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The impossibility of undoing a mixing process is analysed in the context of quantum information
theory. The optimal machine to undo the mixing process is studied in the case of pure states, focusing
on qubit systems. Exploiting the symmetry of the problem we parametrise the optimal machine
in such a way that the number of parameters grows polynomially in the size of the problem. This
simplification makes the numerical methods feasible. For simple but non-trivial cases we computed
the analytical solution, comparing the performance of the optimal machine with other protocols.
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I. INTRODUCTION

A fundamental fact in quantum information theory
is that not all maps between quantum states are pos-
sible: even before considering practical difficulties, quan-
tum theory itself limits the operations that can be per-
formed. A series of quantum no-go theorems [1–8] shows
that transformations which would be very valuable from
the point of view of information processing are in fact
impossible. The most celebrated of them is the no-
cloning theorem [2]: the impossibility of cloning makes
many processing tasks (e.g. state estimation) non-trivial.
Nonetheless, the importance of these impossible transfor-
mations drives the search for approximate implementa-
tions of them: optimal cloners [9] have been extensively
studied, and similar efforts have been spent for other no-
go theorems [7, 8, 10–12].

Here we introduce the no-subtracting theorem, which
states the impossibility of undoing the mixing operation
that involves a target state we wish to recover and an
external noise source, and define the optimal subtractor
operation which solves the problem with the best allowed
approximation. This task is somehow related to those
discussed in [13] and references therein, where one aims
to perform quantum information processing of some sort
(e.g. the recovery of the target state) when some classi-
cal knowledge (i.e. the reference frame for [13] and the
amount of mixed noise for us) is replaced by bounded
information encoded into the density matrix of an an-
cillary quantum system. Finding the optimal subtractor
corresponds to a semidefinite program involving a num-
ber of variables that in principle grows exponentially with
the input data (system copies). However, by exploiting
the symmetry of the problem and a proper parametrisa-
tion of the N to 1 qubit covariant channels (analogous to
those introduced in Refs. [14, 15]), the number of effec-
tive parameters can be reduced to a subset which only
scales polynomially. This reduction of the parameters
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makes the numerical optimisation feasible, and for small
enough input data, allows also for analytical treatment.

As a final consideration we would also to point out
that the problem we address in the present paper can
also be seen as an instance of quantum machine learn-
ing [16–18], an emerging area of quantum information
theory that deals with tasks that generalise the “learning
from example” concept in a genuine quantum informa-
tion theory setting. In these tasks a machine should be
trained to perform a certain quantum operation and this
training can be done through quantum processing, that
means with quantum training data and quantum opera-
tions. The fundamental difference with classical training
tasks is that there is not an a priori separation between
the training and the execution phases, because of entan-
glement. Indeed, in our analysis we search for the best
machine that can be trained with copies of the noise in or-
der to make it able to recover disturbed signals, with the
only requirement that the machine is allowed by quantum
mechanics.

The paper is organized as follows: we start in Sec. II by
formalizing the problem. In Sec. III we present some pre-
liminary results on the efficiency of a universal quantum
subtractor which can drawn from general consideration
on the problem without passing the explicit optimiza-
tion stage. In Sec. IV we then proceed with the explicit
solution of the optimization problem. The paper ends
with Sec. V. Technical derivations are presented in the
Appendix.

II. OPTIMAL SUBTRACTOR

An Universal Quantum Subtracting machine UQS is
a two-inputs/one-output transformation acting on two
isomorphic quantum systems A and B. When provided
by factorised input states of the form (pρ̂0 + (1− p)ρ̂1)⊗
ρ̂0, with p ∈ [0, 1] assigned and ρ̂0, ρ̂1 ∈ S(H) arbitrary
density matrices, it returns as output the system A into
the state ρ̂1 realizing the mapping

UQS
[
ρ̂mix(p)⊗ ρ̂0

]
= ρ̂1 , (1)

which effectively allows one to recover ρ̂1 from the mix-
ture ρ̂mix(p) := pρ̂0+(1−p)ρ̂1 by “removing” the perturb-
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ing state ρ̂0 and renormalizing the result. Unfortunately
the possibility of physically realizing an UQS machine for
p > 0, turns out to be in contradiction with the basic re-
quirements that any quantum evolution has to fulfil, see
e.g. Ref. [23]. Indeed invoking linearity and using the
fact that for ρ̂1 = ρ̂0 one has UQS[ρ̂0 ⊗ ρ̂0] = ρ̂0, Eq. (1)
can be cast in the following form

(1− p)UQS[ρ̂1 ⊗ ρ̂0] = ρ̂1 − pρ̂0, (2)

which, as long as the parameter p is strictly different
from 0, will produce unphysical non-positive results as
soon as the support of ρ̂0 admits a non trivial overlap
with the kernel of ρ̂1. Yet, as in the case of other better
studied impossible quantum machines [1], there could be
still room for approximate implementations of the map-
ping (1). In what follows we shall hence try to identify the
implementation of an optimal UQS, i.e. a machine which,
being physically realizable via a Completely Positive and
Trace Preserving (CPTP) map [23], would give us the
best approximation of the transformation (1). More gen-
erally we are also interested in a generalisation of the
problem where instead of a single copy of the mixture
pρ̂1 + (1 − p)ρ̂0 and of the noise state ρ̂0, we are now
provided with n1 copies of the first and n2 copies of the
second, i.e. in the optimal CPTP implementation of the
S(H⊗n1+n2)→ S(H) mapping

UQS(n1,n2)
[
(pρ̂0 + (1− p)ρ̂1)⊗n1 ⊗ ρ̂⊗n2

0

]
= ρ̂1 . (3)

As a figure of merit we shall consider the fidelity [24] be-
tween the obtained output and the intended target states,
properly averaged with respect to all possible inputs. To
simplify the analysis in what follows we restrict ourself
to the special case where both ρ̂0 and ρ̂1 are pure states
of the d-dimensional space H, namely ρ̂1 = |ψ〉 〈ψ| and
ρ̂0 = |φ〉 〈φ|, where without loss of generality we adopt

the parametrisation |ψ〉 := Û |↑〉 and |φ〉 := V̂ |↑〉, with

|↑〉 being a fixed vector and Û , V̂ are arbitrary elements
of the unitary set SU(d). Indicating hence with Λ the
CPTP mapping that we want to test as a candidate for

the implementation of UQS(n1,n2), we evaluate its per-
formance through the function

Fn1,n2(Λ) :=

∫∫
dµUdµV 〈ψ|Λ[ρ̂⊗n1

mix (p)⊗ ρ̂⊗n2
0 ] |ψ〉 ,

(4)
where the integral are performed via the Haar measure
of SU(d) to ensure a uniform distribution of |ψ〉 and |φ〉
on H. Before entering into the technical derivation, it is
worth commenting that while the problem we are facing
can be seen as a sort of purification procedure, it is defi-
nitely different from the task addressed by Cirac et al. in
Ref. [26], which is designed to remove the largest fraction
of complete mixed state from ρ̂mix having access to some
copies of it, but with no prior information on ρ̂0 or p.

A. Connection to Quantum Error Correction

Equation (1) can be described as the formal inver-
sion of the transformation IQA[ρ̂0 ⊗ ρ̂1] = ρ̂mix(p),
which we may dub Incoherent Quantum Adder. At vari-
ance with the Coherent Quantum Adder analyzed in
Refs. [7, 10, 11], an IQA can be easily implemented as
it merely consists in creating a probability mixture out
of two input configurations. In particular, IQA can be
interpreted as an open quantum evolution [23, 24, 27] in
which the state ρ̂0 of the input B, plays the role of the
environment. In this scenario, the aim is to undo the ac-
tion of IQA and recover ρ̂1 not having the full knowledge
about the environment, the only information available
being encoded through copies of ρ̂0. In view of this ob-
servation the optimal quantum subtracting problem can
be seen as a first example of a new way of approaching
quantum error correction schemes. We are thinking for
instance to communication scenarios where, the transfor-
mation tampering the received state at the output of the
channel is affected by interactions with an external envi-
ronment E that is susceptible to modifications on which
the communicating parties (say Alice and Bob) do not
have a complete record. To be more precise, imagine
the following realistic situation where Alice uses a noisy
channel to communicate with Bob. Therefore, the states
that Alice wants to send to Bob ρ1, interacts with the en-
vironment ρ0. The coupling Hamiltonian H between the
information carrier S and E and the transfer time τ of the
communication are somehow fixed and known. while the
state ρ0 of the environment is not – ρ0 is a sort of a ran-
dom, possibly time-dependent variable of the problem.

Accordingly, Bob receives by ρ′1 = TrE [USE(ρ1⊗ρ0)U†SE ]
with USE = exp[−iHτ ] and TrE [...] being the partial
trace over E. The fundamental task for the receiver of
the message is clearly to recover ρ1 from ρ′1: in the stan-
dard approach to quantum communication this is facil-
itated by the assumption that Alice and Bob have also
perfect knowledge about ρ0 which in our setting is no
longer granted. To compensate for this lack of informa-
tion it is hence important for the receiver of the message
to sample the state of E in real time during the infor-
mation exchange, a scenario which we can model e.g. by
assuming Bob to have access to some copies of ρ0. The
optimal subtracting scheme we discuss in the manuscript
addresses exactly this problem for the special (yet not
trivial) case where USE describes a partial swap gate (see
e.g. [25] ).
Given the above premise it should be now clear that the
possibility of constructing an UQS machine will have a
profound impact in many practical applications, span-
ning from quantum computation [24, 28], where it could
be employed as an effective error correction procedure for
certain kind of errors, to quantum communication [29],
where instead it could be used as a decoding operation
to distill the intended messages from the received deteri-
orated signals.
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III. PRELIMINARY RESULTS

The maximum of Eq. (4) with respect to all possible
CPTP transformations

F (max)
n1,n2

:= max
Λ∈CPTP

Fn1,n2
(Λ), (5)

is the quantity we are going to study in the following.
Since one can always neglect part of the input copies,
this functional is clearly non-decreasing in n1 and n2, i.e.

F (max)
n1,n2

≤ F (max)
n1+1,n2

, F
(max)
n1,n2+1, (6)

with no ordering between the last two terms been fore-
seen from first principles. In particular, we are interested

in comparing F
(max)
n1,n2 with the performances achievable

via a trivial “doing nothing” (DN) strategy in which one
emulates the mapping (3) by simply returning as output
one of the qubits of the register A, i.e. the state ρ̂mix(p).
In this case, the associated average fidelity can be easily
computed by exploiting the depolarizing identity∫

dµU |ψ〉〈ψ| =
∫
dµU Û |↑〉 〈↑| Û† = Î/d , (7)

obtaining

Fn1,n2(DN) := 1− p(d− 1)/d , (8)

which, by construction constitutes a lower bound for

F
(max)
n1,n2 , i.e.

F (max)
n1,n2

≥ 1− p(d− 1)/d , (9)

(incidentally for the qubit case, Fn1,n2(DN) coincides
with the average fidelity on would obtain by adapting
the optimal protocol of the Cirac et al. scheme [26] to
our setting, see Ref. [45]). Determining the exact value of

F
(max)
n1,n2 is typically very demanding apart from the case

where we have a single copy of A, i.e. for n1 = 1. In this
scenario in fact, irrespectively from the value of n2, one
can prove that the DN strategy is optimal, transforming
the inequality (9) into the identity

F
(max)
1,n2

= 1− p(d− 1)/d . (10)

One way to see this is to show that (10) holds in the
asymptotic limit of infinitely many copies of the B state,
i.e. n2 → ∞, and then invoke the monotonicity under
n2 to extent such result to all the other cases. As a
matter of fact when n2 diverges one can use quantum
tomography to recover the classical description of B from
the input data: accordingly the optimal implementation

of UQS(1,∞) formally coincides with the optimal recovery
map [30] aiming to invert the CPTP transformation that
takes a generic element ρ̂1 ∈ S(H) into ρ̂mix(p). In this
case (4) gets replaced by

F1,∞(Λ) :=

∫
dµU 〈ψ|Λ[(1− p) |ψ〉 〈ψ|+ p |φ〉 〈φ|] |ψ〉 ,

(11)

which thanks to the depolarizing identity can be easily
shown to admit Fn1,n2

(DN) not just as a lower bound
but also as an upper bound, leading to

F
(max)
1,∞ = 1− p(d− 1)/d , (12)

and hence to (10).
As n1 gets larger than 1, we aspect to see a non trivial

improvement with respect to the DN strategy. This is
clearly evident at least in the case where both n1 and n2

diverge (i.e. n1, n2 → ∞). In this regime, similarly to
the case of optimal quantum cloner [2, 31–35], Eq. (3) be-
comes implementable by means of a simple measure-and-
prepare (MP) strategy based on performing full quantum
tomography on both inputs A and B, yielding the optimal

value F
(max)
∞,∞ = 1 which clearly surpasses the DN thresh-

old. In the next sections, we shall clarify a procedure that
one can follow to solve the optimisation of Eq. (4) for fi-
nite values of the input copies. For the sake of simplicity
we present it for the special cases where A and B are just
qubit systems and we use such technique to analytically

compute the exact value of F
(max)
n1,n2 for the simplest but

non-trivial scenario where n1 = 2 and n2 = 1. Via nu-
merical methods we also solve the optimisation problem
for some selected values of p, n1 and n2, see Fig. 2.

IV. CHANNEL OPTIMISATION

The problem we are considering has special symme-
tries that allows for some simplifications. Invoking the
linearity of Λ and the invariance of the Haar measure we
can rewrite (4) as Fn1,n2

(Λ) = 〈↑|Λc[Ω̂n1n2
] |↑〉, where

Ω̂n1n2 is the density operator

Ω̂n1n2
:=

∫
dµV

(
p |↑〉 〈↑|+ (1− p)V̂ |↑〉 〈↑| V̂ †

)⊗n1

⊗
(
V̂ |↑〉 〈↑| V̂ †

)⊗n2

. (13)

The channel Λc appearing in the expression for Fn1,n2(Λ)
is obtained from Λ through the following integral

Λc[· · · ] =

∫
dµU ÛΛ[Û†

⊗N

· · · Û⊗N ]Û† , (14)

which ensures that Λc is a N qubits to 1 qubit covariant
map, i.e. a CPTP transformation fulfilling the condition

Û†Λc[· · · ]Û = Λc[Û
†⊗N

· · · Û⊗N ] , (15)

∀Û ∈ SU(2) [36]. Notice also that if Λ is already covari-
ant, then it coincides with its associated Λc, i.e. Λc = Λ.
Exploiting these facts we can hence conclude that the
maximisation of Fn1,n2

(Λ) can be performed by just fo-
cusing on this special set of transformations which now
we shall parametrise. The integral appearing in (14) mo-
tivates us to choose the total angular momentum eigen-
basis as the basis for the Hilbert space H⊗N2 where the
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channel operates. Specifically we shall write such vectors
as |j,m, g〉 with j the total angular momentum of N spin
1/2 particles, m the total angular momentum in z direc-
tion, and g labelling different equivalent representations
with total angular momentum j. Following the deriva-
tion presented in [45] we can then verify that, indicating
with {

∣∣j = 1
2 , s
〉
}
s=± 1

2
the angular momentum basis for

a single qubit (no degeneracy being present), one has〈
1
2 , s
∣∣Λc [∣∣j,m, g〉〈j′,m′, g′∣∣] ∣∣ 12 , s′〉 = (−1)m−m

′
(16)

×δs−m,s′−m′
∑

q∈Qj,j′

Cq s−m
1
2 s,j−m

Cq s′−m′
1
2 s
′,j′−m′ W

j,j′

q,g,g′ ,

where the summation over the index q runs over

Qj,j′ := {j ± 1

2
} ∩ {j′ ± 1

2
} , (17)

(if the set is empty then the associated matrix element is
automatically null), where

CJ M
j m,j′m′ := 〈J,M |j,m〉 ⊗ |j′,m′〉 , (18)

is a Clebsch-Gordan coefficient, and where finally

W j,j′

q,g,g′ := vjq,g · (v
j′

q,g′)
† , (19)

represents the scalar product between the complex row

vectors vjq,g and vj
′

q,g′ constructed from the Kraus oper-

ators of Λ and explicitly defined in [45]. Equation (16)
tells us which are the parameters characterizing Λc
that enter into the optimization problem. The num-

ber of W j,j′

q,g,g′ grows exponentially in n1 and n2: the
multiplicity of the representation with total angular
momentum j grows exponentially in general, therefore
g and g′ can take an exponential number of different
values. It is worth observing that this quantity does
not depend on m, s,m′, s′ which only appear in the
Clebsch-Gordan coefficients. Also, the structure of
the covariant channels specified in Eq. (16) indicates
that the action of Λc on the off-diagonal elements
in the total angular momentum basis is zero unless
|m−m′| = 1 and |j − j′| = 1. In principle there is no
selection rule on g and g′, and at this level the number
of variables of the problem still scales exponentially
in n1 and n2. A dramatic simplification arises by
using the symmetry properties of Ω̂n1n2 . First of all

[Ω̂n1n2
, Ĵz] = 0, from which 〈j,m, g| Ω̂n1n2

|j′,m′, g′〉 is
zero unless m = m′. Moreover, by Schur-Weyl duality
[38] the Hilbert space of the problem can be decomposed
as H =

⊕
D1,D2

(jD1
⊗ αD1

) ⊗ (jD2
⊗ αD2

), where jDi

and αDi are the irreducible representations of SU(2)
and the symmetric group Sni with Young diagram D.

We notice that Ω̂n1n2
is symmetric under permutations

acting independently on the first n1 and the second n2

qubits, hence by Schur’s lemma Ω̂n1n2
must have the

form Ω̂n1n2
=
⊕

D1,D2
(Ω̂D1

⊗ 1D1
)⊗ (Ω̂D2

⊗ 1D2
), with

Ω̂D1
, Ω̂D2

positive-semidefinite operators. In particular,

since (V̂ |↑〉 〈↑| V̂ †)⊗n2 is supported on the completely

symmetric subspace for each V̂ , Ω̂D2
= 0 unless D2 is

the completely symmetric Young diagram. From this
observation it follows that Ω̂n1n2

is supported on a space
spanned by orthonormal vectors labelled as |j,m, gj1〉,
where we use the same conventions as before for the
total angular momentum indices, and we simplify the
notation using gj1 as a shortcut for the couple (jD1

, gD1
)

which indexes a basis of αD1
. Putting all together

we have proved that 〈j,m, gj1 |Ω̂n1n2
|j′,m′, g′j′1〉 =

Ωn1n2
(j, j′,m, j1, p)δm,m′δgj1 ,g′j′1

, with the function

Ωn1n2
(j, j′,m, j1, p) depending only on j, j′,m, j1, p and

being explicitly computed in [45]. Exploiting these

properties of Ω̂n1n2 the fidelity can then be expressed as

Fn1,n2(Λ) =
∑

j,j′,j1,q

Cj,j
′

q,j1
(p)W j,j′

q,j1
, (20)

where Cj,j
′

q,j1
(p) is a contraction of Clebsch-Gordan coeffi-

cients defined in [45], and

W j,j′

q,j1
:= (

∑
gj1

W j,j′

q,gj1 ,gj1
)/#gj1 , (21)

with

#gj1 =
(n1)!(2j1 + 1)

(n1−2j1
2 )(n1+2j1

2 + 1)
, (22)

being the multiplicity of the representation j1. Fur-
ther constraints associated with the Completely Posi-
tivity condition of Λc are also automatically included

in the parametrisation via W j,j′

q,g,g′ through the connec-

tion between the vectors vjq,g and the Kraus opera-
tors of Λ. The trace preserving requirement reduces
instead to

∑
s=± 1

2
〈 12 , s|Λc [|j,m, g〉〈j′,m′, g′|] | 12 , s〉 =

δj,j′δm,m′δg,g′ , which via some manipulations [45] can be
cast in the equivalent form

2+2j
(1+2j) W

j,j
q,j1

∣∣∣
q=j+

1
2

+ 2j
1+2j W

j,j
q,j1

∣∣∣
q=j− 1

2

= 1 . (23)

We notice that the linearity of Fn1,n2
(Λ) and the con-

vexity of the set of channels allows us to restrict the
search for the maximum fidelity among those Λs for

which W j,j′

q,gj1 ,g
′
j1

= δgj1 ,g′j1
W j,j′

q,j1
. Accordingly, the lat-

ter become the effective variables over which one has to
perform the maximization of (20). As explicitly shown
in [45] their number grows polynomially in n1 and n2,
reducing the problem to a semidefinite program which
let us perform numerical optimisation.

A. Results

As explicitly shown in [45] the maximization of
Eq. (20) for case n1 = 2 and n2 = 1 can be performed
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FIG. 1: Average fidelity (24) for the optimal UQS machine
for n1 = 2 and n2 = 1 as a function of the probability pa-
rameter p (dotted line), together with the average fidelities
of the DN strategy (dashed line), the optimal expression for
n1 = 2 and n2 = ∞ corresponding to have classical knowledge
of the perturbing state (dotted-dashed line), and the upper
bound F upper

n1=2 (ΛMP) attainable with MP procedures (contin-
uous line).

analytically leading to

F
(max)
2,1 =

{
(1−p)(51+23p)

54 + (1−p)(3+p)2

27(6−7p) + p2

2 , 0 ≤ p ≤ 3
8

(1−p)(51+23p)
54 + p(1−p)

3 + p2

2 ,
3
8 ≤ p ≤ 1 .

(24)
In Fig. 1 we report Eq. (24) together with the average

fidelity for the DN strategy, with the function F
(max)
2,∞

which we computed in [45] following the same approach

used for F
(max)
1,∞ , and with the curve

F upper
n1=2 (ΛMP) := (9− 2p− p2)/12 , (25)

which, as we detail in [45], provides an upper bound
to the average fidelity attainable when resorting on MP
strategies when having n1 = 2 copies of A and arbitrary
copies of ρ̂0. The curves show that for the low value
n1 we are considering here, the MP procedures are in-
effective even with respect to the trivial DN strategy.

F
(max)
2,1 on the contrary is strictly larger than the DN

score. Also it is very close to F
(max)
2,∞ , showing that for

n1 = 2, the possibility of having just a single copy of the
perturbing state ρ̂0 provides us almost all the benefit one
could obtain by having a classical knowledge of the lat-
ter. For larger values of n1 and n2 analytical treatment

becomes cumbersome and we resort to numerical analy-
sis using Mathematica [40] to compute the parameters of
the problem and CVX, a package for specifying and solv-
ing convex programs [41–43] in Matlab, to calculate the
maximum fidelity values. Results are reported in Fig. 2
for n1 = 1, 2, .., 10 and n2 = 1, 2, .., 10 and p = 1

2 ,
9
10 .

2 4 6 8 10

n
2

2

4

6

8

10

n
1

0.75

0.8

0.85

0.9

2 4 6 8 10

n
2

2

4

6

8

10

n
1

0.55

0.6

0.65

FIG. 2: Numerical results for the maximum fidelity for
p = 0.5 (left) and p = 0.9 (right) for n1 = 1, .., 10 and
n2 = 1, .., 10. The red line indicates the following: as long

as (n2, n1 + 1) is below the red line, F
(max)
n1+1,n2

> F
(max)
n1,n2+1,

otherwise F
(max)
n1+1,n2

< F
(max)
n1,n2+1. For example, in p = 0.5

(left), for n1 = 8 and n2 = 2, the fidelity is larger if we add
one copy of the input B instead of the input A.

V. CONCLUSIONS

The gap between F
(max)
2,1 and the DN strategy (which is

optimal in the n1 = 1 scenario and independent from the
explicit value of n2) shows that even a small redundan-
cies on the input A, can be beneficial. On the contrary,

the very small distance between F
(max)
2,1 and F

(max)
2,∞ clari-

fies that gathering more information on the mixing term
ρ̂0 (the noise of the model) does not help too much. As
can be seen from Fig. 2 for larger n1 and n2 one can in-
stead see a noise-dependent separation line between two
regions, one where it is indeed advantageous to increase
n1 instead of n2 and the other where the opposite holds.

The symmetry of the problem allowed us to reduce
exponentially the number of variables involved in the
optimisation. The same analysis should be relevant also
in a broader perspective for general noise models.
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VII. APPENDIX

Supplemental material is organised as following. First, we provide explicit derivation of the decomposition (16) of
the main text. Then using (16) we derive the fidelity (20) of the main text. Third, we present an explicit derivation
of Eq. (23) of the main text. Then we analyze the application of the decomposition (16) of the main text to the case
where n1 = n2 = 1, and in the following section we do the same for the case n1 = 2, n2 = 1. Analytical optimisation
is also done for the case n1 = 2,= ∞. Then, we present the derivation of an upper bound for the average fidelity of
the UQS realised via measurement and prepare strategies. Finally, we apply the method of Cirac et al. [26] for case
n1 = 2 and arbitrary n2.

A. Covariant Channel Characterisation

Here the calculations to derive the characterisation for covariant are presented. Introducing a Kraus decomposition
for Λ in Eq.(14) of the main text we get

Λc[· · · ] =
∑
k

∫
dµU ÛM̂kÛ

†⊗N

[· · · ]Û⊗NM̂†kÛ
† , (26)

with M̂k the associated Kraus operators. Accordingly we can express the matrix element (16)〈
1
2 , s
∣∣Λc(|j,m, g〉 〈j′,m′, g′|) ∣∣ 12 , s′〉 =

∑
k

∑
r,r′

∑
l,l′

∫
dµUD

1/2
s,r (Û)Mk,j,g

r,l Dj
l,m(Û†)Dj′

m′,l′(Û)M†
k,j′,g′

l′,r′ D
1/2
r′,s′(Û

†) , (27)

where

Dj
l,l′(Û) := 〈j, l, g| Û⊗N |j, l′, g〉 , Mk,j,g

r,l :=
〈

1
2 , r
∣∣ M̂k |j, l, g〉 . (28)

We can write the multiplication of two Wigner matrices in the following form

D1/2
s,r (Û)Dj

l,m(Û†) = (−1)l−m
〈

1
2 , s
∣∣ Û ∣∣ 12 , r〉 〈j,−m, g| Û⊗N |j,−l, g〉

= (−1)l−m 〈1/2, s| ⊗ 〈j,−m, g| Û⊗N+1 |1/2, r〉 ⊗ |j,−l, g〉
= (−1)l−m

∑
j− 1

2≤q≤j+
1
2

Cq s−m
1
2 s,j−m

Cq r−l
1
2 r,j−l

Dq
s−m,r−l(Û) , (29)

where CJ M
j m,j′m′ = 〈J,M |j m〉 ⊗ |j′m′〉 are the Clebsch-Gordan coefficients. Exploiting this we can hence rewrite

Eq. (27) in the following form〈
1
2 , s
∣∣Λc(|j,m, g〉 〈j′,m′, g′|) ∣∣ 12 , s′〉 =

∑
k

∑
r,r′

∑
l,l′

∑
q,q′

(−1)l−m+l′−m′
∫
dµU Cq s−m

1
2 s,j−m

Cq r−l
1
2 r,j−l

×Dq
s−m,r−l(Û)Mk,j,g

r,l Cq
′ r′−l′

1
2 r
′,j′−l′ C

q′ s′−m′
1
2 s
′,j′−m′D

q′

r′−l′,s′−m′(Û
†)M†

k,j′,g′

l′,r′ . (30)

Remembering that following identity of Wigner matrices (Peter-Weyl theorem, see [44])∫
dµU D

j
m,l(Û)Dj′

m′,l′(Û)∗ =
1

2j + 1
δj,j′δm,m′δl,l′ (31)

the integral in (30) can hence be simplified to〈
1
2 , s
∣∣Λc(|j,m, g〉 〈j′,m′, g′|) ∣∣ 12 , s′〉 =

∑
k

∑
r,r′

∑
l,l′

∑
q

(−1)l−m+l′−m′

2j + 1
δs−m,s′−m′δr−l,r′−l′

×Cq s−m
1
2 s,j−m

Cq s′−m′
1
2 s
′,j′−m′ C

q r−l
1
2 r,j−l

Mk,j,g
r,l Cq r′−l′

1
2 r
′,j′−l′M

†k,j′,g′

l′,r′ . (32)

Introducing then the variable p := r − l = r′ − l′, we can rewrite the above identity as

〈1/2, s|Λc(|j,m, g〉 〈j′,m′, g′|) |1/2, s′〉 =
∑
k

∑
r,r′

∑
p

∑
q

(−1)r−m+r′−m′

2j + 1
δs−m,s′−m′

Cq s−m
1
2 s,j−m

Cq s′−m′
1
2 s
′,j′−m′C

q p
1
2 r,j p−r

Mk,j,g
r,r−pC

q p
1
2 r
′,j′ p−r′M

†k,j′,g′

r′−p,r′ , (33)
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which, defining the row vectors vjq,g of components

vjq,g(k, p) :=
1

2j + 1

∑
r

(−1)rCq p
1
2 r,j p−r

Mk,j,g
r,r−p , (34)

and their associated scalar products

W j,j′

q,g,g′ := vjq,g · (v
j′

q,g′)
† =

∑
k,p

vjq,g(k, p)
[
vj
′

q′,g′(k, p)
]∗

, (35)

allows us to finally express Eq. (33) as in Eq. (16) of the main text〈
1
2 , s
∣∣Λc [∣∣j,m, g〉〈j′,m′, g′∣∣] ∣∣ 12 , s′〉 = (−1)m−m

′
δs−m,s′−m′

∑
q∈Qj,j′

Cq s−m
1
2 s,j−m

Cq s′−m′
1
2 s
′,j′−m′ W

j,j′

q,g,g′ . (36)

B. Fidelity calculation for arbitrary n1, n2 and numerical optimisation

Using Eq. (13) of the main text the average fidelity can be expressed as

Fn1,n2(Λc) = 〈↑|Λc[
∫
dµV

(
p |↑〉 〈↑|+ (1− p)V̂ |↑〉 〈↑| V̂ †

)⊗n1

⊗
(
V̂ |↑〉 〈↑| V̂ †

)⊗n2

] |↑〉 , (37)

Knowing that Ωn1,n2
is invariant under any permutation on the first n1 qubits, we can write

Fn1,n2
(Λc) =

1

|Sn1
|
〈↑|Λc[

∑
σ

Π̂σ

∫
dµV

(
p |↑〉 〈↑|+ (1− p)V̂ |↑〉 〈↑| V̂ †

)⊗n1

⊗
(
V̂ |↑〉 〈↑| V̂ †

)⊗n2

Π̂†σ] |↑〉 , (38)

where Π̂σ is a permutation on the first n1 qubits, and σ runs over all the elements of the symmetric group Sn1
, and

|Sn1
| is the number of elements of symmetric group. Then we can write

Fn1,n2
(Λc) =

1

|Sn1
|
〈↑|Λc[

n1∑
k=0

∑
σ

(
n1

k

)
(1− p)kpn1−kΠ̂σ |↑〉 〈↑|⊗k ⊗ ÂN−kΠ̂†σ]] |↑〉 , (39)

where Âk :=
∫
dµV [V̂ |↑〉 〈↑| V̂ †]⊗k. Defining B̂k, we carry on the calculation

B̂k := |↑〉 〈↑|⊗k ⊗ ÂN−k (40)

=
∑

m,m′,s,s′

δm+s,m′+s′

N − k + 1
C

N−k
2 m+s

N−k−n2
2 m,

n2
2 s
C

N−k
2 m′+s′

N−k−n2
2 m′,

n2
2 s′
|↑〉 〈↑|⊗k

⊗
∣∣∣∣N − k − n2

2
,m

〉〈
N − k − n2

2
,m′

∣∣∣∣⊗ ∣∣∣n2

2
, s
〉〈n2

2
, s′
∣∣∣ .

Note that here we do not need to sum over any multiplicity index for the states
∣∣N−k−n2

2 ,m
〉

and
∣∣n2

2 , s
〉
, because

ÂN−k is supported on the completely symmetric subspace of N −k qubits, therefore it is also supported on the tensor
product of the completely symmetric subspaces of N − k − n2 and n2 qubits, which have multiplicity 1. Writing the
first n1 qubits in the total angular momentum basis we get

B̂k =
∑

m,s,m′,s′,j1,j1′

δm+s,m′+s′

N − k + 1
C

N−k
2 m+s

N−k−n2
2 m,

n2
2 s
C

N−k
2 m′+s′

N−k−n2
2 m′,

n2
2 s′

C
j1

k
2 +m

k
2

k
2 ,

N−k−n2
2 m

C
j1
′ k

2 +m′

k
2

k
2 ,

N−k−n2
2 m′

(41)∣∣∣∣j1, k2 +m, k

〉〈
j1
′,
k

2
+m′, k

∣∣∣∣⊗ ∣∣∣n2

2
, s
〉〈n2

2
, s′
∣∣∣

here the multiplicity index k indicates that we first wrote the k qubits in the total angular momentum basis then we
summed it up with

∣∣N−k−n2

2 ,m
〉 〈

N−k−n2

2 ,m
∣∣. Schur’s lemma implies

1

|Sn1
|
∑
σ

Π̂σ |j1,m, k〉 〈j1′,m′, k| Π̂†σ =
∑
gj1

1

#gj1
|j1,m, gj1〉 〈j1,m′, gj1 | δj1,j1′ , (42)
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where gj1 is the index for the multiplicity of j1 and runs over all the possible values for a certain j1, and #gj1 =
(n1)!(2j1+1)

(
n1−2j1

2 )(
n1+2j1

2 +1)
. Using Eq. (42) in Eq. (39) we get

Fn1,n2
(Λc) = 〈↑|Λc

[ ∑
m,s,m′,s′,j1,k,gj1

1

#gj1

(
n1

k

)
(1− p)kpn1−k δm+s,m′+s′

N − k + 1
C

N−k
2 m+s

N−k−n2
2 m,

n2
2 s
C

N−k
2 m′+s′

N−k−n2
2 m′,

n2
2 s′

(43)

C
j1

k
2 +m

k
2

k
2 ,

N−k−n2
2 m

C
j1

k
2 +m′

k
2

k
2 ,

N−k−n2
2 m′

∣∣∣∣j1, k2 +m, gj1

〉〈
j1,

k

2
+m′, gj1

∣∣∣∣⊗ ∣∣∣n2

2
, s
〉〈n2

2
, s′
∣∣∣ ] |↑〉

= 〈↑|Λc
[ ∑
m,s,m′,s′,j1,j,j′,k,gj1

1

#gj1

(
n1

k

)
(1− p)kpn1−k δm+s,m′+s′

N − k + 1
C

N−k
2 m+s

N−k−n2
2 m,

n2
2 s
C

N−k
2 m′+s′

N−k−n2
2 m′,

n2
2 s′

C
j1

k
2 +m

k
2

k
2 ,

N−k−n2
2 m

C
j1

k
2 +m′

k
2

k
2 ,

N−k−n2
2 m′

C
j k

2 +m+s

j1
k
2 +m,

n2
2 s
C
j′ k

2 +m′+s′

j1
k
2 +m′,

n2
2 s′

∣∣∣∣j, k2 +m+ s, gj1

〉〈
j′,

k

2
+m′ + s′, gj1

∣∣∣∣ ] |↑〉 .
Using the Eq. (16) of the main text we get

Fn1,n2
(Λc) =

∑
m,s,m′,s′,j1,j,j′,k,gj1 ,q

1

#gj1

(
n1

k

)
(1− p)kpn1−k δm+s,m′+s′

N − k + 1
C

N−k
2 m+s

N−k−n2
2 m,

n2
2 s
C

N−k
2 m′+s′

N−k−n2
2 m′,

n2
2 s′

(44)

C
j1

k
2 +m

k
2

k
2 ,

N−k−n2
2 m

C
j1

k
2 +m′

k
2

k
2 ,

N−k−n2
2 m′

C
j k

2 +m+s

j1
k
2 +m,

n2
2 s
C
j′ k

2 +m′+s′

j1
k
2 +m′,

n2
2 s′

C
q − k−1

2 −m−s
1
2

1
2 , j−

k
2−m−s

C
q − k−1

2 −m
′−s′

1
2

1
2 , j
′− k

2−m′−s′
W j,j′

q,gj1 ,gj1
.

The dependence of the coefficients of W j,j′

q,gj1 ,gj1
on the multiplicity index gj1 is only through j1. So, we can define

Cj,j
′

q,j1
(p) :=

∑
m,s,m′,s′,k

(
n1

k

)
(1− p)kpn1−k δm+s,m′+s′

N − k + 1
C

N−k
2 m+s

N−k−n2
2 m,

n2
2 s
C

N−k
2 m′+s′

N−k−n2
2 m′,

n2
2 s′

(45)

C
j1

k
2 +m

k
2

k
2 ,

N−k−n2
2 m

C
j1

k
2 +m′

k
2

k
2 ,

N−k−n2
2 m′

C
j k

2 +m+s

j1
k
2 +m,

n2
2 s
C
j′ k

2 +m′+s′

j1
k
2 +m′,

n2
2 s′

C
q − k−1

2 −m−s
1
2

1
2 , j−

k
2−m−s

C
q − k−1

2 −m
′−s′

1
2

1
2 , j
′− k

2−m′−s′
,

and write the fidelity as

Fn1,n2
(Λc) =

∑
j,j′,j1,q

Cj,j
′

q,j1
(p)
∑
gj1

1

#gj1
W j,j′

q,gj1 ,gj1
, (46)

Because Ωn1,n2
is symmetric on the first n1 qubits, we can always choose Λc to be symmetric on the first n1 qubits,

therefore

Λc[ρ̂] =
1

|Sn1 |
∑
σ

Λc[Π̂σρ̂Π̂†σ] . (47)

Using (42) we derive

W j,j′

q,gj1 ,gj1
=

1

#gj1

∑
g′j1

W j,j′

q,g′j1
,g′j1

, (48)

therefore

W j,j′

q,gj1 ,gj1
= W j,j′

q,g′j1
,g′j1

∀gj1 , gj′1 . (49)

so defining W j,j′

q,j1
:= 1

#gj1

∑
gj1

W j,j′

q,gj1 ,gj1
, then we get

Fn1,n2
(Λc) =

∑
j,j′,j1,q

Cj,j
′

q,j1
(p)W j,j′

q,j1
. (50)

Now, the number of parameters i.e. W j,j′

q,j1
, scale polynomially with n1 and n2 because the multiplicity index is fixed

to be j1 and the number of different j1 is O(n1). Without using the characterisation of covariant channels and writing
Ωn1,n2

in the proper form, the number of parameters grows exponentially in n1 and n2. This exponential reduction
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of parameters makes the numerical optimisation feasible. In fact, this optimisation problem is exactly a semidefinite
programming optimisation. To show this we first briefly review the semidefinite programming and then we define the
parameters in the program.
A general semidefinite program can be defined as any mathematical program of the form [39]

max
X̂∈Sn

Fn1,n2(X̂) = Tr
[
ĈᵀX̂

]
(51)

subject to Tr
[
D̂ᵀ
kX̂
]
≥ bk, k = 1, ..,m, and X̂ ≥ 0

where Sn is the space of all real n×n matrices. Ĉ and D̂k are n×n real matrices, and bk are real numbers and X̂ ≥ 0
means that X̂ is semidefinite.
In our problem, Cj,j

′

q,j1
(p) are the matrix elements of Ĉ which are all real since Cj,j

′

q,j1
(p) is the combination of the Clebsch-

Gordan coefficients. Our constraints are equality constraints, each of which can be obtained from two inequalities.

The matrix elements of X̂ are W j,j′

q,j1
, and the elements of D̂k and bk can be read from the coefficients in Eq. (23) of

the main text.
To prove that our problem is a semidifinite program we should show that X̂ is positive-semidefinite. X̂ is positive-

semidefinite if and only if there exists a set of vectors like {vi} such that xm,n = vᵀm.vn. In the definition of W j,j′

q,g,g′

in Eq. (35), we have

W j,j′

q,gj1 ,gj1
:= vjq,gj1 · (v

j′

q,gj1
)† , (52)

and using Eq. (49) we get

W j,j′

q,j1,j1
:= vjq,j1 · (v

j′

q,j1
)† . (53)

So, X̂ ≥ 0 and our problem is a semidefinite program.
Note that in our maximisation problem the parameters in general can be complex numbers. However, the matrix
elements of Ĉ are the contraction of Clebsch-Gordan coefficients which are all real, therefore without loss of generality

we can assume that W j,j′

q,j1
are real.

C. Derivation of Eq. (17)

Here we give explicit derivation of the constraint (15) of the main text. The starting point to observe that by
explicit substitution of Eq. (13) into Eq. (14) of the main text we get∑

s=± 1
2

∑
q

Cq s−m
1
2 s,j−m

Cq s−m
1
2 s,j

′−m W j,j′

q,g,g′ = δj,j′δg,g′ . (54)

Using then the following symmetry property of Clebsch-Gordan coefficients

CJMj1m1,j2m2
= (−1)j1−m1

√
2J+1
2j2+1C

j2−m2

j1m1,J −M , (55)

we can observe that∑
s=± 1

2

Cq s−m
1
2 s,j−m

Cq s−m
1
2 s,j

′−m =
∑
s=± 1

2

2q + 1

2j + 1
Cj m

1
2 s,q m−s

Cj
′ m

1
2 s,q m−s

=
2q + 1

2j + 1
〈j,m| ˆ̂Πm |j′m〉 =

2q + 1

2j + 1
δj,j′ , (56)

where
ˆ̂
Πm is the projector on the the jz = m eigenspace. It follows hence that (54) is automatically fulfilled for j 6= j′,

while for j = j′ instead it gives (17) of the main text

2+2j
1+2j W

j,j
q,g,g′

∣∣∣
q=j+

1
2

+ 2j
1+2j W

j,j
q,g,g′

∣∣∣
q=j− 1

2

= δg,g′ . (57)

Using the definition of W j,j′

q,j1
:= 1

#gj1

∑
gj1

W j,j′

q,gj1 ,gj1
and summing the equations (57) we get

2+2j
(1+2j) W

j,j
q,j1

∣∣∣
q=j+

1
2

+ 2j
1+2j W

j,j
q,j1

∣∣∣
q=j− 1

2

= 1 . (58)
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D. Application of the formalism to the case n1 = n2 = 1

For n1 = n2 = 1, Eq. (13) of the main text explicitly yields

Ω̂1,1 = (1− p) |↑〉 〈↑| ⊗ Î/2 + pÂ2. (59)

Notice that the term Â2 is invariant under rotations hence it gets mapped by Λc into a multiple of the identity operator:
specifically noticing that Tr[Â2] = 1 we have Λc[Â2] =

∫
dµU ÛΛ[Â2]Û† = Î/2 which implies 〈↑|Λc

[
Â2

]
|↑〉 = 1/2.

On the contrary the first contribution to Ω̂1,1 admits the following decomposition

|↑〉 〈↑| ⊗ Î = |1, 1〉〈1, 1|+ |1, 0〉+ |0, 0〉√
2

〈1, 0|+ 〈0, 0|√
2

, (60)

where without loss of generality we identified |↑〉 with the vector | 12 ,
1
2 〉, and where in the r.h.s. appear states of the

total angular momentum basis of two spin 1
2 (no multiplicity being present). Using Eq. (16) of the main text and the

table of Clebsch-Gordan coefficients we can then write

〈↑|Λc
[
|↑〉 〈↑| ⊗ Î

]
|↑〉 =

2

3

∣∣∣v1
3/2

∣∣∣2 +
5

6

∣∣∣v1
1/2

∣∣∣2 +
1

2

∣∣∣v0
1/2

∣∣∣2
+

1√
3

Re
{
v0

1/2 · (v
1
1/2)†

}
, (61)

where we dropped the index g since here is no multiplicity in total angular momentum basis of two qubits. Similarly
the constraints (23) of the main text becomes

4

3

∣∣∣v1
3/2

∣∣∣2 +
2

3

∣∣∣v1
1/2

∣∣∣2 = 1, 2
∣∣∣v0

1/2

∣∣∣2 = 1 . (62)

Exploiting this we observe that fidelity of F1,1(Λ) for a generic map must fulfil the constraint

F1,1(Λ) ≤ p

2
+

1− p
2

[
2

3

∣∣∣v1
3/2

∣∣∣2 +
5

6

∣∣∣v1
1/2

∣∣∣2 +
1

2

∣∣∣v0
1/2

∣∣∣2
+

1√
3

∣∣∣v0
1/2

∣∣∣∣∣∣v1
1/2

∣∣∣] ≤ 1− p/2 , (63)

the first inequality being obtained by forcing v0
1/2 and v1

1/2 to be collinear, while the second following directly from

(62). By comparing this with the lower bound F
(max)
n1,n2 ≥ 1− p(d− 1)/d discussed in the main text for the qubit case

(i.e. d = 2) this allows us to recover the identity (10) of the main text, i.e.

F
(max)
1,1 = 1− p/2 , (64)

the bound being achived by employing the DN strategy.

E. Details of the Calculation for n1 = 2, n2 = 1

Here we present detailed calculation to derive Eq. (18) of the main text. Using the Eq. (44) we can write the fidelity
as

F2,1(Λ) = p2

2 +
5(1−p)(3+5p)W

3/2,3/2
2,1 +(1−p)(33+23p)W

3/2,3/2
1,1

72 +
p(1−p)W 1/2,1/2

0,0 +5p(1−p)W 1/2,1/2
1,0

12 +
(1−p)(3+p)W

3/2,1/2
1,1

9
√

2

+
(6−p)(1−p)W 1/2,1/2

1,1 +(1−p)(6−5p)W
1/2,1/2
0,1

36 , (65)

using the definition of W j,j′

q,j1
:= 1

#gj1

∑
gj1

W j,j′

q,gj1 ,gj1
and the definition of W j,j′

q,g,g′ in Eq. (35) we can write

F2,1(Λ) = p2

2 +
5(1−p)(3+5p)

∣∣∣v3/2
2,1

∣∣∣2+(1−p)(33+23p)
∣∣∣v3/2

1,1

∣∣∣2
72 +

p(1−p)
∣∣∣v1/2

0,2

∣∣∣2+5p(1−p)
∣∣∣v1/2

1,2

∣∣∣2
12 +

(1−p)(3+p)
∣∣∣v3/2

1,1

∣∣∣∣∣∣v1/2
1,1

∣∣∣
9
√

2

+
(6−p)(1−p)

∣∣∣v1/2
1,1

∣∣∣2+(1−p)(6−5p)
∣∣∣v1/2

0,1

∣∣∣2
36 , (66)
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with constraints:

5
∣∣∣v3/2

2,1

∣∣∣2+3
∣∣∣v3/2

1,1

∣∣∣2
4 = 1 ,

3
∣∣∣v1/2

1,g

∣∣∣2+
∣∣∣v1/2

0,g

∣∣∣2
2 = 1 , (67)

where g = 1, 2. Using the constraints we eliminate
∣∣∣v3/2

2,1

∣∣∣, ∣∣∣v1/2
0,2

∣∣∣, ∣∣∣v1/2
0,1

∣∣∣, Eq. (66) becomes

F2,1(Λ) = 3−2p(1−p)
6 +

p(1−p)
∣∣∣v1/2

1,2

∣∣∣2
6 +

(1−p)(3+p)
∣∣∣v3/2

1,1

∣∣∣2
9 +

(1−p)(3+p)
∣∣∣v3/2

1,1

∣∣∣∣∣∣v1/2
1,1

∣∣∣
9
√

2
−

(1−p)(6−7p)
∣∣∣v1/2

1,1

∣∣∣2
18 . (68)

The coefficients of
∣∣∣v1/2

1,2

∣∣∣, ∣∣∣v3/2
1,1

∣∣∣ are positive everywhere, so to maximise the fidelity we put their maximum values∣∣∣v1/2
1,2

∣∣∣2 = 2
3 ,
∣∣∣v3/2

1,1

∣∣∣2 = 4
3 , obtaining

F2,1(Λ) = 51−4p(7−p)
54 +

√
2(1−p)(3+p)

∣∣∣v1/2
1,1

∣∣∣
9
√

3
−

(1−p)(6−7p)
∣∣∣v1/2

1,1

∣∣∣2
18 . (69)

This last expression has to be maximise with respect to
∣∣∣v1/2

1,1

∣∣∣ considering that, according to the constraint (67) such

variable has to belong to the interval [0,
√

2/3]. For the case p < 6
7 we take the derivative and put it equal to zero

obtaining ∣∣∣v1/2
1,1

∣∣∣ =
√

2(3+p)√
3(6−7p)

, (70)

which belongs to the allowed interval only when p < 3/8. Accordingly for these values of p we can use Eq. (70)
obtaining

F
(max)
2,1 = 51−4p(7−p)

54 + (1−p)(3+p)2

27(6−7p) . (71)

For the case 1 > p > 3/8 (which incidentally also includes 1 > p > 6/7), instead the maximum for (68) is always

maximised for the maximum allowed value of
∣∣∣v1/2

1,1

∣∣∣, i.e.
∣∣∣v1/2

1,1

∣∣∣ =
√

2/3 yielding

F
(max)
2,1 =

(1− p)(51 + 23p)

54
+ p(1−p)

3 +
p2

2
, (72)

which together with (71) gives us (18) of the main text.

F. Case n1 = 2, n2 = ∞

As we argued in the text,

F (max)
n1,∞ = max

Λ∈CPTP

∫
dµU 〈ψ|Λ[ρ̂⊗n1

mix (p)] |ψ〉 = max
Λ∈CPTP

∫
dµU 〈ψ|Λ[((1− p) |ψ〉 〈ψ|+ p |φ〉 〈φ|)⊗2

] |ψ〉 , (73)

This equality is consistent since F
(max)
n1,∞ does not depend on |φ〉 by virtue of the invariance property of the Haar

measure, and therefore one can set |φ〉 = |0〉 without loss of generality. In this case the optimal Λ is not covariant,
since it depends on |0〉 〈0|, but we can still find the maximum fidelity through the standard Kraus representation of

Λ. For n2 = 2, there is no need to distinguish between equivalent representations and the matrix elements M
(k)
s,j,m of

a set of Kraus operators for Λ, M̂k, satisfy〈
1
2 , s
∣∣Λ[|j,m〉 〈j′,m′|]

∣∣ 1
2 , s
′〉 =

∑
k

M
(k)
s,j,mM

(k)
s′,j′,m′ (74)

1/2∑
s=−1/2

〈
1
2 , s
∣∣Λ[|j,m〉 〈j′,m′|]

∣∣ 1
2 , s
〉

=

1/2∑
s=−1/2

∑
k

M
(k)
s,j,mM

(k)
s,j′,m′ = δj,j′δm,m′ . (75)
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The integral in (73) can be written as∫
dµU 〈ψ|Λ[((1− p) |ψ〉 〈ψ|+ p |0〉 〈0|)⊗2

] |ψ〉 =

=
∑

s,s′,l,m,l′,m′

∫
dµU

〈
1
2 , s
∣∣D 1

2
1
2 ,s

(Û†)Λ[ρ̂⊗2
mix(p)l,m,l′,m′

∣∣ 1
2 , l
〉 〈

1
2 ,m

∣∣⊗ ∣∣ 12 , l′〉 〈 1
2 ,m

′∣∣]D 1
2

s′,
1
2

(Û)
∣∣ 1

2 , s
′〉 ,

=
∑

s,s′,l,m,l′,m′

∫
dµU ρ̂

⊗2
mix(p)l,m,l′,m′D

1
2
1
2 ,s

(U†)D
1
2

s′,
1
2

(Û)

∑
k,j,j′

M
(k)
s,j,l+mM

(k)
s′,j′,l′+m′C

j,l+m
1
2 ,l,

1
2 ,m

Cj,l
′+m′

1
2 ,l
′,

1
2 ,m

′

 , (76)

where

ρ̂⊗2
mix(p)l,m,l′,m′ =

(
D

1
2

l,
1
2

(Û)D
1
2
1
2 ,m

(Û†) + δ
l,

1
2
δ
m,

1
2

)(
D

1
2

l′,
1
2

(Û)D
1
2
1
2 ,m

′
(Û†) + δ

l′,
1
2
δ
m′,

1
2

)
. (77)

After performing the integrations the result is∫
dµU 〈ψ|Λ[((1− p) |ψ〉 〈ψ|+ p |0〉 〈0|)⊗2

] |ψ〉 =

=
p(1− p)

3
Σk|M (k)

− 1
2 ,0,0
|2 +

p(1− p)
6

Σk|M (k)
1
2 ,0,0
|2 +

8(1− p)− 5(1− p)2

12
Σk|M (k)

1
2 ,1,1
|2+

+
4(1− p)− 3(1− p)2

12
Σk|M (k)

− 1
2 ,1,1
|2 +

(1− p)2

4
Σk|M (k)

− 1
2 ,1,−1

|2 +
(1− p)2

12
Σk|M (k)

1
2 ,1,−1

|2+

+
(1− p)(1 + p)

6
√

2
Σk|M (k)

− 1
2 ,1,0
|2 +

1− p
6

Σk|M (k)
1
2 ,1,0
|2 +

p2

2

+
(1− p)2

6
√

2
Σk Re[M

(k)
1
2 ,1,0

M
(k)

− 1
2 ,1,−1

] +
(1− p)(1 + p)

6
√

2
Σk Re[M

(k)

− 1
2 ,1,0

M
(k)
1
2 ,1,1

]. (78)

Using the constraints (23) and the positivity and magnitude of the coefficients most of the optimal parameter
choices can be found:

Σk|M (k)

− 1
2 ,0,0
|2 = 1, Σk|M (k)

1
2 ,0,0
|2 = 0, Σk|M (k)

1
2 ,1,1
|2 = 1,

Σk|M (k)

− 1
2 ,1,1
|2 = 0, Σk|M (k)

− 1
2 ,1,−1

|2 = 1, Σk|M (k)
1
2 ,1,−1

|2 = 0.

Moreover, using the Cauchy-Schwartz inequality

|Re[M
(k)
1
2 ,1,0

M
(k)

− 1
2 ,1,−1

]| ≤
√∑

k

|M (k)
1
2 ,1,0
|2
√∑

k

|M (k)

− 1
2 ,1,−1

|2 =

√∑
k

|M (k)
1
2 ,1,0
|2

|Re[M
(k)

− 1
2 ,1,0

M
(k)
1
2 ,1,1

]| ≤
√∑

k

|M (k)

− 1
2 ,1,0
|2
√∑

k

|M (k)
1
2 ,1,1
|2 =

√
1−

∑
k

|M (k)
1
2 ,1,0
|2 , (79)

one is left with the maximisation of a function of the variable t :=
√∑

k |M
(k)
1
2 ,1,0
|2:

(1− p)(1 + p)

6
√

2
(1− t2) +

1− p
6

t2 +
(1− p)2

6
√

2
t+

(1− p)(1 + p)

6
√

2

√
1− t2 . (80)

The solution and the maximal value of the fidelity can be analytically determined, but they are quite cumbersome
and we do not report them: instead we present the numerical plot in Fig. 2 of the main text.

G. Upper Bound on Measurement and Prepare Protocols

We have already observed that in the limit of large n1 and n2, MP protocols allows for optimal average fidelity. But
what happens for finite number of copies? To answer this question we introduce an upper bound on the average fidelity
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attainable with MP protocols. Indeed, invoking once more the fact that for characterizing optimal performances one
can restrict the analysis to transformations which are symmetric under the permutation of the first n1 qubits. Using
Eq. (39), the associated fidelity can be written as

Fn1,n2
(ΛMP) :=

n1∑
k=0

(
n1

k

)
(1− p)kpn1−k

∫
dµU 〈ψ|ΛMP(|ψ〉 〈ψ|⊗k ⊗ ÂN−k) |ψ〉 , (81)

where now ΛMP is the optimal MP channel. Then, we can get the following upper bound by using an optimal MP for
each independent part of the whole state

Fn1,n2
(ΛMP) ≤

n1∑
k=0

(
n1

k

)
(1− p)kpn1−k (82)

×
∫
dµU 〈ψ|ΛMP

k (|ψ〉 〈ψ|⊗k ⊗ ÂN−k) |ψ〉 ,

where ΛMP
k is the optimal MP choice for |ψ〉 〈ψ|⊗k. Using the known result for tomography of pure states [37] we can

then derive the following inequality

Fn1,n2
(ΛMP) ≤

∑n1

k=0

(
n1

k

)
k+1
k+2 (1− p)kpn1−k, (83)

where k+1
k+2 is the average fidelity in the optimal tomography of k ≥ 0 copies of a pure state. Notice that the right-

hand-side quantity does not depend explicitly on n2, and that for n1 = 2 reduces to the function (19) of the main
text which we reported in Fig. 1.

H. Performance of the Cirac, Ekert, Macchiavello (CEM) protocol as a subtracting machine

Here we show that a direct application of the method of Ref. [26] to solve our problem for n1 = 2 and arbitrary n2

leads to the same average fidelity as the DN strategy, being hence sub-optimal for our purposes.
The method presented in Ref. [26] does not assume the possibility of operating on the noise signal, therefore

the average fidelity one can achieve in this case does not depend on n2. For case n1 = 2, it consists of two steps
first performing an orthogonal measurement on the system that discriminate the completely symmetric from the
antisymmetric subspace of two qubits, and then tracing out on of the qubits. Adopting this procedure from Eq. (4)
of the main text we get

FCEM
n1=2 =

∫
dµUdµV 〈ψ|ΛCEM[ρ̂⊗2

mix(p)] |ψ〉 (84)

=

∫
dµUdµV 〈ψ|ΛCEM[(1− p)2 |ψ〉 〈ψ|⊗2

+ p2 |φ〉 〈φ|⊗2
+ p(1− p)(|ψ〉 〈ψ| ⊗ |φ〉 〈φ|+ |φ〉 〈φ| ⊗ |ψ〉 〈ψ|)] |ψ〉 .

Taking the integral on φ and using the fact that the method [26] is also covariant we can carry on the calculation

FCEM
n1=2 = (1− p)2 +

p2

2
+

∫
dµU 〈ψ|ΛCEM[p(1− p)(|ψ〉 〈ψ| ⊗ Î

2
+
Î

2
⊗ |ψ〉 〈ψ|)] |ψ〉 (85)

= (1− p)2 +
p2

2
+ 〈0|ΛCEM[p(1− p)(|0〉 〈0| ⊗ Î

2
+
Î

2
⊗ |0〉 〈0|)] |0〉 = 1− p

2
.

where in the last inequality we use the fact that, as anticipated, ΛCEM consists in performing the measurements on
the symmetric and antisymmetric subspace. We notice hence that FCEM

n1=2 exactly coincides with the fidelity one would

get by simply adopting the DN strategy, i.e. FCEM
n1=2 = FDN

n1,n2
which is clearly not optimal in our case.
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