · · , N) corresponding to a given value

q2
i of the squared 4-momentum transfer, the combined LQCD average xi and uncertainty σi are given

by

xi =

N∑

k=1

ω(k)x
(k)
i , (5.2)

σ2
i =

N∑

k=1

ω(k)(σ
(k)
i )2 +

N∑

k=1

ω(k)(x
(k)
i − xi)2 , (5.3)

where ω(k) represents the weight associated to the k-th calculation (
∑N

k=1 ω
(k) = 1). In what follows,

we assume the same weight for all the computations, i.e. we consider the simple choice ω(k) = 1/N ,
following the strategy described in Ref. [80]. The reason of this choice is to obtain a conservative
combination of the various LQCD computations of the FFs, in order to take into account hypothetical
differences in the values of the FFs (and, thus, in their slopes) quoted by different lattice Collabora-
tions. As we will see, this is in fact the case for semileptonic Bs → K decays. This issue has also been
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already pointed out in Ref. [3], where a methodological study of preliminary LQCD computations of
the FFs entering in semileptonic B → D∗ decays was presented.

The results of Eqs. (5.2)-(5.3) are shown in the last columns of the Tables 5.1 and 5.2 for both the
B → π and the Bs → K cases, respectively. Moreover, the covariance matrix C of the combined data
can be easily evaluated in terms of the covariance matrices C(k) of each single LQCD computation as

Cij ≡
1

N

N∑

k=1

C
(k)
ij +

1

N

N∑

k=1

(x
(k)
i − xi)(x

(k)
j − xj) , (5.4)

where the indices i and j run over the number of values of the 4-momentum transfer at which the
LQCD computations of the FFs have been performed, namely i, j = 1, 2, 3.

RBC/UKQCD FNAL/MILC Combined

fπ+(19.0 GeV2) 1.21(10)(9) 1.17(8) 1.19(11)

fπ+(22.6 GeV2) 2.27(13)(14) 2.24(12) 2.25(16)

fπ+(25.1 GeV2) 4.11(51)(29) 4.46(23) 4.29(48)

fπ0 (19.0 GeV2) 0.46(3)(5) 0.46(3) 0.46(5)

fπ0 (22.6 GeV2) 0.68(3)(6) 0.65(3) 0.66(5)

fπ0 (25.1 GeV2) 0.92(3)(6) 0.86(3) 0.89(6)

Table 5.1: Mean values and uncertainties of the LQCD computations of the FFs fπ+,0(q2) obtained

at three selected values of q2 from the results of the RBC/UKQCD [107] and FNAL/MILC [108]
Collaborations. For the RBC/UKQCD computations the first error is statistical while the second one
is systematic. The last column contains the results of the combination procedure given in Eqs. (5.2)-

(5.3) with ω(k) = 1/N .

RBC/UKQCD HPQCD FNAL/MILC Combined

fK+ (17.6 GeV2) 0.99(4)(5) 1.04(5) 1.01(4) 1.01(6)

fK+ (20.8 GeV2) 1.64(6)(7) 1.68(7) 1.68(5) 1.67(8)

fK+ (23.4 GeV2) 2.77(9)(11) 2.94(13) 2.91(9) 2.87(15)

fK0 (17.6 GeV2) 0.48(2)(3) 0.53(3) 0.44(2) 0.48(4)

fK0 (20.8 GeV2) 0.63(2)(4) 0.64(3) 0.59(1) 0.62(4)

fK0 (23.4 GeV2) 0.81(2)(5) 0.79(4) 0.76(2) 0.79(5)

Table 5.2: Mean values and uncertainties of the LQCD computations of the FFs fK+,0(q2) obtained

at three selected values of q2 from the results of the RBC/UKQCD [107], HPQCD [109] and
FNAL/MILC [110] Collaborations. For the RBC/UKQCD computations the first error is statistical
while the second one is systematic. The last column contains the results of the combination procedure

given in Eqs. (5.2)-(5.3) with ω(k) = 1/N .
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5.1.2 Application of the DMM to the description of the FFs

Starting from Eq. (3.45), the kinematical functions φ0 and φ+ corresponding to the scalar and vector
FFs of the B(s) → π(K) decays are given by [63]

φ0(z, 0) =

√
2nI
3

√
3t+t−

4π

1

t+ − t−
1 + z

(1− z)5/2

(√
t+

t+ − t−
+

1 + z

1− z

)−4

,

φ+(z, 0) =

√
2nI
3

√
1

π(t+ − t−)

(1 + z)2

(1− z)9/2

(√
t+

t+ − t−
+

1 + z

1− z

)−5

. (5.5)

where z ≡ z(t = q2) is defined in Eq. (3.37) and nI is an isospin Clebsh-Gordan factor equal to
nI = 3/2 for the B → π decays and to nI = 1 for the Bs → K case. In order to take into account the
B∗ pole in the transverse channel, the transverse kinematical function φ+ is modified as

φ+(z, 0)→ φ+(z, 0) · z − z(m
2
B∗)

1− z z̄(m2
B∗)

(5.6)

with mB∗ = 5.325 GeV from the PDG [90]. The nonperturbative values of the susceptibilities (for the
b → u quark current) relevant for the scalar f0(q2) and vector f+(q2) FFs are taken from Appendix
D and read

χ0+(0) = (2.04± 0.20) · 10−2 , (5.7)

χ1−(0) = (4.45± 1.16) · 10−4 GeV−2, (5.8)

respectively.
We now apply the DMM to the B → π decay using as inputs the lattice data of Table 5.1 cor-

responding to the three sets labelled RBC/UKQCD, FNAL/MILC and combined. A total of 5 · 104

events are generated using the multivariate Gaussian distribution including the correlations among
the LQCD data. It turns out that the unitarity bounds for both fπ0 and fπ+ as well as the KC
fπ0 (0) = fπ+(0) ≡ fπ(0) are satisfied by 98 − 100% of the events and, therefore, neither the skeptical
nor the iterative procedures described in the previous Chapter need to be applied. In Figs. 5.1 and
5.2 we show the resulting bands of the two FFs. The extrapolation to q2 = 0, which is crucial in order
to analyze the experimental data, reads

fπ(q2 = 0)|RBC/UKQCD = −0.06± 0.25 ,

fπ(q2 = 0)|FNAL/MILC = −0.01± 0.16 ,

fπ(q2 = 0)|combined = −0.04± 0.22 .

The above results exhibit large uncertainties due to the long extrapolation from the high-q2 region
of the input data down to q2 = 0. Let us stress here again that our results do not depend on any
parameterization of the shape of the FFs. This is at variance with what happens with the BCL
parameterizations of Refs. [107, 108], where the extrapolated mean values and uncertainties of the
FFs at q2 = 0 are plagued by instabilities with respect to the order of the truncation of the expansion.
Our results for the FFs at q2 = 0 are consistent within 1.4− 1.8 standard deviations with the recent
estimate obtained in Ref. [102] using the LCSR, namely

fπ(q2 = 0)LCSR = 0.28± 0.03.
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Figure 5.1: The scalar fπ0 (q2) (left panel) and vector fπ+(q2) (right panel) FFs entering the semileptonic
B → π`ν` decays computed by the DMM as a function of the 4-momentum transfer q2 using the LQCD inputs
from RBC/UKQCD [107] and FNAL/MILC [108] Collaborations (see Table 5.1). For both FFs the red and
blue bands correspond to the DMM results obtained at 1σ level using the RBC/UKQCD data (red circles) and
FNAL/MILC (blue squares) data, respectively. In the right panel the vector FF is multiplied by the factor
(1− q2/m2

B∗) with mB∗ = 5.325 GeV.
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Figure 5.2: The bands of the scalar fπ0 (q2) (left panel) and vector fπ+(q2) (right panel) FFs entering the
semileptonic B → π`ν` decays computed by the DMM method at 1σ level using as lattice inputs the combined
LQCD data of Table 5.1, shown as green diamonds. In the right panel the vector FF is multiplied by the factor
(1− q2/m2

B∗) with mB∗ = 5.325 GeV.

As for the semileptonic Bs → K decays few differences have to be considered with respect to the
B → π case besides the obvious changes in the masses of the mesons involved. First, in the kinematical
functions (3.45) the isospin factor nI is now equal to unity instead of 3/2 as in the B → π case. This
is due to the fact that in the Bs → K decays only the strange quark can be the spectator quark
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of the transition. Second, following Refs. [107, 109, 110] a modification like the one in the Eq. (5.6)
has to be applied also to φ0(z, 0) due to the presence of a scalar resonance B∗(0+) with a mass close
to 5.68 GeV, lying below the pair production threshold located at MBs + MK ' 5.86 GeV. For the
susceptibilities χ0+(0) and χ1−(0) we adopt conservatively the same values of the B → π case.

We apply the DMM using as inputs the various sets of LQCD data of Table 5.2. A total of 5 · 104

events are generated using the multivariate Gaussian distributions including the correlations among
the LQCD computations. As in the B → π case, the unitarity bounds for both fK0 and fK+ as well
as the KC fK0 (0) = fK+ (0) ≡ fK(0) are satisfied by 98 − 100% of the events. The dispersive bands
for the FFs corresponding to the use of the combined LQCD data of Table 5.2 are shown in Fig. 5.3.
Note the impact of the KC at q2 = 0 on the extrapolation of the FFs in the low-q2 region.
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Figure 5.3: The bands of the scalar fK0 (q2) (left panel) and vector fK+ (q2) (right panel) FFs entering the
semileptonic Bs → K`ν` decays computed by the DMM at 1σ level using as inputs the combined LQCD data of
Table 5.2, shown as green diamonds. In the left panel the scalar FF is multiplied by the factor (1 − q2/m2

B∗
0
)

with mB∗
0

= 5.68 GeV, while in the right panel the vector FF is multiplied by the factor (1 − q2/m2
B∗) with

mB∗ = 5.325 GeV.

The extrapolation of the FFs to q2 = 0 reads

fK(q2 = 0)|RBC/UKQCD = 0.08± 0.15 ,

fK(q2 = 0)|HPQCD = 0.28± 0.21 ,

fK(q2 = 0)|FNAL/MILC = 0.07± 0.11 ,

fK(q2 = 0)|combined = 0.15± 0.21 .

The above results can be compared with the recent LCSR estimate of Ref. [113], which is

fK(q2 = 0)LCSR = 0.336± 0.023 .

It can be seen that the results based on the RBC/UKQCD and FNAL/MILC data differ respectively
by 1.7 and 2.4 standard deviations from the LCSR estimate, while the results based on the HPQCD
data and the combined LQCD ones are in agreement thanks to larger mean values and uncertainties.
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The DMM results presented so far indicate clearly that for both the B → π and Bs → K channels
the extension of direct LQCD computations of the FFs toward values of q2 lower than ∼ 17 GeV2 is
crucial for improving the precision of their extrapolation to q2 = 0 without resorting to the use of the
experimental data.

5.1.3 New estimate of |Vub|
In order to obtain |Vub| we use our results for the FFs in the whole kinematical range and the exper-
imental data. For the semileptonic B → π decays the BaBar and the Belle Collaborations [114–117]
have measured the differential branching ratios (BRs) in different bins of the 4-momentum transfer
q2. Instead, for the Bs → K decays only the ratio of the total branching fractions of the semileptonic
Bs → K and Bs → Ds decays is available at present [118]. Since both the decays are pseudoscalar-
to-pseudoscalar ones, the expression of the differential decay width is analogous to Eq. (3.7), i.e.

dΓ(B(s) → π(K)`ν`)

dq2
=

G2
F |Vub|2
24π3

(
1− m2

`

q2

)2 [
|~pπ(K)|3

(
1 +

m2
`

2q2

)
|fπ(K)

+ (q2)|2

+ m2
B(s)
|~pπ(K)|

(
1− r2

π(K)

)2 3m2
`

8q2
|fπ(K)

0 (q2)|2
]
, (5.9)

where explicitly the 3-momentum of the π(K) meson in the B(s)-meson rest frame is

|~pπ(K)| = mπ(K)

√√√√
(

1 + r2
π(K) − q2/m2

B(s)

2rπ(K)

)2

− 1 (5.10)

with rπ(K) ≡ mπ(K)/mB(s)
.

• |Vub| from B → π`ν` decays

For the extraction of the CKM matrix element, we follow the procedure used both in the previous
Chapter and in Refs. [3, 76] in the case of several semileptonic heavy-meson decays characterized by
the production of a final pseudoscalar meson. In what follows, however, we will distinguish the two
different channels that have been measured by the experiments, i.e. B0 → π−`+ν and B+ → π0`+ν.
Starting from the Eq. (5.9), for the generic i-th bin in q2 we have [117]

|Vub|i =

√
Cv
τBv
· ∆B|expi

∆ζi
, (5.11)

where ∆B|expi is the experimental branching fraction and ∆ζi the corresponding theoretical decay
width (without |Vub| therein) in the given bin. Since

∣∣π0
〉
≡
(
|uū〉 −

∣∣dd̄
〉)
/
√

2, the isospin coefficient
Cv is equal to 2 for the B+ → π0`+ν decays and to 1 for the B0 → π−`+ν transitions. Finally, τBv is
the lifetime of the decaying B-meson.

We generate Nboot bootstraps of the measured differential BR for each bin in q2 and experiment
[114–117] through a multivariate Gaussian distribution. Then, we extract Nboot bootstrap events for
the vector FF f+(q2) for each q2-bin. In the latter case, the mean value and the covariance matrix of
the distribution are those computed through our DMM. Thus, we compute Nboot values of |Vub| for
each q2-bin and each experiment through Eq. (5.11).
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For any specific bin we fit the histogram of the resulting events of |Vub| with a normal distribution
and store the values of the corresponding marginalized parameters, obtaining in this way mean values,
uncertainties and correlations for |Vub| for each bin and experiment. We then evaluate the CKM matrix
element |Vub| for the n-th experiment (n = 1, . . . , 6 for the semileptonic B → π decays) through the
following formulae

|Vub|n =

∑
i,j(C

−1)ij |Vub|j∑
i,j(C

−1)ij
, σ2

|Vub|n =
1∑

i,j(C
−1)ij

, (5.12)

where the indices i, j run over all the q2-bins of the n-th experiment and Cij is the covariance matrix
among the bins. This is completely analogous to what done for the B → D decays, see Eq. (4.5). In
Fig. 5.4 we show our results for |Vub| for each of the semileptonic B → π experiments, together with
the mean values (5.12), adopting the DMM results for the FFs obtained using as inputs the combined
LQCD data of Table 5.1. For each experiment the corresponding correlated mean values (5.12) are
collected in Table 5.3.

experiment BaBar 2011 BaBar 2012 (B0 → π−) BaBar 2012 (B+ → π0)

|Vub| · 103 3.25± 0.33 3.58± 0.34 3.51± 0.46

experiment Belle 2011 Belle 2013 (B0 → π−) Belle 2013 (B+ → π0)

|Vub| · 103 3.74± 0.32 4.03± 0.41 3.64± 0.51

Table 5.3: The correlated weighted averages (5.12) for each of the six experiments of Refs. [114–117]. The
theoretical dispersive bands of the FFs correspond to the use of the combined LQCD data of Table 5.1 as inputs.

Our final results for |Vub|, evaluated making use of the averaging procedure given by Eqs. (5.2)-
(5.3), read

|Vub|BπRBC/UKQCD · 103 = 3.52± 0.49 ,

|Vub|BπFNAL/MILC · 103 = 3.76± 0.41 , (5.13)

|Vub|Bπcombined · 103 = 3.62± 0.47 ,

which are consistent with the latest exclusive determination |Vub|excl · 103 = 3.70 (16) from PDG [90].
Our uncertainties are larger than the PDG one, because we do not mix the theoretical calculations
of the FFs with the experimental data to constrain the shape of the FFs in order to avoid possible
biases. The rationale of this choice is the same one discussed in the previous Chapter during the study
of semileptonic B → D∗ decays.

• |Vub| from Bs → K`ν` decays

The LHCb Collaboration has observed for the first time the semileptonic Bs → K`ν` decays [118]
and measured the ratio of the branching fractions of the B0

s → K−µ+νµ and the B0
s → D−s µ

+νµ
processes,

RBF ≡
B(B0

s → K−µ+νµ)

B(B0
s → D−s µ+νµ)

,
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Figure 5.4: Bin-per-bin estimates of |Vub| obtained using Eq. (5.11) for each of the six experiments of Refs.
[114–117] specified in the insets of the panels as a function of q2. The theoretical dispersive bands of the FFs
correspond to the use of the combined LQCD data of Table 5.1 as inputs. The black dashed bands represent the

correlated weighted averages (5.12) for each experiment, shown in Table 5.3.

in two different q2-bins, namely

RBF (low) = (1.66± 0.08± 0.07± 0.05) · 10−3 for q2 ≤ 7 GeV2 , (5.14)

RBF (high) = (3.25± 0.21+0.16
−0.17 ± 0.09) · 10−3 for q2 ≥ 7 GeV2 , (5.15)

where the first error is statistical, the second one is systematic and the third one is due to the
uncertainty on the D−s → K+K−π− branching fraction.

In order to obtain an exclusive estimate of |Vub| we make use of the life time of the Bs-meson,
τB0

s
= (1.516 ± 0.006) · 10−12 s [90], and of the experimental value of the branching ratio B(B0

s →
D−s µ

+νµ) measured by the LHCb Collaboration [88]

B(B0
s → D−s µ

+νµ) = (2.49± 0.12± 0.14± 0.16) · 10−2 ,
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where the first error is statistical, the second one is systematic and the third one is due to limited
knowledge of the normalization branching fractions.

Then, we use the FFs obtained with our DMM to compute the differential decay width dΓ/dq2

according to the formula (except |Vub|2) given in Eq. (5.9). Our results for |Vub| are collected in
Table 5.4.

q2-bin RBC/UKQCD FNAL/MILC HPQCD combined

low 6.70± 3.26 6.43± 2.03 3.57± 1.94 5.31± 3.02

high 4.20± 0.56 4.10± 0.38 3.54± 0.43 3.94± 0.59

Table 5.4: Values of |Vub| · 103 extracted from the Bs → K`ν` decays measured at LHCb in the low (q2 ≤ 7
GeV2) and high (q2 ≥ 7 GeV2) q2-bins using the dispersive bands for the theoretical FFs.

Assuming (conservatively) that the systematic errors of the two experimental results (5.14)-(5.15)
are 100% correlated (which corresponds to a correlation coefficient equal to 0.486 in the experimental,
statistical plus systematic covariance matrix), the weighted averages of the two bins, carried out
following Eqs. (5.2)-(5.3) for each set of FFs, read

|Vub|BsKRBC/UKQCD · 103 = 3.93± 0.46 ,

|Vub|BsKFNAL/MILC · 103 = 3.93± 0.35 , (5.16)

|Vub|BsKHPQCD · 103 = 3.54± 0.35 ,

|Vub|BsKcombined · 103 = 3.77± 0.48 ,

which are consistent with our results (5.13), obtained from the analysis of the B → π`ν` decays, and
with the latest exclusive determination |Vub|excl · 103 = 3.70 (16) from PDG [90]. We remind that the
PDG uncertainty results from analyses in which theoretical calculations of the FFs and experimental
data are mixed in order to constrain the shape of the FFs.

5.1.4 Theoretical estimate of R
τ/µ
π(K), Ā

`,π(K)
FB and Ā

`,π(K)
polar

In this Section we give pure theoretical estimates of various quantities of phenomenological inter-

est, which are independent of |Vub|, namely the ratio of the τ/µ differential decay rates R
τ/µ
π(K), the

normalized forward-backward asymmetry Ā
`,π(K)
FB and the normalized lepton polarization asymmetry

Ā
`,π(K)
polar .

The τ/µ ratio R
τ/µ
π(K) is defined as

R
τ/µ
π(K) ≡

Γ(B(s) → π(K)τντ )

Γ(B(s) → π(K)µνµ)
, (5.17)

where

Γ(B(s) → π(K)`ν`) =
G2
F |Vub|2
24π3

∫ (mB(s)
−mπ(K))

2

m2
`

dq2

[
|~pπ(K)|3L+

(
m2
`

q2

)
|fπ(K)

+ (q2)|2
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+ m2
B(s)

(
1− r2

π(K)

)2
|~pπ(K)|L0

(
m2
`

q2

)
|fπ(K)

0 (q2)|2
]

with m` being the lepton mass (` = τ, µ) and

L+(x) = (1− x)2
(

1 +
x

2

)
, L0(x) = (1− x)2 3x

8
.

The forward-backward asymmetry A
`,π(K)
FB is defined as

A
`,π(K)
FB (q2) ≡

∫ 1

0

d2Γ

dq2d cos θl
d cos θl −

∫ 0

−1

d2Γ

dq2d cos θl
d cos θl .

Note that θ` represents the angle between the final charged lepton and the B(s)-meson momenta in
the rest frame of the final state leptons. Since a direct computation of the two-fold differential decay
width within the Standard Model gives the expression

d2Γ(B(s) → π(K)`ν`)

dq2d cos θ`
=

G2
F |Vub|2

128π3m2
B(s)

(
1− m2

`

q2

)2

·
{

4m2
B(s)
|~pπ(K)|3

(
sin2 θ` +

m2
`

2q2
cos2 θ`

)
|fπ(K)

+ (q2)|2

+
4m2

`

q2
(m2

B(s)
−m2

π(K))mB(s)
|~pπ(K)|2 cos θ` Re

(
f
π(K)
+ (q2)f

∗π(K)
0 (q2)

)

+
m2
`

q2
(m2

B(s)
−m2

π(K))
2|~pπ(K)||fπ(K)

0 (q2)|2
}
, (5.18)

one has

A
`,π(K)
FB (q2) =

G2
F |Vub|2

32π3mB(s)

(
1− m2

`

q2

)2

|~pπ(K)|2
m2
`

q2
(m2

B(s)
−m2

π(K))

· Re[f
π(K)
+ (q2)f

∗π(K)
0 (q2)] .

Then, the normalized forward-backward asymmetry Ā
`,π(K)
FB is given by

Ā
`,π(K)
FB ≡

∫
dq2 A

`,π(K)
FB (q2)∫

dq2 dΓπ(K)/dq2
. (5.19)

In conclusion, we compute also the lepton polarization asymmetry A
`,π(K)
polar defined as

A
`,π(K)
polar (q2) ≡ dΓ

π(K)
−
dq2

− dΓ
π(K)
+

dq2
,

where [119]

dΓ
π(K)
−
dq2

=
G2
F |Vub|2
24π3

(
1− m2

`

q2

)2

|~pπ(K)|3|fπ(K)
+ (q2)|2 ,
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dΓ
π(K)
+

dq2
=

G2
F |Vub|2
24π3

(
1− m2

`

q2

)2
m2
`

q2
|~pπ(K)|

·


3

8

(
m2
B(s)
−m2

π(K)

)2

m2
B(s)

|fπ(K)
0 (q2)|2 +

1

2
|~pπ(K)|2|fπ(K)

+ (q2)|2

 .

The normalized lepton polarization asymmetry Ā
`,π(K)
polar is finally given by

Ā
`,π(K)
polar ≡

∫
dq2 A

`,π(K)
polar (q2)

∫
dq2 dΓπ(K)/dq2

. (5.20)

In Tables 5.5 and 5.6 we collect our theoretical estimates of the quantities (5.17-5.20) for each set
of LQCD computations of the FFs in the case of the B → π and Bs → K decays, respectively. Within
the uncertainties our results are consistent with recent estimates [102, 120,121] based on the BCL or
BSZ parameterizations of the FFs.

RBC/UKQCD FNAL/MILC combined

R
τ/µ
π 0.767(145) 0.838(75) 0.793(118)

Ā
µ,π
FB 0.0043(39) 0.0018(14) 0.0034(31)

Ā
τ,π
FB 0.219(25) 0.221(19) 0.220(24)

Ā
µ,π
polar 0.985(11) 0.991(4) 0.988(9)

Ā
τ,π
polar 0.294(87) 0.309(82) 0.301(86)

Table 5.5: The theoretical values of the quantities (5.17-5.20) in the case of the semileptonic B → π`ν`
decays with ` = µ, τ adopting the RBC/UKQCD, the FNAL/MILC and the combined LQCD data of
Table 5.1 as inputs for our DMM.

RBC/UKQCD FNAL/MILC HPQCD combined

R
τ/µ
K 0.845(122) 0.816(64) 0.680(134) 0.755(138)

Ā
µ,K
FB 0.0032(18) 0.0024(12) 0.0059(29) 0.0046(28)

Ā
τ,K
FB 0.257(14) 0.246(14) 0.278(19) 0.262(23)

Ā
µ,K
polar 0.990(5) 0.992(4) 0.982(8) 0.986(7)

Ā
τ,K
polar 0.172(54) 0.254(64) 0.112(79) 0.172(91)

Table 5.6: The same as in Table 5.5, but in the case of the semileptonic Bs → K decays adopting the
RBC/UKQCD, the FNAL/MILC, the HPQCD and the combined LQCD data of Table 5.2 as inputs
for our DMM.

As for the experimental side, only one measurement of R
τ/µ
π by Belle is presently available, namely

[122]
Rτ/µπ |exp = 1.05± 0.51 , (5.21)

which still has a large uncertainty compared to our theoretical ones. Note that the uncertainty on

the above ratio expected by Belle II at 50 ab−1 of luminosity [123] is δR
τ/µ
π ' 0.09, which will be

comparable to our present theoretical uncertainties.
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5.2 Summary and comparison with UTfit

Let us finally summarize the DMM determination of the CKM matrix elements |Vcb| and |Vub| from
semileptonic charged-current B decays.

For what concerns |Vcb|, many exclusive estimates have been obtained in the previous Chapter

through the application of the DMM to the semileptonic B(s) → D
(∗)
(s)`ν transitions. An average of

the estimates in Eqs. (4.55)-(4.58) give a very precise final DMM determination of this CKM matrix
element, i.e.

|Vcb|DMM · 103 = 41.4± 0.8. (5.22)

For what concerns |Vub|, instead, we have obtained new exclusive estimates in a rigorous model-
independent way through the study of the available lattice and experimental data concerning the
semileptonic B → π and Bs → K decays. Our results for |Vub| can be summarized as

• from the semileptonic B → π decays

|Vub| · 103 = 3.62± 0.47 ,

• from the semileptonic Bs → K processes

|Vub| · 103 = 3.77± 0.48 .

They are compatible with each other and also consistent within 1σ level with the latest exclusive and
inclusive determinations of |Vub|, |Vub|excl · 103 = 3.70 (16) and |Vub|incl · 103 = 4.13 (26), taken from
PDG [90]. Then, by averaging the above results corresponding to the B → π and Bs → K channels
our final estimate of |Vub| reads

|Vub|DMM · 103 = 3.69± 0.34 . (5.23)

To conclude this Part of the Thesis, I think that it is very interesting to compare the DMM
estimates in Eqs. (5.22)-(5.23) with the predictions coming from the analysis of the Unitarity Triangle,
whose main properties have already been discussed in Chapter 2. This kind of study is very powerful
since, within the Standard Model, it allows to determine precisely the SM parameters of the flavour
sector, to test the compatibility of the experimental results with the theoretical calculations and finally,
to predict (still unmeasured) flavour SM observables.

In the last twenty years, the UTfit [124, 125] collaboration has been routinely updating the Uni-
tarity Triangle analysis through global analyses of both theoretical and experimental data. In the last
2021 SM update [126], the predictions of the CKM matrix elements |Vcb| and |Vub| from the SM global
fits read

|Vcb|UT = 41.9± 0.5, |Vub|UT = 3.68± 0.10. (5.24)

The most important observations are the followings. First of all, these UT estimates are completely
compatible with the DMM ones in Eqs. (5.22)-(5.23). Secondly, also the Unitarity Triangle Analysis
(which is independent of the LQCD data of the FFs and the experimental data by the Belle Col-
laboration discussed in the previous Chapter) points towards a value of |Vcb| which is higher with
respect to the FLAG exclusive estimate [39] and, at the same time, compatible with the inclusive
determination [30]. In the future years, without any doubt, the publication of new LQCD data and
measurements will finally close the window on the CKM matrix element puzzles.



72 CHAPTER 5. THE DMM PERSPECTIVE ON HEAVY-TO-LIGHT B(S) DECAYS



Part II

Flavour Physics Beyond the Standard
Model

73





Chapter 6

An Effective Field Theory approach to
Flavour Physics

In the previous Part we have developed a complete analysis of semileptonic charged current B decays
within the SM in order to shed a new light on two important phenomenological problems affecting
these transitions, i.e. the extraction of the CKM matrix elements |Vcb| and |Vub| and the computation
of the LFU observables, with particular attention given to the R(D(∗)) ratios. However, as it will be
discussed in a while, the SM cannot be considered the complete theory of Nature and, thus, needs
to be extended. In this sense, Flavour Physics offers a unique opportunity not only to test the the
SM, as flavour observables are related to all the processes involving different generations of quarks
and leptons, but also to study possible extensions of the SM itself. In fact, the measured flavour
observables allow to put relevant constraints on the physical parameters of the BSM theories.

In this Chapter we will develop an EFT approach to Flavour Physics, which is particularly useful
in constraining in a model-independent way the space of all the possible extensions of the SM. After
having illustrated the reasons that justify the necessity to study NP models, we will see also which
properties and symmetries the flavour structure of such scenarios have to respect. In fact, since the
SM is the valid theory of Nature at low energies, all the SM predictions of the flavour observables, that
can also be described in terms of NP operators, have to be recovered in this limit. This introductory
Chapter will then allow us to review and study explicitly two BSM models that are very well-known
in literature, namely the Composite Higgs in Chapter 7 and the LeptoQuarks in Chapter 8.

Note finally that a natural link exists between this Part of the Thesis and the previous one. As
we will see, in the BSM studies many parameters of the SM are directly involved. In addition to the
CKM matrix elements, which have been widely discussed in relation to semileptonic B decays, another
example is offered for instance by the meson decay constants, computed by many Collaborations with
numerical simulations on the lattice. For these reasons, the more precise are the theoretical estimates
of the SM parameters, the more stringent will be the bounds on the NP effects eventually affecting the
flavour sector. This is a fundamental issue to keep in mind especially in view of the improvement in
sensitivity of future experiments.

6.1 Why is it necessary to go Beyond the Standard Model?

Although the Standard Model explains a series of phenomenological phenomena with incredible preci-
sion, there is, as stated in the Introduction, the necessity to consider possible NP extensions because
of two sets of reasons.
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• On the one hand, there are some experimental facts that do not find an explanation within the
SM. Firstly, the presence of Dark Matter in our Universe, whose existence is justified by many
astrophysical and cosmological observations, as we will see in Part III. Secondly, the asymmetry
between baryons and anti-baryons, which is of fundamental importance in order to understand
the history of our Universe but, at the same time, does not find a justification in the SM. In
fact, although the baryonic number is violated by the sphalerons in a non-perturbative way, this
fact is not sufficient to explain quantitatively the observed asymmetry.

• On the other hand, there are many theoretical arguments that we have to take into account.
First of all, the Standard Model does not include gravity, since this interaction is not quantizable
in ordinary field theory and gives birth to a non-renormalizable theory. Furthermore, it does
not justify the equality in module of proton and electron charges. This fact is experimentally
well-known and has been measured with an extremely high precision. In principle, it would
be naturally explained in a GUT as a consequence of the zero traces of the generators of the
GU symmetry group. Finally, there is the problem of Naturalness, that we have described in
Chapter 2. To be extremely synthetic, in order to justify the measured mass of the Higgs within
the SM, we should admit an incredible fine tuning of the parameters in the theory.

For all these reasons (and many other problems related to High Energy Physics), it is reasonable
to consider the SM as an EFT valid at low energies. The EFT approach has been briefly introduced
in Chapter 2 to explain the Naturalness problem. In what follows, we will apply it to Flavour Physics.

6.2 Effective Operators and BSM Flavour Physics

On the same spirit of Eq. (2.33), the Lagrangian of a generic UV extension of the SM can be sketched
as

Leff = −Heff =
∑

i

1

Λ2
UV

Ceff,iOeff,i, (6.1)

where the WCs Ceff,i are evaluated at some renormalization scale and ΛUV is the NP energy scale.
Note that here we are interested in dimension-6 operators. In fact, the ones with dimension equal or
less than four can in principle have NP contributions, but these effects can be reabsorbed in the SM
couplings, while the ones with higher dimension are more suppressed if the NP scale is large. Note that
all the operators that enter in Eq. (6.1) have to respect some minimal requirements, i.e. the invariance
under the SM SU(3)× SU(2)×U(1) symmetry group and the conservation of both the baryonic and
the leptonic numbers, which are symmetries of the SM too (although accidental).

At this point, in order to describe the quark transitions at low-energy, let us say at the scale of
the bottom mass mb, it is useful to define another EFT, described by the Weak Effective Hamiltonian

H = −4GF√
2
λCKM

[
αem
4π

(∑

i

CiOi +
∑

i

C
′
iO
′
i

)]
. (6.2)

The Wilson coefficients now can have contributions from both NP and heavy SM degrees of freedom.
From the point of view of Feynman diagrams, the relevant operators contribute to interactions at
the loop level within the SM. To be more specific, their contributions come from penguin (only for
∆F = 1 interactions) or box (for both ∆F = 1 and ∆F = 2 processes) diagrams, as shown in Figure
6.1. For this reason, the corresponding quark transitions are Cabibbo-suppressed. In other words,
since at least one W gauge boson is present inside these loops, we will always find a suppression of
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these processes induced by the off-diagonal CKM matrix elements, which are the smallest ones as clear
from the Wolfenstein structure (2.18). Note that this can be understood by looking at Eq.(6.2). In

fact, the factor αem/(4π) comes from the fact that, as stated above, the operators O
(′)
i induce loop

contributions and λCKM is the corresponding Cabibbo-suppression. The factor 4GF /
√

2 represents,
instead, the SM scale. Then, the list of all the operators that contributes to a generic FCNC qi → qj
is composed by:

• ∆F = 2 operators, which are relevant for neutral meson-antimeson oscillations (we have chosen
the basis as in [127])

Q1 = (q̄Liγ
µqLj)(q̄Liγ

µqLj), Q
′
1 = (q̄Riγ

µqRj)(q̄Riγ
µqRj)

Q2 = (q̄RiqLj)(q̄RiqLj), Q
′
2 = (q̄LiqRj)(q̄LiqRj)

Q3 = (q̄αRiq
β
Lj)(q̄

β
Riq

α
Lj), Q

′
3 = (q̄αLiq

β
Rj)(q̄

β
Liq

α
Rj)

Q4 = (q̄RiqLj)(q̄LiqRj),

Q5 = (q̄αRiq
β
Lj)(q̄

β
Liq

α
Rj).

(6.3)

Note that (here and in what follows) the primed operators can be obtained from the unprimed
ones through a L↔ R transformation;

• four-quark ∆F = 1 operators, which are important for non-leptonic meson decays

Ok1 = (q̄Liγ
µqLj)(q̄Lkγ

µqLk), O
′k
1 = (q̄Riγ

µqRj)(q̄Rkγ
µqRk),

Ok2 = (q̄αLiγ
µqβLj)(q̄

β
Lkγ

µqαLk), O
′k
2 = (q̄αRiγ

µqβRj)(q̄
β
Rkγ

µqαRk),

Ok5 = (q̄Liγ
µqLj)(q̄Rkγ

µqRk), O
′k
5 = (q̄Riγ

µqRj)(q̄Lkγ
µqLk)

Ok6 = (q̄αLiγ
µqβLj)(q̄

β
Rkγ

µqαRk), O
′k
6 = (q̄αRiγ

µqβRj)(q̄
β
Lkγ

µqαLk);

(6.4)

• ∆F = 1 magnetic and chromomagnetic operators, which are relevant for radiative quark transi-
tions

O7 = emqj (q̄LiσµνqRj)F
µν , O

′
7 = emqi(q̄RiσµνqLj)F

µν ,

O8 = gsmqj (q̄LiσµνqRj)G
µν , O

′
8 = gsmqi(q̄RiσµνqLj)G

µν ;
(6.5)

• semileptonic ∆F = 1 operators, important for semileptonic neutral-current meson decays

Ok9 = (q̄Liγ
µqLj)(¯̀

kγ
µ`k), O

′k
9 = (q̄Riγ

µqRj)(¯̀
kγ

µ`k),

Ok10 = (q̄Liγ
µqLj)(¯̀

kγ
µγ5`k), O

′k
10 = (q̄Riγ

µqRj)(¯̀
kγ

µγ5`k).
(6.6)

First of all, note that the SM contributes only to some of these operators (in particular, the
primed ones are very suppressed). Secondly, while the list of ∆F = 2 operators contains all the
independent operators that we can consider, for the ∆F = 1 transitions we have reported only the
operators relevant for the phenomenological applications that will be described in what follows. To
be more specific, we have neglected all the (pseudo)scalar and tensor Lorentz structures. It has
been shown that generalizing the ∆F = 1 Lagrangian beyond the SM, namely considering all the
operators of dimension-6 and invariant under the SM symmetry group, increases the total number of
such operators up to ∼ 120 [128,129]. To develop an explicit example for clarity, the ∆B = 2 mixings
are described by the effective Hamiltonian [130–132]

H∆B=2 =
G2
Fm

2
W

16π2
(λbq)

2S0(xt)Q1, (6.7)
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Figure 6.1: Examples of box (left) and penguin (right) Feynman diagrams Within the SM.

where λbq ≡ V ∗tbVtq and two possible choices for q can be made, i.e. q = d, s for B − B̄ mixing and for
Bs − B̄s one. Finally, xt ≡ m2

t /m
2
W and S0(xt) is a loop function that can be approximated as

S0(xt) ' 2.46
( mt

170 GeV

)1.52
' 2.31.

To conclude this Section, let us give a naive explanation of the robustness of the constraints on BSM
scenarios that come from low-energy processes in flavour physics. Keeping again in mind the ∆B = 2
transitions as an example, from Eqs. (6.1) and (6.7) it is clear that, if the WCs of the theory are O(1)
factors, the ratio 1/(Λ2

UV GF ) has to be tiny enough to give rise to the suppressions proportional to
the CKM matrix elements. A central role in this game is evidently played by the uncertainties that
affect both the theoretical expectation values and the measurements of particular flavour observables.
This consideration is particularly relevant in view of the improvement in sensitivity expected at future
experiments since, the most precise are the theoretical estimates of the SM parameters (such as the
CKM matrix elements and the meson decay constants), the most stringent will be the bounds on NP
coming from the flavour sector. We will see explicitly in detail the power of this kind of study in
Composite Higgs scenarios in the next Chapter.

6.3 The Minimal Flavour Violation and the U(2)3 frameworks

Before explicitly discussing two specific BSM models, i.e. Composite Higgs scenarios in Chapter 7
and LeptoQuarks in Chapter 8, it is instructive to speculate about the flavour structure of specific
extensions of the SM. In other words, we can try to approach NP effects in flavour physics from the
point of view of flavour symmetries.

To this end, let us summarize the physical meaning of the EFT approach to flavour physics just
described. As stated before, we consider the SM as the right theory of Nature only at low energies,
namely up to a certain scale ΛUV (defined in Eq. (6.1)). Now, since the SM does not have an exact
flavour symmetry because of the Yukawa interactions, it is an important task to identify a precise
flavour structure for a BSM model. Note that in this game a central role is played by the numerical
order of magnitude of the scale ΛUV . As we have seen in Chapter 2, the hierarchy problem suggests
that this scale should be O(TeV). At the same time, however, we have to deal with the cases of excellent
agreement between theoretical expectations and measurements of flavour observables. In general, this
implies that, in order to maintain ΛUV at the TeV scale, we are forced to assume that the flavour
structure underlying the NP is highly non-generic. To be more specific, we have to find a NP flavour
structure which is characterized both by a large symmetry group and some small symmetry breaking
term. The Minimal Flavour Violation (MFV) scenario [133,134] suggests the most conservative choice
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that we can develop in this sense: we hypothize that any extension of the SM must have the same
flavour symmetry that the SM has in the limit of zero Yukawa terms, which corresponds to a

Gq = U(3)QL × U(3)uR × U(3)dR (6.8)

symmetry group in the quark sector (as already stated in Chapter 2). In this way, the only symmetry
breaking terms are precisely the quark Yukawa couplings. Note that, obviously, this is not the unique
choice that we can do.

Let us explain how the MFV hypothesis works in detail. As stated above, the symmetry group
Gq is broken by the Yukawa terms Y u

ij , Y
d
ij , which have been introduced in Eq. (2.5). Thus, according

to the MFV assumption we state that Y u
ij , Y

d
ij are the only sources of symmetry breaking. From

the mathematical point of view, this property can be rephrased in the assumption that Y u
ij , Y

d
ij are

spurions, i.e. fields that transform non-trivially under the symmetry group Gq. Recalling Eq. (6.8),
this can be achieved assuming that

Y u ∼ (3, 3̄, 1), Y d ∼ (3, 1, 3̄)

under Gq. From the effective theory point of view, this means that minimal flavour violating theory
must be characterized by high-dimensional operators that are built starting from the spurions Y u

ij , Y
d
ij

and are invariant under the Gq group.

Let us now introduce an important simplification in the description of MFV. We know that the
SM Yukawas have a hierarchical structure, in other words all the eigenvalues of the Y u

ij , Y
d
ij matrices

are small, apart from the top Yukawa. Moreover, we know that the CKM matrix is almost a diagonal
matrix, namely the off-diagonal terms are suppressed. For these two reasons, if we work in the basis
where

Y u = V †CKM diag(yu, yc, yt), Y d = diag(yd, ys, yb),

we can reasonably assume that

[Y u(Y u)†]ni 6=j ' y2n
t V

∗
tiVtj . (6.9)

This means that, although in principle we can build up EFT operators with an arbitrarily high number
of Yukawa fields, the net effect is that the NP terms in the amplitudes of flavour processes will have
the same CKM suppression that we see in the SM. Recalling the ∆B = 2 example, we can state that

A∆B=2
MFV = (V ∗tiVtj)

2A∆B=2
SM ×

[
1 + a

16π2m2
W

Λ2
UV

]
, (6.10)

where A∆B=2
SM is the SM ∆B = 2 amplitude. By construction, from this flavour pattern it follows that

the O(1) coefficient a is completely flavour independent, thus it would have the same value also for
∆S = 2 transitions.

Let us finally note that MFV is not the unique possible hypothesis that we can assume. For
instance, another interesting possibility is the so-called U(2)3 flavour symmetry. This choice is again
suggested by the matter content of the quark sector of the SM, which is characterized by an approxi-
mate U(2)QL × U(2)uR × U(2)dR symmetry acting only on the first two quark generations [135]. The
quality of this approximate symmetry is guaranteed by the fact that the masses of the quarks of the
first two generations and their mixings with the ones of the third generation are small with respect to
the mass of the top. Note also that this symmetry would be exact if the aforementioned masses and
mixings would be zero.
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Let us briefly describe how the U(2)3 symmetry works. The minimal scenario is to introduce some
dimensionless parameters that are bidoublets under the group U(2)QL × U(2)uR × U(2)dR , i.e.

∆u = (2, 2̄, 1), ∆d = (2, 1, 2̄). (6.11)

In this way, ∆u and ∆d allow to give masses to the up-type and down-type quarks of the first two
generations by maintaining the full Lagrangian of the theory formally invariant. Since the quarks of
the third generation are, by construction, singlets under U(2)QL×U(2)uR×U(2)dR , the transformation
properties in Eq. (6.11) ensure that their mixings with the quarks of the first two generations are exactly
equal to zero. Since in reality this mixing is a small but non-zero one, one has to introduce in a minimal
framework another spurion V whose transformation properties under U(2)QL × U(2)uR × U(2)dR are

V = (2, 1, 1). (6.12)

Since we have introduced the minimal amount of spurions needed to realistically describe the SM
parameters of the quark sector, this scenario (which is not unique) is often called minimal U(2)3. As
for the MFV case, this machinery can be adopted to compute the NP contributions to low-energy
processes in flavour physics and to then compare them with data. Taking again as an example the
∆B = 2 transitions, we would find the same CKM suppression of the SM with an expression analogous
to Eq. (6.10), however, by construction, in this case the the coefficient a will be flavour dependent,
thus giving different contributions to the mixings in the K and in the B sectors.

6.4 An instructive example: the flavour anomalies

At present, the EFT approach to Flavour Physics is one important tool to look for a BSM explanation
of the flavour anomalies. As we have discussed before, they are a fundamental test of LFU, which has
a more general importance in the context of BSM physics. In fact, it gives an important insight on
the physical properties that a NP model must have. To make an explicit example, the NP responsible
for the breaking of LFU has to be mainly coupled to the third generation of fermions, while having a
small mixing with the light generations. Only under this assumption one can easily understand why
no evidence of LFU violation has been observed so far in the extremely precise tests of LFU in the
semileptonic decays of both kaons and pions.

In what follows, we are then going to examine the R(D(∗)) and the R(K(∗)) ratios separately, in
order to give an idea of the NP effects that can affect these observables.

6.4.1 The R(D(∗)) ratios

In the previous Part, we have deeply investigate the SM computation of the R(D(∗)) ratios, defined
in Eq. (3.1). In Chapter 4 we have presented an original way to describe the LQCD and experimental
data available for the semileptonic B → D(∗)`ν decays and we have thus found new values of the SM
predictions of the LFU ratios, namely R(D) = 0.296 ± 0.008 and R(D∗) = 0.275 ± 0.008, which are
compatible with the corresponding experimental averages at the ∼ 1.4σ level.

In the past few years, i.e. before the publication of the LQCD computations of the FFs by the
FNAL/MILC Collaborations in [55], several studies have been developed instead in order to investigate
which possible NP effects can enter in the R(D(∗)) ratios, motivated by the state-of-the-art reported by
HFLAV Collaboration in Figure 3.1. As discussed in Chapter 4, the DMM values of the R(D(∗)) ratios
are compatible with the corresponding world averages by HFLAV at the ∼ 1.5σ level. Nevertheless,
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it is instructive to understand how hypothetical NP effects in the R(D(∗)) ratios can be described in
a BSM scenario.

In the spirit of Eqs. (6.3)-(6.6), from an EFT point of view the NP amplitude of the semileptonic
B → D(∗)`ν transitions has to be written by considering a high number of operators, going beyond
the V −A structure of weak interactions of the SM. Following [82], a possible expression is

M =
GFVcb√

2
[(1 + VR + VL)〈D(∗)|c̄γµb|B〉¯̀γµ(1− γ5)ν

+ (VR − VL)〈D(∗)|c̄γµγ5b|B〉¯̀γµ(1− γ5)ν

+ (SR + SL)〈D(∗)|c̄b|B〉¯̀(1− γ5)ν

+ (SR − SL)〈D(∗)|c̄γ5b|B〉¯̀(1− γ5)ν

+ TL〈D(∗)|c̄σµν(1− γ5)b|B〉¯̀σµν(1− γ5)ν],

(6.13)

where we are assuming the absence of right-handed neutrinos in the theory. Here, we have introduced
new (pseudo)scalar and tensor operators, each of them characterized by the WCs VL,R, SL,R, TL. The
corresponding hadronic matrix elements can be written as

〈D(pD)| c̄b |B(pB)〉 =
qµ

mb −mc
〈D(pD)| b̄γµc |B(pB)〉 ,

〈D(pD)| c̄σµν(1± γ5)b |B(pB)〉 = i
fT (q2)

mB +mD

[
(pB + pD)µqν − (pB + pD)νqµ ± iεµναβ(pB + pD)αqβ

]

(6.14)
for the B → D case and

〈D∗(pD∗ , ε)| c̄σµνb |B(pB)〉 =
ε∗ · q

(mB +mD∗)2
T0(q2)εµναβp

α
Bp

β
D∗

+ T1(q2)εµναβp
α
Bε
∗β + T2(q2)εµναβp

α
D∗ε
∗β

〈D∗(pD∗ , ε)| c̄σµνγ5b |B(pB)〉 = i
ε∗ · q

(mB +mD∗)2
T0(q2)(pBµpD∗ν − pBνpD∗µ)

+ iT1(q2)(pBµε
∗
ν − pBνε∗µ) + iT2(q2)(pD∗µε

∗
ν − pD∗νε∗µ)

(6.15)

for the B → D∗ one. These are the only non-zero contributions to the amplitude accordingly to the
Wigner-Eckart theorem, hence we have no axial and pseudoscalar effects for the B → D decays and no
scalar one for the B → D∗ ones. Putting these hadronic matrix elements together with the amplitude
in Eq. (6.13), we are finally able to compute the differential decay widths of both the B → D`ν and
the B → D∗`ν transitions. The explicit formulæ can be found in [82].

In conclusion, let us note that in the Eqs. (6.14)-(6.15) some new FFs naturally arise, namely
fT (q2) for the B → D decays and T0(q2), T1(q2), T2(q2) for the B → D∗ ones. Let us clearly state that
the DMM, extensively described in Chapter 3, is perfectly appliable also to these FFs, which refer to
the (pseudo)scalar and/or tensor spin-parity quantum channels. The only caveat is to compute the
susceptibilities of the b → c current corresponding to those channels. In the future, this computa-
tion will be developed since new LQCD data for fT (q2), computed on the lattice for high values of
the momentum transfer, will be made public by the JLQCD Collaboration [72], while unfortunately
T0(q2), T1(q2), T2(q2) have not been computed on the lattice.
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6.4.2 The R(K(∗)) ratios

Other flavour observables which are very important for BSM studies are the R(K(∗)) ratios, that, as
the R(D(∗)) ones, represent a fundamental test of LFU in the SM. The R(K(∗)) ratios are defined as

R(K(∗)) ≡ Γ(B → K(∗)µ+µ−)

Γ(B → K(∗)e+e−)
(6.16)

and represent possible clear imprints of New Physics affecting the b → s`+`− quark transitions.
Although we will not develop in this Thesis a systematic study and computation of these ratios Within-
the-SM, note that semileptonic B → K(∗)`+`− decays are induced by FCNCs, thus they cannot arise
at tree level in the SM and, instead, occur at one-loop level through penguins and box diagrams. In
fact, as clearly stated in the previous Section, this property is shared by all the transitions induce by
the operators in Eqs. (6.3)-(6.6).

The state-of-the-art of the available measurements of the R(K(∗)) ratios is shown in Figures 6.2a-
6.2b. Note that, from the theoretical point of view, within the SM we näıvely expect that R(K(∗))|SM =
1. In particular, we can state that R(K(∗)) are independent of perturbative and non-perturbative QCD
contributions, since they cancel out in the ratio. As clear from Figures 6.2a-6.2b, the evidence of LFU
violation in semileptonic B → K(∗)`+`− decays comes from the LHCb measurements [136, 137]. To
be more specific, the experimental data for R(K)[1.1,6], R(K∗)[1.1,6], R(K∗)[0.045,1.1] deviate from the
SM expectation by 3.1σ, 2.5σ, 2.3σ, respectively.

(a) (b)

Figure 6.2: State-of-the-art of the measurements of the R(K(∗)) ratios. (a) Comparison between the
measurements of the R(K) ratio as performed by LHCb [136], BaBar [138] and Belle [139] Collabora-
tions. The näıve SM expectation is highlighted as a dashed line. Taken from [136]. (b) Comparison
between the measurements of the R(K∗) ratio by LHCb, Babar [140] and Belle [141] Collaborations.

Also in this case, the näıve SM expectation is highlighted as a dashed line. Taken from [137].

As we will see more explicitly in the following Chapters, in order to explain the aforementioned
discrepancies one can invoke the existence of NP effects. Thus, one can estimate the magnitude of
the NP contributions to the WCs of the operators of interest that is necessary to justify the R(K(∗))
anomalies. One can show that, in the limit of heavy NP, SM and BSM effects in the R(K(∗)) ratios can
be described by looking only at SM dipole operator O7 in Eq. (6.5) and at the four vector operators
in Eq. (6.6). Some very recent analyses of the available experimental data can be found in [142,143].
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6.5 New bounds on the Wilson Coefficients from Flavour Physics

Starting from the general effective Lagrangian (6.1), we can now constraint the entity of the NP contri-
butions to the WCs by comparing theoretical expectations and measurements of flavour observables.
Note that these constraints will be completely model-independent, since we will not invoke any explicit
BSM model. They will be then applied to CH models in the following Chapter.

In what follows, from the experimental point of view we will use expected improved uncertainties as
quoted by both LHCb Upgrade II [144] and Belle II [145]. This will allow us to obtain more stringent
bounds on possible NP effects affecting low-energy processes in Flavour Physics.

Let us examine in detail the low-energy processes in Flavour Physics that can be affected by BSM
effects and let us constraint the corresponding NP contributions to the WCs in a model independent
way.

• b→ s`+`−: contributions to C
(′)
9,NP and C

(′)
10,NP

The main bounds on the real and imaginary parts of the Wilson coefficients C
(′)
9,NP and C

(′)
10,NP (whose

corresponing operators have been defined in Eq. (6.6)) come from the process B → K(∗)µ+µ−. For
what concerns LHCb Upgrade II, in [144] a plot with the expected sensitivity for C

′
9,NP and C

′
10,NP

is presented. We will consider the SM scenario, i.e. the mean values of Re(C
′
9,NP ), Re(C

′
10,NP ) are

set equal to zero. This is the most conservative choice we can make, since under this assumption the
NP scenario is maximally disfavoured. Hence, we extrapolate the following bounds at 2σ level:

Re(C
′
9,NP ) = 0.00± 0.14, Re(C

′
10,NP ) = 0.00± 0.09. (6.17)

Note that, for a direct application to the CH scenario, it is necessary to run these coefficients at the
TeV scale [146]. For ease of comparison with Eq. (6.1), throughtout this Chapter we define ci,NP as
the NP contribution to Ci at the scale ΛUV = 1 TeV. In this way, by recalling the normalization of
the weak effective Hamiltonian in Eq. (6.2) we have that

Re(c
(′)
i,NP ) = −Re(C

(′)
i,NP )×

(
−4GF√

2
λbs

αem
4π
× (1 TeV)2

)
, i = 9, 10. (6.18)

Another source of information comes from the analysis of the angular observables related to the
B → K∗µ+µ− decay. In [147] the authors adopt the expected statistics at the various upgrades of
LHCb, including also the Upgrade II at 300 fb−1, and the one corresponding to Belle II at 50 ab−1

in order to obtain a new estimate of the bounds for Re(C9,NP ) and Re(C10,NP ). As usual, we fix the
mean values of these coefficients to zero, in order to maximally disfavour NP scenarios, and we get
their uncertainties from Table VI of [147] (case of z3 fit). Thus, the most stringent constraints at 2σ
level are:

Re(C9,NP ) = 0.00± 0.39, Re(C10,NP ) = 0.00± 0.38. (6.19)

In particular, that Table refers to the expected statistics at LHCb Upgrade I at 50 fb−1 but the
authors claim that the difference between the predicted sensitivity in this case and the one at LHCb
Upgrade II at 300 fb−1 (or the one at Belle II at 50 ab−1) is completely negligible for phenomenological
applications since the precision on the determination on the Wilson coefficients is already saturated
by the uncertainties on the form factors that enter the description of B → K∗`` transitions. Note
that also in this case we translate the values (6.19) of the Wilson coefficients C9(10),NP into the ones
of c9(10),NP at the 1 TeV scale adopting the relation (6.18).
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• Bd,s − B̄d,s mixing

For what concerns the Bd,s−B̄d,s mixings, the starting point consists in modifying the expression of
M q

12 in the SM and keeping fixed the one of Γq12 (in what follows it will be implicit that q = d, s) [148].
To be more specific, following the UTfit collaboration [149,150] we can describe the NP contributions
to the mixing amplitudes as

M q,full
12

M q,SM
12

= CBqe
2iφBq , (6.20)

where M q,full
12 refers to the full theory (SM+NP). Now, the BSM contributions in the Eqs. (6.20)-(6.24)

can be linked to the WCs associated to the effective operators in Eq. (6.3). In what follows, we will

focus our attention on QbqLLV ≡ Q1 and QbqLRS ≡ Q4, which are dimension-six operators. Thus, we
re-write these terms responsible for the ∆B = 2 transitions in the effective Lagrangian as

LNP =
cbqLLV

Λ2
QbqLLV +

cbqLRS

Λ2
QbqLRS , (6.21)

where Λ indicates the scale of NP.

Let us now examine which bounds on the WCs in Eq. (6.21) can be obtained starting from the
expected improvements in sensitivity at both LHCb Upgrade II and Belle II.

i) Vector operator in Bd mixing

We adopt the results by UTfit Collaboration as reported in Table 157 of [145]. As usual, we
consider the NP quantities in Eq. (6.20) as centered in their SM values. Thus, using the values
of the predicted uncertainties by UTft we have at 2σ

CBd = 1.00± 0.06, φBd = (0.0± 1.2)◦.

In order to set a constraint on cbdLLV , we fix cbdLRS = 0 and impose that |Amixing
NP | ≤ |Amixing

SM | [151],
being A the amplitude of the ∆F = 2 process. Recalling the expression (6.7), this implies that

Λ ≥ |cbdLLV |1/2
|λdb||CBde2iφBd − 1|1/2

× 4π

GFmt

√
S0
. (6.22)

Note that the enhancement factor 1/|λdb| disappears in the MFV (or U(2)) models described in
the previous Section, since in this case the NP terms have the same CKM suppression of the SM
ones.

Now, to obtain the most conservative upper bound on cbdLLV , we also fix φBd = 0 and consider
the maximal deviation of CBd from the unity, i.e. ∆CBd ≡ CBd − 1 = 0.06 at 2σ. Fixing the NP
scale Λ = 1 TeV, the resulting numerical bound on the Wilson coefficient will thus be

Re(cbdLLV ) < 2.1× 10−7. (6.23)

ii) Vector operator in Bs mixing



6.5. NEW BOUNDS ON THE WILSON COEFFICIENTS FROM FLAVOUR PHYSICS 85

In this case, we use the results from the CKMfitter Collaboration [152]1. We fix σs = 0 to obtain
the most conservative bound (also in this case the scalar contribution is set equal to zero, i.e.
cbsLRS = 0) and we link the quantity hs (defined in Eq. (6.24)) to the WC cbsLLV through the
relation

hs ' 1.5
Re(cbsLLV )

|λsb|2
(4π)2

GFΛ2
. (6.26)

Given that at 2σ level the authors find hs < 0.06, fixing again Λ = 1 TeV the numerical result
for the Wilson coefficient reads

Re(cbsLLV ) < 4.6× 10−6. (6.27)

iii) Scalar operator in Bd,s mixing

Finally, for what concerns cbqLRS (again q = d, s), we have to switch off the contribution of the

vector operator in the NP Lagrangian, i.e. cbqLLV = 0.

In what follows, we will use some of the results present in [153], where the authors study in detail
the NP contributions of a heavy neutral gauge boson Z

′
and of a neutral scalar H to ∆F = 2

processes. To be more specific, the Tables 5 and 6 of this work show the central values of the
hadronic matrix elements of the relevant operators, computed for different values of the scale
Λ and for both the Bd and the Bs cases. Thus, for our purposes it is sufficient to compute the
ratio

< QbqLRS >

< QbqLLV >
≡ κq, (q = d, s) (6.28)

since, being the value of M q,full
12 directly fixed by CBd or hs, Eq. (6.28) will directly imply that

Re(cbqLRS ) =
Re(cbqLLV )

κq
, (q = d, s). (6.29)

Numerically, the corresponding results read

κd = 6.3, κs = 6.1,

from which it follows through the bounds (6.23) and (6.27) that

Re(cbdLRS ) < 3.3× 10−8, Re(cbsLRS ) < 7.5× 10−7. (6.30)

• Contributions to C
(′)
7,NP

At this point, let us finally examine the observables that enter in the determination of the NP

contribution to the WCs C
(′)
7,NP , which are associated to the operators in Eq. (6.5).

1The CKMfitter Collaboration describes the deviation of Mq
12 from its SM expression as

Mq,full
12 = Mq,SM

12 (1 + hqe
2iσq ). (6.24)

By a direct comparison of the equations (6.20) and (6.24), it is clear that the quantities describing NP can be linked to
each other through the relation

1 + hqe
2iσq = CBqe

2iφBq . (6.25)
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i) Inclusive b→ sγ radiative decays

For the radiative decays it is convenient to study the ratio between the decay width in the full
theory and in the SM only [154]. In this way all the numerical factors cancel out and we are left
only with the expression

Γfull
ΓSM

=
|C7|2 + |C ′7|2
|C7,SM |2

=
|C7,SM + C7,NP |2 + |C ′7,NP |2

|C7,SM |2
(6.31)

where all the WCs are considered at the scale µb. Note that in the SM C7,SM (µb) = −0.304 [155].
Considering NP at a scale m∗ = 1 TeV as a reference, it is necessary to run the WCs so that

C
(′)
7,NP (µb) =

(
αS(m∗)
αS(mt)

) 16
21
(
αS(mt)

αS(µb)

) 16
23

× C(′)
7,NP (m∗), (6.32)

being αS the strong coupling constant.

Let us turn back to Eq.(6.31). In order to fit the NP WCs, we consider the experimental
Branching Ratio as the estimate valid in the full theory. The theoretical SM expectation reads
[156]

BRSM = (3.36± 0.23)× 10−4. (6.33)

For the experimental value, as usual we choose the mean value equal to the theoretical one and
we then consider the expected sensitivity at Belle-II with 50 ab−1, that is δBRexp = 3.2%.

ii) Exclusive b→ sγ radiative decays

We will focus our attention onto the processes B0 → K∗γ and B0
s → φγ, which we will refer to

generically as Bq → V γ. The starting point is the time-dependent CP asymmetry [157], that
reads

ACP (t) =
SV γ sin(∆mqt) + CV γ cos(∆mqt)

cosh(∆Γqt/2)−A∆Γ(Bq → V γ) sinh(∆Γqt/2)
, (6.34)

where SV γ is the mixing-induced CP asymmetry, CV γ is the direct CP one and finally A∆Γ(Bq →
V γ) is the mass-eigenstate rate asymmetry.

First of all, note that in the B0 → K∗γ case A∆Γ can be neglected because of the tiny value of
∆Γd. Thus, we may consider its contribution only in the B0

s → φγ case. In order to fit the NP
Wilson coefficients, it is necessary to consider the relation between the time integrated BR and
the theoretical contribution in absence of mixing, i.e.

BRint(B
0
s → φγ) =

(
1−A∆Γ(B0

s → φγ)× τBs∆ΓBs
2

1− (
τBs∆ΓBs

2 )2

)
BRfull(B

0
s → φγ), (6.35)

where BRfull(B
0
s → φγ) is directly related to the WCs through the relation [158]

BRfull(B
0
s → φγ) = τBs

G2
FαEM |λsb|2

32π4
M3
Bsm

2
b

(
1−

m2
φ

M2
Bs

)3

|T1(0)|2 × (|C7|2 + |C ′7|2), (6.36)

being as usual λsb ≡ V ∗tsVtb. τBs and MBs represent respectively the lifetime and the mass of
the Bs meson, while mb is the bottom mass (all these values are taken from the PDG [159]).
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Note that T1(0) represents the tensor form factor which enters B0
s → φγ transition, evaluated at

q2 = 0. Furthermore, we need the SM prediction for the time integrated Branching Ratio, i.e.

BRint(B
0
s → φγ) = (4.31± 0.86)× 10−5. (6.37)

For what concerns A∆Γ, we choose its central value equal to the SM prediction A∆Γ,th = 0.031±
0.021 and its uncertainty equal to the statistical one expected at LHCb Upgrade II, that is
δA∆Γ = 0.02. However, from the numerical point of view, the relative constraint on the Wilson
coefficients appears to be very weak with respect to the others, hence we will not consider it in
the following steps.

Secondly, another relevant source of information is SK∗γ , which is defined as [160]

SK∗γ =
2Im

[
e−iφd(A∗LĀL + A∗RĀR)

]

|AL|2 + |AR|2 + |ĀL|2 + |ĀR|2
' 2

|C7|2 + |C ′7|2
Im
(
e−iφdC7C

′
7

)
. (6.38)

In the above expression there are two physical amplitudes, which describe the exclusive transition
B0 → K∗γ and are characterized by different polarizations of the photon, i.e.

ĀL(R) = A(B̄0 → K∗γL(R)), AL(R) = A(B0 → K̄∗γL(R)). (6.39)

Moreover, the angle φd represents the phase of the amplitude for Bd − B̄d mixing. It can be
fixed through the relation

sin(φd) = SψKS , (6.40)

where we have considered at the r.h.s. SψKS = 0.69±0.02, obtained from b→ cc̄s processes [161].
Note finally that the last approximate equality in (6.38) follows from the expressions of the decay
amplitudes, which are functions of the WCs.

In order to fit the WCs, as usual we fix the central value of SK∗γ to the SM one, i.e. SK∗γ,th =
−0.023± 0.016 [160], which takes into account also the contributions from soft-gluon emission.
Thus, we express this quantity as

SK∗γ ' SK∗γ,th +
2

|C7|2 + |C ′7,NP |2
Im
(
e−iφdC7C

′
7,NP

)
, (6.41)

so that all the NP contributions will be encoded by the WCs and in the SM limit we will recover
the SM prediction SK∗γ,th. We finally adopt as uncertainty the sensitivity quoted by Belle-II at
50 ab−1, that is δSK∗γ = 0.030.

iii) Exclusive b→ s`` observables

The process B → K∗`` offers another last constraint for the determination of bounds on C
(′)
7 .

The fourfold differential amplitude of this decay is defined in terms of several angular functions,
that depend on the so-called transversity amplitudes A⊥,‖,0,t(q2). These amplitudes are functions
of the Wilson coefficients and of the form factors entering B → K∗`` decays. Starting from them,

we can define two quantities, called A
(2)
T and A

(Im)
T , which are particularly sensitive to right-

handed currents in NP scenarios.

To be more specific, they are defined as [162]:

A
(2)
T (q2) =

|A⊥(q2)|2 − |A‖(q2)|2
|A⊥(q2)|2 + |A‖(q2)|2 , (6.42)
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A
(Im)
T (q2) = −2

Im
(
AL‖ (q2)AL∗⊥ (q2) +AR‖ (q2)AR∗⊥ (q2)

)

|A⊥(q2)|2 + |A‖(q2)|2 . (6.43)

They assume a very simple form in the very low-q2 limit, i.e.

lim
q2→0

A
(2)
T (q2) =

2 Re(C7C
′∗
7 )

|C7|2 + |C ′7|2
, lim

q2→0
A

(Im)
T (q2) =

2Im (C7C
′∗
7 )

|C7|2 + |C ′7|2
. (6.44)

These formulæ have to be considered as asymptotic, since for increasing q2 the contributions of

the other WCs, i.e. C
(′)
9,10, become not neglibible.

In order to reach very small values of the quadratic transferred momentum, which are thus of
capital importance to find contributions to right-handed currents beyond the SM, Belle-II will
study the B → K∗e+e− channel with high precision and will measure the observables (6.42)-
(6.43) with sensitivities

δA
(2)
T = 0.066, δA

(Im)
T = 0.064

in the kinematical range q2 ∈ [0.002, 1.12] GeV2. Since the formulæ (6.44) are valid only in the

q2 → 0 limit, we will adopt the following expressions in order to constrain the WCs C
(′)
7 :

A
(2)
T (q2) '< A

(2)
T,SM > +

2 Re(C7C
′∗
7,NP )

|C7|2 + |C ′7,NP |2
, A

(Im)
T (q2) '< A

(Im)
T,SM > +

2Im (C7C
′∗
7,NP )

|C7|2 + |C ′7,NP |2
, (6.45)

where q2 now vary in the range [0.002, 1.12] GeV2 and the SM values have to be considered as
means in that kinematical region. In this way, all the NP contributions will be encoded by the

WCs and in the SM limit we will recover the SM predictions for A
(2)
T and A

(Im)
T , which can be

found in [157,163] and read

< A
(2)
T,SM >= 0.033+0.021

−0.019, < A
(Im)
T,SM >= (0.3± 0.2)× 10−3.

Note finally that the presence of CSM9,10 in the NP contributions can be safely neglected for the

low values of q2 under consideration, since they would produce a negligible effect of the order of
around 5%.

At this point, the aforementioned observables can be fitted all together in order to find the marginal-

ized values of Re
(
C
′
7,NP

)
and Im

(
C
′
7,NP

)
, after having set C7,NP equal to zero. The inverse situation

(i.e. marginalization of Re (C7,NP ) and Im (C7,NP )) is numerically not so interesting as the other one
for the following reason. In the plane Re (C7,NP ) − Im (C7,NP ) the constraints are represented by
the branching ratio of the b → sγ inclusive interaction and by the branching ratio of the exclusive
B → K∗µ+µ− decay. For what concerns the former case, the uncertainty associated to the theoret-
ical computation of the branching ratio, which is δBRth = 6.8%, does not allow a high precision in
constraining the real and imaginary parts of C7,NP . An identical situation occurs also in the latter
case, since the improvement in the sensitivity of LHCb Upgrade II and Belle II in the measurement of
BR(B → K∗µ+µ−) is saturated by the hadronic uncertainties associated to the form factors, which
enters the definition of this branching ratio.

For the reasons explained above, we focus our attention onto the marginalization of Re
(
C
′
7,NP

)

and Im
(
C
′
7,NP

)
. In Figure 6.3 we show all the observables of interest for our fit. The marginalized
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values are centred in zero (as we want in order to maximally disfavour NP contributions) and have
the following uncertainties

σ
[
Re
(
C
′
7,NP

)]
= 0.015, σ

[
Im
(
C
′
7,NP

)]
= 0.014, (6.46)

which will be applied to the CH scenario in what follows. Furthermore, we can use the relation (6.18)
in order to run the values of the real and the imaginary parts of c

′
7,NP at the 1 TeV scale, obtaining

the following upper bounds on the WCs at 95% confidence level:

|Re(c
′
7,NP )| < 2.4× 10−5, |Im (c

′
7,NP )| < 2.3× 10−5. (6.47)

BR(B->Xsγ)

SK* γ

AT
(2)

AT
(Im)
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Figure 6.3: The correlation plot Re
(
C
′
7,NP

)
VS Im

(
C
′
7,NP

)
at 95% confidence level.
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Table 6.1: Upper bounds on the WCs at the energy scale of 1 TeV at 95% confidence level. In bold
we indicate the constraints relevant for applications to Composite Higgs, which will be developed in

the following Chapter.

Upper bounds on WC at 1 TeV
Process WC Bound

B → K∗`` |Re (c9,NP ) | 3.2× 10−4

|Re (c10,NP) | 3.1× 10−4

|Re(c
′
9,NP )| 1.1× 10−4

|Re(c
′
10,NP )| 7.3× 10−5

B̄d −Bd |Re
(
cbdLLV

)
| 2.1× 10−7

B̄d −Bd |Re
(
cbdLRS

)
| 3.3× 10−8

B̄s −Bs |Re
(
cbsLLV

)
| 4.6× 10−6

B̄s −Bs |Re
(
cbsLRS

)
| 7.5× 10−7

b→ sγ |Re(c
′
7,NP )| 2.4× 10−5

|Im (c
′
7,NP)| 2.3× 10−5



Chapter 7

Explicit models I: Composite Higgs

In this Chapter we will analyse the bounds on Composite Higgs (CH) scenarios as a particular example
of physics beyond the SM that is motivated by the hierarchy problem, and has an expected NP scale
around the TeV. In particular, we will review these bounds in view of the increase in precision of
experiments at the colliders in the future decade. To achieve this goal, we will firstly review the
motivations for CH models and the theory underlying them. Then, we will describe in detail the
application of CH to flavour physics, presenting original results about the aforementioned bounds and
developing interesting comparisons with the state-of-the-art at present. Note that this kind of study
is deeply related to the results of analyses Within the SM. In fact, the more precise are the theoretical
estimates of the SM parameters (for instance the CKM matrix elements), the more stringent will be
the bounds on NP coming from the flavour sector.

7.1 Theoretical framework

7.1.1 The Higgs as a pseudo Nambu-Glodstone boson (pNGB)

In Chapter 2 we have discussed the main properties of the Higgs boson, as well as its radiative
instability problem. Let us here discuss a possible (although not unique) solution to this issue, precisely
the CH scenario. The fundamental idea underlying this framework is the possibility to consider the
Higgs boson not as an elementary particle (as seems from the experiments) but as a composite bound
state of a new strongly-interacting sector. This situation would be analogous to what happens in
Quantum Chromo-Dynamics (QCD), where there are many scalar particles that are bound states of
quarks and antiquarks under a strongly-interacting sector, which is the QCD itself. Furthermore, as
in that case, also the composite Higgs will be characterized by an appropriate compositeness scale,
call it m∗, above which it will not be sensitive to UltraViolet (UV) effects and thus thanks to which we
will be able to naturally generating its mass. Let us then present in what follows the main theoretical
features of CH scenarios [164,165].

The starting point of our review is to consider a new strong composite sector, characterized by a
global Lie group G. We assume that a spontaneous G→ G′ symmetry breaking occurs, leading to the
appearance of massless Goldstones living in the co-set G/G′. The situation is graphically represented
in the most general situation in Figure 7.1a, where we have called H0 the gauged subgroup of G. Note
that the unbroken subgroup G′ is assumed to contain the SM group GSM = SU(2)L×U(1)Y and that
a doublet of SU(2)L, i.e. the Higgs, has to be present in the co-set G/G′.

Let us now consider the simplest example to deal with, namely the so-called Minimal Composite
Higgs Model (MCHM) [166], in which the aforementioned Lie groups are G = SO(5) and G′ = SO(4).

91
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(a) (b)

Figure 7.1: (a) Sketch of the group algebra in the most general situation. The dark gray area represents
the group H0/G

′, where the eaten Goldstones live, while the light gray area is the unbroken group
G
′∩H0. (b) Sketch of the group algebra in the two-step symmetry breaking description. In this special

case, G
′ ∩H0 = H0.

The SO(5)→ SO(4) symmetry breaking will give rise to 4 real massless Goldstones, transforming as
the fundamental representation of SO(4) and leaving in the co-set SO(5)/SO(4), which is equivalent
to a 4-sphere S4. Moreover, given the exact relation

SO(4) =
SU(2)L × SU(2)R

Z2
,

we can already think about these Goldstones as the real components of a SU(2)L doublet, i.e. again
the Higgs. In addition to this, let us choose the following basis for the SO(5) generators:

T aL,aRij = − i
2

(
1

2
εabc(δbi δ

c
j − δbjδci )± (δai δ

4
j − δaj δ4

i )

)
, (7.1)

T âij = − i√
2

(δâi δ
5
j − δâj δ5

i ), (7.2)

so that the 6 ”unbroken” generators Ta span the SO(4) algebra while the remaining ”broken” four
T â span the co-set SO(5)/SO(4) algebra. Hence, we can parametrize the Goldstones originating from
the SO(5)→ SO(4) symmetry breaking as

φ = φ0e
i
√

2T âΠâ/f , φ0 = (0, 0, 0, 0, 1)T , (7.3)

being f an analogous of the pion decay constant of QCD.
At this point, we are ready to describe the EWSB in CH scenarios. To achieve this goal, we will

compare two different descriptions, namely the two-step breaking VS the vacuum misalignment (the
latter being firstly introduced in [167–169]). According to the first viewpoint, we assume that the
gauged subgroup H0 is aligned with the unbroken subgroup G′, as in Figure 7.1b. In MCHM, we will
thus have H0 = SU(2)L × U(1)Y ⊂ SO(4)g = SO(4), where the last equality follows properly by the
assumption of alignment. At this point, recalling Eq. (7.3) the Goldstones read

φ = (Π̂1 sin(Π/f), Π̂2 sin(Π/f), Π̂3 sin(Π/f), Π̂4 sin(Π/f), cos(Π/f))T , (7.4)
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where

Π ≡
√∑

â

(Πâ)
2
, Πâ ≡ Πa

Π
.

Note that in this game the SO(4)g subgroup acts on the first four components of (7.4). Hence,
assuming in total generality that

〈Πi〉 = 0 (i = 1, 2, 3), 〈Π4〉 6= 0, (7.5)

from Eq. (7.4) it follows that

〈φ〉 = (0, 0, 0, sin θ, cos θ)T , θ ≡ 〈Π〉
f
. (7.6)

Looking at the first three components of (7.6), it is clear that the assumption of non-zero Vacuum
Expectation Value (VEV) has brought us down to a SO(3) subgroup, i.e. we have realized the two-
step symmetry breaking SO(5)→ SO(4)→ SO(3). At this point, we are ready to explain the second
viewpoint of EWSB, namely the vacuum misalignment. In fact, from Eq. (7.5) it is evident that the
Πi (i = 1, 2, 3) are precisely NGBs that will form the longitudinal polarizations of the gauge boson
W±, Z0 while the remaining one Π4, having a non-zero VEV, will be identified with the Higgs boson.
We can thus re-express φ in order to clearly distinguish these different degrees of freedom. It can be
demonstrated that a valid new parametrization reads

φ =


 sin

(
θ + h(x)

f

)
exp

(
iχ

kAk

v

)
· (0, 0, 0, 1)T

cos
(
θ + h(x)

f

)

 ,

where h(x) is properly the Higgs boson, Ak are the generators of SO(4)/SO(3) and finally χk are
the Goldstones eaten by the SU(2)L × U(1)Y gauging. At this point, the concept of misalignment is
clear. In fact, the angle θ, defined in Eq. (7.6), represents the misalignment between SO(4) and the
gauged SO(4)g. There is only one of such angles since there is only one non-eaten Goldstone, i.e. the
physical Higgs, which in fact can be thought as a coordinate on the 4-sphere S4 and whose VEV gives
the precise position and the entity of the misalignment of the true vacuum with respect to SO(4)g.
In Figure 7.2 there is a graphical representation of the mechanism just illustrated. Note that in the
so-called decoupling limit, namely θ → 0, we recover precisely the SM since the composite sector is
decoupled from the low-energy physics.

7.1.2 Partial compositeness

Until now, in our discussion we have never referred to the SM fermions which, together with the
SM gauge bosons, constitute the so-called elementary sector. To this end, in this Paragraph we will
firstly discuss the idea of partial compositeness, which was introduced for the first time in [170].
The starting point consists in writing down in the Lagrangian the terms describing the interaction
between the elementary fermions and the composite sector. Contrarily to technicolor models, where
one usually assumes bilinear interaction terms, in this context we will assume a linear coupling, which
for the quarks will have the form

Lint = λ(q̄ · O + h.c.) = λq q̄LOL + λuūROuR + λdd̄ROdR + h.c. (7.7)

The fundamental difference with respect to technicolor is that the composite operators OL, OuR , OdR
are now fermionic, rather than scalar. This feature of the model allows us to state that both the
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Figure 7.2: Graphical representation of the vaccum misalignment in the case of the MCHM. See the
text for all the details.

large hierarchies in the quark masses and the large value of the top mass can be generated in a
completely natural way. Moreover, although flavour changing four-fermion operators could in principle
be obtained through the exchange of composite modes, a sort of GIM suppression is guaranteed, so
that these operators are sufficiently small for the light quarks and leptons.

According to this picture, the CH scenario allows us to obtain a light enough Higgs (as required
by the experiments) without falling into any hierarchical problem, as on the contrary happens for
instance in technicolor models. But why then the name of partial compositeness? The interesting
consequence of assuming linear couplings for the SM fermions interactions is precisely the fact that
new mixings between the elementary quarks and the composite modes emerge. In this way, the physical
SM particles result to be linear combinations of the elementary and the composite degrees of freedom.
To be more specific, we assume that a composite operator O (as one of those appearing in Eq. (7.7))
has the right quantum numbers to have a non-zero matrix element of the form

〈0 |O |χrn〉 = ∆nur(p)e
ip·x, (7.8)

being χrn a set of massive composite modes and ur a spinor. Thus, at low energies the interaction
Lagrangian (7.7) will take the structure

Lint =
∑

n

∆n(q̄ · χn + h.c.), (7.9)

where it is evident the appearance of mixings between the elementary and the composite states. Now,
for simplicity let us hereafter take into consideration only the first composite mode. Thus the full
Lagrangian (kinetic and interaction terms) will have the form

L = ψ̄Li/∂ψL + χ̄(i/∂ −m)χ+ ∆(ψ̄LχR + h.c.). (7.10)

We can diagonalize the structure (7.10) simply developing a rotation, i.e.

(
ψL
χL

)
=

(
cosφ sinφ
− sinφ cosφ

)(
ψL
χL

)
,
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being tanφ ≡ ∆/m and m∗ ≡
√
m2 + ∆2. The physical meaning of the angle φ is the parametrization

of the degree of partial compositeness. Thus, the heavier is the fermion, the more composite it is! In
fact, the aforementioned rotation brings the Lagrangian (7.10) to the new form

L = ψ̄i/∂ψ + χ̄(i/∂ −m∗)χ, (7.11)

so that the physical particles result to be combinations of the ψ, χ eigenstates, namely

|light〉 = cosφ |ψ〉+ sinφ |χ〉 , (7.12)

|heavy〉 = − sinφ |ψ〉+ cosφ |χ〉 . (7.13)

As we will see in the following Section, FP will allow us to put stringent constraints on the fermion
modes degree of freedom, in particular their mass, through phenomenology. In conclusion, note that
analogous considerations hold also for the gauge sector in QCD with the so-called γ − ρ mixing.

7.1.3 The 1S1C hypothesis

At this point, it is necessary to write down the Lagrangian that allows us to describe all the fields in
the CH scenario. Remember that on the one hand we have the composite sector, in which there are
the NGB Higgs Ψ and the massive modes, while on the other hand we have the elementary sector,
with the SM gauge fields and the quark and lepton fields.

In what follows we will present the so-called One Scale One Coupling (1S1C) hypothesis, called
in this way for the reasons that will be clear in what follows. For what concerns the composite sector
Lagrangian, we write

L =
m4
∗

g2∗
Ltree

(
∂

m∗
,
g∗Π
m∗

,
g∗σ
m∗

,
g∗Ψ

m
3/2
∗

)

+
g2
∗~

16π2

m4
∗

g2∗
Lone−loop

(
∂

m∗
,
g∗Π
m∗

,
g∗σ
m∗

,
g∗Ψ

m
3/2
∗

)
+ · · · ,

(7.14)

where we have assumed the presence of vector modes σ and fermion modes Ψ. The first term is the
tree level contribution while the second one is the one loop term. The reason of the name 1S1C relies
simply on the presence of only two parameters in the above Lagrangian, namely the typical resonance
scale m∗ and the typical resonance coupling g∗.

The 1S1C hypothesis can be interpreted also in an interesting way by developing an exercise of
dimensional analysis. To this end, it is fundamental not to work in natural units. In this case, the
Lagrangian density dimension reads

L =
[~]

L4
,

being L a lenght, so that the canonically normalized composite fields have dimensions

[Π] = [σ] =
[~]1/2

L
, [Ψ] =

[~]1/2

L3/2
.

Hence, it follows that
[m∗] = L−1, [g∗] = [~]−1/2.

Thanks to these considerations, we can rephrase the 1S1C hypothesis as the one in which the scale
m∗ and the coupling g∗ are the only dimensionful parameters of the theory, so that the Lagrangian



96 CHAPTER 7. EXPLICIT MODELS I: COMPOSITE HIGGS

can have only the form (7.14) since it is the unique possibility in virtue of dimensional analysis. The
most important consequence of this consideration is the structure of the low-energy Effective Field
Theory (EFT) that we find by integrating out the heavy resonance fields. In fact, if the heavy modes
are integrated out at tree level, again m∗ and g∗ will be the unique dimensionful parameters in the
thoery, thus dimensional analysis tells us that the Lagrangian structure (7.14) must be respected also
by the EFT Lagrangian. In a EFT Lagrangian, the composite fields σ, Ψ will thus indicate the lightest
modes present in the theory, as will be clear in the FP analysis contained in the following Section.

In conclusion, we want to include in our description also the SM elementary fields, i.e. the gauge
fields Aµ and the fermions ψ. Also in this case dimensional analysis will show the way to proceed
correctly. In fact, recalling the partial compositeness idea explained above, in the 1S1C assumption
the full EFT Lagrangian in CH scenarios can only read

LEFT =
m4
∗

g2∗
Ltree

(
∂

m∗
,
g∗Π
m∗

,
g∗σ
m∗

,
g∗Ψ

m
3/2
∗

,
g ·Aµ
m∗

,
λ · ψ
m

3/2
∗

)

+
g2
∗~

16π2

m4
∗

g2∗
Lone−loop

(
∂

m∗
,
g∗Π
m∗

,
g∗σ
m∗

,
g∗Ψ

m
3/2
∗

,
g ·Aµ
m∗

,
λ · ψ
m

3/2
∗

)
+ · · ·

(7.15)

7.1.4 Possible representations of the fermion modes

The fermion modes Ψ, that have been introduced in Eq. (7.14), can have different representations.
This choice allows to obtain new constraints on CH scenarios from the low-energy processes in flavour
physics, which is precisely the goal of the following Section. In what follows, we will briefly describe
three different cases [171], assuming that the global symmetry respected by the strong sector is SU(3)×
SU(2)L × SU(2)R × U(1), which includes the custodial symmetry.

i) Doublet model : we hypothize that the SM left-handed quarks qL mix with composite vector-like
SU(2)L doublet, call them Q, one per generation. On the contrary, the SM right-handed quarks
uR and dR couple both to a unique SU(2)R doublet, call it R. The relevant Lagrangian terms
will thus be

LDY = Y ij tr
[
Q̄iLHR

j
R

]
+ h.c., (7.16)

LDmix = mj
Qλ

ij
L q̄

i
LQ

j
R +mi

Rλ
ij
RuŪ

i
Lu

j
R +mi

Rλ
ij
RdD̄

i
Ld

j
R, (7.17)

where the first row contains the Yukawa terms of the composite particles, while the second
one the mixing terms with the SM fields. Note that we have defined H ≡ (iσ2H

∗, H) and
R = (U D)T .

ii) Triplet model : we hypothize that the SM left-handed quarks qL mix with a composite state, call
it L, that is a doublet both under SU(2)L and SU(2)R, while the SM right-handed quarks uR
and dR couple both to a composite SU(2)R triplet, call it R. To preserve the left-right symmetry
of the theory, we will have to deal also with another particle which is a triplet of SU(2)L, call it
R
′
. The Lagrangian terms now read

LTY = Y ij tr
[
L̄iLHR

j
R

]
+ Y ij tr

[
HL̄iLR

′j
R

]
+ h.c., (7.18)

LTmix = M j
Lλ

ij
L q̄

i
LQ

j
R +mi

Rλ
ij
RuŪ

i
Lu

j
R +mi

Rλ
ij
RdD̄

i
Ld

j
R (7.19)

where Q is the T3R doublet in L and, on the contrary, U and D are the components of R with
charge 2/3 and 1/3, respectively.
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iii) Bidoublet model : we hypothize that the SM left-handed quarks qL mix with two composite
states, call them LU and LD, which are both doublets under SU(2)L and SU(2)R but differ for
the value of their charge X. The SM right-handed quarks uR and dR couple to two composite
singlets of both SU(2)L and SU(2)R, call them U and D, which again differ for the values of
their charge X. In Lagrangian terms we have that

LBDY =
(
Y ij
U tr

[
L̄iUH

]
L
U jR + h.c.

)
+ (U → D), (7.20)

LBDmix = mj
Quλ

ij
Luq̄

i
LQ

j
Ru +mi

Uλ
ij
RuŪ

i
Lu

j
R + (U, u→ D, d), (7.21)

where Qu and Qd are components of LU and LD, respectively.

To summarize all the properties of the fields just introduced, in Figure 7.3 we show their quantum
numbers and the model in which they enter.

Figure 7.3: Quantum number of the composite fermions introduced in the Eqs.(7.16)-(7.21). To
compute the X charge, it is sufficient to consider the expression Y = T3R + X, where Y is the

hypercharge. Taken from [171].

7.2 New bounds on fermion resonances from Flavour Physics

Starting from the effective Lagrangian (7.15), we are able to describe the interactions of the composite
degrees of freedom with the SM fields. Such interactions can give rise to BSM contributions to several
processes in Flavour Physics. A direct comparison between the theory and the experiments allows
then us to put important constraints to the physical parameters of CH scenarios, that is precisely the
goal of this Section.

Note that, to achieve this goal, we will apply the results of the EFT study developed in the previous
Chapter to the specific case of CH models. In Table 6.1 we have summarized all the bounds obtained
on the WCs (at the 1 TeV scale). The ones relevant for applications to Composite Higgs are shown
in bold. All these results will be rephrased, in what follows, on new bounds on the mass mΨ of the
composite fermions, that have been introduced in the previous Section. Now, the SM up-type Yukawas
can be related to the strong ones as:

yu = YUsLu1sRu1, yc = YUsLu2sRu2, yt = YUsLu3sRu3, (7.22)
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where we have defined

sii{L,R} =
λ{L,R}i√

1 + (λ{L,R}i)2
.

Recall that the composite-elementary mixings λ{L,R} have been defined in the Eqs.(7.16)-(7.21). Hav-
ing in mind that expressions analogous to (7.22) hold for the down-type quarks, we can also express
the CKM matrix elements as Vij ∼ sLi/sLj (i < j) for the doublet and the triplet representations of
the fermion modes, while as Vij ∼ sLdi/sLdj ± sLui/sLuj for the bidoublet one. Thus, in the doublet
and the triplet representations we have only one free parameter, namely xt ≡ sL3/sRu3, while in the
bidoublet case we have two free quantities, i.e. xt ≡ sLt/sRt and z ≡ sLt/sLb. All these quantities will
be often used in the computations developed in the remaining part of this Chapter.

At this point, one question naturally arises: how can we ensure the hierarchical structure of the
SM Yukawas in Eq. (7.22) (and analogously for the down-type ones) while being consistent with the
stringent flavour constraints on higher-dimension operators? Basically, there are two possible ways.

• We assume that the strong Yukawas YU,D have an anarchic structure, in other words all their
matrix elements are of similar order. This is the so-called anarchic scenario, that has been
widely studied in literature, see for instance [172–179]. In this case, the hierarchical form of
the SM Yukawas is thus generated by the composite-elementary mixings s{L,R} (or, equivalently,
λ{L,R}), which must then be hierarchical.

• We assume a specific flavour structure for the strong sector. In this case, all the physical
quantities related to the strong sector are characterized by a precise flavour symmetry. The
most famous and possible choices are the U(3)3 models (that are MFV frameworks) and the
U(2)3 ones, which have been described in Chapter 6. Note that, in these cases, the composite-
elementary mixings are the only sources of breaking of the flavour symmetry of the composite
sector.

At this point, in what follows we will firstly recall how the composite resonances enter both the
tree level ∆F = 2 FCNCs and the coupling of the SM gauge bosons. Then, we will compute the
bounds on mΨ corresponding to each of the processes involving B-mesons previously studied, namely
b→ s`+`−, Bd,s mixing and finally b→ sγ.

• Flavour changing Z couplings

In CH scenarios, flavour changing Z couplings arise and are directly linked to the modified Zbb
coupling [171]. Firstly, we write that coupling as

g

cw
b̄γµ

[(
gL,SMZbb + δgLZbb

)
PL +

(
gR,SMZbb + δgRZbb

)
PR

]
bZµ =

g

cw
b̄γµ

[(
−1

2
+

1

3
s2
w + δgLZbb

)
PL +

(
1

3
s2
w + δgRZbb

)
PR

]
bZµ,

(7.23)

where sw, cw are the sine and the cosine of the Weinberg angle and g ≡ g2. Secondly, we consider the
diagrams of interest in order to compute δgL,RZbb . The two relevant diagrams (for each helicity case) are
characterized by two insertions of the Higgs VEV < h >≡ v in correspondence of the mixings between
elementary and composite fermions (Figure 7.4a) or of the ρ − Z one, being ρ a vector mode Figure
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7.4b). Putting together the elementary-composite mixings, the propagators, the ρ − Z coupling and
(only in the first case) the composite Yukawas, we obtain the final expressions

δgLZbb =
v2Y 2

Dxtyt
2M2

DYU
a+

v2g2
ρxtyt

4m2
ρYU

b, (7.24)

δgRZbb =
v2Y 2

Dy
2
bYU

2M2
DxtytY

2
D

c+
v2g2

ρy
2
bYU

4m2
ρxtytY

2
D

d,

where the values of the coefficients a, b, c, d depend on the fermion representation, see Table 7.1.

(a) (b)

Figure 7.4: The two relevant Feynman diagrams to determine the BSM contributions to flavour
changing Z couplings in CH scenarios. The bold purple lines represent the (both fermion and vector)

composite degrees of freedom, while the purple dotted lines are the Higgs insertions.

Table 7.1: Values of the coefficients a, b, c, d in Eq. (7.24) for the various fermion representations:
doublet (D), triplet (T) and bi-doublet (BD).

D T BD

a 1/2 0 1/(2z2)
b 1/2 0 1/z2

c -1/2 -1/2 0
d -1/2 -1 0

Since we are interested in the Zbs case, we have to take into account a modification in one
elementary-composite mixing with respect to the δgL,RZbb case. Since

s2D
L = Vts × s3D

L , (7.25)

s2D
R =

ys
YDs2

L

=
ys

YDVtss3
L

=
ys

YDVts

√
YU
xtyt

=
ms

mbVts
× yb
YD

√
YU
xtyt

=
ms

mbVts
× s3D

R , (7.26)
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being s3D
L and s3D

R the analogous elementary-composite mixings in the Zbb case, we can state that

δgLZbs ∼ Vts δgLZbb, δgRZbs ∼
ms

mbVts
δgRZbb. (7.27)

In order to constrain the fermion mass mΨ from modified Z couplings, it is sufficient to relate

δgL,RZbs to the WCs c
(′)
9,NP , c

(′)
10,NP . In fact, one can show that

− g
2

c2
w

1

m2
Z

δg
L(R)
Zbs ×

(
−1

2
+ 2s2

w

)
= c

(′)
9,NP , (7.28)

− g
2

c2
w

1

m2
Z

δg
L(R)
Zbs ×

(
+

1

2

)
= c

(′)
10,NP , (7.29)

where the quantities in parenthesis in the are linear combinations of the left-handed and the right-
handed Zµµ couplings in the SM. The numerical study shows that the right coupling δgRZbs (related
to the primed Wilson coefficients c

′

9(10),NP ) gives a weaker bound on mΨ with respect to the one

coming from the left coupling δgLZbs (related instead to the unprimed Wilson coefficients c9(10),NP ).

Furthermore, Eqs. (7.28)- (7.29) show that the constraints from the coefficients c
(′)
10,NP are stronger

than the ones by c
(′)
9,NP due to the enhancement by the axial (or equivalently L − R) coupling of the

Z to the muon pair.
Let us briefly discuss what happens for the various choices of the flavour pattern of the strong

sector. Eq. (7.27) is valid only for the anarchic scenario. For the U(2)3 models, we do not have sizable
flavour-changing right-handed Z coupling, while the flavour-changing left-handed one has the same
structure present in Eq. (7.27) if a further assumption is made. In fact, by construction in U(2)3 models
the mixings can be chosen diagonal, but not proportional to the identity matrix. For this reason, in
U(2)3 computations one has to consider an additional parameter, let us call it rb [171], which can
be in principle complex. Thus, we recover Eq. (7.27) for the left-handed coupling in U(2)3 models
if we require rb to be O(1). Finally, in U(3)3 models no modification of both the flavour-changing
left-handed and the flavour-changing right-handed couplings arise, as a consequence of the symmetry
pattern chosen.

In conclusion, in Table 7.3 we show the lower bounds on mΨ resulting from the constraints on
c10,NP . Note that, if we set z = 1, the bi-doublet model value results enhanced by a factor ∼ 1.15
with respect to the corresponding doublet one.

• ∆F = 2 processes

In CH theories, a new contribution to ∆F = 2 interactions comes from an exchange of vector modes
between four fermions at tree level (without the insertion of Higgs VEVs). In this sense, the WCs
introduced in Eq. (6.21) can be expressed as

cbqABV (S) =
g2
ρ

m2
ρ

gbqA g
bq
B γ

bqAB
V (S) , (7.30)

where A,B = L,R and gbqA(B) are functions of the various elementary-composite mixings. The values

of the coefficients γbqABV (S) follow from group theory considerations, thus depend on the flavour pattern
associated to the strong sector and on the particular representation of the fermion modes. Their values
can be found in the Appendix A of [171].
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At this point, since
g2
ρ

m2
ρ

=
1

f2
=

Y 2

m2
Ψ

, (7.31)

we can use the upper bounds on the WCs cbqABV (S) , previously obtained, in order to set a lower bound
on the mass mΨ of the fermion modes. Let us consider separately the NP contribution to the vector
and to the scalar WCs.

i) Contribution to the vector WC cbqLLV

In this case, the elementary-composite mixings read

gbqL = sbLs
q
L ∼ VtbV

†
tqs

2
L3 ∼ VtbV †tq

xtyt
Y

(q = d, s). (7.32)

Note that under the assumption YU = YD ≡ Y there is no difference in this expression between
the doublet, triplet and bidoublet fermion representations. From Eq. (7.30) we thus have

mΨ =

√√√√γbqLLV (VtiV
†
tjxtyt)

2

cbqLLV

(q = d, s). (7.33)

Hence, the upper bounds on the Wilson coefficients (6.23) and (6.27) become lower bounds on
the mass of the fermion modes, whose values are reported in Table 7.3.

For what concerns the flavour symmetry of the strong sector, these expressions are in general
valid for both the anarchic scenario and the U(3)3 models. In these cases, then, the NP terms
in the amplitudes will have the same CKM suppression that we see in the SM, as discussed
in Eq. (6.10) in the previous Chapter. In U(2)3 models, instead, this statement is true if the
additional parameter rb (that we have previously described) is real, otherwise in principle a new
phase can arise from NP contributions. In other words, Eqs. (7.32)-(7.33) are still valid in U(2)3

models if rb is a real and O(1) parameter.

ii) Contribution to the scalar WC cbqLRS

Here we are interested also to the right-handed elementary-composite mixings, which read

gbqR = sbRds
q
Rd ∼ (z2)

ybyq

Y xtytVtbV
†
tq

(q = d, s), (7.34)

where again YU = YD ≡ Y and the factor z2 in parenthesis applies only in the bidoublet
representation. Hence, from Eq. (7.30) we finally find that

mΨ =

√
(z2)

ybyq

cbqLRS

, (q = d, s). (7.35)

Note that in this case γbqLRS = 1 for every choice of the fermion representation. In conclusion,
the resulting lower bounds on the mass of the fermion modes are reported in Table 7.3.

For what concerns the flavour pattern of the strong sector, this bound is valid only in the anarchic
scenario. By construction, in both the U(3)3 and the U(2)3 the right-handed contributions are
zero.
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• Right-handed W couplings

The composite modes enter radiative B decays, i.e. b→ sγ transitions, since a BSM right-handed W
coupling to the quarks arise. We will be interested only in the one-loop IR contribution to the Wilson

coefficients C
(′)
7 [154], which can be directly related to mΨ as follows. Let us compute the effect of the

right-handed Wtb (Wts) coupling to C7 (C
′
7) by writing this coupling in the Lagrangian of the theory.

Consider for example the Wtb case (the other one is completely analogous). This coupling takes the
form

g√
2
δgRWtb(t̄γ

µPRb)Wµ. (7.36)

Similarly to the Zbb case, the two relevant diagrams are characterized by two insertions of the Higgs
VEV < h >≡ v in correspondence of the mixings between elementary and composite fermions or of
the ρ−W one, being ρ a vector mode. From the point of view of Feynman diagrams, the situation is
completely equivalent to what seen for flavour changing Z coupling in Figure 7.4.

Putting together the elementary-composite mixings, the propagators, the ρ−W coupling and (only
in the first case) the composite Yukawas, we obtain the final expression

δgRWtb =
v2

2

ybYU
m2
Qxt

a+
g2
ρv

2

4m2
ρ

yb
YDxt

b, (7.37)

where again the values of the coefficients a, b depend on the choice of fermion representation, see Table
7.2. Thus, the quantity (7.37) is related to the WCs as

C7 =
mt

mb

δgRWtb

Vtb
Gloop(

m2
t

m2
W

), (7.38)

where Gloop is a loop-function, in particular Gloop(m
2
t /m

2
W ) ' −0.78.

Table 7.2: Values of the coefficients a, b in Eq. (7.37) for the various fermion representations:
doublet (D), triplet (T) and bi-doublet (BD).

D T BD

a 1 1 −2xtyt/Y
b 1 1 0

Furthermore, we can also find a relation involving C
′
7 rather than C7, i.e. an expression analogous to

Eq. (7.38). In order to determine δgRWts, we have to take into account a different elementary-composite
mixing with respect to the δgRWtb case, while the rest of the computation is identical. Recalling equation
(7.26), since

s2D
R =

ms

mbVts
× s3D

R , (7.39)

being s3D
R the elementary-composite mixing in the Wtb case, it is clear that

C
′
7 =

mt

mb

ms

mbV
2
ts

δgRWtbGloop(
m2
t

m2
W

). (7.40)

Hence, the IR contribution to C
′
7 is enhanced by a factor ms

mbV
2
ts

with respect to the C7 case.
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In Table 7.3 we show the lower bounds on mΨ resulting from Eq. (7.40) by taking into consideration
the upper bound at 2σ on the imaginary part of C

′
7, which is slightly smaller than the one on its real

part. This bound is valid only in the anarchic scenario since, by construction, in the U(3)3 and the
U(2)3 models no NP contributions to the right-handed W couplings arise.

Table 7.3: Lower bounds on mΨ (in TeV) in the anarchic model from all the processes studied in these
sections. The results are presented for different choices of the fermion representation: doublet (D),
triplet (T) and bi-doublet (BD). Under the assumptions described in the main text, the bounds from
QbdLLV and QbsLLV apply also in the U(3)3 scenarios, while the ones from QbdLLV , QbsLLV and O10 are

still valid in the U(2)3 models.

Lower bounds on mΨ (TeV)
Operators D T BD

O10 8.7
√
Y xt — 10.0

√
Y xt/z

QbdLLV 7.7xt 11.1xt 11.1xt
QbdLRS 2.3 2.3 2.3 z

QbsLLV 8.0xt 11.5xt 11.5xt
QbsLRS 2.1 2.1 2.1 z

O
′
7 3.7

√
Y /
√
xt 3.7

√
Y /
√
xt 3.7

Im(C7
' NP )

CV
bdLL

CV
bsLL

C10
NP

FCC
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Figure 7.5: The correlation plot mΨ(TeV) VS Y choosing the doublet model as fermion representation
(we have set xt = 1). The constraints from Re

(
cbdLRS

)
and Re

(
cbsLRS

)
are not shown. All these

constraints are valid in the anarchic scenario. Under the assumptions described in the main text, the
bounds from CbdLLV and CbsLLV apply also in the U(3)3 scenarios, while the ones from CbdLLV , CbsLLV

and CNP
10 are still valid in the U(2)3 models.
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Figure 7.6: The correlation plot mΨ(TeV) VS Y choosing the bidoublet model as fermion representa-
tion (we have set z = xt = 1). Also in this case the constraints from Re

(
cbdLRS

)
and Re

(
cbsLRS

)
are

not shown. The same considerations present in the caption of Figure 7.5 apply for the various possible
flavour patterns of the strong sector.

7.2.1 Summary plots

In this Section we show a summary of all the results found until now (and shown in Table 7.3) as
correlation plots of the fermion mass mΨ VS the Yukawa coupling in the strong sector Y . We will
study two possible choices of the fermion representation, i.e. the doublet model and the bidoublet one,
separately.

In Figure 7.5 we show our results in the doublet model. Here the results in the ”D” column of
Table 7.3 are graphically represented, according to the color code described in Figure 7.5 itself. Since
xt is a free parameter varying in the range

yt
Y
< xt <

Y

yt
,

we make the conservative choice xt = 1. Note that there are other indirect bounds present in this
plot, represented as black curves. The dashed one results from the indirect Higgs coupling constraints
expected at FCC-ee [13], corresponding to ξ ≡ v2/f2 = 0.004. The dotted line comes from the chiral
enhancement to εK expected from the scalar operator QsdLRS , as shown in [171]. Finally, the dot-
dashed curve corresponds to the bound from the Z partial width into b quarks, i.e. from Rb, that
emerges from a modification of the Zbb couplings in CH [171]. Note that, contrarily to the first one,
these two last bounds are expected not to improve so much in the future decade, given the very high
precision with which the related physical quantities have been measured until now.

At this point, few observations are in order. First of all, the most important message is that the
bounds coming from flavour physics result to be comparable to the ones coming from the other indirect
searches, in some cases even stronger. To be more specific, the constraint from the WC CNP10 is the
most solid one, being less stringent than the one from εK only in the range Y . 2. In particular, these
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two bounds push the fermion mass mΨ in the range O(15− 20) TeV, so that we can finally state that
in not-completely natural CH models the doublet model is characterized by a huge predictivity.

In Figure 7.6 we show the analogous correlation plot choosing instead the bidoublet model. Here
we use the results presented in the ”BD” column in Table 7.3, preserving the same colour code of
Figure 7.5. In addition to xt, another free parameter z ≥ 1 has to be fixed, hence we choose the values
xt = z = 1 in order to not further enhance the εK constraint. Here the situation is very similar to the
doublet case, thus we observe again the fundamental role of the limits coming from phenomenology
and flavour physics. The main differences are the stronger bound of the ∆B = 2 transitions, slightly
weaker than the εK one, and the more stringent constraint from CNP10 with respect to the one in the
doublet model, in particular for what concerns the high-Y region.
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Chapter 8

Explicit models II: LeptoQuarks

In this Section we will review the main motivations for and physical properties of the LeptoQuarks
(LQs). In the past five years, these BSM degrees of freedom have received a lot of interest especially
in relation to the flavour anomalies, which we have described from an EFT point of view in Chapter
6. As we will see, many theoretical studies have been developed in order to explain the discrepancy
between expectations and measurements observed in these observables through LQs. While we have
proposed in Chapter 4 a study of the semileptonic B → D(∗)`ν decays that allow to lighten the tension
in the R(D(∗)) case, this is not the same for the R(K(∗)) ratios. Thus, we will review the results of
other studies about the impact of the LQs on the analysis of the LFU observables in semileptonic
B decays. Finally, we will mention possible UV completions of these theories, which allow also to
link CH scenarios and LQs to each other. Note that this Section of review is also functional to the
description of a particular Dark Matter model mediated by LQs, as we will describe in the following
Part III.

8.1 Theoretical Framework

8.1.1 Candidates and Nomenclature

The LeptoQuarks were originally introduced by Pati and Salam in the 70s [180–182] and then further
studied in the last forty years, see for instance [183–190]. They are BSM degrees of freedom that can
turn leptons into quarks and viceversa, thus having the fundamental property of unifying matter.

In what follows, we will develop a classification of all the possible LQs that one can define, specifying
their quantum numbers under the SM SU(3) × SU(2) × U(1) gauge group [191]. In this sense, it is
important to define the fermion number F = 3B + L, where B and L are the baryon and lepton
number, respectively. We have a totality of six scalar and six vector LQs, that are shown in Table 8.1.
Let us explain the rationale of such a classification and the main properties of these BSM particles.

First of all, since a LQ couples a quark and a lepton, which are triplets and singlets under SU(3),
respectively, all the LQs candidates have the same representation under SU(3). The assignment of
the dimensionality under SU(2) is, instead, not trivial, since both quarks and leptons are doublets
or singlets (according to their chirality) under SU(2). From group theory considerations, this implies
that a LQ can be a triplet, a doublet or a singlet under SU(2) and this choice is specified by the
subscript of the symbol associated to each LQ candidate. Furthermore, it can happen that many LQs
share the same SU(3) and SU(2) quantum numbers, but having different values of the hypercharge
Y . To highlight such a difference, a tilde or a bar is used in the LQ symbol. To explicitly compute
the LQ candidates hypercharge, group theory considerations are again straightforward. In fact, since
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Table 8.1: Classification of all the possible scalar (S) and vector (V) LQs, respectively [191].

Symbol (SU(3), SU(2), U(1)) S/V Fermion number

S3 (3̄,3,1/3) S -2
R2 (3,2,7/6) S 0

R̃2 (3,2,1/6) S 0

S̃1 (3̄,1,4/3) S -2
S1 (3̄,1,1/3) S -2
S̄1 (3̄,1,-2/3) S -2

Uµ3 (3̄,3,2/3) V 0
V µ

2 (3̄,2,5/6) V -2

Ṽ µ
2 (3̄,2,-1/6) V -2

Ũµ1 (3,1,5/3) V 0
Uµ1 (3,1,2/3) V 0
Ūµ1 (3,1,-1/3) V 0

Y is an additive quantity, it is sufficient to compute the value of the hypercharge of the contraction
of the particular quark and lepton representations associated to each LQ candidate.

In conclusion, note that in many UV completions of the theory incorporating one of these me-
diators, the LQs arise with partners of similar mass but different representations under the SM
SU(3) × SU(2) × U(1) gauge group. For this reason, one often considers two or more LQ candi-
dates for developing phenomenological applications to low-energy processes in Flavour Physics. These
facts will be deeply investigated and discussed in the following Sections.

8.1.2 The vector Uµ
1 and the scalars S1 and S3

The general expressions of the LQs couplings to the SM particles (namely the Higgs, the gauge bosons
and the quark-lepton pairs) can be found in the Appendices of [191]. Here we will examine some
illustrative examples, i.e. the vector LQ Uµ1 and the scalar ones S1 and S3, since they have a central
role in the phenomenological applications to several flavour observables.

Let us thus start from this latter case. From Table 8.1 we see that the quantum numbers of Uµ1
under the SM gauge group are (3, 1, 2/3), thus its interactions with the left-handed quarks Qi and
leptons Lα have the following Lagrangian structure:

LU ⊃ gU (JµUU1,µ + h.c.), JµU ≡ βiαQ̄iγµLα, (8.1)

where i, α are flavour indices. The structure of the 4-current JµU depend on the matrixes βiα, whose
expressions are influenced by the particular flavour structure that we decide to assign to our model.
In other words, there will be a certain number of complex parameters which JµU depends on, whose
definition fix the flavour structure of the theory. Moreover, we can obtain the form of the effective
Lagrangian by integrating out the LQ Uµ1 field, thus obtaining

LU,eff ⊃ −
|gU |2
2M2

U

βiαβ
∗
jβ

[
(Q̄iγµσ

aQj)(L̄βγµσaLα) + (Q̄iγµQ
j)(L̄βγµLα)

]
, (8.2)

where MU is the LQ mass.
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The same considerations can be developed for the scalar LQs S1 and S3, whose quantum numbers
are (3̄, 1, 1/3) and (3̄, 3, 1/3), respectively. Using the same notation adopted in Eqs. (8.1)-(8.2), their
interactions can be written in Lagrangian form as

LS ⊃ g1β1,iα(Q̄c iεLα)S1 + g3β3,iα(Q̄c iεσbLα)Sb3 + h.c., (8.3)

where we have defined ε ≡ iσ2 and Qc ≡ CQ̄T . Moreover, Sb3 are the three components of S3 under
SU(2). Also in this case the mixing matrices β1,iα and β3,iα depend on the flavour structure of the
theory and are, in general, different to each other. We can obtain the expression of the effective
Lagrangian by integrating out the two scalar LQs, obtaining

LS,eff ⊃− (
|g1|2
4M2

S1

β1,iαβ
∗
1,jβ −

|g3|2
4M2

S3

β3,iαβ
∗
3,jβ)

[
(Q̄iγµσ

aQj)(L̄βγµσaLα)
]

+ (
|g1|2
4M2

S1

β1,iαβ
∗
1,jβ + 3

|g3|2
4M2

S3

β3,iαβ
∗
3,jβ)

[
(Q̄iγµQ

j)(L̄βγµLα)
]
,

(8.4)

where MS1 and MS3 are the masses of the scalar LQs S1 and S3, respectively.

8.2 Phenomenological applications to the flavour anomalies

In the recent few years, lots of papers in literature have analyzed the impact of LQs on the study of
Flavour observables in a BSM framework. In what follows, we will review a very illustrative example
in this sense, i.e. the flavour anomalies, whose EFT description has been illustrated in Chapter 6. To
simplify the discussion, we will limit ourselves to consider the results of the papers [192, 193], where
the authors have considered the simple scenario of a vector LQ Uµ1 . We anticipate that these models
will be studied more in detail in Chapter 11, however we give here an introduction for convenience.

8.2.1 Effective interactions of the vector LQ Uµ
1 with the SM fields

In view of phenomenological applications, it is important to write down an effective Lagrangian to
describe the interactions of the LQ Uµ1 with the SM particles. The authors of [192,193] have considered
a slightly more general case than the one in Eq. (8.1), namely the possibility that the LQ can interact
also with right-handed fields. From the mathematical point of view, the resulting fermion current will
thus take the new form

Jµ =
1√
2

[βiαL (Q̄iLγµL
α
L) + βiαR (d̄iRγµe

α
R)], (8.5)

where a new hermitian matrix βiαR has been introduced. Now, without loss of generality they have
chosen for the SU(2) doublets the following mass eigenstate basis:

QiL = (V ∗jiu
j
L diL)T , LiL = (νiL eiL)T ,

where Vji is the CKM matrix. In this way, they have expressed the matrices βiαL , β
iα
R with the following

form [192,193]:

βL =




0 0 βdτL

0 βsµL βsτL

0 βbµL 1


 , βR =




0 0 0

0 0 0

0 0 βbτR


 , (8.6)
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This is a very simple model, since one is retaining the minimal number of couplings that influence the
flavour anomalies, while setting all the other entries equal to zero. Moreover, one is assuming that
a hierarchy between these couplings exists, in accordance with the CKM flavour structure. In other
words, βdτL , β

sµ
L � βsτL , βbµL � 1 and finally βbτR = O(1).

Under these assumptions, the authors of [192,193] can finally integrate out the LQ Uµ1 and obtain
the following compact expression for the effective Lagrangian (that can be consider a generalization
of Eq. (8.2))

LU,eff = −2CU [− 2(βiαL )∗βlβR (L̄αLe
β
R)(d̄lRQ

i
L) + h.c.+ βiαR (βlβR )∗(ēβRγµe

α
R)(d̄iRγ

µdlR)

+
1

2
βiαL (βlβL )∗(L̄βLγµL

α
L)(Q̄iLγ

µQlL) +
1

2
βiαL (βlβL )∗(L̄βLσ

aγµL
α
L)(Q̄iLσ

aγµQlL)].
(8.7)

Here we have defined CU ≡ g2
U/(4M

2
U ), by reabsorbing the energy scale of Eq. (6.1) directly inside the

WC.

8.2.2 The influence of Uµ
1 on the flavour anomalies

In order to see the effect of the vector LQ Uµ1 on the flavour anomalies, the authors of [192,193] have
developed the EFT approach to the R(D(∗)) and the R(K(∗)) ratios that we have described in Chapter
6. Let us examine the two cases separately.

For what concerns R(D(∗)), in this simplified model the vector LQ Uµ1 induce important con-
tributions to these flavour observables at tree-level. Note that, in this sense, a sizable effect comes
from the right-handed coupling βbτR (defined in Eq. (8.6)). By recalling the discussion developed in
Chapter 6, the easiest way to estimate the effect of Uµ1 to R(D(∗)) is to use the following approxiamte
formulæ [192]:

R(D) ' R(D)SM ×
{

1 + 2CUv
2 Re

[
(1− 1.5ηs(β

bτ
R )∗)

(
1 +

Vcs
Vcb

βsτL +
Vcd
Vcb

βdτL

)]}
, (8.8)

R(D∗) ' R(D∗)SM ×
{

1 + 2CUv
2 Re

[
(1− 0.14ηs(β

bτ
R )∗)

(
1 +

Vcs
Vcb

βsτL +
Vcd
Vcb

βdτL

)]}
, (8.9)

where the factor ηs ∼ 1.8 takes into account the running of the scalar operator in Eq.(8.7).
For what concerns instead R(K(∗)), they have to consider the Uµ1 contributions both at tree level

and the one loop level. To simplify the discussion, in Eq. (8.6) they have assumed a vanishing coupling
of the LQ to the electrons, thus Uµ1 will affect at tree level only the b → sµµ and the b → sττ
transitions. This translates into the following NP contribution to the WCs C9 and C10 (see Eq. (6.6)
for the definition of the corresponding operators) [192,193]

CNP,``9 = −CNP,``10 = − 2π

αVtbV
∗
ts

CUv
2βs`L (βb`L )∗. (8.10)

Note finally that there is also, as mentioned before, a loop level contribution to b → s`` transitions,
that give rise to another NP contribution to C9, namely [194]

CNP,loop9 ' − 1

VtbV
∗
ts

2

3
CUv

2βsτL (βbτL )∗ log[m2
B/M

2
U ]. (8.11)

Although not explicitly reviewed in this Thesis, note that the flavour structure (8.6) will influence
and induce important contributions also to other low-energy processes in flavour physics, as for instance
the leptonic Bc → τν and B → τν decays.
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8.2.3 Summary plots

In Figure 8.1 the results of the very recent analysis in [193] of the flavour anomalies in this simplified
Uµ1 model are shown. The authors have defined

δR(K(∗)) =
R(K(∗))−R(K(∗))SM

R(K(∗))SM
, δR(D(∗)) =

R(D(∗))−R(D(∗))SM

R(D(∗))SM
, (8.12)

where the theoretical estimates R(D(∗))SM correspond to the HFLAV estimates in Eq. (3.3), while the
R(K(∗))SM ones have been read from [195]. For what concerns instead the experimental values, the
R(D(∗)) ones correspond to the HFLAV averages in Eq. (3.2), while the R(K(∗)) ones are the LHCb
measurements of these quantities [136,137] (which are also shown in Figure 6.2). As clear from Figure
8.1, there is a good agreement between the model and the data for both the choices of βbτR that have
been studied in [193], namely βbτR = 0 (left panel) and βbτR = −1 (right panel). The authors comment
also on the fact that the scenario with βbτR = −1 is a bit disfavoured than the one with βbτR = 0 since
the theoretical expectation of R(D∗) reported by HFLAV Collaboration is lower in mean value with
respect to its experimental average. For the readers who are interested in this point, this is clear from
the explicit fit results reported by the authors in Table 3.2 of [193].

In conclusion, note that in literature many other (more or less recent) similar studies are present,
often with different flavour assumptions. See for instance [196–201] for the R(D(∗)) ratios, [202–209]
for the R(K(∗)) ones and [210–213] for their combined explanation.

Figure 8.1: The coloured areas are the 1σ and 2σ regions preferred for explaining the R(D(∗)) and
R(K)[1.1,6] anomalies. The authors have adopted, in the R(D(∗)) case, the theoretical and the experi-
mental averages stated by the HFLAV Collaboration, see Eqs. (3.2)-(3.3). The orange area (left figure)
corresponds to the choice βbτR = 0, while the purple one (right figure) to βbτR = −1. Taken from [193].

8.3 Possible UV completions of the LQs theory

To conclude this review about LQs, let us examine a couple of examples of UV completion of the
theory, which is a very challenging topic. We know that LQs unify matter, pointing then towards
possible gauge coupling unification theories [214–216]. It is thus necessary to develop a mechanism
that can, in principle, unify the scalar LQs with the Higgs. This is not a simple task since the scalar
LQs may, in principle, mediate proton decay, which is subjected to very strong constraints. In other
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words, we have to ensure that the Higgs (which is a doublet of SU(2)), has to be light, while, at
the same moment, an associated scalar LQ (which is, by construction, a triplet of SU(3)) has to be
heavy enough to satisfy the bounds on the proton lifetime. This issue is often called the doublet-
triplet splitting problem. The main difficulty here is that the doublet and the triplet live in the same
representation, thus a large mass splitting between them is unnatural. So: which UV completion of
the theory can ensure a solution to these problems?

A first possibility is offered by SUSY. From the point of view of the field content of a supersym-
metric theory, each of the known fundamental particles of the SM has a so-called superpartner, whose
spin differs from its one by 1/2 unit. This means that each fermion will have a scalar superpartner and
viceversa. In the simplest realization of a theory with such a symmetry, called the Minimal Supersym-
metric Standard Model (MSSM), this property brings to new 32 distinct masses corresponding to (yet)
undiscovered degrees of freedom [217]. The link with the LQs is that the the scalar partners of all the
quarks have the same quantum numbers of the LQs themselves. However, the MSSM is characterized
by another fundamental property, the so-called R-parity or matter parity [218–222], which has the
role of ensuring the conservation of the baryon and the lepton numbers as a postulate and not as
an accidental symmetry, like it is in the SM. Again, this issue is a consequence of the experimental
non-observation of the proton decay, as discussed for instance in [223–225]. Turning back to LQs, the
unification of quarks and leptons within the SUSY framework requires the violation of the R-parity.
These topics have been widely discussed in the literature, see for instance [226–236].

A second possible UV completion is offered, instead, by the CH framework, which we have deeply
discussed in the previous Chapter 7. The idea is the following. As we have seen there, in these scenarios
a new strongly-coupled sector breaks (spontaneously) a global symmetry and, thus, the Higgs arise
as a composite pNBG. In the UV regime, this mechanism can be realized by introducing new heavy
degrees of freedom, called the hyper quarks Ψi

CH , which are vector-like and are also charged under a
(asymptotically free) gauge group, called the hyper colour GCH . Note that the hyper quarks have to
respect a fundamental property, namely to be charged under the EW SU(2)L×U(1)Y group [237–244].
At this point, one can also hypothize that they are charged also under the SU(3) group (as the LQs
are). In this way, one can obtain the scalar S1 and S3 as pNGBs, or the vector U1 and U3 as composite
vectors [245,246].



Part III

Dark Matter and its connection with
Flavour Physics
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Chapter 9

The existence and the detection of
Dark Matter

The majority of the amount of matter that constitutes our Universe is represented by non-baryonic
matter, namely the so-called Dark Matter (DM). The existence of DM has been demonstrated by
several astrophysical and cosmological probes, although at present its nature is completely unknown.
Observations suggest, however, that whatever Dark Matter candidate has to respect the following
physical properties and constraints:

• it can interact gravitationally and, more specifically, it must have the ability to form gravitational
clusters;

• it must be stable on cosmological time scales, since we can observe it and, thus, it cannot have
decayed by now;

• it has to be dark, then it cannot (or can very weakly) interact electromagnetically with photons;

• it cannot interact strongly with other particles, given the experimental bounds arising from Big
Bang Nucleosynthesis (BBN);

• it must have the same relic density that has been measured by Planck, i.e. [247]

ΩDMh
2 = 0.11933± 0.00091, (9.1)

where h represents the dimensionless Hubble constant.

In what follows, we will firstly review the main probes of the existence of Dark Matter and, considering
that it can suffer only gravitational and weak interactions, the possible experimental ways to detect
it.

9.1 Rotation curves of the galaxies

The first evidence for the existence of DM is represented by the distribution of the masses inside the
clusters of galaxies. Following the same ideas of the articles of Zwicky on the subject [248, 249], the
mass of a cluster can be derived through the virial theorem, according to which, assuming that the
total moment of inertia of the galaxies is zero in the center of mass frame, the kinetic energy K and the
potential energy U are related by the simple relation 2K +U = 0. Moreover, if the mass distribution
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is spherical, the potential energy can be expressed as U = −GM2/R (where M and R are the mass
and the radius of the cluster of galaxies, respectively), so that the virial theorem can be written as

< v2 >=
GM

R
,

where < v2 > represents the velocity dispersion of the galaxies inside the cluster.
Thus, one would expect this physical quantity to behave as < v2 >∝ 1/R at large distances from

the center of the cluster. This can be verified experimentally, since < v2 > is three times the velocity
dispersion along the line of sight, which can be determined through the Hubble law. However, a
typical result is shown in Figure 9.1. for the Triangulum Galaxy (or M33 galaxy). Here, the dashed
line represents the näıve theoretical expectation, while the solid one corresponds to the effectively
measured rotation curve. The only way to explain this behaviour is to assume the existence of much
more matter than only the visible one, namely the DM, inside the observed galaxy.

Figure 9.1: Rotation curve of the Triangulum Galaxy, taken from [250].

9.2 Gravitational lensing

A second important probe of the existence of Dark Matter is the so-called gravitational lensing, which
is a consequence of one of the most important tests of General Relativity, i.e. the deflection of light.

It is well-known that the trajectory of a massless particle, let us say for example a photon, can be
influenced and modified by the presence of a massive body. The resulting expression and numerical
value of the deflection angle can be exactly computed in General Relativity, for instance in presence of
a Schwarzschild background. From the historical point of view, the first observation of the deflection of
light was developed in 1919 by Eddington, Dayson and Davidson during a solar eclypse. They measure
the apparent position of a source behind the Sun during the eclypse, in which moment the light coming
from this source was able to reach the Earth thanks to the huge reduction of the solar luminosity. They
then computed the deflection angle of the light trajectory by comparing the measured position of the
source with another one, observed precisely when the Earth is on the opposite side of its revolutionary
orbit around the Sun.
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The same physical phenomenon is at present often used to study the distribution of DM inside both
galaxies and clusters. According to the level of distortion of the image observed, gravitational lensing
is divided into two opposite regimes, i.e. the weak and the strong lensing [251]. The two different
cases are graphically represented in Figure 9.2. The weak lensing, which is extremely common in the
Universe, is generated in regions where the massive body (namely the lens) is located further away
from the line of sight from the observer to the light source. For this reason, it produces only small
image distortions and, in fact, can be detected only through a statistical study of a huge number of
lensed sources. On the contrary, the strong lensing, which is much more rare than the weak one, occurs
when the massive body is located very near to the line of sight, thus producing high magnifications
and multiple images. Note that the strong lensing effects can readily be associated to specific and
dense mass distributions, in fact they are often studied in order to detect DM halos.

Figure 9.2: Graphical representations of weak (a) and strong (b) gravitational lensing. The lens is
illustrated as a gray elliptical galaxy, surrounded by a DM halo (which extends to the outer circle).
In the weak lensing case, the lens lies far from the line of sight (dashed line) between the observer
(eye) and the light source (star), thus only a single image is produced, subject to mild magnification
and distortion. On the contrary, in the strong lensing case the line of sight is aligned with the dense
central ellipse. For this reason, the light from the source reaches the observer by following different

paths, then generating separate images in the sky. Taken from [251].

9.3 Bullet Cluster

There is also another proof of the existence of Dark Matter, which can be considered direct and em-
pirical, that has to be mentioned, namely the Bullet Cluster (1E0657-558). It represents an important
example of colliding clusters. The majority of the baryonic mass present inside these clusters is in
the form of intergalactic gas, which reached very high temperatures because of the collision. This
increase of temperature has determined a huge emission of X-rays, which are detectable through a
X-ray telescope. This is an observational strategy to detect the matter distribution of the colliding
clusters and generates the pink area in Figure 9.3. At the same time, the total mass of the Bullet
Cluster can be reconstructed by weak lensing, since both the clusters act like gravitational lenses, and
thus detectable through an optical telescope. The corresponding matter distribution is represented by
the blue area in Figure 9.3.

The entity of the pink and the blue areas allows one to state that a non-negligible tension exists
between the distribution of ordinary matter and the total mass of the Bullet Cluster, as clearly shown
in [252, 253]. A direct and natural explanation of this discrepancy is the existence of non-baryonic
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matter inside the clusters. Note that the debate on this issue is still on-going. In fact, the theoretical
expectation (that do not reproduce the observation) coming from the numerical cosmological simula-
tions in the ΛCDM model seems not to be stable under the change of some properties of the codes
themselves, such as the size of the simulated model box.

Figure 9.3: Image of the Bullet Cluster. See the text for details about the physical meaning of the
pink and the blue areas.

9.4 An instructive example: the WIMP paradigm

Let us highlight that, both in what follows and in the following Chapters, we will specialize the
discussion on the assumption of an elementary nature of DM [254]. This is not the unique possibility.
In fact, there are other models that hypothize the existence of extended objects as DM. In this sense
probably the best example is offered by the Primordial Black Holes [255–257], which have gained
increasing interest in the recent few years [258–260] after the first detections of Gravitational Waves
from black hole binaries.

At present, there exist many models of DM candidates of elementary nature which can explain
the observed abundance of DM in our Universe (9.1) and which have all the properties discussed at
the beginning of this Chapter. Among them, without any doubt the most famous one is represented
by Weakly Interacting Massive Particles (WIMPs). In this Section, we will give an introduction to
the physics underlying the WIMP scenario and we will then extend the discussion to two possible
generalizations, i.e. the inclusion of bound states in Chapter 10 and the thermal decays of DM in
Chapter 11.

In the standard scenario, one assumes that in the early universe WIMPs were produced in collisions
between particles of the thermal plasma. In fact, in this phase of the history of the Universe the
termperatures were very high, T � mχ (where mχ is the WIMP mass), thus the colliding SM particles
pairs had enough energy to create efficiently WIMPs. Note that also the inverse reactions, i.e. the
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ones that convert WIMPs into SM particles, were initially in equilibrium with the aforementioned
production processes. To summarize, we are considering annilihation processes of the form DM DM↔
SM SM, whose common rate can be indicated as

Γann = 〈σannv〉neqχ , (9.2)

where σann represents the WIMP annihilation cross section and v is the relative velocity of the WIMPs.
Moreover, neqχ is the WIMP number density at the thermal equilibrium and, finally, the brackets
indicate an average over the WIMP thermal distribution.

Now, during the expansion of the Universe the temperature decreased. In particular, WIMPs
decoupled from the thermal plasma when T < mχ. Thus, in this phase their abundance lowered
and lowered, until ”freezing out” when the expansion rate of the Universe became larger than the
WIMP annihilation rate, i.e. when H > Γann, where H denotes the Hubble constant. Note that the
expression freeze out has a precise meaning: when H > Γann, the annihilation of WIMPs ceased and,
thus, the number of WIMPs in a comoving volume remained approximately constant.

From a quantitative point of view, some numerical estimates can be developed by describing the
evolution of the WIMP density through the Boltzmann equation, namely

dnχ
dt

+ 3Hnχ = −〈σannv〉
[
(nχ)2 − (neqχ )2

]
, (9.3)

where t is time. An alternative formulation is also possible. From the law of entropy conservation,
namely

ds

dt
= −3Hs, (9.4)

where s represents the entropy density, we can rephrase the Boltzmann equation (9.3) as

dY

dx
=

1

3H

ds

dx
〈σannv〉(Y 2 − Y 2

eq), (9.5)

where we have defined the abundance Y ≡ n/s and the variable x ≡ m/T . Recalling that in cosmology
the entropy density is s = 2π2g∗T 3/45, where g∗ counts the number of relativistic degrees of freedom,
one can solve numerically the Boltzmann equation (9.5) by imposing the initial condition Y = Yeq
at x ' 1, in order to compute the present WIMP abundance Y0. In Figure 9.4 we show the final
result for illustrative purposes. This plot allows us to finally summarize what said before. At the
freeze out temperature (Tfo), since the WIMP annihilation rate becomes of the order of the Hubble
expansion rate, the WIMP annihilation becomes negligible and, thus, the WIMP abundance per
comoving volume reaches its final value. Note that in the standard cosmological scenario the WIMP
freeze out temperature is Tfo ' mχ/25 [261].

In conclusion, this machinery allows us to compute the WIMP relic density, namely

ΩDMh
2 =

ρ0
χ

ρ0
c

h2 ' 3 · 10−27

〈σannv〉
cm3 s−1, (9.6)

where ρ0
χ and ρ0

c are the present WIMP and critical density respectively. By recalling the observed
value of ΩDMh

2 (9.1), one thus has that 〈σannv〉 ' 3 · 10−26cm3 s−1, which implies that we have
obtained a cross section of weak strength for WIMPs. This scale of the annihilation cross section is
what is expected in several BSM scenarios for a new particle with mass around the EW scale that
interacts via the EW force. This coincidence is known as the WIMP miracle and has provided a very
strong motivation for experimental WIMP searches.
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Figure 9.4: Typical evolution of the WIMP abundance in the early universe during freeze-out.
Taken from [262].

9.5 How to detect Dark Matter?

Once convinced about the existence and the properties of DM, we can ask themselves which are the
experimental strategies in order to detect it. This is a fundamental task, since measurements can in
principle exclude theoretical models and candidates of DM which have been widely proposed in the
past decades. For this reason, the search for DM is at present one of the most important experimental
challenges for physics and can be distinguished in three distinct lines of research: Direct Detection,
Indirect Detection and production at high-energy colliders. Let us explain the main ideas underlying
these three experimental strategies, graphically illustrated in Figure 9.5.

9.5.1 Direct Detection of DM

The idea at the basis of Direct Detection (DD) strategies is the possibility to detect WIMP candidates
through their scattering with nuclei in Earth-based experiments. Note that the same strategy can be
implemented also for the detection of neutrinos through their elastic interaction with nuclei. For this
reason, in fact, this kind of scattering constitutes a fundamental background for DD measurements,
called neutrino floor, that cannot be eliminated because of the neutrino flux from the sky and that
originates a signature that is indistinguishable from the one of a WIMP candidate. Very different
techniques have been implemented over the time to detect the scattering of WIMPs on nuclei, namely
scintillation light, which can be produced by de-excitation of nuclei, charge from ionization of atoms
or phonons in bubble chambers. This is very challenging from the experimental point of view since,
depending on the choice of the particular detection technique, a variety of target materials are employed
in DD experiments. In the following Sections, we will analyse the impact of DD searches on two specific
DM models.
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Figure 9.5: Schematic representation of the possible experimental strategies to detect DM particles.
Taken from [263].

9.5.2 Indirect Detection of DM

Another intriguing possibility for DM discovery is offered by Indirect Detection (ID) techniques. As
clear from Figure 9.5, the basic idea is to detect the products of annihilation processes involving DM
particles, which can be in principle significant in our Universe. In other words, we should be able
to detect an excess of SM particles above the standard astrophysical background and consequently
address this issue towards the presence of DM annihilation processes.

Also in this case different experimental techniques can be implemented, namely we can look for
different types od produced SM particles. The more attractive choice is constituted by the γ-rays,
which can be emitted in different ways and thus produce very distinct spectral features. In this
sense, photon observations can be primarily developed either with space telescopes and with ground-
based Cherenkov detectors. We will see the impact of such kind of DM searches in the WIMP
scenario. Note that other types of ID strategies can be complementary to γ-ray observations, namely
the measurements of charged cosmic rays and/or neutrino telescopes.

9.5.3 Production of DM at colliders

The last possibility to detect DM is to directly produce it at colliders, given the interactions with the
SM particles that each DM candidate has. Since by definition it is dark, such a particle is invisible to
the detectors. Thus, the relevant signature that we can associate to DM is a large amount of missing
momentum (or energy) when detecting one or more visible SM particles.

This kind of DM detection has to be considered complementary to DD and ID searches and is
acquiring increasing interest in view of the realization of future high-energy colliders. Such machines,
in fact, will be in principle able to exclude a broad class of models characterized by O(TeV) mass scale
for DM candidates, as for instance in the WIMPs case. For this reason, in the following Section we
will study the discovery potential of WIMPs at a future high-energy lepton collider. Here we want to
stress that this kind of study can be developed also at a high-energy hadron collider, in fact part of
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the experimental program of FCC-hh will be devoted to DM production.



Chapter 10

A final word on WIMP Dark Matter

The possibility that DM is a new Weakly Interacting Massive Particle, thermally produced in the
early Universe and freezing out through 2→2 annihilations into SM states, remains one of the main
motivations for NP in the 10 GeV – 100 TeV range, as we have seen in the previous Chapter. A
particularly interesting possibility within this framework, because of its minimality and predictive
power, is that the DM is the lightest neutral component of one EW multiplet. In other words, we will
add to the matter content of the SM the minimal number of new degrees of freedom, i.e. a fermionic
or scalar n-plet of SU(2). We will consider firstly the real cases with odd n and zero hypercharge, since
they automatically avoid strong constraints from direct detection searches, and then we will generalize
the discussion to the complex cases. Note that the lightest particle in any such representation can be
made stable by enforcing a symmetry acting on the DM only, with the exceptions of the multiplets for
which such a symmetry arises accidentally in the renormalizable Lagrangian. However, we shall see
that in general this can require additional assumptions about the completion of the theory at some
high UV scale.

The predictive power of WIMP scenarios mainly relies in the fact that the only physical parameter
to be determined is the mass of these new degrees of freedom. To achieve this goal, for any given
n-plet, computing the EW annihilation cross-section in the early Universe allows to infer the WIMP
cosmological abundance. By requiring it to match the measured value of the DM abundance today,
ΩDMh

2 = 0.11933 ± 0.00091 [247], the mass of the n-plet can be univocally determined. These mass
predictions are an essential input to assess if and how the future experimental program will be able to
fully test the EW WIMP scenario. To be precise, note also that in the case of complex WIMPs, once
the mass is fixed from the freeze-out predictions, the phenomenology of these degrees of freedom will
depend essentially on two other parameters, as we will discuss in what follows.

For these reasons, in what follows we will firstly describe the EW WIMP paradigm and the main
features of our freeze-out computation. Then, we will analyze the discovery potential of WIMPs at
future experiments. To be more specific, on the one hand we will discuss the implications of our study
for a future high-energy muon collider, while on the other hand we will re-examine the reach of DD
and ID experiments in light of our findings.

My main contribution in this project concerns the study of Direct Detection searches. To be more
specific, in both the real and the complex cases I have computed the cross sections of the scattering
of DM with the nuclei and compared them with the reaches of present and future experiments. I have
also contributed to the investigation of the discovery potential of WIMPs at muon colliders, through
the study of the channels of production of one or two SM gauge bosons, as well as disappearing track
searches. The details of all these computations can be found in the last three Sections of this Chapter.

123
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10.1 Which WIMP?

Dark Matter spin EW n-plet Mχ (TeV) (σv)J=0
tot /(σv)J=0

max ΛLandau/MDM ΛUV/MDM

Real scalar

3 2.53± 0.01 – 2.4 · 1037 4 · 1024*

5 15.4± 0.7 0.002 7 · 1036 3 · 1024

7 54.2± 3.1 0.022 7.8 · 1016 2 · 1024

9 117.8± 15.4 0.088 3 · 104 2 · 1024

11 199± 42 0.25 62 1 · 1024

13 338± 102 0.6 7.2 2 · 1024

Majorana fermion

3 2.86± 0.01 – 2.4 · 1037 2 · 1012*

5 13.6± 0.8 0.003 5.5 · 1017 3 · 1012

7 48.8± 3.3 0.019 1.2 · 104 1 · 108

9 113± 15 0.07 41 1 · 108

11 202± 43 0.2 6 1 · 108

13 324.6± 94 0.5 2.6 1 · 108

Table 10.1: Freeze-out mass predictions for WIMP DM in real EW multiplets with Y = 0. We
provide a measure of how close the DM annihilation cross-section is to the unitarity bound for s-wave
annihilation (σv)J=0

max = 4π/M2
DMv. Approaching the unitarity bound, the error on the WIMP mass

grows proportionally to the enhancement of the next-to-leading order (NLO) contributions estimated in
Eq. (10.34). We derive the scale where EW gauge coupling will develop a Landau pole by integrating-in
the WIMP multiplet at its freeze-out mass. The stability of both scalar and fermionic DM candidates
can always be enforced by requiring a Z2 symmetry in the dark sector to forbid their decays. This
symmetry forbids the scalar and fermionic 3-plets decay at renormalizable level as indicated by the *.
The value of the UV cut-off ΛUV gives an idea of the required quality for this symmetry to make DM
stable and avoid stringent bounds on decaying DM (τDM > 1028sec) [264]: a new physics scale lower
than ΛUV would require a Z2 to explain DM stability, while a cut-off higher than ΛUV would make

DM stability purely accidental.

We summarize here the logic of our WIMP classification, which is inspired by previous papers
on the subject [265–269]. Requiring the neutral DM component to be embedded in a representation
of the EW group imposes that Q = T3 + Y , where T3 = diag

(
n+1

2 − i
)

with i = 1, . . . , n, and Y is
the hypercharge. At this level, we can distinguish two classes of WIMPs: i) real EW representations
with Y = 0 and odd n; ii) complex EW representations with arbitrary n and Y = ±

(
n+1

2 − i
)

for
i = 1, . . . , n. Within class ii), we can further distinguish two subclasses of complex WIMPs: a)
complex representations Y = 0 and odd n; b) complex representation with Y 6= 0 with even n (odd
n) for half-integer Y (integer Y ). Note that the first subclass is a straightforward generalization of
the models analyzed in [4] where the stability of the DM is guaranteed by an unbroken dark fermion
number which can be gauged as was first done in Ref. [269].



10.1. WHICH WIMP? 125

10.1.1 Real WIMPs

Let us firstly focus on the first class of WIMPs, i.e. on class i), which is particularly interesting because
the DM does not couple to the Z-boson at tree level, avoiding strong constraints from direct detection
experiments. This choice brings to the EW multiplets listed in the first two columns of Table 10.1.
At the renormalizable level, the extensions of the SM that we consider are

Ls =
1

2
(Dµχ)2 − 1

2
M2
χχ

2 − λH
2
χ2|H|2 − λχ

4
χ4 , (10.1)

Lf =
1

2
χ (iσ̄µDµ −Mχ)χ , (10.2)

for scalars and fermions, respectively, where Dµ = ∂µ − ig2W
a
µT

a
χ is the covariant derivative, and T aχ

are generators in the n-th representation of SU(2). The values of the masses of the WIMPs of interest
are listed in Table 10.1 and we will explain precisely how they have been computed in what follows.
Note also that the Lagrangian for the real scalar in Eq. (10.1) also admits quartic self-coupling and
Higgs-portal interactions at the renormalizable level. As we will see, the latter is bounded from above
by direct detection constraints and gives a negligible contribution to the annihilation cross-section.

The neutral component and the component with charge Q of the EW multiplet are splitted by
radiative contributions from gauge boson loops. In the limit mW � MDM these contributions are
non-zero and independent on Mχ. This fact can be understood by computing the Coulomb energy of
a charged state at distance r & 1/mW or the IR mismatch (regulated by mW ) between the self-energies
of the charged and neutral states. The latter can be easily computed at 1-loop [270–272],

MQ −M0 '
Q2αemmW

2(1 + cos θW )
= Q2 × (167± 4) MeV , (10.3)

with the uncertainty dominated by 2-loop contributions proportional to α2
2mt/16π. These have been

explicitly computed in Ref.s [273,274] giving a precise prediction for the lifetime of the singly-charged
component, which decays to the neutral one mainly by emitting a charged pion with

cτχ+ ' 120 mm

T (T + 1)
, (10.4)

where 2T+1 = n. The suppression of the lifetime with the size of the EW multiplet can be understood
in the Mχ � mW limit where the mass splitting between the charged and neutral components is
independent of n while the coupling to W is controlled by

√
T (T + 1)/2. As we will discuss in what

follows, the production of a singly charged DM component at colliders gives the unique opportunity
of probing EW multiplets with n = 3 and n = 5 through disappearing tracks [265,275–278].

Interestingly, the IR generated splitting from gauge boson loops is not modified substantially by
UV contributions. The latter are generated only by dimension 7 (dimension 6) operators if the DM is
a Majorana fermion (real scalar) and can be written as

∆LI ⊃
cI

ΛnIUV

χaχb(H†T aH)(H†T bH) , (10.5)

with nI = 3, 2 for I = f, s. This corresponds to a splitting ∆MI ' cIv
4/ΛnIUVM

3−nI
χ which is always

negligible with respect to the residual error on the 2-loop splitting for ΛUV & 100 TeV and cI ∼ O(1).
We now move to discuss DM stability. In the case of the EW 3-plet, the renormalizable operators

χH†H and χHL, for scalars and fermions, respectively, can induce fast DM decay. We assume
these operators to be forbidden by a symmetry (e.g. a discrete Z2-symmetry) acting only on the
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DM sector. For all the other n-plets with n ≥ 5, instead, Z2-odd operators are accidentally absent
at renormalizable level. Higher dimensional operators that break the Z2-symmetry are in general
expected to be generated at the ultraviolet cut-off scale ΛUV. A lower bound on this energy scale is
obtained by requiring the DM lifetime to be long enough to circumvent cosmological bounds [279,280]
(τDM & 1019 sec) or astrophysical bounds on the decay products of decaying DM [264,281,282] (τDM &
1028 sec). We can then quantitatively measure the required quality of the Z2-symmetry by considering
the ratio between the minimal ΛUV allowed by the constraints and the WIMP freeze-out mass. By
considering the operators of lowest dimension that can induce the decay of scalar and fermionic
WIMPs for generic n, one can use a naive dimensional analysis to estimate ΛUV, assuming all the
Wilson coefficients to be O(1), as given in Table 10.1 for all the relevant n-plets.

Requiring perturbativity of the EW gauge coupling above the WIMP thermal mass can provide an
upper bound on the dimension of the SU(2) representation. Indeed, large SU(2) n-plets will make the
EW gauge coupling run faster in the UV, eventually leading to a Landau pole. In Table 10.1 we provide
the value of the scale ΛLandau such that g2(ΛLandau) = 4π. We integrate the RGE equations for the
SM gauge couplings at 2-loops and integrate-in the n-plet at the WIMP thermal mass.1 Comparing
ΛLandau and ΛUV, we see that the stability of the fermionic n-plets with n ≤ 5 only depends on
physics in a regime where the EW coupling is still perturbative. Instead, the stability of n-plets with
n > 5 requires specifying a UV completion for the EW gauge group that does not give rise to the
dangerous operators inducing the decay of scalar and fermionic WIMPs. In this sense, the Majorana
5-plet studied in Ref. [265] is special, because it can be made accidentally stable by raising the scale
ΛUV, without any further assumption on the nature of the UV completion at ΛLandau. At this point,
requiring ΛUV/Mχ & 10 to ensure perturbativity of the theory up to well above the WIMP mass would
select n ≤ 9 for fermions, and n ≤ 11 for scalars. However, requiring a large hierarchy between ΛLandau

and Mχ is not necessary to ensure the calculability of thermal freeze-out, which depends only on EW
processes at energies much below the DM mass. A more robust upper bound on the dimension of the
SU(2) n-plets will be derived later by appropriately analyzing the s-wave unitarity of the annihilation
cross-section. We anticipate here that this second bound will require n ≤ 13 for both fermionic and
scalar WIMPs.

10.1.2 Complex WIMPs

At this point, let us discuss the second class of WIMPs, i.e. the class ii) b). Recall that we are referring
to complex WIMPs with Y 6= 0, whose phenomenology differs substantially from the one with Y = 0.
Here, we are going to focus the discussion only on the fermionic case for reasons of both space and
clarity. This choice brings to the EW multiplets listed in the first two columns of Table 10.2. The
discussion on the complex scalar WIMPs, instead, can be found in [12].

Now, the minimal Lagrangian for a fermionic complex WIMP with Y 6= 0 is:

LD = χ
(
i /D −Mχ

)
χ+

y0

Λ4Y−1
UV

O0 +
y+

ΛUV
O+ + h.c. ,

O0 =
1

2(4Y )!

(
χ(T a)2Y χc

) [
(Hc†)

σa

2
H

]2Y

, (10.6)

O+ = −χT aχH†σ
a

2
H ,

1Our results are compatible with the ones found in Ref. [283] (where χ is integrated-in at MZ) given that ΛLandau/MDM

is approximately independent on MDM.
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DM spin nY Mχ (TeV)
ΛLandau

Mχ

(σv)J=0
tot

(σv)J=0
max

δm0 [MeV]
Λmax

UV

Mχ
δmQM [MeV]

DF

2 1
2

1.08± 0.02 > MPl - 0.22 - 2 · 104 107 4.8 - 104

31 2.85± 0.14 > MPl - 0.22 - 40 60 312 - 1.6 ·104

4 1
2

4.8± 0.3 'MPl 0.001 0.21 - 3 · 104 5 · 106 20 - 1.9 ·104

51 9.9± 0.7 3 · 106 0.003 0.21 - 3 25 103 − 2 · 103

6 1
2

31.8± 5.2 2 · 104 0.01 0.5 - 2 · 104 4 · 105 100 - 2 · 104

8 1
2

82± 8 15 0.05 0.84 - 104 105 440 - 104

10 1
2

158± 12 3 0.16 1.2 - 8 · 103 6 ·104 1.1 · 103 - 9 · 103

12 1
2

253± 20 2 0.45 1.6 - 6 · 103 4 ·104 2.3 · 103 - 7 · 103

CS

2 1
2

0.58± 0.01 > MPl - 4.9 - 1.4 · 104 - 4.2 - 7 · 103

31 2.1± 0.1 > MPl - 3.7 - 500 120 75 - 1.3 ·104

4 1
2

4.98± 0.25 > MPl 0.001 4.9 - 3 · 104 - 17 - 2 ·104

51 11.5± 0.8 > MPl 0.004 3.7 - 10 20 650 - 3 ·103

6 1
2

32.7± 5.3 ' 6 · 1013 0.01 4.9 - 8·104 - 50 - 5 · 104

8 1
2

84± 8 2 · 104 0.05 4.9 - 6 ·104 - 150 - 6 · 104

10 1
2

162± 13 20 0.16 4.9 - 4 · 104 - 430 - 4 · 104

12 1
2

263± 22 4 0.4 4.9 - 3 · 104 - 103 - 3 · 104

Table 10.2: Thermal masses of complex WIMPs with Y 6= 0, obtained including Sommerfeld enhance-
ment and BSF, for Dirac Fermion (DF) and Complex Scalars (CS). The upper bound on n for even
multiplets comes from the perturbative unitarity bound, as can be seen from the (σv)J=0

tot /(σv)J=0
max ,

where (σv)J=0
max is the maximal allowed annihilation cross section [284]. The loss of perturbativity is

also signaled by the Landau pole ΛLandau progressively approaching the DM mass. The upper bound
on odd n with Y = 1 comes from the perturbativity of the higher dimensional operators generating
δm0 . For multiplets with n > 5 the largest UV cutoff Λmax

UV required to generate the minimal vi-
able splitting is smaller than 10MDM. For each candidate we provide the allowed range for the mass
splittings. The lower limit on δm0 comes from strongest bound between direct detection and BBN
as shown in Figure 10.1. The upper bound from the most stringent condition between DD constraint
from PandaX-4T [285] and the perturbativity of the coupling of O0 in Eq. (10.6). Similarly, the lower
limit on δmQM comes from the BBN bound on the charged state decay rate, while the upper limit

from the strongest limit between DD and the perturbativity of the coupling of O+ in Eq. (10.6).

where T a is again a SU(2)L generator in the DM representation. The main difference with respect
to real WIMP case in Eq. (10.2) is that the renormalizable Lagrangian is no longer sufficient to make
the DM model viable. In Eq. (10.6) we write the minimal amount of UV operators required to make
the DM model viable. In principle, we can consider additional operators, obtained from the ones in
Eq. (10.6) by adding a γ5 inside the DM bilinear. However, one can demonstrate that these operators
give subleading contributions both to the mass splittings, that we are going to define and discuss,
and to the DD signals, that we will discuss at the end of this Chapter. Thus, in what follows we will
neglect them.

The non-renormalizable operator O0 is required to remove the sizeable coupling to the Z boson of
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Figure 10.1: Summary of the lower bounds on the neutral mass splitting δm0. The dark green
shaded region is excluded by tree-level Z-exchange in Xenon1T [287] for both scalar and fermionic
DM. The dashed green line shows what Xenon1T could probe by analyzing high recoil energy data.
The blue and red lines are the BBN bounds on the splitting for fermionic and scalar DM respectively.

the neutral component χN of the complex EW multiplet

LZ =
ieY

sin θW cos θW
χN /ZχN . (10.7)

This coupling would lead to an elastic cross section with nuclei already excluded by many orders of
magnitude by present DD experiments [286]. After the EWSB, O0 induces a mixing between χN and
χcN . Replacing the Higgs with its VEV, (Hc†)σ

a

2 H is non-zero only if we pick σa = σ+, so that the
new (pseudo-Dirac) mass terms in the Lagrangian read

Lm = MχχNχN +
δm0

4
[χNχ

c
N + χcNχN ] ,

δm0 = 4y0cnY 0ΛUV

(
v√

2ΛUV

)4Y

,

(10.8)

where cnY Q = 1
2Y+1(4Y )!

∏Y−1−|Q|
j=−Y−|Q|

√
1
2

(
n+1

2 + j
) (

n−1
2 − j

)
contains the normalization of O0 and the

matrix elements of the generators. The mass eigenstates are Majorana fermions, χ0 and χDM, with
masses M0 = Mχ + δm0/2 and MDM = Mχ − δm0/2, whose coupling to the Z boson is

LZ =
ieY

sin θW cos θW
χ0 /ZχDM . (10.9)

The Z-mediated scattering of DM onto nucleons is no longer elastic and the process is kinematically
forbidden if the kinetic energy of the DM-nucleus system in the center-of-mass frame is smaller than
the mass splitting

1

2
µv2

rel < δm0 , µ =
MDMmN

MDM +mN
, (10.10)
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where mN is the mass of the nucleus, µ is the reduced mass and vrel is DM-nucleus relative velocity.
In particular, given the upper bound on the relative velocity vrel < vE + vesc, where vE = 240 km/sec
is the Earth’s velocity and vesc = 600 km/sec is the assumed escape velocity of DM in the Milky
Way, the largest testable mass splitting is δmmax

0 = 1/2µ(vE + vesc)
2 which for Xenon nuclei gives

δmmax
0 ' 450 keV. The splitting for a given recoil energy is

δm0(ER) =
√

2mNER(vE + vesc)− ER
mN

µ
, (10.11)

which explain why the maximal constrained splitting experimentally is δmmax,exp
0 ' 240 keV as shown

in Fig. 10.1, given that Xenon1T [287] analyzed data only for ER < 40 keV. Extending the range of
Xenon1T to higher recoil energies would be enough to probe splitting up to δmmax

0 as already noticed
in Ref. [288,289]. In principle, larger mass splittings can be reached using heavier recoil targets than
xenon such as iodine in PICO-60 [290], tungsten in CRESST-II [291], CaWO4 [292], PbWO4 [293],
180Ta [294], Hf [295] and Os [296]. However, these experiments currently do not have enough exposure
to probe EW cross-sections.

A complementary bound on δm0 comes from requiring that the decay χ0 → χDM+SM happens
well before BBN. The leading decay channels are χ0 → χDMγ , χ0 → χDMν̄ν and χ0 → χDMēe with
decay widths

Γγ =

(
1 +

1

2
log

(
m2
W

M2
DM

))2
Y 2α2

2αem

π2

δm3
0

M2
DM

, (10.12)

Γν̄ν ' 6Γēe =
G2
F δm

5
0Y

2

5π3
. (10.13)

The first process is induced by a dipole operator generated at 1-loop for fermionic DM as computed
in [297]. The three body decays are instead induced at tree-level by the EW interactions both for
fermionic and scalar DM. For fermionic DM, the dipole induced decay dominates the width in the
mass range of interest. In order for these processes not to spoil BBN, we have to impose the following
condition on the decay rate of χ0:

Γχ0 ≡ Γν̄ν + Γēe + Γγ > τ−1
BBN , (10.14)

where τ−1
BBN = 6.58 × 10−25 GeV. The lower bounds on the neutral mass splitting for fermions are

shown in Fig. 10.1 together with those for scalars, which are explicitly computed in [12]. The main
difference between scalars and fermions is that the former are typically more long lived due to the
suppression of χ0 → χDMγ. As a consequence, the BBN bounds are stronger for scalar WIMPs.

The operator O+ in Eq. (10.6) is necessary to make the DM the lightest state in the EW multiplet
for all the n-plets where the hypercharge is not maximal. Recalling the discussion on real WIMPs,
Eq. (10.3) can be generalized for non-zero hypercherge as [270–272]

∆MEW
Q = δg

(
Q2 +

2Y Q

cos θW

)
, (10.15)

where δg = 167 MeV and Q = T3 + Y . This implies that negatively charged states with Q = −Y
are pushed to be lighter than the neutral ones by EW interactions. Notable exceptions are odd-n
multiplets with Y = 0 and all the multiplets with maximal hypercharge |Ymax| = (n − 1)/2 where
negatively charged states are not present. For these multiplets, having y+ = 0 would be the minimal
and phenomenologically viable choice.
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Figure 10.2: Mass splittings of 31 (left) and 41/2 (right) as a function of δm2+. In the 31 case, no
mixing between the charged components of the multiplet can occur and δm+ is a monotonic function
of δm2+. In the 41/2 case, instead, because of the mixing induced by O0, the positively charged mass

eigenstate χ+ is always heavier than χ−. The minimal splitting between them is of order δm0.

Now, including the contribution of O+, the final splittings δmQ = MQ −MDM between the DM
and the charged components read

δmQ =
δm0

2
+ δgQ

2 + sgn(Q)

√(
2Y δg

cos θW
− y+v2

4ΛUV

)2

Q2 +
δm2

0

4

c2
nY Q

c2
nY 0

, (10.16)

where the presence of sgn(Q) in Eq. (10.16) accounts for the presence of opposite charge states that
are not related by charge conjugation, as implied by to the non-zero hypercharge of the considered
WIMPs. Indeed, the second piece inside the square root comes from the mixing between χQ and χc−Q
induced by O0 and vanishes for Q > (n− 1)/2− Y .

The different charged-neutral mass splittings can all be written in terms of two independent split-
tings, which we choose to be δm0 and δmQM , where QM ≡ Y + (n− 1)/2 is the largest electric charge
in the multiplet. Since cnY QM = 0, δmQM is a monotonic function of y+ and Eq. (10.16) can be
inverted. In Fig. 10.2 we show as an example the mass splittings of 31 and 41/2 as a function of δm2+.
In the former case, no mixing occur within the components of the multiplet and δm+ is a monotonic
function of δm2+. For the 41/2, instead, the mixing induced by O0 between the components with
Q = ±1 makes the positively charged mass eigenstate χ+ heavier than χ−.

In this Chapter we will explore the parameter space spanned by δm0 and δmQM , fixing the thermal
DM mass of every EW multiplet as shown in Table 10.2. Crucially, the operators inducing the splitting
in Eq. (10.6) also generate new higgs-exchange contributions to the spin-independent scattering cross-
section of DM on nucleons. Therefore, the current best upper limit on the DM elestic cross section onto
nucleons set by PandaX-4T [285] translates into upper bounds on the neutral and charged splittings
as reported in Table 10.2.

Charged-neutral splittings smaller than the EW one in Eq. (10.15) require a certain amount of
fine-tuning between UV operators and the EW contribution. To quantify this we define the Fine
Tuning (F.T.)

F.T. ≡ max

[∑

I

d log δmQ

d log δmI

]
, (10.17)
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where the index I runs over the three contributions in the definition of δmQ in Eq. (10.16). Large
values of F.T. imply a significant amount of cancellation between two or more parameters.

Let us now discuss the effects of UV contributions, as we have done for the real WIMP case. The
EFT approach used to write Eq. (10.6) is meaningful only if the UV physics generating O+ and O0 is
sufficiently decoupled from DM. When ΛUV approaches the DM mass the cosmological evolution of the
DM multiplet cannot be studied in isolation, since the heavy degrees of freedom populates the thermal
bath at T ' MDM and are likely to modify our freeze-out predictions. To avoid these difficulties we
restrict ourselves to ΛUV ≥ 10MDM. This condition, together with the required inelastic splittings in
Fig. 10.1, can be used to select the viable complex WIMPs. Starting from Eq. (10.8) and imposing
δm0 > δmmin

0 , we derive the viable window for ΛUV:

10MDM < ΛUV ≤
(

4y0cnY 0v
4Y

22Y δmmin
0

) 1
4Y−1

. (10.18)

We are now interested in estimating for which multiplets the viable window shrinks to zero. Setting
y0 = (4π)4Y in Eq. (10.18) (that is the largest value allowed by Naive Dimensional Analysis) we derive
the values of n and Y having a non-zero cutoff window in Eq. (10.18). These are for both scalar and
fermionic WIMPs n1/2 multiplets with n ≤ 12 together with the 31 and the 51 mupltiplets.

For what concerns the stability, the Lagrangian in Eq. (10.6) preserves the DM number and as a
consequence the DM is automatically stable. Here we discuss whether the DM decays through gauge
invariant interactions beyond those of Eq. (10.6) or can instead be accidentally stable. Throughout
this discussion we not only require the DM lifetime to be long enough to circumvent cosmological
bounds [279,280] (τDM & 1019 sec), but also to satisfy the stronger astrophysical bounds on decaying
DM [264,281,282] (τDM & 1028 sec).

For 21/2 and 31 we can write renormalizable interactions χcHeR and χLcH that break the DM
number and lead to a fast DM decay. These EW multiplets require a DM number symmetry, for
example a discrete Z2-symmetry acting only on the DM field to provide a viable DM candidate. For
even multiplets with Y = 1/2 and n > 2 and for the 51 candidate, we can consider all the higher
dimensional operators inducing DM decay, finding that we need at least ΛUV > 1010MDM for O(1)
Wilson coefficients to preserve DM stability. This lower bound is incompatible with the upper bound
on the UV physics scale required to generate the inelastic splitting δm0. This result implies that
DM stability requires the UV physics generating the neutral splitting in Eq. (10.8) to preserve DM
number. As a result, none of the complex WIMPs with Y 6= 0 can be accidentally stable in the sense
of Minimal Dark Matter [265].

10.2 WIMP cosmology: computation of freeze-out mass predictions

The determination of the DM thermal mass hinges on a careful computation of the DM annihilation
cross-section in the non-relativistic regime. In particular, the potential generated by EW gauge boson
exchange between DM pairs is attractive for isospins I .

√
2n resulting into Bound State Formation

(BSF) through the emission of an EW gauge boson in the final state. The energy of the emitted gauge

boson is of the order of the Bound State (BS) binding energy EBI '
α2

effMχ

4n2
B
−αeffmW , where nB is the

BS energy level, αeff is the effective weak coupling defined in Eq. (10.27), and we neglected corrections
of order m2

W /M
2
χ. In the non-relativistic limit, and at leading order in gauge boson emission, the BSF

process

χi + χj → BSi′j′ + V a (10.19)
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is encoded in the effective dipole Hamiltonian described in Ref. [298, 299], which dictates the BS
dynamics and it is written for completeness in Appendix E. In what follows, we will specialize the
discussion on the real WIMP case, then we will highlight the main differences that hold in the case of
complex DM candidates.

The BS dynamics relevant for DM freeze-out is well described by the unbroken phase of SU(2) so
that the configuration of the DM pair can be decomposed into eigenstates of the isospin I of the pair

|χχ〉IIz = C(IIz|ij)|χiχj〉, Iz ∈
[
−I − 1

2
,
I − 1

2

]
, (10.20)

where C(IIz|ij) are the Clebsch-Gordan coefficients and I is the dimension of the isospin representa-
tion. Denoting with L and S the total angular momentum and the spin, the isospin-Lorentz structure
of the dipole Hamiltonian enforces the following selection rules: i) ∆S = 0 because the dipole Hamil-
tonian is spin-independent; ii) |∆L| = 1 because the dipole operator transform as a vector under
rotations; iii) |∆I| = 2 because a single, G-parity odd weak boson is emitted.

Since we are dealing with real representations, spin-statistics imposes further restrictions on the
allowed quantum numbers, depending on the fermionic or scalar nature of the wave function. In
particular we have

(−1)L+S+ I−1
2 = 1 , (10.21)

which implies that for scalars nBs (nBp) bound states, i.e. with L = 0 (L = 1), can exist only with
even (odd) I−1

2 , while for fermions odd (even) I−1
2 states with L = 0 are forced to have S = 1 (S = 0).

We are now ready to describe the system of coupled Boltzmann equations for the evolution of
the number densities of DM and BS. Following [298], we will discuss how this coupled system can be
reduced to a single equation for the DM number density with an effective annihilation cross-section.
The Boltzmann equations for DM and BS read

z
dYDM

dz
= −2s

H
〈σannvrel〉

[
Y 2

DM − (Y eq
DM)2

]
− 2s

Hz

∑

BI

〈σBIvrel〉
[
Y 2

DM − (Y eq
DM)2YBI

Y eq
BI

]
, (10.22a)

z
dYBI
dz

= Y eq
BI




〈ΓBI ,break〉

H

[
Y 2

DM

(Y eq
DM)2

− YBI
Y eq
BI

]
+
〈ΓBI ,ann〉

H

[
1− YBI

Y eq
BI

]
+
∑

BJ

〈ΓBI→BJ 〉
H

[
YBJ
Y eq
BJ

− YBI
Y eq
BI

]
 ,

(10.22b)

where BI,J,... labels the different bound states, z =
Mχ

T , s is the entropy density and Y = n
s is the

number density per co-moving volume.
The dynamics of a given BS BI in the plasma is described by Eq. (10.22b) and depends on: i) its

ionization rate 〈ΓBI ,break〉; ii) its annihilation rate into SM states 〈ΓBI ,ann〉; iii) its decay width into
other bound states 〈ΓBI→BJ 〉. The ionization rate 〈ΓBI ,break〉 ≡ nγ〈σI,breakvrel〉 encodes the probability
of a photons from the plasma to break the BS BI . Assuming thermal equilibrium, detailed balance
relates the cross-section for the BS breaking 〈σI,breakvrel〉 to the BSF cross-section 〈σBIvrel〉

〈ΓBI ,break〉 =
g2
χ

gBI

(MχT )
3
2

16π
3
2

e−
EBI
T 〈σBIvrel〉 , (10.23)

where gBI and gχ count the number of degrees of freedom of the bound state BI and of the DM
multiplet, respectively. If either the BS decay or the annihilation rate satisfies Γ� H, we can neglect
the l.h.s. in Eq. (10.22b), obtaining algebraic relations between the DM and the BS yields.
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Finally, by plugging these relations into Eq. (10.22a), we arrive at the final form of the DM
Boltzmann equation

dYDM

dz
= −〈σeffvrel〉s

Hz
(Y 2

DM − Y eq,2
DM ) , (10.24)

where
〈σeffvrel〉 ≡ Sann(z) +

∑

BJ

SBJ (z), (10.25)

and we defined the effective cross-section as the sum of the direct annihilation processes, Sann, and
the ones which go through BSF, SBJ . In particular, Sann can be written as

Sann =
∑

I

〈SIEσIannvrel〉 , (10.26)

where σIann is the hard cross-section for a given isospin channel I, SIE is the Sommerfeld enhancement
(SE) of the Born cross-section, and vrel is the relative velocity of the two DM particles. In the limit
of small relative velocity between the DM particles (but larger than mW /Mχ), the SE factor can be
approximated as

SIE ≈
2παeff

vrel
, where αeff ≡

I2 + 1− 2n2

8
α2 . (10.27)

The finite mass effects modify the behavior of the SE at vrel . mW /Mχ and are included in our full
computation (see Ref. [300] for explicit formulas). However, Eq. (10.27) will be enough to estimate
the behavior of the SE at the temperatures most relevant for freeze-out.

Analogously, we can factorize the BSF processes as

SBJ =
∑

I,l

〈SIESI,lBJ 〉RBJ , (10.28)

where SI,lBJ is the “hard” BSF cross-section of the state BJ starting from a free state with angular
momentum l and isospin I multiplied by the SE factor of that particular isospin channel as defined
in Eq. (10.27). Explicit expressions for this can be found in Ref. [298, 299]. RBJ gives instead the
effective annihilation branching ratio into SM states which depends on the detailed BS dynamics (i.e.
annihilation, ionization and decay). In particular, RBJ approaches 1 once the temperature of the
plasma drops below the binding energies of the bound states involved in the decay chains. In the case
of a single BS, RBJ takes a rather intuitive form

RBJ =
〈Γann〉

〈Γann〉+ 〈Γbreak〉
, (10.29)

which applies to 1sI and 2sI BS with I ≤ 5. The latter, once formed, annihilate directly into pairs
of SM vectors and fermions, with rates Γann ' α5

eff/n
2
BMχ. These BS together make up for more

of the 50% of the BSF cross-section. Obviously, more complicated examples of BS dynamics can be
developed for largest representations.

While the effect of BSF has already been computed for the fermionic 5-plet in Ref. [298], here we
include it for the first time for all the real WIMP candidates with n ≥ 7. For larger EW multiplets,
we find the relative effect of BS dynamics on the total cross-section increases, as can be seen from
Fig. 10.3. This is the consequence of two effects: i) the binding energy grows at large n, suppressing
the ionization rate with respect to the annihilation one; ii) at larger n the number of attractive
channels increases and thus the BS multiplicity per energy level grows linearly with n. For example,
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Figure 10.3: Effective cross-section for BSF normalized over the total annihilation cross-section as a
function of z = Mχ/T assuming vanishing ionization rates, i.e. RBS = 1 (see Eq. (10.28) and below).
The dashed lines for the real fermionic 5-plet (dark blue) and 7-plet (cyan) show the deviation of the
real bound state dynamics from the approximation of vanishing ionization rates. For n > 5 the error
due to the RBS = 1 is subdominant compared to the virtual and real effects at NLO in gauge boson

emission.

for n = 5 the attractive channels have I = 1, 3, 5, for n = 7 BS with I = 7, 9 can also form. The
relevance of these higher isospin channels was not recognized in [301], where only the I = 1, 3 channels
were included, significantly underestimating the thermal mass already for n = 7. As we increase
the dimension of the multiplet, the bound states become more tightly bounded and the effect of the
ionization rate becomes smaller. This can be explicitly seen from Eq. (10.23) where the binding energy
controls the Boltzmann suppression of the ionization rate. For this reason, we only account for the
detailed BS dynamics for n ≤ 7 while for n > 7 we set the annihilation branching ratios to 1. The
final results can be found in Table 10.1.

For what concerns the uncertainties associated to our freeze-out mass predictions, we have esti-
mated the error on the WIMP mass due to this approximation by comparing its effect on the thermal
masses of 5-plet and the 7-plet against the full computation. We find a shift in mass ∆MDM ' 5
TeV for both n = 5 and n = 7 resulting in a smaller relative error for n = 7, as expected. We keep 5
TeV as an estimate of the error induced by this approximation for the larger multiplets. As we will
discuss in what follows, the uncertainty for n ≥ 7 will be anyhow dominated by the next-to-leading
order (NLO) contributions to the SE which are not included here. Let us also comment on the theory
uncertainty on the mass prediction for the 5-plet. This is dominated by the approximate treatment
of EW symmetry breaking effects in computation of the BSF cross-sections. The SU(2)-symmetric
approximation fails once the DM de Broglie wavelength becomes of the order of mW (i.e. for z ' 104

for n ≥ 5). After the EW phase transition, Coulomb and Yukawa potentials appear at the same time
so that employing either the Coulomb or the Yukawa centrifugal correction to the SE (see Ref. [300])
overestimate and underestimate, respectively, the freeze out cross-section. This gives us a rough way
of determining the theory uncertainty: i) to set the lower bound on the freeze-out mass we include
BSF in σeff until z = 104 with the centrifugal correction coming from the Yukawa; ii) to set the
upper bound we push the effect of BSF, neglecting the vector masses in the centrifugal correction,
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to arbitrary large values of z. We observe that the abundance saturates already for z ≈ 105. This
procedure gives the uncertainty for the 5-plet in Table 10.1 which is different than the one quoted in
Ref. [298], where the BS contribution was switched off at z = 104, underestimating the effect of BSF.

To conclude this Section, we discuss how this picture changes for complex WIMPs. First of all,
in principle the UV mass splittings can affect the freeze-out computation, precisely in two ways: i)
they directly contribute to the DM annihilation cross-section into Higgs bosons, ii) they generate a
Higgs-mediated Yukawa potential, thus affecting the Sommerfeld enhancement. However, we expect
that, for the numerical values of our interest, the splittings do not impact the freeze-out predictions
contained in Table 10.2. To be more specific, although in principle the thermal mass becomes a
function of δm0 and δm+, in order to compute the thermal masses we assume the minimal value
allowed for δm0, where the effect of the splitting is safely negligible, and account for the dependence
on δm+ in the theoretical uncertainty. Moreover, contrarily to the real WIMP case, there are different
selection rules selecting the bound states allowed by symmetries. In the real case Eq. (10.21) has to be
verified, while for complex WIMPs the bound states are of the form χχ, thus the selection rule (10.21)
no longer applies. The BSF cross-section can be computed in the SU(2)L symmetric limit with good
approximation and scales as

σBIvrel '
EBIaB
MDMn2

(α2,effS
I±2
E + Y 2αY S

I
E) , (10.30)

where the first and second term account for weak and hypercharge vector boson emission.
For what concerns the estimation the the theoretical uncertainties, also in this case neglecting BS

ionizations is a good approximation for large EW multiplets. As for the real case, we estimate the
error induced by this approximation at the 5 TeV level. Furthermore, in the symmetric limit the
effect of the mass splittings generated after EWSB are not taken into account. In particular, they
make the heavier components of the multiplet decouple earlier than the lighter ones, thus reducing the
cross-section. In order to estimate the error due to this approximation, we compute the thermal mass
first setting to zero σBI for T < max δmQ and then including BSF until the DM abundance saturates.
These two effects are the dominant sources of error for n . 8.

10.3 The WIMP Unitarity Bound

We now analyze the constraint of perturbative unitarity on the annihilation cross-section, including
bound state formation. The perturbative unitarity of the S-matrix sets an upper bound on the size of
each partial wave contribution to the total annihilation cross-section 2

(σeffvrel)
J ≤ 4π(2J + 1)

M2
χvrel

, (10.31)

where ~J = ~L + ~S is the total angular momentum. The stronger inequality comes from the s-wave
channel (i.e. J = 0) which can be written as

(σannvrel) +
∑

BJ

f0
BJ

(σBJvrel) ≤
4π

M2
χvrel

, (10.32)

where f0
Bi

selects the BS contributions that can be formed by J = 0 initial wave. As discussed in the
previous Section, the BSF contribution is larger for complex WIMPs when compared with the real
case due to the larger multiplicity of bound states that can be formed.

2This constraint was derived for e+e− annihilations in [302, 303] and then used for the first time in the DM context
in [284]. It can be checked that this constraint is not modified in the presence of long range interactions [304].
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Figure 10.4: Examples of Feynman diagrams contributing at NLO to the non-relativistic potentials
as estimated in Eq. (10.34).

For a scalar WIMP selecting the s-wave implies L = 0, and only BS in p-orbitals can contribute to
the s-wave cross-section with f0

BS = 1. The spin statistics of the wave function in Eq. (10.21) forces
these BS to have odd (I − 1)/2. In practice, the s-wave unitarity bound for scalars is determined
solely by the SE. For fermionic WIMP selecting the s-wave implies the same selection rules of the
scalar when S = 0. Additional contributions arise from S = 1 s-orbital states, whose isospin must be
odd due to Fermi statistics. In this case, the projection onto the J = 0 wave gives f0

BS = 1
9 . Solving

the constraint in Eq. (10.32) we find that s-wave unitarity is violated for n ≥ 15 for both fermion and
scalar WIMPs. In both cases the s-wave cross-section is largely dominate by the SE. We checked that
a similar constraint can be obtained by looking at the p−wave unitarity, where the cross-section is
instead dominated by the formation of 1s BS.

The selection rules that regulates the BS dynamics derive from the dipole Hamiltonian which is
written for completeness in Eq. (E.1). These selection rules are only broken by NLO contributions in
gauge boson emission which can be estimated as

∆σNLO
BSF

σLO
BSF

∼ α3
eff

64π
, (10.33)

where the extra α2
eff correctly accounts for the phase space suppression in the limit of small velocities

as detailed in Appendix E. As a result, the LO selection rules apply all the way till the breaking of
perturbative unitarity.

Interestingly, the upper bound on n from perturbative unitarity derived from Eq. (10.32) is signif-
icantly stronger than the one derived from the perturbative unitarity of the Born cross-section which
is violated for n ≥ 38 (i.e. αeff ≥ 4π). This suggests that because of SE, the ratio between the NLO
and the LO cross-section should appreciably deviate from the NDA scaling of the Born cross-section:
σNLO

Born/σ
LO
Born ∼ αeff/4π. Estimating the NLO correction to the potentials controlling the SE we indeed

get
∆VNLO

VLO
∼ αeff

4π
log

(
mW
√
z

Mχ

)
, (10.34)

where the NLO potential is resumming ladder diagrams like the ones in Fig. 10.4, and where we
substituted the de Broglie length 1/Mvrel ≈

√
z/Mχ as the typical lenght scale for the annihilation

process. Our estimate above matches the explicit NLO computation of the SE for the 3-plet in
Ref. [305]. Requiring this correction to be . 1 across the freeze-out temperatures leads to a similar
upper bound on n than the one inferred from perturbative unitarity.

We use the estimate above to assess the theory uncertainty on the WIMP thermal masses in
Table 10.1. Indeed, Eq. (10.34) results in a correction to the Sommerfeld factor SE , which affects both
Sann and SBJ as introduced in Eq. (10.24). We find that neglecting the NLO contribution dominates
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the DM mass theory uncertainty for n ≥ 7. The uncertainty grows as we increase the dimensionality
of the multiplet becoming as large as O(30%) for n = 13.

At this point, following the logic of Section 9.5, we are interested in the possible experimental
detections of the EW multiplets listed in Table 10.1. We will firstly focus our attention on this
possibility at future high-energy lepton collider, then we will specialize the discussion on ID and DD
searches.

10.4 WIMPs at high energy lepton colliders

We now look at the possible detection strategies for direct production of WIMPs at collider experi-
ments. From the results in Table 10.1 one can immediately see that DM masses & 50 TeV are required
to achieve thermal freeze-out for EW multiplets with n > 5. Pair-production of these states would
require center-of-mass energies exceeding 100 TeV, which are unlikely to be attained at any realistic
future facility. On the other hand, multiplets with n ≤ 5 have thermal masses in the few TeV range,
potentially within the reach of present and future colliders.

Direct reach on these DM candidates at hadron colliders is limited by the absence of QCD in-
teractions for the DM candidates, which can be produced only via EW interactions. As such the
limits at the LHC (see e.g. [306]) are rather far from the interesting thermal mass targets and only a
future pp collider may have the reach for some low-n candidates if collisions around 100 TeV can be
attained [276, 307, 308]. Lepton colliders tend to have reach mainly through indirect effects, e.g. the
modification of the angular distributions in simple ff̄ production at center of mass energies below the
threshold to produce the DM pair. The reach in this case is up to masses a factor a few above the
center of mass energy [309,310].

A very-high-energy lepton collider, such as a muon collider, would be the perfect machine to hunt
for these WIMPs, due to its large center-of-mass energy, relatively clean collision environment, and the
capability of pair-producing weakly interacting particles up to kinematical threshold. Here we consider
in particular a future muon collider with center-of-mass energy of 10 TeV or more and the baseline
integrated luminosity of [311]

L ' 10 ab−1 ·
( √

s

10 TeV

)2

. (10.35)

While such a machine is currently not feasible, various efforts to overcome the technological challenges
are ongoing. Early developments on machine performances [312,313] found the luminosity Eq. (10.35)
to be achievable for

√
s . 6 TeV, and further development to push it to larger energies is currently in

progress.

We consider various search channels for both real and complex EW n-plets with n ≤ 5, and
determine the minimal center-of-mass energy and luminosity required to directly probe the freeze-
out predictions. Firstly, we detail the prospects for the observation of DM as undetected carrier of
momentum recoiling against one or more SM objects. We systematically study all the “mono-V”
channels, where DM is recoiling against a SM gauge boson V = γ, Z,W . We also investigate double
vector boson production, that we dub “di-V” channels, where requiring a second SM gauge boson in the
final state could help ameliorating the sensitivity. Secondly, we study the reach of disappearing track
searches – which are robust predictions of WIMPs in real EW representations – recasting the results
of [277]. Notice that our study is in principle applicable both to high-energy µ+µ− and e+e− colliders,
even though soft QED radiation, beam-strahlung, and the presence of beam-induced backgrounds
could affect the results in different ways.
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Let us notice that, for what concerns the complex WIMP candidates, we will focus on the collider
reach for the complex fermionic doublet (21/2) and the complex fermionic triplet (31) WIMPs, that are
the lightest WIMPs and have the greater chance to be discoverable at

√
s ≤ 10 TeV. Theoretically,

these candidates are the most minimal complex WIMPs as they have maximal hypercharge and the
neutral component is automatically the lightest one at the renormalizable level. The only required
higher dimensional operator is O0 which generates the inelastic splitting in Eq. (10.8). In this sense,
we will present collider results in the minimal splitting scenario, that is when the mass splittings are
chosen to be the smallest possible allowed by the requirements of the previous Sections. We thus set
δm0 = 250 keV for both the complex doublet and the complex triplet WIMPs. Note also that, in this
minimal setup, 21/2 and 31 stand out as the only two multiplets where the DM is automatically the
lightest state with a splitting with the Q = 1 state given by the pure EW splitting in Eq. (10.15) that
is 354 MeV for 21/2 and 542 MeV for 31.

The projections for direct production derived here have to be contrasted with similar studies
in the context of future high energy proton machines [275, 276] (which are limited by the partial
reconstruction of the collision kinematics) or electron-positron machines [314,315] (which are limited
by the moderate center-of-mass energy and hence more effective to hunt for lighter DM candidates).
Complementary studies have also considered indirect probes of WIMPs at future high energy lepton
colliders, focusing on the modifications of Drell-Yan processes [310]. Given the freeze-out masses of
Table 10.1, EW n-plets with n > 5 are beyond the reach of any realistic future collider both directly
and indirectly, even though a definitive statement about indirect observables would require further
studies.

10.4.1 WIMPs as missing momentum

We perform a full study of the different channels to observe DM as undetected carrier of momentum.
The generic strategy is to measure a hard SM particle or a set of particles X recoiling against a pair
of invisible objects,

`+`− → χiχj +X . (10.36)

Notice that we treat all the components χi of the EW multiplet as invisible, assuming the soft decay
products of the charged states to be undetected. Additional soft SM radiation is also implicit in
Eq. (10.36). The prospects for the “mono-photon” topology at a future muon collider have been
already studied in [278]. Here, we want to extend this analysis by enlarging the set of SM objects
recoiling against the invisible DM multiplets.

Mono-V. We start by considering “mono-V” scattering processes where V = γ, Z,W is a generic
EW gauge boson that accompanies the production of χ states from the n-plet,

mono-γ: `+`− → χiχ−i + γ , (10.37)

mono-Z: `+`− → χiχ−i + Z , (10.38)

mono-W : `+`− → χiχ−i∓1 +W± . (10.39)

The main contribution to all these processes comes from initial- and final-state radiation of a
vector boson, which have sizeable rates because of the large weak charge of the DM multiplet and
the weak charge of the beams.3 We sum over all components of the multiplet χi, but the dominant

3The mono-Higgs signal has a much lower cross-section due to the suppression of initial- and final-state radiation.
Furthermore, final-state radiation is model-dependent for scalar DM.
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Figure 10.5: Reach from mono-W searches at a muon collider, as a function of collider center-of-mass
energy

√
s and integrated luminosity L. The blue contours show the 95% C.L. reach on the WIMP

mass; the prediction from thermal freeze-out is shown as a red line. The precision of the measurement
is shown by the blue shadings. Systematic uncertainties are assumed to be negligible. The white line
corresponds to the luminosity scaling Eq. (10.35), with various collider benchmarks shown as colored
squares:

√
s = 6 TeV green,

√
s = 10 TeV blue,

√
s = 14 TeV orange and

√
s = 30 TeV red. The

yellow square corresponds to the 3 TeV CLIC [316]. Left: Majorana 3-plet. Right: Majorana 5-plet.

signal corresponds to the production of the state with largest electric charge (i = ±n), subsequently
decaying into DM plus soft SM particles.

For each of these signals, the corresponding SM background is dominated by a single process,

mono-γ bkg: `+`− → γνν̄ , (10.40)

mono-Z bkg: `+`− → Zνν̄ , (10.41)

mono-W bkg: `+`− →W∓ν + `±(lost) , (10.42)

where the missing transverse momentum is carried by neutrinos; the mono-W background also requires
a lost charge along the beam.

We simulate signal and background events with MadGraph5 aMC@NLO [317,318], for different
DM mass hypotheses and different collider energies. The W and Z bosons are assumed to be re-
constructed from all their visible decay products and are treated as single objects. We impose basic
acceptance cuts on the rapidity and transverse momentum of the vectors, requiring |ηV | < 2.5 and
pT,V > 10 GeV. Other detector effects are neglected.

We then perform a cut-and-count analysis, estimating the significance of the signal as

significance =
S√

S +B + ε2sys (S2 +B2)
, (10.43)

where S,B are the numbers of physical signal and background events, and εsys parametrizes the
systematic uncertainties. The signal is isolated from the background employing the kinematics of the
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Figure 10.6: Different bars show the 2σ (solid wide) and 5σ (hatched thin) reach on the WIMP mass
at a muon collider for different search channels. The first seven bars show the channels discussed in
Sec. 10.4.1 where DM would appear as missing invariant mass (MIM) recoiling against one or more SM
objects: mono-gamma, inclusive mono-W, leptonic mono-W, mono-Z, di-gamma, same sign di-W, and
the combination of all these MIM channels (blue). The last two bars show the reach of disappearing
tracks as discussed in Sec. 10.4.2, requiring at least 1 disappearing track (red), or at least 2 tracks
(orange). All the results are shown assuming systematic uncertainties to be 0 (light), 1h (medium),
or 1% (dark). The vertical red bands show the freeze-out prediction. Left: Majorana 3-plet for√

s = 14 TeV and L = 20 ab−1. Right: Majorana 5-plet for
√
s = 30 TeV and L = 90 ab−1.

visible object, parametrized in terms of its transverse momentum pT,V , its pseudo-rapidity ηV , and
the missing invariant mass (MIM) which is a function of the energy of the visible particle itself

MIM =
(
s+m2

V − 2
√
sEV

)1/2
. (10.44)

We select events with MIM ≥ 2Mχ, pT,V ≥ pcut
T,V , |ηV | ≤ ηcut

V , where the pT and η selection cuts are
chosen to maximize the significance for each value of Mχ.

The background rates for mono-γ and mono-Z are very similar, with fiducial cross-sections of
around 3 pb that depend weakly on the collider energy. As already pointed out in [278] for the
mono-γ case, the optimal reach on Mχ is obtained for low signal-to-noise ratios – in other words,
systematic uncertainties could be important. For this reason, we present results for different values
of εsys = 0, 1h, 1%. We point out that in presence of larger systematic uncertainties, the optimal
selection cuts are stronger and lead to higher values of S/B.

The mono-W differs from the other two channels. The SM background is dominated by vector
boson fusion (VBF) processes, that lead to forward leptons (lost along the beam pipe) and W bosons.
The signal is instead made of events where the W is radiated from the initial or final states, leading
to a more central distribution. The cut on pT,W can efficiently suppress the VBF background, with
a lesser impact on the signal compared to the mono-γ or mono-Z cases. As a consequence, we find
that the mono-W search has the best sensitivity among the various mono-X channels. The 95% C.L.
exclusion reach on Mχ is shown in Fig. 10.5 for instance for a Majorana 3-plet and 5-plet, as a function
of collider center-of-mass energy

√
s and luminosity L. We also show the expected values of S/B for

the excluded signal in absence of systematic errors, which are rather low also for the mono-W search.
Due to the presence of initial-state radiation, the W boson of the signal has a preference for being

emitted in the forward (backward) direction, measured with respect to the flight direction of the `−
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beam, if its charge is negative (positive). Since the charge of the W boson is potentially observable
for leptonic decays, we can envisage a strategy to isolate the signal from the background using the
full distribution in ηW (instead of its absolute value). We thus also perform an analysis of leptonic
mono-W events, where we impose the additional cut ηW± ≶ 0. We find the reach of this search to be
weaker than the one of the inclusive mono-W because of the small leptonic branching ratio. However,
the leptonic mono-W search possesses signal-free regions of the ηW distribution which would allow
for an in situ calibration of the background from the data itself, leading to possible reduction of the
systematic uncertainties.

Among all the channels considered, the only background that needs some careful treatment is the
mono-W one. We split this background in two contributions. For pseudo-rapidities of the final state
lost muon ηµ > ηmatch (computed with respect to the direction of the initial state muon with the same
charge), we compute the cross-section of the process γµ∓ → W∓ν, using the improved Weizsäcker-
Williams approximation [319]. For 2.5 < ηµ < ηmatch, we compute the full hard process µ−µ+ →
W∓ν`±. The values used for ηmatch are 5.4, 6.2, 6.5, 7.0, 7.5 for

√
s = 3, 6, 10, 14, 30 TeV, respectively.

These values are such that the two background contributions are the same in the pseudorapidity region
(ηmatch, ηmatch + 0.2) for the lost muon.

Di-V. We now consider scattering processes with multiple emission of vector bosons, which have
explicitly studied for real WIMPs. While generally being suppressed by higher powers of the gauge
coupling constant, these processes can be enhanced for large center-of-mass energies, and for multiplets
with large weak charge. They can therefore provide very useful handles to probe WIMPs in the
regimes where the mono-V searches have very low signal-to-noise ratios. Of course, a too large rate
for multiple boson radiation would indicate the breakdown of the perturbative expansion, requiring
the resummation of large logarithms. We have checked that for the EW 3-plet and 5-plet, and for the
energies under consideration here, the fixed-order computations are still accurate.

First, we consider the di-photon process

`+`− → χiχ−i + γγ . (10.45)

We apply the same acceptance cuts of the mono-γ analysis, and in addition we require a separation
∆Rγγ > 0.4 between the two photons. We employ the same event selection strategy of the mono-γ
case, using as variables ηX , pT,X , where X is the compound γγ system. Moreover, we require each
photon to be as central as the γγ system itself. For the 5-plet, we find that the di-γ search can be
stronger than the mono-γ in presence of large systematic uncertainties, where suppressing the SM
background is more important. For the 3-plet, which has a smaller EW charge, the signal yield is too
much affected by the requirement of a second emission to be competitive with the mono-V. In both
cases, the values of S/B for the excluded di-γ signal are much larger than for the mono-γ signal, and
systematic errors thus have a smaller impact.

Second, we consider the double W emission

`+`− → χiχ−i∓2 +W±W± , (10.46)

which holds a potentially very clean signature due to the two same-sign W bosons. We focus on
leptonically decaying W bosons to ensure that their charge can be accurately tracked. A potential
SM background consists in events with two lost charged particles, with the leading contribution being

`+`− →W−W−W+W+ , (10.47)

where two W bosons of same sign are lost. This background is however negligible, as pairs of W bosons
with opposite charge tend to be radiated from the same external leg and to be collinear: requiring
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only one of two collinear W bosons to be within detector acceptance reduces the rate to negligible
levels. The other possible background is given by events with a misidentified charge,

`+`− →W−W+(mistag) νν̄ , (10.48a)

`+`− →W−W+(mistag) `+`− , (10.48b)

where in the second case the charged final-state leptons are lost along the beam line. Requiring
pT,WW &

√
s/10 makes the process in Eq. (10.48b) subdominant with respect to the νν̄ background

Eq. (10.48a). On top of this pT cut, we do not apply further selection cuts, and simply require the
two W bosons to be within the geometrical acceptance of the detector, |ηW | < 2.5. As an estimate
for the charge misidentification probability we take εmisid = 10−3.

Due to the negligible background contamination, the same-sign di-W signal has a much higher
signal-to-noise ratio than the mono-V channels and even than the di-photon signal, reaching up to
S/B ∼ O(1). This makes this channel very robust against systematic uncertainties, and particularly
effective for large n-plets n ≥ 5 at higher energies due to their large EW charge. This signature may
be one of the most robust and convincing signal of n = 5 multiplets at colliders. Further sources
of background and a proper characterization of the missing (transverse) momentum in this reaction
depend on detector performances, as well as on the knowledge of the initial state of the collision to be
used in the computation of kinematic variables.

For the real WIMPs, we summarize the results of all the mono-V and di-V signatures discussed
above in Fig. 10.6, where we show the 95% C.L. exclusion on Mχ for real fermion 3-plets and 5-
plets, together with the 5σ discovery potential, at two benchmark muon colliders. We also show the
combined reach from all these missing mass channels. The bands with different shadings correspond
to different systematic uncertainties. One can see that the inclusive mono-W yields the strongest
exclusion for both the 3-plet and the 5-plet. The main effect of di-V searches is to reduce the impact
of systematic uncertainties. A 14 TeV muon collider with the benchmark luminosity of Eq. (10.35)
would be able to probe a thermally-produced Majorana 3-plet WIMP, while a center-of-mass energy
of slightly above 30 TeV is needed to probe the thermal freeze-out mass with missing energy searches
in the case of the 5-plet.

The same analysis can in principle be repeated also for scalar WIMPs. However, probing scalar
WIMPs with typical missing mass searches is quite hard. This is due to multiple reasons: i) the scalar
production cross-sections are roughly one order of magnitude smaller than for fermions with same n.
A factor of 4 suppression comes from the lower number of degrees of freedom for scalar final states,
while the remaining suppression comes from a velocity suppressed production cross-section compared
to the fermionic case. One can see that the reach is a very slow function of the mass of the WIMP
Mχ, thus a reduction of the signal cross-section implies a drastic change in the reach. ii) The scalar
WIMPs have typically larger freeze-out masses compared to fermionic WIMPs with same EW charge
n. All in all, scalar WIMPs give dimmer signals at colliders and are generically heavier than fermionic
WIMP. It is thus not surprising that the results expected from collider searches of scalar WIMPs are
far less exciting than those for fermions in Fig. 10.6.

Finally, we will extend this analysis to the complex 21/2 and 31 WIMPs at the end of this Section.

10.4.2 Disappearing tracks

A second handle to tag the production of EW WIMPs at colliders is the detection of tracks from
the charged states in the n-plet. In fact, the decay of χ± → χ0π± has a lifetime of roughly cτχ+ '
48 cm/(n2− 1), which is sufficiently long-lived to give rise, in the real case, to reconstructed tracks of
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Figure 10.7: Same as Fig. 10.5, but for disappearing track searches in mono-γ events. Left: Majorana
3-plet. Right: Majorana 5-plet.

length O(cm) for n = 3, 5 that can be observable at colliders (we posticipate the discussion for complex
WIMPs in the following Subsection). The resulting tracks from these processes are somewhat too short
for regular track reconstruction to work efficiently and they will show up as disappearing tracks (DTs),
with missing hits in the outermost layers of the tracker and with little or no activity in the calorimeter
and the muon chamber. States with higher electric charge in larger multiplets decay promptly to χ±,
and eventually contribute to the number of disappearing tracks.

A full-detector level study has shown that a high energy lepton collider like CLIC at
√
s = 3 TeV

can reconstruct them sufficiently well to separate them from other sources of look-alike short tracks
[320, 321]. A recent study [322] has attempted a first evaluation of the performance of this type of
search at a multi-TeV muon collider. A main source of worry and a main difference with respect
to e+e− machines is the abundant number of tracker hits from underlying event activity due to the
muon beam decay and to the resulting secondary particles from the interactions with the machine
and detector materials. These hits can accidentally become a potentially severe source of background
for searches aimed at highlighting the presence of short tracks of BSM origin. We do not enter in the
details of these issues here, and simply follow the analysis of [322], which is based on a simulation of
beam-induced background at 1.5 TeV, and recast their results for the EW 3-plet and the 5-plet. We
remind that the background from decaying muons is expected to decrease at higher energies, making
our estimate conservative in this sense.

We consider mono-photon events with disappearing tracks, and search for events compatible with
a WIMP signal. Following [322], we distinguish two event-selection strategies to hunt for disappearing
tracks: i) events with at least a disappearing track with pT > 300 GeV and a hard photon with
Eγ > 25 GeV; ii) events with a hard photon, and two disappearing tracks originating from the
same point along the beam axis. To estimate the reach we work in the cut-and-count scheme as in
Eq. (10.43), and ignore systematic uncertainties. Further details are summarized in Appendix F for
completeness.

Focusing on real WIMPs, the result of our recast is shown in the last two columns of Fig. 10.6
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for Majorana 3-plets and 5-plets at two benchmark colliders, and in Fig. 10.7 as a function of collider
energy and luminosity. One can see that DTs are especially powerful in the case of the 3-plet, where
the reach goes almost up to the kinematical threshold. In particular, an EW 3-plet WIMP of mass
as predicted by thermal freeze-out can be discovered already at a 6 TeV muon collider as suggested
in [278, 322]. For higher n-plets DT substantially loose exclusion power because the lifetimes of the
χ± → χ0π± decay become shorter. For the 5-plet the DT reach is comparable to the combined reach
of the MIM searches.

As discussed in more detail in the Appendix F, DT searches are particularly important to probe
scalar WIMPs. It is remarkable that for real scalars the mass splitting between charged and neutral
states in the n-plet is dominated by EW interactions. Indeed, no splitting term with the Higgs can
be written at the quartic level, due to the antisymmetry of the SU(2) contraction. By hypercharge
conservation, and assuming the scalar does not get any extra VEV, the leading terms contributing to
the mass splitting are dimension 6 in the SM. Therefore the stub-track prediction is robust and does
not depend on peculiar UV completions of the model. In conclusion, disappearing tracks might be
the only direct signature of scalar WIMPs at collider experiments.

10.4.3 Results for the complex fermionic 21/2 and 31 at muon collider

Let us finally repeat the aforementioned analyses for complex WIMPs, more specifically for the complex
fermionic 21/2 and 31 candidates. We stress again that, in what follows, we are working in a minimal
splitting setup. In these cases, the expected signatures at future colliders depend very much on the
lifetime of the charged states in the EW multiplet. This might decay back to the neutral DM either
promptly or with a macroscopic lifetime on detector scales.

In the prompt case, the decay of the charged state will give rise to soft radiation which would be
impossible to disentangle from the SM background and the DM signal will be characterized only by
a large missing energy recoiling against EW radiation. This can be further disentangled from the SM
background at lepton colliders thanks to the knowledge of the center of mass energy by looking for
features in the MIM distribution. For complex candidates, we find that the MIM reach is dominated
by the mono-W and the mono-γ channels. Despite the non-zero hypercharge enhancing the coupling
to the Z, the mono-Z channel has a lower reach, similarly to what has been discussed for real WIMPs.

In the long lived case, depending on the decay length of the charged state it might be beneficial to
look at DTs or to look at long lived charged tracks (CTs), that could be distinguished from the SM
backgrounds by their energy losses in the material and by the measurement of their time of flight (see
for example analogous searches performed by ATLAS and CMS at the LHC [323,324]).

Here, we focus on the expected reach from DTs and MIM searches which are relevant for the 21/2

and 31, fixing the splitting of the Q = 1 state with respect to the neutral one to be the one generated
purely by EW corrections. In this minimal case, the rest frame lifetime of the charged state decaying
back to the DM is cτ+ = 6.6 mm for the 21/2 and cτ+ = 0.7 mm for the 31.

Our results for the combination of the MIM searches and the DT tracks search are given in
Figures 10.8-10.9 for fixed thermal mass of the 21/2 and similarly for the 31. As can be seen from these

plots, the MIM search at
√
s = 3 TeV with the benchmark luminosity L = 1 ab−1 is not sensitive to

the 21/2. A
√
s = 6 TeV collider with benchmark luminosity L = 4 ab−1, instead, is able to probe the

complex doublet WIMP at 2σ C.L. In general the mono-W and mono-γ channels give comparable mass
reach for the benchmark luminosity adopted here and the sensitivity of each channel has a specific
behavior as a function of the luminosity and for different assumed systematics. We remark that in
Figures 10.8-10.9 the reach deviates from a pure rescaling by

√
L because the selections, hence the

result, have been optimized as a function of L when dealing with εsys 6= 0.
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Figure 10.8: Collider reach for the 21/2 of mass Mχ = 1.1 TeV and
√
s = 3 TeV (left) and

√
s = 6

TeV (right). Upper row: Combined reach for MIM as a function of the luminosity L for different
values of the expected systematic uncertainties parametrized by εsys: 1% (purple), 0.1% (cyan), 0
(green). The red lines show the benchmark luminosity following Eq. (10.35). Lower row: Reach
of DT for varying lifetime of the charged track. The red vertical line shows the benchmark lifetime
for EW splitting. The blue and orange curves correspond to the reach with 1 and 2 disappearing
tracks. Fine-Tuning values computed on δm+ following Eq. (10.17) are displayed as color code from

green (no fine-tuning) to red (higher fine-tuning).

We also display results for the DT search as a function of the lifetime of the charge +1 state, that
is in a 1-to-1 relation with the mass splitting δm+. We see that a collider of

√
s = 6 TeV can probe

the 21/2 for charge-neutral splitting generated purely by EW interactions. A collider of
√
s = 3 TeV

can probe a large portion of the allowed lifetimes for the charged tracks corresponding to non-zero
UV contributions in Eq. (10.16).

We have similar results for the 31 at its thermal mass, which entails interesting results at 6 and
10 TeV center of mass energy machines. For the 10 TeV collider we find that MIM searches are effective
probes of this WIMP candidate and can establish a bound at 95% CL with a small luminosity or give
a discovery with the nominal luminosity. Mono-W and mono-γ perform similarly well and their
combination is worth being done. The DT search cannot probe the EW splitting for the 31, however
it can cover a large portion of allowed lifetimes in the non-minimal splitting case in which UV physics
is contributing to the charged-neutral splitting.

Finally, it is important to notice that with an O(1) fine tuning of the UV contribution to the charged
neutral splitting against the irreducible EW contribution the charged tracks could be extremely long-
lived on detector scale for both the 21/2 and 31. This observation motivates a detailed detector
simulation of a muon collider environment to reliably estimate the expected reach in this channel. We
will provide some estimates for the signal yield in the last Section.



146 CHAPTER 10. A FINAL WORD ON WIMP DARK MATTER

0.5 1 5 10 50 100

0

1

2

3

4

5

ℒ [ab
-1]

S
ig

n
if

ic
a

n
c

e

B
e

n
c

h
m

a
rk

ℒ

s = 6 TeV

M χ = 2.85 TeV

MIM 31,F

2 σ

5 σ

ϵ sys
=

0

ϵsys = 0.1%

ϵsys = 1%

1 5 10 50 100 500

0

5

10

15

ℒ [ab
-1]

S
ig

n
if

ic
a

n
ce

B
e

n
c

h
m

a
rk

ℒ

s = 10 TeV

M χ = 2.85 TeV

MIM 31,F

2 σ

5 σ

ϵ sys
=

0

ϵ sys
= 0.1%

ϵsys = 1%

0.1 1 10 100 1000 104

0

2

4

6

8

10

0.94 0.41 0.18 0.14 0.12

cτ χ+ [mm ]

S
ig

n
if

ic
a

n
c

e

δm+ [GeV ]

2 σ

5 σ

E
W

sp
li

tt
in

g

P
ro

m
p

t

C
h

a
rg

e
d

T
ra

ck
s

1
D

T

2
D

T

N
o

F
.T

.

F
.T

.
~

5
.8s = 6 TeV

ℒ = 4 ab-1

DT 31,F

0.1 1 10 100 1000 104

0

5

10

15

20

25

30

0.94 0.41 0.18 0.14 0.12

cτ χ+ [mm ]
S

ig
n

if
ic

a
n

c
e

δm+ [GeV ]

2 σ

5 σ

E
W

sp
li

tt
in

g

P
ro

m
p

t

C
h

a
rg

e
d

T
ra

ck
s

1
D

T
2

D
T

N
o

F
.T

.

F
.T

.
~

5
.8s = 10 TeV

ℒ = 10 ab-1

DT 31,F

Figure 10.9: Same as for the Figure 10.8, but for the case of the 31 of mass Mχ = 2.85 TeV and√
s = 6 TeV (left) and

√
s = 10 TeV (right).

10.5 WIMP direct and indirect detection

In this Section we briefly summarize the opportunities of the future experimental program in DD and
ID searches, in light of the mass predictions derived in Tables 10.1 and 10.2.

10.5.1 Indirect Detection

The current and upcoming ground-based Cherenkov telescopes are in a very good position to probe
heavy WIMP n-plets, which would be inaccessible otherwise. Indeed, these telescopes are designed to
detect very high energy gamma-rays (i.e. Eγ & 100 GeV) coming from different astrophysical objects
and they are therefore sensitive to the gamma-ray signal from the annihilations of EW n-plets. The
typical spectrum is characterized at very high energy by gamma-ray lines, peaking at the DM mass
Eγ ' Mχ, from the loop-induced annihilations into γγ and γZ. The cross-section in this channel is
largely boosted by the SE (see e.g. [266,326,327]) and can raise above the gamma-ray continuum from
the showering, hadronization and decays of the EW gauge bosons [328].

From the astrophysical point of view, the reach of high energy gamma lines searches depends
very much on which portion of the sky the telescopes will be pointed at. In finding the optimal
choice, a balance has to be found between the maximization of photon flux at Earth and the control
over the systematical uncertainties. Two very well studied astrophysical targets are the Galactic
Center (GC) [325,329] and the Milky Way’s dwarf Spheroidal galaxies (dSphs) [325]. In the GC, the
uncertainties are dominated by the importance of the baryonic physics in the inner most region of the
Milky Way which comes together with the poor knowledge of the DM distribution at the center of
the Milky Way [330–333]. On the contrary, dSphs stands out as very clean environments to search
for high energy γ-lines only residually affected by systematics related to the determination of their
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Figure 10.10: Expected CTA sensitivities (dashed black lines) with 68% and 95% CL intervals de-
rived as in Ref. [325] assuming 50 hours observation time towards Draco (green) and Triangulum
II (magenta). We show the SE annihilation cross-section into the channels that contribute to the
monocromatic gamma line signal (i.e. γγ an γZ) for a real scalar 7-plet (blue) and a real fermionic
7-plet (red). The vertical bands show the predicted thermal masses for the scalar 7-plet (blue) and the
fermionic 7-plet (red), where the theory uncertainty is dominated by the neglected NLO contributions

(see Table 10.1).

astrophysical parameters in the presence of limited stellar tracers [334,335].

Motivated by the above considerations, we show a preliminary analysis of ID signals coming from
annihilations of the real WIMP 7-plet. We focus on the CTA prospects by considering 50h of ob-
servations time towards two dSph targets in the northern hemisphere: the classic dSph Draco and
the ultra-faint one Triangulum II. Notice that the DM properties of Draco come from hundreds of
stellar tracers, while those from Triangulum II are based on just 13 tracers, making the latter more
speculative and subject to large systematics in the determination of the geometrical J-factor [336].
Hence, the reach of Draco should be taken as the baseline reach for CTA.

Our analysis is simplified because the signal shape we consider is essentially a single line at
Eγ ' Mχ. Consistently we take the CTA prospects derived in Ref. [325] for a pure line. We ig-
nore the contributions of the continuum spectrum, the extra features of the spectral shape induced
by the resummation of EW radiation and the contribution of the BSF to the photon flux. While
neglecting BSF is justified if we focus on very high energy photons, a careful computation of the γ+X
cross-section, where X is any other final state, would be needed to precisely assess the experimental
sensitivity [337]. In the last decade, many different groups have investigated the impact of large Su-
dakov logarithms and large collinear logarithms on the ID reach, focusing mainly on the case of the
fermionic 3-plet [338–342,342]. The inclusion of these effects has been shown to increase the reach of
∼ 20%, 30% for the 3-plet [325,329,343] and it is expected to be even more important for higher DM
masses.

In Fig. 10.10 we overlay the SE annihilation cross-section for the 7-plets at v = 10 km/sec against
the CTA experimental reaches. In order to compute the SE in this velocity regime, we took advantage



148 CHAPTER 10. A FINAL WORD ON WIMP DARK MATTER

of the parametrization introduced in [327] and used the full expressions for the SE at leading order,
including EW breaking effects. The SE saturate already at v ' 10−3, 10−2 far away from the reso-
nances. As we can see, both a 50 hour observation of Triangulum II and of Draco have good chances
to detect the high energy γ line in the 7-plet annihilation spectrum.

As we see from Fig. 10.10, given the strong mass-dependence of the features of the SE cross-
section, a major source of theoretical uncertainty on the reach of ID is still the determination of the
7-plet thermal mass. Therefore, a full computation of the thermal relic mass including NLO effects is
required together with a careful computation of the γ+X cross-section along the lines of [338–342,342]
to careful assess the ID reach for the 7-plet.

Independently on our current inability of making a conclusive statement because of the large
theory uncertainties, it is clear that large n-plets are a perfect target for future Cherenkov telescopes
which deserves further theoretical study. A complementary open phenomenological question is if the
low energies gamma lines at Eγ ' EB associated to BSF can be actually disentangled from the
continuum (see [298,344] for preliminary work in this direction). An analogous question can be asked
for monocromatic neutrinos from BS annihilations.

10.5.2 Direct Detection
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Figure 10.11: In dark green we show the present contraints from XENON-1T [345] and PandaX-
4T [285], the green dashed line shows the reach of LZ [346] and the brown green dot-dashed line
the ultimate reach of DARWIN [347]. The light gray region show the neutrino floor for 200 ton/year
exposure derived in Ref. [348]. Left: Expected spin independent (SI) direct detection cross-section for
Majorana n-plets (red) and for real scalar n-plets (blue) (assuming the Higgs portal coupling λH = 0).
The vertical error bands correspond to LQCD uncertainties on the elastic cross-section in Eq. (10.50)
while the horizontal error band comes from the theory determination of the WIMP freeze out mass.
Right: Current and future reach on the Higgs portal quartic λH defined in Eq. (10.1) for scalar DM.
In the shaded dark red region the quartic modifies the freeze-out cross-section by O(1) or more. The
dashed red contours indicate smaller ratios of the Higgs-portal and the EW annihilation cross-sections.

In what follows, we finally investigate the discovery potential of both real and complex WIMPs at
DD experiments. Note that, in the latter case, we will again work in a minimal splitting scenario, since
in this case the spin independent (SI) scattering cross-section σSI can be computed by considering
only EW loop diagrams. Generalizing what written at the beginning of the previous Section, this
corresponds to set δm0 = 250 keV for n1/2 WIMPs with n ≤ 4 as well as for the allowed n1 WIMPs.
For n1/2 WIMPs with n > 4, instead, the BBN bound in Fig. 10.1 gives the minimal δm0.



10.5. WIMP DIRECT AND INDIRECT DETECTION 149

1 2 5 10 20 50 100 200 500
10-50

10-49

10-48

10-47

10-46

10-45

10-44

Mχ [TeV]

σ
S
I
[c
m
2
]

XEN
ON1

T

PAN
DAX

-4T

LZ (15.3
ton y

ear) /
XEN

ONn
T (20 to

n yea
r)

DAR
WIN

(200
ton y

ear)

Neut
rino F

loorDAR
WIN

/G3 (
1 kto

n yea
r)

DAR
WIN

/G3 (
1 kto

n yea
r) - 5

σ

21/2,S

21/2,F

31,S 31,F

41/2,S41/2,F

51,S51,F

61/2,S61/2,F

81/2,S81/2,F

101/2,S101/2,F

121/2,S121/2,F

Figure 10.12: Expected SI cross-sections for complex WIMPs in the minimal splitting scenario. The
blue dots correspond to Dirac WIMPs and the red dots to complex scalar WIMPs. The vertical
and the horizontal error bands have the same meaning of Figure 10.11 (left). The light green shaded
region is excluded by the present experimental contraints from XENON-1T [345] and PandaX-4T [285],
the green dashed lines shows the expected 95% CL reach of LZ/Xenon-nT [346,349] and DARWIN
[8,347].

Now, for the cases of our interest the elastic scattering of DM with the nuclei is induced by EW
loop diagrams first computed in [350, 351]. After EW gauge bosons are integrated out, the structure
of the UV effective Lagrangian describing the DM interactions reads

LSI
eff = χ̄χ (fqmq q̄q + fGGµνG

µν) +
gq
Mχ

χ̄i∂µγνχOqµν ,

where we focus on the DM SI interactions with quarks and gluons [352]. The quark twist-2 operator
is defined as Oqµν ≡ i

2 q̄
(
Dµγν +Dνγµ − gµν /D/2

)
q. The Wilson coefficients of the operators have been

computed in Ref. [353] for arbitrary choices of {n, Y } and at the leading order in Mχ/mW,h � 1 read

fEW
q ' − πα2

2

16m2
hmW

[
n2 − 1−

(
1.03 + 22(aV,2q − aA,2q )

)
Y 2
]
,

gEW
q ' πα2

2

24m3
W

[
n2 − 1−

(
4− 18.2(aV,2q + aA,2q )

)
Y 2
]
,

fEW
G ' αsα

2
2

192m2
hmW




 ∑

q=c,b,t

κq + 2.6


 (n2 − 1)−


1.03

∑

q=c,b,t

κq − 7.5


Y 2


 ,

(10.49)

where mh is the mass of the Higgs and κc = 1.32, κb = 1.19, κt = 1. Furthermore we have defined
aVq = T3q/2 − Qqs2

w, aAq = −T3q/2 with cw, sw being the cosine and the sine of the Weinberg angle,
respectively. Note that the terms proportional to Y correspond to the exchange of Z bosons inside
the EW loops, in addition to the W ones.

Following Ref. [352], starting from the UV DM interactions we derive the IR interaction of DM
with the nucleons. All in all, the SI elastic cross-section per nucleon in the limit Mχ � mN reads

σEW
SI '

4

π
m4
N |kEW

N |2, (10.50)
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where mN is the nucleon mass and kEW
N is defined as

kEW
N =

∑

q

fEW
q fTq +

3

4
(q(2) + q̄(2))gEW

q − 8π

9αs
fTGf

EW
G .

with the dimensionless nucleon form factors defined as fTq = 〈N |mq q̄q|N〉/mN , fTG = 1 −∑q fTq
with q ∈ (u, d, s) and 〈N(p)|Oqµν |N(p)〉 = 1

mN
(pµpν − 1

4m
2
Ngµν)(q(2) + q̄(2)), where q(2) and q̄(2) are

the second moments of the parton distribution functions for a quark or antiquark in the nucleon taken
from [353]. Notice that we choose a different set of values for the nucleon form factors with respect
to previous studies [354] which explain the difference in our results. In particular, we take the FLAG
2021 average of the lattice computations in the case of Nf = 2 + 1 + 1 dynamical quarks [39,355,356].
Notice also that since Y 6= 0, the up and down quarks can give different contributions to the SI
cross section in Eq. (10.50) for complex WIMPs. The ETM Collaboration [355] has computed the
form factors in the case of degenerate light quarks so we take fTu = fTd, ignoring possible differences
between these two form factors.

By combining the previous expressions all together, namely Eq. (10.49) with Eq. (10.50), the
parametric expression for σSI reads

σSI ' 10−49 cm2(n2 − 1− ξ Y 2)2, (10.51)

where ξ = 16.6 ± 1.3. The error has been obtained by propagating the LQCD uncertainties on the
elastic cross-section (10.50). This formula makes evident that large cancellations with respect to the
natural size of the elastic cross section can take place when Y '

√
(n2 − 1)/ξ. In particular, for n = 2

the exact cancellation takes place at Y ' 0.44± 0.02, which almost matches the exact hypercharge of
the doublet. Similarly, the cancellation happens at Y ' 1.2 for n = 5.

Our results for the SI cross sections for each possible n-plet are shown in Figures 10.11 (left)
and 10.12 for real and complex WIMPs, respectively. We obtain the vertical uncertainties on the SI
cross-section predictions by propagating the LQCD uncertainties on the form factors. Furthermore,
the horizontal bars represent the uncertainties coming from the computation of the thermal masses
through the relic abundance. As shown in the plots, almost all the WIMPs lie in cross-sections above
the Xenon neutrino floor, as computed in [348], and can be probed by a very large exposure experiment
like DARWIN [347]. The only notable exceptions are the fermionic complex 21/2 and 51 candidates.
This issue, which is evident from Figure 10.12, can be understood through the previous discussion on
Eq. (10.51).

For completeness, also spin dependent (SD) interactions of DM with the nuclei can be considered.
They are again induced by EW loops

LSD
eff = dq(χ̄γ

µγ5χ)(q̄γµγ5q), (10.52)

where the Wilson coefficient has been computed in Ref. [353] for any choice of the {n, Y } couple.
However, although in some cases the predicted SD cross section can lead to a larger contribution
compared to the SI one [353], for all the WIMPs it lies always well below the neutrino floor and it will
be impossible to test even at future direct detection experiments.

Finally, let us comment on the new opportunities for DD that arise for real scalar DM. Here,
a non-zero Higgs portal quartic in Eq. (10.2) leads to a new contribution to the SI DM scattering
cross-section with the nuclei, which again in the Mχ � mN limit reads

σH
SI =

4

π
m4
N |kH

N |2 , (10.53)
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where

kH
N '

λHfN
4m2

hMχ
, (10.54)

with fN ' 0.31 obtained from lattice QCD results (see [357] for a more detailed discussion on the
real scalar triplet). In the right panel of Fig. 10.11 we show the regions of parameter-space where
the Higgs-portal interaction can be tested in DD. The requirement of not significantly affecting the
freeze-out dynamics bounds the annihilation cross-section induced by the Higgs portal to be smaller
than the EW cross-section, σHann/σ

EW
ann . 1, which results in an upper bound on the quartic coupling

λH shown by the red shading in Fig. 10.11. An estimate for this bound can be obtained by comparing
the hard annihilation cross-sections, and reads λ2

H . (n2 − 3)(n2 − 1)g4
2/8. Interestingly, XENON1T

and PANDAX-4T already exclude a large part of the region where the Higgs portal induces O(1)
modifications of the freeze-out predictions, while LZ will completely exclude this possibility.

10.6 The non-minimal splitting scenario for complex WIMPs

Exploiting the freedom to change the spectrum given by the UV operators in Eq. 10.6, one can have
significant changes in the phenomenology at both the muon collider and DD experiments, which we
have described in the previous two Sections. We dedicate this last Section to explore the phenomeno-
logical consequences of releasing the minimal splitting assumption.

10.6.1 Direct detection

The Higgs portal operators in Eq. (10.6) generate upon EWSB a linear coupling of the DM to the
Higgs boson of the form

LD,h = − λDv

2ΛUV
χ2

DMh . (10.55)

This coupling mediates tree-level SI scattering processes of DM onto nuclei, therefore it can be con-
strained by DD experiments. As the mass splitting δm0 has to be sufficiently large to suppress the scat-
tering mediated by the Z boson, we find that the allowed parameter space for the non-renormalizable
couplings is compact.

Following Ref. [358], we can integrate out the Higgs boson and write the couplings of the DM to
the SM

LSI
eff,h =

λD
2m2

hΛUV
χ2
(
mq q̄q −

αs
4π
GaµνG

aµν
)
, (10.56)

so that the matrix elements fq and fG, defined in Eq. (10.49) for EW loops and required to compute
σSI, are simply given by

fq = fEW
q +

λD
2m2

hΛUV
, fG = fEW

G − αs
8π

λD
2m2

hΛUV
, (10.57)

where fEW
q and fEW

G come exactly from Eq. (10.49). We can rewrite the coupling λD solely in terms
of mass splitting as

λD
ΛUV

= −2Y

v2
(δµQM + nδµ0) , (10.58)

where

δµQM ≡
2δmQM − δm0 − 2∆MEW

QM

2QM
, δµ0 ≡

δm0

n
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and ∆MEW
QM

is the gauge induced mass splitting in Eq. (10.15). Thus, replacing Eq. (10.58) into
Eq. (10.50) allows us to translate the upper bound on σSI into an upper bound on δm0 and δmQM .
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Figure 10.13: Signal yield of the charged tracks for the 21/2, 31, 41/2, 51.

10.6.2 Muon collider searches

The splittings δm0, δmQM determine the lifetime of the charged components of the EW multiplet,
which are pivotal to understand the viable collider signatures. In what follows we take as reference
the detector geometry proposed in [277] and we classify the parameter space (δm0, δmQM ) in various
regions according to the lifetime τLCP of the Longest Lived Charged Particle (LCP) of a given multiplet.

For cτLCP > 1 m the LCP gives long charged tracks with an average length roughly corresponding
to the middle layer of the outer tracker. The SM background processes for this “long” track with
anomalous properties strongly depends on the properties of the detector, therefore its study is outside
the scope of this Thesis. We limit ourselves to estimate the number of expected signal events of
charged χ pair production at a muon collider, as shown in Fig. 10.13. We highlight that this results
approximately holds for generic

√
s in the domain of tens of TeV of interest here, as long as Eq. 10.35

for the luminosity holds. In Fig. 10.13 we show the βγ of the produced charged particle, which plays
a crucial role to disentangle these special tracks from the SM background.

Our estimates for the CTs are based on the counting of the number of LCP produced. For the LCP
we require pT > 200 GeV, |ηχ| < 2, inspired by LHC searches [324]. For the 21/2 and 31 we include in
our counting all charged particles production, assuming that χ2+ promptly decay to the long lived χ+.
For the 41/2 and 51, which have more complicated spectra, we stick to the minimal splitting scenario
for the estimate of the charged tracks yield, which corresponds to the minimal y+ necessary to lift χ−

above χDM. In this spectrum configuration χ− is the most natural and only candidate to make CTs,
therefore we only consider this contribution in our result.4

Now, for 1 m > cτLCP > 0.33 cm the lightest charged WIMP gives, instead, a disappearing track
signal, which has been introduced in the minimal splitting framework and it is further described in

4We neglect any possible contribution coming from χ+ decaying into χ−,c, since in the region where mixing is relevant,
the charged particles lifetimes are too short and are in the “stub tracks region”, as shown in Fig. 10.14.
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Figure 10.14: Direct Detection and collider signatures in the non-minimal splitting scenario in the
plane δm0 vs. δmQM from the 21/2 (left) and the 31 (right) . The green shaded regions are excluded
by current DD constraints on inelastic DM (see Fig. 10.1). Gray diagonally hatched regions are
excluded by BBN constraints on the longest lived unstable particle in the multiplet. Dashed green
lines show prospects from future high exposure Xenon experiments: LZ, DARWIN and DARWIN/G3
(arrows pointing to the direction of the expected probed region). In the gray shaded region the direct
detection signal falls below the so-called neutrino floor. Blue and black dashed lines show isocurves
corresponding to different benchmark tracks lengths. Different hues of brown distinguish the regions
suitable for charged track, stub tracks and missing mass searches. We show the pure gauge δmQM as
a dashed gray line for reference. Red dashed lines delimit the range of perturbative mass splitting at
fixed ΛUV/MDM ratio. Purple dashed lines show the contours of the fine-tuning among the different
mass splittings as defined in Eq. (10.17). In particular, mass splittings above the line F.T.=1 are not

fine tuned.

Appendix F.
Finally, for cτLCP < 0.33 cm the lightest charged WIMP decays promptly on collider scales and

gives MIM signatures, such as the mono-W and mono-γ previously discussed. The choice for the
threshold value to consider the signal as prompt corresponds to cτ/2 of the CT for the 21/2 WIMP
in the minimal splitting scenario, which is a known benchmark where DT reconstruction starts to
become challenging.

10.6.3 Two explicit examples: the Dirac 21/2 and 31 WIMPs

At this point, let us examine in greater detail the parameter space spanned by δm0 and δmQM for
the fermionic complex 21/2 and 31 WIMPs, which have been explicitly described for both the muon
collider and the DD searches in the minimal splitting scenario.

We recall that the 21/2 and 31 are special WIMPs, since they are the only multiplets with maximal
hypercharge compatible with our assumptions. In particular, for 21/2 requiring δm0,+ > 0 automati-
cally implies the neutral WIMP candidate is the lightest one. Perturbativity requires δm0 < 40 MeV
for the n = 31 WIMP. The narrower range of δm0 for the 31 with respect to 21/2 was expected from
the higher dimensionality of O0 for Y = 1 as compared to Y = 1/2.
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In Fig. 10.14 we show the constraints on the Dirac 21/2 and 31 in the parameter space spanned
by δm0 and δmQM coming from present DD experiments like Xenon1T and PANDAX-4T, as well
as prospect from future high exposure Xenon experiments, i.e. LZ, XENONnT, DARWIN and DAR-
WIN/G3. As we can see from Eq. (10.58), these bounds depend solely on the combination δµ ≡
2δmQM + (2QM − 1)δm0. In particular:

σSI ≈ 10−48 cm2





(
0.3− δµ

1 GeV

)2

, n = 21/2 ,

(
0.2 +

δµ

1 GeV

)2

, n = 31 .

(10.59)

In the region of low mass splitting for both 21/2 and 31 the direct detection cross section lies
below the neutrino floor. For 21/2, Eq. (10.59) shows that large cancellations between EW loops and
tree-level Higgs exchange occur around δµ ≈ 300 MeV, while for 31 the minimum σSI is obtained
for δµ = 0 and falls below the neutrino floor. To produce a direct detection cross section above the
neutrino floor for the 21/2 (31) we need δµ > 1.6 GeV (δµ > 2.0 GeV). PANDAX-4T already excludes
mass splitting δµ < 20 GeV (δµ < 30 GeV) for the 21/2 (31).

All in all, DD still leaves a large portion of parameter space unconstrained between the neutrino
floor and the PANDAX-4T constraints. Remarkably, this region corresponds to mass splittings that
do not corresponds to tuned adjustments of the three contributions to δm0 and δm+ that we have
considered. Generic contribution from UV effects that modify the EW splitting are thus expected to
populate this region currently not probed by DD experiment. The region of large splittings can be
covered by large exposure Xenon experiments while the large portion of the parameter space lying
below the neutrino floor should be taken as a major motivation for a future muon collider. For
21/2 WIMP the neutrino floor region can be fully probed only via a combination of CTs, DTs and
MIM searches that become relevant depending on the δm+ value, as shown in Fig. 10.14. For the 31

WIMP DTs and CTs can exclude the entire neutrino floor region, while MIM and DT searches can
be complementary to large exposure DD experiments to probe the rest of the parameter space.5

5While the plot in Fig. 10.14 show the possible regions in which DT can be reconstructed efficiently, they do not show
if the reach is large enough to guarantee exclusion (or discovery) of the WIMP candidate. Recalling the discussion for
the minimal splitting scenario, the general message is that for

√
s sufficiently larger than twice the thermal DM mass

DT searches will be powerful enough to probe the parameter space.



Chapter 11

Thermal decays of DM with
LeptoQuarks

In this last Chapter we will investigate in detail another possible model of Dark Matter, based on its
thermal decays. This scenario constitutes an important example of combined study of phenomenol-
ogy of Dark Matter and Flavour Physics. In fact, the most important issue is the introduction of
new interactions between DM and SM particles which are mediated by LeptoQuarks, whose general
properties have been widely discussed in Chapter 8. This possibility is particularly interesting since
it can in principle give a combined explanation to the observed DM abundance and to the anomalies
observed in B-meson decays, with particular attention given to the R(K), R(K∗) ratios. In this sense,
this model constitutes an important link between this Part and the previous ones of this Thesis.

In what follows, we will firstly describe the general ideas underlying this novel model. Then, we
will write the generic form of the Boltzmann equations that describe these new DM interactions and
study their features, deriving approximate solutions. Furthermore, we will discuss possible models
that only involve one DM particle, then focusing on models where DM carries lepton number (e.g.
a right-handed neutrino) and interacts with the SM via TeV-scale LQs (motivated by the flavour
anomalies). Finally, we will study possible experimental signatures, with particular attention given to
DD and ID searches.

My main contribution in this project concerns the computation of the decay widths of all the DM
decays and the cross sections of all the thermal DM decays necessary for the implementation of the
Boltzmann equations and for the study of freeze-out and freeze-in mechanisms. I have also contributed
to the investigation of possible detection strategies at both Direct and Indirect detection experiments.
All the details about these computations can be found in Sections 11.3, 11.5 and 11.6 of this Chapter.

11.1 The main motivations for Dark Matter and LeptoQuarks

The measured value of the DM energy density can in general be understood in terms of various
hypothetical scattering processes occurring in the early universe. The most studied scenario considers
2 ↔ 0 annihilation processes, where we count the number of DM-sector particles plus anti-particles
in the initial and final state, without indicating the SM particles. Examples of such processes that
change the number of DM (anti)particles by two units are

DM DM↔ SM SM, DM DM↔ SM SM SM. (11.1)

155
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A Z2 symmetry acting on the dark sector only usually justifies the presence of 2 DM (or, more
generically, dark sector) particles and implies DM stability. These annihilations (or, more generically,
co-annihilations) can lead to DM around the TeV scale as a freeze-out thermal relic, as we have seen
for WIMPs in Chapter 9. A freeze-in non-thermal relic and other possibilities can also arise through
the same interactions.

Processes more complicated than 2 ↔ 0 received less attention: 2 ↔ 1 scatterings, known as
semi-annihilations, can arise in models where DM is stable, and behave similarly to annihilations
(see [359–361] for recent references). 3↔ 2 or 4↔ 2 scatterings give qualitatively different behaviours
sometimes dubbed ‘cannibalistic DM’ [362] or ‘pandemic DM’ [361], depending on the regime and on
whether DM is in thermal equilibrium with the SM sector. These scatterings can reproduce the DM
cosmological density for DM masses in the eV or MeV range, and can be justified by Z3 or higher
symmetries.

Little attention has been received by the simplest possibility: 1↔ 0 processes that could be dubbed
‘decadent DM’. Examples of such transitions that change the DM number by one unit are

DM SM↔ SM SM, DM↔ SM SM, SM↔ DM SM. (11.2)

These processes arise in absence of a symmetry that forbids couplings between one DM particle and
the SM sector. This is what can happen, for instance, in presence of interactions under which both DM
and SM fields are charged, where imposing a symmetry that separates the dark sector from the SM
might be not be a viable option. Prototypical examples of such a scenario include “sterile neutrino”
DM, that can couple to leptons via a Higgs boson or a right-handed vector boson, or models where DM
interacts with quarks via a LeptoQuark mediator. In both cases, the mediator carries a conserved SM
charge and is allowed to couple to a DM-SM current. The possibility of DM coupled to LQs has been
considered before [363–365], but usually in combination with an additional Z2 symmetry that forbids
DM decay. Here we shall explore the minimal possibility that allows the mediator to simultaneously
couple to DM-SM and pure SM currents.

Given that 1 ↔ 0 processes are unavoidable in some theories, we show that, on the other hand,
they can play a useful role in cosmology. Indeed, since DM needs to scatter on SM particles which are
abundant in the primordial plasma, in order to reproduce the DM relic abundance these processes need
a smaller cross section than that of the usual DM annihilations in Eq. (11.1), where DM needs instead
to find a rare DM particle. We refer to the interactions in Eq. (11.2) as “thermal decays” because at
finite temperature such transitions are conveniently described by Boltzmann equations with a thermal
width ΓT of DM. This terminology emphasises the obvious and potentially insurmountable problem:
DM risks decaying too fast, since there is no separate dark sector with a conserved DM number.
Interactions that lead to the thermal decays in Eq. (11.2) also lead to DM decays. To be quantitative:

• on one hand, the DM life-time τDM = 1/ΓDM must surely be longer than the age of the Uni-
verse τDM > TU (∼ 1018 s). Many DM decay modes are more strongly constrained, requiring
τDM>∼ 1026 s [366–368];

• on the other hand, thermal decays can give non-relativistic DM freeze-out1 reproducing the cos-
mological DM abundance if their rate ΓDMT is comparable to the Hubble rate H at temperatures
around the DM mass M .

1Freeze-in needs a smaller ΓDMT . We do not consider relativistic DM freeze-out (analogous to neutrino decoupling),
because the resulting DM abundance would be of order unity YDM ≡ nDM/s = 45ζ(3)gDM/gSM(Tdec)π4 and thereby
the DM cosmological abundance would be reproduced for warm DM with mass M ≈ 0.7 eV gSM(Tdec)/gDM. To avoid
problematic warm DM, the DM decoupling temperature Tdec must be mildly below the DM mass M . So we need a
sizeable ΓDMT ∼ H at T ∼M .
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As a result, the two requirements conflict easily and by many orders of magnitude: one needs

ΓDM/ΓDMT <∼ 10−30. (11.3)

This gap by 30 orders of magnitude is such a strong constraint on possible models that this scenario
is widely ignored. We nevertheless explore this possibility: while the simplest freeze-out picture in
models with one DM particle is clearly ruled out, more complex possibilities with DM freeze-in or
with multiple DM particles emerge and can lead to a peculiar phenomenology. We will investigate
this issue at the end of this Chapter. A common feature of all viable models is the presence of some
small coupling between DM and SM, which could be related to an underlying flavour structure.

11.2 The structure of Boltzmann equations for DM thermal decays

As usual, it is convenient to write the Boltzmann equation for Y ≡ n/s in terms of z = M/T , where
M is the DM mass, n is the DM number density, and s the total entropy. Including scatterings
that involve two DM (the usual DM annihilations) and one DM (our thermal decays) the Boltzmann
equation is

sHZz
dY

dz
= −2γeq

ann

(
Y 2

Y 2
eq

− 1

)
− γeq

dec

(
Y

Yeq
− 1

)
, (11.4)

where the factor Z = 1/(1 + 1
3
d ln g∗s
d lnT ) can often be approximated as 1. In order to match the DM

cosmological density, DM must freeze-out while non-relativistic, so that its thermal equilibrium abun-
dance is Boltzmann suppressed, neq

i ' di(miT/2π)3/2e−mi/T , where di is the number of degrees of
freedom for the particle i. The space-time density of scatterings γeq

i can thereby be simplified going to
the non-relativistic limit. The initial state of the usual DM DM↔ SM SM annihilations becomes non-
relativistic at low temperature. When considering more generic processes an unusual step is needed:
identifying which side of the reaction becomes non-relativistic, namely the side that involves heavier
particles. Defining as A,B the particles that can scatter at rest (they can be in the initial state or in
the final state, depending on the kinematics of each process), the rate is approximated as

γeq
i

T�m' Sneq
A n

eq
B σi0 where σi0 = lim

v→0
〈σiv〉. (11.5)

The initial-state symmetry factor S is only present when the non-relativistic particles are in the initial
state. In the presence of multiple processes, the total γeq

i are computed by summing their rates. In
the non-relativistic limit the Boltzmann equation becomes

dY

dz
= −fann(z)(Y 2 − Y 2

eq)− fdec(z)B(z)(Y − Yeq) (11.6)

where we defined

fi(z) ≡
sσ0i

HZz
'λi
z2
, λi = MPlMσ0i

√
πdSM

45
, (11.7)

such that DM is in thermal equilibrium at T ∼ M if λi � 1. In the annihilation case, λann is the
usual dimension-less combination that helps obtaining approximate solutions in the limit λann � 1.
The thermal scattering term contains an extra unusual but important factor B(z), since it contains a
Boltzmann suppression. Its non-relativistic approximation is

B ≡ Y eq
A Y eq

B

Y eq
' R

dDM

s

(
MT

2π

)3/2

exp

[
−∆

T

]
(11.8)
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Figure 11.1: Evolution of the DM abundance Y = n/s for thermal decays, assuming a heavier initial-
state involving a SM particle with mass mB = δM and DM mass M = 1 GeV. The case δ = 1
corresponds to DM annihilations. For δ 6= 0 we considered scatterings with heavier initial state,
interaction strength λdec = 106, degrees of freedom dDM = 2 and dB = 4. For δ = 0 (red curve) we
instead assumed dB = 2 and a smaller λdec = 104: despite this it produces a lower DM relic abundance.

where

R =
dAdB
d2

DM

(mAmB

M2

)3/2
, ∆ = mA +mB −M, for heavier final state, (11.9)

R =
dB
dDM

(mB

M

)3/2
, ∆ = mB, for heavier initial state. (11.10)

The ∆ factor that controls the exponential suppression is a combination of the masses M of DM,
and mA and mB of the particles that become non-relativistic. The important observation is that, in
general, ∆ 6= M . The DM mass M is the only relevant mass that controls how Boltzmann-suppressed
the usual DM annihilations into light SM particles are.

One has mA = M and thereby ∆ = mB for processes where the initial state is heavier and hence
non-relativistic. As we are considering DMA SMB ↔ SM SM processes, ∆ is the mass of the initial-
state SM particle. If instead the final-state is heavier and hence non-relativistic, DM SM↔ SMA SMB,
∆ is given by a more complicated combination of masses.

In the presence of multiple process, the one with smallest ∆, i.e. least Boltzmann suppression,
tends to dominate. The explicit expressions for ∆ imply that the Boltzmann suppression is only
avoided at the kinematical border where DM decay starts being kinematically allowed.

We see that the ‘thermal decay’ terms corresponds to an effective decay width ΓDMT = Bσdec0

that gets Boltzmann suppressed at low T . Indeed the rate of a true decay with width ΓDMT would be

γdec = ΓDMTn
eq
1 K1(z)/K2(z)

z�1' neq
1 ΓDMT .

11.2.1 Approximate solution to the Boltzmann equations: freeze-out

The freeze-out abundance produced by DM annihilations or by thermal decays can be approximatively
computed as follows. These processes reach thermal equilibrium if λann,dec � 1. Long before freeze-
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out, i.e. at early z � zf , we can expand Eq. (11.6) to first order in small Y − Yeq, finding for λi � 1

Y (z)− Yeq

z�zf' −
z2Y ′eq

2λannYeq + λdecB
=

z(z − 3/2)

2λann + λdecR ez(1−δ)
, (11.11)

where δ ≡ ∆/M so that ∆/T = zδ. We see that δ < 1 i.e. ∆ < M enhances the effect of thermal
decays compared to thermal annihilations. In general, the values of λdec/λann and of δ decide whether
freeze-out is determined by annihilations or decays.

The final abundance is roughly approximated as Y∞ ∼ Yeq(zf ) where the freeze-out temperature
zf is estimated imposing Y − Yeq = cYeq with c ≈ 1. In the usual case where only DM annihilations
are present, namely when λdec = 0, one gets the usual estimate for the freeze-out temperature zf ≈
ln
(

2dSMλann/z
2
f

)
, and the usual freeze-out abundance Y∞ ∼ z2

f/2λann. If instead only DM thermal

decays are present, i.e. λann = 0, one gets

zf ≈
1

2δ
W

[
δ

π

(
45cλdecRdDM

4π3dSM

)2
]
, (11.12)

where δ = ∆/M and W (x) is the ‘product log’ function, that solves x = WeW and is roughly
approximated by lnx as x→∞. The final DM abundance is approximated as2

Y∞ ≈ Yeq(zf ) ∼ λ−1/δ
dec , (11.13)

showing that thermal decays need a smaller value of λ � 1 if δ < 1, i.e. ∆ < M . Fig. 11.1 shows
examples of numerical solutions to the Boltzmann equations for fixed interaction strength λdec and
varying δ: we see that smaller δ leads to a lower DM final abundance in agreement with Eq. (11.13).

Note that thermal decays are maximally efficient for δ → 0. A look at kinematics shows that
this limit corresponds to processes where DM scatters with a much lighter SM particle B, such as
the photon. Thereby this case only arises near to the dangerous kinematical border where the phase
space for DM decays starts opening up. In this case, the cancellation of IR divergences between real
and virtual effects starts being relevant. In particular, we have that B = Y eq

B is constant (so that
the non-relativistic limit used in previous approximation no longer holds), decoupling happens at

zf ≈
√
λdecY

eq
B (no longer log-suppressed) and the subsequent evolution is non-negligible leading to

Y∞ ≈ Yeq(zf )e−λdecY
eq
B /zf ≈ 45dDM(λdecY

eq
B )3/4

25/2π7/2dSM
e−2
√
λdecY

eq
B . (11.14)

This case corresponds to the red line in Fig. 11.1.
Let us next discuss what these results mean in practice. We can approximate a non-relativistic

cross section at T ∼M as

σ0 ≈ gpSM

{
g2

DM/4πM
2 dimension-4 interaction with coupling gDM

G2
DMM

2/4π dimension-6 interaction with coupling GDM
(11.15)

where the interaction of DM with the SM sector is described by some dimension-4 interaction with
dimension-less coupling gDM, or by some dimension-6 operator with coefficient GDM with mass dimen-
sion −2. Depending on how many particles are involved in this DM interaction, extra couplings can
be needed to obtain a cross-section, so that we add extra powers p of a generic SM coupling (such as e

2This expression is accurate up to order unity factors, as we neglected evolution at z > zf .
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Figure 11.2: Values of the DM coupling to the SM needed to reproduce the DM cosmological abundance
via thermal decays with exponent δ = ∆/M . The case δ = 1 reproduces DM annihilations. We assume
the cross section in Eq. (11.15) with coupling gSM = 1 and other specifications as in Fig. 11.1. Left:
DM with a dimension-less coupling gDM to the SM. Right: DM coupled via a dimension-6 operator

with coefficient GDM. Its freeze-in estimate is the minimal contribution that arises if TRH ∼M .

or g2 or fπ/mπ). Since its power is model-dependent, for the purpose of the present parametrisation
we assume gSM ∼ 1.

The condition λ>∼λmin translates into

gDM>∼ 10−9

√
λminM

GeV
, GDM>∼ 10−4GF

√
λmin

(
GeV

M

)3/2

(thermal equilibrium) (11.16)

where GF is the Fermi constant. Both annihilations and thermal decays need at least to reach thermal
equilibrium, corresponding to λmin ∼ 1. DM annihilations give the freeze-out abundance Y∞ ∼ 1/λann,
so the cosmological DM abundance is reproduced for λ ∼M/ eV� 1, corresponding to

gDM ∼ 10−4 M

GeV
, GDM ∼ 10GF

GeV

M
(DM annihilations). (11.17)

For δ < 1, DM thermal decays need DM couplings smaller than in Eq. (11.17), possibly down to the
minimal value in Eq. (11.16) for λmin ∼ 1, reached in the limit δ � 1, i.e. ∆�M (where DM thermal
decays become maximally efficient).

Fig. 11.2 shows the values of gDM and GDM needed to reproduce the DM relic abundance via freeze-
out of thermal decays, assuming gSM = 1, considering different values of 0 ≤ δ ≤ 1 (solid curves). The
needed values range between those characteristic freeze-out of DM annihilations (δ = 1, Eq. (11.17)
and black curves in Fig. 11.2) down to those needed to achieve thermal equilibrium (δ = 0, Eq. (11.16)
and red curves in Fig. 11.2).

11.2.2 Approximate solution to the Boltzmann equations: freeze-in

If DM couplings are so small that it never thermalized, one can instead assume a vanishing initial DM
abundance (needless to say, this is a more questionable assumption than thermal equilibrium) and
match the small amount of generated DM with the observed DM abundance.
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The final DM abundance produced by freeze-in is obtained by setting Y = 0 in the right-handed
side of Eq. (11.6). One gets

Y∞ =

∫ ∞

0

dz

z

γeq
dec

Hs
∼ max

T

γeq
dec

Hs
∼ max

T

ΓDMT

H
. (11.18)

The DM abundance suggested by cosmology, Y∞ ∼ eV/M , is thereby reproduced for a comparably
small value of ΓDMT /H. Unlike in the freeze-out case, replacing DM annihilations with DM thermal
decays does not lead to significant changes in the dynamics. What changes is that the needed scattering
can be partially mediated by SM couplings, that can have significant values gSM ∼ 1. Freeze-in can
be dominated at low T ∼M or at high T �M depending on the dimension of the interaction:

• If DM has a dimensionless coupling gDM, the rate γeq
dec ∼ g2

SMg
2
DMT

4 at T � M gives a DM
abundance Y∞ dominated at T ∼ M , Y∞ ∼ g2

SMg
2
DMMPl/M . This matches the cosmological

DM abundance for

gDMgSM ∼
√
T0/MPl ∼ 10−15 (freeze-in of thermal decays). (11.19)

Precise order one factors depend on the process (such as a scattering or a decay, see [369]
for examples). A general expression, valid up to these process-dependent order one factors, is
obtained by inserting in Eq. (11.18) the universal non-relativistic limit

Y∞ ≈
∫ ∞

0
dz fdecBYeq = λdec

2025d2
DMRB

32π7d2
SM(1 + δ)2

. (11.20)

This is plotted in the left panel of Fig. 11.2 assuming the cross section in Eq. (11.15) with gSM ∼ 1.

• If DM has a non-renormalizable interaction GDM, one has γeq
dec ∼ g2

SMG
2
DMT

8 so that DM
production is dominated at T �M : the result depends on the full model. For example, the non-
renormalizable operator could be produced by a mediator with mass Mmed and renormalizable
couplings. If the reheating temperature satisfies TRH �Mmed the DM abundance is dominated
at T ∼ Mmed and can be approximated in a way similar to Eq. (11.18). If M � TRH � Mmed

the DM abundance is dominated at T ∼ TRH, Y∞ ∼ g2
SMG

2
DMMPlT

3
RH. Eq. (11.18) provides the

minimal contribution that arises at T ∼ M if TRH ∼ M , plotted as upper bound in the right
panel of Fig. 11.2.

11.3 DM with lepton number and freeze-in

We are looking for theories where DM number is significantly violated, but where, at the same time,
DM is very long lived. Let us consider DM coupled to two SM particles with masses m1 and m2:

DM SM1 SM2. (11.21)

To avoid the most immediate danger, the tree-level decay DM→ SM1 SM2, we assume M < m1 +m2

so that this process is kinematically blocked. We also need to assume M ∼ m1,2, so that the SM
particles take active part in DM decoupling. Finally, if the coupling (11.21) is large, it might be
necessary to assume M > |m1−m2|, to avoid potentially problematic decays of SM particles into DM.

Now, the next danger is represented by virtual decays such as DM→ SM1 SM∗2. The SM2 particle
with mass m2 and d2 degrees of freedom is off-shell. Moreover, SM∗2 has quadri-momentum k2 with
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particle life-time mass ε = Γ/m main decays

e ∞ 0.511 MeV 0 stable
p = duu >∼ 1034 yr 938.3 MeV <∼ 10−66 stable
n = ddu 880 s 939.6 MeV 0.8 10−27 peν̄

µ 2.2 10−6 s 105.7 MeV 2.8 10−18 eνµν̄e
K− = sū 1.2 10−8 s 493.7 MeV 1.1 10−16 µν̄µ, π

−π0

π− = dū 2.6 10−8 s 139.6 MeV 1.8 10−16 µν̄µ
Ω− = sss 0.8 10−10 s 1672 MeV 4.8 10−15 ΛK−,Ξπ
Σ+ = uus 0.8 10−10 s 1189 MeV 6.9 10−15 pπ0, nπ+

Table 11.1: SM particles with lowest narrowness ε = Γ/m. One component out of multiplets is
selected.

x ≡ k2
2/m

2
2 < 1 and decays into lighter SM particles SM3,4,... not directly coupled to DM. The DM

decay width averaged over polarizations then is

Γ(DM→ SM1SM3,4...) =

∫
dx
√

x

(x− 1)2
Γ(DM→ SM1SM∗2)

Γ(SM∗2 → SM3,4,...)

πd2m2
. (11.22)

The integral is dominated by the highest available xmax < 1, so that some decay modes of SM2 might
be closed for SM∗2. The off-shell decay width is thereby approximated as

Γ(DM→ SM1SM3,4...) ≈
ε2
4π

Γ(DM→ SM1SM∗2)

1− xmax
, εi ≡ BRi

Γi

mi
, (11.23)

where Γi is the total decay width of SMi, and BRi (possibly equal to 1) its branching ratios into light
enough particles (such as photons, neutrinos, electrons). Each SMi particle has a value of εi, and its
smallness is a figure-of-merit for coupling long-lived DM to SM particles. Table 11.1 lists the most
narrow SM particles. All of them are lighter than about a GeV (heavier weak-scale SM particles decay
too fast for our purposes), so DM too has to be similarly light. At sub-GeV energy, physics is described
by baryons and mesons, rather than by quarks. In order to possibly reproduce the DM abundance via
freeze-out, DM interactions cannot be suppressed by a scale much above the weak scale.

The electron and proton are stable in view of conservation of charge and baryon numbers. The
other SM particles undergo weak decays suppressed by (m/v)4 and possibly by phase space (the
neutron) or by flavour (the K,Ω,Σ in Table 11.1). DM decays can be suppressed by ε ∼ 10−15, far
from the needed ε < 10−30. One dose of off-shell vaccine does not protect DM stability well enough.

However, two doses of the off-shell vaccine can give enough protection. Let us assume that DM is
coupled to two SM particles as in Eq. (11.21) and its mass is M < m1,m2. Then doubly-virtual tree-
level decays DM→ SM∗1 SM∗2 are suppressed by ε1ε2 ∼ 10−30, corresponding to two weak interactions.
An example in this sense is DM coupled to µπ, see Fig. 11.3a.

Nevertheless, even if DM only directly couples to massive SM particles, so that its tree-level decay
channels are suppressed, one-loop effects can give DM decays into light SM particles. DM that couples
to a particle/anti-particle pair (such as π+π−) decays at one loop level into photons, DM→ γγ, with
rate suppressed by a QED loop factor, ε ∼ (e/4π)4 ∼ 10−5. This is far away from the needed 10−30

suppression. DM that couples to π±`∓ decays as DM → νγ at one loop level (see Fig. 11.3b), with
rate suppressed by an electroweak loop factor, ε ∼ (fπ/4πv)4 ∼ 10−18, but still below the needed
10−30. Loop decays are present because this DM has lepton number, which is carried by nearly-
massless neutrinos. Let us then discuss a minimal model that achieves the level of stability needed for
freeze-in.
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Figure 11.3: Decays of DM coupled to µπ. Left: via off-shell µ and/or π. Right: at loop level. The
qq̄ quarks (in red) form QCD bound states, including pions.

11.3.1 Mediator models

We consider DM to be a fermion χ with no SM gauge interactions and lepton number L = 1. This
corresponds to a sterile neutrino in presence of a Yukawa coupling χLH. This is a well-known allowed
DM candidate if it has keV-scale mass: it can be cosmologically produced, compatibly with bounds
on χ→ νγ decays [370], as freeze-in, via resonant oscillations or via the decay of an extra scalar.

We instead explore the possibility that the SM neutral lepton singlet χ has a heavier mass M and
has gauge interactions in an appropriate extension of the SM. The natural possibilities allowed by
group theory are the following:

• A (χ̄γµ`R)Wµ
R interaction in models where the right-handed WR boson is part of an extra

SU(2)R. The full couplings of the WR mediator to fermions are

LWR
=
(
giχ

¯̀i
Rγµχ+ gijR ū

i
Rγµd

j
R

)
Wµ
R + h.c. (11.24)

where i, j are flavour indices. Integrating out the WR generates

Leff
WR

= −CχR(χ̄γµ`R)(d̄RγµuR) + · · · (11.25)

with CχR = gχgR/M
2
WR

.

• A (ūRγµχ)Uµ1 interaction with a vector leptoquark Uµ1 (see Table 8.1 for the corresponding
quantum numbers), whose couplings to fermions are

LU =
(
giχ ū

i
Rγ

µχ+ gijR d̄
i
Rγ

µ`jR + gijL Q̄
i
Lγ

µLjL

)
U1µ + h.c. (11.26)

We will discuss in what follows how a flavour structure can arise. Hereafter, we also drop the
subscript 1 for simplicity, so that Uµ ≡ Uµ1 . Note that the latter term in (11.26) has been
considered as a possible interpretation of the flavour anomalies in decays of B mesons, adding
interest to the possibility of obtaining DM in this context. Integrating out the leptoquark at
tree level generates

Leff
U = −CχR(χ̄γµ`R)(d̄RγµuR) + 2CχL(χ̄LL)(Q̄LuR)− CLL(s̄Lγ

µbL)(µ̄LγµµL) + · · · (11.27)

with CχR =
gχgR
M2

U

, CχL =
gχgL
M2

U

, and CLL =
g22
L g

32
L

M2
U

, which reproduces the B-anomalies for

CLL ≈ −1.4VtbV
∗
tsαem/4πv

2 = 1.4/(36 TeV)2 [371].
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• Alternatively, interactions can be mediated by a variety of scalar fields. An example is the
already mentioned Yukawa coupling with a Higgs doublet, HcL̄Lχ, in which case the DM can
be identified with a right-handed neutrino [370]. Scalar leptoquarks, instead, can couple χ to
SM quarks if they have suitable quantum numbers (see again Table 8.1 for this purpose). The
only two possibilities that are able to induce a DM-SM3 interaction are S1 and R̃2, with

LS1 = (gχd̄Rχ+ gLQ̄LεL
c
L + gRūRe

c
R)S1 + h.c., (11.28)

LR̃2
= (gχQ̄Lχ+ gLd̄RLLε)R̃2 + h.c. (11.29)

The full list of possible DM couplings to one lepton and two quarks, all of which can be generated by
the tree-level exchange of one of the previous mediators, is [372]

Leff
DM =− CχR(χ̄γµ`R)(d̄RγµuR) + 2CχL(χ̄LL)(Q̄LuR)

− C ′χL(L̄Lχ)ε(Q̄LdR)− C ′′χL(Q̄Lχ)ε(L̄LdR).
(11.30)

We expect that the various operator coefficients satisfy Ci<∼ (TeV)−2 because the charged or colored
mediators that generate the effective interactions are generically constrained to be heavier than the
TeV scale by collider bounds. We will sometimes collectively denote these couplings as 4GDM/

√
2,

including a normalization factor for ease of comparison with the Fermi constant GF .

Below the QCD scale Leff
DM becomes effective couplings to pions, χ`π, and to heavier mesons (such

as ρ and excited pions), as well as couplings to baryons, χ`p̄n. Heavier mesons give negligible effects
in cosmology and are not subject to significant bounds, despite that kinematical space for their tree-
level decays is open. The coupling to baryons can have more significant effects, since baryons remain
as relics at T � mp,n thanks to the baryon asymmetry (DM couplings to quarks never lead to DM
coupled to baryons but not to pions). Using chiral perturbation theory (see Appendix G) the coupling
to pions is obtained substituting the quark terms in the effective operator Eq. (11.30) with pion terms
with the same transformation properties:

LπDM =
CχR√

2
(χ̄γµ`R)

[
fπDµπ

+ + i(π0∂µπ
+ − π+∂µπ

0) + · · ·
]

+

−iCχLfπB0

[√
2(χ̄`L)π+ + (χ̄νL)π0 + · · ·

]
+ h.c. (11.31)

where fπ = 93 MeV, B0 ≈ 22fπ is the quark condensate, D is the gauge-covariant derivative and we
will not need higher orders. We assumed DM couplings to right-handed quarks, but this information is
lost in DM coupling to pions (the suppression is of order fπ/ΛQCD ∼ 1). This will remove a suppression
of weak loops.

11.3.2 DM decays (at loop and tree level)

We start discussing loop decays into massless particles, which are always kinematically allowed. The
EW interactions couple pions to the charged lepton current (the SM Lagrangian is written in Eq. (G.2)
in Appendix G). As a result leptonic DM with the interactions of Eq. (11.30) acquires at one loop a
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Figure 11.4: DM with lepton number coupled to µπ: kinematical thresholds for most dangerous
decays. A ∗ denotes a virtual particle, and thereby a Γ/M suppression. We here neglected the mass

difference between charged and neutral pions.

negligible mass mixing between DM and neutrinos3, and a mixed magnetic moment with neutrinos:4

Leff = Ae(χ̄σµνν)Fµν with A ≈
GFΛ2

QCD

(4π)2
(m`CχR + ΛQCDCχL). (11.33)

A precise estimate is not possible, as the exact loop integral is dominated by momenta around the
QCD scale where all resonances contribute. The resulting DM decay rates are

Γ(DM→ νγ) =
e2A2M3

2π
∼ 1

4 yr

M3

m3
π

(
CχL + CχRm`/ΛQCD

GF

)2

. (11.34)

Let us now discuss tree-level decays. They can a) dominate over loop decays if DM → `π is
kinematically open, or b) be comparable to loop decays if one of the two SM particles needs to be
off-shell to kinematically open the decay, or c) be negligible compared to loop decays if both `∗π∗ need
to be off-shell. Let us discuss in more detail the case of DM coupled to ` = µ as a concrete example.
Fig. 11.4 shows the main kinematical regimes. In the co-stability range, namely

34 MeV = mπ −mµ < M < mπ +mµ = 245 MeV, (11.35)

all tree-level decays among χ, π, µ are closed. DM heavier than mπ +mµ decays at tree level as χ→
µ±π∓. One of these particles must be off shell if the DM mass M is in the range mµ < M < mπ +mµ,
suppressing the DM tree-level decay rate by a εµ, επ ∼ 10−17 factor. Furthermore, π → µ∗χ→ eν̄eνµχ
decays are suppressed by εµ ∼ 10−16, and µ → π∗χ = eν̄eχ decays by επ ∼ 10−19. So the bounds
BR(π → µχ)<∼ 10−7 are easily satisfied. If mπ −mµ < M < mµ (in green in Fig. 11.4), the tree-level
χ → µ∗π∗ decay rate is suppressed by επεµ ∼ 10−33 as both µ and π must be off-shell. However, in
this case, loop decays dominate.

Now, Fig. 11.5 shows the life-time of DM coupled to left-handed (left panel) and right-handed
(right panel) leptons ` and quarks. We fix a reference value for CχR and CχL equal to 4GF /

√
2. The

solid curve in the left panel is the contribution from tree-level decays χ → ν`π
0. For M < mπ0 this

channel is kinematically closed and therefore the relevant contribution is into ν`γγ via the off-shell

3In the pion effective theory the mass mixing µχν + h.c. is UV-divergent and estimated as

µ ∼ CχRf
2
πm`g

2
2Λ2

UV

(4πMW )2
∼ meV

m`

mµ

CχR
GF

. (11.32)

The UV cut-off has been estimated as Λ2
UV ∼ M2

W /(4π)2. Indeed, in the high-energy theory above the QCD and EW
scales, the analogous effect is a log RG mixing between two dimension 6 operators: Eq. (11.30) at two loop induces
χLHH†H, so µ ∼ CχRv3y`yuydg

2
2(4π)4. The extra HH† and thereby yuyd terms appear because, in the full theory, DM

is coupled to right-handed quarks.
4Above the QCD and EW scales, the analogous effect is negligible: the dimension-6 operator of Eq. (11.30) induces

at 2 loops the operator (χ̄σµνLH)BµνHH†.
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Figure 11.5: Life time of DM χ coupled to a lepton ` and to quarks. Left: DM coupled to left-handed
leptons with coupling CχL = 4GF /

√
2. The dashed curve is the contribution from DM loop decays

into ν`γ; the continuous curve is the contribution from tree-level decays into ν`π
0 → ν`γγ. Right: DM

coupled to right-handed leptons with coupling CχR = 4GF /
√

2. Curves can be rescaled for different
couplings taking into account that life-times scale as 1/C2

χL,χR, while the bounds from cosmological
DM stability and from CMB do not depend on DM couplings, and are discussed in the text.

π0. The dashed curve is the contribution from DM loop decays χ → ν`γ which is independent on
the lepton mass, as shown in Eq. (11.34), and is the dominant decay channel for M < 2 MeV. In
the right-panel of the same figure, the solid curves indicate the contributions from tree-level decays,
χ→ `π. These predictions depend on the leptons (blue, red and green are for e, µ and τ respectively)
and the different features are due to the kinematical thresholds as discussed in details above. The
dashed curves show the contribution from DM loop decays into ν`γ, which depend on the lepton mass
since we need a mass insertion to flip the chirality of the lepton (see Eq. 11.34). For a given lepton
the loop decay is dominant at M < m` + mπ and therefore the co-stability regime is not important
from the phenomenological point of view.

For life-times longer than the age of the Universe, limits from Planck and Voyager II apply.
These bounds are shown as grey areas in the figure. For DM coupled to left-handed leptons, since
there is always a neutrino that does not release energy into the plasma, we rescale the Planck bound
for the channel DM → γγ given in fig. 7 of [373]. In particular for M > 2 MeV we rescale the limit
by a factor 2/3 (the final state is ν`γγ for both on- and off-shell π0), while for lighter DM by a factor
1/2 since the loop decay into ν`γ dominates. The bound is more complicated for DM coupled to
right-handed leptons. For M < m` + mπ the dominant channel is into ν`γ, so we follow the same
procedure described above. For M > m` + mπ the final state after the decay of the pion and lepton
always involves a e−e+ pair with a given number of neutrinos (3, 5 and 7 for e, µ and τ respectively).
We use the Planck and Voyager II limits given in [367, 368] for the decay channel χ → e+e−

rescaling them by a factor 2/5, 2/7 and 2/9 for e, µ and τ respectively. This is a good approximation
for Planck, since the deposited energy matters, while for Voyager II this is a rough approximation
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process Boltzmann factor ∆
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Figure 11.6: Assuming DM coupled to `π, we list the main processes that change by one unit the DM
number. Their contribution to cosmological DM freeze-out is controlled by the exponent δ = ∆/M ,
plotted in the figure. Standard DM annihilations correspond to exponent δ = 1, and more efficient

scatterings correspond to δ < 1.

given that the energy spectrum of the e± changes dramatically as we have a chain of multiple decays.

11.3.3 DM thermal decays

In the following discussion we will neglect scatterings that involve two DM particles, as their cross
sections σ2 arise at second order in the small new physics couplings C of Eq. (11.31). On the other
hand, 2 ↔ 2 scatterings that change DM number by one unit arise at first order, by combining the
C χ`π interaction with either

• an electro-magnetic interaction with coupling e ∼ 0.3, adding an extra γ to the process; or

• a strong interaction with coupling ∼ mπ/fπ ∼ 1 (see Eq. (11.31), the SM pion Lagrangian
contains no π3 interactions), adding an extra massive π to the process.

These processes have a larger cross section σ1 � σ2, that needs a much smaller critical value σ1 >
σcr

1 to affect DM cosmological freeze-out, if their kinematical factors ∆ that control the Boltzmann
suppression are smaller than the DM mass M . The most important processes are shown in Fig. 11.6.
It shows that some off-shell decays can be less Boltzmann suppressed than DM annihilations, but only
when M > m`, so that tree-level DM decays are not suppressed by two off-shell factors.

In conclusion, Fig. 11.7 shows the final result. In its left panel, we report the thermal decay rates
as function of z = M/T : as expected the process with smallest δ (χγ ↔ πµ in the example) dominates
at low temperature. The green curves in the right panel show the coupling needed to reproduce the
cosmological DM abundance as freeze-out via thermal decays (one curve is the numerical result, one
nearby curve is the analytic approximation). It shows that DM interactions to µπ needs to be a few
order of magnitude stronger than weak interactions. As expected, freeze-out is excluded by too fast
DM decays [367,368] (red curve).

11.3.4 Collider bounds

Let us discuss collider bounds on the effective (χ̄γµq)(q̄γ
µµ) interaction. We find that the strongest

constraints are set by the ATLAS analysis in [374], which perform a search for a heavy charged boson
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Figure 11.7: Dark Matter as a fermion coupled to µ±π∓. Left: rates of main thermal decays compared
to the Hubble rate. As expected, χγ ↔ πµ dominates at T � M . Right: parameter space (mass,
coupling). The red region is excluded by DM decays at tree (dashed) or loop (continuous) level,
estimated as in Eq. (11.34). The blue region is excluded by collider data in any reasonable EW
extension of the model. The DM abundance is reproduced thermally along the upper green curve, or

as freeze-in below the lower green curve.

in events with a charged lepton and missing transverse momentum. In order to derive the bound,
we have performed a recast of the ATLAS analysis. In particular, we have considered the reported
bounds from the model-independent analysis in the muon channel, based on cuts on the variable mT ,
defined as mT = [2pµTE

miss
T (1 − cosφ(µ,Emiss

T ))]1/2. In order to identify the fiducial region, we have
implemented the following cuts:

pµT > 55 GeV , |η|µ < 2.5 , Emiss
T > 55 GeV , mT > 110 GeV . (11.36)

We thus considered the model where a LQ, with mass Mmed �
√
s, mediates the effective interaction

in eq. (11.30), obtaining the constraint:

CχR

4GF /
√

2
< 8.1 · 10−4 . (11.37)

This result also excludes thermal freeze-out, and is plotted as a blue curve in Fig. (11.7). Calculations
have been made with MadGraph [375].

11.3.5 DM relic abundance via freeze-in

As clear from Fig. (11.7), while freeze-out is excluded, freeze-in is allowed. Three different regimes are
possible, depending on the highest reheating temperature TRH attained by the SM plasma:

i) At T <∼ΛQCD, i.e. in the confined phase, DM interacts with pions according to Eq. (11.31). The
dimension-5 interaction with right-handed leptons contributes to the DM freeze-in abundance
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as Y ∼ e2C2
χRf

2
πMPlT : the DM abundance is dominated by the maximal temperature TRH.

The minimal amount of freeze-in (upper boundary of the green region in Fig. 11.7b) arises if
TRH ≈ M . This confined contribution alone allows to reproduce the DM abundance for CχR ∼√
T0/MMPl/ef

3/2
π ∼ 10−6GF , nearly compatible with DM stability for M < mπ +mµ. For the

renormalizable interaction with left-handed leptons, freeze-in happens around T ∼ M , and the
abundance Y ∼ e2C2

χLf
2
πB

2
0MPl/M is independent of TRH. The pion description breaks down

at T ∼ ΛQCD when the QCD phase transition happens.

ii) At temperatures above the QCD phase transition and below the mass of the mediator Mmed,
namely in the region ΛQCD<∼T <∼Mmed, we have a higher Y ∼ C2

χRMPlT
3. This is again

dominated by the highest temperature T <∼ min(TRH,Mmed), where Mmed<∼C
−1/2
χR .

iii) Finally, at temperatures above the mediator mass, DM has renormalizable interactions and
freeze-in is dominated at T ∼Mmed. The dimension-less DM coupling to the mediator must be
small, in order not to over-produce DM. Other interactions (such as gauge interactions with SM
particles) can be large and keep the mediator in thermal equilibrium, so that the freeze-in DM
abundance is produced by its decays. In Boltzmann approximation, the space-time density of
mediator decays into DM is

γeq = neq
med

K1(Mmed/T )

K2(Mmed/T )
Γdec =

dmed

2π2
ΓmedTM

2
med K1(Mmed/T ), (11.38)

where Γmed is the mediator partial decay width into DM, and dmed is its number of degrees of
freedom.5 Inserting γeq in Eq. (11.18) gives

Y∞ =
405
√

5MPldmedΓmed

16π9/2d
3/2
SMM

2
med

. (11.39)

If the mediator is the U leptoquark one has Γmed =
g2
χMmed

24π and dmed = 18, and the DM abundance is
matched for

gχ ≈ 2.2 10−11

√
GeV

M

Mmed

TeV
. (11.40)

We remind that the coefficients C of the effective Lagrangian depend also on other couplings of the
mediator. We now explore the possible flavour structure of these couplings, to see if some natural
explanation can be found for the small size of gχ.

11.4 Flavour expectations for DM couplings and the B anomalies

The fact that a leptoquark such as Uµ could mediate at the same time the semi-leptonic interactions
responsible for the B-physics anomalies, and the interactions responsible for DM freeze-in, although

5We can neglect scattering rates because suppressed by extra powers of couplings, such as g2. At T � Mmed the
decay rate is suppressed by a Lorentz factor T/Mmed compared to the scattering rates γeq ∼ g2

2g
2
χT

4. This enhancement
of scattering rates is not important for the final DM abundance, because it is dominated at T ∼Mmed. Furthermore this
enhancement can be partially included as a NLO contribution to the decay rate, describing it as the thermal contribution
to the mediator mass, δM2

med ∼ g2
2T

2. The thermal mass avoid an apparent IR-enhancement at T �Mmed of t-channel
scattering rates, that would anyhow cancel with loop corrections in a full NLO computation (KNL theorem, see [376,377]
for a similar computation).
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with couplings of different sizes, makes it interesting to speculate about a common origin of the two
processes.

The B-physics anomalies can be explained, compatibly with other bounds from flavour and collider
physics, in models where new physics couples dominantly to the third generation of fermions [246,
378–380]. Couplings to lighter generations of quarks and leptons then arise from the flavour rotations
that diagonalize the Yukawa interactions, and are suppressed similarly to the masses and mixings of
light fermions. This can applied to vector leptoquarks assuming that only 3rd-generation fermions
are charged under an extended Pati-Salam group [381–383]. In the left-handed quark sector these
rotations are of the order of the CKM matrix.

Given the tiny values of the coupling gχ needed to reproduce the cosmological DM abundance via
freeze-in, for DM masses in the MeV range, it is then natural to consider the DM χ as a right-handed
neutral lepton of the first family. Other generations of χ, with larger couplings to SM, can be so heavy
that they decay back fast to SM particles, without contributing to DM.

We parametrize the SM Yukawa couplings as

Y ij
u ≈ εQiεuj , Y ij

d ≈ εQiεdj , Y ij
e ≈ εLiεej , (11.41)

where εfi are small parameters carrying the flavour suppression of the couplings to the i-th family of
f = {Q, u, d, L, e}, and the relations hold up to O(1) factors. Here and in subsequent estimates we also
ignore an overall coupling, assumed to be of order one. Such a pattern of Yukawa couplings is easily
obtained in Froggatt-Nielsen scenarios [384], or in models with partial composite fermions [385–387].
More stringent relations between the εif can be obtained in models with a larger flavour symmetry,
such as Minimal Flavour Violation [133,388,389] or U(2) models [135,390], as mentioned in Chapter
6.

The values of εQ,u,d can be estimated from the CKM mixings and the quark masses. Indeed,

V ij
CKM ≈ εQi/εQj , εQiεui ≈ (yu, yc, yt), εQiεdi ≈ (yd, ys, yb), (11.42)

from which one gets

εQ ∼ (λ3, λ2, 1) ηq, εu ∼ (λ4, λ, 1) η−1
q , εd ∼ (λ4, λ3, λ2) η−1

q , (11.43)

where λ ∼ 0.2 is the Cabibbo angle, and ηq is an overall O(1) parameter. The parameters in the lepton
sector can not be estimated as easily at this level, since the neutrino mixings are not necessarily directly
related to the Yukawa couplings.

We can now make the assumption that the flavour structure of the new physics couplings is
determined by the same flavour parameters that control the SM Yukawas. Let us focus on the case
of the vector leptoquark U ∼ (3, 1)2/3 for definiteness. The couplings of U to fermions are defined in
Eq. (11.26). In terms of the flavour spurions ε those couplings read

gijL ≈ εQiεLj , gijR ≈ εdiεej , giχ ≈ εuiεχ, (11.44)

where we have introduced an additional (small) parameter εχ that controls the DM couplings.
The exchange of a vector leptoquark contributes to semi-leptonic left-handed interactions via the

couplings gL. These couplings can thus be partially determined by fitting the b→ s`` anomalies [246].
The contribution to the Wilson coefficient of the semi-leptonic operator (b̄Lγ

µsL)(µ̄LγµµL) reads

∆Cµ9 = −∆Cµ10 =
g32
L g

22
L

M2
U

≈ V ∗tbVts
η2
q εL2εL2

M2
U

, (11.45)
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which fits the observed deviations if (εL2)2η2
Q/M

2
U ≈ (6 TeV)−2. For MU ≈ TeV the muon couplings

can be εL2 ∼ O(0.1). The first-generation coupling is required to be small, εL1 � εL2 , in order to
suppress new physics effects in b → se+e−. The right-handed couplings εe are then related to the
charged lepton Yukawa couplings, εLiεej ∼ (ye, yµ, yτ ), and one has

εe1 & 10−4, εe2 ∼ few× 10−3, εe3 ∼ 10−2, (11.46)

where we assumed εL1 . O(10−2) (an order of magnitude smaller than the muon coupling) and εL3 ∼ 1.

Notice that all the right-handed mixings εu,d,e estimated above are smaller than the left-handed
ones εQ,L (except for the case of the electron where no hint on the size of εL1 exists). In particular,
this is consistent with the observation of sizable LQ-induced effects in left-handed currents, but the
absence of large right-handed currents.

Finally, reproducing the cosmological DM abundance via freeze-in as in Eq. (11.40) fixes the LQ
coupling to DM, and in turn εχ ∼ gχ/εu. Two limiting scenarios can be envisaged, depending on
which up-quark flavour couples dominantly to DM. If the dominant decay is with the top quark, given
the hierarchy of Eq. (11.43), for M & 10 keV and MU ∼ TeV one needs εχ . 10−8, much smaller than
the corresponding electron spurion. If instead χ couples dominantly to the first family of quarks, due
to the additional εu1 suppression one gets εχ ∼ 10−5, which is comparable to the analogous factor
for electrons. The latter scenario could be motivated if χ is identified with the first-family member
of a flavour triplet of right-handed neutrinos χi: in this case its dominant coupling can be to other
first-family fermions if flavour violation is suppressed in the right-handed sector, as is the case for
instance in MFV or U(2) models.

We finally discuss why the Higgs doublet H, unlike the leptoquark U, cannot generate DM via
freeze-in. The Higgs doublet too can couple to DM as

yiχH
∗L̄iLχ (11.47)

where we estimate the Yukawa coupling as yiχ ≈ εχεL,i. Thus Higgs decays h→ νLχ can in principle
contribute to DM freeze-in production. However DM dominantly produced in this way is excluded,
because Eq. (11.47) implies a too large mixing of DM with neutrinos, θi ≈ yiχv/Mχ. This is problematic
because it gives a contribution to neutrino masses and, more importantly, because it contributes to
DM decays as

Γ(χ→ νiγ) =
9αG2

FM
5

256π4
θ2
i ≈

1

1025 sec

(
yiχ

10−10

)2(
M

keV

)3

. (11.48)

Higgs freeze-in instead needs a Yukawa coupling yχ ≈ 7 × 10−8
√

keV/M , which is slightly larger for
masses M & few eV. In fact, ad-hoc scalar coupled to two DM particles was introduced in [391] to
achieve freeze-in: we have shown that this role can be played by the vector leptoquark motivated by
flavour anomalies, as its Uuχ couplings do not directly induce DM decay.

In any case, we need to assume that yχ is small enough so that Eq. (11.48) is satisfied and the
Higgs plays no role in freeze-in. In this case, the corrections to neutrino masses do not exceed the
experimental values and do not impose further constraints. We point out that the required Yukawa
coupling is smaller than the naive expectation yχ ≈ εχεL even in the case where flavour violation is
suppressed in the lepton sector and the dominant coupling is to electrons. The need for small mixings
between left- and right-handed neutrinos is a common issue in models where the leptoquarks arise from
partial unification at the TeV scale, and most likely requires a more complex neutrino sector [382,383].



172 CHAPTER 11. THERMAL DECAYS OF DM WITH LEPTOQUARKS

11.5 Direct Detection signals

DD experiments are sensitive to DM scattering with light degrees of freedom such as light quarks,
gluons and electrons. We consider DM that interacts with SM leptons and quarks as described by
Eq. (11.30), and in particular on the first two 4-fermion interactions. After matching the interaction
Lagrangian to the nucleon level, DM charged- and neutral-current interactions with nucleons arise. We
now briefly discuss the novel signatures in DD and ID searches of DM induced by these interactions.
We anticipate that, although these signatures are potentially interesting, the effective scale of the
dimension 6 operators in Eq. (11.30) must be large to avoid bounds from DM decay as shown in
Fig. 11.5. Therefore, one generally expects the signals to be much below the experimental sensitivities
— with a few notable exceptions that we discuss.

Concerning charged currents, the leading order amplitudes are obtained from the (axial) vector
interaction with right-handed leptons

CχR
(
χ̄γµeR

)(
n̄γµ

1 + gAγ5

2
p
)
, (11.49)

where gA ≈ 1.27 [392], and the scalar interaction with left-handed leptons (χ̄eL) (n̄p), with a coefficient
proportional to CχL. Both these interactions lead to a DM-induced β decay. At the nuclear level, the
relevant process is the β− transition DM+A

ZN→ e−+ A
Z+1 N, which is energetically possible if the DM

mass is larger than the capture threshold Q+me, where Q = mA,Z+1−mA,Z is the mass difference of
the two nuclei. Following [393] the thermally averaged cross section arising from the charged current
operator is

〈σv〉 =
C2
χL(R)M

2

16π
f(ER) (11.50)

where f(ER) is a function of the detected energy that encapsulates the nuclear details of the β−

transition. For light DM particles with kinetic energies much less than δ = M − (me + Q), the
spectrum of recoiling electrons exhibits a peak at ER ≈ δ. The left panel of Fig. 11.8 compares the
estimated sensitivities of current direct detection experiments, taken from [393], with bounds from
DM decays and from colliders.

One could wonder whether there is a possibility to explain the anomalous counting rate of electro-
magnetic recoils in the Xenon1T detector peaked around 3 keV [394]. Considering Xenon as target,
the process DM+ A

54 Xe→ e− A
55Cs can have capture thresholds as low as a few hundreds keV: in partic-

ular, the 131
54 Xe isotope has an abundance of about 21% and a capture threshold of only 355 keV [395].

One therefore can have a signal peaked at ER ≈ 3 keV if the DM mass is M ≈ (me+Q)+ER ≈ 358 keV.
This needs some tuning among the electron and DM masses, and a slightly larger M would give a peak
in the few hundreds of keV range. We show the best fit to the Xenon1T data in the right panel of
Fig. 11.8, obtained using the rate reported in [393]. Assuming local DM density ρ� = 0.4 GeV/ cm3,
the anomaly can be fitted for values of the DM coupling CχR ≈ 1/(1.7 TeV)2. For this value of the cou-
pling to right-handed electrons, the loop-induced decay rate into νeγ gives a DM life-time τ ≈ 1024 s,
around the experimental bound from Planck, as shown in the left panel of Fig. 11.8. However, collider
searches in the lepton plus missing energy final state constrain CχR to be a factor three smaller and
rule out this possibility. A similar coupling to left-handed electrons is instead largely excluded by DM
decays. The Xenon signal can thus not be explained in our framework, but future experiments will
have the sensitivity to probe a parameter space relevant for DM freeze-in via coupling to right-handed
leptons, provided that the reheating temperature is low, namely TRH ∼ ΛQCD.

Furthermore a novel specific signature from the 136
55Cs decay arises. Indeed, following the analysis

done in [395] for solar neutrino capture in LXe, one could detect DM with lepton number by using a
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Figure 11.8: Left: Estimated experimental sensitivities for the DM absorption cross section
(from [393]), compared to the indirect detection bound on DM life-time (these are stronger than
in [393], where the dominant QCD contribution to χ→ νγ was not considered) and to collider bounds
(red line). The magenta star shows the parameters that can fit the Xenon1T excess. Right: Best

fit to the Xenon1T electron-recoil data from DM absorption on 131Xe.

delayed coincidence signature from long-lived states of 136
55Cs.

Concerning neutral currents, DM couplings to left-handed leptons induce an interaction with nu-
cleons N described at leading order by the scalar operators

(χ̄νL)(n̄n) and (χ̄νL)(p̄p). (11.51)

This is spin-independent and leads to a sort of exothermic DM-nucleus collision DMN → νN with
mass splitting δ = M − mν ' M . For light DM particles with kinetic energies much less than the
splitting, exothermic spectra exhibit a peak at nuclear recoil energy ER = δM/(2mN) ≈ M2/(2mN),
where mN is the mass of the target nucleus. Hence, for Xenon target we expect detectable nuclear
recoil in the keV range when the DM mass is around 20 MeV. It is worth noticing that the window of
DM masses probed in such scenario is much smaller than the one achieved with standard DM-nucleus
collisions. However, the spectrum is analogous to the one of exothermic collisions and therefore we
cannot discriminate further among them.

DM absorption signals have been studied previously in [393]. However, when discussing neutral
currents these authors considered a (χ̄νR)(q̄q) effective interaction involving νR (rather than νL or `)
in order to avoid too fast DM decay χ→ νRγ. Since νR has no SM gauge interactions their signals are
equivalent to those of inelastic DM with two states χ, χ′ and a (χ̄χ′)(q̄q) interaction. When discussing
charged currents [393] considers our same (χ̄`)(d̄u) interaction, but does not include the DM decay
channel χ → νγ mediated by QCD states at one loop. We report in the left panel of Fig. 11.8 the
projected constraints for the DM-induced β− signals taken from [393]. One can see that, while DM
coupled to right-handed electrons can give observable signals in various experiments, for DM coupled
to left-handed leptons the signals compatible with DM life-time are always below the experimental
sensitivity.

11.6 Indirect Detection signals and the 3.5 keV anomaly

DM decays provide ID signals: the constraints on tree-level and loop-induced DM decay from Planck
and Voyager have already been discussed in Subsection 11.3.2. As these constraints can be saturated,



174 CHAPTER 11. THERMAL DECAYS OF DM WITH LEPTOQUARKS

signals from DM decays are detectable.
In particular, the unidentified X-ray emission line claimed at 3.5 keV [396, 397] could be due to

DM with mass M ≈ 7 keV decaying as χ → ν`γ with rate Γ ≈ 1.4 10−28/ s (see e.g. fig. 13 of [396]).
In the considered models the needed DM life-time is obtained for

CχL ≈ 10−4 4GF√
2

or CχR ≈
4GF√

2





6 10−2 DM coupled to ` = e
3 10−4 DM coupled to ` = µ
2 10−5 DM coupled to ` = τ

. (11.52)

For such values of the couplings the relic DM abundance can be reproduced via the freeze-in mechanism
with a low reheating temperature TRH ∼ ΛQCD, see fig. 11.7. This is a non-trivial result, as other
models where DM is a sterile neutrino can fit the 3.5 keV line, but its relic abundance cannot be
obtained via freeze-in as non-resonant oscillations: extra mechanisms are needed, such as decays
S → χχ of an ad-hoc scalar S [391]. In our model on the other hand the leptoquark motivated by
flavour anomalies plays a similar role, decaying into one DM particle and one SM particle.

Concerning scatterings that could induce a gamma-ray signal, the only relevant interactions are
those that change the DM number by one. Indeed the pair-annihilation of DM particles is extremely
suppressed within the freeze-in production mechanism, namely as 〈σannv〉 ∝ g4

χ, and the gχ coupling
is very small.

We thereby focus on further indirect detection gamma-rays signals coming from DM decay and
from scatterings that change DM number by one unit. A possible way to get a signal is to change the
DM number by one via the scatterings with highly energetic Galactic Cosmic-Ray (CR) electrons and
protons. The relevant primary channels are χe+ → d̄u and χp̄ → n̄e and the corresponding charge
conjugates. The spatial morphology of the induced gamma-ray signal is non-conventional and is
enhanced in regions with high density of baryons and DM. As a consequence dwarf galaxies, which are
usually considered as the cleanest laboratories in indirect detection (see the discussion in Subsection
10.5.1), are not the best place to look for gamma-rays signals from DM with lepton number. The
energy spectrum is similar to the one from standard pair-annihilation with the difference that the
total energy is not 4M2 but (M + ECR)2 with ECR the energy of Galactic CR. The cross section of
highly energetic Galactic CR electrons and protons scattering off non-relativistic DM is

σ ≈ C2
χL(R) (M + Ee,p)

2 = 5.3× 10−10 pb

(
CχL(R)

10−4GF

)2(M + Ee,p
GeV

)2

. (11.53)

The highest CχL(R) ∼ 10−4GF allowed by DM stability and consistent with the freeze-in mechanism
with low reheating temperature TRH ∼ ΛQCD is obtained for very light DM. Hence we predict σ .
10−9pb (Ee,p/GeV)2, which gives a flux too low to be detected by any indirect detection experiments.

11.7 Flavour models with multiple DM and freeze-out

Throughout this Chapter we considered minimal models with only one DM particle and we could not
reproduce its cosmological abundance from freeze-out via thermal decays, compatibly with bounds on
the DM lifetime, τ >∼ 1026 s, although we found viable models assuming DM freeze-in. Let us now
briefly show how these bounds on the DM lifetime can be easily satisfied in the presence of two or
more DM states χi. Note that this is to be contrasted to the DM models in which a cosmologically
short-lived state freezes out due to pair annihilations and later decays to one or more SM states plus
a cosmologically long-lived (so-called super-WIMP) DM state, discussed for instance in [398,399]. In
this case, in fact, DM decays are slower than the Hubble time and play no role in fixing the initial
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DM freeze-out abundance. On the contrary, they only enter later reducing it by the ratio of the two
masses in the dark sector. This ”freeze-out and decay” scenario can be extended to freeze-out via
thermal decays, but it contains out-of-equilibrium elements. For this reason, we prefer here to focus
on strict freeze-out scenario.

There can be precise flavour considerations that justify the possibility of multiple DM states and
the extension of our model to two or more DM states χi. For example, in the models with extra
vectors such as Eq. (11.26) one would naturally expect three generations of DM singlets χ1,2,3. To
keep the discussion simple and general, we can summarize the results about the decay rate of one DM
particle as

ΓDM ∼ εSMεDMM where εDM ∼ C2M4, εSM ∼
G2
FM

4

(4π)4
. (11.54)

εSM ∼ 10−18 is a typical electroweak loop factor at the DM mass M <∼ GeV. If C ∼ GF , as needed to
have thermal freeze-out at M ∼ GeV, the two ε suppression do not give a stable enough DM (while
freeze-in needs C � GF , improving DM stability).

Stable enough DM is obtained, instead, in the presence of two states, χ1 and χ2, with mass
M1,2<∼ GeV (arising, for example, as m` +mπ) and effective interactions of the type

CDM1(χ̄1`)(d̄u) + CDM2(χ̄2`)(d̄u) + CDM12(χ̄1χ2)(q̄q). (11.55)

Notice that we have not imposed any Z2 symmetry that keeps the dark sector separated from the SM
sector. We next assume that CDM1 is negligibly small, and that masses M1 < M2 are in the range
such that χ2 → `π decays are kinematically closed, while χ2 → χ1π

0 decays are kinematically open
(we make this latter assumption just for simplicity, as we could relax it and use χ2 → χ1γγ decays).
Then the decay widths are

ΓDM2 ∼ εDM2M2, ΓDM1 ∼ εDM12

Γ∗DM2

M2
M1 ∼ εSMεDM2εDM12M1 (11.56)

where εDM12 ∼ C2
DM12

M4
1,2. The smallness of CDM1 , at a level that saturates the decay width ΓDM1

above, could be motivated by flavour considerations (for instance a very precise flavour alignment
in the right-handed lepton sector, if χ carry lepton flavour number). Quantum effects respect this
requirement. Assuming now that CDM2 ∼ CDM12 ∼ GF or even larger depending on the masses, we
have, at the same time:

i) Very long lived χ1 DM, that satisfies bounds on the DM life-time;

ii) Cosmologically fast decays of χ2, so that it does not pose cosmological problems;

iii) Thermal freeze-out via χ1 ↔ χ2 ↔ SM scatterings at finite temperature.

Although not necessary, DM stability can be improved by an extra εDM23 factor adding a third gener-
ation χ3 and repeating the above structure: each mediation step can give one extra ε suppression at
zero temperature, while rates at finite temperature can reach thermal equilibrium, Γ ∼ H at T ∼M ,
if CDM ∼ GF .
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Chapter 12

Conclusions

Flavour Physics has been and continues to be a fundamental guideline for research activities in the-
oretical particle physics. At present, the tensions in the exclusive and inclusive determinations of
the CKM matrix elements |Vcb| and (although more slightly) |Vub| and the discrepancies between the
theoretical expectations and the measurements of the R(D(∗)) and the R(K(∗)) ratios have clearly
indicated a possible path to look for effects of New Physics. In fact, two are the possibilities in order
to solve these anomalies. On the one hand, one can review the theoretical computations within the SM
and compute the flavour observables without introducing any kind of approximation. This can bring
us to an appropriate and truthful estimation of the mean values and (especially) the uncertainties of
such quantities, thus reducing the aforementioned tensions. On the other hand, one can state that
there is New Physics that can explain these discrepancies, pointing towards the existence of BSM
effects affecting B-physics.

This PhD thesis tries first of all to explore both these paths, by giving an overall picture of the
state-of-the-art of the ∆B = 1 transitions and novel improvements.

In Part I we have focused our attention on the semileptonic charged-current B decays, with partic-
ular attention given to the B → D(∗)`ν transitions. These processes have received increasing attention
in the recent years since they give the possibility of both determining an exclusive estimate of the
CKM matrix element |Vcb| and testing LFU through the determination of the R(D(∗)) ratios. Since
these decays occur at tree-level through the exchange of a W -boson, when computing their differential
decay widths one has to properly take into account the hadronic matrix element. It is expressed in
terms of complicated functions of the quadratic transferred momentum, i.e. the Form Factors, which
encode all the informations about the strong dynamics of quarks. Our proposal to analyse the FFs
and, more in general, the semileptonic charged-current B decays brings to new determinations of the
exclusive value of |Vcb| and the ratio R(D∗) which are compatible at the 1σ level with the corresponding
inclusive value and at the ∼ 1.5σ level with the corresponding average of measurements, respectively.
Let us summarize this in detail.

In Chapter 3 we have introduced a novel method to describe the FFs in the whole kinematical range,
starting from the available LQCD computations of the same quantities at high momentum transfer.
This is the Dispersive Matrix Method. In these summary remarks, I think that it is important to recall
and highlight its main and most important properties. As we have seen, it is entirely based on first
principles, namely unitarity, analiticity and crossing-symmetry, and uses only non-perturbative inputs,
i.e. the LQCD evaluation of 2- and 3-point Euclidean correlators. It is completely model-independent,
since it is independent of any assumption on the functional dependence of the FFs on the momentum
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transfer. Furthermore, it allows us to keep theoretical calculations and experimental data separated.
Finally, it is also universal, in other words it can be applied to any exclusive semileptonic decays of
mesons and baryons. The DMM constitutes an important theoretical improvement in the descritpion
of the hadronic FFs since, contrarily to the well-known CLN, BCL and BGL parametrizations, it does
not rely on any power series expansion of the FFs and on any perturbative input. Moreover, it does
not use any approximate symmetry, such as Heavy Quark Effective Theory.

In Chapters 4 and 5 we have applied for the first time the DMM to semileptonic charged-current
B decays. We have started by taking into consideration the B → D(∗)`ν transitions. Our main result
is that for the first time we have obtained both an exclusive estimate of |Vcb| from the B → D∗

channel which is compatible with the inclusive value and a theoretical expectation of R(D∗) which is
compatible with the corresponding experimental average by the HFLAV Collaboration. This result
can be attributed both to the use of the DMM and to the avoiding of a mixing between the LQCD
computations of the FFs and experimental measurements of the differential decay widths. Given the

universality of the DMM, we have extended our study also to the Bs → D
(∗)
s `ν, the B → π`ν and

the Bs → K`ν decays. On the one hand, the first ones are particularly relevant since they allow both
to obtain further exclusive estimates of |Vcb| and to test possible SU(3)F symmetry breaking effects
affecting semileptonic B decays. On the other hand, the other ones give the opportunity to obtain new
exclusive estimates of |Vub|. For what concerns our final determinations of the CKM matrix elements,
we have discussed the compatibility of the DMM determinations of {|Vcb|, |Vub|} with the ones coming
from the last UTfit analysis 2022. This is very important since the UTfit predictions are based on
the Unitarity Triangle Analysis, which determines precisely the SM parameters of the flavour sector
in a way that is completely independent of the LQCD and experimental data explicitly studied in
Chapters 4 and 5 and is thus an important test of the reliability of our DMM estimates. The final
result is that both the DMM and the UTfit studies point towards a value of |Vcb| which is higher with
respect to the FLAG exclusive estimate [39] and, at the same time, compatible with the inclusive
determination [30].

In Part II we have enlarged the discussion to the Beyond the Standard Model approach to Flavour
Physics. There are, in fact, several experimental evidences and theoretical arguments that point
towards the existence of an extension of the SM, which can be considered at all the effects as an
infrared theory valid only at low energies. Nevertheless, a correct and precise estimation of the SM
parameters is fundamental in order to develop NP studied since, as repeated more times throughout
this Thesis, the more precise are the theoretical estimates of these parameters, the more strongest will
be the bounds on New Physics. This is the fundamental issue that links Part I and Part II to each
other.

In Chapter 6 we have firstly discussed the Effective Field Theory approach to Flavour Physics.
The EFT is particularly useful in order to study possible New Physics effects affecting low-energy
processes, such as the ∆B = 1 and ∆B = 2 transitions, in a completely model-independent way. In
this sense, as stated before, Flavour Physics offers several hints of existence of Beyond the Standard
Model degrees of freedom. One of the major examples is offered, for instance, by the flavour anomalies
in semileptonic b → c and b → s transitions. We have reviewed the EFT framework, and have also
noted that the approach to New Physics can be built up also starting from considerations of symmetry,
whose best examples are without any doubt offered by the Minimal Flavour Violation and the U(2)3

frameworks.

In Chapters 7 and 8 we have then focused the discussion on two explicit BSM models, i.e. the
Composite Higgs and the LeptoQuark scenarios, respectively. In the former case, we have firstly
reviewed the theoretical properties underlying the CH models. Then, we have developed an original
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application, i.e. we have determined new bounds on the masses of the fermion modes (that naturally
arise in CH scenarios) by considering the expected improvement in precision at future experiments,
namely LHCb Upgrade II and Belle II. The final result is that the combination of the bounds coming
from low-energy processes point towards a O(10 TeV) mass of these new heavy degrees of freedom. In
the latter case, we have reviewed the main properties of the LQ scenarios together with possible UV
completions of such theories, in view of their application in the last Part. We have also reviewed the
results of the application of a simplified Uµ1 model to explain the flavour anomalies, as presented by
the authors of [193].

One other example of the main challenges of theoretical physics is, at present, trying to explain the
origin of the Dark Matter abundance in our Universe. This is the topic of the last Part of this Thesis,
namely the Part III. While the existence of DM is ensured by several cosmological and astrophysical
probes, the understanding of the nature of DM is unclear. As discussed in Chapter 9, a huge effort
has been and is still being developed from the experimental point of view in order to detect possible
DM candidates. In this sense, there are basically three standard ways to look for DM particles, i.e.
direct detection searches, indirect detection ones and finally direct production at colliders. The study
of DM phenomenology can be connected to a BSM approach to Flavour Physics. At present, in fact,
several papers in literature try to find combined explainations of both the DM abundance and some
of the anomalies coming from the flavour sector, for example the R(K(∗)) ones. This is exactly what
have been developed in one of the two DM models presented in this Thesis, namely the one with
LeptoQuark mediators.

To be more specific, in Chapter 10 we have widely discussed and described the WIMP scenario.
In the spirit of Minimal Dark Matter models, we have added the minimal amount of new degrees of
freedom to the matter content of the SM, i.e. a new EW multiplet of SU(2)L. For the first time, we
have computed the thermal masses of all the multiplets allowed by the unitarity and computability
criterions, taking into consideration the effects of the Sommerfeld enhancement and of the formation of
bound states. While these effects have been previously computed in specific cases, a general treatment
was still lacking. We have then critically investigated the discovery potential of such new heavy
particles both at future muon colliders and at (in)direct detection experiments. Our conclusions
are that all the multiplets are detectable by future large exposure DD experiments, as DARWIN,
with the notable exception of the complex 21/2 candidate. This exception constitutes an important
motivation for the realization of a future muon collider since the complex doublet can be excluded by
this machine with a center of mass energy equal to 6 TeV. Muon collider with higher energies will
be also able to test larger EW multiplets, with masses close to the kinematical threshold, in various
channels such as single gauge boson emission (mono-X) or disappearing tracks. The indirect searches
are complementary to the aforementioned ways to detect DM, to be more specific they offer a parallel
opportunity to detect the heaviest multiplets. As an example, we have discussed the case of the real
7-plet at future Cherenkov telescopes, like CTA.

Finally, in Chapter 11 we have introduced a new model of Dark Matter, i.e. the one based on
its thermal decays. This model is innovative with respect to the usual scenario since it hypotheses
interactions between DM and SM particles in which the DM number changes only by one unit. Very
strong bounds come from the fact that Dark Matter is not stable, which in turn requires its couplings
to be small. This scenario can be realized by introducing a vector LeptoQuark as a mediator of these
interactions. Our final result is that this class of models is able to provide a DM candidate which
is long-lived enough, and reproduce its cosmological abundance if the DM undergoes freeze-in. In
this case, it is possible to explain at the same time the observed abundance of Dark Matter and the
R(K(∗)) anomalies by means of a LeptoQuark exchange. To achieve this goal, one has to introduce a
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specific flavour structure. Instead, DM freeze-out is not compatible with the bounds from DM decays.
These conclusions can be relaxed in presence of multiple DM states, which can be motivated by
flavour considerations. In this case, the DM abundance can be reproduced also through the freeze-out
mechanism.

The future will reserve important novelties for both Flavour Physics and Dark Matter phenomenol-
ogy, since lots of experimental data are going to come out in the next years. In the first case, new
important measurements of the flavour observables will be published by both the LHCb and the Belle
II Collaborations. They will give a new insight on the theoretical analyses of low-energy processes in
flavour physics, either pointing towards the existence of New Physics in these transitions, or not. One
fundamental question is whether or not Beyond the SM effects are required in order to explain the
R(D(∗)) and the R(K(∗)) anomalies. In the second case, new (in)direct detection experiments as well
as new colliders will be activated in the next decades, both closing finally the window for some DM
models and opening it for others. This will give a new insight on the scenarios that are effectively
admitted by the data and that can be further investigated, maybe in connection with flavour physics.
So, to conclude, in order to find some answers to fundamental questions of theoretical physics, there
is only one way, i.e. to ameliorate at the same time the precision of both the theoretical predictions
and the measurements. Only this possibility will allow us to better investigate NP effects affecting
Flavour Physics in the next years.
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Appendix A

Details on the polarization functions

In this Appendix we will show how to compute the two-particle and the one-particle contributions
to the imaginary parts of the polarization functions, respectively. To achieve this goal, one has to
consider all the possible two-particle and one-particle intermediate hadronic states that occur in the
completeness sum in Eq. (3.24).

Let us start with the two-particle contributions. To be as generic as possible, we are going to show
all the two-particle states composed by a B(∗)-meson and a D(∗)-meson, although the B∗ case has
not been considered in the main text given the phenomenological applications of the DM method to
semileptonic charged-current B decays. The matrix elements of interest can be thus classified as:

• vector current matrix elements
√
mBmD〈D(pD)|V µ|B̄(pB)〉 = f+(pB + pD)µ + f−(pB − pD)µ ;

√
mBmD∗〈D∗(pD, εD)|V µ|B̄(pB)〉 = ifV ε

µναβε∗DνpDαpBβ ;
√
mB∗mD〈D(pD)|V µ|B̄∗(pB, εB)〉 = ifV̄ ε

µναβεBνpDαpBβ ; (A.1)
√
mB∗mD∗〈D∗(pD, εD)|V µ|B̄∗(pB, εB)〉 = −[f1(pB + pD)µ + f2(pB − pD)µ] (ε∗D · εB)

× +f3(ε∗D · pB)εµB + f4(εB · pD)ε∗µD
− [f5p

µ
B + f6p

µ
D](ε∗D · pB)(εB · pD) ;

• axial current matrix elements
√
mBmD∗〈D∗(pD, εD)|Aµ|B̄(pB)〉 = fA1ε

∗µ
D − [fA2p

µ
B + fA3p

µ
D](ε∗D · pB) ;

√
mB∗mD〈D(pD)|Aµ|B̄∗(pB, εB)〉 = fĀ1

εµB − [fĀ2
pµB + fĀ3

pµD](εB · pD) ; (A.2)
√
mB∗mD∗〈D∗(pD, εD)|Aµ|B̄∗(pB, εB)〉 = iεµναβ{[f7(pB + pD)ν

+ f8(pB − pD)ν ]εBαε
∗
Dβ + [f9(ε∗D · pB)εBν

+ f10(εB · pD)ε∗Dν ]pDαpBβ} ,

Note that the first two matrix elements of Eq. (A.1) and the first one of Eq. (A.2) are precisely the
hadronic matrix elements discussed in Chapter 3. Moreover, the normalisation of the states differs from
the Feynman one by a factor equal to the square root of the meson mass, |pM 〉Feynman =

√
MM |pM 〉,

because this is more convenient in the framework of the HQET. In fact, in Ref. [66] Caprini, Lellouch
and Neubert introduced the quantities hi, which are linear combinations of the FFs fi previously
defined, expressed as functions of the recoil variable w rather than of q2 (the index i labels a generic
FF). The hi describe the decompositions (A.1)-(A.2) in terms of the meson 4-velocities instead of the
meson 4-momenta, according to the following classification:
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• scalar FFs

SBD1 = h+ −
1 + r

1− r
w − 1

w + 1
h−;

SB
∗D∗

2 = h1 −
1 + r

1− r
w − 1

w + 1
h2 ;

SB
∗D∗

3 = w

[
h1 −

1 + r

1− r
w − 1

w + 1
h2

]
(A.3)

+
w − 1

1− r [rh3 − h4 + (1− wr)h5 + (w − r)h6] ;

• vector FFs

V BD
1 = h+ −

1− r
1 + r

h−;

V B∗D∗
2 = h1 −

1− r
1 + r

h2 ;

V B∗D∗
3 = w

[
h1 −

1− r
1 + r

h2

]

+
1

1 + r

[
(1− wr)h3 + (r − w)h4 + (w2 − 1)(rh5 + h6)

]
(A.4)

V BD∗
4 = hV ;

V B∗D
5 = hV̄ ;

V B∗D∗
6 = h3, ;

V B∗D∗
7 = h4 ;

• pseudoscalar FFs

PBD
∗

1 =
1

1 + r
[(w + 1)hA1 − (1− rw)hA2 − (w − r)hA3 ] ;

PB
∗D

2 =
1

1 + r
[r(w + 1)hĀ1

− (r − w)hĀ2
− (rw − 1)hĀ3

] ; (A.5)

PB
∗D∗

3 = h7 −
1− r
1 + r

h8 ;

• axial FFs

ABD
∗

1 = hA1 ;

AB
∗D

2 = hĀ1
;

AB
∗D∗

3 = h7 −
w − 1

w + 1
h8 + (w − 1)h10 ;

AB
∗D∗

4 = h7 +
w − 1

w + 1
h8 + (w − 1)h9 ; (A.6)

ABD
∗

5 =
1

1− r [(w − r)hA1 − (w − 1)(rhA2 + hA3)] ;

AB
∗D

6 =
1

1− r [(1− wr)hĀ1
+ (w − 1)(hĀ2

+ rhĀ3
)] ;

AB
∗D∗

7 = h7 −
1 + r

1− r
w − 1

w + 1
h8 .
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The last classification of the FFs allows to separate different values of spin and parity quantum
numbers from each other. For simplicity, all scalar, pseudoscalar, vector and axial quantities have
been presented indicating initial and final states as superscripts, so that we can easily remember to
which process each FF refers to. At this point, a direct computation shows that the two-particle
contribution to the polarization functions can be expressed in terms of the FFs as:

• scalar channel

q2 ImΠ0+,2p

[
w(q2)

]
=
mB(∗)mD(∗)

8π

3∑

i=1

(1 + δi2)
(w2 − 1)1/2(w + 1)

4

2
(β2
i − 1)|Si|2

(β2
i − w+1

2 )2
, (A.7)

• vector channel

q2 ImΠ1−,2p

[
w(q2)

]
=
mB(∗)mD(∗)

96π

[
3∑

i=1

(1 + δi2)(w2 − 1)3/2 β2
i |Vi|2

(β2
i − w+1

2 )2

+
7∑

i=4

(w2 − 1)3/2 2|Vi|2
(β2
i − w+1

2 )

]
,

(A.8)

• pseudoscalar channel

q2 ImΠ0−,2p

[
w(q2)

]
=
mB(∗)mD(∗)

32π

3∑

i=1

(1 + δi3)(w2 − 1)3/2 β2
i |Pi|2

(β2
i − w+1

2 )2
, (A.9)

• axial channel

q2 ImΠ1+,2p

[
w(q2)

]
=
mB(∗)mD(∗)

24π

[
4∑

i=1

(w2 − 1)1/2 (w + 1)

4

2 2|Ai|2
(β2
i − w+1

2 )

+
7∑

i=5

(w2 − 1)1/2 (w + 1)

4

2

(1 + δi7)
(β2
i − 1)|Ai|2

(β2
i − w+1

2 )2

]
,

(A.10)

where the quantity βi is defined as

βi =
mB(∗) +mD(∗)

2
√
mB(∗)mD(∗)

. (A.11)

Note that the above expressions hold for a single two-particle B(∗)-D(∗) intermediate state. If there are
several, essentially degenerate, such states, differing for example by the replacement of an up with a
down quark (such as B− - D̄0 with B0 - D−), then we have to sum up their contributions to ImΠJP ,2p.

Let us pass now to the one-particle contribution of mesons to the imaginary part of the polarization
functions. In the case of the vector B∗c and of the pseudoscalar Bc mesons the one-particle current
matrix elements are defined as

〈0|Aµ |Bc〉 = fBc p
µ
Bc
,

〈0|V µ |B∗c , λ〉 = fB∗cMB∗c ε
µ
λ(pB∗c ) (λ = 1, 2, 3) (A.12)

with f
B

(∗)
c

being the decay constants of the aforementioned mesons, M
B

(∗)
c

their masses, λ the B∗c
polarization and ελ the corresponding polarization vector. The one-particle contributions to the po-
larization functions are then given by

q2 ImΠ0−,1p(q
2) = πδ(q2 −M2

Bc) f
2
BcM

2
Bc ,
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q2 ImΠ1−,1p(q
2) = πδ(q2 −M2

B∗c
) f2

B∗c
M2
B∗c
. (A.13)

The generalization to possible one-particle states below the annihilation threshold in the scalar and
axial-vector channels is straightforward.



Appendix B

The BGL, BCL and CLN
parametrizations of the FFs

In this Appendix we will briefly review the main properties underlying the well-known BGL, BCL and
CLN parametrizations of the hadronic FFs.

B.1 The BGL parametrization

The parametrization introduced by Boyd, Grinstein and Lebed [61–63] relies on the same first prin-
ciples, namely unitarity and analiticity of the FFs, that are at the basis of the Dispersive Matrix
method. However, it is based on a power series expansion of the FFs in terms of the conformal
variable z introduced in the Eq. (3.33).

To be more specific, let us go back to Eq.(3.34). The important property of the quantity Φ̃(t, t0)P (t)f(t)
is that it does not have any kinematical and sub-threshold singularity. Thus, we can expand Φ̃(t, t0)P (t)f(t)
in a set of orthonormal functions, which are proportional to powers of z(t, t0). The consequence of
this strategy is that we can express f(t) in the semileptonic region as

f(t) =
1

P (t)φ(t, t0)

∞∑

n=0

anz(t, t0)n, (B.1)

where the BGL coefficients an have to satisfy, by construction, the unitarity condition

∞∑

n=0

|an|2 ≤ 1. (B.2)

From a practical point of view, when fitting the shape of the FFs with appropriate LQCD/experimental
data, the series present in Eq.(B.1) has to be truncated. This is an important difference with respect
to the Dispersive Matrix method, which instead is independent of any truncation of the power series
expansion and, in fact, it is equivalent to the results of all possible BGL fits which satisfy unitarity
and at the same time reproduce exactly the input data.

In the Eq. (B.1) we find the same basic ingredients that we have introduced for the Dispersive
Matrix approach. The first one is the kinematical function φ(t, t0), which has a very similar structure
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to Eqs. (3.45) and (4.8). In fact, one can demonstrate that these functions have the general form [63]

φ(t, t0) =

√
nI
Kπχ

(
t+ − t
t+ − t0

)1/4 (√
t+ − t+

√
t+ − t0

)
,

× (t+ − t)a/4
(
t+ − t
t+ − t−

)b/2( t+ − t
t+

)−(c+3)

,

(B.3)

where the coefficients K, a, b and c are integers that depend on the particular FF (see Table B.1 for
their values in semileptonic B → D,D∗ decays) and nI is a Clebsh-Gordan factor. Note that in BGL
parametrization the susceptibility χ appears explicitly in the definition of the kinematical function φ,
contrarily to what happens in the Dispersive Matrix approach. Finally, Eq. (B.3) can be re-expressed
in terms of the conformal variable z by recalling the transformation (3.33).

Table B.1: Values of the integers present in Eq.(B.3). The first two form factors enter semileptonic
B → D decays, while the other four concern B → D∗ ones.

Form factor K a b c

f+ 48 3 3 2

f0 16 1 1 1

f 24 1 1 1

g 96 3 3 1

F1 48 1 1 2

P1 64 3 3 1

The second ingredient present in Eq.(B.3) is the Blaschke factor, whose general form is

P (z) =
n∏

P=1

z − zP
1− zzP

(B.4)

where we have also introduced the quantities

zP =

√
t+ −m2

P −
√
t+ − t−

√
t+ +m2

P −
√
t+ − t−

.

These functions allow us to eliminate all the singularities caused by the pole states, whose masses have
been denoted with mP in the previous Equations and whose spin-parity quantum numbers have to be
the same ones of the form factor we are taking into consideration. Note that the terms in Eq. (B.4)
are completely equivalent to the ones introduced in Eq. (5.6) for the implementation of the Dispersive
Matrix method.

B.2 BCL parametrization

The parametrization introduced by Bourrely, Caprini and Lellouch [64] is quite similar to the BGL
one. This parametrization is often used to describe semileptonic B → π decays, thus we are going to
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specialize the discussion on the FFs fπ+,0(q2) studied in Chapter 4. According to BCL, we can express
these FFs as

fπ+(z) =
1

1− q2/m2
B∗

Nz−1∑

n=0

ak

[
zn − (−1)n−Nz

n

Nz
zNz
]
, (B.5)

fπ0 (z) =

Nz−1∑

n=0

bkz
k. (B.6)

The first term in Eq. (B.5) is the analogous of the Blaschke factor, which takes into account the effect
of the B∗-pole. Also in the BCL case, we have to truncate the series in Eqs. (B.5)-(B.6) when fitting
the available LQCD/experimental data. We want to highlight again that this problem is completely
absent in the Dispersive Matrix study of the FFs since, in that case, the DM bands of the FFs are
completely equivalent to the results of all the possible BCL fits which satisfy unitarity and at the same
time reproduce exactly the input data.

Another important task is the unitarity constraint that the BCL coefficients have to satisfy, i.e.

Nz∑

i,j=0

B+
mnaman ≤ 1,

Nz∑

i,j=0

B0
mnbmbn ≤ 1 (B.7)

for the 1− and the 0+ channels, respectively. For numerical values of the B
{+,0}
mn coefficients, see [64,

107,108]. Note that in these papers the authors use a perturbative evaluation of the 1− susceptibility
in order to derive these numbers, i.e. χ1− · 104 ' 5 GeV−2 [64], which is compatible with our non-
perturbative determination χnp

1− · 104 = 4.45(1.16) GeV−2, that will be presented in Appendix D.

B.3 CLN parametrization

The last possibility that we will finally investigate is the parametrization proposed by Caprini, Lellouch
and Neubert [65,66]. The main feature of this method is the usage of the Heavy Quark Effective Theory
(HQET) in order to derive useful relations between the hadronic FFs.

By defining the function (here the subscript j refers to a particular spin-parity channel)

f̃j(z) ≡ Φ̃j(t, t0)Pj(t)Fj(t), (B.8)

which is analytic inside the unitary disc, and recalling again Eq.(3.34), we have that

1

2π

∫ 2π

0
dθ
∑

j

|f̃j(eiθ)|2 ≤ 1, (B.9)

where we have put z = eiθ. We can then expand the functions f̃j(z) present in Eq.(B.9) so that

∑

j

∞∑

n=0

| 1
n!
f̃

(n)
j (0)|2 ≤ 1, (B.10)

where f̃
(n)
j (0) indicates the n-th derivative of f̃j(z) with respect to the variable z, then evaluated at

z = 0.
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At this point, one can relate the derivatives of the form factors at z = 0 to the ones computed
with respect to the recoil variable w and then evaluated at w = w0, where w0 satisfies the relation
z(w0) = 0. To this end, one can easily show from Eqs. (3.11) and (3.37) that

z =

√
w + 1−

√
2√

w + 1 +
√

2
, (B.11)

or equivalently, by inverting the Eq. (B.11),

w(z) = 2

(
1 + z

1− z

)2

− 1. (B.12)

It is straightforward that w0 = 1. By way of example, let us take into consideration the FF V1(w)
(that has been defined in Appendix A), then we get

∂zV1(w(z))|z=0 = −8ρ2
1V1(1),

∂2
zV1(w(z))|z=0 = (128c1 − 32ρ2

1)V1(1),

∂3
zV1(w(z))|z=0 = (3072d1 + 1536c1 − 144ρ2

1)V1(1),

The parameters ρ2
1, c1 and d1 entering the previous expressions are defined by the expansion

V1(w) = V1(1)
[
1− ρ2

1(w − 1) + c1(w − 1)2 + d1(w − 1)3 + . . .
]
. (B.13)

At this point, we note that in the HQET all the FFs Fj(w) become identically equal to the Isgur-
Wise function ξ(w) [400] in the semileptonic region. In order to incorporate corrections to that limit
Caprini, Lellouch and Neubert choose the form factor V1(w) as a reference and express the expansion
parameters of all the other form factors in terms of the expansion parameters ρ2

1, c1 and d1 that we
have just defined. Their choice is motivated by the fact that V1(w) is the physical form factor which
describes the semileptonic decay B → D`ν. Hence, we can write the ratios Rj(w) as

Rj(w) ≡ Fj(w)

V1(w)
= Aj

[
1 +Bj(w − 1) + Cj(w − 1)2 +Dj(w − 1)3 + . . .

]
, (B.14)

where the expansion parameters Aj , Bj , Cj and Dj are computed by including the leading perturbative
and 1/mb corrections, where mb is the bottom mass (see Figure B.1.). Now, for phenomenological
applications it is necessary to compute the zero-recoil expansions of the ratios Rj(w). To achieve
this goal, Caprini, Lellouch and Neubert have studied the behaviour of the inequality (B.10) for the
form factor V1(w) after the inclusion of firstly two and secondly three derivatives. They also express
V1(w(z)) as a power series in z (rather than in (w − 1)) in order to improve the convergence rate of
the series. The result of this analysis is that the relation (B.13) becomes

V1(w(z))

V1(1)
≈ 1− 8ρ2

1z + (51ρ2
1 − 10)z2 − (252ρ2

1 − 84)z3, (B.15)

where the authors do not include higher-order terms as they are confident that the third-order results
provide an adequate representation of the form factor over the entire kinematical region accessible in
semileptonic decays.
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Figure B.1: Updated values of the coefficients of the expansion of the ratio Rj(w) in powers of (w−1).
Taken from [69].
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Appendix C

Determinants and inequalities in the
DM method

In this appendix we give some formulae which are useful to simplify the numerical calculation of the
determinants of the matrix M and of the minors M(i,j) discussed in Chapter 3. We consider explicitly
the case of real matrices only, because in practice this is the standard case. The generalization to
complex matrices is straightforward. We will also make use of the explicit expressions (3.42) of the
inner products.

Let us start from the calculation of the determinant of the N × N matrix corresponding to the
inner products 〈gti |gtj 〉 = 1/(1− zizj), where zi ≡ z(ti, t−) are assumed to be real numbers satisfying
the conditions zi 6= zj and |zi| < 1 with i, j = 1, 2, ...N . Thus, we want to calculate the determinant
of the following matrix

G ≡




1
1−z2

1

1
1−z1z2 ... 1

1−z1zN
1

1−z2z1
1

1−z2
2

... 1
1−z2zN

... ... ... ...

1
1−zNz1

1
1−zNz2 ... 1

1−z2
N




. (C.1)

A simple evaluation by induction shows that

GN (z1, z2, ...zN ) ≡ det[G] =
1

∏N
i=1(1− z2

i )




N∏

i<j=1

zi − zj
1− zizj




2

, (C.2)

where, in the case N = 1 it is understood that
∏N
i<j=1(...)→ 1.

The matrix of which we want to calculate the determinant is given by Eq. (3.43), namely it has
the form

M ≡




χ φf φ1f1 φ2f2 ... φNfN

φf 1
1−z2

0

1
1−z0z1

1
1−z0z2 ... 1

1−z0zN
φ1f1

1
1−z1z0

1
1−z2

1

1
1−z1z2 ... 1

1−z1zN
φ2f2

1
1−z2z0

1
1−z2z1

1
1−z2

2
... 1

1−z2zN
... ... ... ... ... ...

φNfN
1

1−zNz0
1

1−zNz1
1

1−zNz2 ... 1
1−z2

N




, (C.3)
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where χ is the susceptibility that bounds the inner product 〈φf |φf〉 and, we remind, φifi corresponds
to the scalar product 〈φf |gti〉 for the known values of the FF fi = f(zi), whereas φf is the scalar
product 〈φf |gt〉 of the FF f(z(t)) that we want to constrain. In order to use a compact notation let
us indicate the values of the conformal variable z and of φ(z)f(z) as z0 and φ0f0, respectively, so that
in what follow the index i may run from 0 to N .

A simple evaluation by induction, as before, yields

det[M] = G(N+1)(z0, z1, z2, ...zN )


χ−

N∑

i=0

φ2
i f

2
i (1− z2

i )




N∏

m6=i=0

1− zizm
zi − zm




2

+ 2

N∑

i<j=0

φifiφjfj
(1− z2

i )(1− z2
j )(1− zizj)

(zi − zj)2




N∏

m6=(i,j)=0

1− zizm
zi − zm

1− zjzm
zj − zm




 , (C.4)

where

G(N+1)(z, z1, z2, ...zN ) =
1

1− z2

(
N∏

i=1

z − zi
1− zzi

)2

G(N)(z1, z2, ...zN ) . (C.5)

The unitarity bounds for the (unknown) form factor f0 result from the condition

det[M] = αφ2
0

[
−f2

0 + 2βf0 − β2
+ γ
]
≥ 0 , (C.6)

which implies1

β −
√
γ ≤ f0 ≤ β +

√
γ , (C.7)

where (after some algebraic manipulations)

α ≡ G(N)(z1, z2, ...zN ) ≥ 0 , (C.8)

β =
1

φ0d0

N∑

j=1

fjφjdj
1− z2

j

z0 − zj
, (C.9)

γ =
1

1− z2
0

1

φ2
0d

2
0

(χ− χ) , (C.10)

χ =
N∑

i,j=1

fifjφidiφjdj
(1− z2

i )(1− z2
j )

1− zizj
, (C.11)

with

d0 ≡
N∏

m=1

1− z0zm
z0 − zm

, (C.12)

dj ≡
N∏

m6=j=1

1− zjzm
zj − zm

. (C.13)

1The relations of the coefficients β and γ with β and γ, defined in Eq. (3.50), are: β = −β/(αφ0) and γ = (β2 +
αγ)/(αφ0)2 = ∆1∆2/(αφ0)2.
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Unitarity is satisfied only when γ ≥ 0, which implies χ ≥ χ. Note that d0 and φ0 depend on z0,
while the quantities dj and φj with j = 1, 2, ...N do not. Thus, the values of β and γ depend on z0,
while the value of χ does not depend on z0 and it depends only on the set of input data. Consequently,
the unitarity condition χ ≥ χ does not depend on z0.

Note that:

• When z0 goes toward one of the known values zj , let’s say z0 → zj∗ , one has d0 → dj∗(1 −
z2
j∗)/(z0 − zj∗)[1 + O(z0 − zj∗)], so that one gets (as expected)

β → fj∗ , (C.14)

γ → 0 . (C.15)

• By expanding the factor 1/(1− zizj) in Eq. (C.11) for |zi| < 1 one has

χ =

∞∑

k=0

[
N∑

i=1

fiφidi(1− z2
i )zki

]2

, (C.16)

which implies χ ≥ 0.

• Since in terms of the squared 4-momentum transfer t the variable z0 is given by

z0 =

√
t+ − t−

√
t+ − t−√

t+ − t+
√
t+ − t−

(C.17)

the annihilation threshold t = t+ corresponds to z0 = −1, while t→ −∞ corresponds to z0 = 1.
From Eq. (C.10) it follows that unitarity may have no predictive power (i.e. γ →∞) both at the
annihilation threshold t+ and for t→ −∞.
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Appendix D

Non-perturbative computation of the
susceptibilities

In this Appendix we discuss the theoretical idea underlying the non-perturbative computation of the
two-point correlation functions, namely the susceptibilities χ, that have been used as inputs of the
Dispersive Matrix approach (see Eq. (3.40)). Note that many of the definitions and formulae introduced
here have been used on the lattice to compute the HVP function of two electromagnetic currents [401]
and its isospin-breaking corrections [402] contributing to the muon g−2. For all the details about the
implementation and the numerical results of these computations on the lattice, see [2].

D.1 Basic definitions

We compute the correlation functions at the Euclidean four-momentum Q ≡ (Q0, ~Q), given in terms
of the Minkowskian momentum q ≡ (q0, ~q) by the relations Q0 = iq0 and ~Q = ~q. With this choice
Q2 = −q2. Furthermore, we perform a Wick rotation on the coordinates, so that we pass from the
Minkoskian coordinates xM = (τ, ~x) to the Euclidean ones x = (t, ~x), with t = i τ . The vector and
axial HVP tensors take the form

Πµν
V (Q) =

∫
d4xe−iQ·x 〈0|T{V µ†

E (x)V ν
E (0)} |0〉

= (−QµQν + δµνQ2)Π1−(Q2)−QµQνΠ0+(Q2) , (D.1)

Πµν
A (Q) =

∫
d4xe−iQ·x 〈0|T{Aµ†E (x)AνE(0)} |0〉

= (−QµQν + δµνQ2)Π1+(Q2)−QµQνΠ0−(Q2) ,

where we have introduced the currents

V µ
E = c̄γµEb, Aµ = c̄γµEγ

5
Eb . (D.2)

defined in terms of Hermitian, Euclidean Dirac matrices satisfying the anticommutation relations

{γµE , γνE} = 2δµν . (D.3)

In the following we will omit the explicit subscript E in the definition of the Euclidean currents and
γ-matrices.
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A convenient choice is to work with the momentum Q = (Q0,~0) so that

Q2Π0+(Q2) = −
∫ ∞

−∞
dt′ e−iQt

′
C0+(t′) ,

Q2Π1−(Q2) = −
∫ ∞

−∞
dt′ e−iQt

′
C1−(t′) , (D.4)

Q2Π0−(Q2) = −
∫ ∞

−∞
dt′ e−iQt

′
C0−(t′) ,

Q2Π1+(Q2) = −
∫ ∞

−∞
dt′ e−iQt

′
C1+(t′) ,

where the explicit expressions of the various correlators computed at the time distance t are

C0+(t) =

∫
d3~x 〈0|T{b̄(t, ~x)γ0c(t, ~x)c̄(0)γ0b(0)} |0〉 ,

C1−(t) =
1

3

3∑

i=1

∫
d3~x 〈0|T{b̄(t, ~x)γic(t, ~x)c̄(0)γib(0)} |0〉 , (D.5)

C0−(t) =

∫
d3~x 〈0|T{b̄(t, ~x)γ0γ5c(t, ~x)c̄(0)γ0γ5b(0)} |0〉 ,

C1+(t) =
1

3

3∑

i=1

∫
d3~x 〈0|T{b̄(t, ~x)γiγ5c(t, ~x)c̄(0)γiγ5b(0)} |0〉 .

By recalling the definition of the spherical Bessel functions

j0(z) =
sin(z)

z
, j1(z) =

sin(z)

z2
− cos(z)

z
(D.6)

and given that
∂

∂Q2
cos(Qt) = − t

2

2
j0(Qt), (D.7)

we get

χ0+(Q2) =

∫ ∞

0
dt′ t′ 2j0(Qt′)C0+(t′) ,

χ1−(Q2) =
1

4

∫ ∞

0
dt′ t′ 4

j1(Qt′)
Qt

C1−(t′) , (D.8)

χ0−(Q2) =

∫ ∞

0
dt′ t′ 2j0(Qt′)C0−(t′) ,

χ1+(Q2) =
1

4

∫ ∞

0
dt′ t′ 4

j1(Qt′)
Qt′

C1+(t′) .

In this Thesis we will always take Q2 = 0. In this case j0(0) = 1 and limx→0 j1(x)/x = 1/3, so that
the derivatives of the longitudinal and transverse polarization functions are equal to the second and
the fourth moments of the longitudinal and transverse Euclidean correlators, respectively. We point
out again that, by using the two-point correlation functions determined non-perturbatively, we may
constrain the form factors also at Q2 6= 0.
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Some relations, which are particularly useful in the analysis of the numerical results, can be derived
using the Ward Identities (WIs) that the vector and axial vector quark currents satisfy

∂µb̄(x)γµc(x) = (mb −mc)b̄(x)c(x) ,

∂µb̄(x)γµγ5c(x) = (mb +mc)b̄(x)γ5c(x) , (D.9)

where mb and mc are the (bare) masses of the bottom and charm quarks respectively. Hence, by
defining two further (Euclidean) polarization functions connected to the scalar and the pseudoscalar
currents, namely

ΠS(Q2) ≡
∫
d4x e−iQ·x 〈0|T{b̄(x)c(x)c̄(0)b(0)} |0〉 ,

ΠP (Q2) ≡
∫
d4x e−iQ·x 〈0|T{b̄(x)γ5c(x)c̄(0)γ5b(0)} |0〉 , (D.10)

the WIs imply that

QµQνΠV
µν(Q) = (mb −mc)

2 ΠS(Q2) ,

QµQνΠA
µν(Q) = (mb +mc)

2 ΠP (Q2) , (D.11)

from which we obtain

−Q4Π0+(Q2) = (mb −mc)
2ΠS(Q2) ,

−Q4Π0−(Q2) = (mb +mc)
2ΠP (Q2) . (D.12)

Moreover, by performing a double derivative with respect to Q2 we get

(
−2

∂

∂Q2
−Q2 ∂2

∂2Q2

)
[Q2Π0+(Q2)] = (mb −mc)

2 ∂2

∂2Q2
ΠS(Q2) ,

(
−2

∂

∂Q2
−Q2 ∂2

∂2Q2

)
[Q2Π0−(Q2)] = (mb +mc)

2 ∂2

∂2Q2
ΠP (Q2) . (D.13)

At this point, we can define the scalar and pseudoscalar analogues of Eqs. (D.5):

χS(Q2) = −1

2

(
∂2

∂2Q2

)
ΠS(Q2) =

1

4

∫ ∞

0
dt′ t′ 4

j1(Qt′)
Qt′

CS(t′),

χP (Q2) = −1

2

(
∂2

∂2Q2

)
ΠP (Q2) =

1

4

∫ ∞

0
dt′ t′ 4

j1(Qt′)
Qt′

CP (t′), (D.14)

where the scalar and pseudoscalar Euclidean correlators are defined as

CS(t) =

∫
d3~x 〈0|T{b̄(t, ~x)c(t, ~x)c̄(0)b(0)} |0〉 ,

CP (t) =

∫
d3~x 〈0|T{b̄(t, ~x)γ5c(t, ~x)c̄(0)γ5b(0)} |0〉 . (D.15)

The WIs offer thus the possibility to express the derivatives of vector longitudinal and axial lon-
gitudinal polarization functions in a different way, namely

χ0+(Q2) = (mb −mc)
2χS(Q2)− 1

2
Q2 ∂

∂Q2
χ0+(Q2)
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=
1

4

∫ ∞

0
dt′ t′ 4

j1(Qt′)
Qt′

[
(mb −mc)

2CS(t′) +Q2C0+(t′)
]

(D.16)

χ0−(Q2) = (mb +mc)
2χP (Q2)− 1

2
Q2 ∂

∂Q2
χ0−(Q2)

=
1

4

∫ ∞

0
dt′ t′ 4

j1(Qt′)
Qt′

[
(mb +mc)

2CP (t′) +Q2C0−(t′)
]
.

Thus, when setting Q2 = 0, we can compute the derivatives of the longitudinal vector and axial-vector
polarization functions directly through the fourth moments of the scalar and pseudoscalar correlators,
respectively. The advantage of the above procedure based on the WIs will be clarified in what follows.

D.2 HVP tensors in perturbation theory and lattice artefacts

When computing the quantities (D.8) and (D.16) on the lattice, one has to deal with discretization
terms that vanish in the continuum limit, namely when the lattice spacing a→ 0. These discretization
effects enter both in the expressions of the WIs on the lattice [403] and in the non-perturbative
computation of the T-products. As it will be clear in the following discussion, we propose to reduce
such discretisation errors by using a combination of non-perturbative and perturbative subtractions
which were found very effective in the past. We are going to examine this idea in detail, by illustrating
the main ideas for the perturbative calculation of the polarization functions. Although, in what follows,
we will consider lattice QCD in the Twisted Mass Fermion (TMF) regularisation, the main arguments
of our discussion are general and can be applied to any lattice regularisation of the theory. One
peculiarity, which is however common to other regularisations, is the on-shell O(a) improvement of
the physical particle spectrum and of the matrix elements of local bilinear operators. Thus the lattice
artefacts for physical quantities related to these matrix elements are of O(a2).

In lattice simulations performed at finite lattice spacing one can attempt to obtain the physical
results either by extrapolating the lattice quantities to the continuum or by reducing the discretisation
effects by a subtraction procedure based on perturbation theory. A combination of the two strategies
is indeed the most effective one. To this end, a specific perturbative approach can be implemented at
one-loop (or higher-loops) order by computing for a given quantity, say the polarization function or
its derivatives, the corresponding Feynman diagrams, at finite lattice spacing.

Recalling the definitions of Πµν
V,A given in Eq. (D.1), we analyse the structure of a twisted fermions

loop, the graphical representation of which, at lowest order, corresponds to the first Feynman diagram
on the left in Fig. D.1.

1

Figure D.1: One- and two-loop Feynman diagrams for the polarization function. The crosses represent
the bilinear operators and the curly line the gluon propagator.

Given the on-shell O(a) improvement of the vector current correlators at physical distances we
focus on the impact of contributions to the Fourier sum from small and zero distance. Formally, we
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are interested in the expansion of the generic polarization function Π(Q2) ≡ Π0±,1∓(Q2)

Π(Q2) =
∑

k≥−6

Cka
k (D.17)

where one can show that C1 = 0 with maximally TMF. Let us discuss as an example the case of the
vector current. In this case, the coefficients of the expansion can be derived from the generic form of
the lattice polarization tensor using the symmetries of the lattice action [404]

Πµν
V (Q2) = Πµν

V con(Q2) +

(
Z1

a2
+ Z̃1〈−S6 +

1

2
S2

5〉0
)
δµν + Z+

µ2

(
µ2

1 + µ2
2

)
δµν + Z−

µ2

(
µ2

1 − µ2
2

)
δµν

+
(
ZQ2Q2 δµν + ZQQQ

µQν
)

+O(a2, operators of higher dimension) , (D.18)

where ΠV con(Q2) is the continuum polarization tensor, S5 and S6 are defined by the expansion of the
lattice action close to the continuum limit

Seff = S4 + aS5 + a2 S6 + a2 S7 + . . . , (D.19)

where Sk =
∫
d4xLk with the terms Lk containing linear combinations of fields with mass dimension

k, and 〈. . . 〉0 stands for vacuum expectation value of some combination of operators, either local,
e.g. 〈S6〉0, or non local, 〈S2

5〉0. We will indicate explicitly the dependence of Πµν(Q2) or of the χ’s on
the quark masses only when it will be necessary for the discussion of the results.

Luckily enough all the divergent or mass dependent lattice artefacts in the first line of Eq. (D.18)
disappear when we apply the derivative with respect to Q2 to obtain the susceptibilities χ’s, see
Eqs. (3.28). There are however terms of O(a0) which remain and that, in some cases, can even
make the longitudinal polarization function different form zero even with degenerate quark masses
µ1 = µ2. Besides these terms there are discretisation errors of O(a2) or higher which remain. The
strategy to reduce their effect is that widely used in literature, see for example Ref. [405]. In our
case it is even simpler since the quantities that we consider, namely the χ’s, are finite in perturbation
theory. Let us call χLAT(Q2, a) the generic susceptibility computed non perturbatively on the lattice,
χ(Q2, a) the corresponding susceptibility computed in lattice perturbation theory, χ̃(Q2) the expression
resulting from χ(Q2, a) by neglecting all contributions which vanish for a → 0, lima→0 χ(Q2, a) →
χ̃(Q2), χcon(Q2) the susceptibility computed perturbatively in the continuum theory. We introduce
the following quantities

∆1χ(Q2, a) = χ(Q2, a)− χ̃(Q2) , ∆2χ(Q2) = χ̃(Q2)− χcon(Q2) , (D.20)

where ∆1χ(Q2, a) represents the discretisation errors that we want to subtract, and ∆2χ(Q2, a) the
finite terms which are different in the continuum with respect to the lattice case. In order to extract
the subtracted susceptibility we construct then the combination

χs(Q
2, a) = χLAT(Q2, a)−∆1χ(Q2, a)−∆2χ(Q2) = χLAT(Q2, a)− χ(Q2, a) + χcon(Q2, µ) . (D.21)

Thus, up to a certain order in perturbation theory and up to non perturbative effects, χs(Q
2, a)

reduces to the continuum result without discretisation errors. As we will show in a moment, if one
uses the one-loop perturbative calculations, the discretisation error then reduces to O(αsa

2).
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D.3 An instructive example: the vector current polarization tensor
at one loop

In order to illustrate the procedure followed to reduce the discretisation errors, as an instructive
example we discuss in details the one-loop perturbative calculation of the vector current polarization
tensor and of the corresponding susceptibilities.

At lowest order in perturbation theory, by calling k the internal momentum, we may easily compute
the correlator of two local vector currents on the lattice

Πµν
V (Q, a) =

∫ +π/a

−π/a

d4k

(2π)4
Tr

[
γµG1(k +

Q

2
)γνG2(k − Q

2
)

]
, (D.22)

where the integration interval represents the first Brillouin zone. Here Gi=1,2 indicates the tree-level
Wilson twisted-mass propagator, namely

Gi(p) =
−iγµp̊µ + Mi(p)− iµq,iγ5τ

3

p̊2 + M2
i (p) + µ2

q,i

, i = 1, 2 (D.23)

where we have defined on the lattice

p̊µ ≡
1

a
sin(apµ), Mi(p) ≡ mi +

ri
2
ap̂2

µ, p̂ ≡ 2

a
sin
(apµ

2

)
. (D.24)

In order to make the calculation it is convenient to define the dimensionless quantities

ρµ ≡ pµa, m̃ ≡ ma, µ̃ ≡ µa , (D.25)

and express Eq.(D.23) as

Gi(ρ) = a
−iγµρ̊µ + Mi(ρ)− iµ̃q,iγ5τ

3

ρ̊2 + M2
i (ρ) + µ̃2

q,i

, i = 1, 2 . (D.26)

Taking into account the change of the integration variables, we have that

Πµν
V (Q, a) =

1

a2
P
µν
V (Qa) =

1

a2

∫ +π

−π

d4ρ

(2π)4
Tr

[
γµG1(ρ+

Qa

2
)γνG2(ρ− Qa

2
)

]
, (D.27)

where P
µν
V (Qa) is a dimensionless quantity which can only depend on dimensionless quantities (Qa,

m1a, m2a, . . . ). At this point we may obtain the χ’s by applying the appropriate derivatives with
respect to Qµ to the expression given in Eq. (D.27). Note that any derivative with respect to Qµ we
make to obtain the χ’s implies the appearance of a factor a in front of the r.h.s. of Eq. (D.27), since the
integral only depends on the product Qa. A particularly convenient choice of Q in the evaluation of the
lattice integral (D.27) is Q = (Q0,~0), Q2 = Q2

0, ∂/∂Q2 = 1/(2Q0)∂/∂Q0, see Eqs. (D.4)–(D.8). When
we want to obtain the continuum expression (at this order we do not need to define the renormalisation
scheme since everything is finite) it is enough to take the limit a → 0 in the integrand (D.22) and
apply to P

µν
V (Qa) the derivatives with respect to Q0.

Let us discuss the case of the susceptibilities at Q = 0, that in this Thesis are used as inputs of
the Dispersive Matrix approach. In this case, in the continuum, one obtains

(
m2

2 χ1−(Q2 = 0)
)

con
=

Nc

96π2 (1− u2)5

{(
1− u2

) (
3 + 4u− 21u2 + 40u3 − 21u4 + 4u5 + 3u6

)
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+12u3
(
2− 3u+ 2u2

)
log
[
u2
]}

(D.28)

(
χ0+(Q2 = 0)

)
con

=
Nc

24π2 (1− u2)3

{(
1− u2

) (
1− 4u+ u2

) (
1 + u+ u2

)
− 6u3 log

[
u2
]}

,

where Nc is the number of colours and the quantities on the l.h.s. being dimensionless can only depend
on the ratio u ≡ m1/m2. In what follows m2 will always denote the heavier of the two valence quarks
in the decaying meson, namely the b quark for B → D(∗) decays. Note that in the limit m1 → m2

(i.e. u→ 1) the longitudinal susceptibility χ0+(Q2) vanishes because the currents are conserved in this
limit. Also on the lattice, as a → 0, the χ’s can only depend on u and thus, in perturbation theory
we expect

(
m2

2 χ1−(Q2 = 0, a)
)

LAT
=

(
m2

2 χ1−(Q2 = 0)
)

con
+ a2m2

2 δχ
′
1−(u, a2m2

2) ,
(
χ0+(Q2 = 0, a)

)
LAT

=
(
χ0+(Q2 = 0)

)
con

+ δχ0+(u) + a2m2
2 δχ

′
0+(u, a2m2

2) , (D.29)

where the quantities δχ
(′)
i can be eliminated in perturbation theory following the scheme described in

Eq. (D.21). The lattice susceptibilities
(
m2

2 χ1−(Q2 = 0, a)
)

LAT
and

(
χ0+(Q2 = 0, a)

)
LAT

are obtained
by applying the appropriate derivatives with respect to Q0 to the expression in Eq. (D.27) and putting
Q0 = 0. The four dimensional integral can be performed numerically without difficulties. Note also
that, since we are able to compute the polarization tensor non perturbatively, in principle we are also
able to enforce the unitarity constraints on the FFs at Q2 6= 0, although it goes beyond the goals of
this Thesis.

The advantage of the WIs (D.16) is now clear from Eq. (D.29). When we compute the vector (or
axial) longitudinal polarization functions through their definitions (3.28), namely computing only one
derivative with respect to q2 of the corresponding polarization functions, we will find by construction
some O(a0) discretization effects, namely δχ0+ (or δχ0−). This is not true when performing two
derivatives with respect to q2 of the polarization functions, which can be done by considering the WIs
in Eq. (D.16).

Perturbative Non-perturbative

χb→c0+ [10−3] 6.204 7.58± 0.59

χb→c0− [10−3] 19.4 21.9± 1.9

χb→c1− [10−4 GeV−2] 5.131 5.84± 0.44

χb→c1+ [10−4 GeV−2] 3.89 4.69± 0.30

Table D.1: Values of the susceptibilities adopted for the Dispersive Matrix method for the b→ c quark transi-
tions. We compare the perturbative estimates [50,69] with our non-perturbative results. Note that, in the former
case, the uncertainties are completely negligible.

D.4 Non-perturbative numerical values of the susceptibilities

After having explained the theoretical ideas underlying the non-perturbative computation of the sus-
ceptibilities χs, let us show the final results of the simulations on the lattice.

For the b→ c quark currents, these values are contained in the last column of Table D.1, which are
the values used for the phenomenological applications discussed in Chapters 4 and 5. In the Table we
show also for comparison the perturbative estimates computed in [50,69]. We note that the differences
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are negligible for the 1− and 0− channels, i.e. ∼ 4% and ∼ 7% respectively, while are slightly larger
in the 0+ and 1+ channels, namely both ∼ 20%.

For the b→ u quark currents, no recent perturbative estimates have been published in literature,
thus we show directly the results of our non-perturbative computation, i.e.

χb→u0+ = (2.04± 0.20) · 10−2 , (D.30)

χb→u1− = (4.45± 1.16) · 10−4 GeV−2 , (D.31)

where we show only the 0+ and the 1− since they are the only ones relevant for the phenomenological
applications discussed in Chapter 4.



Appendix E

Some details about Bound States
Dynamics for WIMP DM

χi χj

χi′ χj′

+

χi χj

χi′ χj′

+ · · ·

Figure E.1: Examples of diagrams controlling the BS effective Hamiltonian at next-to-leading order
in gauge boson emission. The first diagram corresponds to the second order Born approximation for
the dipole operators in Eq. (E.1). The second diagram, instead, is obtained from the O(A2) terms in

the interaction Hamiltonian, at leading order in the Born approximation.

In this Appendix we discuss the details of the dynamics of Bound State Formation (BSF). To be
more specific, we will show the general features of BSF at leading order (LO) in gauge boson emission
and at next-to-leading order (NLO) in gauge boson emission.

At LO, bound states form through the emission of a single vector boson V a: χi + χj → BSi′j′ +
V a. The non-relativistic limit of the amplitude can be recast in the form of an effective interaction
Hamiltonian, such that the full amplitude can be obtained from its matrix element with the wave
function of the initial and final two-particle states (reconstructed from the resummation of the ladder
diagrams). The leading order contribution to this effective hamiltonian comes in the form of electric
dipole interaction terms [298,299]:

H LO
I = − g2

Mχ

(
~Aa(~x1) · ~p1T

a
i′iδj′j + ~Aa(~x2) · ~p2T

a
j′jδi′i

)
+ g2α2

(
~Aa(0) · r̂e−Mar

)
T bi′iT

c
j′jf

abc , (E.1)

where the first to terms are a simple generalization of the standard QED dipole interaction while the
last one is a purely non-abelian term which arises from vector boson emission from a vector line.

The computation of the transition amplitudes from Eq. (E.1) simplifies if we assume the SU(2)L-
invariant limit. This approximation applies when the DM de Broglie wavelength is much smaller
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than the range of the Yukawa interaction 1/mW and therefore for z ≤ (Mχ/mW )2. In this regime the
Yukawa potential is well approximated by the Coulomb one which turns out to be a good approximation
to describe WIMP freeze-out. The BS dynamics can then be understood by using isospin selection
rules while the main consequence of having finite vector masses is to provide an energy threshold to
the emission of a single massive boson in the formation or the decay of a BS.

Since αeff ∼ n2, increasing the dimensionality of the DM multiplet enhances NLO processes in
gauge boson emission such as χi+χj → BSi′j′+V a+V b. These could be in principle relevant for both
the computation of the thermal mass and the saturation of the perturbative unitarity bound. The
main NLO contributions to BSF come from diagrams like the ones in Fig. E.1 and are essentially of two
types: i) the first diagram is essentially the second order Born approximation of the LO Hamiltonian,
with the intermediate state being a free one or a BS; ii) the second diagram, where the two emitted
vectors come from the same vertex, is generated by the effective Hamiltonian at order O(A2). The
latter contains terms of the form

H NLO
I ⊃ g2

2

2Mχ
T aT b

[
~Aa · ~Ab +

(~p · ~Aa)(~p · ~Ab)
M2
χ

]
, (E.2)

where we focus here on the abelian part of the hamiltonian. From Eqs. (E.1)-(E.2) we can estimate
the contribution to the double emission BSF cross-section as:

σLO
BSFvrel '

2παeff

M3
χ

∆E, σNLO
BSF vrel '

g2
χ

8M2
χvrel

(
∆E

Mχ

)3

, (E.3)

where gχ = 1 for Majorana fermions (gχ = 2 for real scalars). In the LO estimate, a factor 2
αeffMχ

2παeff
vrel

comes from the overlap integral while a factor ∆E
8π from the two-body phase space. Similarly, in the

NLO estimate a factor 1
2

∆E3

256π3 comes from the 3-body phase space, taking into account the two identical

final vectors, and
(

2
αeffMχ

)3
2παeff
vrel

from the overlap integrals between the wave functions. From the

above formula one can derive the scaling of the NLO corrections in Eq. (10.33).
Now, we are looking for the contributions from second order Born expansion, whose general ex-

pression is

(σvrel)2V =
26α2

2

33πM4
χ

∫
dωω(En − ω) |CBS + Cfree|2 , (E.4)

where we defined

CBS =
∑

m

(
1

En − Em − ω + iΓdec,m
+

1

ω − Em + iΓdec,m

)
I~qmImn , (E.5a)

Cfree =

∫
d3k

(2π)3


 1

En − ω + k2

Mχ
+ iε

+
1

ω − q2

Mχ
+ k2

Mχ
+ iε


 I

~q~k
I~kf , (E.5b)

with Iif being the overlap integrals between the states i and f , the index m running over all inter-
mediate BS and the k-integral running over all the intermediate scattering states. Starting from CBS,
the intermediate BS are rather narrow resonances because

Γdec ∼ α3
effEB � EB , (E.6)

where EB is a typical binding energy. This quick estimate, supported by the full numerical compu-
tation, suggests that CBS contribution is fully captured in the Narrow Width Approximation (NWA)
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for the intermediate BS. Therefore, neglecting the interference terms, one gets

(σvrel)2V =
∑

m

(σvrel)1V,mBRm→n. (E.7)

To estimate the contribution from Cfree we need to estimate I
~q~k

which encodes the contribution
from intermediate continuum states. For simplicity, we stick to the abelian contribution which reads

I
~q~k

=

∫
r2drR~k,1∂rR~q,0 . (E.8)

The integral above can be split into small and large r regions, roughly separated by the Bohr radius
a0 = 1

αeffMχ
, i.e.

I
~q~k

=

∫ a0

0
r2drR~k,1∂rR~q,0 +

∫ ∞

a0

r2drR~k,1∂rR~q,0

∼ 1

αeffMχ
√
kq

+
q

(Mχαeff)2
δ(q − k) ,

(E.9)

which plugged into Eq. (E.5b) gives an estimate of Cfree. All in all, plugging these estimates in Eq. (E.4)
and replacing q = Mχvrel we get that the contribution from NLO exchange of continuum states behaves
similarly to the ones estimated in Eq. (E.3) up to subleading terms in the vrel < αeff regime.
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Appendix F

More on WIMPs and DTs at future
lepton colliders

In this Appendix we recast the two search strategies discussed in Ref. [322] that exploit the presence of
a single short reconstructed disappearing track or a two-track analysis that require at least one of them
to be a short disappearing track, in addition to a trigger photon. The requirements are summarized
in Table F.1, taken from from Ref. [322].

Single track (1T) Double track (2T)

Eγ > 25 GeV > 25 GeV

pT leading track > 300 GeV > 20 GeV

pT subleding track / > 10 GeV

θ leading track 2π
9 < θ < 7π

9
2π
9 < θ < 7π

9

∆z tracks / < 0.1 mm

Table F.1: Event selections in the two signal regions considered in the original work [322].

Single-track search. For the single-track analysis we take the background cross-section quoted
in [322]. This rate is mainly determined by the combinatorial of track reconstruction induced by beam-
induced backgrounds.1 To determine the rate of the single-track events, we compute the mono-photon
cross-section doubly differential in the polar angles of the charged particles χ1, χ2. This dσ/dθ1dθ2 is
obtained at LO in perturbation theory with MadGraph5 aMC@NLO and is further reweighted to
take into account angular and distance sensitivity to stub-tracks reported in Ref. [322]. Let P (θ1) be
the probability that the particle χ1 is reconstructed as a track:

P (θ, rmin, rmax)=

∫ rmax

rmin

dr εrec(r, θ)

cτβγ sin θ
e−r/(cτβγ sin θ), (F.1)

where r is the transverse radius and εrec(r, θ) is the probability to reconstruct as a track a particle
travelling at an angle θ that decayed at a transverse radius r given in Fig. 11 of Ref. [322]. For single
tracks εrec(r, θ) is 0 outside the interval r ∈ [50 mm, 127 mm], and outside π/6 < θ < 5π/6. The radial

1As acknowledged in [322], this estimate of the background is quite conservative because it is based on detailed beam
dynamics simulation for

√
s = 1.5 TeV. Due to the relativistic dilution of muon decays, we expect smaller background

cross-section at higher
√
s.
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condition reflects the fact that tracks can only be reconstructed if the particles make at least 4 hits
in the vertex detector, which for the considered geometry means that the particle must travel at least
a minimum distance of 50 mm in the detector, while the upper limit stems from the disappearing
condition of the track. The latter condition will be relaxed in the double-tracks search. With the
knowledge of εrec the integral in Eq. (F.1) can be performed numerically. As per Table F.1, the hard
cross-section σS,γ is subject to trigger requirements: the leading observed track is required to have

pT > 300 GeV (F.2)

to help discriminate it against fake tracks, and it must lie within the cone

2π

9
< θ <

7π

9
. (F.3)

In our recast, due to lack of a detailed tracking and detector simulation, these cuts are implemented at
parton level on the DM particles momenta, which leads us to overestimate the number of events that
pass the selection. To account for this effect we assume that only a fraction εtran of the events with
parton pT > 300 GeV gives a track whose pT fulfils the same conditions. The transfer factor εtran ≈ 0.5
is estimated from the pT distribution of χ obtained at generator level, and track pT distribution given
in Ref. [322]. We assume that tracks with pT > 300 GeV can only come from χ with pT > 300 GeV.
To properly avoid over-counting events with two reconstructed tracks, we divide the final state phase
space into two non-overlapping regions that require different reconstruction constraints:

i) Both χ fulfil the conditions to be considered as leading track (Eqs. (F.2) and (F.3)). In this case
both tracks are subject to the detection and reconstruction efficiencies εtran and εrec (θ, r). These
events may give rise to zero, one, or two reconstructed stub-tracks. We count events with at least
one stub-track.

ii) Exactly one χ fulfils the conditions to be considered as leading track. Only events in which this
track is reconstructed according to detection and reconstruction efficiencies εtran and εrec (θ, r) are
counted. The fate of the sub-leading χ (if any) is irrelevant.

The largest contribution to the single-track cross-section comes from events in region i), where both
DM particles satisfy the pT and θ requirements to be considered as a leading track. The preference
for this configuration reflects the approximate 2-body kinematics of the mono-γ events with small
pT. In order to understand the nature of signal we can split it into two further sub-categories with:
a) exactly one reconstructed track which fulfils the conditions Eq. (F.2) and Eq. (F.3); b) exactly 2
reconstructed stub-tracks, of which at least one fulfils the same conditions. The respective rates are
given by:

d2σ1T
S,γ

d cos θ1d cos θ2
·
{
εtran2P (θ1)(1− P (θ2)) 1 track,(
1− (1− εtran)2

)
P (θ1)P (θ2) 2 tracks,

where the hard cross-section σ1T
S,γ is restricted to the phase-space region where both χ particles fulfil

the requirements of Eqs. (F.2) and (F.3). The boost factor βγ and the angular distribution are both
taken from a MC sample with cuts only on the photon at generator level. The resulting number of
events is used to compute the reach on the DM mass reported in Fig. 10.6, according to Eq. (10.43)
with εsys = 0.

Interestingly, the results obtained from the MC sample can also be understood semi-analytically
thanks to the simple kinematics of the mono-photon process. Given that the photon tends to be
soft, the kinematics of the three body process is not too different from direct production of a pair of
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oppositely charged DM particles without the photon. Therefore a very good analytic approximation
of the above results can be obtained, with the χ boost factor and flight directions approximated by
the ones for pair-produced DM particles with energy

√
s/2,

βγ ≈
√

s

4M2
χ

− 1 , θ1 = π + θ2. (F.4)

The angular distribution can also be computed analytically in the 2-body limit,

1

σS,γ

dσS,γ
d cos θ

∝





1 + 4
M2
χ

s +
(

1− 4
M2
χ

s

)
cos2 θ , fermion,

sin2 θ , scalar.

Results obtained using the MC 3-body angular distributions are in good agreement with the ones
obtained with this analytic two-body approximation.

Double-track search. The signal of the double tracks is computed by requiring both DM
particles to be reconstructed as tracks. The rate in this case is

d2σ2T
S,γ

d cos θ1d cos θ2
P (θ1)P (θ2) . (F.5)

We additionally require the two tracks to originate from points that are close to each other along the
direction of the beam axis, ∆z < 0.1 mm (see Table F.1). This effectively reduces the background
to negligible levels. In this limit, we use 4 signal events as a conservative estimate of the 95% C.L.
exclusion for a Poissonian counting.

The angular cuts on the tracks are the same as in the single track case, while the pT cuts are much
milder: pT > 10, 20 GeV for the sub-leading and leading tracks, respectively. In this case the mismatch
between the pT of the reconstructed track and the pT of the charged χ obtained at generator level
is negligible. The additional cuts do not affect significantly the signal events. Note that, following
Ref. [322], the disappearing condition is required on at least one track, i.e. this analysis includes in
the signal all events in which the second track extends up to a transverse radius of r = 1153 mm.
Following Ref. [322], we assumed for such long tracks a reconstruction efficiency equal to the tracks
decaying between 101 mm < r < 127 mm. Also for double tracks, the result obtained using the MC
sample βγ and θ distributions are in agreement with the ones computed analytically in the 2-body
limit.
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Appendix G

Details about the coupling of DM with
`π

As explained in Chapter 11, below the QCD scale ΛQCD the quarks are dresses into mesons and
baryons, so that the terms in the effective Lagrangian (11.30) are substituted by the new ones in
Eq. (11.31). These new interactions have been computed in chiral perturbation theory, as we will
schematically show in this Appendix.

We start summarizing the pion action [406]. We define

U = exp
iΠ

fπ
, Π =

(
π0

√
2π+

√
2π− −π0

)
, (G.1)

where fπ = 93 MeV. The SM pion Lagrangian is given by

LSMπ =
f2
π

4
Tr
[
|DµU |2 +m2

π(U + U †)
]
, (G.2)

where the covariant derivative is

DµU = ∂µU − i(rAµ + rWµ )U + iU(lAµ + lWµ ) , (G.3)

with

rAµ = lAµ = −eQAµ , rWµ = 0 , lWµ = −gVud√
2

(σ+W+
µ + σ−W−µ ) (G.4)

and

Q =
σ3

2
=

1

2

(
1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
. (G.5)

The Lagrangian can be then expanded as

LSMπ =
1

2
(∂µπ

0)2 + |∂µπ+|2 −m2
π

(
|π+|2 +

1

2
(π0)2

)

+
(
− g

2
fπVudW

+
µ (∂µ − ieAµ)π− + ieAµπ

+(∂µ − ieAµ)π−

− ig

2
VudW

+
µ

[
π0(∂µ − ieAµ)π− − π−∂µπ0

]
+ h.c.

)
+

+
1

6f2
π

[(
(π−∂µπ+)2 + 2π0π−∂µπ+∂µπ0 + h.c.

)
+
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− 2|∂µπ+|2(|π+|2 + (π0)2)− 2|π+|2(∂µπ
0)2 +m2

π

(
|π+|2 +

1

2
(π0)2

)2 ]
+ · · ·

where we only wrote the relevant terms in the expansion. Integrating out the W gives the effective
Fermi interaction of pions

Lweak
SMπ = 2GF (ν̄Lγ

µ`L)
(
fπ∂µπ

+ − i(π0∂µπ
+ − π+∂µπ

0) + . . .
)

+ h.c. (G.6)

Now, the vector-like DM interaction in Eq. (11.31) can be obtained in a very similar way, i.e.
by replacing the left-handed current with (χ̄γµ`R). The scalar interaction is obtained converting
(χ̄LL)(QLuR) into

(χ̄νL)
f2
πB0

2
Tr
[σ3

2
U +

1

2
U
]

+ (χ̄`L)
f2
πB0

2
Tr
[
σ+U

]
. (G.7)

In what follows, we give some compact formulæ that, starting from the Lagrangian (11.31), allows to
describe quantitatively the interactions of DM with pions and other SM particles.

G.1 Tree-level DM decay

If M > m`, the DM can decay to a lepton and an off-shell pion (subsequently decaying to eν̄) through
the interaction in Eq. (11.31). The amplitude reads

A =
√

2CχRGF
i

p2
π −m2

π

f2
πp

µ
π(−pνπ) [(ūχγµPRv`)(ūeγνPLvν) + (ū`γµPRvχ)(ūeγνPLvν)] , (G.8)

where the second term is absent if χ is Dirac. The squared amplitude is

|A |2 = (2)
2f4
πG

2
FC

2
χRm

2
e(p

2
π −m2

e)

(m2
π − p2

π)2

[
(M2 −m2

` )
2 − p2

π(M2 +m2
` )
]

(G.9)

where pπ = pe+pν is the pion 4-momentum and the (2) holds only if χ is Majorana. The decay width
is then

Γ(χ→ `eν) =
1

2M

∫ smax
12

smin
12

∫ smax
23

smin
23

ds12ds23|A |2
1

128π3M2
(G.10)

=
1

2M

∫ (M−m`)2

m2
e

dp2
π

128π3M2
|A |2

(
1− m2

e

p2
π

)√
m4
` − 2m2

` (M
2 + p2

π) + (M2 − p2
π)2.

(G.11)

Note that the off-shell decay rates have been computed both analytically and numerically with Mad-
Graph [375], after having implemented the interaction in Eq. (11.31) and the relevant SM pion inter-
actions.

G.2 Scatterings among χ, `, γ, π±

The photon interacts with charged particles, π and `. Furthermore a χ`γπ vertex arises from the
gauge-covariantization of the χ`∂µπ interaction. Taking this vertex into account, the total scattering
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amplitude vanishes for longitudinal photons. In the non-relativistic limits the squared amplitudes
summed over all initial-state and final states are

|A |2(χγ → π+`) =
e2f2

πC
2
χR(m` +mπ)(m2

` +M2)

m`
, (G.12a)

|A |2(χπ− → γ`) =
e2f2

πC
2
χRM(m2

` +M2)

mπ +M
, (G.12b)

|A |2(χ`→ π−γ) =
e2f2

πC
2
χRM(m2

` +M2)

m`
, (G.12c)

with no contribution from the photon interaction to the π.

G.3 Scatterings among χ, `, π0, π±

Only the quartic interaction among χ, `R, π
0, π± contributes to tree-level scatterings among these

particles. All processes with different initial-state and final-state particles have the following squared
amplitude, summed over all degrees of freedom, and here written assuming all incoming momenta,
pχ + p` + pπ0 + pπ± = 0:

|A |2 = −2C2
χR

{
[p` · (pπ0 − pπ+)] [pχ · (pπ0 − pπ+)] +

(
pπ+ · pπ0 −m2

π

)
(p` · pχ)

}
. (G.13)

So the squared amplitudes, summed over all degrees of freedom, are

|A |2χ`→π−π0 = −
f2
πC

2
χR

2
[4m4

π + 4t2 + (m2
` +M2)(m2

` +M2 − s) + 4t(s−m2
` −M2 − 2m2

π)],

|A |2χπ+→¯̀π0 = −
f2
πC

2
χR

2
[4m4

π +m4
` +M4 +m2

` (2M
2 − 4s− t) + 4s(s+ t− 2m2

π)−M2(4s+ t)],

and the same for χπ0 → ¯̀π−.
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precision experiments and at particle colliders,” Phys. Rept., vol. 641, pp. 1–68, 2016.

[192] C. Cornella, J. Fuentes-Martin, and G. Isidori, “Revisiting the vector leptoquark explanation of
the B-physics anomalies,” JHEP, vol. 07, p. 168, 2019.

[193] C. Cornella, D. A. Faroughy, J. Fuentes-Martin, G. Isidori, and M. Neubert, “Reading the
footprints of the B-meson flavor anomalies,” JHEP, vol. 08, p. 050, 2021.

[194] A. Crivellin, C. Greub, D. Müller, and F. Saturnino, “Importance of Loop Effects in Explaining
the Accumulated Evidence for New Physics in B Decays with a Vector Leptoquark,” Phys. Rev.
Lett., vol. 122, no. 1, p. 011805, 2019.

[195] M. Bordone, G. Isidori, and A. Pattori, “On the Standard Model predictions for RK and RK∗ ,”
Eur. Phys. J. C, vol. 76, no. 8, p. 440, 2016.

[196] M. Tanaka and R. Watanabe, “New physics in the weak interaction of B̄ → D(∗)τ ν̄,” Phys. Rev.
D, vol. 87, no. 3, p. 034028, 2013.

[197] Y. Sakaki, M. Tanaka, A. Tayduganov, and R. Watanabe, “Testing leptoquark models in B̄ →
D(∗)τ ν̄,” Phys. Rev. D, vol. 88, no. 9, p. 094012, 2013.

[198] Y. Sakaki, M. Tanaka, A. Tayduganov, and R. Watanabe, “Probing New Physics with q2 distri-
butions in B̄ → D(∗)τ ν̄,” Phys. Rev. D, vol. 91, no. 11, p. 114028, 2015.

[199] R. Alonso, B. Grinstein, and J. Martin Camalich, “Lepton universality violation and lepton
flavor conservation in B-meson decays,” JHEP, vol. 10, p. 184, 2015.

[200] M. Freytsis, Z. Ligeti, and J. T. Ruderman, “Flavor models for B̄ → D(∗)τ ν̄,” Phys. Rev. D,
vol. 92, no. 5, p. 054018, 2015.

[201] X.-Q. Li, Y.-D. Yang, and X. Zhang, “Revisiting the one leptoquark solution to the R(D(∗))
anomalies and its phenomenological implications,” JHEP, vol. 08, p. 054, 2016.

[202] J. P. Saha, B. Misra, and A. Kundu, “Constraining Scalar Leptoquarks from the K and B
Sectors,” Phys. Rev. D, vol. 81, p. 095011, 2010.



BIBLIOGRAPHY 229

[203] N. Kosnik, “Model independent constraints on leptoquarks from b → s`+`− processes,” Phys.
Rev. D, vol. 86, p. 055004, 2012.

[204] S. Sahoo and R. Mohanta, “Leptoquark effects on b → sνν̄ and B → Kl+l− decay processes,”
New J. Phys., vol. 18, no. 1, p. 013032, 2016.

[205] S. Sahoo and R. Mohanta, “Scalar leptoquarks and the rare B meson decays,” Phys. Rev. D,
vol. 91, no. 9, p. 094019, 2015.
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