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Abstract

Modern regression studies often encompass a very large number of potential predic-
tors, possibly larger than the sample size, and sometimes growing with the sample
size itself. This increases the chances that a substantial portion of the predictors
is redundant, as well as the risk of data contamination. Tackling these problems is
of utmost importance to facilitate scientific discoveries, since model estimates are
highly sensitive both to the choice of predictors and to the presence of outliers. In
this thesis, we contribute to this area considering the problem of robust model se-
lection in a variety of settings, where outliers may arise both in the response and
the predictors. Our proposals simplify model interpretation, guarantee predictive
performance, and allow us to study and control the influence of outlying cases on
the fit.

First, we consider the co-occurrence of multiplemean-shift and variance-inflation
outliers in low-dimensional linear models. We rely on robust estimation techniques
to identify outliers of each type, exclude mean-shift outliers, and use restricted
maximum likelihood estimation to down-weight and accommodate variance-inflation
outliers into the model fit. Second, we extend our setting to high-dimensional linear
models. We show that mean-shift and variance-inflation outliers can be modeled as
additional fixed and random components, respectively, and evaluated independently.
Specifically, we perform feature selection and mean-shift outlier detection through
a robust class of nonconcave penalization methods, and variance-inflation outlier
detection through the penalization of the restricted posterior mode. The resulting
approach satisfies a robust oracle property for feature selection in the presence of
data contamination – which allows the number of features to exponentially increase
with the sample size – and detects truly outlying cases of each type with asymptotic
probability one. This provides an optimal trade-off between a high breakdown point
and efficiency. Third, focusing on high-dimensional linear models affected by mean-
shift outliers, we develop a general framework in which L0-constraints coupled with
mixed-integer programming techniques are used to perform simultaneous feature
selection and outlier detection with provably optimal guarantees. In particular,
we provide necessary and sufficient conditions for a robustly strong oracle property,
where again the number of features can increase exponentially with the sample size,
and prove optimality for parameter estimation and the resulting breakdown point.
Finally, we consider generalized linear models and rely on logistic slippage to perform
outlier detection and removal in binary classification. Here we use L0-constraints
and mixed-integer conic programming techniques to solve the underlying double
combinatorial problem of feature selection and outlier detection, and the framework
allows us again to pursue optimality guarantees.

For all the proposed approaches, we also provide computationally lean heuristic
algorithms, tuning procedures, and diagnostic tools which help to guide the analysis.
We consider several real-world applications, including the study of the relationships
between childhood obesity and the human microbiome, and of the main drivers of
honey bee loss. All methods developed and data used, as well as the source code to
replicate our analyses, are publicly available.
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B.2 Scenario 1. Trimmed MSE(ŝ2) comparisons (with 20% upper trim-
ming) across procedures and sample sizes. . . . . . . . . . . . . . . . 164

ix



List of Tables

3.1 Mean (SD in parenthesis) of RMSPE, variance and squared bias for

β̂, FPR and FNR for feature selection and outlier detection (as well
as the corresponding F1 scores), and computing time, based on 1000
simulation replications. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Median (MAD in parenthesis) of TMSPE and the number of features
selected on the training set on eight train-test splits. Last column:
number of features selected on the full data. Robust methods use
20% trimming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
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“Although we often hear that data speak for them-

selves, their voices can be soft and sly”

F. Mosteller, S. Fienberg, R. Rourke (1983)

Chapter 1

Introduction

Contemporary social and scientific endeavors produce a steadily increasing amount

of data that can provide invaluable information, but also poses critical challenges.

From a statistical standpoint, contemporary data demand special attention since

they frequently do not fit well within the traditional paradigm – motivating the de-

velopment of more sophisticated theories and tools. In particular, regression studies

often include a vast number of candidate predictors, potentially far larger than the

available sample size. This raises the odds that a substantial portion of the pre-

dictors be redundant, as well as the risk of data contamination – that is, outlying

cases that may come from a different generating model. Therefore, the development

of robust model selection techniques, which are still in their infancy, is of utmost

importance in a variety of research fields and applied domains.

This chapter highlights the motivation for our research, and summarizes some

background information, as well as our main objectives, contributions, and the struc-

ture of the thesis.

1.1 Motivation

The so-called “big-data revolution” has impacted virtually all parts of our society,

sectors of our economy, and scientific domains – imposing new and fascinating chal-

lenges to the field of Statistics. Large and increasingly complex data are collected

and analyzed at an astonishing rate, thus motivating the development of effective
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methodologies in terms of predictive performance, interpretability, robustness/sta-

bility, and computational burden.

Regression analysis is a widespread approach for fitting predictive models to

data. Indeed, investigating the relationship between an outcome of interest and

a set of predictors is a very old idea, which is still pivotal in numerous domains.

Two contrasting goals are typically pursued in this setting: (i) good prediction

accuracy, and (ii) high interpretability – e.g., judging the strength/contribution of

different subsets of predictors in explaining the response variable. Finding a good

balance between these two goals is non-trivial. The problem is exacerbated in high-

dimensional models containing noisy predictors and/or data contamination, which

can make traditional estimation approaches, such as maximum likelihood estimators,

unfeasible or ineffective.

1.1.1 Why model selection?

In high-dimensional regression models, containing a large number of candidate pre-

dictors (also called features or explanatory variables), it is likely that only a subset

of such predictors have an actual relationship with the response. The exclusion of

irrelevant or redundant features from the model may facilitate interpretation and

scientific discoveries, and improve the prediction of unobserved outcomes.

In a broad sense, model selection is the process of selecting among a group

of statistical models. This is often referred to also as sparse estimation, feature

or variable selection, or feature elimination. The selection of parsimonious model

representations can ease the interpretation of results, and at the same time reduce

estimation variability (i.e., ameliorate overfitting) while ensuring high predictive

power (Hastie et al., 2015). The so-called sparsity assumption, which postulates that

only a fraction of the predictors can be effectively used in modeling the response

variable, is realistic in several domains of application. For instance:

• Gene expression: it is expected that only a limited number of genes are as-

sociated with any given pathology. Based on data on the expression of 4718

genes on samples from 349 patients affected by 15 forms of cancer, Hastie
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et al. (2015, p. 4) showed that only 254 genes suffice in predicting each type

of cancer with an overall accuracy of 90%.

• Portfolio selection: Markowitz model aims at constructing a financial portfolio

with maximal expected return and minimum variance, with an upper bound

on the number of open positions. Bertsimas et al. (2021a) provided an optimal

sparse solution (e.g., selecting only 5 stocks) for the ≈ 3200 securities included

in the Wilshire 5000 index.

• Retail sales: consumer demand for products depends on marketing strategies

that are pursued across product categories. Analyzing 926 products in 15 food

categories for 320 weeks, Ma et al. (2016) showed that identifying relevant fea-

tures at the intra- and inter-category level improves sales forecasting accuracy

and helps highlight complementarity and substitution relationships.

Intuitively, model selection techniques identify the “most significant” subset of

predictors, assuming that the majority of them have a negligible effect on the re-

sponse variable. Their development dates back to the works of Cauchy in 1835

(Seal, 1967), and relies on the idea of fitting different sub-models, which have to

be compared according to a predetermined criterion. Ideally, one should rely on

the combinatorial evaluation of all possible models of any given size (known as best

subset selection), which is typically unfeasible for large problems by a näıve brute-

force algorithm. Indeed, until the last decade, this was considered computationally

intractable for regressions containing more than 40 predictors (Hastie et al., 2009,

p. 57). For this reason, several approximations of best subset selection were intro-

duced, such as stepwise procedures that select variables in a path-dependent way in

order to effectively reduce the search space (Miller, 2002).

Many researchers remained skeptic about the feasibility to efficiently and opti-

mally solve model selection problems. As stated by Plackett: “If variable elimination

has not been sorted out after two decades of work assisted by high-speed computing,

then perhaps the time has come to move on to other problems” (Miller, 1984). How-

ever, continuous penalization methods such as the Lasso (Tibshirani, 1996) provided

an alternative and computationally leaner avenue to tackle the problem and, more
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recently, advances in mixed-integer programming (MIP, Bertsimas et al. 2016) al-

lowed researchers to approach best subset selection with much improved efficiency.

Notwithstanding all this progress, model selection is still an open problem in Statis-

tics and is receiving renewed attention. Both “soft” feature selection procedures

(based on continuous penalties) and “hard” ones (which rely on combinatorial enu-

meration) achieve varying degrees of sparsity, accuracy and computational efficiency

under different scenarios (Hastie et al., 2020).

An optimal sparse estimator, i.e., one computed on the truly relevant (but un-

known) set of predictors, is often called an oracle estimator. In order to retrieve its

solution, several oracle properties have been developed in the literature (Fan and

Li, 2001; Bradic et al., 2011; Bühlmann and Van De Geer, 2011; Fan et al., 2014a).

Under suitable conditions, they guarantee that a certain estimator asymptotically

behaves as if the set of relevant features were known in advance (weak oracle prop-

erty), and model parameters are estimated efficiently (strong oracle property). No-

tably, nonconvex penalization methods require less stringent assumptions to achieve

oracle properties compared to convex methods (Zhang and Zhang, 2012). Focusing

on nonconcave penalties, Fan and Peng (2004) extended oracle properties to settings

where the number of features diverges with the sample size itself.

1.1.2 Why statistical robustness?

Statistical models provide an imperfect representation of the real phenomena un-

der investigation, whose approximation accuracy is tied to the underlying (albeit

often implicit) assumptions. Therefore, it is of utmost importance to study the sta-

bility/robustness of estimation results against “reasonable” deviations from model

assumptions.

In a broad sense, robust statistics encompasses a number of modeling techniques

that can pinpoint model deficiencies, and studies robust estimators that behave sim-

ilarly to classical methods (e.g., maximum likelihood estimators) when the underly-

ing assumptions are fully satisfied, but at the same time provide reliable statistical

results under model misspecification and/or the presence of data contamination. Ro-

bust methods effectively reveal data structures that would remain hidden otherwise,
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and the detection of spurious observations often provides relevant domain-specific

insights. For instance:

• Anomaly detection: not all observations in a data set often come from the

same population or data generating mechanism. For the 47 stars contained

in the star cluster CYG OB1, Rousseeuw and Hubert (2018) analyzed the

Hertzsprung–Russell diagram (the logarithm of their light intensity against

the logarithm of their surface temperature) showing that robust methods ef-

fectively detect giant stars, whereas classical techniques cannot distinguish

them from the rest.

• Anti-fraud: data on economic transactions often contain information on fraud-

ulent behaviors. Based on international trade data, Perrotta et al. (2020)

developed robust procedures for the estimation of “fair” import prices which

highlight possibly fraudulent transactions and in turn aid customs operations.

Relatedly, Rousseeuw et al. (2019) detected potential frauds and level shifts

in time series data of imports into the European Union.

• Signal processing: a signal transmission can be corrupted by natural or ad-

versarial occurrences. In the context of global navigation satellite systems,

robust estimation techniques can be effective in coping with different kinds of

interference, such as multipath (Medina et al., 2019), urban canyons (Gaglione

et al., 2017), and jamming (Borio, 2017).

Interestingly, the term “robust” was popularized in the statistics community

by Box (1953), but some primitive robust estimation procedures can be traced

back to 2,400 years ago, during the Peloponnesian war in Ancient Greece (Ceri-

oli et al., 2011). The theoretical framework for robust statistics was established

in the pioneering works of Tukey (1960), Huber (1964), Hampel (1968) and the

ever-growing literature on the subject has been extensively discussed in Cook and

Weisberg (1982); Rousseeuw and Leroy (1987); Barnett and Lewis (1994); Belsley

et al. (2004); Maronna et al. (2006); Morgenthaler (2007); Huber and Ronchetti

(2009); Hampel et al. (2011).
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Since statistical robustness refers to “insensitivity against small deviations from

the assumptions” (Huber, 1996, p. 1), robust methods have to consider a hypo-

thetical model and a specific meaning for smallness (Huber and Ronchetti, 2009,

p. 21), which “should be statistically meaningful, not just mathematically conve-

nient” (Hampel et al., 2011, p. 9). In this thesis, we consider as (small) deviations

the presence of influential outlying observations; that is, of units that do not come

from the same population from which the majority of the sample is drawn, and for

which the modeling assumptions do not hold. This is a rather realistic scenario,

that can be due to errors in data recording (human or machine errors) or to the

fact that the sample at hand is a mixture of different populations (e.g., healthy and

unhealthy individuals or fraudulent and non-fraudulent transactions). In particular,

one or more observations are defined as influential if – singularly or jointly – they

have a larger impact on some model estimates of interest compared to the remaining

cases in the sample (Belsley et al., 2004). In a regression setting, influential points

(often simply called outliers) deviate from the “true” conditional distribution of

the response variable. For instance, in linear regression, they correspond to points

that have a large distance from typical response values or a large leverage, i.e., a

large distance from typical predictors’ values (Hoaglin and Welsch, 1978; Cook and

Weisberg, 1982). Outlier detection and treatment is essential since they can affect

estimates and inferential results provided by non-robust techniques – indeed, even

a single outlying case can disrupt the performance of maximum likelihood methods.

Robust estimation and outlier detection are traditionally considered as comple-

mentary (and at times also alternative) tools in dealing with influential units. They

have the same goal but proceed from opposite directions. The former focuses on the

“core” of the data, suppressing ill-effects from influential units which can be identi-

fied through the analysis of robust residuals. The latter focuses on aberrant cases,

which are identified through perturbations on a classical fit (e.g., case-deletion meth-

ods based on influence measures, Atkinson 1985; Chatterjee and Hadi 1988). Ro-

bust estimators, which are traditionally considered superior (Huber and Ronchetti,

2009), can be categorized in two main groups: soft trimming methods, that typically

down-weight all points, and hard trimming procedures which provide binary weights
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(Cerioli et al., 2016, 2018). Importantly, robust estimators have to face a trade-off

between high tolerance to the presence of outliers and high efficiency. The former

is typically measured by the notion of breakdown point (Donoho and Huber, 1983),

which captures the estimator stability when a fraction of observations is replaced

by arbitrary values, and motivates the use of non-convex loss functions (Bernholt,

2006). The latter measures the estimation variability under the “true” model, which

is smaller when estimation is based on as many typical units as possible. Indeed,

Anscombe described robustness through an insurance metaphor, because one needs

to “sacrifice some efficiency at the model, in order to insure against accidents caused

by deviations from the model” (Huber and Ronchetti, 2009, p. 5).

1.1.3 The need for robust model selection

As the model dimensionality grows, one can reasonably expect that both the preva-

lence of irrelevant features and the risk of data contamination raise as well. Robust

feature selection procedures aim at balancing prediction accuracy and sparsity for

uncontaminated data, while maintaining stability in the presence of influential units

(Smucler and Yohai, 2017). Notably, only in the last decades some robust feature

selection procedures have been introduced in the literature; as claimed by Freue

et al. (2019) “the development of penalized robust estimation methods is still in its

early stages”.

Existing methods rely on soft penalizations and replace maximum likelihood es-

timation with a robust counterpart. Both hard (Alfons et al., 2013; Kurnaz et al.,

2017) and soft (Smucler and Yohai, 2017; Freue et al., 2019) trimming approaches

have been explored, with evidence that they both do tolerate data contamination,

and convex penalties have generally been used to enforce sparsity into model esti-

mates.

1.2 The thesis in a nutshell

In this thesis we focus on the study of sparse, high-dimensional regression models

affected by different forms of data contamination. We are interested in the devel-
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opment of sound and computationally lean model selection techniques which can

detect and limit the influence of outlying cases on the fit, as well as in the study of

their theoretical properties and their applications to real-world problems.

1.2.1 Objectives and contributions

To establish our framework, we first focus on low-dimensional linear regression mod-

els where outliers affect both the response and the predictors. Here, as opposed to

the existing dichotomy in the use of hard or soft trimming estimators, we are in-

terested in a principled combination of these approaches to exploit their strengths.

Specifically, in Insolia et al. (2021b) we assume that multiple outliers can arise si-

multaneously from a mean-shift (MSOM, Beckman and Cook 1983) and a variance-

inflation outlier model (VIOM, Cook et al. 1982) – which lead to the exclusion or

the down-weighting of outlying cases, respectively. We develop a novel procedure

based on a forward search (Atkinson and Riani, 2000) and restricted maximum

likelihood estimation (Harville, 1977) to detect and treat both types of outliers,

while attributing full weight to non-outlying cases. We demonstrate the effective-

ness of our procedure through Monte Carlo simulations and real-world applications

(e.g., loyalty cards data), and introduce graphical diagnostic tools which help to

guide the analysis. To our knowledge, this is the first study tackling the presence of

multiple VIOM outliers, as well as considering the co-occurrence of multiple MSOMs

and VIOMs, since these contamination mechanisms are traditionally considered as

alternatives.

Unlike the VIOM, the MSOM has also been exploited in the context of high-

dimensional linear models during the last decade (albeit not explicitly at times)

through its equivalence with hard trimming methods (Alfons et al., 2013; Kurnaz

et al., 2017). However, existing methods are sub-optimal in terms of feature selec-

tion and outlier detection, as they rely on heuristic algorithms based on resampling

to solve the non-convex robust loss and use convex penalties to enforce sparsity. We

are thus interested in developing an optimal estimation strategy based on combina-

torial enumeration which could be tackled by modern discrete optimization tools.

Specifically, in Insolia et al. (2021d) we consider high-dimensional regression models
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contaminated by multiple MSOM outliers affecting both the response and the de-

sign matrix. We develop a general framework and use L0-constraints coupled with

mixed integer programming to simultaneously perform feature selection and outlier

detection with provably optimal guarantees – meaning that the global optimum is

indeed achievable, and even if the algorithm is stopped before convergence one can

certify the goodness of its solution. Robust estimation and outlier detection are

thus equivalent within this framework (i.e., fitting only the “best” h points out of n

is equivalent to excluding the “worst” n − h points) since no resampling technique

is involved. In terms of theoretical properties, we provide necessary and sufficient

conditions for what we call robustly strong oracle property – meaning that one can

recover the true sets of relevant features and outlying cases, with the number of

features allowed to increase exponentially with the sample size. We also prove the

high breakdown point and optimality of the regression coefficient estimates pro-

duced by our approach. Notably, our proposal provides stronger theoretical results

under weaker assumptions compared to existing methods. We further show its su-

perior performance through Monte Carlo simulations and real-world applications,

where we use it to study the relationships between childhood obesity and the human

microbiome. Computationally efficient procedures to tune integer constraints and

warm-start our algorithm are also developed.

Next, we consider the co-occurrence of multiple MSOM and VIOM outliers in

high-dimensional linear models (Insolia et al., 2021a). Building upon the work of

Fan and Li (2012), we show that they can be modeled as additional fixed and random

components, respectively, and evaluated independently. Our proposal performs fea-

ture selection while detecting and down-weighting VIOMs, detecting and excluding

MSOMs, and retaining non-outlying cases with full weights. While feature selection

and MSOM detection are performed through a robust class of nonconcave penaliza-

tion methods, VIOM detection is based on the penalization of the restricted posterior

mode for an over-parametrized model. To our knowledge, both the theory behind

the detection and treatment of multiple VIOM outliers (possibly with MSOMs) and

the study of sparse models affected by VIOMs have not been developed to date.

Also the use of penalization methods for VIOM detection had not been explored be-

9



fore – and it turns out to be computationally lean and very effective. The resulting

approach satisfies a doubly robust strong oracle property for feature selection in the

presence of data contamination – which allows the number of features to exponen-

tially increase with the sample size – and detects truly outlying cases of each type

with asymptotic probability one. Our procedure improves estimation of the error

variance, provides a bridge between robust methods based on convex penalties and

the use of combinatorial enumeration, as well as an optimal trade-off between a high

breakdown point and efficiency. We also introduce computationally lean heuristic

algorithms, and we demonstrate finite-sample performance through synthetic data

(simulations) and real-world applications related to the Boston housing market and

glioblastoma gene expression data.

For classification problems, there are even fewer approaches for robust model

selection than for linear regression, and those that exist have comparable limita-

tions. In Insolia et al. (2021c) we extend our approach based on L0-constraints and

discrete programming (Insolia et al., 2021d) to high-dimensional logistic regression

models affected by data contamination. Here, we rely on an over-parametrized lo-

gistic slippage model (Bedrick and Hill, 1990), which mimics the MSOM and leads

to the removal of outlying cases from the fit. The presence of a non-quadratic loss

function requires a different approach to the problem. We propose a mixed inte-

ger conic programming formulation to solve the underlying double combinatorial

problem of simultaneous feature selection and outlier detection in a framework that

allows one to pursue optimality guarantees. We show the superior performance of

our proposal through Monte Carlo simulations and, in a real-world application, use

it to investigate the main drivers of honey bee (Apis mellifera) overwintering loss

using data from the state of Pennsylvania (USA).

1.2.2 Outline and replicability

This thesis consists of four self-contained contributions produced during the PhD

program in Data Science – a consortium program coordinated by the Scuola Normale

Superiore, in partnership with the Sant’Anna School of Advanced Studies, the Italian

National Research Council (CNR), the University of Pisa, and the IMT School for
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Advanced Studies of Lucca. The work presented benefited also from a visiting period

at The Pennsylvania State University (University Park, PA, USA), and a research

fellowship funded by the Sant’Anna School of Advanced Studies (Pisa) and the

Institute for Systems Analysis and Computer Science of the CNR (Rome).

The remainder of the thesis is structured as follows:

• Chapter 2: we focus on low-dimensional linear models and rely on the mean-

shift and variance-inflation outlier models to combine “hard” and “soft” trim-

ming estimators. This contribution was published in Insolia et al. (2021b).

• Chapter 3: we study “hard” trimming methods for sparse, high-dimensional

linear models, and we develop mixed integer programming techniques for si-

multaneous feature selection and outlier detection. This contribution was pub-

lished in Insolia et al. (2021d).

• Chapter 4: we consider sparse, high-dimensional linear regression models af-

fected by the co-occurrence of multiple mean-shift and variance-inflation out-

liers, and develop a doubly robust class of nonconcave penalization methods.

This contribution is currently available as a preprint in Insolia et al. (2021a).

• Chapter 5: we extend our approach to logistic regression models, where we

simultaneously perform feature selection and outlier detection through mixed

integer conic programming techniques. This contribution was published in

Insolia et al. (2021c).

• Chapter 6: we provide some final remarks, highlighting a number of poten-

tial extensions of our work and discussing some future challenges for robust

statistics in high-dimensions.

Source code for the implementation of all the procedures proposed in this thesis,

as well as code to replicate all simulation studies and the applications presented

throughout Chapters 2–5, are publicly available at https://github.com/LucaIns.
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“I see no way of drawing a dividing line between those

[observations] that are to be utterly rejected and those

that are to be wholly retained”

Daniel Bernoulli (1777)

Chapter 2

A Robust Estimation Approach

for Mean-Shift and

Variance-Inflation Outliers

This chapter is based on: Insolia, L., Chiaromonte, F., and Riani, M. (2021b). A

robust estimation approach for mean-shift and variance-inflation outliers. In Bura,

E. and Li, B., editors, Festschrift in Honor of R. Dennis Cook: Fifty Years of Con-

tribution to Statistical Science, pages 17–41. Springer. Reprinted/adapted by per-

mission from Springer Nature Customer Service Centre GmbH : Springer, Festschrift

in Honor of R. Dennis Cook by Bura E., Li B. (eds), Copyright 2021.

Reproducible and documented code for this chapter is available at: https:

//github.com/LucaIns/VIOM MSOM.

2.1 Introduction

We consider procedures for detecting and treating outliers in a regression setting.

With a slight abuse of language, we call outliers those observations that affect es-

timation and inference on the parameters of the regression model utilized in the

analysis. This, which is also known as influence (Cook and Weisberg, 1982), de-

pends on how the position of an observation in the predictor space (leverage) and

along the response range (vertical departure from the regression surface) combine
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to make it “extreme” relative to the bulk of the data. Critically, it depends also on

the presence of other observations whose influence may mask or swamp that of the

observation under consideration. In a way, the notion of influence depends on the

overall collection of observations at hand, the model being fitted, and the specific

parameters of interest.

Simple and, where possible, automated and computationally inexpensive ap-

proaches to detect and treat outliers are very important in the practice of regres-

sion. These approaches often rely on postulating an outlier generating mechanism

and provide a weighting system for the observations. In full generality, weighting

here includes removing or trimming observations (attributing a weight of 0), keeping

them in the analysis as they are (attributing a weight of 1) and, between the two

extremes, down-weighting them to control their influence. The literature on these

subjects is extensive (Barnett and Lewis, 1994; Beckman and Cook, 1983; Belsley

et al., 2004; Maronna et al., 2006; Huber and Ronchetti, 2009; Atkinson, 1985; Chat-

terjee and Hadi, 1988; Hampel et al., 2011). In particular, two main frameworks

have been utilized: the mean-shift outlier model (MSOM) and the variance-inflation

outlier model (VIOM).

MSOM, which assumes that outliers are generated by shifts in mean (Cook and

Weisberg, 1982), has been the historically predominant framework. Traditionally in-

dividual mean shift outliers were detected through deletion-based approaches, com-

puting prediction residuals (Cook, 1977). Using maximum likelihood estimation

(MLE) the individual outlier position corresponds to the unit with largest Studen-

tized residual based on an ordinary least squares (OLS) fit. Notably, MLE for a

MSOM can be reformulated as OLS for the underlying regression model augmented

by a dummy for the presence/absence of the observation under evaluation. The

estimated coefficient for the dummy is the prediction residual, and the correspond-

ing t-statistic is the externally Studentized residual (also called deletion residual ;

Atkinson (1985)) which tests the “outlying-ness” of an individual observation. This

formulation speeds up computation from O(n3) to O(n2) based on the Sherman-

Morrison formula, which is critical when many individual tests have to be performed

(Chatterjee and Hadi, 1988).
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Because of masking and swamping effects, individual deletion residuals can fail

to detect multiple MSOM outliers, and thus lead to sub-optimal regression estima-

tion and inference. A simple extension of deletion-based approaches to groups of

observations implies a combinatorial increase in computation – to explore the dele-

tion of all subsets of any given size, and a range of sizes, say from 1 to n/2 (if one

is willing to assume that at least half of the observations are not outliers). Much

like best subset feature selection, this was computationally intractable in the 80s

and 90s for realistically large problems, and triggered the development of proposals

based on penalized fits of a model augmented by n dummies (one for each obser-

vation; Menjoge and Welsch 2010; She and Owen 2011; McCann et al. 2006). It is

also important to remark that MSOM detection is customarily followed by outlier

removal ; that is, outliers are attributed a weight of 0 in estimation and inference on

the regression parameters.

VIOM is generally considered as an alternative to the MSOM framework. It

assumes that outliers are generated by an inflation in the error variance (Cook et al.,

1982; Thompson, 1985). In a way, VIOM is the “random effect” version of MSOM ;

instead of being generated by a fixed effect (mean shift, to be estimated) the outlier

is generated by a random effect with a certain variance (again, to be estimated).

In fact, an equivalent parametrization of the regression problem in the presence of

variance-inflation outliers can be given in the form of a mixed-effects linear model.

In the VIOM framework outliers are not removed ; they are retained in a weighted fit,

where the weight for each observation is inversely proportional to the variance of its

random effect (i.e. its variance inflation). In general, because it uses down-weighting

instead of discarding (or failing to discard) observations, VIOM can achieve higher

accuracy than MSOM in estimation and inference on the regression parameters.

Assuming that the data comprise (at most) a single variance-inflated outlier, its

detection and treatment (i.e. its variance and thus optimal weight estimation) can

be performed through a closed-form MLE. Notably, on a given data set, the outlier

identified through individual deletions in MSOM and the outlier identified through

MLE in VIOM need not to coincide (unless this observation has both the largest

absolute residual and the largest absolute Studentized residual). This illustrates
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how the statistical handling of outliers can depend on our assumptions concerning

the mechanism that generates them. However, if restricted maximum likelihood

estimation (REMLE, Harville 1977) is used instead of MLE to detect the outlier

and estimate its variance, this coincides with the MSOM outlier identified through

individual deletions.

The extension of MLE or REMLE approaches to multiple VIOM outliers also

poses computational issues, because the closed-form expressions used in the case

of individual outliers cannot be straightforwardly generalized. Most recently, lever-

aging the mixed-effects linear model formulation, Gumedze (2019) showed that a

closed-form REML for variance estimation cannot be derived in the case of multiple

outliers, but numerical estimation procedures used for mixed models can be applied.

This is promising, though still computationally costly in problems of realistic size.

In summary, to date, penalization approaches offered progress toward the com-

putationally viable detection of multiple MSOM outliers – which are then removed

from the regression. On the other hand, the computational viability of state-of-the-

art techniques for detecting and down-weighting multiple VIOM outliers is still a

concern.

Notably, the literature on outliers has always been closely related to that on

robust estimation (Maronna et al., 2006; Huber and Ronchetti, 2009; Hampel et al.,

2011); outliers can be thought of as a form of (adversarial) perturbation of the data,

due to either errors in data recording or contamination with statistical units belong-

ing to a population different from the one of interest. The mechanism generating

contamination is critical for studying the properties of robust estimators and has an

important role also in our developments.

The traditional paradigm is the case- (or row-) wise contamination mechanism,

also known as Tukey-Huber mixture model. An outlier is thought of as comprising

values that do not conform with the bulk of the data in all its dimensions. Unlike

the case of a MSOM outlier, the contamination can affect both response and pre-

dictors, i.e. the design matrix. In full generality, one assumes that the mixture data

distribution is Z ∼ (1− ϵ)F + ϵC, so that each individual observation is drawn from

the “true” distribution F with probability (1− ϵ) and from a contaminating distri-
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bution C with probability ϵ (the scheme can be extended to multiple contaminating

components).

In a way, difficulties in dealing with multiple outliers were a key motivation for the

development of high breakdown point (BdP) robust estimators, which produce good

estimates without assumptions on the nature of the outliers in the data (Donoho and

Huber, 1983; Rousseeuw, 1984). Robust estimation is characterized by a trade-off

between the reduction of biases due to outlier removal and the increase in estimates

variability, or inefficiency, due to (possibly) not leveraging the entire information

contained in the data. Indeed, Anscombe compared robustness to an insurance

policy where one “sacrifices some efficiency at the model, in order to insure against

accidents caused by deviations from the model” (Huber and Ronchetti, 2009, 5).

In order to obtain a good compromise, state-of-the-art robust methods employ a

preliminary high-BdP estimator (that is, a possibly inefficient estimator capable

of withstanding high levels of contamination), whose outcome is then refined with

a second high-efficiency estimator to retain in the fit as much “uncontaminated”

information as possible (Maronna et al., 2006; Rousseeuw and Leroy, 1987). So-

called soft-trimming methods down-weight all units and implicitly account for both

VIOM and MSOM outliers, while hard-trimming methods provide binary weights

and are specialized to account only for MSOM outliers (Cerioli et al., 2016).

Relatedly, outlier problems formulated as mixture contamination models were

studied also in the Bayesian literature. De Finetti (1961) investigated a general

framework, and Box and Tiao (1968) focused on a VIOM where both the total

fraction of contamination and the inflation parameter were assumed to be known

constants.

We propose to combine techniques from robust estimation with techniques de-

signed for outliers down-weighting into a novel approach that detects and treats

multiple outliers in an effective and computationally viable fashion. Our approach

can be fully automated; however, since it utilizes an iteration, we describe criteria

to monitor its progression through a graphical diagnostic tool. Importantly, our ap-

proach is applicable also to scenarios with a mix of MSOM and VIOM outliers and

comprises a step that, under reasonable assumptions, can separate the corresponding
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observations.

Specifically, we rely on the forward search (FS) (Atkinson and Riani, 2000) for

outlier detection, and use REMLE to perform down-weighting. The FS is an adap-

tive hard-trimming method based on an iterative algorithm. It starts from a clean

subset of observations identified with a (possibly inefficient) high-BdP estimator.

At each iteration, it uses OLS to fit the regression (which is fully efficient on the

current subset) and extends the subset recovering the observation that is closest to

the fit in terms of (robust) residuals. Notably, assuming that the fraction of con-

tamination is lower than the BdP of the initial estimator, the FS algorithm provides

consistent estimates (Cerioli et al., 2014) and an “optimal” ranking of the observa-

tions in terms of their distance from the model (Johansen et al., 2016). Outliers

are generally recovered only in the last iterations, and we exploit this fact to detect

MSOM and VIOM outliers. Moreover, the FS allows one to monitor the influence

exerted on the estimation of regression parameters by the observations retrieved in

each iteration – starting from the high-BdP estimator and ending with the OLS

computed on the entire sample. This can be used to adaptively settle on a final

clean subset of observations, which in many practical scenarios guarantees a better

trade-off between BdP and efficiency (Riani et al., 2014).

The reminder of the article is organized as follows. Section 2.2 introduces the

classical regression model and its contaminated counterpart, provides some technical

background, and details our proposal. Section 2.3 presents a simulation study where

various techniques are compared, under different scenarios, in terms of estimation

accuracy and computing time. Our graphical diagnostic tools are illustrated focusing

on one of the more complex simulation scenarios. Section 2.4 applies our approach

to real-world data, in both its automated and its “monitored” versions. Section 2.5

provides final remarks and pointers for future extensions.

17



2.2 Our proposal and some background

2.2.1 A generalized setting

Consider the classical linear regression model of the form

y = Xβ + ε, (2.1)

where y ∈ Rn is a vector of observable responses, X ∈ Rn×p is a full rank design

matrix with n > p containing observable predictors (these are customarily con-

sidered as given, even when they comprise randomness), β ∈ Rp is an unknown

parameter vector, and ε ∈ Rn is a vector of unobservable random errors. Classical

assumptions specify that such errors are uncorrelated, homoscedastic and Gaussian;

ε ∼ N(0, σ2In), where σ
2 > 0 and In is the identity matrix of size n. Under these

assumptions the MLE for β corresponds to the OLS, which is the uniformly min-

imum variance unbiased estimator (UMVUE). The MLE for σ2 is biased by the

factor n/(n− p), while REMLE provides a UMVUE also for σ2.

The absence of any (systematic or stochastic) deviation from (2.1) is an implicit

assumption. We relax it through a parametric outlier model affecting both means

and variances. In particular, we allow the presence of two distinct groups of outliers:

mV observations generated from a VIOM, and mM observations generated from a

MSOM. We index the two groups as IV and IM , respectively, but we remark that

the outliers’ labels, i.e. which indexes belong to these two sets, as well as their

cardinalities, are unknown. In symbols, we have

εi ∼


N(0, σ2vi) ∀ i ∈ IV

N(µi, σ
2) ∀ i ∈ IM

N(0, σ2) otherwise,

(2.2)

where vi > 1 for i ∈ IV and µi ̸= 0 for i ∈ IM . An equivalent parameterization of
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the contaminated model is

y = Xβ +DIV γ +DIMϕ+ ϵ,

where DIV (n×mV ) and DIM (n×mM) are matrices composed by dummy column

vectors indexing the outliers belonging to the two groups, γ ∈ RmV is a random

vector ∼ N(0, σ2DiagmV
(vi − 1)) (Diagk(·) stands for a k × k diagonal matrix),

ϕ ∈ RmM is a non-stochastic vector, and the random error vector is again ϵ ∼

N(0, σ2In). This parameterization highlights that MSOM and VIOM outliers can

be thought of, respectively, as fixed and random effects in a mixed linear model. As

noted by Cook et al. (1982), one could envision outliers compounding a mean shift

and a variance inflation – but this leads to an over-parametrization in which these

compounded outliers are equivalent to MSOMs.

The fact that we focus on an unlabeled problem, where not only the identity but

also the number and nature (MSOM vs. VIOM) of multiple outliers is unknown,

complicates matters because it makes masking and swamping effects more likely.

As customary (especially in the robust statistics literature), we assume that MSOM

outliers can also be affected by shifts in the predictors – which contaminate entries

of the design matrix, affecting leverage (Maronna et al., 2006) – but that the VIOM

outliers are not (Cook et al., 1982). Correspondingly, when generating predictors in

our simulation experiments, we introduce mean shifts in their distribution; we thus

use µX to indicate predictors shifts, and µε to indicate errors shifts. We also restrict

ourselves to settings in which n is substantially larger than p, and rely on two key

additional assumptions; namely, that:

A1 The total fraction of contaminated observations (MSOM or VIOM) is smaller

than 50%.

A2 Systematic contaminations, which induce shifts in means (MSOM) have larger

influence on the regression compared to stochastic contaminations, which in-

flate variances (VIOM). Thus, under the uncontaminated model, MSOM out-

liers are expected to have larger residuals than VIOM outliers.

(A1) allows us to safely rely on the properties of high-BdP equivariant estimators,
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and is fairly standard (Maronna et al., 2006). (A2) allows us to take advantage

of the FS algorithm to discriminate between the two types of outliers, and may

not be appropriate in all applications. However, it reflects an intuitive logic in

differentiating the two types of contaminations; e.g., shifts in means may be due to

the inclusion in the sample of units that do not belong to the target population,

while inflation in variances may be due to inaccuracies in measurements on units

that do. Also intuitively, from the perspective of the remedies taken, a shift in

mean, resulting in the deletion of an observation, cannot be less consequential than

an inflation in variance, resulting in a down-weighting.

2.2.2 Some technical background

Our proposal utilizes the FS (Atkinson and Riani, 2000), an adaptive hard-trimming

method based on an iterative algorithm. The FS algorithm starts from a “clean”

subset of observations of size, say, b0. This is identified with a high-BdP estimator,

often setting b0 = p in order to reduce to probability of including outliers. However,

unlike in the case of an MM-estimator (see below), the robustness of the FS does

not depend on the choice of high-BdP estimators (as long as it unmasks outliers)

but on its inclusion strategy. Indeed, computationally fast high-BdP estimators are

generally used in the FS, e.g., least median of squares (LMS) or least trimmed squares

(LTS); see Rousseeuw and Leroy (1987); Rousseeuw and Van Driessen (2006).

At each iteration b, with b0 ≤ b ≤ n, the FS operates on a current subset of

observations S(b) of size b. The OLS estimate β̂(b) is computed on observations

i ∈ S(b), and residuals are produced for all observations i = 1, . . . , n:

ei(b) = yi − xT
i β̂(b). (2.3)

In the subsequent iteration of the FS, S(b+ 1) will comprise the b+ 1 observations

with smallest absolute residuals in (2.3). Importantly, the FS strategy for recovering

and sometimes removing observations from the current subset (removals can happen

especially as outliers are included in the fit late in the process) provides a natural

ordering of all observations at each iteration – because the OLS is fully efficient

20



under the uncontaminated null model. Once all n observations have been included

in the process, the FS reaches the full OLS fit. Indeed, the FS comprises a collection

of least squares estimators carrying information on a sequence of model fits – from

a very robust one, to the classical OLS.

The next objective is to establish a satisfactory compromise between BdP and

efficiency along this sequence, pinpointing an iteration where the inclusion of outliers

“breaks down” the OLS (Riani and Atkinson, 2007). For a generic iteration, consider

the deletion residuals of the n− b observations i /∈ S(b), defined as

ri(b) =
yi − xT

i β̂(b)√
s2(b){1 + hi(b)}

=
ei(b)√

s2(b){1 + hi(b)}
, (2.4)

where s2(b) estimates σ2 on b− p degrees of freedom, hi(b) = xT
i [X(b)TX(b)]−1xi,

and X(b) indicates the design matrix restricted to the rows i ∈ S(b). Let imin =

argmini/∈S(b)|ri(b)| be the index of the observation that is closest to S(b) in terms

of deletion residuals. The idea is that if the absolute value of rimin
(b) is sufficiently

large, imin (and a fortiori all other observations /∈ S(b)) are outliers. The deletion

residuals in (2.4) follow a Student’s t distribution under the uncontaminated null

model if the estimates are based on all n − 1 observations (Cook and Weisberg,

1982, 20). But this fact is not directly applicable for assessing the inclusion of some

outliers in an FS iteration, because here they depend on order statistics. However,

the assessment can be performed, e.g., by bootstrapping. In particular, we utilize

an approach proposed by Riani et al. (2009) for multivariate analysis and adapted

by Atkinson et al. (2016) to regression problems. It relies on theoretical results

from (symmetrically) truncated distributions and order statistics to provide fast

and accurate point-wise bounds that approximate bootstrap envelopes. Multiple

testing is handled controlling the sample-wise level at around 1%.

When applied to regression settings, the FS coupled with this “automated” strat-

egy to identify a good trade-off between BdP and efficiency is referred to as FSR

(Riani et al., 2012); see Figure 2.5 for an example. In more detail, starting from

any iteration of the FS, FSR implements a two-stage procedure based on consec-

utive single outlier testing of the values rimin
(b), which adaptively trims outliers.
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A first stage detects outliers using all n observations, testing consecutive triplets,

couples or single extreme values. If a signal is detected at a a given iteration, say

b1, all observations not belonging to S(b1) are flagged as possible outliers. A second

stage attempts to validate this signal and, if it does, trims a subset of observations

flagged in the first stage. This is performed through a superimposition of (forward)

confidence bands, starting from the signal potentially detected at iteration b1 in

the first stage, and until a second signal is potentially detected at iteration b2. All

observations not belonging to the subset S(b2) are, again, trimmed.

We remark that, in principle, we could develop our proposal using soft-trimming

approaches such as the MM-estimator (Yohai, 1987) in place of the FS. However,

while these estimators have appealing theoretical and empirical properties (Riani

et al., 2014; Maronna et al., 2006), they also have substantial drawbacks with respect

to our purposes. In particular, they (i) generally rely on a computationally expensive

preliminary high-BdP estimator (e.g., a soft estimator of scale; Riani et al. 2014);

(ii) down-weight all observations, possibly trimming the most extreme ones, and

thus do not separate a subset of “clean” observations from the rest; (iii) estimate

weights through a loss function (e.g., the Tukey bisquare), without explicitly relying

on a variance inflation model; (iv) require nontrivial choices (e.g., the preliminary

estimator and the loss function); (v) comprise tuning parameters which are often

pre-specified (e.g., the efficiency level of the MM-estimator); and (vi) can complicate

statistical inferences (Cerioli et al., 2016).

2.2.3 Our proposal

Our proposal estimates model parameters, identifies outliers arising from either a

VIOM or a MSOM, separates them, and estimates the weights with which they

participate to the regression (these are forced to 0 for MSOM outliers).

In using a hard-trimming approach, we rely on the fact that the VIOM can

be viewed as a generalization of the MSOM. An asymptotic equivalence can be

drawn (Cook et al., 1982), an increasing variance inflation pushes weights to 0.

Moreover, based on REMLE, VIOM provides a ranking of outliers equivalent to

that of MSOM (Thompson, 1985). Consequently, to assess the presence of either
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VIOM or MSOM outliers, we can simply compare externally Studentized residuals –

or any monotonic function of them, e.g., Studentized residuals (Cook and Weisberg,

1982). Of course such residuals must be computed from a robust fit in order to avoid

masking problems. In this setting the FS ranking is meaningful: VIOM outliers are

recovered by the iterations right after the clean units and before MSOM outliers.

In addition to utilizing the FS ranking, our proposal also combines trimming

and REMLE weighting. In a way, we create a straightforward generalization of the

procedure proposed by Thompson (1985) in the presence of a single VIOM outlier;

namely: (i) find the largest squared Studentized residual, (ii) estimate vi and σ
2 with

REMLE, and (iii) estimate β using weighted least squares. Relying on assumption

A2, which postulates that MSOM outliers are more extreme than VIOM outliers,

we adapt this procedure as follows:

• We run FSR with standard settings, and take its first detected signal as our

“weak” signal, pinpointing the iteration where VIOM outliers start to be in-

cluded in the fit.

• We increase the standard quantile thresholds1, and take the second signal

detected by FSR as our “strong” signal, pinpointing the iteration where MSOM

outliers start being included in the fit.

• We label the group of observations recovered by the FS iterations between the

two signals as VIOM outliers, and those excluded from the FS at the second

signal as MSOM outliers.

• We use REMLE to estimate the weights of the observations labeled as VIOMs,

and trim out the observations labeled as MSOMs (i.e. set their weights to 0).

This procedure, which we refer to as FSRw, adaptively identifies both VIOMs

and MSOMs, generating a data-driven estimate of the fraction(s) of outliers and

without fixing a priori a trade-off between BdP and efficiency. Furthermore, given

that FSR relies only on consecutive exceedances of single-unit outlying tests, it

tackles multiple outliers without resorting to more complex calculations.

1Since FSR only aims to trim observations, the default settings can be too weak to separate
coexisting VIOM and MSOM outliers – as we wish to do here.

23



In the current implementation, we use REMLE to estimate (sub-optimal) single

weights; thus, from now onward we will refer to our procedure more specifically as

FSRws. However, we point out that in principle one can use REMLE to estimate

multiple weights jointly, based on recent proposals in Gumedze (2019). In this article

we do illustrate the excellent performance and low computational burden of FSRws

(see Section 2.3), but we do not compare it to its FSRwj “joint” extension. This is

of course of interest, as it may lead to substantially better performance and, with

appropriate computational implementations, to affordable increases in running time

– but it is left for future work. Evidence from preliminary comparisons on very small

simulated data sets (not shown) suggests that, at least at low contamination levels,

FSRwj does not produce marked performance gains.

2.2.4 Graphical diagnostics

If one fixes the thresholds used to pinpoint “weak” and “strong” signals along the

FS, FSRws is computationally very efficient and fully automated. Full automation

is particularly useful when multiple outlier detection/treatment and estimation of

model parameters must be accomplished rapidly and without human intervention

(e.g., fraud detection in international trade data as described in Perrotta and Torti

2010). When full automation is not necessary, graphical diagnostic tools can aid

decisions by allowing a user to monitor the FS process, especially when combined

with interactive graphical tools (e.g., using brushing and linking techniques as in

Riani et al. 2012). Indeed, the FS algorithm embeds information about the influence

of every point, at each iteration, on any parameter (or test statistic) of interest. We

propose to profile (single) REMLE weights for all the observations not included in

the FS at each iteration, creating what we call a cascade plot (see Figure 2.6 for an

example).

The rationale for the cascade plot diagnostic is the following. As iterations

proceed, and one moves along the plot horizontally, estimated weights at the time

of inclusion in the FS should be: (i) approximately constant for uncontaminated

observations (except for some short and mild dip due to the FS inclusion rule,

especially in the last iterations); (ii) markedly decreasing when VIOM outliers start
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to be included; and (iii) sharply increasing when MSOM outliers start to be included

(due to masking effects).

Unlike diagnostics that inform us on the quality or pitfalls of a specific regres-

sion fit (Belsley et al., 2004; Cook and Weisberg, 1982; Chatterjee and Hadi, 1988;

Atkinson, 1985), this and other types of monitoring diagnostics provide information

about a sequence of fits. This often reveals the empirical properties of a robust

estimator and provides useful insights about the structure of the data. Indeed, the

“phylosophy” of monitoring, which is very natural in the spirit of the FS, can be

generalized to other classes of robust estimation procedures, e.g., creating graphical

diagnostic plots that profile residuals (or their correlations) along a sequence of BdP

or efficiency values – moving from one extreme to the other (Riani et al., 2014; Ce-

rioli et al., 2016, 2018). For instance, when we compare procedures in Section 2.3,

we also implement an MM-weights plot (see left panel of Figure 2.7) which is similar

in spirit to a cascade plot.

MM-estimators are often used with a pre-specified efficiency level (e.g., 0.85,

0.95 or 0.99) – relying on asymptotic results that hold only for data where contam-

inated and uncontaminated observations are well-separated, and orthogonal predic-

tors (Maronna et al., 2006, 141). In contrast, an MM-weights plot allows us to

monitor estimated weights as a function of efficiency, again keeping track of a se-

quence of fits – from very high BdP to very high efficiency. Of course, the choice of

a preliminary high-BdP estimator affects the solution. One of its clear effects is that

of shifting the efficiency level required to (possibly) breakdown the MM-estimator.

Monitoring weights derivatives is also informative, and can be logically related to

the infinitesimal approach to robustness (Hampel et al., 2011) and to local influence

(Cook, 1986). We implement this in a MM-weights derivatives plot (see right panel

of Figure 2.7).

2.3 Simulation study

Here we present the general simulation framework we created to evaluate our pro-

posal, and then focus on selected simulation results illustrating accuracy and com-
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putational burden. Reproducible and documented MATLAB code (based on the

FSDA Toolbox2; Riani et al. 2012) is available at https://github.com/LucaIns/V

IOM MSOM.

First, we generate data following the uncontaminated model (2.1). The n × p

design matrix X comprises all 1’s in the first column (for the model intercept) and

the remaining entries of each row are drawn independently from a standard (p− 1)-

variate Normal. The p-dimensional coefficient vector β is fixed; note that the size of

the coefficients is irrelevant as long as we consider regression and affine equivariant

estimators (Maronna et al., 2006, 142). The errors are drawn independently from a

N(0, σ2
SNR), where σ

2
SNR is chosen as function of the signal-to-noise ratio with which

we want to characterize an experiment; SNR = var(Xβ)/σ2
SNR.

Next, following (2.2), we independently contaminate (uniformly at random, with-

out repetitions) mM observations with a MSOM (here mean shifts are introduced

also in the predictors) and mV with a VIOM (here predictors are uncontaminated).

To create an oracle benchmark, we run a weighted least squares (WLS) fit using

the true weights (i.e. 0 or wi = v−1
i for observations contaminated with a MSOM or a

VIOM, respectively, and 1 for uncontaminated observations). In the figures reported

in this section, this optimal benchmark is indicated with “opt”. We compare it with

the following procedures:

• The ordinary least squares (OLS).

• The least median of squares (LMS), a hard-trimming estimator with asymp-

totic BdP of 50% (the highest achievable for equivariant estimators) (Rousseeuw,

1984).

• The MM-estimator (MM), using LMS as preliminary estimator and Tukey’s

bisquare loss function, with tuning constant fixed as to achieve 85% nominal

efficiency (Maronna et al., 2006). Note that using a preliminary hard-trimming

estimator such as LMS is sub-optimal in terms of efficiency in MM, but very

convenient in terms of reducing computational burden.

2The FSDA Toolbox is freely downloadable at http://rosa.unipr.it/fsda.html
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• Forward search regression (FSR), the adaptive trimming procedure described

in Section 2.2.2, with the initial clean subset created again with LMS (based

on our assumption A1, we force FSR to search for a signal only after having

included 50% of the sample).

• Our FSRws, which utilizes a variant of FSR and single REMLE weights as

described in Section 2.2.3.

Performance of the procedures is compared across different sample sizes n and

fractions of (total) contamination mM+mV

n
. We generate an equal number of VIOM

and MSOM outliers (mV = mM) without overlaps between the two groups. Each

simulation scenario is replicated t times and results are averaged.

In terms of performance metrics, we consider the mean squared error (MSE) of

β̂ (for p = 1) partitioned in variance and squared bias:

MSE
(
β̂
)
=

1

t

t∑
i=1

(
β̂i − β

)2

=
1

t

t∑
i=1

(
β̂i − β

)2

+
(
β − β

)2
, (2.5)

where β =
∑t

i=1 β̂i/t. When p > 1, we average the MSE across the coordinates of

β and take MSE
(
β̂
)
=

∑p
j=1MSE

(
β̂j

)
/p.

We also consider the MSE of proxy estimates of weights (ŵi = v̂−1
i , i = 1, . . . , n)

and error variance (ŝ2). Note that comparing weights estimates poses some issues

because outlier labeling varies from replication to replication, VIOM outliers may

sometimes not carry sizeable residuals, and experiments with larger sample sizes

may contain more outlier-like uncontaminated observations by chance (these are

especially hard to distinguish from VIOM outliers). For the variance we take a

WLS-like proxy estimate of the form

ŝ2 =
1

(n− p)

∑n
i=1 ŵie

2
i∑n

i=1 ŵi/n
, (2.6)

where the ei’s are estimation residuals3. This captures the effectiveness of weights

estimates, taking into account the outlying-ness of observations regardless of whether

3Note here we are not using any consistency factor in ŝ2. Consistency factors are often used in
robust estimation (Maronna et al., 2006).
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Figure 2.1: MSE comparisons, across procedures and sample sizes, for β̂ (left panel) and
ŝ2 (right panel) in the absence of contamination.

they are in fact contaminated. The MSE decomposition for ŝ2 is computed as in

(2.5), where σ2
SNR and ŝ2 replace β and β̂, respectively. Finally, and importantly, we

compare procedures in terms of average computing time (in seconds).

In the following, for simplicity, we focus on results for a simulation scenario where

the uncontaminated model contains an intercept and a single predictor (p = 2),

setting β = (2, 2)T . The signal-to-noise ratio is set to SNR = 3. VIOM outliers

are all generated with variance inflation parameter v = 10. MSOM outliers are all

generated with error mean shift µε = −3 and predictor mean shift µX = 3. We use

shifting parameters with opposite signs in order to create bad leverage points which

are more likely to disrupt the true positive slope relating response and predictor.

We consider increasing sample sizes n ranging from 100 to 1000 (with a step size

of 50), and total contamination fractions (mV + mM)/n of 0, 0.25 and 0.5. Data

for each setting are generated t = 500 times, and results are averaged over these

replications.

Figure 2.1 shows results for the MSEs of β̂ (left panel) and ŝ2 (right panel) across

procedures and sample sizes, when there is no contamination; (mV +mM)/n = 0.

Both FSR and FSRws do not detect any signal and lead to optimal OLS estimates.

On the other hand, MM and LMS must sacrifice some efficiency under the null

uncontaminated model. In particular, the MM β̂ estimates are close to optimal, but

its ŝ2 estimates are biased. LMS has a lower convergence rate for β̂ and even larger

biases for ŝ2.
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Figure 2.2: MSE comparisons, across procedures and sample sizes, for β̂ (left panel) and
ŝ2 (right panel) in the presence of an intermediate level of contamination.

Figure 2.2 has the same format of Figure 2.1, but here the total fraction of

contamination is set to (mV + mM)/n = 0.25 (mV /n = mM/n = 0.125). The

MM outperforms other procedures – and, notably, it often outperforms also the

oracle benchmark in terms of ŝ2. This may be due to the fact that some VIOM

outliers do not need to be down-weighted because they lie along the bulk of the

data. However, FSR and FSRws perform almost on par with MM, and markedly

better than LMS (and of course OLS) in terms of β̂. LMS performance is in fact

similar to the case with no contamination, due to its high BdP. The OLS breaks

down due the presence of MSOM outliers, which induce strong biases (and very low

variances) in its estimates. Note that, for our FSRws, the MSE of ŝ2 shows a slight

increase for large n values. This is due to the fact that FSRws tends to detect more

outliers as the sample size increases, including “false positives” (especially “false

positive” VIOMs). Consequently, FSRws may down-weight (or even trim out) more

observations than needed when the sample size is very large4. Nevertheless, the ŝ2

produced by FSRws shows smaller bias than that produced by FSR across sample

sizes.

Figure 2.3 has again the same format, but here the total fraction of contamination

4This is a feature “inherited” from our use of FSR. As the sample size increases, FSR becomes
better (likely due to its strong consistency) at detecting and thus trimming all outliers (both VIOM
and MSOM). Hence, when n is large, the first signal (which is the same both for FSR and FSRws)
can occur while still including clean observations. In the strong contamination scenario (50% total
fraction of contamination) which we consider next we do not notice such phenomenon because we
are forcing FSR to find signals in the second half of the search (i.e. we force 50% of the weights to
be = 1, motivated by our assumption A1).
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Figure 2.3: MSE comparisons, across procedures and sample sizes, for β̂ (left panel) and
ŝ2 (right panel) in the presence of a high level of contamination.

is increased to (mV + mM)/n = 0.50 (mV /n = mM/n = 0.25). FSRws, FSR and

LMS perform comparably well in terms of β̂. But at this high contamination level

we see a breakdown of the MM, not just the OLS. The situation is similar for ŝ2;

LMS provides (nearly) optimal estimates, FSRws does well (better than LMS as n

increases) and improves upon FSR (especially in terms of bias), MM and OLS do

poorly. These results highlight how the need to use a pre-specified efficiency can

seriously hinder the MM-estimator; having fixed efficiency at 85%, we observe a

breakdown in the MM only when raising the contamination to a total fraction as

high as 50%. However, when efficiency is set at higher levels (95% or 99% are often

used), MM performance can seriously deteriorate also with milder contaminations.

Figure 2.4 (left panel) shows average computing times across procedures and

sample sizes, in the high contamination setting. All the procedures we compare here

run reasonably fast on our simple and (relatively) small simulated data. For all, on

average, the running time is less than one second for n = 1000 (using MATLAB

R2018a on an Intel Core i7-7700HQ CPU at 2.8 GHz × 4 processors and 16 GB

RAM). In general, the computational cost of an MM-estimator is nearly all due to

obtaining a preliminary high-BdP estimator. This can in fact be very expensive

with standard choices (e.g., soft-scale estimators). However, in MM we use the LMS

which is inexpensive. After the LMS is computed, the M-estimation phase of MM

takes a negligible amount of time (as running iteratively reweighted LS). Running

FSR from a clean subset produced by LMS is more expensive but, importantly,
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Figure 2.4: Left panel: average computing time comparisons, across procedures and
sample sizes, in the presence of a high level of contamination. Right panel: scatterplot of a
simulation example comparing different fits in the presence of a high level of contamination.
Here n = 1000.

it produces information about a sequence of fits. Running our FSRws adds yet

some to the computational burden, but not a lot. In our current implementation,

FSRws runs fairly inexpensively based on the FSR solution – and with further code

optimization, the added cost on top of that of FSR should be nearly equivalent to

that of running a WLS.

Importantly, all procedures considered here, including the FSRws (which effec-

tively tackles multiple MSOM and VIOM outliers), are hugely cheaper than any

approach for outlier treatment that relies on combinatorial enumeration – especially

in the case of VIOM outliers.

Next, we illustrate graphical diagnostics using a simulation with high contami-

nation and n = 1000. Figure 2.4 (right panel) compares different fit on this dataset

– red and green points represent MSOM and VIOM outliers, respectively. FSR,

FSRws and LMS here provide fits much closer to the oracle than MM, which breaks

down because efficiency is set at 85%, and of course OLS.

Figure 2.5 shows the corresponding residuals forward plot (left panel) and ab-

solute minimum deletion residuals forward plot (right panel) which are commonly

used as graphical diagnostics for the FS (Atkinson and Riani, 2000; Atkinson et al.,

2016). The residuals forward plot tracks residuals trajectories along the FS itera-

tions. On our simulated dataset, it clearly indicates that MSOM residuals start being

included around iteration 720, where large residuals (in dark blue) shrink to zero
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Figure 2.5: Residuals forward plot (left panel) and minimum absolute deletion residuals
forward plot (right panel) for the simulated dataset in the right panel of Figure 2.4.

and start masking each other. However, as in this example, a residuals forward plot

might become too complex to diagnose the presence of VIOM residuals in large sam-

ples. The absolute minimum deletion residuals forward plot tracks a single statistics

which depends on the observations excluded from the FS at each iteration, providing

a meaningful, simple summary of the information contained in the residuals forward

plot. Dashed lines represent different quantiles for the point-wise distribution of the

absolute minimum deletion residuals (as described in Section 2.2.2). On our simu-

lated dataset, absolute minimum deletion residuals rapidly increase after iteration

≈ 550 and abruptly fall at iteration ≈ 720. The purple vertical line marks the first

“weak” signal identified by FSR at iteration 551; in our FSRws this is when VIOM

outliers start being included.

In contrast to these diagnostics our cascade plot, which is shown in Figure 2.6,

highlights both local information (the influence of each observation at every it-

eration) and global information (the overall estimator performance). The strong

decrease in estimated weights between iterations ≈ 550 and ≈ 720 indicates the

inclusion of VIOM outliers, and their abrupt increase after iteration ≈ 720 indicates

the inclusion of MSOM outliers. Notably, after iteration ≈ 720 estimated weights

increase due to masking effects, followed by a large number of observations’ inter-

changes in the FS subset due to swamping effects. The swamped units (represented

by dark blue trajectories in the final part of the cascade plot) were included in earlier
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Figure 2.6: Cascade plot for the simulated dataset in the right panel of Figure 2.4.

iterations of the FS and exit the subset as MSOM outliers begin entering it.

Finally, we monitor the performance of the MM using our MM-weights plot and

MM-weights derivatives plot, which are shown in the left and right panel of Fig-

ure 2.7, respectively. We track estimated weights along efficiency levels ranging

from 0.5 to 0.99. As in the right panel of Figure 2.4, red and green denote MSOM

and VIOM outliers. Both plots clearly indicate that the MM breaks down at an

efficiency level of ≈ 0.84, where it produces a fit very similar to the OLS. Before this

efficiency value, clean units (as well as “non-outlying” VIOM outliers) have large

and stable weights, and MSOM outliers have very small weights; these abruptly

increase after the threshold. VIOM outliers are in between these two extremes. In-

tuitively, while trajectories for influential observations that create masking tend to

be convex-shaped, the ones for swamping observations are concave-shaped. These

effects become even clearer in the MM-weights derivatives plot. Right before the

estimator breaks down, one can see a steep increase in derivatives corresponding to

outliers that are masking each other (typically MSOMs), and a steep decrease in

derivatives corresponding to swamped observations (e.g., good leverage points). In

contrast, uncontaminated non-swamped observations have “flat” and small deriva-

tives.
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Figure 2.7: MM-weights plot (left panel) and MM-weights derivatives plot (right panel)
for the simulated dataset in the right panel of Figure 2.4.

2.4 Real-data examples

We now apply our FSRws and graphical diagnostics to two real-world datasets

which pose different levels of challenge, both in terms of sample size and in terms

of contamination mechanisms.

The first dataset is very small (n = 11), and was used by Cook et al. (1982).

It contains measurements of the thickness of non-magnetic coatings of galvanized

zinc on iron and steel, obtained with two different procedures; an expensive one

(response) and a cheaper one (predictor). Figure 2.8 (top left panel) shows a scat-

terplot along with OLS, MM and FSRws fits for the regression, which includes an

intercept. This simple example motivates the use of robust estimation procedures

to deal with multiple outliers arising from a VIOM and/or MSOM. Assuming a

single possible VIOM outlier and using MLE, Cook et al. (1982) flagged observation

9, which has the largest absolute residual. Based on REMLE, Thompson (1985)

flagged observation 11, which has the largest absolute Studentized residual.

The order of the last observations to enter the FS is: 5, 6, 9 and 7. For this small

dataset, the residuals forward plot (Atkinson and Riani, 2000) shown in Figure 2.8

(top right panel) provides very clear information. Observations 9 and 7 have a similar

behavior, and so do observations 5 and 6. The inclusion of unit 9 at iteration 10

causes a masking of observation 7 and swamping of observations 11 and 10. These

effects become stronger as observation 7 is included in the last iteration, i.e. in the
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Figure 2.8: Scatterplot of a small dataset (n = 11) on coating thickness from Cook et al.
(1982) with OLS, MM and FSRws fits superimposed (top left panel). Corresponding
graphical diagnostics: residuals forward plot (top right panel), MM-weights plot (bottom
left panel) and cascade plot (bottom right panel).

OLS fit. The cascade plot in Figure 2.8 (bottom right panel) tells the same story;

with this small sample it does not provide a diagnostic advantage with respect to

the residuals forward plot. The weights estimates for the observations not included

in the FS subset remain approximately constant between iterations 5 and 8. At

iteration 9, observations 7 and 9 have very small weights, but as observation 9

enters the FS at iteration 10, the weight of observation 7 increases abruptly due to

masking; both observations are outliers. A similar behavior, though less marked,

can be seen for observations 5 and 6 at iterations 7 and 8. Notice also that there are

no interchanges of observations in FS; the lines tracking the weights do not cross.

The MM-weights plot in Figure 2.8 (bottom left panel) shows that also the

MM-estimator is strongly affected by observations 7 and 9. Indeed, their weights

abruptly increase after the 0.85 efficiency level, where the weight for observation

11 abruptly decreases due to swamping. Figure 2.8 (top left panel) shows that

the MM fit nearly overlaps with the one for FRSws. But as the efficiency level

increases to 86%, MM becomes indistinguishable from the OLS. This demonstrates
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Figure 2.9: Scatterplot of a larger dataset (n = 509) on loyalty cards data with OLS,
MM and FSRws fits superimposed (top left panel). Corresponding graphical diagnostics:
residuals forward plot (top right panel) and cascade plot (bottom panel).

the importance of having a right balance between BdP and efficiency, independently

of the choice of a specific preliminary fit for MM-estimators.

Based on the diagnostics discussed above, three strategies could be used for these

data: (i) trim observations 7 and 9 and down-weight 5 and 6, or (ii) down-weight

observations 5, 6, 7 and 9, or (iii) down-weight only observations 7 and 9. The

FSRws fit shown in Figure 2.8 (top left panel) corresponds to (iii)5. As we showed

before, OLS is influenced by observations 7 and 9 jointly, and for this reason our

solution differs from Cook et al. (1982) and Thompson (1985). Indeed, the most

outlying unit here is observation 7, which cannot be detected using single outliers

methods.

The second dataset we consider is larger, with n = 509. It contains loyalty cards

5Here, due to the small sample size, FSR does not detect any signal. The FSRws fit shown in
the figure is based on “manual” detection; the two down-weighted observations also correspond to
the two residuals exceeding 90% confidence intervals in a LMS fit.
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information on customers of a supermaket chain in Northern Italy (this data was

introduced by Atkinson and Riani 2006 and is available in the FSDA MATLAB

Toolbox). The response is the amount spent over a six months period (in Euros)

and the predictor is the number of visits to the supermarket in the same period

of time. Figure 2.9 (top left panel) shows a scatterplot along with OLS, MM and

FSRws fits for the regression, which does not include an intercept (the expenditure

corresponding to 0 visits is reasonably assumed to be ≈ 0). Here robust fits behave

very differently from the OLS, which is affected by multiple outliers. Red and green

points represent, respectively observations trimmed (48) and down-weighted (64) by

FSRws.

The residuals forward plot in Figure 2.9 (top right panel) shows that some obser-

vations have very large residuals during most of the FS – which decrease in absolute

terms after iteration 470 due to the inclusion of more extreme outliers. However,

this plot is not very informative in terms of diagnosing the joint presence of multiple

VIOM and MSOM outliers. The cascade plot in Figure 2.9 (bottom panel) appears

to provide more insight: estimated weights decrease markedly after iteration ≈ 400

and the decrease further accelerates after iteration ≈ 450, suggesting the presence

of more extreme outliers which are likely to be MSOMs. We also notice that the

inclusion of such outliers does not cause any interchanges of observations in the

last portion of the FS, indicating that they are not as disruptive as the outliers

in our simulation example in Section 2.3 (see the right panel of Figure 2.4 for a

comparison).

Figure 2.10 highlights the two classes of outliers detected by FSRws in the MM-

weights and weights derivatives plots (left and right panel, respectively). These in-

dicate that the MM-estimator is strongly influenced by outliers for efficiency levels

higher than 95%. In particular, the MM-weights plot shows that for most efficiency

values trajectories are convex-like for observations labeled as outliers and concave-

like for observations labeled as clean (color coding corresponds to FSRws labeling,

but by and large this behavior would be visually appreciable even without it). More-

over, the MM-weights derivatives plot shows that units flagged as MSOM have flat

derivatives which bump up right before the estimator “breaks down”. Units flagged
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Figure 2.10: MM-weights plot (left panel) and MM-weights derivatives plot (right panel)
for Loyalty Cards data in the top left panel of Figure 2.9.

as VIOM have steadily increasing derivatives, and they too accelerate before the

breakdown. Non-outlying units have small and constant derivatives for most effi-

ciency values, which eventually become negative for swamped good leverage points.

2.5 Final remarks

Our proposal builds upon different approaches and tools. We use high-BdP and

efficient techniques from the robust estimation literature to design a novel proce-

dure that can identify multiple outliers arising from either a MSOM or a VIOM,

and provide a way to distinguish between the two. In practice, both soft and hard

estimation procedures can deal effectively with VIOM and MSOM outliers. How-

ever, soft-trimming procedures can be harder to interpret, because the link between

each observation and its influence is blurred by a general down-weighting. Further-

more, choosing the preliminary high-BdP estimator and setting tuning parameters

is nontrivial.

Thus, we prefer to focus on hard-trimming procedures, which provide a clear

link between each observation and its outlying-ness. In particular, we consider the

adaptive hard-trimming approach in FSR and build upon it to construct our FSRws.

This provides a meaningful ranking of the observations and a way to detect both a

“weak” and a “strong” signal – which we then use to separate VIOM and MSOM
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outliers. After this phase, we blend into the mix REMLE techniques from the VIOM

literature, which allow us to move from shear trimming to a more general scheme

where some observations are trimmed (those identified as MSOMs) and some down-

weighted (those identified as VIOMs). This, in a way, “softens” back the trimming.

Quoting Beckman and Cook (1983):

“There is a stormy history behind the rejection of outliers. In the past, as is

the case today, the lines were fairly well drawn between those who discarded

discordant observations, those who gave each observation a different weight,

and those who used simple, unweighted averages”.

Combining robust estimation and REMLE techniques these three seemingly separate

takes can be effectively joined in a single, principled framework.

In addition to our FSRws, we introduce novel graphical diagnostics. These are

monitoring tools that provide information about a sequence of fits – and are similar

in spirit to other diagnostics utilized by the FS and FSR. For FSRws we propose

the cascade plot, which tracks estimated weights along the FS iterations as they

include/exclude observations. The plot aids in the discrimination of VIOM and

MSOM outliers, and can complement or replace the automated detection of “weak”

and “strong” signals performed as part of FSRws. In a way, it extends existing

diagnostic tools depicting both local and global information on the FS process. This

can provide critical insights on the structure of the data being analyzed, especially for

large sample sizes and in combination combined with interactive tools (e.g., brushing

and linking techniques; see Riani et al. 2012). We also propose the MM-weights

and MM-weights derivatives plots. These, switching back to soft-trimming and in

particular the MM-estimator, allow one to monitor performance as a function of

efficiency values, and thus to flag poor decisions leading to the breakdown of the

estimator.

Our general approach to the identification of multiple VIOM and MSOM outliers

could, in principle, be used with robust estimation procedures other than FSR. This

may be particularly useful when the sample size is very small (FSR may not be able

to detect signals) or very large (FSR may become computationally demanding).

Of course monitoring diagnostics similar, e.g., to the MM-weights and MM-weights
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derivatives plots mentioned above, ought to be used also here to achieve a good

balance between BdP and efficiency. This is akin to monitoring residuals (or their

correlations) for different efficiency levels or BdP as proposed in Riani et al. (2014);

Cerioli et al. (2016, 2018), and could lead to a rigorous procedure for data-driven

tuning of the MM and other soft-trimming estimators.

Our work is expanding in several other directions. In parallel to investigating

theoretical properties, we are analyzing more simulation settings – including high-

dimensional scenarios with various degrees of predictors collinearity, different ratios

between VIOM and MSOM outliers, observation-specific contamination parame-

ters, and VIOM outliers with contaminated predictors. We also plan to extend the

comparisons to additional robust estimation procedures which are computationally

more expensive than the ones we considered to date; e.g., preliminary S-estimators

for MM-estimators and Tau estimation (Rousseeuw and Yohai, 1984; Yohai and

Zamar, 1988). Relatedly, we note that algorithmic advances in mixed integer opti-

mization, which have been recently utilized in the feature selection arena (Bertsimas

et al., 2016), may offer interesting opportunities also for the computationally viable

detection of multiple MSOM outliers. These advances have already been exploited

in hard-trimming estimation (e.g., to compute the LMS solution; Bertsimas and

Mazumder 2014), and we are investigating their use for performing selection among

the dummy features introduced to reparametrize the MSOM. In our context, which

comprises both MSOM and VIOM outliers, we can also add a regularization com-

ponent to “shrink” the latter (She and Owen, 2011; Menjoge and Welsch, 2010).

Looking ahead in a different direction, while for the time being FSRws utilizes

single REML weights estimation, an extension is under development to utilize joint

REML estimation. As an alternative, the MLE approach proposed in Cook et al.

(1982) could be used in place of REMLE. However, this would require a substantial

change in the FS algorithm. In fact, since deletion residuals are not necessarily

informative, one would need to evaluate a likelihood for each observation excluded

in the FS at every iteration.
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“The method of Least Squares is seen to be our best

course when we have thrown overboard a certain por-

tion of our data – a sort of sacrifice which has often

to be made by those who sail upon the stormy sea of

Probability”

Francis Ysidro Edgeworth (1887)

Chapter 3

Simultaneous Feature Selection

and Outlier Detection with

Optimality Guarantees

This chapter is based on: Insolia, L., Kenney, A., Chiaromonte, F., and Felici,

G. (2021d). Simultaneous feature selection and outlier detection with optimality

guarantees. Biometrics, Forthcoming:1–12.

Reproducible and documented code for this chapter is available at: https:

//github.com/LucaIns/SFSOD MIP.

3.1 Introduction

High-dimensional regression problems have become ubiquitous in most application

domains, and this is especially true in biomedical research where studies are consis-

tently increasing in size and complexity. In these problems the number of features

recorded on each observation (or case) is very large – possibly larger than the sample

size, and often growing with the sample size itself. The availability of ever larger

numbers of potential predictors increases both the chances that some substantial

portion of them are irrelevant, and the chances of contamination in the data (i.e., of

some cases following a different model). In principle, these risks may be mitigated

in very controlled studies targeting specific populations, but these studies often have
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smaller sample sizes. In this article, we consider one such study investigating the

relationship between childhood obesity and microbiome composition. We use data

from Craig et al. (2018) – who studied weight gain in very young children as part

of the intervention nurses start infants growing on healthy trajectories (INSIGHT)

project (Paul et al., 2014). While previous work (Haffajee and Socransky, 2009;

Zeigler et al., 2012) focused on the relationship between adult and/or adolescent

obesity and microbiome composition, Craig et al. (2018) connected infant weight

gain (which is known to be predictive of obesity later in life, Taveras et al. 2009) to

microbiota of the child, as well as the mother. As INSIGHT followed children with

repeated visits and extensive data collection from birth to around 3 years of age,

its sample size was fairly limited (in the hundreds). In such a setting, eliminating

redundant features while accounting for potential contamination with estimation

approaches that address both sparsity and statistical robustness is critical.

Two main contamination mechanisms have been traditionally investigated in the

literature on low-dimensional linear models: the mean-shift outlier model (MSOM)

and the variance inflation outlier model (VIOM; Beckman and Cook 1983; Insolia

et al. 2021b). In this work we focus on the MSOM as it is the best developed and

most common framework in relatively low dimensions. It operates excluding cases

identified as outliers from the fit, and has previously received substantial attention

in biomedical research (Alfons et al., 2013; Freue et al., 2019). For high-dimensional

settings, the most typical approaches focused on robustifying information criteria

or resampling methods (Müller and Welsh, 2005). The last decade has also seen

the development of several robust penalization methods which rely on a robustifica-

tion of soft-selection procedures (She and Owen, 2011), adopting a case-wise robust

counterpart of maximum likelihood estimation (MLE).

The notion that one can develop methods for simultaneous feature selection and

outlier detection (SFSOD) stems from the fact that an MSOM can be equivalently

parametrized with the inclusion of binary variables, transforming outlier detection

into a feature selection problem (Morgenthaler et al., 2004). This is exactly the av-

enue we pursue in this article. We propose a discrete and provably optimal approach

to perform SFSOD based on the use of L0 constraints – highlighting its connections
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with other methods and overcoming the heuristic nature of previous approaches. L0

constraints have been used separately for feature selection (Bertsimas et al., 2016)

and robust estimation (Zioutas et al., 2009) – both of which can be formulated as a

mixed-integer program (MIP) and solved with optimality guarantees. We combine

the two into a novel formulation and take advantage of existing heuristics to pro-

duce effective big-M bounds and warm-starts to reduce the computational burden

of MIP.

We provide theoretical guarantees for our approach, including its high breakdown

point, necessary and sufficient conditions to achieve a robustly strong oracle property

– which holds also in the ultra-high dimensional case when the number of features

increases exponentially with the sample size – and optimal parameter estimation. In

contrast to existing methods, our approach requires weaker assumptions and allows

the sparsity level and the amount of contamination to depend on the number of

predictors and on the sample size, respectively.

Our results are established under tighter bounds then those derived from direct

but näıve extensions of existing results in feature selection. Moreover, we propose

criteria to tune, in a computationally efficient and data-driven way, both the sparsity

of the solution and the estimated amount of contamination.

The reminder of the article is organized as follows: Section 3.2 provides the

relevant background. Section 3.3 details our proposal – including a general frame-

work for SFSOD, the MIP formulation and its theoretical properties. Section 3.4

presents a simulation study comparing our proposal with state-of-the-art methods.

Section 3.5 presents our application investigating the relationships between child-

hood obesity and microbiome composition. Final remarks are included in Section 3.6

and additional details are provided in Appendix A.

3.2 Background

Consider a regression model of the form y = Xβ+ ε, where y ∈ Rn is the response

vector, ε ∈ Rn the error vector with a N(0, σ2In) distribution (In is the identity

matrix of size n), X ∈ Rn×p the design matrix, and β ∈ Rp the vector of regression
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coefficients. In the following, we briefly review methods for outlier detection, and

present the equivalent formulation as a feature selection problem. We then discuss

approaches for model selection, focusing on the use of an L0 constraint for best

subset selection.

We consider a case-wise contamination mechanism, where each outlying unit

might be contaminated in some (or even all) of its dimensions. Specifically, we as-

sume that outliers follow an MSOM, where the set of outliers M = {i ∈ {1, . . . , n} :

εi ∼ N(µεi , σ
2), µεi ̸= 0} has cardinality |M | = n0. For a given dimension p ≤ n−n0,

MLE leads to the removal of outliers from the fit (Cook and Weisberg, 1982). More-

over, as is customary, we assume that the MSOM can also affect the design matrix

X with mean shifts µxi
(Maronna et al., 2006).

If a regression comprises a single outlier, its position corresponds to the unit

with largest absolute Studentized residual, which is a monotone transformation of

the deletion residual ti = (yi − xT
i β̂(i))/(σ̂(i)(1 + xT

i (X
T
(i)X(i))

−1xi)
1/2, where the

subscript (i) indicates the removal of the i-th unit. Under the null model, a generic

ti follows a Student’s t with n − p − 1 degrees of freedom, which can be computed

from an MLE fit based on all units and used as a test for outlying-ness of single data

points (Cook and Weisberg, 1982). This can be easily generalized to regressions with

multiple outliers. Operationally though, it was considered ineffective – due to the

high likelihood of masking (undetected outlying cases) and swamping (non-outlying

cases flagged as outliers) effects – and computationally intractable (Bernholt, 2006).

The presence of multiple MSOM outliers motivates the use of high-breakdown point

estimators such as the least trimmed squares (LTS), S, and MM (Maronna et al.

2006, see also Section 3.3.3); outlier detection and high-breakdown point estimation

are historically distinct but closely related areas of statistical research.

Assuming without loss of generality that outliers occupy the first n0 positions in

the data, the MSOM can be equivalently parametrized as y = Xβ+Dn0ϕ+ε, where

the original design matrix X is augmented with a binary matrix Dn0 = [In0 ,0]
T

of size n × n0 indexing the n0 outliers (Morgenthaler et al., 2004). If p ≤ n − n0,

the MLE for ϕ ∈ Rn0 provides prediction residuals for the n0 units excluded from

the fit; i.e., their residuals under a model which excludes them from the estimation
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process. This is given by ϕ̂ = [In0 −HMM ]−1 (yM −XT
M β̂(M)), where yM and XM

comprise values for the true set of outliers, HMM = XM(XTX)−1XT
M , and the

associated t-statistics tM provide (multiple) deletion residuals. However, masking

and swamping effects can again arise if Dn0 does not index all possible outliers.

Outlier detection in low-dimensional problems can be performed substituting the

identity matrix In in place of Dn0 and applying feature selection methods to ϕ ∈ Rn

to identify outlying cases. The literature contains examples of both convex (McCann

et al., 2006; Taylan et al., 2014; Liu and Jiang, 2019; Taylan et al., 2021) and non-

convex (She and Owen, 2011; Liu et al., 2017; Gómez, 2021; Barratt et al., 2020)

penalization methods applied to this problem; notably, the latter are necessary to

achieve high-breakdown point estimates.

Penalization methods are also the hallmark of feature selection in high dimen-

sional problems, where they seek to induce sparsity estimating p0 < p non-zero

coefficients in β – whose dimension p can exceed n. Soft penalization methods such

as lasso (Tibshirani, 1996) and SCAD (Fan and Li, 2001) rely on non-differentiable

continuous penalties, which can be convex or non-convex. They can be formulated

as β̂ = argminβ ∥y −Xβ∥22 + Rω(β), where the penalty function Rω(β) depends

on a tuning parameter ω (or even more).

Best subset selection, a traditional hard penalization method, solves feature se-

lection combinatorially, comparing all possible models of size p0 (Miller, 2002). It can

be formulated as a MIP through an L0 constraint on β, where the L0 pseudo-norm

is defined as ∥β∥0 =
∑

j I(βj ̸= 0) (I(·) is the indicator function). The MIP formu-

lation of best subset selection is computationally intractable (Natarajan, 1995) and

was previously considered impossible to solve with optimality guarantees for regres-

sion problems of realistic size. Nevertheless, improvements in optimization solvers

and hardware components, which experienced a 450 billion factor speed-up between

1991 and 2015, now allow one to efficiently solve problems of realistic size with

provable optimality (Bertsimas et al., 2016). Modern MIP solvers rely on implicit

enumeration methods along with constraints such as cutting planes that tighten the

relaxed problem (branch & bound and branch & cut, Schrijver 1986). Optimality

is certified monitoring the gap between the best feasible solution and the problem
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relaxation. Notably, MIP methods can recover the subset of true active features

(i.e., they satisfy oracle properties, see Section 3.3.3) under weaker assumptions

compared to soft penalization methods. Here the MIP formulation is not equivalent

to the L0-penalty due to non-convexity (Shen et al., 2013).

3.3 Proposed methodology

We focus on a regression comprising both outliers and inactive features, where one

has to tackle at the same time an unlabeled MSOM problem (i.e., one where the

identity, number and strength of outliers are unknown, Beckman and Cook 1983)

and the sparse estimation of β. SFSOD can be framed as an optimization problem;

namely:

[
β̂, ϕ̂

]
= argmin

β,ϕ

n∑
i=1

ρ(yi, f(xi;β) + ϕi) (3.1)

s.t. Rω(β) ≤ cβ, Rγ(ϕ) ≤ cϕ,

where ρ(·) is a loss function, f(·) defines the relation between predictors and response

vector, and Rω(β) and Rγ(ϕ) are penalties subject to sparsity-inducing constraints,

which may depend on tuning constants ω and γ. Non-zero coefficients in β̂ and ϕ̂

identify active features and outlying units, respectively. Although in this article we

focus on linear regression the framework in (3.1) is very general; it comprises gener-

alized linear models, several classification techniques and non-parametric methods.

Many approaches have been recently developed to solve (3.1) using ordinary

least squares (OLS) as the loss function ρ(·). Both penalties Rω(β) and Rγ(ϕ)

are generally convex (Morgenthaler et al., 2004; Menjoge and Welsch, 2010; Lee

et al., 2012; Kong et al., 2018) although some non-convex procedures have been

considered (She and Owen, 2011). Robust soft penalization methods also can be

cast into (3.1), abandoning the explicit use of ϕ and adopting a robust loss ρ(·)

in place of the OLS. These include MM-estimators for ridge regression (Maronna,

2011), sparseLTS (Alfons et al., 2013), bridge MM-estimators (Smucler and Yohai,

2017), enetLTS (Kurnaz et al., 2017), penalized elastic net S-estimators (Freue et al.,
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2019), and penalized M-estimators (Loh, 2017; Chang et al., 2018; Amato et al.,

2021), as well as their re-weighted counterparts. Indeed, through specific penalties,

M-estimators can be equivalently formulated as feature selection problems (She and

Owen, 2011).

While (3.1) highlights an important parallel between SFSOD and robust soft

penalization, existing heuristic methods suffer several drawbacks. Some rely on

restrictive assumptions or their finite-sample and asymptotic performance in terms

of feature selection and outlier detection is not well-established. Others rely heavily

on an initial subset of non-outlying cases. Yet others provide a down-weighting of all

units, which complicates interpretation and the objective identification of outliers, or

have an asymptotic breakdown point of 0%, so they in fact do not tolerate outliers in

the first place. Finally, some methods require tuning of other parameters in addition

to ω and γ, which can severely increase computational burden.

3.3.1 MIP formulation

Our proposal solves (3.1) with optimality guarantees, from both optimization and

theoretical perspectives. This preserves the intrinsic discreteness of the problem,

facilitating implementation, interpretation, and generalizations. We impose two

separate integer constraints on β and ϕ in (3.1), combining in a single framework

the use of L0 constraints for feature selection (Bertsimas et al. 2016; Bertsimas and

Van Parys 2020; Kenney et al. 2021) and outlier detection (Zioutas et al. 2009;

Bertsimas and Mazumder 2014). In particular, we consider the MIP formulation in

(3.2) where Mβ and Mϕ in constraints (3.2a) and (3.2b) are the so-called big-M

bounds (Schrijver, 1986). In our proposal these are vectors of lengths p and n, respec-

tively, which can be tailored for each βj and ϕi. In the L0-norm constraints (3.2c)

and (3.2d), kp and kn are positive integers modulating sparsity for feature selection

and outlier detection, respectively – for the latter, we can think of sparsity as a

level of trimming (i.e., outlier removal). In the L2-norm ridge-like constraint (3.2e),

λ > 0 can be used to counteract strong collinearities among the features (Hoerl and

Kennard, 1970b). It also modulates a trade-off between continuity and unbiased-

ness in the estimation of β, and allows one to calibrate the intrinsic discreteness of
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the problem – making its solutions more stable with respect to data perturbations

(Breiman, 1995) and weak signal-to-noise ratio regimes (Hastie et al., 2020).

[
β̂, ϕ̂

]
= argmin

β,zβ ,ϕ,zϕ

1

n
ρ(y −Xβ − ϕ) (3.2)

s.t. −Mβ
j z

β
j ≤ βj ≤ Mβ

j z
β
j (3.2a)

−Mϕ
i z

ϕ
i ≤ ϕi ≤ Mϕ

i z
ϕ
i (3.2b)

p∑
j=1

zβj ≤ kp (3.2c)

n∑
i=1

zϕi ≤ kn (3.2d)

p∑
j=1

β2
j ≤ λ (3.2e)

zβj ∈ {0, 1}, βj ∈ R, j = 1, . . . , p

zϕi ∈ {0, 1}, ϕi ∈ R, i = 1, . . . , n.

Although solving (3.2) plainly with state-of-the-art software may be computa-

tionally intractable for large dimensions, with the appropriate implementation it

can be used to tackle many real-world applications optimally and efficiently. In

general, what it means for a statistical problem to be small or large depends on its

structure – for instance, the “signal-to-noise” ratio plays a fundamental role (see

Sections 3.3.3 and 3.4). From an operational standpoint, in this setting a problem

can be considered large if the signal-to-noise ratio is small or moderate (e.g., smaller

than 2), and the sample size and number of features are in the thousands or more.

Another important advantage of our proposal from an application standpoint is that

it allows one to easily incorporate additional constraints to leverage structure in the

data – such as groups, ranked features, hierarchical interactions, and compositional

information. We note that (3.2) could undergo a transformation through perspec-

tive cut model (Frangioni and Gentile, 2006) that may be of interest to improve the

performance of the solution algorithm, here omitted for brevity.
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3.3.2 Some implementation details

Setting the big-M bounds for (3.2) is made even more complicated due to the

“double” nature of SFSOD. A robust estimator of the regression coefficients, say

β̃, can be used to set Mβ = β̃c and Mϕ = (y − Xβ̃)c = ẽc, where c ≥ 1 is

a suitable multiplicative constant. We generalize this approach using an ensemble

β̃t (for t = 1, . . . , T ) of preliminary estimators and setting Mβ
j = maxt(|β̃tj |)c and

Mϕ
i = maxt(|ẽtj |)c. The ensemble guarantees that, if at least one of the β̃t’s is

reasonably close to the optimal solution, the MIP will easily recover such solution.

Importantly, having also non-robust or non-sparse estimators in the ensemble does

not negatively affect solution quality but only convergence speed.

The MIP formulation in (3.2) critically depends on the big-M bounds; they

should be large enough to retain the optimal solution, yet small enough to avoid

unnecessary computations and numerical instability. If identifying suitable bounds

is not possible, we use an alternative strategy based on specially ordered sets of type

1 (SOS-1; Bertsimas et al. 2016). These allow only one variable in the set to be

non-zero, e.g., (1 − zβj , βj) = 0 ⇐⇒ (1 − zβj , βj) : SOS-1, which can be solved via

modern MIP solvers such as Gurobi or CPLEX. SOS-1 constraints in (3.2) guarantee

that the global optimum can be reached, and generally outperform big-M bounds

when these are difficult to reasonably set.

The formulation in (3.2) also, and critically, requires the tuning of kp, kn and,

if a ridge-like constraint is included in the model, λ. Performing this simultane-

ously along an extensive grid of values can be computationally unviable for MIP.

We therefore proceed as follows: (i) fix λ (possibly, in turn, to a few values in a

meaningful range); (ii) fix kn to a starting value larger than a reasonable expecta-

tion on the amount of contamination in the problem (n0); (iii) holding fixed the

kn starting value from (ii), tune kp through cross-validation or an information cri-

terion; (iv) holding fixed the kp value selected in (iii), refine downward the value of

kn. See also She and Owen (2011) for a discussion on parameter tuning for outlier

detection. To the best of our knowledge, this is still an open research area, espe-

cially in high-dimensional settings. In our numerical studies, we found that there
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was little difference in choosing one tuning approach over the other. Thus, in this

work we mainly focus on a robust counterpart of the BIC. We provide further details

concerning feature standardization, cross-validation, selecting a trimming level, and

using information criteria in Appendix A.2.

3.3.3 Theoretical results

In this Section, we characterize the theoretical properties of our proposal through two

groups of results. The first comprises properties established under the general frame-

work introduced in (3.2). The second comprises key properties established under an

L2-norm loss function ρ(·) = ∥·∥22; namely, the robustly strong oracle property and

optimal parameter estimation for SFSOD. All proofs are provided in Appendix A.1.

Without loss of generality, we assume that (3.2) has a unique global minimum,

and that the loss function is such that ρ(x) ≥ 0 with ρ(0) = 0 (this is the case for

OLS and many other instances, such as estimation in quantile regression and robust

estimators). Our first result connects our proposal to a large class of penalized

methods based on trimming.

Theorem 3.1 (Sparse trimming). For any λ, n, p, kn and kp, the β̂ estimator

produced solving (3.2) is the same as the one produced solving

argmin
β

1

n

n−kn∑
i=1

{ρ(yi − xT
i β)}i:n =

1

n

n−kn∑
i=1

{ρ(ei)}i:n (3.3)

s.t. (3.2a), (3.2c), (3.2e),

where ei (for i = 1, . . . , n) are the residuals, and {ρ(e1)}1:n ≤ . . . ≤ {ρ(en)}n:n the

order statistics of their ρ(·) transformation.

Theorem 3.1 demonstrates the equivalence of our formulation to a trimmed loss

problem, where the level of trimming is directly controlled by the L0 constraint

on ϕ. This extends a well-known result for unpenalized OLS and motivates the

formulation in (3.1) as a general framework for SFSOD. In particular, (3.3) includes

some trimmed likelihood estimators as special cases (Hadi and Luceño, 1997). Thus,

50



our proposal inherits their desirable properties, such as equivariance if the points

are in general position (Maronna et al., 2006).

The largest proportion of outliers that an estimator can tolerate before becoming

arbitrarily biased is referred to as the breakdown point. In symbols, consider a sam-

ple Z = (z1, . . . ,zn) with zi = (yi,x
T
i ). The maximum bias for an estimator, say τ ,

is b∗(n0; τ ,Z) = supZ̃∥τ (Z̃)−τ (Z)∥2, where Z̃ represents Z after the replacement

of n0 points by arbitrary values. The finite-sample replacement breakdown point

(BdP henceforth), defined as ϵ∗(τ ,Z) = minn0{n0/n : b∗(n0; τ ,Z) → ∞}, is the

maximum proportion of observations that, when arbitrarily replaced, still provide

bounded estimates (Donoho and Huber, 1983). Our second result shows that our

MIP approach for SFSOD achieves arbitrarily large BdP.

Theorem 3.2 (MIP breakdown point). For any λ, n, p, kn and kp, where (yi,x
T
i )

are not necessarily in general position, the BdP of the β̂ estimator produced solving

(3.2) is ϵ∗ = (kn + 1)/n.

Thus, kn ≥ n0 is the only requirement to achieve the largest possible BdP. Similar

results were obtained for the least quantile estimator (Bertsimas and Mazumder,

2014), the LTS estimator with a lasso penalty (Alfons et al., 2013), and MM-

estimators with a ridge or elastic net penalty (Maronna 2011; Kurnaz et al. 2017).

However, there are two caveats: the BdP can be misleading for non-equivariant es-

timators (Smucler and Yohai, 2017), and it only guarantees against the worst-case

scenario – infinite maximum bias – as it does not account for large but finite biases

in β̂. This motivates the development of additional theoretical guarantees.

Next, we exclude the ridge-like penalty and take ρ(·) = ∥·∥22, making (3.2) a

mixed-integer quadratic program (MIQP). In this setting, we prove that under certain

conditions our approach satisfies the robustly strong oracle property (see Definition 1,

based on Fan et al. 2014a). In the following, we use the L0 sparsity assumption on

β and ϕ as in Zhang and Zhang (2012). Recall that MSOM leads to outlier removal

(see Section 3.2), and we showed in Theorem 3.1 that the L0 constraint on ϕ controls

the level of trimming from the fit, thus this sparsity assumption on ϕ is equivalent

to the presence of MSOM outliers. In our SFSOD problem, as customary in feature

selection literature, let θ0 = (βT
0 ,ϕ

T
0 )

T ∈ Rp+n be the true parameter vector, and
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decompose it as θ0 = (θT
S ,θ

T
Sc)T = {(βT

Sβ
,ϕT

Sϕ
), (βT

Sc
β
,ϕT

Sc
ϕ
)}T where θS contains

only the true non-zero regression coefficients. Let the robust oracle estimator be

θ̂0 = (AT
SAS)

−1AT
Sy, where AS = (XSβ

, ISϕ
) is the n× (p0 + n0) matrix restricted

to the active features belonging to Sβ and the outlying cases belonging to Sϕ. The

robust oracle estimator is akin to the oracle estimator in feature selection – where the

oracle is simply the OLS solution across the active set, when the features belonging

to it are known. Our robust oracle estimator extends this concept taking also outliers

into account. Specifically, θ̂0 behaves as if the sets of active features and outliers

were both known in advance. Indeed, if we know which points are outliers, we can

include dummies for them, effectively removing their influence on the fit and making

the OLS the optimal estimator.

Definition 3.1 (Robustly strong oracle property). An estimator β̂ with support Ŝβ

satisfies the robustly strong oracle property if (asymptotically) there exists tuning

parameters which guarantee P (Ŝβ = Sβ) ≥ P (β̂ = β̂0) → 1 in the presence of

MSOM outliers.

Such robust version of the oracle property is stronger and more general than the

oracle property in the sense of Fan and Li (2001), as it implies both SFSOD consis-

tency and sign consistency (see also Bradic et al. 2011). Thus, SFSOD consistency

depends on the achievability of the robust oracle estimator which we investigate

by extending the theoretical framework in Shen et al. (2013) for feature selection.

This requires weaker assumptions compared to other penalization methods (Zhang

and Zhang, 2012), and we generalize it to the presence of MSOM outliers. Intu-

itively, if the robust oracle estimator is achievable (i.e., if it has the lowest objective

for models of the same size), it is also the solution of our MIQP when the integer

constraints are set to kp = p0 and kn = n0. Achievability depends on the diffi-

culty of the problem, as measured by the minimal degree of separation between

the true and a least favorable model – indexed by the supports S and S̃, respec-

tively. This is defined as ∆θ(A) = minθS̃
∥ASθS −AS̃θS̃∥22/{nmax(|S\S̃|, 1)} (for

θS̃ : S̃ ≠ S, |S̃β| ≤ p0, |S̃ϕ| ≤ n0), which relates to the signal-to-noise ratio and can

be bounded as ∆θ ≤ ∆β+∆ϕ (with ∆β and ∆ϕ defined similarly to ∆θ using X and

In, respectively). We control this level of difficulty in Theorem 3.3, which provides
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a necessary condition for SFSOD consistency over B(u, l) = {θ : ∥θ∥0 ≤ u,∆θ ≥ l},

the L0-band with upper and lower radii u and l, respectively (a subset of the L0-ball

B(u, 0) excluding a neighborhood of the origin).

Theorem 3.3 (Necessary condition for SFSOD consistency). For any support esti-

mate Ŝ and u > l > 0, supθ0∈B(u,l) P (Ŝ = S) → 1 implies that

∆θ ≥ l =
σ2

n
max {dβ log(p), dϕ log(n)} , (3.4)

where dβ > 0 (which may depend on X) and dϕ > 0 are constants independent of n

and p.

This lower bound on ∆θ indicates one can focus on solving the most difficult task

between outlier detection and feature selection; if this is achievable, a fortiori, the

other will be as well. Next, we provide a sufficient condition for SFSOD consistency

based on a finite-sample result bounding the probability that our proposal differs

from the robust oracle estimator.

Theorem 3.4 (MIQP oracle reconstruction). For any n, p, n0 and p0, the θ̂L0 esti-

mator produced solving (3.2) with kp = p0 and kn = n0 is such that

P
(
θ̂L0 ̸= θ̂0

)
≤5e− 1

e− 1
max

[
exp

{
− n

18σ2

(
∆β − 36σ2 log(p)

n

)}
,

exp

{
− n

18σ2

(
∆ϕ − 36σ2 log(n)

n

)}]
. (3.5)

Based on these results, one can easily prove the robustly strong oracle property as

follows.

Theorem 3.5 (MIQP robustly strong oracle property). Assume that uθ = uϕ + uβ,

where uϕ < n− kp and uβ < min(n− kn, p), and that there exists a constant dθ > 36

such that lθ = dθσ
2/nmax {log(p), log(n)}. Then, under (3.4) and for (n, p) → ∞,

the estimator θ̂L0 produced solving (3.2) with kp = p0 and kn = n0 satisfies

1. Robustly strong oracle property:

sup
θ0∈B(uθ,lθ)

P (ŜL0 = S) ≥ sup
θ0∈B(uθ,lθ)

P (θ̂L0 = θ̂0) → 1
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uniformly over B(uθ, lθ) = {θ : ∥θ∥0 = (p0 + n0) ≤ uθ,∆θ ≥ lθ}.

2. Asymptotic normality:

√
n(θ̂L0 − θ0) →d N(0,Σθ),

where Σθ = σ2(AT
SAS/n)

−1.

Theorem 3.5(1) provides a sufficient condition for SFSOD consistency and the robust

oracle reconstruction up to a constant term dθ. Note that the number of features

is allowed to exponentially increase with the sample size – so these properties hold

also in ultra-high dimensional settings where p = O(enα) with α = ∆θ/(dθσ
2) > 0.

Theorem 3.5(2) guarantees asymptotic normality and efficiency of MIQP estimates,

which achieve the Cramèr–Rao lower bound as if the true sets of features and outliers

were known a priori. Thus, although finite-sample inference with our approach

can be problematic, as with other robust and/or regularization approaches, “large

sample” statistical inference can be performed. Importantly, existing penalized M-

estimators provide weaker results under stronger assumptions (Loh, 2017; Smucler

and Yohai, 2017; Amato et al., 2021). We conclude with a result showing that our

proposal attains optimal parameter estimation with respect to the L2-norm in the

presence of MSOM outliers.

Theorem 3.6 (MIQP optimal parameter estimation). Under the same conditions

of Theorem 3.5, the estimator θ̂L0 produced solving (3.2) with kp = p0 and kn = n0

provides

1. Optimal L2-norm prediction error:

n−1E∥A(θ̂L0 − θ0)∥22 = σ2(p0 + n0)/n.

2. Risk-minimax optimality for parameter estimation:

sup
θ0∈B(uθ,lθ)

n−1E∥A(θ̂L0 − θ0)∥22 = inf
τn

sup
θ0∈B(uθ,lθ)

n−1E∥A(τn − θ0)∥22 = σ2uθ/n.
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Finally, the theoretical guarantees developed in this section can be extended in a

similar fashion to other penalization methods, albeit under stronger assumptions.

For instance, one might consider the regularized L0-penalty or the trimmed L1-

penalty. Importantly, our results do hold also when p0 depends on p and/or n0

depends on n which has yet to be established for other methods in the literature

(Shen et al., 2013). We stress the fact that all results for the proposed formulation

rely on the identification of the true kp and kn tuning parameters. While this

is a standard requirement to establish oracle properties (see Fan and Li 2001), it

highlights the importance of proper tuning for these bounds. For this reason, in

Section 3.2 we propose robust methods to effectively tune the two integer constraints.

3.4 Simulation study

We use simulations to study the performance of our proposal and compare it with

state-of-the-art heuristic methods. The simulated data is generated as follows. The

first column of the n×p design matrix X comprises all 1’s (for the model intercept)

and we draw the remaining entries of each row independently from a (p− 1)-variate

Gaussian N(0,ΣX), we fix the values of the p-dimensional coefficient vector β as to

comprise p0 non-zero entries (including the intercept), and we draw each entry of the

n-dimensional error vector ε independently from a univariate Gaussian N(0, σ2
SNR).

Here σ2
SNR > 0 is used to modulate the signal-to-noise ratio SNR = var(Xβ)/σ2

SNR

characterizing each experiment. Next, without loss of generality, we contaminate the

first n0 cases with an MSOM, adding the scalar mean shifts µε and µX , respectively,

to the errors and each of the p0 − 1 active predictors.

Specific simulation scenarios are defined through the values of the parameters

listed above. Here, we present results for ΣX = Ip−1 (uncorrelated features), p0 = 5

active features with βj = 2 (without loss of generality these correspond to j =

1, . . . , 5), SNR = 5, fraction of contamination n0/n = 0.1, mean shifts µε = −10

and µX = 10, increasing sample sizes n = 50, 100, 150, and a “low”- and a “high”-

dimensional setting with p = 50, 200. Results for additional simulation scenarios are

provided in Appendix A.2.
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Replicating each scenario a certain number of (independent) times, say q, and

creating (independent) test data, say (y∗,X∗), from the same generating scheme but

without contamination, we compare methods with a variety of criteria, namely: (i)

out-of-sample prediction performance, measured by the root mean squared prediction

error RMSPE = {n−1
∑n

i=1(y
∗
i −x∗

i β̂)
2}1/2; (ii) estimation accuracy for β, measured

by the average mean squared error MSE(β̂) = p−1
∑p

j=1MSE(β̂j), where for each

β̂j we form MSE(β̂j) = q−1
∑q

i=1(β̂ji − βj)
2 = (βj − βj)

2 + q−1
∑q

i=1(β̂ji − βj)
2,

decomposed in squared bias and variance (here βj = q−1
∑q

i=1 β̂ji); (iii) feature

selection accuracy, measured by the false positive rate FPR(β̂) = |{j ∈ {1, . . . , p} :

β̂j ̸= 0 ∧ βj = 0}|/|{j ∈ {1, . . . , p} : βj = 0}| and the false negative rate FNR(β̂) =

|{j ∈ {1, . . . , p} : β̂j = 0 ∧ βj ̸= 0}|/|{j ∈ {1, . . . , p} : βj ̸= 0}|, as well as the F1

score – which is a mixture of the two defined as F1(β̂) = (1− FNR)/{(1− FNR) +

(FPR + FNR)/2}; (iv) outlier detection accuracy, which is similarly measured by

FPR(ϕ̂), FNR(ϕ̂) and F1(ϕ̂); (v) computational burden, measured as CPU time

in seconds (this is used as a rough evaluation, since software implementations of

different methods are not entirely comparable).

Using the robust oracle estimator as a benchmark, we compare the following

estimators: (a) sparseLTS (Alfons et al., 2013), (b) enetLTS (Kurnaz et al., 2017),

and (c) our MIP proposal (see Section 3.3). All methods trim the true number of

outliers (kn = n0) and only their feature sparsity level is tuned. See Appendix A.2

for implementation details.

Table 3.1 provides means and standard deviations (SD) of simulation results over

q = 1000 replications. Our proposal substantially outperforms competing methods

in most criteria. In particular, for the low-dimensional setting (p = 50), its RMSPE

converges faster to the oracle solution and the variance of its β̂ decreases faster as n

increases (the bias is essentially non-existent for all methods). Notably, the FPR(β̂)

of sparseLTS and enetLTS increases with the sample size, while our approach avoids

these type II errors. Even with these sparser solutions, we retain comparable (and

at times lower) FNR(β̂). Our method struggles most when n = 50, suggesting that

additional work for tuning MIP may be beneficial in under-sampled problems. All

methods perform very well in terms of FPR(ϕ̂) and FNR(ϕ̂), though enetLTS is
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slightly worse for n = 50. As expected, the computational burden of our procedure

is substantially higher than that of the competing heuristic methods – though we

note that averages here are not representative, as there is a marked right skew in

the distribution of computing times across replications. For comparison we provide

medians and median absolute deviations (MAD) in Table A.1 and find that results

are even stronger. For example, the average computing time with n = 150 and

p = 200 is 832.13 minutes compared to a median of 518.92 minutes. Our experience

suggests that the growth in computational burden is mainly due to increases in the

absolute number of outliers as the sample size increases.

Similar conclusions hold under the high-dimensional scenario with n < p = 200.

In Appendix A.2 we report results for additional simulation scenarios, e.g., with

smaller SNR, collinear features and weaker mean shift parameters, where our method

also outperformed others in most settings.

3.5 Connecting childhood obesity and microbiome

composition

We now return to the application described in Section 3.1, investigating the re-

lationship between childhood obesity and microbiome composition. All data are

publicly available; we accessed microbiome reads and phenotype information from

the Sequence Read Archive (SRA, 2017) and database of Genotypes and Phenotypes

(dbGaP, 2017) through the National Center for Biotechnology Information (NCBI),

respectively. The goal of our analysis is to study which bacterial types (features)

may affect children’s weight gain accounting for potential outlying cases.

We focused on the oral microbiota of children and their mothers, which were

found to contain interesting signals in Craig et al. (2018). Based on the pre-

processing in Craig et al. (2018), we retained 215 child and 215 maternal oral

samples. Correspondingly, we considered the abundances of 67 and 62 bacterial

groups, respectively – which the original authors obtained aggregating phylogeneti-

cally sparse and correlated abundance data (we further filtered based on those with

a MAD of 0 and/or exhibiting 0 counts in half or more of the samples). We also
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Table 3.2: Median (MAD in parenthesis) of TMSPE and the number of features selected
on the training set on eight train-test splits. Last column: number of features selected on
the full data. Robust methods use 20% trimming.

Data ntr nte p Method TMSPE p̂tr
0 p̂full

0

Child oral 172 43 68 SparseLTS 0.25(0.03) 54.00(0.26) 52
EnetLTS 0.12(0.02) 47.00(3.67) 52
MIP 0.18(0.04) 13.00(0.52) 13
Lasso 0.19(0.02) 2.00(0.26) 2

Maternal oral 172 43 63 SparseLTS 0.21(0.04) 52.00(1.31) 56
EnetLTS 0.20(0.03) 52.00(4.46) 62
MIP 0.15(0.03) 13.50(0.52) 13
Lasso 0.18(0.02) 1.00(0.00) 1

log-transformed the abundances of each group to mitigate skews. We focused on

one among the phenotypes studied in Craig et al. (2018); namely, the conditional

weight gain score (CWG) – a continuous measure computed from weight gain be-

tween birth and six months (a positive CWG indicates an accelerated weight gain)

which is commonly used in paediatric research (Savage et al., 2016).

We thus applied our approach along with sparseLTS, enetLTS and classical lasso

to two main models; the regressions of children’s CWG on log-transformed bacterial

groups abundances in oral samples of the children themselves, and of their mothers,

respectively. The problem sizes were 215× 68 and 215× 63 with the inclusion of an

intercept term. In addition to applying our approach on the full datasets, we split

the data at random into training (ntr ≈ 0.8n) and test (nte ≈ 0.2n) sets to assess

out-of-sample prediction performance of the various procedures. We also considered

a different splitting ratio (ntr ≈ 0.9n and nte ≈ 0.1n) and obtained similar results

(see Table A.4). Since the true contamination level of a given test set is unknown,

we calculated a trimmed median squared prediction error (TMSPE) at 50% to be

conservative. The trimming level when fitting each robust procedure was set to that

found on the full dataset (20% for both children and maternal regressions, which

corresponds to 43 cases). We repeated the analysis on 8 different training/test splits

for all methods. Table 3.2 provides, for each of the two regressions, medians and

MADs of results over the 8 splits – including TMSPE and the number of features

selected on the training set (p̂tr0 ). The last column contains the total number of
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features selected on the full data (p̂full0 ).

For the regressions on the full datasets, sparseLTS and enetLTS selected a very

large number of bacterial groups, hindering interpretation. In contrast, the lasso

produced very sparse solutions – so sparse that it only selected the intercept for the

maternal regression. For the children regression, lasso selected one bacterial group

belonging to the Firmicutes phylum and coinciding with a group selected in Craig

et al. (2018). This sparse behavior was consistent across the 8 training/test splits

as well. However, MIP outperformed lasso in both regressions based on TMSPE –

especially compared to the intercept-only model identified by lasso for the maternal

regression. EnetLTS was the most predictive method for the children regression,

but MIP again outperformed it in the maternal regression.

In terms of sparsity, our procedure produced solutions much more parsimonious

(and thus more interpretable) than those of the other robust methods, but less sparse

(and thus more informative) than those of the lasso. MIP selected 13 bacterial

groups for both the children and the maternal regression, albeit they were tuned

independently. One group among the ones identified in each regression was also

found to be related to children’s growth curves and rapid infant weight gain in

Craig et al. (2018). These were a Bacteriodetes and a Fusobacteria group in the

children and maternal oral microbiota, respectively. Interestingly, the Bacteriodetes

group contains bacteria from the Porphyromonas genus, which has species capable

of producing Butyrate (Vital et al., 2014) – a fatty acid associated with obesity

(Liu et al., 2018). Further connections can be found with prior findings reported

in the literature. For instance, though our response is CWG, a Firmicutes group

selected by our procedure in the maternal oral microbiome consisted of one main

genus, namely Streptococcus, which was significantly related to maternal body mass

index in Cabrera-Rubio et al. (2012).

Switching to outlier detection, our procedure detected 43 outliers for both the

children and the maternal regression. 17 infants with particularly extreme CWG

scores in either direction (see Figure A.1) were detected as outliers in both regres-

sions, with extreme (positive or negative) standardized residuals (see Figure A.2).

The child with the highest CWG and the largest residual in the children regression
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was one of the few infants (15/215) whose mother smoked while pregnant. Notably

these 15 children have a significantly higher CWG on average (p-value = 0.042; one-

sided t-test), and 40% of them were detected as outliers in either or both of our

regressions.

Overall, these results show that our proposal is competitive in terms of predic-

tive power (compared to other robust and non-robust methods), while providing

parsimonious, interpretable and informative solutions consistent with literature and

effectively detecting outliers. See Appendix A.3 for additional remarks and discus-

sion regarding warm-starts and big-M bounds used in this analysis, as well as an

attempt to further validate our findings exploiting phenotypes studied in previous

literature.

3.6 Final remarks

Our proposal provides a general framework to simultaneously perform sparse esti-

mation and outlier detection that can be used for linear models, as well as general-

ized linear models and several classification and non-parametric methods (Yerlikaya-

Özkurt and Taylan, 2020). In our main results, we focus specifically on linear models

(as do existing heuristic approaches) – but we directly tackle the original problem

and preserve its discrete nature; this facilitates implementation, interpretation, and

generalizations. Importantly, we provide optimal guarantees from both optimization

and theoretical perspectives, and verify that these hold in numerical experiments.

Our approach relies on L0 constraints – extending prior work where they were

used separately for feature selection or outlier detection. Our simultaneous MIP for-

mulation can handle problems of considerable size, and produces solutions that im-

prove upon existing heuristic methods. Although our formulation provides provably

optimal solutions from the optimization perspective, it is crucial to tune its integer

constraints. Thus, we also provide computationally efficient, data-driven approaches

to induce sparsity in the coefficients and the estimated amount of contamination.

Theoretical properties characterizing our proposal include its high breakdown point,

the robustly strong oracle property – which holds in ultra-high dimensional settings

61



where the number of predictors grows exponentially with the sample size – and

optimality in parameter estimation with respect to the L2-norm (i.e., optimal pre-

diction error and risk-minimaxity). Our proposal requires weaker assumptions than

prior methods in the literature and, unlike such methods, it allows the sparsity level

and/or the amount of contamination to grow with the number of predictors and/or

the sample size.

In addition to performing numerical experiments, we investigated the relation-

ship between childhood obesity and the human microbiome. Our proposal generally

outperformed existing heuristic methods in terms of predictive power, robustness

and solution sparsity, and produced results consistent with prior childhood obesity

studies.

The work presented here can be expanded in several directions. Even with

modern solvers, larger problems and optimal tuning can make the use of MIPs com-

putationally challenging. We are pursuing ways to reduce the computational burden

– e.g., efficiently and effectively exploring the graph built by branch & bound al-

gorithms (Gatu et al., 2007), extending the perspective formulation (Frangioni and

Gentile, 2006) to the presence of MSOM outliers, and generating high-quality initial

solutions for warm-starts and big-M bounds through continuous methods (Bertsi-

mas and Mazumder, 2014). To improve solution quality, we are further exploring

the addition of a ridge-like term, which would naturally benefit from the extension

of the perspective formulation, as well as robust versions of whitening methods for

feature de-correlation (Kenney et al., 2021). In our future research we also plan to

explore the so-called cellwise contamination scheme (Alqallaf et al., 2009), which is a

more recent approach for dealing with outliers in high-dimensional settings. Finally,

we are particularly interested in the class of generalized linear models and Gaus-

sian graphical models. The use of L0 constraints for sparse estimation has already

been investigated from a theoretical perspective (Shen et al., 2012), but an effective

implementation in modern MIP solvers is not trivial and the possible presence of

adversarial contamination has not received much attention in the literature.
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“Everybody believes in the [normal] law of errors, the

experimenters because they think it is a mathematical

theorem, the mathematicians because they think it is

an experimental fact”

Henri Poincaré (1912)

Chapter 4

Doubly Robust Feature Selection

with Mean and Variance Outlier

Detection and Oracle Properties

This chapter is based on: Insolia, L., Chiaromonte, F., Li, R., and Riani, M. (2021a).

Doubly robust feature selection with mean and variance outlier detection and oracle

properties. arXiv preprint, arXiv:2106.11941.

Reproducible and documented code for this chapter is available at: https:

//github.com/LucaIns/doubly robust sparse.

4.1 Introduction

Modern regression problems encompass an ever increasing number of predictor vari-

ables, or features – which motivates the use of feature selection techniques. In the

real-world, these problems are often also affected by data contamination, e.g., due to

recording errors or the presence of different sub-populations. Handling the resulting

outliers is critical, as data contamination can hinder classical feature selection and

estimation methods. Moreover, outlier detection itself can be a major goal of the

analysis, as it often provides valuable domain-specific insights.

Two main contamination mechanisms have been investigated in the literature

on linear models (Beckman and Cook, 1983), namely: the mean-shift outlier model
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(MSOM) and the variance-inflation outlier model (VIOM), which are two specific

characterizations of the Tukey-Huber contamination model. The MSOM assumes

that outlying cases have a shift in mean; maximum likelihood estimation (MLE)

leads to their removal from the fit – i.e., to the assignment of 0 weights to the

cases identified as outliers. While the MSOM was traditionally studied in low-

dimensional scenarios (Cook and Weisberg, 1982), it has been recently extended

to high-dimensional linear models, where the use of regularization techniques is

fundamental (She and Owen, 2011; Alfons et al., 2013; Kurnaz et al., 2017; Insolia

et al., 2021d). The VIOM, which is historically considered as an alternative to

the MSOM, assumes that contaminated errors have an inflated variance; outliers

are retained but down-weighted in the fit. The VIOM was initially investigated

by Cook et al. (1982) and Thompson (1985) in the presence of a single outlier,

using MLE and restricted MLE (REMLE), respectively. More recently, Gumedze

(2019) developed hypothesis testing procedures for linear models, considering also

the presence of multiple outliers. However, when multiple outliers are present, this

approach requires the evaluation of a combinatorial number of outlying-ness tests

to avoid masking (undetected outlying cases) and swamping (non-outlying cases

flagged as outliers). Insolia et al. (2021b) proposed the use of robust estimation and

REMLE to detect and down-weight multiple VIOM outliers, possibly co-occurring

with MSOM outliers, in (low-dimensional) linear models.

Here, we investigate high-dimensional linear models affected by the co-occurrence

of multiple MSOM and VIOM outliers, where outlying cases can arise both in the

response variable and the design matrix. We show that these can be modeled as

additional fixed and random components, respectively, and evaluated independently.

Specifically, we develop a doubly robust class of nonconcave penalization methods,

in which feature selection and MSOM detection rely on a trimmed penalized loss,

whereas VIOM detection is based on the penalization of the restricted posterior

mode. The resulting procedure: (i) satisfies a robust oracle property for feature se-

lection in the presence of data contamination, which allows the number of features

to exponentially increase with the sample size; (ii) detects MSOM and VIOM out-

liers with asymptotic probability one; (iii) provides optimal units’ weights, and thus
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achieves an optimal trade-off between high breakdown point and efficiency. To our

knowledge, both the theory behind the detection and treatment of multiple VIOM

outliers and the study of high-dimensional models affected by VIOMs have not been

developed to date. Our proposal bridges this gap and greatly improves estimation

of the error variance, which is in turn essential for several statistical learning goals –

e.g., in the construction of information criteria for variable selection and in inferential

results on regression coefficients (Fan et al., 2012a; Reid et al., 2016). Recently, In-

solia et al. (2021b) highlighted the fact that the co-occurrence of MSOM and VIOM

can be modeled as an extended mixed-effects linear model, but this formulation was

not leveraged in that contribution; on the other hand, such formulation is crucial

for our developments in this paper, as it offers a completely different approach to

tackle the problem. Moreover, unlike “soft” trimming estimators, which produce a

general down-weighting for all points (Loh, 2017; Smucler and Yohai, 2017; Chang

et al., 2018; Freue et al., 2019; Amato et al., 2021), our proposal is effective in es-

timating full weights for non-outlying observations. We also propose a data-driven

procedure for VIOM detection. This provides a considerable gain with respect to

existing soft trimming estimators that rely on a given nominal efficiency, and thus

are not adaptive. Based on our numerical studies (see Section 4.4), being adaptive,

our approach guarantees good performance consistently across contamination lev-

els. Notably, our proposal comprises “hard” trimming sparse estimators as a special

case – which assume (albeit often implicitly) only the presence of MSOM outliers.

However, since we rely on nonconcave penalization methods, our approach satisfies

oracle properties under weaker assumptions compared to existing hard trimming

methods based on convex penalties (Alfons et al., 2013; Kurnaz et al., 2017). This

creates an important bridge between the latter and L0-constrained formulations that

offer optimality guarantees at the expenses of a higher computational burden, and

can be effectively leveraged by discrete optimization methods (Insolia et al., 2021d).

Finally, we propose effective and computationally lean heuristic procedures that can

be used as an alternative.

The reminder of the paper is organized as follows. Section 4.2 reviews relevant

background literature. Section 4.3 details our proposal, which is a 3-step procedure,
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as well as its heuristic counterpart. Section 4.4 contains numerical studies comparing

the empirical properties of different methods both in low- and high-dimensional

settings, and Section 4.5 contains real-world applications. Final remarks are given

in Section 4.6. Further details, extensions and proofs, as well as the source code to

replicate our simulation and application studies, are provided in Appendix B.

4.2 Background

In this section we review two streams of literature that are relevant for our develop-

ments; namely, methods for outlier detection in linear models, and approaches for

feature selection in high-dimensional mixed-effects linear models.

4.2.1 Outlier detection

Consider a classical linear regression model of the form y = Xβ + ε, where y =

(y1, . . . , yn)
T ∈ Rn contains observable responses, X = (x1, . . . ,xn)

T ∈ Rn×p is

the design matrix, β ∈ Rp contains unknown fixed effects (possibly sparse), and

ε = (ε1, . . . , εn)
T ∈ Rn contains unobservable random errors. Classical assumptions

specify that such errors are uncorrelated, homoscedastic and Gaussian, so that ε ∼

N(0, σ2In) for 0 < σ2 <∞, where In is the identity matrix of size n.

The MSOM postulates that for outlying cases i ∈ Sϕ (the rationale for this sym-

bol will become clear in Equation 4.2), εi ∼ N(µεi , σ
2) with µεi ̸= 0. Under the

assumption that Sϕ is known and rank(X) = p ≤ n − |Sϕ| (where |·| denotes the

cardinality of a set), the MLE leads to the exclusion of the units in Sϕ from the fit

(Cook and Weisberg, 1982). If there is a single MSOM outlier, this represents the

unit with largest absolute Studentized residual, which is a monotone transformation

of the deletion residual ti = (yi − xT
i β̂(i))/{σ̂(i)(1 + xT

i (X
T
(i)X(i))

−1xi)
1/2}, where

the parenthetical subscript indicates the exclusion of unit i from the fit. Impor-

tantly, ti can be computed very cheaply and, for a generic i, follows a Student’s

t with n − p − 1 degrees of freedom under the null – thus, it can be used to test

the outlying-ness of each observation. Although this can be easily generalized to

the presence of multiple MSOM outliers, it requires the evaluation of a combina-
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torial number of fits (i.e., excluding all possible subsets of points of a given size

from the fit), which results in a computationally intractable problem. Relatedly,

high-breakdown estimators (see Section 4.3.1) aim at limiting the influence of ex-

treme residuals on the fit (Maronna et al., 2006). Although these are traditionally

computed using heuristic approaches, the use of mixed-integer programming (MIP)

techniques has been recently considered to effectively solve the underlying combina-

torial problem with optimality guarantees (Zioutas and Avramidis, 2005; Bertsimas

and Mazumder, 2014). Importantly, high-breakdown point estimators have also

been extended to sparse high-dimensional linear models in combination with penal-

ization methods (Alfons et al., 2013; Smucler and Yohai, 2017; Kurnaz et al., 2017;

Loh, 2017; Freue et al., 2019; Chang et al., 2018; Amato et al., 2021; She et al.,

2021). Here L0-constraints, which can be solved through MIP algorithms, provide

optimality guarantees and desirable statistical properties for simultaneous feature

selection and MSOM detection, with p allowed to increase exponentially with n

(Insolia et al., 2021d).

The VIOM postulates that for outlying cases i ∈ Sγ (also this symbol will

become clear in Equation 4.2), εi ∼ N(0, σ2vi) with vi = (1 + ωi) ≥ 1. Cook

et al. (1982) studied the presence of a single variance-inflated outlier; the MLE

estimate of β depends on its vi and results in a weighted least squares (WLS) fit

β̂(vi) = (XTWX)−1XTWy = β̃− (XTX)−1xiẽi[(1−wi)/{1− (1−wi)hi}], where

W is a diagonal matrix containing all ones but wi = v−1
i . The tilde indicates

quantities computed from the ordinary least squares (OLS) fit, and hi is the i-th

diagonal element of Hx = X(XTX)−1XT . This highlights the fact that the VIOM

is asymptotically equivalent to the MSOM as vi → ∞. Importantly, in the presence

of a single VIOM outlier, the MLE provides a closed-form estimate for vi, which can

be used to estimate β and σ2. Similarly, Thompson (1985) used REMLE in place

of MLE to estimate the variance components vi and σ2. REMLE relies on n − p

linearly independent error contrasts ATε, where A ∈ Rn×(n−p) is defined such that

ATA = In and AAT = Px, with Px = In −Hx (Patterson and Thompson, 1971).

Also REMLE provides a closed-form estimate for the single variance-inflation param-

eter vi. Notably, the single VIOM outlier position estimated by MLE and REMLE
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might differ. A sufficient condition for their agreement is that the unit with max-

imum absolute OLS residual max(|ẽi|) also has the largest absolute Studentized

residual max(|ti|) – the latter estimates the outlier position using REMLE, which is

equivalent to the outlier position estimated by MLE under an MSOM (Thompson,

1985). However, differently from the case of a single VIOM outlier (and of multiple

MSOM outliers), multiple variance-inflation parameters v cannot be estimated in

closed-form even if the outliers are known – thus, iterative procedures are required

(Gumedze, 2019). In order to detect multiple VIOM outliers, possibly concurrent

with MSOM outliers, Insolia et al. (2021b) proposed the use of robust estimation for

outlier detection and of REMLE to estimate units’ weights. Nevertheless, to the best

of our knowledge, high-dimensional linear models affected by VIOM contamination

have not been explored yet.

4.2.2 Feature selection for mixed-effects linear models

Mixed-effects linear models are often used to model data with a natural group struc-

ture, such as repeated measurements, measurements in time, and measurements in

space (Laird and Ware, 1982). They extend the classical linear model through

the inclusion of a random design matrix characterizing the experiment; namely,

y = Xβ + Zb + ε, where Z = [Z1, . . . ,Zt] ∈ Rn×q, and Zj ∈ Rn×qj indicates the

design matrix for the j-th random effect bj ∈ Rqj , such that b = (bT1 , . . . , b
T
t )

T ∈ Rq,

and
∑

j qj = q. It is often assumed that b ∼ N(0,B), where B = [B1, . . . ,Bt] is a

block-diagonal matrix modeling the covariance of each random effect bj ∼ N(0,Bj),

with cov(bk, bl) = 0 for any k ̸= l. Moreover, b and ε are assumed to follow inde-

pendent Gaussian distributions.

Several methods have been developed to simultaneously estimate fixed and ran-

dom effects. Henderson’s mixed-model equations lead to the best linear unbiased

estimator (BLUE) for the fixed effects β and the best linear unbiased predictor

(BLUP) for the random effects b – which is also known as the empirical Bayes es-

timator as it maximizes the posterior distribution f(b|y). However, this approach

is unviable to perform feature selection in high-dimensional scenarios (Fan and Li,

2012). For this purpose, hypothesis testing procedures have been developed to select
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relevant random effects (Lin, 1997). Different sub-models can be compared through

extensions of information criteria, such as the conditional Akaike information cri-

terion (CAIC; Liang et al. 2008) and its generalizations. Leveraging penalization

methods, other approaches perform sparse estimation of the fixed effects β. In these,

while the dimension p of β is allowed to increase with the sample size n, the ran-

dom component b is often assumed to contain only truly relevant random effects

(Schelldorfer et al., 2011). Yet other approaches use penalization methods to select

a given number of fixed and random effects (Bondell et al., 2010; Ibrahim et al.,

2011; Peng and Lu, 2012). See Müller et al. (2013) and Buscemi and Plaia (2020)

for a literature review.

In the following we focus on the class of nonconcave penalization methods intro-

duced by Fan and Li (2012). Importantly, based on REMLE principles, selection of

fixed and random effects can be performed independently. Under mild conditions

this approach satisfies a weak oracle property for fixed effects estimates and selects

truly relevant random effects with asymptotic probability one – where the dimen-

sions p and q of fixed and random effects are allowed to exponentially increase with

the sample size.

4.3 Our proposal

We investigate linear models affected by systematic (MSOM) and/or stochastic

(VIOM) contaminations. Specifically, we focus on a general unlabeled outlier prob-

lem (Beckman and Cook, 1983), where the nature (MSOM vs. VIOM) as well as

the identity, number and strength of the outliers is unknown. We model the pres-

ence of mV VIOM and mM MSOM outliers, indexed through the (unknown and

non-overlapping) sets Sγ and Sϕ:

εi ∼


N(0, σ2vi) ∀ i ∈ Sγ

N(µεi , σ
2) ∀ i ∈ Sϕ

N(0, σ2) otherwise,

(4.1)
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where vi > 1 and µεi ̸= 0. We exclude overlaps between the two types of con-

tamination because such over-parametrization is equivalent to a MSOM assumption

(Cook et al., 1982). Moreover, as customary in the robust statistics literature, we let

MSOM outliers also affect the design matrix X (with shifts µxi
) creating leverage

points (Maronna et al., 2006). Note that the MSOM in (4.1) leads to the removal

of the largest (squared) residuals. Therefore, it effectively captures outlying points

both in y and in X (Cook and Weisberg, 1982, p. 21). Moreover, as we remarked

already in the Introduction, detecting and treating VIOM outliers is also very im-

portant as they affect the estimated error variance. This, in turn, plays a crucial

role in several aspects of an analysis – e.g., information criteria for variable selection

and inferential results on regression coefficients (Fan et al., 2012a; Reid et al., 2016).

Notably, the outliers in (4.1) can be equivalently represented adding fixed and

random effects to the linear model (Insolia et al., 2021b). In symbols

y = Xβ +DSγγ +DSϕ
ϕ+ ϵ, (4.2)

where DSγ (n×mV ) and DSϕ
(n×mM) are matrices composed by dummy column

vectors indexing VIOM and MSOM outliers, respectively. The mV × 1 random vec-

tor γ ∼ N(0, σ2Γ) allows one to down-weight VIOM outliers; here Γ = diagmV
(ω)

is a diagonal matrix of size mV . The non-stochastic vector ϕ ∈ RmM contains

prediction residuals for MSOM outliers (i.e., their residuals based on an estimator

which excludes them from the estimation process) and removes their influence from

the fit. The associated t-statistics are the deletion residuals tSϕ
. The random error

vector is assumed to be ϵ ∼ N(0, σ2In) and independent from γ. If the sets of

outliers Sϕ and Sγ are known, and rank(X) = p ≤ n − mM , the formulation in

(4.2) allows one to use standard techniques for mixed-effects linear models to esti-

mate variance-inflation parameters v and regression coefficients β. However, this

approach is unfeasible if the outlier identities are unknown and/or if p > n. To

tackle this problem, we consider the general formulation

y = Xβ + Inγ + Inϕ+ ϵ (4.3)
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and rely on nonconcave penalization methods to select relevant fixed effects β – but

we also enforce sparsity in γ ∈ Rn, which detects and down-weights VIOM outliers,

and ϕ ∈ Rn, which detects and excludes MSOM outliers from the fit. Specifically, we

propose a 3-step procedure based on REMLE principles, that extends and combines

the approaches in Fan and Li (2012) and Insolia et al. (2021d,b). Operationally, the

three steps can be solved iteratively (see Section 4.4), and we first focus on fixed

effects estimation, as MSOM outliers can have stronger influence on model estimates

and we also address settings with p > n.

4.3.1 Step 1: feature selection and MSOM detection

Suppose that Sγ is known. Then, plugging the MLE estimates for γ|β in the joint

density distribution f(y,γ) leads to the profile log-likelihood:

ln(β, γ̂) ∝
1

2σ2
(y −Xβ − ϕ)TPR(y −Xβ − ϕ), (4.4)

which produces a WLS estimator as

PR = (In −Bγ)
T (In −Bγ) +BT

γ DSγΓ
−1DT

Sγ
Bγ

= (In +DSγΓD
T
Sγ
)−1 = W , (4.5)

where Bγ = (In + DSγΓ
−1DT

Sγ
)−1. We simultaneously select and estimate fixed

effects β, while detecting and discarding MSOM outliers from the fit, using a feasible

and robustly penalized version of (4.4), where an integer constraint and a nonconcave

penalty are used for MSOM outlier detection and feature selection, respectively. In

symbols

[
β̂, ϕ̂

]
= argmin

β,ϕ

1

2
(y −Xβ − ϕ)TMR(y −Xβ − ϕ) + (n− kn)

p∑
j=1

Rλ(|βj|)

(4.6)

s.t. ∥ϕ∥0 =
n∑

i=1

I(ϕi ̸= 0) ≤ kn, (4.6a)
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where I(·) is the indicator function, the matrixMR = (In+Mγ)
−1 is a proxy for the

unknown PR, and Mγ is a proxy for DSγΓD
T
Sγ

(see Appendix B.2 for details). Note

that if MR is a multiple of the identity matrix, then (4.6) neglects VIOM outliers

– i.e., all points receive binary weights; see for instance Insolia et al. (2021d); She

et al. (2021).

The penalty function Rλ(·) enforces sparsity in β estimates and depends on

a tuning parameter λ controlling the trade-off between goodness of fit and model

complexity. For this task, several penalties have been investigated in the litera-

ture. Tibshirani (1996) introduced the lasso based on the L1-penalty, which is very

efficient but provides biased estimates. To overcome this limitation, nonconcave

penalties have also been used. These include the smoothly clipped absolute deviation

(SCAD) (Fan and Li, 2001), the minimax concave penalty (MCP) (Zhang, 2010),

and the adaptive lasso (Zou, 2006). Other approaches solve the combinatorial best

subset selection problem using an L0-constraint and MIP algorithms (Bertsimas

et al., 2016; Kenney et al., 2021). In this work we focus on penalties satisfying the

following conditions.

Conditions List 4.1 (Penalty function). For any λ > 0 and t ∈ [0,∞), the penalty

Rλ(t) is: non-decreasing and concave with Rλ(0) = 0; twice continuously differen-

tiable with first derivative R′
λ(0

+) > 0; such that supt>0R
′′
λ(t) → 0 for λ→ 0.

These conditions are fairly common for nonconcave penalization methods (see for

instance Fan and Lv 2011), and are used to develop estimators with three desirable

properties: unbiasedness, sparsity and continuity (Fan and Li, 2001). We specifically

focus on the SCAD penalty Rλ(·) in (4.6), but others might be considered as well.

The SCAD penalty satisfies Rλ(0) = 0 and, for t ∈ (0,∞), has R′
λ(t) = λI(t ≤

λ) + [(aλ− t)/(a− 1)]I(t > λ), where the constant a > 2 controls nonconcavity and

is often set to a = 3.7. This folded-concave penalty is continuously differentiable on

(−∞, 0) ∪ (0,∞) and singular at 0. Since its derivative is zero outside [−aλ, aλ],

it does not shrink and thus bias large coefficient estimates. Obtaining a global

minimum with folded-concave penalties such as SCAD is non-trivial. In the following

we focus on the local linear approximation (LLA) method (Zou and Li, 2008) to
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obtain a local solution which guarantees oracle properties. However, in principle

one can achieve the global minimum using MIP techniques (Liu et al., 2016).

The L0-constraint in (4.6a) is used for MSOM outlier detection, and it is equiv-

alent to a least trimmed squares (LTS) robust loss (Rousseeuw and Leroy, 1987).

It depends on an integer tuning parameter kn ≥ 0 controlling the trimming level –

i.e., the number of points which are identified as MSOMs and excluded from the fit.

This guarantees the achievability of high-breakdown estimates (see below). Modern

MIP solvers can be used to solve the formulation in (4.6) with optimality guarantees

(Insolia et al., 2021d). However, in order to reduce the computational burden, one

can also use well-established heuristics (Alfons et al., 2013; Kurnaz et al., 2017)

that rely on the FAST-LTS algorithm (Rousseeuw and Van Driessen, 2006). Other

choices may also be considered, such as iterative hard-thresholding and progressive

iterative quantile-thresholding algorithms (She and Owen, 2011; She et al., 2021),

as well as compressive sampling (Needell and Tropp, 2009).

Intuitively, the breakdown point (BdP) measures the largest fraction of contam-

ination that an estimator can tolerate before it becomes arbitrarily biased (Donoho

and Huber, 1983). The finite-sample replacement BdP is defined as ε∗(β̂,Z) =

min(m/n : supZ̃∥β̂(Z̃)∥2 = ∞), where Z̃ denotes the original dataset Z = (X,y)

after the replacement ofm out of n points with arbitrary values. The following result

shows that our proposal achieves the highest possible BdP – i.e., a BdP that can

be arbitrarily large due to the lack of regression equivariance (Smucler and Yohai,

2017).

Proposition 4.1 (High breakdown-point). For any λ > 0 and a > 2 the estimator

β̂ produced by (4.6) achieves a breakdown point of ε∗ = (kn + 1)/n.

Thus, in the presence of MSOM contamination, our proposal breaks down only

if kn < mM . Moreover, this result does not require that the points (xT
i , yi) are

in general position. This is necessary for low-dimensional estimators to achieve

equivariance (Maronna et al., 2006) – something that cannot be achieved by our

proposal (Maronna, 2011). Nevertheless, as it was argued also in Alfons et al.

(2013), we do not recommend setting kn > n/2 for typical applications since the

main goal of robust statistics is to model the “bulk” of the data. This can however
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be beneficial in some instances, e.g., if one is interested in detecting heterogeneous

populations and p is fairly small.

Notably, lasso estimation can be considered as the first iteration in computing

the SCAD penalty based on the LLA method (Zou and Li, 2008). Thus, while SCAD

provides stronger theoretical results for feature selection, one can perform MSOM

outlier detection with existing robust algorithms based on lasso, e.g., the sparseLTS

(Alfons et al., 2013) which solves a trimmed loss problem with an L1-penalty using

the FAST-LTS heuristic algorithm. Then, SCAD can be computed on the set of

non-outlying cases detected by a robust lasso on the first iteration of LLA; this is

the approach followed in our implementation described below. A comparison with

MIP-based procedures is also of great interest but out of the scope of the present

paper. We also remark that a convex relaxation of (4.6a), albeit computationally

very efficient, would lead to the breakdown of the resulting estimates (She and Owen,

2011).

We remark that the notion of breakdown can be misleading for non-equivariant

estimators, such as those produced through penalties (Maronna, 2011; Smucler

and Yohai, 2017; Insolia et al., 2021d). Hence, we provide additional guaran-

tees in terms of simultaneous MSOM outlier detection and feature selection. Let

θ0 = (βT
0 ,ϕ

T
0 )

T ∈ Rp+n be the true parameter vector, and decompose it as θ0 =

(θT
S ,θ

T
Sc)T = {(βT

Sβ
,ϕT

Sϕ
), (βT

Sc
β
,ϕT

Sc
ϕ
)}T where θS contains the p0 non-zero coefficients

belonging to Sβ, and the mM outlying cases belonging to Sϕ (here (·)c indicates the

complement of a set). θ̂0 represents a fixed-effects robust oracle estimator, behaving

as if the true sets of active features and outliers were both known in advance. Let

∥ · ∥∞ indicate the matrix infinity norm, and Λmin(·) and Λmax(·) the minimum and

maximum eigenvalue of a matrix, respectively. We rely on the following conditions

to recover θ̂0.

Conditions List 4.2 (Fixed-effects robust oracle reconstruction).

A. Minimum signal strength: s1n
τ{log(n−mM)}−3/2 → ∞, where s1 = minj∈Sβ

|β0,j|,

τ ∈ (0, 1/2) is a given constant, and supt≥s1/2R
′′
λ(t) = o ((n−mM)−1+2τ ) .

B. Design and proxy matrices: for some constants η ∈ (2τ, 1] and c0 > 0, the matri-
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ces (n −mM)−1(XT
Sc
ϕ,Sβ

XSc
ϕ,Sβ

) and (n −mM)η(XT
Sc
ϕ,Sβ

PRXSc
ϕ,Sβ

)−1 have minimum

and maximum eigenvalues bounded from below and above by c0 and c
−1
0 , respectively.

Moreover ∥∥∥∥∥
(

1

n−mM

XT
Sc
ϕ,Sβ

MRXSc
ϕ,Sβ

)−1
∥∥∥∥∥
∞

≤ {log(n−mM)}3/4

(n−mM)τR′
λ (s1/2)

,

∥∥∥∥XT
Sc
ϕ,S

c
β
MRXSc

ϕ,Sβ

(
XT

Sc
ϕ,Sβ

MRXSc
ϕ,Sβ

)−1
∥∥∥∥
∞
<

R′
λ(0+)

R′
λ (s1/2)

.

C. Proxy matrix: Λmin

(
c1MSγ

γ − Γ
)
≥ 0 and Λmin

(
c1 log(n−mM)Γ−MSγ

γ

)
≥ 0

for some constant c1 > 0, and MSc
γ

γ = 0n−mV
(the null square matrix of size n−mV ).

Here MSc
γ

γ and MSγ
γ index rows and columns of the proxy matrix Mγ corresponding

to non-VIOMs and VIOMs, respectively.

D. MSOM strength: ∆ϕ ≥ dϕσ
2 log(n)/n, where dϕ > 0 is a constant independent of

n and p, and

∆ϕ = min
ϕ̂S̃ϕ

,β̂S̃β

∥XS̃β
β̂S̃β

+ In,S̃ϕ
ϕ̂S̃ϕ

−XSβ
βSβ

− In,Sϕ
ϕSϕ

∥22
nmax(|Sϕ\S̃ϕ|+ |Sβ\S̃β|, 1)

where ϕ̂S̃ϕ
is any estimate such that S̃ϕ ̸= Sϕ and |S̃ϕ| ≤ mM , and β̂S̃β

satisfies

|S̃β| ≤ p0.

Conditions 4.2(A)-(C) are often used in the study of nonconcave penalization meth-

ods such as SCAD (Fan and Li, 2012), and they are based only on the set of non-

outlying cases indexed by Sc
ϕ. Specifically, Condition 4.2(A) controls the minimum

signal strength sn, which is allowed to decay as n−mM increases. Condition 4.2(B)

controls the design and proxy matrices, and ensures that one can limit the correla-

tions between relevant and irrelevant variables. Condition 4.2(C) refers to the choice

of the proxy matrix Mγ. It also implies that the VIOMs location is known, so that

MSc
γ

R = In−mV
and only VIOMs are down-weighted. Operationally, since the set

Sγ is typically unknown, one can rely on the methods discussed in Section 4.3.2 for

VIOM detection and iterate the process. Condition 4.2(D) is specifically required to

detect MSOM outliers based on L0-constraints (Insolia et al., 2021d). It bounds the

difficulty of MSOMs detection based on a minimal degree of separation between the
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true and a least favorable model. Intuitively it requires that, for models of compara-

ble size, MSOM outliers have larger residuals than non-outlying cases. This relates

to the signal-to-noise-ratio and it improves the heuristic argument n > 5p which

is often advocated for robust estimation methods (Rousseeuw and Van Zomeren,

1990). The following result ensures that our proposal achieves simultaneous feature

selection and MSOM outlier detection consistency.

Proposition 4.2 (Robust weak oracle property). Under all conditions in lists 4.1

and 4.2, B(uϕ, lϕ) = {ϕ : ∥ϕ∥0 ≤ uϕ,∆θ ≥ lϕ}, and that log p = o((n − mM)λ2)

and
√
n−mMλ → ∞ as (n − mM) → ∞, then, there exist kn and a strict local

minimiser of (4.6) such that the resulting robust estimates achieve:

1. Sparsity: P
(
β̂Ŝc

β
= 0

)
→ 1;

2. Bounded L∞-norm: P
(
∥β̂Ŝβ

− βSβ
∥∞ < (n−mM)−τ log(n−mM)

)
→ 1;

3. MSOM consistency: sup
ϕ0∈B(uϕ,lϕ)

P
(
Ŝϕ ̸= Sϕ

)
≤ sup

ϕ0∈B(uϕ,lϕ)

P
(
ϕ̂ ̸= ϕ̂0

)
→ 0.

Here the number of features in β is allowed to exponentially increase with the

(uncontaminated) sample size n−mM . This is a robust version of the weak oracle

property in the sense of Lv and Fan (2009) and Fan and Li (2012). It demonstrates

that our proposal asymptotically recovers the sets of truly relevant features and

MSOM outliers, and the regression estimates are consistent under the L∞ loss.

Importantly, MSOM detection through L0-constraints allows the number of non-

zero components in ϕ to be on the order of O(n); see for instance Shen et al. (2013);

Insolia et al. (2021d). This is in contrast with existing methods that detect MSOMs

through continuous penalties and require stronger conditions (Kong et al., 2018)

since soft feature selection techniques typically require a sparsity level on the order

of O(nα) for α < 1 (Zhao and Yu, 2006).

We remark that existing robust model selection procedures based on trimming,

which implicitly consider only MSOM outliers, can be cast into (4.3). However,

differently from (4.6), they do not take into account the random structure of the

problem, such as VIOM outliers. Relatedly, our approach can be naturally extended

to high-dimensional mixed-effects linear models; however, this is left for future work.
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Moreover, regardless the presence of VIOMs, the use of nonconcave penalties in

(4.6) provides an important bridge between existing trimming estimators, which

promote sparsity in the feature space based on convex penalties (Kurnaz et al.,

2017; Alfons et al., 2013), and the optimal approach based on L0-constraints (Insolia

et al., 2021d). Unlike the former, our proposal achieves oracle properties under

weaker assumptions, which can be particularly useful for the latter; e.g., to provide

better warm-starts and big-M bounds, and thus accelerate convergence for MIP

techniques.

4.3.2 Step 2: VIOM detection

VIOM outlier detection, based on sparse estimation of γ in (4.3), differs from sparse

estimation of fixed effects (β and ϕ) due to their intrinsic randomness. Indeed,

while underfitting γ, which results in undetected VIOMs, introduces bias in the

estimated variance for the fixed effects in β, the inclusion of irrelevant γ components,

i.e., wrongly detected VIOMs, decreases the estimator efficiency.

In this section, based on the results from Section 4.3.1, we consider the aug-

mented design matrix X = [XŜβ
,DŜϕ

], where XŜβ
and DŜϕ

index the estimated

kp active features and kn MSOM outliers, respectively. We further assume that

n − kn ≥ kp, and that X
T
X is an invertible matrix of size (kp + kn). The corre-

sponding matrix of error contrasts is denoted as A, and Px is the counterpart of Px

using X in place of X.

Based on REMLE theory, the conditional distribution f(A
T
y|γSγ ) does not de-

pend on β, ϕ and A, which leads to the restricted posterior density

f
(
γSγ |A

T
y
)
= f

(
A

T
y|γSγ

)
f(γSγ )

= (y −DSγγSγ )
TPx(y −DSγγSγ ) + γT

Sγ
Γ−1γSγ . (4.7)

However, (4.7) cannot be used to estimate γ as it relies on the unknown set of VIOM

outliers Sγ, as well as their covariance matrix Γ. We replace (4.7) with the following
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objective function

γ̂ = argmin
γ

(y − γ)TPx(y − γ) + γTM−1
γ γ + (n− kn)

∑
i∈Ŝc

ϕ

Rλ(|γi|) (4.8)

where Mγ is a proxy for DSγΓD
T
Sγ

(see Appendix B.2 for details). In principle

the penalty function Rλ(·) might differ from the one in (4.6), but for simplicity we

consider nonconcave penalties such as SCAD also here.

In order to control the bias for the oracle-assisted estimator γ2i /(n−mM) of σ2ωi,

we condition on the event {mini∈Sγ |γi| ≥
√
n−mMb

∗
0}, where b∗0 ∈ (0,mini∈Sγ σ

√
ωi)

and ωi = var(γi)/σ
2. Let P

Sγ

x comprise the rows and columns of Px belonging to the

VIOM outliers in Sγ. We rely on the following conditions to detect such outliers.

Conditions List 4.3 (VIOM reconstruction).

A. Design matrix and VIOM outliers: for some constant c3 > 0, the minimum and

maximum eigenvalues of (n−mM)−1P
Sγ

x and Γ are bounded from below and above,

respectively, by c3 and c−1
3 . Moreover, there exists δ ∈ (0, 1/2) such that

∥∥∥(PSγ

x + Γ−1)−1
∥∥∥
∞

≤ (n−mM)−(1+δ)/2

R′
λ (

√
n−mMb∗0/2)

,

max
i∈Sc

γ∩Sc
ϕ

∥∥∥Px,iDSγ (P
Sγ

x + Γ−1)−1
∥∥∥
2
<

R′
λ(0+)

R′
λ (

√
n−mMb∗0/2)

.

B. VIOM strength: sup{t≥√
n−mM b∗0/2}R

′′
λ(t) = o ((n−mM)−1).

C. Proxy matrix: Λmin

(
MSc

γ
γ

)
≥ 0 and Λmin

(
MSγ

γ − Γ
)
≥ 0.

Similar conditions can be found in Fan and Li (2012) to perform feature selection

on random effects using nonconcave penalties. The first part of Condition 4.3(A),

which is not particularly restrictive, ensures that the reduced design matrix X and

the covariance matrix of the VIOM outliers Γ are well-behaved. The second part

of the condition, controls the correlation between active and non-active features, as

well as the effect of VIOMs, and depends on the penalty in use. Condition 4.3(B) is

used to detect VIOMs with sizeable residuals, and is easily satisfied by nonconcave

penalties such as SCAD for a suitable tuning parameter λ. Condition 4.3(C) limits
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the choice of the proxy matrix Mγ which is used to detect VIOM outliers; see again

Appendix B.2 for details. The following result shows that our proposal is effective

in dealing with VIOM outliers.

Proposition 4.3 (VIOM treatment). Under all conditions in lists 4.1 and 4.3, and

assuming that b∗0(n−mM)δ−1/2 → ∞ as (n−mM) → ∞, there exists λ such that a

strict local minimizer of (4.8) satisfies:

1. VIOM detection: P
(
Ŝγ = Sγ

)
→ 1;

2. VIOM down-weighting: maxi∈Sγ |γ̂i − γi| ≤ (n−mM)−δ.

Proposition 4.3 ensures that our proposal detects VIOM outliers with asymptotic

probability one, and effectively down-weights them – meaning that the estimated

weights converge to population weights.

4.3.3 Step 3: weights estimation

Steps 1 and 2 described above might induce non-negligible biases, especially in

a finite-sample setting. To mitigate such biases, we propose an ex-post update

for the VIOM outlier weights and other regression parameters depending on them.

This is similar in spirit to post-selection updates implemented with feature selection

methods; e.g., lasso followed by an OLS fit restricted to the set of active features

(Liu and Yu, 2013).

Specifically, we consider a feasible counterpart of the mixed-effects linear model

in (4.2), which is based on the estimated sets Ŝϕ and Ŝγ (MSOM and VIOM outliers),

and Ŝβ (active features). We first remove the units belonging to Ŝϕ from the fit, and

apply REMLE to estimate weights for the units in Ŝγ conditionally on the features

in Ŝβ. Next, we use these weights to update the estimates of βŜβ
. This approach

guarantees that, if Steps 1 and 2 identify the true model in terms of features (Sβ) as

well as outliers (Sϕ and Sγ), then our proposal reaches an optimal trade-off between

breakdown point and efficiency.

The following definition extends the robustly strong oracle property in the sense

of Insolia et al. (2021d) to the concurrent presence of MSOM and VIOM outliers –

hence, we refer to it as the doubly robust strong oracle property.
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Definition 4.1 (Doubly robust strong oracle property). Let S = {Sβ,Sϕ,Sγ}, and

define the doubly robust oracle estimator β̂S = β̂|S as the solution for β in (4.2).

An estimator β̂Ŝ satisfies the doubly robust strong oracle property if (asymptotically)

there exist tuning parameters which ensure P (Ŝ = S) ≥ P (β̂Ŝ = β̂S) → 1 in the

presence of MSOM and VIOM outliers.

The following result refines Propositions 4.2 and 4.3, and ensures that our proposal

achieves the doubly robust strong oracle property – allowing us to rely on large

sample inference.

Theorem 4.1 (Doubly robust strong oracle property). Under all conditions in

lists 4.1-4.3, as (n −mM) → ∞ there exist tuning parameters kn and λ’s in (4.6)

and (4.8) such that the resulting estimator plugging Ŝ in (4.2) achieves:

1. Asymptotic unbiasedness:

∥Eβ̂ − β0∥22 ≤ 2P (Ŝ ≠ S)
{
∥β0∥22 + λM

(
∥W 1/2Xβ0∥22 + σ2 tr(W )

)}
→ 0

where tr(·) is the matrix trace, λM = Λmax{(XT
S̃β
WXS̃β

)+} > 0 and {S̃β :

Ŝβ ̸= Sβ}.

2. Optimal mean squared error (MSE):

E∥β̂ − β0∥22 ≤ σ2 tr(Σ−1
X )/ tr(W )

+ 2P (Ŝ ≠ S)
{
(λM + λMs)

(
∥W 1/2Xβ0∥22 + σ2 tr(W )

)}
where λMs = Λmax{Σ−1

X } and ΣX = (XT
Sβ
WXSβ

).

3. Asymptotic normality:
√
n(β̂ − β0) →d N(0, σ2(ΣX/n)

−1).

Theorem 4.1 demonstrates that our proposal asymptotically behaves as if the sets

of truly relevant features, MSOMs and VIOMs were jointly known in advance. This

guarantees asymptotic unbiasedness and normality of the resulting regression esti-

mates. Indeed, since the estimated unit weights recover the ones in (4.1), where

only MSOMs are excluded from the fit and VIOMs are down-weighted, our proposal
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provides an optimal trade-off between BdP and efficiency. Importantly, Theorem 4.1

provides also some intuition on the estimator’s behavior when it does not retrieve

the doubly robust oracle solution, as well as in finite-sample settings. Indeed, points

1 and 2 in Theorem 4.1 depend on the probability of not recovering the true model,

in terms of active features and/or outlying cases – which increases estimation biases

and MSE.

Finally, weights estimates obtained in Step 3 can be used to update the proxy

matrices used in Sections 4.3.1 and 4.3.2, suggesting an iterative strategy whereby

the process in Steps 1-3 is repeated improving model selection and estimation results

(see Section 4.4). A similar approach was proposed in Fan and Li (2012) to select

and estimate fixed and random effects; here our iteration includes an additional third

step to update the weights. We remark that Steps 1 and 2 of our procedure require

a careful tuning process, which is critical to estimate the set of active features,

as well as weights in a data-driven fashion to guarantee their “adaptiveness” (i.e.,

the breakdown point and the efficiency of the corresponding β estimates). In Ap-

pendix B.2.3 we describe the robust Bayesian information criteria (BIC) proposed

for this tuning.

4.3.4 A heuristic procedure

Here we present a computationally lean heuristic procedure similar to two-stage

regression for mixed-models (Fahrmeir and Tutz, 1994), which is inspired by our

main proposal; namely:

1. Solve (4.6) using the proxy matrix MR = In. Let y
∗ = yŜc

ϕ
and X∗ = XŜc

ϕ,Ŝβ

comprise response and predictor values restricted to the selected relevant fea-

tures and non-outlying cases.

2. Consider again (4.6) using y∗, X∗ and γŜc
ϕ
in place of y, X and ϕ, respectively.

Using MR = In−kn and leaving the estimation of β unpenalized, solve the

model relaxing the L0-constraint (e.g., using SCAD or lasso). Let γ̂Ŝγ
indicate

the resulting sparse estimates.
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3. Consider y∗ = X∗β+ ϵ and, similar to Section 4.3.3, estimate weights for the

units i ∈ Ŝγ using REMLE and use WLS to update the estimation of β.

Step 1 can be efficiently tackled using sparse high-breakdown point estimators based

on heuristics. It detects MSOMs (i.e., it estimates non-zero entries in ϕ) and selects

active features in β. Step 2, which is related to ridge regression, is used to detect

VIOMs. This is equivalent to assuming a MSOM if the active γ coefficients are not

shrunk (e.g., using L0-constraints these units receive zero weights). Otherwise units

are down-weighted or left with their full weights; we follow this approach as MSOMs

are detected in Step 1. Step 3, which might be skipped if one is only interested in

β, is useful to reduce possible biases introduced in Steps 1-2, and in principle might

be combined with Step 2.

In Appendix B.2 we describe tuning strategies for Steps 1 and 2 of our heuristic

procedure, and discuss its connections with ridge and M -estimation.

4.4 Simulation study

In this section we compare our proposal with state-of-the-art methods through nu-

merical simulations. The data is generated as follows. Each row of the n× p design

matrix X contains a 1 (for the intercept), and then entries drawn independently

from a N(0,Σp−1). The p-dimensional coefficient vector β contains p0 non-zero

entries (including the intercept), and the errors εi are drawn independently from a

N(0, σ2
SNR). σ

2
SNR depends on the signal-to-noise-ratio SNR = var(Xβ)/σ2

SNR and

controls the difficulty of the problem. Then, mV and mM points out of n are con-

taminated as in (4.1). Mean shifts affect error and active predictors in the design

matrix, with strengths µε and µx, respectively. Variance inflation affects only the

error, with a common parameter v. Each simulation scenario is replicated t times

and results are averaged.

We consider the following performance metrics: (i) MSE of β̂ partitioned into

variance and squared bias. For each estimated coefficient

MSE(β̂j) =
1

t

t∑
i=1

(β̂ij − βj)
2 =

1

t

t∑
i=1

(β̂ij − βj)
2 + (βj − βj)

2, (4.9)
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where βj = 1
t

∑t
i=1 β̂ij, and we average the MSE across coefficients to produce

MSE(β̂) = 1
p

∑p
j=1MSE(β̂j). (ii) We also consider the MSE of a weighted estimate

of the error variance

ŝ2 =

∑n
i=1 ŵie

2
i

n− p̂0
,

where the ei’s are raw residuals, the ŵi’s are estimated weights, and p̂0 is the number

of selected features. This takes into account weight estimates regardless of whether

some units are in fact contaminated. The MSE decomposition for ŝ2 is computed as

in (4.9), with σ2
SNR − ŝ2 and 0 replacing β̂ and β, respectively, since σ2

SNR varies at

each iteration. (iii) Let the non-zero entries of τ = ϕ+ γ indicate MSOMs and/or

VIOMs. Outlier detection accuracy is measured in terms of false positive and false

negative rates

FPR(τ̂ ) =
|{i ∈ {1, . . . , n} : τ̂i ̸= 0 ∧ τi = 0}|

|{i ∈ {1, . . . , n} : τi = 0}|
, (4.10)

FNR(τ̂ ) =
|{i ∈ {1, . . . , n} : τ̂i = 0 ∧ τi ̸= 0}|

|{i ∈ {1, . . . , n} : τi ̸= 0}|
. (4.11)

These indicate the proportion of uncontaminated units wrongly detected as outliers,

and of undetected contaminated units, respectively. (iv) For sparse settings, we also

consider feature selection accuracy – which is measured in terms of FPR and FNR

as in (4.10) and (4.11), using βj and β̂j (for j = 1, . . . , p) in place of τi and τ̂i,

respectively.

4.4.1 Scenario 1: low-dimensional VIOMs

Here we set p = p0 = 2, with β = (2, 2)T and SNR = 3. The proportion of VIOM

outliers is mV /n = 0.25 and v = 10. The sample size n increases from 50 to 500

with 10 equispaced values. Data for each setting are replicated t = 100 times.

We consider the oracle benchmark (Opt), i.e., a WLS fit based on the true

population weights w, along with: (a) OLS, the ordinary least squares estimator

(b) LTS, the least trimmed squares estimator with trimming set to the true mV /n

(Rousseeuw and Leroy, 1987); (c) MM85, an MM-estimator using a preliminary S-

estimator with 50% BdP and Tukey’s bisquare loss function, with tuning constant
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set to achieve 85% nominal efficiency (Maronna et al., 2006); (d) MM95, as in (c),

with 95% nominal efficiency; (e) FSRws, which uses a variant of forward search and

single REMLE weights as described in Insolia et al. (2021b); (f) Heur, our heuristic

procedure (Section 4.3.4), where in Step 2 γ is estimated through a SCAD penalty,

and in Step 3 each weight is estimated independently using REMLE as in FSRws;

(g) SCADws, our main proposal (Section 4.3), where in Step 3 weights are estimated

by a REMLE fit on the active random components of γ detected by SCAD – as in

FSRws and Heur, these weights are estimated independently. See Appendix B.3 for

further details on algorithmic implementations.

Figure 4.1 shows the MSE for β̂; SCADws, Heur, MM85 and MM95 perform com-

parably and outperform other methods, FSRws improves on LTS and OLS (which

perform poorly across sample sizes). Figure 4.2 shows the MSE for ŝ2. SCADws

outperforms other methods in terms of bias, and its MSE is lowest as n increases.

Unlike the oracle estimator, SCADws is capable of estimating full weights for VIOM

outliers that do not carry sizeable residuals. Relatedly, non-outlying cases with large

residuals by chance are given full weight by the oracle estimator, but not necessarily

by SCADws (see circled dots on the right panel of Figure 4.3). We note also that

in a very few instances, especially the ones with smaller sample sizes, SCADws ex-

hibits larger variability. For comparison we compute a trimmed version of the MSE

in Figure B.2 of Appendix B.3; eliminating these extreme instances, SCADws shows

much stronger performance in terms of trimmed MSE. Heur performs comparably

to SCADws, although its estimates have larger variability, and it outperforms LTS

and OLS, which provide strongly biased estimates because each point receives a

binary or full weight. The performance of FSRws decreases for smaller sample sizes,

where outliers are more often undetected. MM85 outperforms MM95 at this con-

tamination level, but they both have strong biases across sample sizes, highlighting

the drawbacks of M -estimators with pre-specified efficiency values.

The two left panels of Figure 4.3 show FPR and FNR for VIOM detection across

methods, respectively. Overall, SCADws outperforms other methods; its decrease

in terms of FPR along sample sizes is partially compensated by an increase in FNR.

FSRws is close to SCADws for larger sample sizes, but for smaller ones it fails to
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Figure 4.1: Scenario 1. MSE(β̂) comparisons across procedures and sample sizes.
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Figure 4.2: Scenario 1. MSE(ŝ2) comparisons across procedures and sample sizes.

detect some outliers (low FPR and high FNR). Heur performs similarly to SCADws,

and MM-estimators perform poorly in these metrics due to a general down-weighting

of all units. These trends demonstrate the ability of SCADws to detect truly outlying

cases as the sample size increases. On the other hand, while FSRws tends to be

more conservative across sample sizes, LTS has a more aggressive behavior resulting

in larger FPR and lower FNR. The right panel of Figure 4.3 shows a scatterplot

summarizing results for a typical simulation (n = 500). True VIOM outliers, as well

as the ones detected by SCADws, are highlighted.

The box-plots in Figure 4.4 show estimation accuracy across different methods

in terms of 1
p

∑p
i=1(β̂j − βj)

2 (top panels) and σ2
SNR − ŝ2 (bottom panels) as we fix

n = 100 and increase the contamination level mV /n from 0 to 0.3 with a step size
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of 0.1 (from left to right). Here we performed t = 200 independent replications

for each setting. All methods perform comparably in terms of estimation accuracy

for β̂, with SCADws, Heur and MM-estimators reporting a lower variability in

contaminated settings. Focusing on ŝ2, SCADws outperforms other methods in

all settings with VIOMs in terms of bias, as its median is always very close to 0

(dashed red line) and has a moderate variability. This highlights the effectiveness

of its adaptive weights, which can accommodate various levels of contamination

in a data-driven fashion. Importantly, also in the absence of VIOMs, SCADws

performs comparably to non-robust methods (although it has slightly higher bias and

dispersion). Heur performs comparably to SCADws in most settings, but has larger

biases and variability, and other methods suffer as the fraction of contamination

varies. In particular, MM85 and MM95 report a small variability across different

settings, but they have very large biases in most instances – they achieve small

biases only at 30 and 20% contamination, respectively. This highlights again the

drawbacks of M -estimators with pre-specified nominal efficiency.

Additional simulation results with different SNR regimes are reported in Ap-

pendix B.3, and they are consistent with the ones discussed above.
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Figure 4.3: Scenario 1. Left: comparisons of FPR and FNR for outlier detection across
procedures and sample sizes. Right: scatterplot summarizing results for a typical simula-
tion with n = 500 – true VIOMs and VIOMs detected by SCADws are highlighted.

4.4.2 Scenario 2: high-dimensional VIOMs and MSOMs

Here we mimic Scenario 1, but we use sparse fixed effects in β and introduce

MSOM outliers. Specifically, we set p = 150 with Σp−1 = Ip−1, p0 = 4, and n =

100, 150, 200. The proportions of VIOM and MSOM outliers are set to mV /n = 0.25
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Figure 4.4: Scenario 1. Estimation accuracy across different methods for β (top panels)
and σ2SNR (bottom panels) as the contamination level mV /n increases (from left to right).

and mM/n = 0.05, respectively, with mean shifts µε = −10 and µx = 10 in order to

create bad leverage points. Data for each setting are again replicated t = 100 times.

The oracle benchmark (Opt) is computed using population weights and the ac-

tive feature set. In addition to it, we consider: (a) lasso (Tibshirani, 1996); (b)

sparseLTS with 5% trimming (Alfons et al., 2013); (c) TaL, adaptive lasso with

Tukey’s bisquare loss, a preliminary sparseLTS fit, and tuning constant fixed to

achieve 85% nominal efficiency (Chang et al., 2018); (d) Heur, as in Scenario 1, but

with a preliminary fixed-effects selection and MSOM detection using robust SCAD.

(f) SCADws, as in Scenario 1, but with a preliminary fixed-effects selection and

MSOM detection based on (4.6); (g) SCAD2s, two iterations of SCADws where

weights estimated in the first iteration are used to update the proxy matrices and

re-run our 3-step procedure; (h) SCADopt, similar to SCADws, but with proxy ma-

trices built with VIOM population weights. For simplicity, robust methods all use

the true trimming level mM/n. Further details about algorithmic implementation

and the choice of tuning parameters are provided in Appendix B.3.

Table 4.1 provides MSE decompositions for β̂ and ŝ2, and mean (with standard

deviations in parenthesis) FPR and FNR for feature selection and outlier detection.
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Table 4.1: Scenario 2. MSE for β̂ and ŝ2 (decomposed into squared bias and variance),
and mean (SD in parenthesis) FPR and FNR for feature selection and outlier detection,
based on 100 simulation replications.

n p Method bias(β̂)2 var(β̂) bias(ŝ2)2 var(ŝ2) FPR(β̂) FNR(β̂) FPR(τ̂) FNR(τ̂)

100 150 Opt 0.00000 0.00081 0.01 0.11 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
Lasso 0.08391 0.00497 433.78 18.73 0.03(0.05) 0.57(0.20) 0.00(0.00) 1.00(0.00)
SparseLTS 0.00216 0.02984 47.99 18.25 0.41(0.04) 0.00(0.05) 0.00(0.00) 0.83(0.01)
TaL 0.00100 0.00545 2.39 2.24 0.02(0.04) 0.00(0.05) 1.00(0.00) 0.00(0.00)
Heur 0.00019 0.01780 0.92 2.04 0.06(0.04) 0.00(0.05) 0.01(0.02) 0.69(0.10)
SCADopt 0.00001 0.00194 0.00 0.49 0.00(0.00) 0.01(0.08) 0.01(0.05) 0.45(0.11)
SCADws 0.00014 0.00565 0.06 1.81 0.00(0.01) 0.02(0.08) 0.03(0.04) 0.48(0.13)
SCAD2s 0.00001 0.00220 0.00 0.62 0.00(0.00) 0.01(0.08) 0.03(0.06) 0.47(0.12)

150 150 Opt 0.00000 0.00062 0.02 0.07 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
Lasso 0.08497 0.00312 423.81 13.33 0.03(0.04) 0.52(0.16) 0.00(0.00) 1.00(0.00)
SparseLTS 0.00085 0.01909 35.73 6.13 0.47(0.05) 0.00(0.00) 0.00(0.00) 0.84(0.00)
TaL 0.00028 0.00173 1.58 0.90 0.01(0.01) 0.00(0.00) 1.00(0.00) 0.00(0.00)
Heur 0.00009 0.00798 0.35 0.88 0.04(0.04) 0.00(0.00) 0.01(0.02) 0.61(0.12)
SCADopt 0.00000 0.00078 0.02 0.23 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.47(0.09)
SCADws 0.00000 0.00137 0.02 0.32 0.00(0.00) 0.00(0.02) 0.03(0.03) 0.46(0.09)
SCAD2s 0.00001 0.00092 0.03 0.30 0.00(0.00) 0.00(0.00) 0.03(0.03) 0.46(0.09)

200 150 Opt 0.00000 0.00045 0.02 0.07 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
Lasso 0.08608 0.00240 448.48 11.23 0.03(0.04) 0.43(0.17) 0.00(0.00) 1.00(0.00)
SparseLTS 0.00063 0.01536 32.44 4.44 0.51(0.05) 0.00(0.00) 0.00(0.00) 0.83(0.00)
TaL 0.00019 0.00107 1.26 0.72 0.01(0.01) 0.00(0.00) 1.00(0.00) 0.00(0.00)
Heur 0.00005 0.00515 0.14 0.80 0.04(0.04) 0.00(0.00) 0.01(0.02) 0.56(0.11)
SCADopt 0.00000 0.00059 0.02 0.18 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.47(0.07)
SCADws 0.00000 0.00074 0.00 0.22 0.00(0.00) 0.00(0.00) 0.02(0.02) 0.47(0.08)
SCAD2s 0.00000 0.00067 0.00 0.24 0.00(0.00) 0.00(0.00) 0.02(0.02) 0.48(0.08)

In terms of MSE for β̂, as expected, SCADopt resembles very closely the oracle

estimator. SCAD2s, which improves upon SCADws, outperforms other feasible

estimation methods. TaL has higher biases and variances, and Heur improves upon

sparseLTS. Lasso breaks down due to the presence of MSOM outliers. In terms of

MSE for ŝ2, SCADopt converges faster to the oracle solution, SCAD2s improves

again upon SCADws, and they outperform competing methods. Heur outperforms

TaL, but they have higher biases and variances compared to SCADws and SCAD2s,

which are even larger for sparseLTS. Lasso provides very poor estimates due to the

presence of outliers.

In terms of FPR and FNR for feature selection, SCADopt behaves as the oracle

estimator, SCAD2s, which improves upon SCADws, generally outperforms other

methods. TaL produces higher FPR across sample sizes, and Heur provides denser

solutions – but still sparser than sparseLTS. Lasso performs poorly also here (high

number of false negatives), since it breaks down. We note that most robust methods

are at times affected by MSOMs for smaller sample size (larger FNR and MSE) where

their detection is harder.
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Focusing on the FPR and FNR for outlier detection, unlike the oracle estimator,

SCADopt is capable of estimating full weights for VIOMs with negligible residuals

(higher FNR), and it is not prone to detecting non-outliers with large residuals by

chance (very low FPR). Notably though, although weights need to be estimated, also

SCADws and SCAD2s perform well in both these metrics. For smaller sample sizes,

SCAD2s reduces FNR compared to SCADws, which results is an overall performance

increase for the iterative approach. Heur provides larger FNR and smaller FPR.

SparseLTS has FPR equal to 0 and large FNR, as it detects only extreme MSOM

outliers. TaL performs poorly due to a general down-weighting of all points, and

lasso performs poorly because it assigns full weight to each observation.

Additional simulation results with larger sparsity level, weaker SNR and collinear

features, where our proposal generally outperformed others in most settings, are

provided in Appendix B.3.

4.5 Real-data examples

4.5.1 An Application to Boston housing data

The Boston housing dataset (http://lib.stat.cmu.edu/datasets/boston)

contains n = 506 housing location and 13 predictors; namely: 1. crim (the per

capita crime rate), 2. zn (the proportion of residential land zoned for lots over

25,000 sq.ft), 3. indus (the proportion of non-retail business acres), 4. chas (a

“Charles River” dummy), 5. nox (the nitrogen oxides concentration in parts per 10

million), 6. rm (the average number of rooms per dwelling), 7. age (the proportion

of owner-occupied units built prior to 1940), 8. dis (a weighted mean distance to five

Boston employment centers), 9. rad (an index of accessibility to radial highways),

10. tax (the full-value property-tax rate per $10,000), 11. ptratio (the pupil-teacher

ratio), 12. black (1000(Bk - 0.63)2, where Bk is the proportion of African-American

residents), and 13. lstat (the percentage of the population in lower socioeconomic

status). These are used to explain medv, the median value of owner-occupied homes

in thousand dollars.
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Using all predictors plus an intercept, we applied the LTS estimator with de-

creasing trimming and computed the robust BIC in Riani et al. (2022). This helps

identify a reasonable trimming level to use across different methods. The left panel

of Figure 4.5 shows that the curve flattens for low levels, with a noticeable drop only

for very small amounts of trimming. Thus, using a 2% trimming, we used SCAD2s

to select the relevant features on the full dataset. These are the predictors number

6, 8, 10, 11, 12, 13 (plus the intercept). The central panel of Figure 4.5 shows

the robust BIC recomputed on these features alone. Compared to the left panel,

it shows stronger evidence of both MSOM outliers (the curve achieves a maximum

around 2% trimming) and VIOM outliers (the curve flattens starting from 10-5%).

The right panel of Figure 4.5 shows robust residuals obtained by SCAD2s on the full

dataset, where cases detected as MSOM and VIOM outliers are highlighted; they

are 10 and 26, respectively. See Table B.7 in Appendix B.4 for a comparison with

other methods.
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Figure 4.5: Boston housing data results. Left: robust BIC computed with the LTS on
all points and features. Center: robust BIC computed on all points and only the features
selected using SCAD2s. Right: SCAD2s residuals labeled as non-outlying (blue), MSOM
(red), and VIOM (green).

Next, we extended the analysis along lines similar to Chang et al. (2018). We

considered 50 random splits of the data in training and testing sets (300 and 206

units, respectively). Based on the observations above we used again 2% trimming

across hard trimming methods. The left panel of Figure 4.6 shows box-plots of the

sparsity levels, i.e., the number of features retained by different methods, across

the 50 random training sets. Some methods do not provide sparse estimates by

definition, but also lasso and our heuristic proposal provide very dense solutions.

TaL and sparseLTS provide denser solutions compared to SCAD2s and SCADws,
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and SCAD2s reports higher variability than SCADws. The right panel of Figure 4.6

shows the distribution of the selected features across the 50 random training sets.

The solution for SCAD2s is in line with our prior analyses on the full data – predic-

tors number 6, 8, 10, 11, 12, 13 are selected most of the times. TaL provides similar

results, but supports the relevance of predictors number 1 and 4, and selects 10 on

a very few replications.
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Figure 4.6: Box-plots of the estimated sparsity levels (left) and distribution of the se-
lected features for sparse methods (right) across 50 random training sets for different
methods on Boston housing data.

O
L
S

L
T

S

M
M

8
5

M
M

9
5

F
S

R
w

s

L
a
ss

o
S

p
a
rs

e
L
T

S

T
a
L

H
e
u
r

S
C

A
D

w
s

S
C

A
D

2
s

3

3.5

4

4.5

M
A

P
E

O
L
S

L
T

S

M
M

8
5

M
M

9
5

F
S

R
w

s

L
a
ss

o
S

p
a
rs

e
L
T

S

T
a
L

H
e
u
r

S
C

A
D

w
s

S
C

A
D

2
s

6

8

10

12

14

16

18

T
M

S
P

E

Figure 4.7: Box-plots of MAPE (left) and TMSPE (right) across 50 random train-
ing/testing splits for different methods on Boston housing data.

Figure 4.7 compares the prediction accuracy of different methods across the 50

random training/testing splits based on the mean absolute (MAPE, left panel) and

trimmed mean squared (TMSPE, right panel) prediction errors, with an upper 10%

trimming. SCAD2s improves upon SCADws and provides a good trade-off between

model parsimony and prediction accuracy. Both in terms of MAPE and TMSPE,

91



Table 4.2: Comparison across different methods for glioblastoma gene expression data
in terms of sparsity level, and MAPE and TMSPE computed on testing data.

Method p̂0 MAPE TMSPE

Lasso 2 0.7405 0.5111
SparseLTS 25 0.6682 0.3959
TaL 4 0.6813 0.4309
Heur 7 0.7947 0.5641
SCADws 4 0.6323 0.3442
SCAD2s 3 0.6197 0.3360

SCAD2s performs comparably to other methods with denser solutions, and at times

even better, but it provides more interpretable results. Our heuristic procedure

performs very well in terms of prediction – often better than non-sparse robust

estimators – but it has very dense solutions.

4.5.2 An application to glioblastoma gene expression data

Glioblastoma is the most frequent primary malignant brain tumor in the adult

population, and one of the most lethal forms of cancer. Glioblastoma microarray

gene expression data (https://horvath.genetics.ucla.edu/html/Coexpress

ionNetwork/ASPMgene) were collected through high-density Affymetrix arrays by

Horvath et al. (2006). They include two different sets of clinical tumor samples,

where the number of patients is 55 and 65 and, for each sample, recordings of 3,600

genes expression values.

Wang et al. (2011) and Chang et al. (2018) used feature selection techniques and

their robust counterparts to analyze these data. Following their modeling strategy,

we used the set with ntr = 55 samples as training set, the one with nte = 61 samples

as test set, and took the logarithm of time to death as response variable. Censored

observations (i.e., patients that were alive at the last followup) were removed at

the outset, bringing the sample sizes to ntr = 50 and nte = 55. We further log-

transformed all 3,600 predictors (gene expression values) to mitigate skews, and if

the absolute pairwise Pearson correlation between two predictors in the training set

exceeded the cut-off of 0.75, then the variable with higher mean absolute correlation

across all remaining features was removed from the modeling exercise at the outset

– bringing the number of predictors down to p = 570 (plus the intercept term).
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We applied SCADws, SCAD2s and Heur along with sparseLTS, TaL, and clas-

sical lasso on the training set, and evaluated their predictive power on the test set

– hard trimming approaches used a conservative 50% trimming. Table 4.2 com-

pares these methods in terms of sparsity, MAPE and TMSPE (also here with an

upper 10% trimming). Focusing on out-of-sample prediction accuracy, as measured

by MAPE and TMSPE, SCAD2s improves upon SCADws and outperforms other

methods. SparseLTS and TaL perform comparably, outperforming our heuristic

procedure and lasso. Moreover, while SCAD2s selects only 3 features, SCADws

and TaL select 4 predictors, and their solutions are much sparser and thus more

interpretable than the ones for sparseLTS and Heur. Lasso produces a very sparse

solution but performs poorly in terms of predictive power, which is likely due to the

presence of outlying cases. Overall, our analysis is consistent with previous stud-

ies in the literature, and also here SCAD2s provides a very good trade-off between

sparsity and prediction accuracy.

4.6 Final remarks

We combine different contamination schemes with sparse estimation methods for

linear regression settings. This extends robust, sparse estimators based on hard

trimming, which explicitly assume only MSOM outliers, to the co-occurrence of

VIOM outliers. Importantly, as we rely on nonconcave penalties, our approach

bridges the gap between robust estimation methods enforcing sparsity based on

convex penalties, and the use of optimal L0-constraints. Moreover, unlike methods

which provide a general down-weighting for all points based on M -estimation, our

proposal effectively estimates the weight for each data point. Indeed, asymptotically,

non-outlying cases receive full weights, MSOMs are excluded from the fit, and only

VIOMs are down-weighted.

The theoretical results characterizing our proposal include its high breakdown

point, a robust oracle property – which allows the number of feature to increase

exponentially with the sample size – and the accurate detection of each type of

outliers with probability tending to one. Moreover, including a computationally
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cheap extra step, our proposal achieves a doubly robust strong oracle property. This

provides optimal unit weights and thus an optimal trade-off between high-breakdown

point and efficiency.

Our work can be extended in several directions. We plan to investigate scenar-

ios with correlated errors, generalizing our approach for VIOM outlier detection to

non-diagonal covariance matrices. More generally, we are studying high-dimensional

mixed-effects linear models affected by data contamination, which allow one to effec-

tively model data with a natural group structure (e.g., spatio/temporal relations).

In this setting, VIOM outliers might also arise in the random effects. This has been

investigated in Gumedze et al. (2010) for a single outlier in a known position, but

we plan to extend it to the case of multiple MSOM and VIOM outliers in unknown

positions.

Moreover, as our theoretical results critically rely on tuning parameters control-

ling the trade-off between sparsity and efficiency, we are interested in the develop-

ment of suitable information criteria for sparse models affected by different sources

of contamination, extending the robust BIC introduced in this work. We are also

developing more effective ways to build proxy matrices used in our procedure, as

well as iterative approaches. Relatedly, VIOMs can be studied in the context of

heteroscedatic linear models, where some robust and sparse approaches have been

recently investigated in Gijbels and Vrinssen (2019); Wang and Loh (2020). Finally,

we are exploring how to include into our framework cellwise contamination (Alqallaf

et al., 2009; Filzmoser et al., 2020), which is recently receiving a lot of attention for

high-dimensional settings (Su et al., 2021; Bottmer et al., 2022).
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“Strange events permit themselves the luxury of oc-

curring”

Charlie Chan (1928)

Chapter 5

Robust Variable Selection with

Optimality Guarantees for

High-Dimensional Logistic

Regression

This chapter is based on: Insolia, L., Kenney, A., Calovi, M., and Chiaromonte, F.

(2021c). Robust variable selection with optimality guarantees for high-dimensional

logistic regression. Stats, 4(3):665–681.

Reproducible and documented code for this chapter is available at: https:

//github.com/LucaIns/SFSOD logreg.

5.1 Introduction

Logistic regression is widely used to solve classification tasks and provides a proba-

bilistic relation between a set of covariates (i.e., features, variables or predictors) and

a binary or multi-class response (Cox and Snell, 1989; McCullagh and Nelder, 1989).

The use of the logistic function can be traced back to the early 19th century, when

it was employed to describe population growth (Cramer, 2002). However, despite its

popularity, the classical logistic regression framework based on maximum likelihood

(ML) estimation can suffer from several drawbacks. In this work, we specifically
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focus on two key challenges: high dimensionality and data contamination. The

large dimensionality might lead to overfitting or even singularity of the estimates if

the sample size is smaller than the number of features, and this motivates the use

of penalized estimation techniques. Importantly, penalized methods can also pro-

mote sparsity of the estimates in order to improve the interpretability of the model

(Friedman et al., 2010). On the other hand, the presence of outliers might disrupt

classical and non-robust estimation methods leading to biased estimates and poor

predictions. In particular, since the log-odds ratio depends linearly on the set of

covariates included in the model, an adversarial contamination of the latter might

create bad leverage values that break down ML-based approaches (Maronna et al.,

2006). This motivates the development of robust estimation techniques. Notably,

penalized estimation and robustness with respect to the presence of outliers are very

closely related topics (She and Owen, 2011; Insolia et al., 2021d,a), and they have

recently also been combined for logistic regression settings (Tibshirani and Manning,

2013; Kurnaz et al., 2017).

In this work, we provide a provably optimal approach to perform simultaneous

feature selection and estimation, as well as outlier detection and exclusion for logis-

tic regression problems. Here optimality refers to the fact the the global optimum

of the underlying “double” combinatorial problem is indeed achievable and, even if

the algorithm is stopped before convergence, one can obtain optimality guarantees

by monitoring the gap between the best feasible solution and the problem relaxation

(Bertsimas et al., 2016; Schrijver, 1986). Specifically, we consider an L0 sparsity as-

sumption on the coefficients (Zhang and Zhang, 2012) and a logistic slippage model

for the outlying observations (Bedrick and Hill, 1990). We further build upon the

work in Insolia et al. (2021d) and rely on L0-constraints to detect outlying cases and

select relevant features. This requires us to solve a double combinatorial problem,

across both the units and the covariates. Importantly, the underlying optimiza-

tion can be effectively tackled with state-of-the-art mixed-integer conic programming

solvers. These target a global optimum and, unlike existing heuristic methods, pro-

vide optimality guarantees even if the algorithm is stopped before convergence.

We use our proposal to investigate the main drivers of honey bee (Apis mel-
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lifera) loss during winter (overwintering), which represents the most critical part

of the year in several areas (Seeley and Visscher, 1985; Döke et al., 2015; Beyer

et al., 2018). In particular, we use survey data collected by the Pennsylvania State

Beekeepers Association, which include information related to honey bee survival,

stressors and management practices, as well as bio-climatic indexes, topography

and land use information (Calovi et al., 2021). Previous studies mainly focused on

predictive performance and relied on statistical learning tools such as random forest,

which capture relevance but not effect signs for each feature, and do not account

for the possible impact of outlying cases – making results harder to interpret and

potentially less robust. In our analysis, based on a logistic regression model, we

are able to exclude redundant features from the fit while accounting for potential

data contamination through an estimation approach that simultaneously addresses

sparsity and statistical robustness. This provides important insights on the main

drivers of honey bee loss during overwintering – such as the exposure to pesticides,

as well as the average temperature of the driest quarter and the precipitation level

during the warmest quarter. We also show that the data set does indeed contain

outlying observations.

The remainder of the paper is organized as follows. Section 5.2 provides some

background on existing penalized and robust estimation methods. Section 5.3 details

our proposal and its algorithmic implementation. This is compared with existing

methods through numerical simulations in Section 5.4. Our analysis of the drivers of

honey bee loss is presented in Section 5.5. Final remarks are provided in Section 5.6.

5.2 Background

Let X = (x1, . . . ,xn)
T ∈ Rn×p be an observed design matrix, and y ∈ {−1, 1}n the

corresponding set of binary response classes. The two-class logistic regression model

assumes that the log-odds ratio is a linear function of the covariates

log

(
P (yi = 1|xi)

1− P (yi = 1|xi)

)
= xT

i β, (5.1)
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where β ∈ Rp are the unknown regression parameters (possibly sparse). We also

assume the presence of an intercept term, so that β = {β0, β1, . . . , βp−1} and X

contains only 1’s in the first column. Thus, for any xi ∈ Rp, it follows from (5.1)

that

P (yi = 1|xi) =
exp(xT

i β)

1 + exp(xT
i β)

=
1

1 + exp(−xT
i β)

and

P (yi = −1|xi) = 1− P (yi = 1|xi) =
1

1 + exp(xT
i β)

.

Hence, in full generality, the logistic model can be expressed as

P (yi|xi) =
1

1 + exp(−yixT
i β)

. (5.2)

Assuming that yi|xi, for i = 1, . . . , n, follow independent Bernoulli distributions,

the likelihood function associated to (5.2) is

L(β) =
n∏

i=1

P (yi = 1|xi)
(1+yi)/2P (yi = −1|xi)

(1−yi)/2,

which provides the ML estimator

β̂ = argmin
β

n∑
i=1

d(xT
i β, yi) (5.3)

where the deviance is defined as: d(xT
i β, yi) = log

(
1 + exp(−yixT

i β)
)
. The opti-

mization problem in (5.3) is convex, and it admits a unique and finite solution if

and only if the points belonging to each class “overlap” to some degree (i.e., the

two classes are not linearly separable based on predictors information; Albert and

Anderson 1984; Santner and Duffy 1986). Otherwise, there exist infinitely many

hyperplanes perfectly separating the data, and the ML estimator is undetermined.

Importantly, in this setting, the ML estimator is consistent and asymptotically nor-

mal as n → ∞ under weak assumptions (Fahrmeir and Kaufmann, 1985). How-

ever, unlike ML estimation for linear regression problems, there is no closed-form

solution for (5.3), and iterative methods such as the Newton–Raphson algorithm

are commonly employed, which can be solved through iteratively reweighted least
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squares (McCullagh and Nelder, 1989; Hastie et al., 2009).

5.2.1 Penalized logistic regression

The ML estimator in (5.3) does not exist if p > n. Moreover, in the presence of

strong collinearities in the predictor space, even if p < n, the ML estimator might

provide unstable estimates or lead to overfitting (i.e., to estimates with low bias and

high variance and thus poor predictive power). In order to overcome these limita-

tions, penalized estimation methods based on the L2-penalty have been considered

(Duffy and Santner, 1989; Le Cessie and Van Houwelingen, 1992). To promote

sparse estimates and improve interpretability, several authors also studied the use

of the L1-norm (Koh et al., 2007; Friedman et al., 2010). Although this class of

“soft” penalization methods is computationally very efficient due to convexity, it

provides biased estimates. Further approaches combine the L1 and L2-norms in

what is known as the elastic net penalty (Zou and Hastie, 2005) – coupled with an

adaptive weighting strategy to regularize the coefficients (Algamal and Lee, 2015).

Importantly, under suitable assumptions, this guarantees that the resulting estima-

tor satisfies the so-called oracle property, meaning that the probability of selecting

the truly active set of covariates (i.e., the ones corresponding to nonzero coefficients)

converges to one, and at the same time the coefficient estimates are asymptotically

normal with the same means and variance structure as if the set of active features

was known a priori (Fan and Li, 2001).

Best subset selection is a traditional “hard” penalization method that approaches

the feature selection problem combinatorially (Miller, 2002). Ideally, one should

compare all possible fits of a given size, for all possible sizes – say 1 ≤ kp ≤ min(n, p).

This was long considered unfeasible for problems of realistic size p even in the linear

regression setting (Hastie et al., 2009). Nevertheless, leveraging recent developments

in hardware and mixed-integer programming solvers, Bertsimas et al. (2017) pro-

posed the use of L0-constraints on β to efficiently and effectively solve the underlying

best subset logistic regression problem using mixed-integer nonlinear programming

techniques. This extends the approach in Bertsimas et al. (2016) for linear regres-

sion and relies on the L0 pseudo-norm, which is defined as ∥β∥0 =
∑

j I(βj ̸= 0),

99



where I(·) is the indicator function. Notably, oracle properties can be established

in this setting under weaker assumptions than other proposals (Shen et al., 2012).

5.2.2 Robust logistic regression

Outliers may influence the fit, hindering the performance of ML-based estimators

and leading to estimation bias and weaker inference (Copas, 1988). Multiple outliers

are particularly problematic and difficult to detect since they can create masking

(false negative) and swamping (false positive) effects (Imon and Hadi, 2008). Here,

as in linear regression, raw (deviance) residuals can be used to build several re-

gression diagnostics (Imon and Hadi, 2008; Landwehr et al., 1984; Pregibon, 1981).

Different approaches have been introduced to overcome the limitations of classical

ML estimation in low-dimensional settings (Maronna et al., 2006). For instance, a

weighted counterpart of ML estimation was proposed in Carroll and Pederson (1993)

(see also Rousseeuw and Christmann 2003), robust M -estimators were developed in

Pregibon (1981), and Bianco and Yohai (1996) introduced an additional correc-

tion term that provides a robust class of Fisher-consistent M -estimators – see also

Künsch et al. (1989); Croux and Haesbroeck (2003) for bounded influence estima-

tors. Furthermore, an adaptive weighted maximum likelihood where the estimator

efficiency is calibrated in a data-driven way was considered in Gervini (2005). A

distributionally robust approach was proposed in Shafieezadeh Abadeh et al. (2015),

which is similar in spirit to the use of robust optimization in Bertsimas et al. (2017)

where uncertainty sets have to be taken into account.

The logistic slippage model, which closely resembles the mean-shift outlier model

for linear regression problems (Beckman and Cook, 1983), was explicitly considered

in Bedrick and Hill (1990) and leads to the removal of outliers from the fit. How-

ever, since the number and position of outlying cases are generally unknown, one

should in principle compare the exclusion of 0 ≤ kn ≤ n/2 points from the fit (if

one is willing to assume that less than half of the data are in fact contaminated).

Building upon high breakdown point estimators and deletion diagnostics, a forward

search procedure based on graphical diagnostic tools that is effective in detecting

masked multiple outliers and highlights the influence of individual observations on
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the fit was developed in Atkinson and Riani (2000, 2001). This approach is robust,

computationally cheap and provides a natural order for the observations according

to their agreement with the model.

For high-dimensional settings, Tibshirani and Manning (2013) focused on the

possible contamination of the y labeling and proposed L1 penalization methods for

reducing the influence of outliers and performing feature selection. However, this

provides a sub-optimal strategy both for sparse estimation (Shen et al., 2012) and

outlier detection (She and Owen, 2011). More recently, the elastic net penalty has

been combined with a trimmed loss function which excludes the kn most influential

observations from the fit (Kurnaz et al., 2017). This mimics the least trimmed

squares (LTS) estimator for linear regression (Rousseeuw and Leroy, 1987), and is

equivalent to assuming a logistic slippage model. On the other hand, the trimmed

loss function is solved through heuristic methods based on resampling, and the

elastic net penalty in use is sub-optimal in terms of feature selection.

5.3 MIProb: robust variable selection under the

logistic slippage model

We consider a two-class logistic regression model affected by data contamination

(i.e., outliers) and comprising irrelevant covariates. Specifically, we focus on the

logistic slippage model, where the number, position and strength of the outliers are

unknown (Beckman and Cook, 1983; Bedrick and Hill, 1990). The main idea is to

enforce integer constraints on the number of outlying cases and relevant features

in order to improve the interpretability of the model and its robustness. Now, we

introduce a general formulation that in addition to simultaneous feature selection

and outlier detection encompasses an optional ridge penalty, which can be useful

to tackle strong collinearity structures (Zou and Hastie, 2005; Bertsimas et al.,

2017), low signal-to-noise ratio regimes (Hastie et al., 2020) and data perturbations

(Breiman, 1995). Thus, we propose to solve the following discrete optimization

problem:
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[
β̂, ϕ̂

]
= argmin

β,ϕ

n∑
i=1

d(xT
i β + ϕi, yi) (5.4)

s.t. ∥β∥0 ≤ kp (5.4a)

∥ϕ∥0 ≤ kn (5.4b)

∥β∥2 ≤ l. (5.4c)

Due to the (double) combinatorial nature of the problem, the formulation in (5.4)

is computationally daunting (Bernholt, 2006). Nevertheless, nowadays it can be

solved effectively and at times also efficiently with specialized solvers. Importantly,

it relates to the use of a trimmed loss function as in Kurnaz et al. (2017), and it

extends the work in Insolia et al. (2021d) for sparse linear regression models affected

by data contamination in the form of mean-shift outliers. However, here the use of a

nonlinear and nonquadratic objective function complicates the matter and requires

special attention.

We also note that (5.4) can be easily extended to model structured data, such

as hierarchical or group structures. For instance, in Section 5.5 we enforce the so-

called group sparsity constraints (Yuan and Lin, 2006) to model categorical features.

Moreover, it can be naturally extended to multinomial logistic regression models

along lines similar to those in Bianco and Yohai (1996).

5.3.1 Algorithmic implementation

The optimization problem in (5.4) can be formulated as a mixed-integer conic pro-

gram. For simplicity, we first consider only the objective function and the L2 ridge-

like penalty. Specifically, including auxiliary variables t1, · · · , tn and r, the objective

(5.4) and the constraint (5.4c) can be equivalently reformulated as

min
t,r,β

n∑
i=1

ti + λr (5.5)

s.t. ti ≥ log (1 + exp (−yi(β′xi + ϕi))) (5.5a)

r ≥ ∥β∥2. (5.5b)
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The constraints in (5.5a) can be expressed using the exponential cone

Kexp =
{
(x, y, z) ∈ R3 : y exp(x/y) ≤ z

}
,

and provide

exp (−ti) + exp (ui − ti) ≤ 1

where ui = −yi(β′xi + ϕi). Including auxiliary variables zi1 and zi2 such that

zi1 ≥ exp (ui − ti) and zi2 ≥ exp (−ti), it follows that (5.5a) is equivalent to
(ui − ti, 1, zi1) ∈ Kexp

(−ti, 1, zi2) ∈ Kexp

zi1 + zi2 ≤ 1.

Thus, the proposed mixed-integer conic programming formulation for logistic

regression in (5.4) – denotedMIProb for simplicity – which provides sparse estimates

for β and removes outliers through ϕ, is

min
t,z,r,β,zβ ,ϕ,zϕ

n∑
i=1

ti + λr (5.6)

s.t. −Mβ
j z

β
j ≤ βj ≤ Mβ

j z
β
j (5.6a)

−Mϕ
i z

ϕ
i ≤ ϕi ≤ Mϕ

i z
ϕ
i (5.6b)

p∑
j=1

zβj ≤ kp (5.6c)

n∑
i=1

zϕi ≤ kn (5.6d)

(ui − ti, 1, zi1) ∈ Kexp

(−ti, 1, zi2) ∈ Kexp

zi1 + zi2 ≤ 1

r ≥ ∥β∥2

zβj ∈ {0, 1}, βj ∈ R, j = 1, . . . , p

zϕi ∈ {0, 1}, ϕi ∈ R, i = 1, . . . , n.
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The big-M bounds Mβ and Mϕ in constraints (5.6a) and (5.6b) have p and n

entries, respectively, which can be tailored for each βj and ϕi. These should be

wide enough to include the true regression coefficients and zero-out the effects of

the true outliers, but not so wide as to substantially increase the computational

burden. For instance, an ensemble method based on existing heuristic and robust

procedures to create suitable big-M bounds was considered in Insolia et al. (2021d).

However, a similar approach is challenging in this framework given a “pool” of

openly available robust algorithms is not available for logistic regression models –

unlike in linear regression. Here, we simply set large, more conservative bounds to

maintain accuracy at the cost of computing time. Extensions of additional heuristics

to strengthen these bounds are worth further investigation, but beyond the scope of

this work. The L0-norm constraints (5.6c) and (5.6d) depend on positive integers kp

and kn, which control the sparsity level for feature selection and the trimming level

for outlier detection, respectively. As with any selection procedure, these tuning

parameters are key to retain selection and detection accuracy. However, kp and kn

can be treated differently. For the former, any deviation from the true sparsity level

will result in false negatives/positives. For the latter, a common approach (Kurnaz

et al., 2017; Atkinson and Riani, 2001) is to select an inflated trimming amount

(i.e., higher than the true level) to avoid masking and swamping effects, and then

refine the solution to recover efficiency.

Importantly, in this work we use existing specialized solvers (see Section 5.4)

but the development of a tailored approach could be beneficial. For instance, outer

approximation techniques in mixed-integer nonlinear programming with dynamic

constraint generation were combined in Bertsimas et al. (2017), as well as the use of

first-order methods, which reduce the computational burden compared to general-

purpose solvers. Extensions of such approaches to this setting are left for future

work.

5.3.2 Additional details

In order to achieve good estimates it is essential to tune the sparsity level kp and the

trimming level kn, as well as the ridge-like tuning parameter λ if present, in a data-
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driven fashion. For instance, one might consider robust counterparts of information

criteria or cross-validation. In our simulation study, we do not include the L2-

constraint and, for a given trimming level kn, we use a robust version of the Bayesian

information criterion (BIC) similarly to Insolia et al. (2021d). In symbols, this is

BIC =
∑n

i=1 d(x
T
i β̂, yi) + kp ln (n− kn), where d(x

T
i β̂, yi) are the final deviances

for a given estimator – recall that deviances corresponding to trimmed points are

equal to 0. If an intercept term is included in the model, we force its selection as

an active feature. Other tuning procedures such as cross-validation benefit from the

use of effective warm-starts to accelerate convergence of the algorithm when solving

over several training and testing sets splits – see Insolia et al. (2021d) for additional

details.

The breakdown point (BdP) is the largest fraction of contamination that an esti-

mator can tolerate before it might provide completely unreliable estimates (Donoho

and Huber, 1983). It can be formalized either by replacing good units with outliers or

adding outliers to an uncontaminated dataset. Using a unit-replacement approach,

it has been shown that one can break down (unpenalized) ML estimation by simply

removing units belonging to the overlaps among classes (Christmann, 1994; Künsch

et al., 1989). Using unit-addition, Croux et al. (2002) showed that when severe

outliers are added to a non-separable dataset, ML estimates do not break down due

to “explosion” (to infinity), but they can break down due to “implosion” (to zero).

Specifically, the BdP for the ML estimator is equal to ε∗ML = 2(p−1)/{n+2(p−1)}

(which is 0% asymptotically), since the estimates can implode to zero, adding 2(p−1)

appropriately chosen outliers. Thus, unlike in linear regression, here one has to take

into account not only the explosion of the estimates, but also their implosion, which

is often more difficult to detect.

We leave theoretical derivations concerning our MIProb proposal in (5.6) to

future work. However, we note that MIProb clearly represents a trimmed likelihood

estimator as a special case, so in this special case it inherits properties such as the

high breakdown point (Müller and Neykov, 2003; Hadi and Luceño, 1997). Moreover,

these results might be combined with the oracle properties for feature selection

described in Shen et al. (2012) in order to obtain a logistic version of the robustly
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strong oracle property introduced in Insolia et al. (2021d).

5.4 Simulation study

In this section, we use a simulation study to compare the performance of our proposal

with state-of-the-art methods. The simulated data is generated as follows. The first

column of the n×p design matrix X comprises all 1’s (for the model intercept) and

we draw the remaining entries of each row independently from a standard (p − 1)-

variate normal distribution N(0, Ip−1). The values of the p-dimensional coefficient

vector β comprise p0 non-zero entries (including the intercept) and p − p0 zeros.

The response labels yi ∈ {1,−1}, for i = 1, . . . , n, are generated from Bernoulli

distributions with probabilities 1/(1 + e−xT
i β). Next, without loss of generality, we

contaminate the first n0 cases with a logistic slippage model, adding the scalar mean

shifts µX to the active predictors only (excluding the intercept). In order to generate

bad leverage points, we also assign opposite signs to the labels of each contaminated

unit: sign(yi) = − sign(xT
i β).

The simulation scenarios are defined according to the values of the parameters

discussed above. Here, we present results for p0 = 4 active predictors with βj = 3

(without loss of generality, these correspond to the intercept and the last 3 features),

sample size n = 100, increasing dimension p = 20, 50 (low) and 150 (high), n0 = 5

contaminated units ( i.e., 5% contamination), and mean shifts µX = 10. Each

simulation scenario is replicated q independent times, and random test data, say

(y∗,X∗), are generated from the same simulation scheme, but without any form of

contamination.

Different estimators are compared based on: (i) the mean of the negative log-

likelihoods MNLL(β̂) = 1
n

∑n
i=1 d(x

∗T
i β̂, y∗i ), i.e., the average of deviances computed

on the uncontaminated test set; (ii) the outlier misclassification rate MR(β̂) = c/n,

where c counts the number of misclassified observations on the uncontaminated test

set; (iii) estimation accuracy in terms of average mean squared error MSE(β̂) =

1
p

∑p
j=1MSE(β̂j), where for each β̂j we decompose MSE(β̂j) =

1
q

∑q
i=1(β̂ji − βj)

2 =

(βj − βj)
2 + 1

q

∑q
i=1(β̂ji − βj)

2 in squared bias and variance (here βj =
1
q

∑q
i=1 β̂ji)
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(iv) feature selection accuracy, measured by the false positive rate FPR(β̂) = |{j ∈

{1, . . . , p} : β̂j ̸= 0 ∧ βj = 0}|/|{j ∈ {1, . . . , p} : βj = 0}| and the false negative

rate FNR(β̂) = |{j ∈ {1, . . . , p} : β̂j = 0 ∧ βj ̸= 0}|/|{j ∈ {1, . . . , p} : βj ̸= 0}|; (v)

outlier detection accuracy, which is similarly measured by FPR(ϕ̂) and FNR(ϕ̂).

We use the robust oracle estimator as a benchmark, which is a logistic fit com-

puted only for the active set of features and only on the uncontaminated units (we

used our MIP formulation to compute the robust oracle). The following estima-

tors are compared: (a) enetLTS with α = 1 (i.e., robust lasso) (Kurnaz et al.,

2017); (b) MIProb, our robust MIP proposal without a ridge-like constraint (see

Section 5.3); (c) MIP, the non-robust MIP implementation performing only feature

selection (i.e., as MIProb but using kn = 0); (d) Lasso, the non-robust L1-penalized

loss computed through the glmnet package in R (Friedman et al., 2010). Robust

methods trim the true number of outliers (kn = n0), though this does not guarantee

exact outlier detection, and only the sparsity level in the feature space is tuned for

each method based on (robust) information criteria or cross-validation. However,

since enetLTS is a heuristic method that relies on resampling rather than exact

trimming, we inflate the trimming proportion to 20% and then take the re-weighted

estimates in order to improve its outlier detection performance.

Table 5.1 provides medians and median absolute deviations (MAD) of simulation

results over q = 30 replications. Our proposal substantially outperforms competing

methods in most criteria. In both low (p = 20, 50) and high (p = 150) dimensional

settings, the MNLL and MR of MIProb are closest to values produced by the oracle.

In terms of estimation accuracy, MIProb has the lowest bias, but the non-robust

lasso has distinctly lower variance than all procedures aside from enetLTS when p =

150. MIProb has very strong feature selection accuracy with FPR(β̂) and FNR(β̂)

equal to 0 in the low-dimensional settings (p = 20, 50). In the high-dimensional

setting, it maintains the lowest false positive rate, but has a higher false negative

rate than enetLTS (though still lower than the non-robust methods). This motivates

the development of more effective tuning strategies as p increases. On the other

hand, enetLTS tends to overselect, since it has FNR(β̂) = 0 in all settings, but the

highest FPR(β̂) across methods. Similar results were found in Insolia et al. (2021d).
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Regarding outlier detection, enetLTS and MIProb produce very similar solutions

with FPR and FNR almost always 0. Thus, both methods are highly effective at

detecting contaminated units.

5.4.1 Computational details

In this section, we discuss further computational details and the tuning approaches

for each procedure. Our proposal, MIProb is computationally more demanding

than the other methods under comparison, including the non-robust MIP. This is

natural, given methods like enetLTS are heuristics and avoid directly solving the

full combinatorial problem. As discussed in more detail in Kenney et al. (2021);

Bertsimas et al. (2016), a common challenge with MIP formulations is the weak

lower bound produced by the relaxed version of the problem. Thus, while the

optimal solution may have already been found, the majority of computing time may

be used to verify its optimality. For our settings, we set generous stopping criteria

where the algorithm ends when either a maximum computing time of 40 min (this

can be as low as 3 min in other literature; Hastie et al. 2020) or an optimality gap of

2.5% (i.e., the relative difference between the upper and lower bounds) is met. While

this maximum time may be hit, especially under the most challenging scenarios with

p = 150, the consistent quality of solutions close to the oracle (see Table 5.1) further

supports this observation of weak lower bounds. However, for comparison, enetLTS

only takes an average of 14 s. Thus, the use of other warm-starts, heuristics, etc.,

to improve lower bounds would be very beneficial for MIP-based feature selection

and outlier detection approaches.

We also found that the computational burden of MIProb varies vastly based on

the tuning parameter kp. In our numerical experiments, computing time decreases

as more features are selected, especially for kp > p0. For instance, we considered

other simulation scenarios not reported here, including one with a lower sample size

n = 50 and thus a higher contamination percentage. We observed the pattern in

Figure 5.1 where the average computing time is much higher for lower values of kp,

but rapidly decreasing after the “elbow” occurring around kp = p0. This could be

due to the outlier detection portion of the problem being more difficult when some
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of the relevant features are not included. Recall that our simulations add mean

shift contamination only to the relevant features; when some are missing, it is more

challenging to detect contaminated units.

Figure 5.1: Average computing times across various feature sparsity levels kp in simulated
data following the data generation approach described above with n = 50, p = 7, p0 = 4,
and kn = 5. Bars represent ±1 standard deviations over 5 simulation replicates.

Regarding tuning, we utilized different approaches for each procedure as ap-

propriate. The oracle operates on uncontaminated units and relevant features only,

and requires no tuning. EnetLTS is tuned with cross-validation through the enetLTS

package in R following the default settings with 5 folds (Kurnaz et al., 2018). For our

proposal, MIProb, we used a robust version of BIC as described in Section 5.3.2, se-

lecting the kp corresponding to the minimum. Similarly, MIP is tuned based on the

traditional BIC (without trimming incorporated). Finally, the non-robust lasso is

tuned through 10-fold cross-validation in the glmnet package. We note that MIProb

and MIP are implemented in Julia 1.3.1 to interact with the Mosek solver through

its JuMP package. MIProb and enetLTS utilize 24 cores per replication through their

multi-thread options.

5.5 Investigating overwintering honey bee loss in

Pennsylvania

Pollinators play a vital role supporting critical natural and agricultural ecosystem

functions. Specifically, honey bees (Apis mellifera) are of great economic importance

and play a primary role in pollination services (Calderone, 2012; Chopra et al.,

110



2015). The added value of honey bees pollination for the crops produced in the

United States (in terms of higher yield and quality of the product) is annually esti-

mated around 15–20 billion dollars (Morse and Calderone, 2000; Calderone, 2012),

and according to the Pennsylvania Beekeepers Association, their yearly contribution

has an estimated value of 60 million dollars in the state of Pennsylvania alone; see

https://pastatebeekeepers.org/pdf/ValueofhoneybeesinPA3.pdf (accessed

on 15 July 2021). Yet the decline of the honey bee populations is a widespread

phenomenon around the globe (Becher et al., 2013; Pettis and Delaplane, 2010;

Potts et al., 2010; Oldroyd and Nanork, 2009; Ellis et al., 2010). Major threats for

honey bees include habitat fragmentation and loss, mites (van Dooremalen et al.,

2012; Morawetz et al., 2019), parasites and diseases (Genersch et al., 2010), pesti-

cides (Yasrebi-de Kom et al., 2019), climate change (Switanek et al., 2017), extreme

weather conditions, the introduction of alien species (Stout, 2009), as well as the

interactions between these factor (vanEngelsdorp and Meixner, 2010). Moreover,

the overwintering period is often a major contributor to honey bee loss (Seeley and

Visscher, 1985; Steinhauer et al., 2014; Döke et al., 2015; Bruckner et al., 2020). We

thus focus on honey bee winter survival.

In the United States, beekeepers suffered an average 45.5% overwinter colony

loss between 2020 and 2021 (Steinhauer et al., 2021). This figure was 41.2% in the

state of Pennsylvania for the same overwintering period; see https://beeinforme

d.org/2021/06/21/united-states-honey-bee-colony-losses-2020-2021-pre

liminary-results/ (accessed on 15 July 2021). In both cases, this was an increase

compared to the previous year, when the reported losses were 43.7% and 36.6% for

the United States and Pennsylvania, respectively (Bee Informed Partnership, 2020).

In recent years the trend of overwintering loss for Pennsylvania is comparable to

the one at the national level, making it an interesting case study. Thus, in the

following we analyze overwintering survey data for Pennsylvania covering the years

2016–2019.
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5.5.1 Model formulation and data

Focusing on the state of Pennsylvania, honey bee winter survival was recently in-

vestigated in Calovi et al. (2021) based on winter loss survey data provided by the

Pennsylvania State Beekeepers Association. The data cover three winter periods

(2016–2017, 2017–2018, and 2018–2019), and the main goals of the analysis were to

assess the importance of weather, topography, land use, and management factors

on overwintering mortality, and to predict survival given current weather conditions

and projected changes in climate. The authors utilized a random forest classifier to

model overwintering survival. Importantly, they also controlled for the treatment

of varroa mites (Varroa destructor) at both apiary and colony levels, since this rep-

resents a key factor in describing honey bee survival – all untreated colonies were

excluded from the dataset. Their main findings suggest that growing degree days

(see Table 5.2) and precipitations in the warmest quarter of the preceding year were

the most important predictors, followed by precipitations in the wettest quarter, as

well as maximum temperature in the warmest month. These results highlight the

strong association between weather events and overwintering survival of honey bees.

The data set used in our analysis is extracted from the Supplementary Informa-

tion published in Calovi et al. (2021) – see Table 5.2 for a description of the variables

included into our model.

Since observations in the original data set represent colonies that may belong to

the same apiary, we aggregated the data to obtain unique apiary information. This

is particularly important in order to reduce dependence across observations, and

leads to a sample of n = 257 apiaries from 1429 colonies (in the absence of publicly

available geo-localized information, apiary identification was made possible through

the features “bioc02” and “slope”).

We created a binary response taking the proportion of survived colonies per

apiary, and assigning the label 1 if such a mean is greater than 0.8, and the label

−1 if it is smaller than 0.6. These thresholds are motivated by the “average” winter

colony loss rate described above and they allow us to study the most “extreme”

behavior (significantly higher or lower losses); they also provide a balanced labeling
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for the response variable. The remaining observations are completely removed from

the data set in use and thus decreasing the sample size to n = 216.

Table 5.2: Description of the features included into our logistic model formulation to
describe honey bee overwintering survival. See Calovi et al. (2021) for details. The
bioc# variables refer to bioclimatic variables of the WorldClim database; see https:

//www.worldclim.org/data/bioclim.html (accessed on 15 July 2021).

Variable Description

1 survival Binary survival response at the apiary level
2 bee2 Winter total precipitation
3 bee4 Winter days with maximum temperature above 16°C and precipitation below 3 mm
4 gdd Growing degree days (base 5°C) as the accumulation of average daily temperatures
5 dd rain Days between rain events ¿ 0.25 mm
6 bioc02 Mean diurnal temperature range
7 bioc04 Temperature seasonality
8 bioc08 Mean temperature of the wettest Quarter
9 bioc09 Mean temperature of the driest quarter
10 bioc18 Precipitation of the warmest quarter
11 bioc19 Precipitation of the coldest quarter
12 slope Terrain slope
13 sol rad Potential incident solar radiation, 21 December
14 pcurv Profile curvature
15 tcurv Terrain curvature
16 TWI Topographic wetness index
17 EW East/West orientation of slope
18 ITL Distance-weighted insect toxic load
19 col nov Number of colonies in November
20 exp 1-2 Beekeeper years of experience between 1 and 2 (binary variable)
21 exp 2-5 Beekeeper years of experience between 2 and 5 (binary variable)
22 exp <1 Beekeeper years of experience less than 1 (binary variable)
23 exp >10 Beekeeper years of experience greater than 10 (binary variable)

We compared the same procedures considered in our simulation study (see Sec-

tion 5.4) without introducing a ridge-like penalty for any of the methods. Relatedly,

we did not use all features in the original study, which presented sizable collinear-

ities. In particular, for each pair of features with an absolute pair-wise correlation

above 0.7, we computed the mean absolute correlation of each feature against all

the others and removed the one with the largest mean absolute correlation from our

pool.

Each column of the design matrixX (excluding the intercept and categorical fac-

tors) was standardized to have zero median and median absolute deviation (MAD)

equal to the average MAD across columns (standardization does not affect our pro-

posal and each of the other approaches included in our comparison performs its
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own standardization as needed). Importantly, for MIP and MIProb we introduced

group sparsity constraints (Yuan and Lin, 2006) to tackle the categorical feature

“beekeepers’ experience”; the reference category is “between 5 and 10 years” and all

coefficients for the dummy variables are included or excluded from the fit together.

5.5.2 Results

We randomly split the data into training and test sets, encompassing 100 and

116 points, respectively. For robust methods, we fix the trimming proportion at

10% after exploring a range of values suitable for the nature of the problem, and

only tune the sparsity level. Figure 5.2 compares the balanced accuracy, defined as

(sensitivity+specificity)/2, on the test set across different methods. Here sensitivity

is defined as (# true positives)/(# true positives + # true negatives) and specificity

is defined as (# true negatives)/(# true negatives + # false positives). While this is

a function of the sparsity level imposed on MIP and MIProb, for enetLTS and lasso

we show the mean values across eight repetitions due to the intrinsic randomness in-

duced by cross-validation methods (horizontal dashed lines). Here MIP and MIProb

are quite comparable and generally outperform competing methods, although we no-

tice a drop in predictive performance for MIProb if the sparsity level kp ≥ 9 – which

is likely a result of overfitting due to data trimming compared to MIP. Based on

these findings, in the following we present the results based on kp = 8 (including

the intercept), where the balanced accuracy for both methods is very close to their

maximum.

Table 5.3 displays the features selected by each method on the training set. We

focus on the interpretation of the signs of the estimated coefficients, represented

as green (positive) and red (negative) cells, respectively. The estimates provided

by MIProb are in line with the findings of the original study (Calovi et al., 2021).

Specifically, MIProb estimates a positive association between honey bee survival and

“bee2” (winter total precipitation), “gdd” (growing degree days), “EW” (East/West

orientation of slope) and “ITL” (distance-weighted insect toxic load; see Douglas

et al. 2020). This suggests that the impact of precipitations and the accumulation

of average daily temperatures (gdd), which influence the growth of crops, have
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Table 5.3: Features selected by lasso, MIP, enetLTS and MIProb (robust MIP) on a
training set encompassing 100 points. Green and red cells indicate estimated coefficients
with positive and negative signs, respectively. White cells indicate non-selected features.

interc. bee2 bee4 gdd dd rain bioc02 bioc04 bioc08 bioc09 bioc18 bioc19 slope

Lasso
MIP
enetLTS
MIProb

sol rad pcurv tcurv TWI EW ITL col nov exp 1-2 exp 2-5 exp<1 exp>10

Lasso
MIP
enetLTS
MIProb

0.45

0.50

0.55

3 4 5 6 7 8 9 10
Sparsity Level

B
a

la
n

c
e

d
 A

c
c

u
ra

c
y

Estimator

MIProb

MIP

enetLTS

glmnet

Figure 5.2: Balanced accuracy computed on a test set encompassing 126 points, as a
function of the sparsity level kn for MIP and MIProb (using a 10% trimming for the latter).
The average balanced accuracy over 8 repetitions is shown also for lasso and enetLTS.

an overall positive effect on honey bee survival. In contrast, MIProb estimates a

negative association between honey bee survival and “bioc09” (mean temperature of

the driest quarter), “bioc18” (precipitation of the warmest quarter), “tcurv” (terrain

curvature) and “TWI” (topographic wetness index). This highlights once more the

major impact of weather predictors, as well as topographic factors and humidity

levels. Notably, beekeepers’ experience was not selected as a relevant feature by

MIProb, which further supports the findings in Calovi et al. (2021).

Considering the other procedures, enetLTS appears to produce denser solutions

(this was also observed in the simulations in Section 5.4), excluding only three

features from the fit, and the non-robust lasso appears to produce sparser solutions,

selecting only three features – which is indeed due to the presence of outliers. This

is supported by the fact that a lasso fit after the exclusion of the outliers detected
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Figure 5.3: Pearson residuals for MIProb and MIP. Outlying cases detected by MIProb
are highlighted in red. Horizontal red lines represent the 0.0125 and 0.9875 quantiles of
the standard normal distribution.

by MIProb provides richer solutions, corresponding to clearer minima of the cross-

validation error, where approximately 10 features are selected and several of these

are shared with MIProb (data not shown). MIP uses the same sparsity level of

MIProb but selects a different set of features, which is again due to the presence of

outliers (e.g., it selects “bioc02” and the dummies related to beekeepers’ experience).

Figure 5.3 compares Pearson residuals for MIProb and MIP estimators. The

outlying cases detected by MIProb, which are highlighted in red, deviate substan-

tially from the remaining observations and are undetected by the non-robust MIP

algorithm. Moreover, focusing on the set of features selected by MIProb, Figure 5.4

compares the boxplots of outliers selected by MIProb against the remaining non-

outlying cases. We notice that the two distributions are indeed quite different for

variables such as “bee2”, “gdd”, “EW” and “ITL”. This provides further evidence

that the data set contains some outlying cases which significantly differ from the

rest of the points.

5.6 Final remarks

We propose a discrete approach based on L0-constraints to simultaneously perform

feature selection and multiple outlier detection for logistic regression models. This

is important since modern (binary) classification studies often encompass a large
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Figure 5.4: Box-plots comparing the values assumed by the features selected by MIProb
contrasting outlying and non-outlying case. The values of each feature are scaled to have
zero median and MAD equal to the average MAD across columns.

number of features, which tends to increase the probability of data contamina-

tion. Outliers need to be detected and treated appropriately, since they can hinder

classical estimation methods. Specifically, we focus on the logistic slippage model,

which leads to the exclusion (or trimming) of the most influential cases from the

fit, and a “strong” sparsity assumption on the coefficients. To solve such a double

combinatorial problem, we rely on state-of-the-art solvers for mixed-integer conic

programming which, unlike existing heuristic methods for robust and sparse logistic

regression, provide guarantees of optimality even if the algorithm is stopped before

convergence. Our proposal, MIProb, provides robust and sparse estimates with an

optional ridge-like penalization term.

MIProb, outperforms existing methods in our simulation study. It provides

sparser solutions with lower false positive and negative rates for both feature selec-

tion and outlier detection while maintaining stronger predictive power under most

settings. Moreover, MIProb performs very well in our honey bee overwintering sur-

vival application. Based on three years of publicly available data from Pennsylvania

beekeepers, it outperforms existing heuristic methods in terms of predictive power,

robustness and sparsity of the estimates, and it produces results consistent with

previous studies (Calovi et al., 2021). In particular, we found that weather variables

appear to be strong contributors. Winter total precipitation and growing degree

days are positively associated with honey bee survival, while the mean temperature
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of the driest quarter and the precipitation of the warmest quarter show a negative

association. Moreover, our results indicate that the lower the exposure to pesticide

(i.e., as their distance increases) the higher honey bee survival is. These findings are

important in order to understand the main drivers of honey bee loss and highlight

the importance of multi-source data to study and predict honey bee overwintering

survival.

Our work can be extended in several directions. We are exploring additional and

more complex simulation settings (e.g., higher dimensionality, collinear features,

etc.). We did not experiment with the ridge-like penalty in the current paper, but

this is an important tool and requires further investigation. However, computing

time is currently the main bottleneck to more extensive exploration. Thus, in the

future , we plan to consider additional modeling strategies that can reduce the com-

putational burden. For instance, developing more suitable big-M bounds and using

outer approximation techniques with dynamic constraint generation and first-order

techniques as in Bertsimas et al. (2017). We are also exploring more efficient tuning

strategies for the sparsity and trimming levels, as well as the ridge-like parameter,

if present. Utilizing approaches such as warm-starts or integrated cross-validation

(Kenney et al., 2021) can substantially reduce the computational burden for sub-

sequent runs of the MIP algorithm, and allow better tuning. If the trimming level

for MIProb is inflated, a re-weighting approach may also be included in order to

increase the efficiency of the estimator as in Kurnaz et al. (2017), as well as ap-

proaches based on the forward search Atkinson and Riani (2001). However, larger

trimming levels might increase the computational burden, and the procedure does

not take into account the feature selection process. Thus, the forward search might

be combined with diagnostic methods that simultaneously study the effect of out-

liers and features (Menjoge and Welsch, 2010). Moreover, the theoretical properties

of our procedure require further investigation, and its extension to other generalized

linear models such as Poisson or multinomial regressions is of great interest.

Source code for the implementation of our procedure and to replicate our simu-

lation and application results is openly available at https://github.com/LucaIns

/SFSOD logreg (accessed on 29 July 2021).

118

https://github.com/LucaIns/SFSOD_logreg
https://github.com/LucaIns/SFSOD_logreg


“We are drowning in information and starving for

knowledge”

Rutherford D. Roger (1985)

Chapter 6

Final Remarks

In this final chapter we summarize our work, discuss some of its limitations and possi-

ble extensions, as well as other recent developments in the areas of high-dimensional

modeling and robust statistics that can drive future directions of research.

6.1 Discussion

We studied high-dimensional regression models affected by the presence of vari-

ous forms of data contamination. To establish our framework, in Insolia et al.

(2021b) we first focused on low-dimensional linear regression settings affected by

the co-occurrence of multiple outliers arising from mean-shift (MSOM) and variance-

inflation outlier models (VIOM), which lead to the exclusion and down-weighting

of outlying cases, respectively (Beckman and Cook, 1983). Here the MSOM pro-

vides a safeguard against outliers arising both in the response and the explanatory

variables. Combining hard trimming methods such as the forward search (Atkinson

and Riani, 2000) with restricted maximum likelihood estimation (Harville, 1977), we

proposed a novel approach to detect and treat both types of outliers. Unlike com-

monly employed soft trimming procedures which down-weight all points (Maronna

et al., 2006), in our proposal MSOMs are excluded from the fit, VIOMs are down-

weighted, and non-outlying cases receive full weights. We also developed regression

diagnostics that help to guide the analysis, and demonstrated the effectiveness of

our proposal through synthetic and real-world data. Notably, we combined hard
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and soft trimming procedures in a principled way and, to our knowledge, ours is the

first approach that effectively deals with multiple VIOM outliers, as well as the joint

presence of MSOMs and VIOMs – which were traditionally considered as alternative

contamination mechanisms (Cook et al., 1982; Thompson, 1985).

The MSOM, unlike the VIOM, has received some attention in the context of

high-dimensional modeling during the last decade (albeit often implicitly, through

the use of hard trimming estimators; Alfons et al. 2013; Kurnaz et al. 2017). How-

ever, existing methods rely on heuristic algorithms to solve the non-convex robust

loss, which can only attain a local minimum, and enforce sparsity through con-

vex relaxations of best subset selection. To fill this gap, in Insolia et al. (2021d)

we proposed the use of discrete optimization techniques (Bertsimas et al., 2016)

to simultaneously perform feature selection and outlier detection with optimality

guarantees – meaning that the global optimum is indeed achievable. Specifically,

we transformed MSOM detection into a feature selection problem and developed a

general framework for robust best subset selection which encompasses a broad class

of models and loss functions. Focusing on the L2-loss subject to cardinality con-

straints (enforcing the selection of both units and features), we proposed a mixed

integer quadratic formulation and derived stronger theoretical results under weaker

assumptions compared to state-of-the-art procedures. These include what we called

the robustly strong oracle property, which ensures that our proposal asymptotically

behaves as if the sets of truly relevant features and MSOM outliers were known in

advance. This also holds in the ultra-high dimensional setting, where the number

of predictors increases exponentially with the number of uncontaminated samples.

We showed that our proposal outperforms existing methods through numerical sim-

ulations and a real-world application where we analyzed the relationship between

childhood obesity and the human oral microbiome. The model we obtained in the

application was more interpretable and had higher predictive power than those re-

ported in prior analyses of the same data. Moreover, the features we selected as

relevant were consistent with prior literature on childhood obesity, and the cases

we detected as outliers were very informative. We note that an approach similar

to ours has been recently brought forth in Thompson (2022) and Jammal et al.

120



(2021), which employ effective heuristics based on, respectively, projected block-

coordinate gradient descent and proximal alternating linearized minimization. This

demonstrates the importance of the topic.

In Insolia et al. (2021a), we further extended our work to high-dimensional lin-

ear regression models affected by the co-occurrence of multiple MSOM and VIOM

outliers – the former concerning both response and design matrix. We employed

a mixed-effects linear model where MSOM and VIOM outliers are represented as

additional fixed and random components, respectively, and we developed a doubly

robust class of nonconcave penalization methods which extend the approach in Fan

and Li (2012). Specifically, based on restricted maximum likelihood principles, we

showed that MSOM and VIOM outliers can be detected and treated independently,

and proposed a 3-step procedure to perform model selection and detect outlying

cases of each type. Our procedure satisfies several desirable properties, such as

the doubly robust strong oracle property which, under mild assumptions, generalizes

our robustly strong oracle property to the co-occurrence of multiple MSOM and

VIOM outliers. This implies that one can estimate optimal units’ weights, and thus

achieve an optimal trade-off between high breakdown point and efficiency, as well as

improve estimation of the error variance. We also proposed a data-driven procedure

for VIOM detection, which provides a considerable gain with respect to existing

soft trimming estimators that rely on a given nominal efficiency (Maronna et al.,

2006; Chang et al., 2018), and thus are not adaptive. This improves the estimation

of error variance, which is fundamental for several statistical learning goals (Fan

et al., 2012a; Reid et al., 2016). Moreover, for the class of hard trimming meth-

ods, our proposal based on nonconcave penalties provides a bridge between robust

estimators that rely on convex penalties (Alfons et al., 2013; Kurnaz et al., 2017)

and our combinatorial approach based on L0-constraints and discrete optimization

techniques (Insolia et al., 2021d), which can be exploited by the latter to reduce

its computing time. A comparison with more recent soft trimming methods based

on nonconvex penalties would also be of interest (Amato et al., 2021; Kepplinger,

2021). The effectiveness of our proposal was demonstrated through Monte Carlo

simulations and real-world applications related to the Boston housing market and
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glioblastoma gene expression data.

Finally, in Insolia et al. (2021c) we focused on the logistic regression model and

extended our approach in Insolia et al. (2021d) to high-dimensional binary classifi-

cation studies affected by data contamination. We developed a sparse and robust

estimation procedure that simultaneously selects and estimates regression parame-

ters, and detects and excludes outliers from the fit. In particular, we transformed

outlier detection into a feature selection problem through an over-parametrized logis-

tic slippage model (Bedrick and Hill, 1990) – which is the counterpart of the MSOM

for linear models – and used again discrete optimization techniques. To tackle the

presence of a non-quadratic objective function, we developed a mixed integer conic

programming formulation, which allows us to solve the underlying double combina-

torial problem with optimality guarantees. We used simulations to show that our

approach outperforms existing methods based on heuristic algorithms and convex

penalties (Kurnaz et al., 2017). Notably, soft trimming estimators with nonconvex

penalties have been recently developed by Bianco et al. (2021), and Bianco et al.

(2022) studied the setting with a diverging number of parameters. This highlights

the importance of this topic. We also used our proposal to study the main drivers

of honey bee (Apis mellifera) colony loss analyzing data from the annual winter loss

survey collected by the Pennsylvania State Beekeepers Association (Calovi et al.,

2021). Our proposal provided a parsimonious and interpretable classification model,

supporting previous findings in the literature, and highlighted the presence of out-

lying observations within the survey data.

6.2 Extensions

Our contributions to date can be expanded and strengthened in a number of ways.

Below, we briefly sketch a few selected topics we are actively investigating at this

time.

Computational efficiency for mixed integer programs The approaches for

simultaneous feature selection and outlier detection we introduced in Insolia et al.
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(2021d,c) are based on discrete optimization. While very effective, they can be

computationally burdensome for larger problems. It is thus of great importance to

develop more efficient estimation techniques.

Leveraging recent advances in the use of MIPs to solve best subset selection, we

are particularly interested in the development of perspective cuts formulations to ob-

tain tighter lower bounds (Frangioni and Gentile, 2009; Gómez, 2021), novel heuris-

tics and model relaxations (Bertsimas et al., 2016; Willis and von Stosch, 2017),

coordinate descent and local combinatorial optimization (Hazimeh and Mazumder,

2020), as well as in exploiting the dual formulation of classification tasks (Bertsimas

et al., 2021b).

Relatedly, we are also developing a MIP-based implementation of the FAST-LTS

algorithm (Rousseeuw and Van Driessen, 1999, 2006). This is an heuristic method

that relies on resampling and so-called concentration steps (C-steps) which guaran-

tee the attainment of a local optimum. It is computationally very lean and effectively

provides high-breakdown point estimates. Notably, its core idea is widespread in a

variety of statistical domains – including both supervised to unsupervised learning

problems. Building upon existing studies (Agulló, 2001), we are combining FAST-

LTS with the optimal approach based on a combinatorial search, where C-steps

are embedded within a discrete optimization framework. This promises to signifi-

cantly cut the computational burden of our MIP proposals, leading to tighter big-M

bounds, warm-starts and heuristics.

Choice of the tuning parameters Most of our theoretical results rely on the

choice of suitable tuning parameters (e.g., the sparsity and the contamination levels),

which strongly affect the estimator performance. Although they are guaranteed to

exist (at least asymptotically), finding appropriate tuning parameter values in a

data-driven fashion is non-trivial.

This is a common problem in the literature on high-dimensional modeling and

robust statistics; we provided general guidelines to choose tuning parameters, but

there are issues that deserve further attention. Indeed, in our work to date, we often

focused on tuning one key parameter fixing the others – which reduces computing
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time but limits the search space. In the future, we plan to develop a computationally

lean and simultaneous tuning strategy for all key parameters in our proposals, and

study its theoretical properties.

Tuning procedures based on robust information criteria to detect outlying cases

in low-dimensional linear models have been recently investigated by Riani et al.

(2022). They provide additional insights for the methods we proposed in this the-

sis, and we plan to investigate their connection with recent advances for MIP-based

techniques (Gómez and Prokopyev, 2021). In addition, we plan to develop robust

cross-validation strategies that put more emphasis on out-of-sample performance.

Cross-validation relies on less stringent assumptions compared to information crite-

ria, but this comes at the cost of a larger computational burden – which is particu-

larly taxing for MIP-based procedures. To mitigate this issue, several strategies have

been recently incorporated into best subset selection algorithms (Kenney et al., 2021;

Takano and Miyashiro, 2020; Kreber, 2019), and we plan to extend these strategies

to settings involving data contamination. Robust cross validation based on soft

trimming approaches was studied by Ronchetti et al. (1997). But for hard trimming

methods, to our knowledge, existing approaches assume (often implicitly) that the

fraction of contamination in training and testing sets is comparable. Some of our

simulations highlighted the fact that this condition can be quite restrictive at times

– e.g., in the presence of weak signals and small sample sizes. For this reason, in

Insolia et al. (2021d) we used a much more conservative trimming proportion on

testing data – but this, too, may be unsatisfactory in some settings. We are thus

exploring the use of a “double tuning” strategy that controls for a different amount

of contamination on training and testing sets.

When a problem exhibits strong collinearities among the predictors, a typical

remedy is to include an additional ridge-like constraint in the feature selection for-

mulation. But this adds a tuning parameter and can substantially increase the

computational burden of MIP-based procedures. For our simultaneous feature se-

lection and outlier identification set-ups, we plan to investigate the use of ridge-like

constraints, as well as the use of data whitening techniques that de-correlate the

original features while attempting to preserve the interpretability of the model (Ken-
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ney, 2021). We note though that existing data whitening techniques are non-robust

against the presence of data contamination since they assign full weight to each

observation. Hence, we are developing a robust counterpart of whitening, which is

similar in spirit to dimension reduction techniques such as robust principal compo-

nent analysis (Hubert et al., 2005).

Mixed-effects linear models Our work in Insolia et al. (2021a) can be naturally

extended to mixed-effects linear models, which have a greater flexibility in accom-

modating a large variety of problems and datasets, such as longitudinal studies,

where outlying cases might also arise in the random design matrix.

High-breakdown point estimators based on hard trimming have been recently

investigated in this context (Copt and Victoria-Feser, 2006; Chervoneva and Vish-

nyakov, 2011; Koller, 2013; Chervoneva and Vishnyakov, 2014; Agostinelli and Yohai,

2016). Relatedly, Gumedze et al. (2010) studied the presence of a single VIOM out-

lier which may also arise within a given random component. However, the treatment

of outliers in high-dimensional mixed-effects linear models has not yet received much

attention in the literature. Notably, Fan et al. (2012b, 2014b) proposed the use of

a penalized likelihood to jointly estimate fixed and random effects, while employing

Mahalanobis distances to estimate units’ weights and accommodate outliers. How-

ever, estimated weights can be improved if one takes into account the underlying

regression structure.

In full generality, we plan to combine and extend the approaches in Gumedze

et al. (2010) and Fan and Li (2012) through the inclusion of random effects Zb

in (4.2); see Chapter 4. In addition, a group of observations belonging to one (or

more) random component(s), say the units indexed by Sδ, may be affected by a

variance inflation parameter δ. Thus, multiple VIOM outliers may arise both at

the unit level and at the group level, which are captured by non-zero entries in

γ and δ, respectively. Selecting relevant random effects (non-zero entries in b)

while detecting and accounting for VIOM outliers therein (non-zero entries in δ) is

fundamental since the exclusion of relevant random components introduces bias in

the estimated variance for fixed effects, and the inclusion of irrelevant random effects
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might provide singular or unstable estimates (Laird and Ware, 1982). Here the key

difference from our current proposal is that one needs additional proxy matrices

for population covariances of random effects, which may lead to a generalized least

square estimator as opposed to a weighted least squares fit. Furthermore, group

constraints should be enforced for the penalization of random effects in b (Yuan and

Lin, 2006); i.e. all qk random coefficients belonging to the k-th random component

should be fully included or excluded from the model, as proposed in Fan and Li

(2012). Interestingly, although the use of a group sparsity penalty on b is similar in

spirit to the VIOM parametrization through δ, these are not equivalent. Moreover,

the inclusion of both γ and δ might be redundant in some applications (e.g., if only

a few repeated measurements per unit are available), and iterative schemes can be

also developed to tackle this problem.

Other extensions We plan to extend our approaches to a broader class of models.

We explored logistic regression in Insolia et al. (2021c), where we expect to improve

both algorithmic efficiency and theoretical characterization. Other members of the

generalized linear models (GLM) family are of great interest as well, and we plan to

develop a general theory for simultaneous feature selection and outlier detection in

GLMs. Several strategies can be devised in tackling the presence of more complex

loss functions, such as the use of piecewise-linear approximations that are amenable

for modern MIP solvers (Sato et al., 2016, 2017; Bertsimas and Copenhaver, 2017;

Saishu et al., 2021). Similar ideas can be extended also to the more flexible class of

generalized additive models, which allow one to model continuous and discrete data

in a semi-parametric fashion (Avella Medina, 2016).

Other modeling strategies for structured data are also of great interest to us

– as they allow one to exploit richer information in an analysis. For instance, we

are currently developing approaches for robust and sparse cluster-wise regression,

where the data are characterized by intrinsic group structures (Garćıa-Escudero

et al., 2010; Torti et al., 2019).
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6.3 Directions for future research

We conclude this dissertation with an outline of some recent breakthroughs in high-

dimensional modeling and robust statistics. They offer new insights that place the

development of robust model selection into a broader perspective and raise a number

of research questions that can guide future studies.

Propagation of outliers In the traditional Tukey-Huber contamination mech-

anism – which, among others, gives rise to the mean-shift and variance-inflation

outlier models considered in this thesis – full observations are detected as outlying,

meaning that the entire (p+ 1)-dimensional vector of a given i-th unit is estimated

as such. This paradigm, also known as case-wise contamination, may suffer from

several drawbacks in the presence of heterogeneous and high-dimensional data that

are typical in modern applications. For instance: (i) as the problem dimension p in-

creases, it is more likely that any given unit can in fact be contaminated in at least

one of its measurements; (ii) even with a small number of features, removing or

down-weighting an entire observation due to the contamination of a limited number

of its entries may lead to a loss of information. As stated by Rousseeuw and Bossche

(2018): “recently researchers have come to realize that the outlying rows paradigm

is no longer sufficient for modern high-dimensional datasets”.

The independent contamination model, also known as cell-wise contamination,

can be effective in tackling these problems and was first introduced by Alqallaf et al.

(2009). For a data matrix Z = (y,X) ∈ Rn×(p+1), it assumes that the Tukey-Huber

contamination mechanism operates independently on each variable. Thus, for any

j-th variable (where j = 1, . . . , p + 1), it postulates that Zij ∼ (1 − ϵ)Fj + ϵCj,

indicating that each entry is drawn from the “true” distribution Fj with probability

(1 − ϵ), and from a contaminating distribution Cj with (a small) probability ϵ.

Therefore, the expected proportion of units which are contaminated in at least one

of their entries is equal to 1− (1− ϵ)p+1. This quantity is very likely to exceed 50%

as p increases, even for small ϵ values, and thus existing robust and equivariant

estimators breakdown – a phenomenon called propagation of outliers in Alqallaf
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et al. (2009).

The presence of cell-wise outliers motivated the rapid development of a new gen-

eration of robust estimation procedures across several domains, such as multivariate

location and scatter (Van Aelst et al., 2012; Agostinelli et al., 2015; Leung et al.,

2017), clustering (Farcomeni, 2014), data pre-processing (Rousseeuw and Bossche,

2018), linear regression (Leung et al., 2016; Öllerer et al., 2016; Filzmoser et al.,

2020), feature selection (Wang, 2019; Su et al., 2021), and feature screening (Wang

and Van Aelst, 2019).

Cell-wise outliers pose new and fascinating challenges to the field of robust statis-

tics, since traditional results are not guaranteed to hold or can be more difficult to

be derived (e.g., the breakdown point or the influence function of the estimator).

It would be of great interest to extend our contributions to the co-occurrence of

case-wise (such as MSOM and VIOM) and cell-wise contamination mechanisms,

and several strategies can be envisaged to tackle this problem.

Robust sure screening properties Our main theoretical results, such as the

doubly robust strong oracle property and the robustly strong oracle property, hold

also if the number of explanatory variables increases exponentially with the sam-

ple size. Nevertheless, this setting poses serious challenges in terms of computing

time and memory allocation. Indeed, even in the absence of outlying cases, sparse

estimation techniques require that the data (or its sparse representation) can be

loaded into computer memory altogether with intermediate results of the computa-

tions (Qian et al., 2020). Clearly, this problem is exacerbated for techniques based

on discrete optimization, as well as in the presence of data contamination.

To overcome these issues, feature screening procedures are recently receiving a

lot attention. They aim at considerably reducing the set of candidate predictors

through computationally lean filters that can avoid the removal of possibly relevant

predictors. The set of features passing this screening phase, can then be refined

by a second step of sparse estimation based on “more traditional” feature selection

methods.

Several screening rules for continuous penalization methods have been introduced
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in the literature (Ghaoui et al., 2010; Wang et al., 2015), and they have recently

been embedded within MIP-based techniques for best subset selection (Atamturk

and Gómez, 2020; Deza and Atamturk, 2022). We focus on the sure independence

screening (SIS) developed by Fan and Lv (2008) which uses marginal correlations to

reduce the model dimension. Namely, assuming that log p = O(nξ) for some ξ > 0

and that each predictor has been standardized, SIS retains q < n ≪ p features

based on Ŝα = {1 ≤ j ≤ p : |τj| ≥ |τ⌊αn⌋|1:p}, where τ = XTy denotes the marginal

regression coefficients, and |τ⌊αn⌋|1:p for α ∈ (0, 1) is the ⌊αn⌋-th term (⌊·⌋ is the floor

function) of the absolute coefficients |τj| sorted in in an ascending way. Indicating

the true set of relevant features as Sβ, Fan and Lv (2008) provided the conditions

for the sure screening property of SIS, i.e., Pr(Sβ ⊂ Ŝα) → 1 as n → ∞, for a

given α value. This guarantees that all the relevant features are retained by the

screening procedure with a probability tending to one. Once that the sub-model Ŝα

of size comparable with n has been selected (i.e., |Ŝα| = q = o(n)), one can rely on

penalization methods such as SCAD or adaptive lasso to perform sparse estimation

on the q-dimensional coefficient vector. This approach has also been extended to

broader settings, such as GLMs (Fan and Song, 2010) and nonparametric regression

(Fan et al., 2011). On the other hand, the performance of SIS deteriorates as the

predictors have strong dependence structures. To mitigate this problem, several

extensions of SIS have been developed, such as iterative SIS (Fan and Lv, 2008),

factor profiled SIS (FPSIS; Wang 2012), and conditional SIS (Barut et al., 2016).

Importantly, the existence of outliers has a significant impact on SIS-based meth-

ods, which prompted various researchers to investigate some robust counterparts.

For instance, robust rank correlation screening uses Kendall’s τ as opposed to sample

correlation (Li et al., 2012), and trimmed SIS-SCAD replaces MLE with hard trim-

ming estimators (Neykov et al., 2014) – see also the more recent approach proposed

by Wang et al. (2018). However, similarly to SIS, these procedures suffer in the

presence of strong multicollinearity. To cope with this issue, Wang and Van Aelst

(2019) proposed a robust counterpart of FPSIS, where both the estimation of latent

factors and the screening procedure rely on robust methods. This requires that cor-

relations in the predictors can be fully modeled by only a few latent factors, and
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assumes a case-wise contamination mechanism.

In the future, it would be of great interest to develop SIS-based procedures that

can mitigate high levels of multicollinearity and tolerate the presence of case-wise

and cell-wise outliers. Interestingly, the presence of cell-wise outliers can be tackled

with some form of marginal screening (i.e., univariate outlier detection), where the

estimated outlying cells are imputed through techniques developed for the analysis

of missing data (Rousseeuw and Bossche, 2018). Similar strategies may be embedded

into SIS itself, and it would be of interest to exploit and study the connections across

these domains.

Complex data structures Structured, complex data such as longitudinal mea-

surements are often of interest in high-dimensional studies. However, feature se-

lection techniques cannot typically cope with strongly correlated and ultra-high

dimensional features (e.g., p in the hundreds of thousands or millions).

Functional data analysis is very effective in exploiting the richness of information

when one of the variables or units of interest can be naturally viewed as a smooth

function (e.g., time series, stochastic processes, density functions, etc.). Functional

data are generally evaluated over a discrete grid and then smoothed into curves, and

this field is receiving an increasing attention across domains (Morris, 2015; Wang

et al., 2016). Indeed, the statistical analysis of infinitely dimensional objects (in iso-

lation or in combination with other vector or scalar objects) can provide invaluable

insights and eager the extraction of complex, weak signals that are more difficult

to detect using standard statistical tools. In full generality, functional regression

considers the response variable and/or the predictors as a curve or trajectory –

i.e., function-on-function, function-on-scalar, and scalar-on-function regression mod-

els (Ramsay and Silverman, 2005; Kokoszka and Reimherr, 2017).

In the presence of non-sparse signals, robust estimation methods were devel-

oped by Gervini (2008), Maronna and Yohai (2013) and Kalogridis and Van Aelst

(2019) for the functional linear model, and by Denhere and Billor (2016) for the

functional logistic model. Feature selection based on continuous penalties have also

been extended to functional regression settings, especially for the class of linear
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models; see for instance the review in Aneiros et al. (2019). Notably, robust model

selection techniques for functional linear models have recently been developed for

scalar-on-function (Pannu and Billor, 2020), function-on-scalar (Cai et al., 2022),

and function-on-function regressions (Cai et al., 2021).

It would be of great interest to extend our proposals to functional regression

models. Here one can distinguish two different forms of data contamination, namely,

magnitude and shape outliers, which denote data points outlying within a curve or

entire outlying curves, respectively (Dai et al., 2020). They closely resemble the

MSOM and VIOM, and shape outliers are typically more difficult to detect similarly

to MSOMs. In this setting, one can envision the use of MIP techniques to tackle the

problem of robust model selection. Group constraints can be easily embedded within

a discrete optimization framework to remove all points belonging to a given curve,

and this also reduces the computational burden for MIP. Moreover, the flexibility of

MIP allows one not only to select relevant features and detect outlying cases, but

also choosing a suitable level of smoothness for functional regression coefficients –

which is often fixed a priori based on a certain number of smooth functions that

constitute a basis expansion of functional coefficient estimates.
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Appendix A

Supplementary Material to

Chapter 3

A.1 Theoretical results

In this Appendix we provide proofs for the theoretical results discussed in Sec-

tion 3.3.3.

Proof of Proposition 3.1. For the considered loss function ρ(·), with an additional

ridge penalty and L0 constraints on β and ϕ, any feasible solution behaves simi-

larly to the unpenalized OLS case – whose proof is usually based on the Sherman–

Morrison formula (Atkinson, 1985; Chatterjee and Hadi, 1988). Indeed, the addi-

tional kn degrees of freedom in (3.2) are used to zero-out the largest transformed

residuals as in (3.3). We can write (3.2) as

min
∥β∥0≤kp
∥β∥22≤λ
∥ϕ∥0≤kn

1

n

n∑
i=1

ρ(yi − xT
i β − ϕi) = min

∥β∥0≤kp
∥β∥22≤λ

min
∥ϕ∥0≤kn

1

n

n∑
i=1

ρ(yi − xT
i β − ϕi)

= min
∥β∥0≤kp
∥β∥22≤λ

min
∥ϕ∥0≤kn

1

n

n∑
i=1

ρ(ei − ϕi)

= min
∥β∥0≤kp
∥β∥22≤λ

T (β).

Then for fixed and feasible β, we evaluate T (β) before performing the outer mini-
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mization. Since ρ(e) ≥ 0 and ρ(e) = 0 at e = 0, each ρ(ei−ϕi) in T (β) is minimized

at ϕi = ei. However, only at most kn of the ρ(ei − ϕi) with ρ(ei) ̸= 0 can achieve

this minimum as n − kn or more of ϕi must be set to 0. Hence, it follows that

T (β) = n−1[
∑n−kn

i=1 {ρ(ei − 0)}i:n +
∑n

i=n−kn+1{ρ(ei − ei)}i:n] = n−1
∑n−kn

i=1 {ρ(ei)}i:n.

■

Proof of Proposition 3.2. Our approach is similar to Alfons et al. (2013) and Bert-

simas and Mazumder (2014) and is not affected by the presence of an L0 constraint

on β. For the first part of the proof, consider the presence of n0 ≤ kn = n − h

outliers, so that n − n0 ≥ h units are non-outlying. Let Z̃ = [ỹ, X̃] be the con-

taminated sample and My = maxi=1,...,n |yi|. If β̂ = 0 (possibly excluding the inter-

cept term), the corresponding loss Q(β̂) in (3.2) satisfies Q(0) =
∑h

i=1{ρ(ỹ)}i:n ≤∑h
i=1{ρ(y)}i:n ≤ hρ(My), where the first inequality follows from the fact that the

contamination is arbitrary but not necessarily adversarial, and we also used the

result in Theorem 3.1. Take any other estimate β̂ such that ∥β̂∥22 ≥ l1, where

l1 = (hρ(My) + 1)/λ∗ is independent from the contamination structure. It fol-

lows that Q(β̂) ≥ λ∗∥β∥22 ≥ hρ(My) + 1 > Q(0), leading to a contradiction since

Q(0) ≥ Q(β̂) (i.e., the objective is non-decreasing in the number of active features).

Thus, ∥β̂(Z̃)∥22 ≤ l1 shows that the MIP estimator in (3.2) does not breakdown for

n0 ≤ kn (i.e., ϵ∗ ≥ (kn + 1)/n).

For the second part of the proof, we need to show that ϵ∗ ≤ (kn + 1)/n. We

assume that the estimator does not breakdown, so that ∥β̂(Z̃)∥22 ≤ u1. Let n0 > kn

and denote the corresponding contaminated sample as Z̃ = (ỹ, X̃) = Z+(∆y,∆X).

It follows that

Q(β̂) =

n−n0∑
i=1

{
ρ(ỹ − X̃β̂)

}
i=1:n

+
n−kn∑

j=n−n0+1

{
ρ(ỹ − X̃β̂)

}
j=1:n

+ λ∗∥β̂∥22

≥
[
ρ
{
(yi − xT

i β̂) + (∆yi −∆T
Xi
β̂)

}]
i=n−n0+1

+ λ∗∥β̂∥22 (A.1)

since at least one outlier is included in the fit; namely, the unit corresponding to

the (n−n0+1)-th position of the ordered transformed residuals. Thus, the possible

unboundedness of (A.1), as both terms ∆yi and ∆Xi
may take arbitrarily large
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values, contradicts the assumption that ∥β̂(Z̃)∥22 ≤ u1. ■

Proof of Proposition 3.3. The following proof provides a necessary condition for any

method to achieve SFSOD consistency. This has been proved for feature selection

with an L0 constraint (Shen et al., 2012, 2013), and also extended to the presence of

group constraints (Xiang et al., 2015). Here we extend this further to account for the

presence of, and identify, MSOM outliers. The main difference being that variable

selection in (3.2) is performed on two disjoint sets of coefficients β and ϕ. Similarly

to Theorem 1 in Shen et al. (2013), we consider a least favorable scenario where

Fano’s inequality can be applied. Let Cβ = {βj}pj=0 be a collection of parameters

with components equal to γβ or 0 (e.g., one can think of β0 as being the true model).

Similarly, define Cϕ = {ϕi}ni=0 as a collection of parameters with components equal

to γϕ or 0. Assume also that ∥βj − βj′∥22 ≤ 4γ2β for any j, j′ ∈ 0, 1, . . . , p, and

∥ϕi − ϕi′∥22 ≤ 4γ2ϕ for any i, i′ ∈ 0, 1, . . . , n. Let ∆∗
β = minβ0:|β0|≥1,β0∈Sβ ,|Sβ |≤p0 ∆β

and ∆∗
ϕ = minϕ0:|ϕ0|≥1,ϕ0∈Sϕ,|Sϕ|≤n0 ∆ϕ such that rβ = max1≤j≤p∥Xj∥22(n∆∗

β)
−1 and

rϕ = (n∆∗
ϕ)

−1. For any βj,βj′ ∈ Cβ with densities q(βj) and q(βj′), respec-

tively, the corresponding Kullback–Leibler information is equal to D[q(βj), q(βj′)] =

∥X(βj − βj′)∥22 ≤ 2max1≤k≤p∥Xk∥22γ2β/(nσ2) ≤ 2rβ∆β/σ
2. Here the first bound is

obtained using sub-additivity and the triangle inequality, and the second one is

based on Lemma 1 in Shen et al. (2013). Similarly, D[q(ϕi), q(ϕi′)] = ∥ϕi −ϕi′∥22 ≤

2γ2ϕ/(nσ
2) ≤ 2rϕ∆ϕ/σ

2. Thus, for any estimates Tβ and Tϕ, it follows from Fano’s

inequality that: Fβ = (p + 1)−1
∑

j∈Cβ P (Tβ = j) ≤ (2nrβ∆β + σ2 log 2)/(σ2 log(p))

and Fϕ = (n + 1)−1
∑

i∈Cϕ P (Tϕ = i) ≤ (2nrϕ∆ϕ + σ2 log 2)/(σ2 log(n)). Using the

fact that P (Ŝ ≠ S) = P{(Ŝβ ̸= Sβ)∪(Ŝϕ ̸= Sϕ)} = 1−P{(Ŝβ = Sβ)∩(Ŝϕ = Sϕ)} ≥

1−min{P (Ŝβ = Sβ), P (Ŝϕ = Sϕ)} leads to the following lower bound:

sup
{(θ,A):∆θ≤R∗}

P (Ŝ ≠ S) ≥ 1−min(Fβ, Fϕ), (A.2)

where R∗ = max{(1− c∗β)σ
2 log(p)/(2nrβ), (1− c∗ϕ)σ

2 log(n)/(2nrϕ)} and c∗β, c
∗
ϕ > 0.

For supθ0∈B0(u,l)(Ŝ ̸= S) → 0 as in Theorem 3.3, it follows from (A.2) that

the L0-band B(u, l) cannot interact with the L0-ball B(R∗, 0). Thus, a nec-

essary condition for any estimator to achieve SFSOD consistency is that l ≥
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σ2/nmax {log(p)/(4rβ), log(n)/4rϕ}; this provides a tighter bound compared to a

näıve substitution of p+ n in place of p in Theorem 1 of Shen et al. (2013). ■

Proof of Proposition 3.4. The following result bounds the reconstruction error

P (θ̂L0 ̸= θ̂0) ≥ P (ŜL0 ̸= S) and extends Theorem 2 in Shen et al. (2013) to

the presence of MSOM outliers. Let S ⊂ {1, . . . , (p + n)} be any feasible estimate

of the active set such that Sβ ̸= Sβ and Sϕ ̸= Sϕ, with |Sβ| ≤ p0 and |Sϕ| ≤ n0.

Note that if kp = p0 and kn = n0, it follows that |ŜL0| = |ŜL0
β |+ |ŜL0

ϕ | ≤ p0 +n0. To

simplify the notation, take L(θ,Sβ,Sϕ) =
1
2
∥y−XSβ

βSβ
− InSϕ

ϕSϕ
∥22. Partitioning

S as (Sβ\Sβ) ∪ (Sβ ∩ Sβ) ∪ (Sϕ\Sϕ) ∪ (Sϕ ∩ Sϕ), it follows that:

P
(
θ̂L0 ̸= θ̂0

)
≤P

(
β̂L0 ̸= β̂0

)
+ P

(
ϕ̂L0 ̸= ϕ̂0

)
≤

∑
ŜL0
β ∈Sβ

P
(
L(β, ŜL0

β )− L(β0,Sβ) ≤ 0
)

+
∑

ŜL0
ϕ ∈Sϕ

P
(
L(ϕ, ŜL0

ϕ )− L(ϕ0,Sϕ) ≤ 0
)

≤
p0−1∑
ip=0

p0−ip∑
jp=0

(
p− p0
jp

)(
p0
ip

)
P
(
L(β, ŜL0

β = Sβ(ip, jp))− L(β0,Sβ) ≤ 0
)

+

n0−1∑
in=0

n0−in∑
jn=0

(
n− n0

jn

)(
n0

in

)
P
(
L(ϕ, ŜL0

ϕ = Sϕ(in, jn))− L(ϕ0,Sϕ) ≤ 0
)
,

where the first inequality follows from the union bound, the second inequality uses

the probability of each feasible solution, and the third upper bound is based on

the total number of possible solutions for a given size of correct (ip and in) and

incorrect (jp and jn) selections for SFSOD. Following the argument in Shen et al.

(2013) separately on the two terms P (β̂L0 ̸= β̂0) and P (ϕ̂L0 ̸= ϕ̂0) leads to the

136



following result:

P
(
θ̂L0 ̸= θ̂0

)
≤2

p0∑
ip=1

ip∑
jp=0

(p− p0)
jpp

ip
0 exp

(
− ip
18σ2

n∆β +
2

3
jp

)

+ 2

n0∑
in=1

in∑
jn=0

(n− n0)
jnnin

0 exp

(
− in
18σ2

n∆ϕ +
2

3
jn

)
≤ 2e

e− 1

(
R

[
exp

{
− n

18σ2

(
∆β − 36

log p

n
σ2

)}]
+R

[
exp

{
− n

18σ2

(
∆ϕ − 36

log n

n
σ2

)}])
≤ 4e

e− 1
max

(
R

[
exp

{
− n

18σ2

(
∆β − 36

log p

n
σ2

)}]
,

R

[
exp

{
− n

18σ2

(
∆ϕ − 36

log n

n
σ2

)}])
,

where R(x) = x/(1− x). Using the fact that P (θ̂L0 ̸= θ̂0) ≤ 1 establishes the result

in (3.5); this is a tighter bound compared to the näıve extension of Theorem 2 in

Shen et al. (2013) using p+ n in place of p. ■

Proof of Proposition 3.5. The result in Theorem 3.5(1) immediately follows from

Theorem 3.4 through a pointwise bound of (3.5) to θ0 ∈ B(uθ, lθ). For Theo-

rem 3.5(2) our approach is similar to Liu and Yu (2013) and Zhu et al. (2020).

Theorem 3.5(1) guarantees that P (θ̂L0 = θ̂0) → 1 as (n, p) → ∞. Therefore, with a

probability tending to one, it follows that:

θ̂L0 = (AT
ŜL0

AŜL0 )
−1AŜL0y

= (AT
ŜL0

AŜL0 )
−1AŜL0 (ASθ0 + ε)

= θ0 + (AT
SAS)

−1ASε.

Using the moment generating function with the fact that εi ∼ N(0, σ2) for i /∈ Sϕ

leads to (AT
SAS)

−1ASε ∼ N(0, σ2(AT
SAS)

−1). Consequently,
√
n(θ̂L0 − θ0) →d

N(0,Σθ). ■

Proof of Proposition 3.6. Both results immediately follow from Theorem 2 in Shen

et al. (2013) considering our SFSOD formulation based on the two disjoint sets Sβ

137



and Sϕ. ■

A.2 Simulation study details

In this Appendix we provide details and extensions of the simulation study in Sec-

tion 3.4. Computations for this research were performed on the Pennsylvania State

University’s Institute for Computational and Data Sciences’ Roar supercomputer.

This content is solely the responsibility of the authors and does not necessarily rep-

resent the views of the Institute for Computational and Data Sciences. We used

basic memory option on the ACI-B cluster with an Intel Xeon 24 core processor at

2.2 GHz and 128 GB of RAM. The multi-thread option in R and Gurobi was limited

to a maximum of 24 threads.

We compared the following estimators:

SparseLTS: combines an L1-penalty with the LTS estimator (Alfons et al., 2013).

Similarly to other methods, we do not perform a final re-weighting step. The algo-

rithm starts with 1000 initial subsamples, where 20 subsamples with the lowest value

of the objective function are used to compute additional concentration-steps until

convergence. The sparsity level is tuned according to the BIC-type criterion pro-

posed by the authors. Our implementation is based on the parallelized sparseLTS

function of the robustHD package (Alfons, 2021) in R (we use the R version 3.5.2).

EnetLTS: combines an elastic net penalty with the LTS loss function (Kurnaz

et al., 2017). Also here we use a lasso penalty and the algorithm starts with 1000

initial subsamples, where 20 subsamples with the lowest value of the objective func-

tion are used to compute additional concentration-steps until convergence. The

sparsity level is tuned through a robust 10-folds cross-validation as advocated by

the authors. It is implemented using the enetLTS R package (Kurnaz et al., 2018)

without parallelization.

MIP: solves (3.2) based on the L2-loss and excludes the ridge-like penalty. As

customary in feature selection problems, we do not penalize the intercept and we
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standardize features at the outset. Because the regressions we focus on comprise

outliers, we use a robust standardization; both y and X are centered to have zero

medians, and each Xj is also scaled to have unit median absolute deviation (MAD);

results in the output are given in the original scale. Although binary features are

often standardized (Tibshirani, 1997), since the constraints on β and ϕ are separate,

we do not standardize the binary variables used in the outlier detection component of

the problem. The interpretation of the entries in ϕ as prediction residuals indicates

that they are already on the same scale under the null model. The sparsity level

k∗p ranges from 1 (only the intercept term) to 2p0 and is tuned through a BIC-

type criterion (see also Section 3.3.2). This is computed as: BIC(k∗p) = k∗p log(h) +

h log(L), where h = n − n0 and L = h−1∥y − Aθ̂L0∥22. Instead of taking the

minimum BIC, we aim at finding an elbow across the considered k∗p values. As a

simple approach, our final solution is the one with the largest absolute decrease

along consecutive model sizes, i.e., kp = mink∗p{BIC(k∗p)−BIC(k∗p −1)}. For each k∗p
value, the corresponding MIQP is warm-started using the result from the previous

model of size k∗p − 1. Big-M bounds are computed using the ensemble method

described in Section 3.3.2, including all estimators used in our comparison (apart

from the oracle). Here the multiplicative constant c is set to 10. Our implementation

is based on the Julia programming language (version 0.6.0) in connection with the

MIP commercial solver Gurobi (version 8.1.1) through the JuMP package. Our code

can run in parallel and is provided in Appendix D. Each job runs with a scheduled

time limit of 300 seconds.

We also provide an implementation for the tuning procedure described in Sec-

tion 3.3.2. For cross-validation in (iii) we use the computationally efficient integrated

scheme introduced in Kenney et al. (2021), robustifying the performance measure

(the mean squared prediction error) with an upper trimmed sum. Choosing the

trimming level is again not trivial, because cross-validation folds might contain

different proportions of outliers. In order to be conservative, we fix the trimming

proportion to 3kn/n on the test fold and to 2kn/n on the training folds. For infor-

mation criteria in (iii) the situation is more straightforward, as one can compute

robust values for them using only cases identified as non-outlying in any given MIP
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run. Refining kn downward in (iv) improves efficiency in estimating β, which can

be low if the starting kn in (ii) is substantially larger than the true n0, excluding

non-outlying cases from the fit. Assuming that the selected model of size kp in (iii)

is close to the true p0 active features, iteratively reducing kn provides an effective

strategy to pinpoint when outliers start to be included in the fit. Similarly to the

Forward Search algorithm (Atkinson and Riani, 2000), this can be done monitoring

an appropriate statistic (e.g., the minimum absolute deletion residuals) along itera-

tions.

Table A.1 shows our results in terms of medians and MADs for the simulation

setting discussed in Section 3.4. A comparison with Table 3.1 highlights the skew-

ness of most metrics, with all methods performing better, especially our proposal

(denoted MIP).

We also explored weak SNR scenarios. The following simulation setting is the

same as in Section 3.4, with the only difference being that the signal-to-noise-ratio

is reduced to SNR = 3. Table A.2 shows simulation results in term of medians and

MADs. A comparison with Table 3.1 shows that similar conclusions hold, although

all methods experience an overall decrease in performance. Our approach generally

outperforms other methods and converges faster to the oracle solution. However, for

scenarios with small sample sizes, the FNR in β̂ for our method is worse. Moreover,

while computing time for heuristic methods remains similar to the stronger SNR

scenario, our proposal shows a marked increase.

We also explored simulation settings with multicollinearity structures. Table A.3

presents our results for a simulation scenario which mimics that of Section 3.4 (re-

porting medians and MADs), with the only difference being that ΣX has an au-

toregressive correlation structure ΣX,ij = 0.3|i−j|. Though this could be considered

a “mild” level of correlation, we note that the addition of contamination increases

the amount of multicollinearity present. Here our approach is often outperformed

by other methods for small sample sizes, however as the latter increase we can again

notice that our proposal converges faster to the oracle solution and results like those

in Table 3.1 hold.
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Smaller SNR regimes and stronger correlation structures were also explored;

results are not reported as all methods performed quite poorly. In these settings, as

advocated in Hastie et al. (2020), a ridge-like penalty may be beneficial.

In order to further investigate the effects of mean shift parameters, we performed

additional simulations and extended the results reported in Table 3.1 of the main

text. For simplicity, we focus on the scenario with n = 50 and p = 50, where n0 = 5

and p0 = 5. In this setting, we use mean shifts −λε = λX ∈ {1, 3, 5, 7, 9} and

replicate the analysis 100 independent times. Table A.4 shows that for all meth-

ods performance deteriorates as mean shifts decrease in magnitude, but that our

proposal generally outperforms competitors across different metrics. In particular,

outlier detection accuracy (based on FPR and FNR for ϕ̂, as well as their F1 scores)

drops for mean shifts of size 1, which leads to an overall decrease in performance.

This is consistent with our Theorem 3.3; the minimal degree of separation between

the true model and a least favorable model decreases with the size of the mean shifts,

resulting in harder problems, and possibly in a failure of the necessary condition for

SFSOD consistency. Note also that, since our MIP proposal (unlike other algo-

rithms) aims for a global optimum, its expected computing will tend to increase as

the size of the mean shifts decreases – making the problem harder (see Kenney et al.

2021). In contrast, computing time for heuristic methods remains quite stable.

A.3 Microbiome application details

This Appendix provides details of our microbiome application in Section 3.5. The

analysis was performed through the same high-performance computing infrastruc-

ture as our simulations. We used an Intel Xeon 24 core processor at 2.2 GHz and 128

GB of RAM. The multi-thread option in R and Gurobi was limited to a maximum

of 24 threads.

All competing robust methods were tuned as described in Appendix A.2, for

the non-robust lasso we tuned via 10-fold cross-validation across a grid of at most

100 tuning parameters. It is implemented using the cv.glmnet function within the

glmnet R package (Friedman et al., 2010). For our proposal, we selected the sparsity
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Figure A.1: Q-Q plots for the robust standardized residuals estimated by MIP in child
and maternal oral datasets (left panel). Violin plot of the distribution of CWG values with
outliers detected under the child and maternal oral regressions color and shape coded (right
panel).

level based on the minimum BIC rather than the elbow as in simulations due to the

shape of BIC curves. Here computing time for each job is increased to 6000 seconds

and the multiplicative constant c for the ensemble method is reduced to 3.

The left panel of Figure A.1 shows the Q-Q plots for robust standardized residuals

estimated by MIP for child and maternal oral data. This indicates that both type

of residuals deviate from a normality assumption and motivates the use of robust

estimation methods. The right panel of Figure A.2 shows that outlying cases for

both models often have extreme CWG values, and some overlapping outliers have

moderate CWG values.

Figure A.2 shows a plot of robust standardized residuals estimated by our MIP

proposal on child and maternal oral data. Here a group of units, with extremely

large or small residuals, is classified as outliers in both datasets.
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Figure A.2: Robust standardized residuals estimated by MIP under the child dataset
against the ones from the maternal oral regression.

Figure A.3 shows the residuals obtained by our MIP proposal in child and mater-

nal oral data against their respective robust measure of outlying-ness in the predictor

space. The latter – which robustifies leverage values – is based on a robust loca-

tion and scatter estimation using the minimum covariance determinant estimator

(Rousseeuw and Van Driessen, 1999) in the rrcov R package (Todorov and Filz-

moser, 2009). The trimming proportion is set to 20% as for MIP estimates. Here,

especially for maternal oral data, some outliers are characterized by an extreme

behavior also in the space of the relevant bacterial types being selected by MIP.

To determine how sensitive prediction results are to different training/test split

ratios, we performed the same analysis with ntr ≈ 0.9n and nte ≈ 0.1n. Results

are summarized in Table A.5. As in the scenario with ntr ≈ 0.8n and nte ≈ 0.2n,

the two robust approaches produce very dense solutions without any substantial

gains in predictive performance (and at times, higher prediction error) compared to

the sparser solutions found through our proposal. The non-robust lasso selects an

average of 1.5 features for the child oral regression (in addition to the intercept),
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Figure A.3: Robust standardized residuals estimated by MIP under the child dataset
(left panel) and maternal oral regression (right panel) against the corresponding robust
measure of outlying-ness for the selected features in X. In the legend “O” stands for
“outliers“ and “L” for “Leverage”, the letter “N” stands for “non-”.

Table A.5: Median (MAD in parenthesis) of TMSPE and the number of features selected
on the training set (composed of 90% of the units) on eight train-test splits. Last column:
number of features selected on the full data. Robust methods use 20% trimming.

Data ntr nte p Method TMSPE p̂tr
0 p̂full

0

Child oral 193 22 68 SparseLTS 0.20(0.01) 53.50(1.05) 52
EnetLTS 0.12(0.02) 46.50(3.67) 52
MIP 0.14(0.04) 14.50(0.26) 13
Lasso 0.15(0.03) 2.50(0.79) 2

Maternal oral 193 22 63 SparseLTS 0.15(0.03) 50.50(0.52) 56
EnetLTS 0.10(0.01) 50.00(3.41) 62
MIP 0.10(0.02) 12.50(0.26) 13
Lasso 0.18(0.03) 1.00(0.00) 1

and the intercept only model for the maternal oral regression.

It should also be noted that the computational burden of our MIP fluctuates

based on the quality of warm-starts and big-M bounds (when the latter are used

instead of SOS-1 constraints). Thus, as new, faster, heuristics are proposed, we

expect computational efficiency to improve while still providing optimality guar-

antees. For instance, in our microbiome analysis, alternative robust procedures

(i.e., enetLTS and sparseLTS) produced very dense solutions that either had weaker

prediction power or showed very marginal improvement over a non-robust approach.

As a consequence, the bounds were much wider, leading to higher computing time
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(e.g., hitting the maximum time allotted). We noticed this appeared to be due

to the relaxation producing weak lower bounds for the MIP; that is, there was

very little change in the final solution after 600 seconds compared to, say, 6000

seconds, because the lower bound was slow to improve. This behavior has been

well documented in prior literature (e.g., Bertsimas et al. 2016; Hastie et al. 2020;

Hazimeh and Mazumder 2020; Kenney et al. 2021).

For further validation, we performed an additional analysis utilizing another phe-

notype previously explored in Craig et al. (2018). This is actually a richer, longitudi-

nal phenotype expressing the dynamic of the growth index (defined as weight/height)

from birth up to three years of age. While a full analysis extending our proposal

to functional and/or longitudinal data is beyond the scope of this work, we studied

the relationship between the fitted values of CWG produced by various approaches

and the growth curves. We found that the CWG fitted values produced through

the three robust methods more effectively differentiated higher and lower growth

curves. This is illustrated in Figure A.4 where growth curves are color coded based

on the corresponding fitted CWG from each method. The non-robust lasso pro-

vides very little differentiation for the child oral regression and none at all for the

maternal oral regression. This is consistent with the fact that it selected only one

bacterial group for the former and produced the intercept alone for the latter. For

the robust procedures, the child oral regression was clearly more challenging, with

more discrepancies between extreme fitted CWG values and growth curves (for in-

stance, sparseLTS produced a very high fitted CWG for a child whose growth curve

is mid-range).

To further test and compare across methods, we utilized the results from our

training/test splits. For each iteration, we took the bacterial groups and non-

outlying points selected from the three robust procedures and non-robust lasso and

fit function-on-scalar regressions (Ramsay and Silverman, 2005) using the growth

curves as response. As before, we calculated the prediction error using trimmed me-

dian squared prediction error (TMPSE) based on the bacterial groups and growth

curves in the test set. Table A.6 summarizes the results of these fits. For the ma-
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Figure A.4: Growth curves from birth to three years of age for children enrolled in the
INSIGHT study. Curves are color-coded based on the fitted CWG values produced by
each of the four procedures considered (sparseLTS, enetLTS, MIP and lasso) for the child
oral (top) and maternal oral (bottom) regressions.
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Table A.6: Median (MAD in parenthesis) of TMSPE for the function-on-scalar regres-
sions and the number of features selected on the training set (from the CWG-based re-
gressions) on eight train-test splits. Last column: number of features selected on the full
data. Robust methods use 20% trimming.

Data ntr nte p Method TMSPE p̂tr
0 p̂full

0

Child oral 172 43 68 SparseLTS 0.038(0.006) 54.00(0.26) 52
EnetLTS 0.041(0.007) 47.00(3.67) 52
MIP 0.036(0.007) 13.00(0.52) 13
Lasso 0.035(0.012) 2.00(0.26) 2

Maternal oral 172 43 63 SparseLTS 0.038(0.006) 52.00(1.31) 56
EnetLTS 0.034(0.005) 52.00(4.46) 62
MIP 0.031(0.004) 13.50(0.52) 13
Lasso 0.036(0.012) 1.00(0.00) 1

ternal oral regressions, similar to prediction results obtained considering the scalar

CWG response, we observe that our procedure maintains stronger prediction ac-

curacy compared to other procedures. For the child oral regressions our procedure

again attains stronger prediction accuracy than the other robust methods. However,

we observe a phenomenon similar to the one already discussed in our main analysis,

where the non-robust lasso produces a TMSPE similar (in fact, slightly lower) than

our proposal. Again, we note that results for the non-robust lasso are markedly less

stable; they fluctuate heavily across the different training/test splits producing the

highest MAD.

A.4 Algorithmic implementation

The code to replicate both our simulation study and the microbiome application is

available at https://github.com/LucaIns/SFSOD MIP. It also contains features

for additional comparisons, such as our proposed method for efficient tuning via

cross-validation and the use of SOS-1 constraints. Further user information are

provided in the README file therein. See also the Supporting Information at https:

//onlinelibrary.wiley.com/doi/10.1111/biom.13553.
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Appendix B

Supplementary Material to

Chapter 4

B.1 Theoretical results

Proof of Proposition 4.1. For any trimming level kn, the objective function in (4.6)

subject to integer constraints in (4.6a) can be equivalently formulated as

Q(β̂) =
1

2

n−kn∑
i=1

[(y∗i − βTx∗
i )

2]i:n + (n− kn)

p∑
j=1

Rλ(|βj|) (B.1)

where (t1)1:n ≤ . . . ≤ (tn)n:n denote the order statistics of ti, y
∗ =

√
MRy and

X∗ =
√
MRX = (x∗

1, . . . ,x
∗
n)

T . This relies on the fact that a weighted regression

of y on X is equivalent to an unweighted regression of y∗ on X∗, and we also use

Proposition 1 in Insolia et al. (2021d) to transform the mean-shift model based on

ϕ to a trimmed loss problem without explicit mean shift parameters. Then, denote

the contaminated dataset as Z̃ = [ỹ, X̃] = [(y + ∆y), (X + ∆X)]. We first show

that the BdP ε∗ ≥ (n− kn + 1)/n, and then ε∗ ≤ (n− kn + 1)/n.

For the first part of the proof assume that Z̃ containsmM ≤ kn outliers. Consider

β̂ = 0, so that the associated loss

Q(0) =
n−kn∑
i=1

(ỹ2i )i:n ≤
n−kn∑
i=1

(y2i )i:n ≤ (n− kn)M
2
y ,

152



where the first inequality relies on the fact that contaminated data might contain

inliers (i.e., mean shifts can be used to reduce the overall residuals sum of square),

and My = maxi=1,...,n |yi|. Now consider any other estimate β̂, and assume that

∥β̂∥2 ≥ l – i.e., the estimator might break down – where l = {(n− kn)M
2
y + 1}/c is

independent from the contamination mechanism and c > 0. It follows that

Q(β̂) ≥ (n− kn)

p∑
j=1

Rλ(|βj|) ≥ c(n− kn)∥β∥2 ≥ (n− kn)M
2
y + 1 > Q(0),

where the first inequality immediately follows from (B.1), and the second inequality

is based on the topological equivalence of norms and the definition of SCAD, since

∥β∥1 ≥
∑p

j=1Rλ(|βj|) ≥ c∥β∥2 for some constant c > 0 and any β vector. However,

Q(β̂) > Q(0) leads to a contradiction as the objective function is non-decreasing

in the number of non-zero β̂j components. Hence, ∥β̂∥2 < l implies that ε∗ ≥

(n− kn + 1)/n, which concludes the first part of the proof.

For the second part of the proof, consider mM > kn, and assume that ∥β̂(Z̃)∥2 ≤

u (i.e., the estimator does not breakdown). The objective in (B.1) can be decom-

posed as

Q(β̂) =

n−mM∑
i=1

[
(ỹ∗i − β̂T x̃∗

i )
2
]
i:n

+
n−kn∑

h=n−mM+1

[
(ỹ∗h − β̂T x̃∗

h)
2
]
h:n

+ (n− kn)

p∑
j=1

Rλ(|β̂j|)

≥
[
{(y∗i − βTx∗

i ) + (∆yi − β̂T∆xi
)}2

]
i=n−mM+1

+ (n− kn)

p∑
j=1

Rλ(|β̂j|)

(B.2)

since at least one of themM outliers might be included in the fit – i.e., the (n−n0+1)-

th ordered squared residual if contamination is adversarial. Hence, since mean shifts

∆yi and ∆xi
can take arbitrary values, it is easy to see that (B.2) is unbounded

similarly to OLS. This contradicts ∥β̂(Z̃)∥2 ≤ u and proves the result. ■

Proof of Proposition 4.2. It extends Theorem 1 in Fan and Li (2012) to the presence

of MSOM contamination. Specifically, we can use the same argument, but their

conditions must hold at least on n − mM (uncontaminated) points as opposed to

n. Since kn largest residuals (say, kn = mM) are always discarded from our loss in
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(4.6), we thus need to ensure that these trimmed points encompass MSOM outliers.

Condition 4.2(D) guarantees this, similarly to Theorem 3 in Insolia et al. (2021d),

so that MSOM outliers have largest residuals for any model of size kp ≤ p0. See Fan

and Li (2012) for details. ■

Proof of Proposition 4.3. This result immediately follows from Theorem 2 in Fan

and Li (2012) specifically focusing on VIOM outliers as random effects (i.e., our term

Inγ instead of Zb). However, in Fan and Li (2012) the dimension of the random

effects b can increase exponentially with the sample size n, but in our formulation

γ can only increase linearly with n − kn. Thus, our conditions in list 4.2 might

be relaxed to account only for VIOMs. Nevertheless, these more general conditions

allow one to extend our results also to the presence of additional (pure) random

effects, whose size can increase exponentially with n− kn. ■

Proof of Theorem 4.1(1). The proofs for Theorem 4.1 follow some lines of the ar-

gument in Theorems 1 and 3 of Liu and Yu (2013), where an OLS or ridge fit is

computed on top of the features selected by lasso.

Here with a slight abuse of notation, we denote P (S) = P (Ŝ = S) and P (S̃) =

P (Ŝ ̸= S), where Ŝ = {Ŝβ, Ŝϕ, Ŝγ}. Furthermore, we indicate as β̂|Ŝ the estimated

coefficients conditionally on the selected model, which is abbreviated as β̂Ŝ . It

is also assumed that, conditionally on any selected model Ŝ, units weights Ŵ are

deterministic; i.e., they are treated as known constants (which is customary in robust

statistics). Hence, conditionally on the true model S, we have that Ŵ = W = V −1.

By the law of total expectations and using ∥a+ b∥2 ≤ 2(∥a∥2 + ∥b∥2), it follows
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that

∥Eβ̂ − β0∥22 = ∥Eβ̂SP (S) + Eβ̂S̃P (S̃)− β0∥22

≤ 2∥Eβ̂SP (S)− β0∥22 + 2∥Eβ̂S̃P (S̃)∥
2
2

= 2∥E{(XT
S ŴXS)

+XT
S Ŵy}P (S)− β0∥22 + 2P (S̃)∥Eβ̂S̃∥

2
2

= 2∥P (S)β0 − β0∥22 + 2P (S̃)∥Eβ̂S̃∥
2
2

= 2∥β0(P (S)− 1)∥22 + 2P (S̃)∥Eβ̂S̃∥
2
2

= 2P (S̃){∥β0∥22 + ∥Eβ̂S̃∥
2
2}. (B.3)

Further, using Jensen’s inequality and the fact that ∥Ab∥ ≤ ∥A∥∥b∥ provides

∥Eβ̂S̃∥
2
2 ≤ E∥(XT

S̃ ŴXS̃)
+XT

S̃ Ŵy∥22

≤ E∥(XT
S̃ ŴXS̃)

+XT
S̃ Ŵ

1/2∥22∥Ŵ 1/2y∥22

= Λmax{(XT
S̃ ŴXS̃)

+}E∥Ŵ 1/2Xβ0 + Ŵ 1/2ε∥22

= Λmax{(XT
S̃ ŴXS̃)

+}E(∥Ŵ 1/2Xβ0∥22 + εTŴ ε)

= Λmax{(XT
S̃ ŴXS̃)

+}(∥Ŵ 1/2Xβ0∥22 + tr(Ŵ )σ2) (B.4)

≤ Λmax{(XT
S̃ ŴXS̃)

+}(∥Xβ0∥22 + nσ2),

where Λmax(·) denotes the largest eigenvalue, and for a real matrix A, the spectral

norm ∥A∥2 =
√

Λmax(AAT ) =
√

Λmax(ATA). In our case,

∥(XT
S̃ ŴXS̃)

+XT
S̃ Ŵ

1/2∥22 = Λmax{(XT
S̃ ŴXS̃)

+XT
S̃ ŴXS̃(X

T
S̃ ŴXS̃)

+}

= Λmax{(XT
S̃ ŴXS̃)

+},

where the last equality follows from the property of a generalized inverse A+AA+ =

A+. Combining (B.3) and (B.4) leads to the desired results. ■

Proof of Theorem 4.1(2). Introducing the WLS oracle estimator β̂0 and using the

fact that

E∥β̂0 − β0∥2 = E∥(XT
S ŴXS)

+XT
S Ŵε∥2 = 0
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provides

E∥β̂ − β0∥22 = E∥β̂ + β̂0 − β̂0 − β0∥22

= E∥β̂ − β̂0∥22 + E∥β̂0 − β0∥22

= E∥β̂ − β̂0∥22 + σ2tr(Σ−1
X )/tr(Ŵ ) (B.5)

the last equality follows from the MSE for the WLS oracle estimator and such term

cannot be improved. Thus, we control the first term as follows

E∥β̂ − β̂0∥22 = E∥β̂S − β̂0∥22P (S) + E∥β̂S̃ − β̂0∥22P (S̃)

= E∥β̂S̃ − β̂0∥22P (S̃), (B.6)

where the first equality relies on the law of total expectations and the last one uses

the fact that β̂Ŝ = β̂0 conditionally on {Ŝ = S}.

Further, note that

E∥β̂S̃ − β̂0∥22 ≤ 2{E∥β̂S̃∥
2
2 + E∥β̂0∥22}

= 2{E∥(XT
S̃ ŴXS̃)

+XT
S̃ Ŵy∥22 + E∥(XT

S ŴXS)
+XT

S Ŵy∥22}

≤ 2E∥Ŵ 1/2y∥22
[
Λmax{(XT

S̃ ŴXS̃)
+}+ Λmax{(XT

S ŴXS)
+}

]
,

(B.7)

where the first upper bound follows from ∥a+ b∥2 ≤ 2(∥a∥2 + ∥b∥2), and the second

one uses ∥Ab∥ ≤ ∥A∥∥b∥. Finally, combining

E∥Ŵ 1/2y∥22 ≤ E(∥Ŵ 1/2Xβ0∥22+εTŴ ε) = ∥Ŵ 1/2Xβ0∥22+tr(Ŵ )σ2 ≤ ∥Xβ0∥22+nσ2

with (B.5), (B.6), and (B.7) concludes the proof. ■

Proof of Theorem 4.1(3). Under the conditions in lists 4.1-4.3, as (n−mM) → ∞, it

follows that P (Ŝ = S) → 1 for some suitable constants. Thus, β̂ has an asymptotic
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normal distribution as it is a linear combination of normal distributions

β̂ = (XT
S ŴXS)

−1XT
S Ŵy

= (XT
S ŴXS)

−1XT
S Ŵ (XSβ0 + ε)

= β0 + (XT
S ŴXS)

−1XT
S Ŵε ∼ N(β0, σ

2(XT
S ŴXS)

−1),

and Ŵ = V −1 guarantees that it asymptotically reaches maximum efficiency. ■

B.2 Technical details

B.2.1 Choice of the proxy matrix M

For mixed-effects linear models without data contamination as in Section 4.2.2, Fan

and Li (2012) propose to replace σ−2B in (4.5) with a proxy matrix Mb. They show

that under mild conditions it is safe to choose Mb = log(n)In, as the eigenvalues

of ZTPxZ and ZZT have magnitude increasing with n, so that they are likely to

dominate the eigenvalues of Mb for a large enough n. While this choice excludes

cross-correlations in the random effects, it avoids the estimation of a large number

of parameters as in the case of an unstructured covariance matrix.

In our formulation the terms MR and Mγ in (4.6) and (4.8) are proxies for

the unknown PR and Γ, respectively. Following Fan and Li (2012), in our imple-

mentation we use Mγ = log(n)In on the first iteration of SCADws. If the 3-step

procedure is re-iterated, such as in SCAD2s, we use estimated weights Ŵ from the

previous iteration for their update; see Section B.3.1 for details.

B.2.2 Weights estimation

The formulation in (4.8) highlights that if γ̂i = 0 also the corresponding variance

inflation ω̂i = 0. However, it might be of interest to estimate ωi when the cor-

responding γ̂i ̸= 0. A similar reasoning holds for step 3 of the heuristic method
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described in Section 4.3.4. Note that

wi = v−1
i = (1 + ωi)

−1 = (1 + var(γi)/σ
2)−1,

which can be estimated as follows:

1. Apply REMLE assuming that the units corresponding to non-zero components

in γ̂ arise from a VIOM. In principle, all weights should be jointly estimated,

although this can be computationally heavy for large problems. A similar

approach was used by Fan and Li (2012, p.2060) in one of their examples.

Similarly to Insolia et al. (2021b), we also consider single-weights estimates as

in FSRws, where each VIOM outlier is separately included in the model and

estimated. This is the approach used in our simulations and applications.

2. The quantity γ2j /n can be used as an estimate of var(γj) (Fan and Li, 2012,

p. 2053 Eq. 20). Thus, one can consider wi = (1 + γ̂2i c1/σ̂
2)−1 where c1 is a

normalizing constant and the value c1 = 1/n was suggested by the authors.

3. One can treat the selected random effects γi as additional fixed effects and

apply a ridge penalty (Hoerl and Kennard, 1970a). This can be considered

optimal and is motivated by the fact that assuming a normal prior N(0, σ2Γ)

on γ leads to the ridge estimator as the maximum posterior probability esti-

mator. Indeed, the estimates γ̂ represent prediction residuals, so that their

shrinkage performs a down-weighting scheme. Moreover, Grandvalet (1998)

showed that adaptive ridge is equivalent to lasso estimation; this can be useful

to simultaneously select and estimate optimal units’ weights (e.g., combining

Steps 2 and 3 of our main proposal and/or heuristic procedure).

B.2.3 Parameter tuning

In our proposal we tune the sparsity level for fixed-effects in Step 1, and the number

of VIOM outliers as random-effects in Step 2, and we focus on the use of BIC-type

criteria. Other approaches can be envisaged to achieve these goals, but this is left

for future work.

158



In the first step of our proposal described in Section 4.3.1, we rely on a BIC-type

criterion to tune the sparsity level of SCAD; note that MSOM outliers are removed

according to the sparseLTS fit (see the main text for details). Namely, we select the

λ which minimizes

BICF
λk

= n̄ log{[(y −Xβ̂λk
)T (y −Xβ̂λk

)/(n̄σ̂2
P )]

1/2}+ log(n̄)kλk
p (B.8)

where n̄ = n− kn, λk is the k-th element of the λ’s sequence, β̂λk
is the minimizer

of (4.6) for λ = λk, k
λk
p = |Ŝβ(λk)| is the number of nonzero components in β̂λk

,

and the term σ̂2
P is a preliminary estimate of scale (e.g., the one obtained by our

heuristic or SCADws).

Also in the second step of our proposal described in Section 4.3.2 we rely on a

BIC-type criterion to adaptively detect VIOM outliers. Here we select the λ which

minimizes

BICR
λk

= 2n̄ log

[
σ̂2
S

σ2
h

(y − γ̂λk
)TPx(y − γ̂λk

)

]
+ log(n̄)kλk

W (B.9)

where σ̂2
S is an estimate of the error variance (e.g., based on an S-estimator with

50% breakdown point), γ̂λk
is the SCAD estimate of γ based on (4.8) for the k-th

element of the λ’s sequence, kλk
W = n̄− tr(Ŵλk

) with units’ weights Ŵλk
estimated

(independently) according to γ̂λk
through REMLE, and σ2

h is the variance of the

truncated normal distribution containing a central portion h/n̄ of the full distribu-

tion (for h = n̄− |Ŝγ(λk)|). Namely, if h < n̄:

σ2(h) = 1− 2n̄

h
Φ−1

(
n̄+ h

2n̄

)
ϕ

{
Φ−1

(
n̄+ h

2n̄

)}
,

where ϕ(·) and Φ(·) denote the probability density and cumulative density func-

tion for the standard normal distribution, respectively. This consistency correction

factor is often used in robust regression (Rousseeuw and Leroy, 1987; Riani et al.,

2014, 2022), and relies on the one-dimensional case of elliptical truncation of the

multivariate normal distribution provided in Tallis (1963); see also Johnson et al.

(1995, pp.156–162) for details. For h = n̄, the correction term is σ2(h) = 1 and thus
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neglected.

In principle, as a generalization of (B.8), one can combine the BIC-like criteria

in Insolia et al. (2021d) and Riani et al. (2022) to simultaneously tune the trimming

proportion and the sparsity level in (4.6). Moreover, to take into account the co-

occurrence of VIOM outliers, one can perform VIOM detection in (4.8) through an

extension of our BIC-type criterion in (B.9) in the spirit of CAIC and extended

CAIC discussed in Section 4.2.2. However, this is left for future work.

In Step 1 of our heuristic procedure described in Section 4.3.4, we rely on 10-fold

cross-validation to select fixed effects through SCAD. Note that also here MSOMs

are removed according to the sparseLTS fit when present. In Step 2 we rely on a

BIC-type criterion similarly to (B.9) to detect VIOMs through SCAD. We select

the λ which minimizes

BICheur,R
λk

=
2

σ̂2
S

[
(y −Xβ̂ − γ̂λk

)T (y −Xβ̂ − γ̂λk
)

σ2
h

]
+ log(n̄)kλk

V , (B.10)

where β̂ is the regression vector estimated in the first step of our heuristic method,

γ̂λk
are the penalized estimates from its second step, kλk

V = |Ŝγ(λk)| is the number

of nonzero components in γ̂λk
, and the other terms are defined in (B.9).

B.2.4 Parallel between our heuristic approach and M-

estimation

The proposed heuristic method has a parallel with the following multi-stage, penal-

ized M -estimation procedure.

Step 1 is equivalent to an adaptive hard-trimming, sparse estimator (i.e., it selects

features and assigns binary weights) and guarantees an high-breakdown point. This

step aims to exclude MSOMs and select only the relevant features (see for instance

Alfons et al. 2013; Kurnaz et al. 2017; Insolia et al. 2021d). Step 2 corresponds to

an adaptive “truncated”M -estimator, where only the most extreme cases are down-

weighted. In full generality, this estimator takes the form β̂ = argminβ

∑n
i=1 ρ(ui),

where ui = (yi − xT
i β)/σ. Here the idea is that the n−mM −mV uncontaminated
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points receive full weights as in OLS, but only VIOMs are down-weighted according

to the ρ(·) function in use, and MSOMs (if present) are excluded from the fit. For
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Figure B.1: Hyperbolic tangent ρ function (left panel), ψ function (central panel), and
weight function (right panel) for c2 = 4 and k = 4.5.

instance, this has a parallel with the hyperbolic tangent ρ(·) function, which can be

considered as refinement of Hampel’s piecewise linear redescending function and is

related to the change of variance curve (Hampel et al., 1981). Tanh-estimators are

more easily defined in terms of their derivatives, and the corresponding ψ(·) function

is

ψ(u) =


u if |u| ≤ c1

{A(k − 1)}1/2 tanh
[
1
2
{(k − 1)B2/A}1/2 (c2 − |u|)

]
sign(u) if c1 ≤ |u| ≤ c2

0 if |u| > c2

for suitable constants k, A, B, c1, and c2, where 0 < c1 < c2 satisfies

c1 = {A(k − 1)}1/2 tanh
[
1

2

{
(k − 1)B2/A

}1/2
(c2 − c1)

]
.

These constants are traditionally computed iteratively, based on the Newton-

Raphson algorithm and numerical integration. Figure B.1 shows the corresponding

ρ, ψ, and weight functions for c2 = 4 and k = 4.5.

Unlike tanh-estimators, our heuristic proposal does not pre-specify a trade-off

between breakdown point and efficiency, but this is adaptively tuned as follows. The

rejection point c2 approximately corresponds to the smallest standardized residual

for the MSOMs detected at Step 1. Similarly, the constant c1 is set to the value of the

largest standardized residual for points which are not affected by MSOM or VIOM.

Specifically, for our heuristic proposal, c1 and c2 can be computed based on order
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statistics from the scaled residuals obtained at Step 1. Ideally, assuming without

loss of generality that all outliers have sizeable residuals, these corresponds to the

(n −mV −mM)-th and (n −mM)-th order statistics of the absolute standardized

residuals, respectively.

B.3 Simulation study details

Experiments were carried out using MATLAB 2021b and R version 3.6.2. The hard-

ware in use has an Intel Core i7-7700HQ CPU @ 2.8 GHz × 4 processors and 16

GB RAM.

B.3.1 Algorithmic implementations

Scenario 1: low-dimensional setting

LTS, MM85, MM95 and FSRws are computed through the FSDA MATLAB Toolbox

(FSDA, 2022), with default input parameters – note that MM-estimators rely on

an S-estimator with breakdown point set to 0.5. Our heuristic procedure based on

SCAD is computed through the Penalized MATLAB toolbox (McIlhagga, 2016) and

VIOM detection is tuned according to (B.10) for 100 λ values. For SCADws, VIOM

detection (Step 2 of our main proposal) is tuned through the BIC-type information

criterion in (B.9) for 50 λ values. Units’ weights for FSRws, Heur and SCADws are

estimated (independently) through the VIOM() function which is available on FSDA

(Insolia et al., 2021b).

Scenario 2: high-dimensional setting

Lasso (Tibshirani, 1996) is computed through the Penalized MATLAB toolbox and

its sparsity level is tuned according to a 5-fold cross validation for 100 λ values.

SparseLTS, which combines an L1-penalty with the LTS estimator (Alfons et al.,

2013), is computed through the sparseLTS() function of the robustHD package

(Alfons, 2021) in R. The latter is called from MATLAB itself through the RunRcode()

function1. The algorithm starts with 500 random subsamples, where 10 subsam-

1https://it.mathworks.com/matlabcentral/fileexchange/50071-runrcode-rscriptfilename-rpath
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ples with the lowest value of the objective function are used to compute additional

concentration-steps (which are at most 100). The sparsity level is chosen according

to the minimum root trimmed mean squared prediction error based on a repeated

10-fold cross validation for 100 λ values, where the number of replications is equal

to 10. Note that we do not perform a final re-weighting step.

TaL, which is an adaptive lasso with Tukey’s bisquare loss, is computed through

the MATLAB code provided in Chang et al. (2018). Its tuning constant is set at

c = 4.685 to achieve 85% nominal efficiency, and we use the sparseLTS solution

to initialize the algorithm. Its sparsity level is tuned according to the BIC-type

criterion proposed by the authors, and we consider 50 λ values.

SCADopt, SCADws and SCAD2s use sparseLTS as a preliminary estimator,

which can be considered as the first step in solving SCAD through the LLA al-

gorithm. Specifically, we apply our proposals on the set of cases detected as non-

MSOMs by sparseLTS, and its set of active features. In terms of proxy matri-

ces, SCADws uses Mγ = log(n − mM)In−mM
(see Section B.1); SCAD2s, for the

set of cases Ŝγ estimated as VIOMs by SCADws, relies on MŜγ
γ = Ŵ−1

Ŝγ
− I|Ŝγ |;

similarly, SCADopt relies on population weights for the true VIOM outliers using

MSγ
γ = W−1

Sγ
− ImV

. In SCAD2s and SCADopt, the remaining diagonal entries of

Mγ are set to 0 in the first step. However, in the second step, they are set to 1 –

this allows us to detect as VIOMs also cases that were not detected by SCADws and

non-outlying cases with sizeable residuals, respectively. For SCADws, SCAD2s and

SCADopt, we tune their sparsity level (Step 1 of our proposal) and detect VIOMs

(Step 2 of our proposal) through the information criteria described in (B.8) and

(B.9). Here SCADws uses the estimate of s2 provided by our heuristic for σ̂2
P in

(B.8), and the estimated error variance provided by an S-estimator with 50% BdP

for σ̂2
S in (B.9). SCADopt and SCAD2s rely on the population variance and the

estimate of s2 provided by SCADws, respectively, and we consider σ̂2
P = σ̂2

S. At

each step, similarly to TaL, our proposals are evaluated over a sequence of 50 λ

values.
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Figure B.2: Scenario 1. Trimmed MSE(ŝ2) comparisons (with 20% upper trimming)
across procedures and sample sizes.

B.3.2 Additional settings

Scenario 1: low-dimensional VIOMs

Figure B.2 extends Figure 4.2 and shows the trimmed MSE for ŝ2. Here, for each

method, we trimmed 20% of the largest squared entries in σ2−ŝ2 and then computed

the MSE decomposition on the remaining instances. SCADws greatly outperform

other methods both in terms of biases and variances sample sizes, and Heur performs

comparably but has higher variability. A comparison with Figure 4.2 indicates that

only a few instances (at most 20 out of 100) were affecting the MSE of SCADws

and Heur, but other methods report very similar results. In particular, MM85 and

MM95 have persistent biases across sample sizes, and their variability is comparable

to SCADws. This highlights the drawback of usingM -estimators with a pre-specified

nominal efficiency.

We also explored various SNR regimes. The following simulation settings are

the same as scenario 1 in Section 4.4.1, with the only difference being that SNR =

1, 2, 5. Table B.1-B.3 show simulation results in term of MSE decompositions for

β̂ and ŝ2, and mean (with standard deviations in parenthesis) FPR and FNR for

VIOM detection. A comparison with the results in Section 4.4.1 shows that similar

conclusions hold, although all methods report an overall decrease in performance

for weaker SNR regimes. Also here, SCADws converges faster to the oracle solution

and outperforms other feasible estimation methods.
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Table B.1: Scenario 1 with SNR = 1. MSE for β̂ and ŝ2 (decomposed into squared
bias and variance), and mean (SD in parenthesis) FPR and FNR for feature selection and
outlier detection, based on 100 simulation replications.

n p Method bias(β̂)2 var(β̂) bias(ŝ2)2 var(ŝ2) FPR(τ̂) FNR(τ̂)

50 2 Opt 0.00092 0.0967 0.0057 0.5358 0.00(0.00) 0.00(0.00)
OLS 0.00692 0.2514 71.8625 18.7466 0.00(0.00) 1.00(0.00)
LTS 0.00259 0.2458 5.6526 0.3960 0.14(0.04) 0.37(0.13)
MM85 0.00106 0.1485 0.7348 0.7163 1.00(0.00) 0.00(0.00)
MM95 0.00140 0.1427 0.3959 1.5487 1.00(0.00) 0.00(0.00)
FSRws 0.00400 0.2072 25.4549 14.4381 0.00(0.00) 0.91(0.14)
Heur 0.00276 0.1556 0.2688 2.6999 0.07(0.11) 0.50(0.21)
SCADws 0.00144 0.1545 0.0135 1.8640 0.03(0.04) 0.53(0.21)

100 2 Opt 0.00034 0.0582 0.0006 0.3243 0.00(0.00) 0.00(0.00)
OLS 0.00180 0.1210 77.2597 9.5786 0.00(0.00) 1.00(0.00)
LTS 0.00158 0.1467 4.8607 0.1985 0.13(0.03) 0.38(0.08)
MM85 0.00086 0.0888 0.4516 0.6457 1.00(0.00) 0.00(0.00)
MM95 0.00092 0.0863 0.6477 1.2266 1.00(0.00) 0.00(0.00)
FSRws 0.00103 0.0954 7.5363 8.1701 0.00(0.00) 0.79(0.15)
Heur 0.00128 0.0909 0.0000 2.2979 0.04(0.05) 0.56(0.16)
SCADws 0.00107 0.0918 0.0308 1.6272 0.02(0.03) 0.57(0.14)

150 2 Opt 0.00069 0.0305 0.0011 0.2358 0.00(0.00) 0.00(0.00)
OLS 0.00010 0.0742 81.7951 8.5131 0.00(0.00) 1.00(0.00)
LTS 0.00010 0.0761 5.1616 0.1196 0.13(0.02) 0.38(0.07)
MM85 0.00037 0.0454 0.5344 0.3351 1.00(0.00) 0.00(0.00)
MM95 0.00054 0.0464 0.6117 0.6909 1.00(0.00) 0.00(0.00)
FSRws 0.00038 0.0501 2.7022 2.1681 0.00(0.01) 0.71(0.13)
Heur 0.00042 0.0475 0.0079 1.0925 0.03(0.03) 0.53(0.12)
SCADws 0.00036 0.0475 0.0026 0.9926 0.02(0.03) 0.55(0.12)

200 2 Opt 0.00033 0.0261 0.0040 0.1745 0.00(0.00) 0.00(0.00)
OLS 0.00053 0.0613 76.2648 5.7191 0.00(0.00) 1.00(0.00)
LTS 0.00011 0.0510 5.0271 0.0907 0.13(0.02) 0.38(0.06)
MM85 0.00014 0.0339 0.5330 0.2268 1.00(0.00) 0.00(0.00)
MM95 0.00019 0.0380 0.5367 0.4445 1.00(0.00) 0.00(0.00)
FSRws 0.00029 0.0407 1.3658 1.5142 0.00(0.01) 0.68(0.12)
Heur 0.00025 0.0344 0.0063 0.9036 0.02(0.03) 0.56(0.12)
SCADws 0.00015 0.0366 0.0691 0.8392 0.02(0.02) 0.58(0.11)

250 2 Opt 0.00014 0.0202 0.0037 0.1187 0.00(0.00) 0.00(0.00)
OLS 0.00074 0.0384 78.5485 3.1807 0.00(0.00) 1.00(0.00)
LTS 0.00115 0.0473 5.1892 0.0844 0.13(0.02) 0.37(0.05)
MM85 0.00018 0.0248 0.5391 0.1883 1.00(0.00) 0.00(0.00)
MM95 0.00013 0.0249 0.5225 0.3533 1.00(0.00) 0.00(0.00)
FSRws 0.00013 0.0273 0.5807 1.2080 0.01(0.01) 0.64(0.11)
Heur 0.00024 0.0261 0.0009 0.7908 0.02(0.02) 0.55(0.10)
SCADws 0.00017 0.0250 0.0420 0.7442 0.02(0.02) 0.57(0.10)

300 2 Opt 0.00005 0.0169 0.0000 0.1176 0.00(0.00) 0.00(0.00)
OLS 0.00052 0.0466 82.0060 3.4206 0.00(0.00) 1.00(0.00)
LTS 0.00011 0.0400 4.9945 0.0703 0.13(0.02) 0.38(0.05)
MM85 0.00021 0.0246 0.4337 0.1752 1.00(0.00) 0.00(0.00)
MM95 0.00029 0.0261 0.7822 0.3896 1.00(0.00) 0.00(0.00)
FSRws 0.00030 0.0260 0.3107 0.8086 0.01(0.01) 0.61(0.10)
Heur 0.00034 0.0254 0.0651 0.5022 0.02(0.01) 0.57(0.09)
SCADws 0.00031 0.0239 0.0922 0.4944 0.01(0.01) 0.57(0.09)
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Table B.2: Scenario 1 with SNR = 2. MSE for β̂ and ŝ2 (decomposed into squared
bias and variance), and mean (SD in parenthesis) FPR and FNR for feature selection and
outlier detection, based on 100 simulation replications.

n p Method bias(β̂)2 var(β̂) bias(ŝ2)2 var(ŝ2) FPR(τ̂) FNR(τ̂)

50 2 Opt 0.00046 0.0483 0.0014 0.1340 0.00(0.00) 0.00(0.00)
OLS 0.00346 0.1257 17.9656 4.6867 0.00(0.00) 1.00(0.00)
LTS 0.00129 0.1229 1.4131 0.0990 0.14(0.04) 0.37(0.13)
MM85 0.00053 0.0743 0.1837 0.1791 1.00(0.00) 0.00(0.00)
MM95 0.00070 0.0713 0.0990 0.3872 1.00(0.00) 0.00(0.00)
FSRws 0.00200 0.1036 6.3637 3.6095 0.00(0.00) 0.91(0.14)
Heur 0.00116 0.0739 0.0432 0.6911 0.07(0.11) 0.50(0.21)
SCADws 0.00071 0.0769 0.0023 0.4642 0.03(0.04) 0.54(0.21)

100 2 Opt 0.00017 0.0291 0.0001 0.0811 0.00(0.00) 0.00(0.00)
OLS 0.00090 0.0605 19.3149 2.3947 0.00(0.00) 1.00(0.00)
LTS 0.00079 0.0733 1.2152 0.0496 0.13(0.03) 0.38(0.08)
MM85 0.00043 0.0444 0.1129 0.1614 1.00(0.00) 0.00(0.00)
MM95 0.00046 0.0431 0.1619 0.3067 1.00(0.00) 0.00(0.00)
FSRws 0.00052 0.0477 1.8841 2.0425 0.00(0.00) 0.79(0.15)
Heur 0.00073 0.0448 0.0000 0.5765 0.04(0.05) 0.55(0.16)
SCADws 0.00056 0.0460 0.0086 0.4044 0.02(0.03) 0.57(0.14)

150 2 Opt 0.00034 0.0153 0.0003 0.0589 0.00(0.00) 0.00(0.00)
OLS 0.00005 0.0371 20.4488 2.1283 0.00(0.00) 1.00(0.00)
LTS 0.00005 0.0381 1.2904 0.0299 0.13(0.02) 0.38(0.07)
MM85 0.00019 0.0227 0.1336 0.0838 1.00(0.00) 0.00(0.00)
MM95 0.00027 0.0232 0.1529 0.1727 1.00(0.00) 0.00(0.00)
FSRws 0.00019 0.0250 0.6756 0.5420 0.00(0.01) 0.71(0.13)
Heur 0.00016 0.0243 0.0017 0.2759 0.03(0.03) 0.53(0.12)
SCADws 0.00015 0.0238 0.0011 0.2509 0.02(0.03) 0.55(0.12)

200 2 Opt 0.00016 0.0130 0.0010 0.0436 0.00(0.00) 0.00(0.00)
OLS 0.00026 0.0306 19.0662 1.4298 0.00(0.00) 1.00(0.00)
LTS 0.00005 0.0255 1.2568 0.0227 0.13(0.02) 0.38(0.06)
MM85 0.00007 0.0170 0.1333 0.0567 1.00(0.00) 0.00(0.00)
MM95 0.00009 0.0190 0.1342 0.1111 1.00(0.00) 0.00(0.00)
FSRws 0.00014 0.0203 0.3415 0.3786 0.00(0.01) 0.68(0.12)
Heur 0.00013 0.0176 0.0027 0.2158 0.02(0.03) 0.57(0.11)
SCADws 0.00009 0.0182 0.0173 0.2128 0.01(0.02) 0.58(0.11)

250 2 Opt 0.00007 0.0101 0.0009 0.0297 0.00(0.00) 0.00(0.00)
OLS 0.00037 0.0192 19.6371 0.7952 0.00(0.00) 1.00(0.00)
LTS 0.00057 0.0236 1.2973 0.0211 0.13(0.02) 0.37(0.05)
MM85 0.00009 0.0124 0.1348 0.0471 1.00(0.00) 0.00(0.00)
MM95 0.00006 0.0124 0.1306 0.0883 1.00(0.00) 0.00(0.00)
FSRws 0.00006 0.0136 0.1452 0.3020 0.01(0.01) 0.64(0.11)
Heur 0.00013 0.0126 0.0010 0.1983 0.02(0.02) 0.56(0.10)
SCADws 0.00009 0.0126 0.0116 0.1881 0.02(0.02) 0.57(0.10)

300 2 Opt 0.00003 0.0084 0.0000 0.0294 0.00(0.00) 0.00(0.00)
OLS 0.00026 0.0233 20.5015 0.8552 0.00(0.00) 1.00(0.00)
LTS 0.00005 0.0200 1.2486 0.0176 0.13(0.02) 0.38(0.05)
MM85 0.00011 0.0123 0.1084 0.0438 1.00(0.00) 0.00(0.00)
MM95 0.00015 0.0130 0.1956 0.0974 1.00(0.00) 0.00(0.00)
FSRws 0.00015 0.0130 0.0777 0.2022 0.01(0.01) 0.61(0.10)
Heur 0.00014 0.0125 0.0147 0.1304 0.02(0.02) 0.57(0.09)
SCADws 0.00015 0.0122 0.0246 0.1211 0.01(0.01) 0.57(0.09)
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Table B.3: Scenario 1 with SNR = 5. MSE for β̂ and ŝ2 (decomposed into squared
bias and variance), and mean (SD in parenthesis) FPR and FNR for feature selection and
outlier detection, based on 100 simulation replications.

n p Method bias(β̂)2 var(β̂) bias(ŝ2)2 var(ŝ2) FPR(τ̂) FNR(τ̂)

50 2 Opt 0.00018 0.0193 0.0002 0.0214 0.00(0.00) 0.00(0.00)
OLS 0.00138 0.0503 2.8745 0.7499 0.00(0.00) 1.00(0.00)
LTS 0.00052 0.0492 0.2261 0.0158 0.14(0.04) 0.37(0.13)
MM85 0.00021 0.0297 0.0294 0.0287 1.00(0.00) 0.00(0.00)
MM95 0.00028 0.0285 0.0158 0.0619 1.00(0.00) 0.00(0.00)
FSRws 0.00080 0.0414 1.0182 0.5775 0.00(0.00) 0.91(0.14)
Heur 0.00048 0.0302 0.0067 0.1092 0.06(0.10) 0.50(0.21)
SCADws 0.00027 0.0301 0.0002 0.0747 0.03(0.04) 0.54(0.21)

100 2 Opt 0.00007 0.0116 0.0000 0.0130 0.00(0.00) 0.00(0.00)
OLS 0.00036 0.0242 3.0904 0.3831 0.00(0.00) 1.00(0.00)
LTS 0.00032 0.0293 0.1944 0.0079 0.13(0.03) 0.38(0.08)
MM85 0.00017 0.0178 0.0181 0.0258 1.00(0.00) 0.00(0.00)
MM95 0.00018 0.0173 0.0259 0.0491 1.00(0.00) 0.00(0.00)
FSRws 0.00021 0.0191 0.3015 0.3268 0.00(0.00) 0.79(0.15)
Heur 0.00031 0.0181 0.0000 0.0901 0.04(0.05) 0.56(0.16)
SCADws 0.00027 0.0180 0.0017 0.0688 0.02(0.03) 0.58(0.14)

150 2 Opt 0.00014 0.0061 0.0000 0.0094 0.00(0.00) 0.00(0.00)
OLS 0.00002 0.0148 3.2718 0.3405 0.00(0.00) 1.00(0.00)
LTS 0.00002 0.0152 0.2065 0.0048 0.13(0.02) 0.38(0.07)
MM85 0.00007 0.0091 0.0214 0.0134 1.00(0.00) 0.00(0.00)
MM95 0.00011 0.0093 0.0245 0.0276 1.00(0.00) 0.00(0.00)
FSRws 0.00008 0.0100 0.1081 0.0867 0.00(0.01) 0.71(0.13)
Heur 0.00008 0.0099 0.0003 0.0420 0.03(0.03) 0.53(0.12)
SCADws 0.00006 0.0095 0.0002 0.0407 0.02(0.03) 0.55(0.12)

200 2 Opt 0.00007 0.0052 0.0002 0.0070 0.00(0.00) 0.00(0.00)
OLS 0.00011 0.0123 3.0506 0.2288 0.00(0.00) 1.00(0.00)
LTS 0.00002 0.0102 0.2011 0.0036 0.13(0.02) 0.38(0.06)
MM85 0.00003 0.0068 0.0213 0.0091 1.00(0.00) 0.00(0.00)
MM95 0.00004 0.0076 0.0215 0.0178 1.00(0.00) 0.00(0.00)
FSRws 0.00006 0.0081 0.0546 0.0606 0.00(0.01) 0.68(0.12)
Heur 0.00004 0.0070 0.0004 0.0376 0.02(0.03) 0.57(0.12)
SCADws 0.00003 0.0071 0.0026 0.0347 0.02(0.02) 0.58(0.11)

250 2 Opt 0.00003 0.0040 0.0001 0.0047 0.00(0.00) 0.00(0.00)
OLS 0.00015 0.0077 3.1419 0.1272 0.00(0.00) 1.00(0.00)
LTS 0.00023 0.0095 0.2076 0.0034 0.13(0.02) 0.37(0.05)
MM85 0.00004 0.0050 0.0216 0.0075 1.00(0.00) 0.00(0.00)
MM95 0.00003 0.0050 0.0209 0.0141 1.00(0.00) 0.00(0.00)
FSRws 0.00003 0.0055 0.0232 0.0483 0.01(0.01) 0.64(0.11)
Heur 0.00004 0.0050 0.0001 0.0314 0.02(0.02) 0.55(0.10)
SCADws 0.00004 0.0049 0.0018 0.0293 0.02(0.02) 0.57(0.09)

300 2 Opt 0.00001 0.0034 0.0000 0.0047 0.00(0.00) 0.00(0.00)
OLS 0.00010 0.0093 3.2802 0.1368 0.00(0.00) 1.00(0.00)
LTS 0.00002 0.0080 0.1998 0.0028 0.13(0.02) 0.38(0.05)
MM85 0.00004 0.0049 0.0173 0.0070 1.00(0.00) 0.00(0.00)
MM95 0.00006 0.0052 0.0313 0.0156 1.00(0.00) 0.00(0.00)
FSRws 0.00006 0.0052 0.0124 0.0323 0.01(0.01) 0.61(0.10)
Heur 0.00006 0.0048 0.0026 0.0214 0.02(0.02) 0.57(0.09)
SCADws 0.00005 0.0049 0.0040 0.0198 0.01(0.01) 0.57(0.09)
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Scenario 2: high-dimensional VIOMs and MSOMs

We also explored weaker SNR regimes for the simulation scenario 2 in Section 4.4.2.

Setting SNR = 3, Table B.4 shows simulation results in term of MSE decompositions

for β̂ and ŝ2, and mean (with standard deviations in parenthesis) FPR and FNR

for feature selection and outlier detection. These results are consistent with the

ones presented in Table 4.1. However, all methods experience an overall decrease

in performance, which is more marked for the FNR in β̂ for smaller sample size.

Overall, SCAD2s outperforms other feasible estimation methods also in this setting

We also explored simulation scenarios with denser models. The following simula-

tion setting is the same as scenario 2 in Section 4.4.2, with the only difference being

that the true sparsity level is increased to p0 = 7 (including the intercept term). Ta-

ble B.5 shows simulation results in term of MSE decompositions for β̂ and ŝ2, and

mean (with standard deviations in parenthesis) FPR and FNR for feature selection

and outlier detection. The results are again consistent with the ones presented in

Table 4.1, although all methods experience a decrease in performance for smaller

sample sizes, with an overall increase in the FNR for β̂ and the MSE for s2. Also

in this setting, SCAD2s converges faster to the oracle solution compared to other

feasible estimation methods.

Finally, we explored simulation settings with multicollinearity in the predictors.

Table B.6 presents simulation results for a setting as scenario 2 in Section 4.4.2, but

the covariance matrix Σp−1 has an autoregressive correlation structure Σp−1,ij =

η|i−j| with η = 0.4. Note that the level of multicollinearity increases after MSOM

contamination. Overall, also here the results are consistent with the ones presented

in Table 4.1. SCADws and SCAD2s suffer for small sample sizes (higher FNR in

β̂ compared to previous settings) but, as n increases, we can again notice that

SCAD2s outperforms other feasible estimation methods and converges faster to the

oracle solution.
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Table B.4: Scenario 2 with SNR = 3. MSE for β̂ and ŝ2 (decomposed into squared
bias and variance), and mean (SD in parenthesis) FPR and FNR for feature selection and
outlier detection, based on 100 simulation replications.

n p Method bias(β̂)2 var(β̂) bias(ŝ2)2 var(ŝ2) FPR(β̂) FNR(β̂) FPR(τ̂) FNR(τ̂)

100 150 Opt 0.00001 0.00156 0.01 0.29 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
Lasso 0.08323 0.00575 553.76 30.95 0.03(0.05) 0.60(0.16) 0.00(0.00) 1.00(0.00)
SparseLTS 0.01019 0.07271 91.08 45.08 0.45(0.04) 0.09(0.21) 0.00(0.01) 0.84(0.02)
TaL 0.00973 0.03453 5.28 12.19 0.05(0.08) 0.14(0.28) 1.00(0.00) 0.00(0.00)
Heur 0.00389 0.05639 4.63 13.63 0.08(0.05) 0.12(0.26) 0.01(0.02) 0.75(0.10)
SCADopt 0.00218 0.01366 0.07 2.98 0.00(0.00) 0.13(0.27) 0.07(0.15) 0.45(0.14)
SCADws 0.00675 0.03739 3.27 9.30 0.01(0.02) 0.22(0.28) 0.04(0.07) 0.57(0.14)
SCAD2s 0.00414 0.01803 0.29 5.33 0.00(0.00) 0.18(0.30) 0.10(0.17) 0.50(0.16)

150 150 Opt 0.00001 0.00096 0.03 0.25 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
Lasso 0.08436 0.00357 556.31 15.87 0.03(0.04) 0.57(0.17) 0.00(0.00) 1.00(0.00)
SparseLTS 0.00224 0.04584 108.00 14.74 0.53(0.06) 0.01(0.07) 0.00(0.00) 0.84(0.01)
TaL 0.00164 0.00605 6.02 2.55 0.01(0.02) 0.02(0.10) 1.00(0.00) 0.00(0.00)
Heur 0.00032 0.02035 1.89 3.84 0.06(0.04) 0.02(0.09) 0.01(0.03) 0.66(0.12)
SCADopt 0.00004 0.00319 0.11 0.96 0.00(0.00) 0.02(0.11) 0.01(0.06) 0.48(0.10)
SCADws 0.00043 0.01106 0.32 3.70 0.01(0.02) 0.04(0.12) 0.02(0.03) 0.51(0.11)
SCAD2s 0.00011 0.00426 0.04 1.25 0.00(0.00) 0.02(0.13) 0.03(0.08) 0.49(0.10)

200 150 Opt 0.00000 0.00065 0.06 0.13 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
Lasso 0.08580 0.00277 596.61 17.34 0.03(0.04) 0.47(0.18) 0.00(0.00) 1.00(0.00)
SparseLTS 0.00147 0.03920 91.42 10.30 0.58(0.05) 0.01(0.07) 0.00(0.00) 0.84(0.01)
TaL 0.00115 0.00597 4.46 1.72 0.01(0.03) 0.02(0.09) 1.00(0.00) 0.00(0.00)
Heur 0.00022 0.01617 1.49 4.44 0.06(0.05) 0.01(0.06) 0.01(0.01) 0.62(0.11)
SCADopt 0.00002 0.00205 0.20 1.68 0.00(0.00) 0.01(0.07) 0.00(0.01) 0.48(0.09)
SCADws 0.00016 0.00720 0.04 2.17 0.00(0.01) 0.02(0.11) 0.02(0.03) 0.49(0.11)
SCAD2s 0.00009 0.00393 0.03 3.57 0.00(0.00) 0.02(0.12) 0.03(0.06) 0.48(0.10)

Table B.5: Scenario 2 with p0 = 7. MSE for β̂ and ŝ2 (decomposed into squared bias and
variance), and mean (SD in parenthesis) FPR and FNR for feature selection and outlier
detection, based on 100 simulation replications.

n p Method bias(β̂)2 var(β̂) bias(ŝ2)2 var(ŝ2) FPR(β̂) FNR(β̂) FPR(τ̂) FNR(τ̂)

100 150 Opt 0.00003 0.00344 0.09 0.42 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
Lasso 0.16356 0.00803 1459.98 101.12 0.03(0.05) 0.79(0.09) 0.00(0.00) 1.00(0.00)
SparseLTS 0.01549 0.09663 179.57 62.40 0.44(0.04) 0.08(0.22) 0.00(0.01) 0.84(0.02)
TaL 0.01809 0.04415 19.30 24.19 0.03(0.06) 0.14(0.29) 1.00(0.00) 0.00(0.00)
Heur 0.00492 0.08776 4.95 19.41 0.10(0.04) 0.10(0.26) 0.02(0.03) 0.75(0.11)
SCADopt 0.00396 0.02762 0.39 7.17 0.00(0.00) 0.14(0.31) 0.06(0.16) 0.47(0.12)
SCADws 0.01647 0.06730 31.19 49.21 0.01(0.02) 0.31(0.29) 0.05(0.06) 0.63(0.14)
SCAD2s 0.01526 0.04684 9.21 33.77 0.00(0.01) 0.28(0.34) 0.11(0.18) 0.56(0.16)

150 150 Opt 0.00001 0.00225 0.06 0.34 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
Lasso 0.16330 0.00431 1395.76 42.30 0.02(0.03) 0.76(0.12) 0.00(0.00) 1.00(0.00)
SparseLTS 0.00393 0.05647 186.48 32.35 0.53(0.06) 0.00(0.04) 0.00(0.00) 0.84(0.01)
TaL 0.00373 0.00816 13.12 5.35 0.01(0.01) 0.01(0.10) 1.00(0.00) 0.00(0.00)
Heur 0.00035 0.03514 2.95 4.55 0.10(0.04) 0.01(0.07) 0.01(0.01) 0.69(0.09)
SCADopt 0.00006 0.00481 0.08 2.03 0.00(0.00) 0.01(0.09) 0.01(0.05) 0.47(0.11)
SCADws 0.00154 0.02003 2.37 15.35 0.01(0.02) 0.07(0.13) 0.03(0.03) 0.52(0.13)
SCAD2s 0.00024 0.00821 0.37 8.18 0.00(0.00) 0.02(0.11) 0.03(0.05) 0.52(0.12)

200 150 Opt 0.00002 0.00146 0.07 0.23 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
Lasso 0.16476 0.00431 1496.92 30.59 0.03(0.05) 0.72(0.12) 0.00(0.00) 1.00(0.00)
SparseLTS 0.00205 0.04376 149.62 17.96 0.58(0.05) 0.00(0.00) 0.00(0.00) 0.83(0.00)
TaL 0.00170 0.00414 8.56 3.25 0.01(0.01) 0.00(0.00) 1.00(0.00) 0.00(0.00)
Heur 0.00023 0.02021 2.24 3.31 0.08(0.04) 0.00(0.00) 0.01(0.02) 0.64(0.11)
SCADopt 0.00004 0.00199 0.12 0.64 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.47(0.08)
SCADws 0.00006 0.00437 0.08 2.83 0.00(0.00) 0.01(0.04) 0.02(0.02) 0.48(0.08)
SCAD2s 0.00004 0.00257 0.02 1.32 0.00(0.00) 0.00(0.00) 0.02(0.02) 0.49(0.08)
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Table B.6: Scenario 2 in presence of multicollinearity. MSE for β̂ and ŝ2 (decomposed
into squared bias and variance), and mean (SD in parenthesis) FPR and FNR for feature
selection and outlier detection, based on 100 simulation replications.

n p Method bias(β̂)2 var(β̂) bias(ŝ2)2 var(ŝ2) FPR(β̂) FNR(β̂) FPR(τ̂) FNR(τ̂)

100 150 Opt 0.00000 0.00196 0.05 0.31 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
Lasso 0.08193 0.00487 947.37 40.57 0.02(0.04) 0.72(0.09) 0.00(0.00) 1.00(0.00)
SparseLTS 0.00175 0.03819 96.19 33.95 0.34(0.04) 0.01(0.06) 0.00(0.00) 0.83(0.01)
TaL 0.00132 0.01112 5.33 8.07 0.01(0.02) 0.03(0.11) 1.00(0.00) 0.00(0.00)
Heur 0.00036 0.02982 1.32 4.26 0.06(0.04) 0.03(0.11) 0.01(0.03) 0.67(0.14)
SCADopt 0.00004 0.00683 0.51 5.06 0.00(0.00) 0.03(0.11) 0.00(0.01) 0.47(0.13)
SCADws 0.00108 0.02531 3.49 11.05 0.00(0.01) 0.16(0.17) 0.03(0.04) 0.55(0.14)
SCAD2s 0.00022 0.01127 1.50 7.22 0.00(0.00) 0.06(0.15) 0.03(0.05) 0.55(0.14)

150 150 Opt 0.00000 0.00128 0.04 0.22 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
Lasso 0.08190 0.00387 1007.29 29.58 0.03(0.03) 0.71(0.10) 0.00(0.00) 1.00(0.00)
SparseLTS 0.00102 0.02115 90.18 14.03 0.36(0.05) 0.00(0.00) 0.00(0.00) 0.84(0.00)
TaL 0.00034 0.00387 4.11 1.72 0.01(0.02) 0.00(0.00) 1.00(0.00) 0.00(0.00)
Heur 0.00019 0.01976 1.40 2.69 0.07(0.05) 0.00(0.02) 0.01(0.03) 0.65(0.12)
SCADopt 0.00001 0.00152 0.03 0.60 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.45(0.09)
SCADws 0.00005 0.00857 0.19 3.61 0.00(0.01) 0.04(0.11) 0.02(0.02) 0.49(0.10)
SCAD2s 0.00001 0.00334 0.06 2.65 0.00(0.00) 0.01(0.06) 0.02(0.02) 0.48(0.10)

200 150 Opt 0.00002 0.00086 0.03 0.15 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
Lasso 0.08323 0.00521 1021.70 22.19 0.04(0.05) 0.67(0.14) 0.00(0.00) 1.00(0.00)
SparseLTS 0.00064 0.01530 91.55 7.03 0.37(0.04) 0.00(0.00) 0.00(0.00) 0.83(0.00)
TaL 0.00020 0.00240 4.20 1.01 0.01(0.01) 0.00(0.00) 1.00(0.00) 0.00(0.00)
Heur 0.00013 0.01152 1.32 2.12 0.06(0.04) 0.00(0.00) 0.01(0.02) 0.61(0.10)
SCADopt 0.00003 0.00113 0.14 0.54 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.47(0.07)
SCADws 0.00002 0.00249 0.00 1.06 0.00(0.00) 0.01(0.04) 0.02(0.02) 0.47(0.08)
SCAD2s 0.00003 0.00142 0.00 0.92 0.00(0.00) 0.00(0.00) 0.02(0.02) 0.47(0.08)

Table B.7: Estimated coefficients across different methods for the Boston housing data.

Variable OLS LTS MM85 MM95 FSRws Lasso sparseLTS TaL Heur SCADws SCAD2s

intercept 36.459 13.481 13.862 7.275 8.152 35.455 -2.666 -2.600 7.893 4.942 -0.571
crim -0.108 -0.089 -0.145 -0.129 -0.156 -0.106 -0.053 -0.117 -0.109
zn 0.046 0.025 0.029 0.027 0.021 0.046 0.028
indus 0.021 0.036 -0.004 -0.015 0.000 -0.008
chas 2.687 1.394 1.390 1.221 1.320 2.743 0.889 1.645 1.300
nox -17.767 -10.203 -6.042 -5.912 -4.917 -16.232 -5.698
rm 3.810 6.268 4.663 6.092 5.196 3.735 6.332 6.430 6.221 6.354 6.400
age 0.001 -0.032 -0.039 -0.042 -0.044 -0.008 -0.036
dis -1.476 -1.093 -0.878 -0.942 -0.811 -1.453 -0.028 -0.216 -0.933 -0.315 -0.334
rad 0.306 0.168 0.144 0.150 0.142 0.281 0.155
tax -0.012 -0.012 -0.009 -0.011 -0.008 -0.011 -0.005 -0.012 -0.010 -0.008
ptratio -0.953 -0.876 -0.602 -0.685 -0.579 -0.907 -0.668 -0.807 -0.711 -0.687 -0.714
black 0.009 0.011 0.013 0.013 0.014 0.009 0.009 0.014 0.011 0.012
lstat -0.525 -0.278 -0.267 -0.219 -0.228 -0.532 -0.285 -0.388 -0.266 -0.406 -0.374

B.4 Application study details

The methods used in our application studies mimic the ones discussed for our simu-

lations. On Boston housing data, for SCADws and SCAD2s, we replace the second

term in (B.8) with 2 log(n̄)kλk
p to enforce sparser solutions. TaL uses an S-estimator

with 50% BdP as a preliminary estimate of scale, which is computed on the ac-

tive set estimated by sparseLTS. However, for glioblastoma gene expression data,

TaL uses a preliminary OLS estimator computed on the set of active features and

non-outlying cases estimated by sparseLTS.
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B.4.1 Boston housing data: extended comparison

Table B.7 shows the estimated regression coefficients by different methods on Boston

housing data. SCADws, SCAD2s and TaL provide sparser solutions and more in-

terpretable models. Namely, SCAD2s selects only 6 predictors: rm, dis, tax, ptratio,

black and lstat (plus the intercept term). SCADws selects the same set of features,

except from black. TaL provides a slightly denser solution and selects 7 predictors:

the ones selected by SCAD2s, aside from tax, plus crim and chas. Other methods

provide much denser solutions.

B.5 Software availability

Source code for computing our proposals, and to replicate our simulation and ap-

plication studies, is available at https://github.com/LucaIns/doubly robust s

parse.
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