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Chapter 1

Introduction

1.1 Motivations

Nowadays, it is widely accepted among the scientific community that a rigorous under-
standing of turbulence in fluids is one of the most important open problems in Mathe-
matics and Physics.
Suppose we are given a fluid, injected into a pipe at sufficiently high speed. Experience
suggests that, as we observe the fluid farther and farther downstream, the state of the
fluid becomes more and more independent of its initial conditions at the inlet. The final
flow will display universal characteristics, and we use the word turbulence as a label for
these characteristics.
What are then the properties of a turbulent flow? First of all, following [Pan13], a
turbulent flow has irregular, unpredictable, intermittent and self-sustaining fluctuations
of velocity in all directions; it displays eddies at several length scales, ranging from
that of the entire region where the fluid is turbulent, to one for which viscous forces
become so strong that the eddies themselves are destroyed. Also, a turbulent flow is
diffusive, because turbulent eddies transport fluid parcels across different regions of the
fluid, resulting in an effective mixing of the fluid itself; and it is dissipative, meaning that
kinetic energy is dissipated much faster than usual, due to the steepness of the velocity
gradient. Finally, fully developed turbulence (in dimension three) manifest energy cascade
from large to small scales [Val06] (the direction is the opposite in dimension two [BE12]);
and consequentially, a sustained turbulent flow has a very peculiar energy spectrum, at
least across some portion of scales.
However, none of the properties above has been deduced directly from the Navier-Stokes
equation, that is the equation governing the evolution of the velocity field of an incom-
pressible fluid:

∂tU + (U · ∇)U +∇P = ν∆U + F, divU = 0.

In addition, most flows of real life practical interest are too complex to be amenable to
direct numerical simulations. As a consequence, there has been a huge amount of efforts
towards turbulence modelling, aimed at finding simplified constitutive equations that
predict the statistical evolution of turbulent flows. To this purpose, it proves convenient
to split the actual velocity field U into resolved large-scale, slow-varying and unresolved
small-scale, fast-varying components

U = u+ v,
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Chapter 1. Introduction

and seek closures with respect to the resolved component u only; the effect of the unre-
solved scales on the resolved ones must therefore be modelled. In the previous example
of fluid passing through a pipe, for instance, we may be interested only on the average
velocity u of the fluid across the whole pipe, neglecting local fluctuations v that shall
remain unresolved.

Besides other approaches, in the last decades many mathematicians have tried to study
these problems using tools from stochastic analysis; namely, by modifying the equations
adding a noise term, heuristically due to fluctuations of v. Much has been proved, but a
key question arises: how to properly choose the noise?

1.1.1 Why do we study stochastic PDEs?

Let us start from a preliminary question: what ultimately is randomness?

Ancient Greeks distinguished between the phenomena that obey natural laws, established
once for all, and those unpredictable phenomena they attributed to chance, which are not
subject to any law. During 18th century, in Europe, the notion of chance was put aside in
favour of a totally deterministic point of view on the world: it was believed that a mind
infinitely powerful and infinitely well-informed about the present state of the universe -
the Laplace’s demon - could predict the future using only the laws of classical mechanics.
Although some ideal classical system are in fact indeterminate under extremely particular
conditions (think of a ball balanced on the tip of a cone), the demon could appreciate the
slightest asymmetry in the system and restore determinism. But this conception is not
ours anymore: quantum mechanics postulates indeterminacy as a fundamental property
of nature. An observer measuring the spin of an electron would measure +1 or −1 with
certain probabilities, depending on the state of the system; and this indeterminacy cannot
reflect any prior unknown condition of the system, as a consequence of various no-hidden
variables theorems.

Returning to the initial question, we can definitely say that randomness is not chance,
as entailed for instance by spin measurements in quantum mechanics. Fluid dynamics is
deterministic, and there is no chance involved in the evolution of a system. Rather, we
put randomness in the equations to take into account our incomplete knowledge of the
system. Randomness is the name we give to our ignorance.

The hope is that: i) the addition of randomness makes it easier to establish a link between
abstract equations of fluid dynamics and phenomenological laws of turbulence, somewhat
in the same way statistical mechanics links the microscopic dynamics of molecules in a
gas to the macroscopic laws of thermodynamics; ii) lack of uniqueness and singularities
formation in fluids require very particular conditions that never happen in nature, and
noise can reintroduce asymmetries and restore well-posedness (as in the previous example
of the balanced ball); and iii) numerical simulations of the resolved variable u become
more feasible for the reduced stochastic turbulence models, when compared with direct
simulation of U solving the Navier-Stokes equation.

1.2 Content of this thesis

In this thesis I have collected a series of results mainly oriented towards the understanding
of three intimately connected questions, detailed separately in the present section, and
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1.2. Content of this thesis

motivated by the discussion above. In order to ease the reading of what follows, I have
gathered some frequently used notation in Section 1.4.

1.2.1 Stochastic model reduction

In applications to geophysics and climate studies, especially when one is interested in the
simulations of complex turbulent flows like weather forecast, one necessarily has to deal
with the fact that limited computational power often implies an under-representation of
the real physical processes with spatial or temporal scale smaller than a certain threshold,
typically the length of the grid parametrisation and the time discretization step. However,
these small-scale processes may have a non-trivial impact on the large-scale ones, and thus
it is important to take this impact into the account in order to obtain accurate description
of the evolution of the simulated process.
Therefore, the first topic discussed in this thesis (more specifically in Chapter 2) is stochas-
tic model reduction of fluid dynamics systems. This line of research finds its theoretical
root in the seminal work [MTVE01] by Majda, Timofeyev and Vanden-Eijnden, and it
consists in the following. Rewrite the Navier-Stokes equations (or any other equation of
fluid dynamics relevance) in abstract form as an evolution equation in a Hilbert space H

U̇ = AU +B(U,U) + F ; (1.1)

then, it is assumed that resolved and unresolved variables u, v are identified via some
orthogonal decomposition H = Hd ⊕H∞, so that (1.1) splits in{

u̇ = A1
1u+ A1

2v +B1
11(u, u) +B1

12(u, v) +B1
21(v, u) +B1

22(v, v) + F 1,

v̇ = A2
1u+ A2

2v +B2
11(u, u) +B2

12(u, v) +B2
21(v, u) +B2

22(v, v) + F 2.
(1.2)

At this point, the second equation in (1.2) is replaced by a simplified stochastic equation,
in the spirit of turbulence closure (taking into account also a certain degree of scale
separation ϵ ≪ 1), and convergence of the solution u of the first equation in (1.2) is
investigated as ϵ → 0. It is worth of mention that, for numerical applications, the
space Hd corresponding to resolved variable u is often supposed to be finite dimensional:
dimHd = d < ∞, whereas dimH∞ = ∞ in most cases, since in general (1.1) describes
a PDE (although for practical purposes a finite dimensional H∞ may be sufficient, for
instance replacing (1.1) with a sufficiently accurate Galerkin approximation).
In [MTVE01], under suitable rescaling of the coefficients (so that quantities involved are
expressed with respect to large-scale coordinates) the simplified model takes the form

u̇ϵ = A1
1u

ϵ + A1
2v
ϵ +B1

11(u
ϵ, uϵ) +B1

12(u
ϵ, vϵ) +B1

21(v
ϵ, uϵ) + ϵ1/2B1

22(v
ϵ, vϵ) + F 1,

v̇ϵ = ϵ−1A2
1u

ϵ + ϵ−1/2A2
2v
ϵ + ϵ−1B2

11(u
ϵ, uϵ) + ϵ−1/2B2

12(u
ϵ, vϵ) + ϵ−1/2B2

21(v
ϵ, uϵ)

+ϵ−1f 2 − ϵ−1vϵ + ϵ−1Q1/2Ẇ ,

(1.3)

where f 2
t = F 2

ϵ−1/2t
and Q1/2Ẇ is a Gaussian noise, white in time and coloured in space,

with trace-class covariance matrix Q.
Motivated by this construction, in [AFP21] Sigurd Assing, Franco Flandoli and I have
studied the following fast-slow system{

Ẋϵ = F (t,Xϵ) + σ(t,Xϵ)Y ϵ + ϵ1/2β(Y ϵ, Y ϵ),

Ẏ ϵ = −ϵ−1Y ϵ + ϵ−1Q1/2Ẇ ,
(1.4)

3



Chapter 1. Introduction

where Xϵ
0 equals some deterministic x0 ∈ Hd, Y

ϵ is stationary, F : [0, T ] × Hd → Hd,
σ : [0, T ] × Hd → L(H∞, Hd) for some T < ∞, and β : H∞ × H∞ → Hd. In [AFP21,
Section 5] we have shown how to recover the asymptotic behaviour as ϵ→ 0 of uϵ solution
of (1.3) from that of Xϵ solution of (1.4).
As for the latter, next we introduce the limiting equation for X̄ = limϵ→0X

ϵ (in some suit-
able sense, to be specified later). Let {e1, . . . , ed} and {f1, f2, . . . } be orthonormal bases
of Hd, H∞ respectively, and assume Q is diagonal with eigenvalues qm = ⟨Qfm, fm⟩H∞ .
First, define the so-called Stratonovich correction term C : [0, T ]×Hd → Hd by

Ci = ⟨C, ei⟩Hd
=

1

2

∑
m∈N

qm

d∑
j=1

Djσ
i,mσj,m, i = 1, . . . , d,

where σi,m = ⟨σfm, ei⟩Hd
for i = 1, . . . , d and m ∈ N is matrix notation for the linear map

σ ∈ L(H∞, Hd) with respect to our chosen basis vectors; second, let

biℓ,m =

√
qℓqm
2

⟨β(fℓ, fm), ei⟩Hd
, i = 1, . . . , d, ℓ,m ∈ N.

Then, our limiting equation reads

˙̄X = F (t, X̄) + C(t, X̄) + σ(t, X̄)Ẇ +
∑
ℓ,m∈N

bℓ,m
˙̄W ℓ,m, (1.5)

where W is the same Wiener process used to define Y ϵ, while {W̄ ℓ,m}ℓ,m∈N is a family of
independent one-dimensional standard Wiener processes, which are also independent of
W .
In this setting, we have proved:

Theorem 1.1. Assume the coefficients of (1.4) satisfy:

� F ∈ C([0, T ]×Hd, Hd), and F (t, ·) ∈ Liploc(Hd, Hd), uniformly in t ∈ [0, T ];

� σ ∈ C1,γ([0, T ] × Hd,L(H∞, Hd)) for some γ ∈ (0, 1) and its space-differential
Dσ(t, ·) ∈ Liploc(Hd,L(Hd,L(H∞, Hd))), uniformly in t ∈ [0, T ];

� β : H∞ ×H∞ → Hd is a continuous bilinear map;

�

∑
ℓ∈N⟨β(fℓ, fℓ), ei⟩Hd

qℓ = 0, for all i = 1, . . . , d;

� both equations (1.4) and (1.5) admit global solutions on [0, T ].

Then Xϵ converges to X̄ in law as ϵ→ 0. Moreover, if β = 0 then the following stronger
convergence holds true:

lim
ϵ→0

P
{
sup
t≤T

∥Xϵ
t − X̄t∥Hd

> δ

}
= 0, ∀δ > 0.

The proof of Theorem 1.1 is carried out in multiple steps. Let us discuss the strong
convergence first. By a localization argument, we can restrict ourselves to |Xϵ

t |, |X̄t| ≤ R,
for some large R, leading to Lipschitz continuity of the coefficients of (1.4) and (1.5);
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1.2. Content of this thesis

second, it is possible to discretize the problem, thus reducing the desired convergence to
its discrete version:

lim
ϵ→0

P
{
sup
k

∥Xϵ
tk
− X̄tk∥Hd

> δ

}
= 0, ∀δ > 0,

for only finitely many tk ∈ [0, T ]. Finally, the simplified version is proved following the
lines of [IW14]. The weak convergence then comes from this preliminary result and a
careful study of the quadratic term β(Y ϵ, Y ϵ) in the limit ϵ→ 0.

Notice that the limit equation (1.5) contains both additive noise bℓ,m
˙̄W ℓ,m and multiplica-

tive noise σ(t, X̄)Ẇ , coming respectively from terms quadratic and linear with respect
to Y ϵ in the equation for Xϵ. In particular, the multiplicative noise (in the sense of
Stratonovich, because of the corrector C) has theoretical consequences on the justifica-
tion of transport noise in fluid dynamics, that is the next pivotal topic of this thesis.

1.2.2 Justification of transport noise in fluid dynamics

By the theoretical point of view, model reduction has always played a primary role
in geophysics and, more generally, in fluid mechanics; here model reduction is meant
in the broad sense, as the operation of reducing the complexity of a model in order
to conveniently describe certain phenomena. For example, if one is interested in the
evolution of a certain geophysical flow on a relatively small portion of Earth’s surface,
then the spherical geometry of the problem is usually not so important and the use of
spherical coordinates is an unnecessary complication: it is way more convenient to study
the problem in Cartesian coordinates. The dynamical effects of Earth’s rotation are
therefore captured with the so-called f -plane approximation [Val06] (and more generally
with the β-plane approximation), which constitutes a nice simplification of the problem
yet capable of describing very interesting phenomena, like the motion of cyclonic flows
at geostrophic balance and the Taylor–Proudman effect.
That being said, in the series of works [FP20, FP21, FP22] Franco Flandoli and I have
proposed a splitting of (1.1) alternative to (1.3), in the sense that it does not come with
a decomposition H = Hd ⊕H∞ but rather we impose a priori the evolution for u and v
separately as the following system of PDEs:{

u̇ = Au+B(u, u) +B(v, u),

v̇ = Av +B(u, v) +B(v, v) + F.
(1.6)

This of course is a modelling choice; as described in details in [FP20], it is consistent
with the heuristic idea that the two components of the system model the dynamics of
large and small structures separately. As far as this is concerned, the splitting above is
substantially equivalent to what done in the research trend called location uncertainty
[Mé14].
Nevertheless, the variables u, v need not to represent respectively the resolved and un-
resolved velocity of the system under investigation. For instance, considering u, v as
variables representing the vorticity of the fluid we recover something equivalent to the
so-called stochastic advection by Lie transport scheme [Hol15, CGH17, FL19, GBH18].
After suitable stochastic modelling and rescaling of (1.6) (as for the stochastic model
reduction paradigm, but keeping quadratic self-interaction in the second equation) we
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end up with the system{
u̇ϵ = Auϵ +B(uϵ, uϵ) +B(vϵ, uϵ),

v̇ϵ = Avϵ +B(uϵ, vϵ) +B(vϵ, vϵ)− ϵ−1vϵ + ϵ−1Q1/2Ẇ .
(1.7)

It is worth of mention that, even if the abstract system (1.6) is completely general, the
validity of this modelling assumption requires proper justification that depends on the
particular system described by (1.6). For instance, in [FP20, Section 2] we showed this
is the case when u describes continental-scale velocity structures and v describes human-
scale fluctuations (and the units of measure in (1.7) are macroscopic); for equations in
vorticity form, a justification based on different time-scales is provided in [FP21, Section
2].
This motivates the study per se of abstract systems of the form (1.7) and variations
thereof, thanks to the plethora of potential applications. Moving to our specific contri-
butions to the topic, I decided to present in this thesis the works [FP22] and [DP22] (the
latter in collaboration with Arnaud Debussche), which are detailed in Chapter 3 and
Chapter 4 respectively. Here I just give a summary of the results and ideas contained
therein.
In [FP22] we have studied the following system on the two-dimensional torus T2, describ-
ing the coupling between large-scale Navier-Stokes (ν > 0) or Euler (ν = 0) equations
and small-scale stochastic Euler equations:

∂tΞ
ϵ + (uϵ + vϵ) · ∇Ξϵ = ν∆Ξϵ + qϵ,

∂tξ
ϵ + (uϵ + vϵ) · ∇ξϵ = −ϵ−1ξϵ + ϵ−1

∑
k∈N ςk Ẇ

k,

uϵ = −∇⊥(−∆)−1Ξϵ,

vϵ = −∇⊥(−∆)−1ξϵ.

The unknowns are the vorticities Ξϵ, ξϵ (as in the stochastic advection by Lie transport
scheme) and the velocities uϵ, vϵ are reconstructed from the vorticities using the Biot-
Savart law. The quantity qϵ is a zero-average source term, and

∑
k ςkẆ

k is just a more
explicit expression for the additive noise Q1/2∂tW (ςk : T2 → R2 is divergence-free and
zero-average for all k ∈ N, and the family {W k}k∈N is made of i.i.d. standard Brownian
motions), introduced in order to have convenient assumptions on the noise detailed below.
In this setting, we proved that Ξϵ converges towards the solution of the limiting Navier-
Stokes or Euler equations with Stratonovich transport noise:{

∂tΞ + u · ∇Ξ +
∑

k∈N σk · ∇Ξ ◦ Ẇ k = ν∆Ξ+ q,

u = −∇⊥(−∆)−1Ξ,

where σk = −∇⊥(−∆)−1ςk, as stated in the following:

Theorem 1.2. Fix T > 0, and assume:

� ξϵ0 = 0 and Ξϵ0 = Ξ0 ∈ L∞(T2) is deterministic and zero-average;

� there exists ℓ ≥ 1 such that ςk ∈ W ℓ,∞(T2) with zero-mean for every k ∈ N, and
moreover

∑
k∈N ∥ςk∥W ℓ,∞(T) <∞;

� for every x ∈ T2 it holds
∑

k∈N(σk · ∇ςk)(x) = 0;

6



1.2. Content of this thesis

� there exists a constant C such that for every ϵ > 0 it holds qϵ, q ∈ L1([0, T ], L∞(T2))

and
∫ T
0
∥qϵs∥L∞(T2)ds ≤ C,

∫ T
0
∥qs∥L∞(T2)ds ≤ C;

� qϵ − q converges to zero in L1([0, T ], L∞(T2)).

Then Ξϵ converges towards Ξ in the following sense: for every f ∈ L1(T2)

E
[∣∣∣∣∫

T2

Ξϵt(x)f(x)dx−
∫
T2

Ξt(x)f(x)dx

∣∣∣∣]→ 0 as ϵ→ 0,

for every fixed t ∈ [0, T ] and in Lp([0, T ]) for every finite p. Moreover, if q ∈ L1([0, T ], Lip(T2))
then the previous convergence holds uniformly in t ∈ [0, T ] and f ∈ Lip(T2) with Lipschitz
constant [f ]Lip(T2) ≤ 1 and ∥f∥L∞(T2) ≤ 1.

The previous result generalizes those in [FP21] by the same authors, where it is proved a
similar convergence for the inviscid (ν = 0), unforced (qϵ = 0) system with no quadratic
self-interaction at small-scales, that is without the term vϵ · ∇ξϵ in the second equation.
The strategy of the proof consists in proving in the first place the convergence ϕϵ → ϕ
for the Lagrangian particle trajectories, or characteristics :

ϕϵt(x) = x+

∫ t

0

uϵs(ϕ
ϵ
s(x))ds+

∫ t

0

vϵs(ϕ
ϵ
s(x))ds+

√
2νwt,

ϕt(x) = x+

∫ t

0

us(ϕs(x))ds+
∑
k∈N

∫ t

0

σk(ϕs(x)) ◦ dW k
s +

√
2νwt,

where w is an auxiliary R2 valued Brownian motion. This can be done with techniques
similar to those of [AFP21], although there are some differences. The main difficulties in
the proof consist in the equation of characteristics containing the velocity field itself as
drift (that requires a careful analysis of the Biot-Savart kernel) and the equation for ξϵ

having quadratic self-interaction (which is the reason we introduced the third assumption
of the theorem, corresponding to a sort of isotropy of the noise).
Then, relying on the measure-preserving property of characteristics and representation
formulae

Ξϵt = Ẽ
[
Ξ0 ◦ (ϕϵt)−1 +

∫ t

0

qϵs ◦ ϕϵs ◦ (ϕϵt)−1ds

]
,

Ξt = Ẽ
[
Ξ0 ◦ (ϕt)−1 +

∫ t

0

qs ◦ ϕs ◦ (ϕt)−1ds

]
,

(Ẽ denotes the expectation with respect to w) we are able to prove convergence of the
vorticity fields Ξϵ → Ξ in the sense of previous theorem. In particular, when testing
against test function f ∈ L1(T2), it holds∫

T2

Ξϵt(x)f(x)dx−
∫
T2

Ξt(x)f(x)dx

= Ẽ
[∫

T2

Ξ0(y)f(ϕ
ϵ
t(y))dy −

∫
T2

Ξ0(y)f(ϕt(y))dy

]
+ Ẽ

[∫ t

0

∫
T2

qϵs(ϕ
ϵ
s(y))f(ϕ

ϵ
t(y))dyds−

∫ t

0

∫
T2

qs(ϕs(y))f(ϕt(y)dyds

]
,

7



Chapter 1. Introduction

and the convergence in expectation to zero of the right-hand-side of the equation above
can be shown invoking some measure theoretic arguments, see Section 3.4 for details.
Being the method in [FP22] strongly reliant on the Lagrangian formulation of the equa-
tions (that is the main reason the previous approach was limited to two space dimensions),
together with Arnaud Debusche I have developed in [DP22] a completely new strategy
that allows us to overcome this issue and consider more general systems, in particular
three-dimensional systems in velocity form that are notoriously difficult to study in the
Lagrangian formulation.
Let us illustrate the main arguments of [DP22] in the particular case of three-dimensional
Navier-Stokes equations (generalizations to Surface Quasi-Geostrophic and Primitive
equations are contained in [DP22, Chapter 7]). A thorough discussion is postponed
to Chapter 4. Denote H := {u ∈ [L2(T3)]3, divu = 0} the space of periodic, zero-mean,
square integrable velocity fields u with null divergence in the sense of distributions and
Π : [L2(T3)]3 → H the Helmotz projector. We have studied weak solutions (uϵ, vϵ) with
suitable bounds on the energy (cfr. Definition 4.1 for a precise definition) of the system{

∂tu
ϵ = ν∆uϵ − Π(uϵ · ∇)uϵ − Π(vϵ · ∇)uϵ,

∂tv
ϵ = ν∆vϵ − Π(uϵ · ∇)vϵ − Π(vϵ · ∇)vϵ + ϵ−1Cvϵ + ϵ−1Q1/2∂tW,

where C is a general hypodissipative term and ν > 0, and we have proved the following
theorem:

Theorem 1.3. Let T <∞ be fixed. Suppose u0, y0 ∈ H be given and deterministic, and
assume:

� the operator C : D(C) ⊂ H → H is self-adjoint and negative definite, with principal
eigenvalue −λ0 < 0;

� there exist Γ ≥ γ > 1/4 such that ∥x∥2
Hs+βγ ≲ ∥(−C)β/2x∥2Hs ≲ ∥x∥2

Hs+βΓ for every
s ∈ R, β > 0;

� Q is symmetric, positive semidefinite and commutes with C, and the operators
eCtQeCt and Q∞ = (−C)−1Q on H are trace-class for every t ≥ 0;

� denoting N (0, Q∞) the Gaussian measure on H with covariance Q∞ and s0 =
max{5/2 + δ, 2Γ}, δ > 0 arbitrary, it holds

∫
H
∥w∥2Hs0dN (0, Q∞)(w) <∞.

Let µ denote the unique invariant measure on H of the linearized equation ∂tv = Cv +
Q1/2∂tW , that exists by our assumptions on C and Q. Then for every β > 0 the laws
of the processes {uϵ}ϵ∈(0,1) are tight as probability measures on the space L2([0, T ], H) ∩
C([0, T ], H−β), and every weak accumulation point (u,Q1/2W ) of (uϵ, Q1/2W ϵ)1, ϵ → 0,
is an analytically weak solution of the equation with transport noise and Itō-Stokes drift
velocity r =

∫
H
(−C)−1(w · ∇)w dµ(w):

∂tu = ν∆u+Π(u · ∇)u+Π((−C)−1Q1/2 ◦ ∂tW · ∇)u+Π(r · ∇)u.

The Itō-Stokes drift velocity r, usually defined as the difference between Lagrangian and
Eulerian average flows, has important consequences in wave-induced sediment transport

1The Wiener process W ϵ may depend on ϵ since we are dealing with probabilistically weak solutions.
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1.2. Content of this thesis

and sandbar migration in the coastal zone, and well as transport of heat, salt and other
natural or man-made tracers in the upper ocean layer [vdBB18].
Our result justifies and motivates the interest in transport noise (and Itō-Stokes drift) in
fluid dynamics, and, to the best of our knowledge, this is the first rigorous derivation of
a stochastic fluid model of this kind.
In fact, the transport noise in the limit equation comes from a diffusion-approximation
argument, which in our case can be seen as a Wong-Zakai type result; on the other hand,
the Itō-Stokes drift is due to an averaging phenomenon. As already mentioned above, the
approach is very general and amenable to generalizations to different systems (in [DP22]
we applied the same method also to the Surface Quasi-Geostrophic equations and to the
Primitive equations, but other applications are surely possible).
Roughly speaking, the strategy of the proof consists in studying the generator L ϵ of
the renormalized process (uϵ, yϵ), yϵ = ϵ1/2vϵ, and finding for every suitable test function
φ : H → R correctors φϵ1, φ

ϵ
2 : H ×H → R such that

L ϵφ(uϵ) + ϵ1/2L ϵφϵ1(u
ϵ, yϵ) + ϵL ϵφϵ2(u

ϵ, yϵ) = L 0φ(uϵ) + o(1), (1.8)

for some effective generator L 0 (correctors are needed because L ϵφ(uϵ) contains diverging-
in-ϵ terms). In order to do so, a careful analysis of the Poisson equations ⟨Cy,Dyϕ⟩ +
Tr(QD2

yϕ) = ψ and ⟨(C− νϵ∆)y,Dyϕ⟩+Tr(QD2
yϕ) = ψ (in the unknown ϕ) is required,

as well a Sobolev estimates on (bilinear functions of) uϵ, yϵ, as detailed in Chapter 4.
Among the main novelties of the paper, there is the fact we are able to replace the
small-scale process yϵ in (1.8) with its linearized version

dY ϵ
t = ϵ−1CϵY

ϵ
t dt+ ϵ−1/2Q1/2dWt, Y ϵ

0 = 0,

which enjoys better space regularity than yϵ because of the absence of the non-linear term
b. This facilitates the construction of correctors φϵ1 and φ

ϵ
2, since some expression defining

the correctors are just formal expression, rigorously defined in sufficiently smooth regimes
only.

1.2.3 Mixing and dissipation of Ornstein-Uhlenbeck flows

The last work discussed in the main body of present thesis (more specifically in Chapter 5)
is [Pap22b], where I have studied mixing and dissipation enhancement of the stationary
Ornstein-Uhlenbeck flow

vϵ =
∑
j∈J

vjη
ϵ,j, η̇ϵ,j = −ϵ−1ηϵ,j + ϵ−1Ẇ j,

where J is a finite set and vj is smooth, time-independent and divergence-free vector field
for every j ∈ J , advecting a passive scalar ρ with molecular diffusivity κ ≥ 0 via

∂tρ+ vϵ · ∇ρ = κ∆ρ.

Introducing the eddy diffusion operator L given by

(Lf)(x) = 1

2

∑
j∈J

vj(x) · ∇(vj · ∇f)(x)

9



Chapter 1. Introduction

and the limiting equation

∂tρ̄ = Aρ̄,

A = κ∆+ L, we are able to prove mixing on finite time intervals, as stated in the next

Theorem 1.4. Let ρ0 ∈ L2(Td) with zero mean, d ≥ 3, and T < ∞ be fixed. Then, for
every γ ∈ (0, (d− 2)/6) and s > 0 there exist coefficients θ,κ, ς > 0 such that for every ϵ
sufficiently small

E
[
∥ρ− ρ̄∥Cθ([0,T ],H−s(Td))

]
≤ C∥ρ0∥L2(Td)

(
α + ϵκµ2+γ

)ς
,

where α, µ are finite quantities depending on {vj}j∈J (in particular, α can be made
arbitrarily small choosing the family {vj}j∈J properly) and C ∈ (0,∞) is an unimportant
constant.

In the statement of the theorem, by ϵ sufficiently small we mean more precisely: there
exist positive numbers p1, p2 > 0, depending only on the parameters γ, θ and κ, such that
the thesis holds for every ϵ satisfying ϵp1 logp2(1+ ϵ−1) < 1. The coefficients p1, p2 can be
computed explicitly, cfr. the proof of Proposition 5.4 in Chapter 5.
It is well-known [MK99] that dissipation enhancement for advection-diffusion equations
occurs for the average field E[ρ], when the fluid is sufficiently turbulent, and therefore
E[ρ] is indeed expected to solve the same equation as ρ̄ – which can be rigorously proved
when uϵ is delta-correlated in time, interpreting L as a Stratonovich-to-Itō corrector. On
the other hand, it is important to quantify the error made when approximating the ideal
model (that with transport noise, as also emerges in the infinite scale separation limit
by previous discussions) with an actual non-delta-correlated model. Thus, the interest
in this result is totally justified, and moreover it would be important to understand
whether similar quantitative results can be established for the general convergence results
discussed above for non-simplified model, where small scales are modelled with solutions
of actual fluid dynamics equations as Navier-Stokes and Euler’s.
The mixing property stated in the previous theorem has many consequences, among
which transfer on energy to high wavenumbers stands out. This mechanism is the main
responsible for the enhanced dissipation of the L2(Td) norm of ρ. The second main result
of [Pap22b] permits to estimate the rate of decay of the L2(Td) norm of ρ, when the
molecular diffusivity κ is strictly positive.

Theorem 1.5. In the same setting as above, assume in addition κ > 0. Let c =

C1/2 (α + ϵκµ2+γ)
ς/2

> 0 and denote λ > 0 the principal eigenvalue of the operator −A.
Then the following inequality holds with probability at least 1− c for every t ∈ [0, T ]:

∥ρt∥L2(Td) ≤
∥ρ0∥L2(Td)(

1 + κ
2λc2

log
(
c2e2λt+1
c2+1

))1/2 .
In particular, for every t ∈ [0, T ] it holds

E
[
∥ρt∥L2(Td)

]
≤ c∥ρ0∥L2(Td) +

∥ρ0∥L2(Td)(
1 + κ

2λc2
log
(
c2e2λt+1
c2+1

))1/2 .
10



1.3. What is not included here

Recall that the only estimate available a priori for the L2(Td) norm of ρ is given by

∥ρt∥L2(Td) ≤ e−κt∥ρ0∥L2(Td),

and the previous inequality is in fact an equality in the inviscid case κ = 0, when dis-
sipation does not occur. The content of our previous theorem can thus be read as fol-
lows: for every fixed t > 0, if κ > 0 and {vj}j∈J is such that λ ≫ 1 and c ≪ 1 then
E
[
∥ρt∥L2(Td)

]
≪ e−κt∥ρ0∥L2(Td), namely dissipation of the L2(Td) norm is enhanced. Also,

taking formally c→ 0 we obtain an augmented decay rate for the L2(Td) norm, that is

E
[
∥ρt∥L2(Td)

]
≤ λ1/2

κ1/2
e−λt∥ρ0∥L2(Td), ∀t ∈ [0, T ]. (1.9)

In order to make λ≫ 1 and c≪ 1 simultaneously, one can choose first the family {vj}j∈J
so that λ ≫ 1 and α ≪ 1 at the same time, and then take ϵ sufficiently small so that
c≪ 1. The problem of finding a family {vj}j∈J that renders simultaneously λ large and
α small has been previously treated (see [Gal20] and subsequent works), and it will not
be discussed further here.
The strategy of the proof is as follows. First, we need a suitable bound on the quantity

sup
n,m=1,...,1/δ−1

n>m

(nδ −mδ)−θ

∣∣∣∣∣⟨ϕ, ρnδ⟩ − ⟨ϕ, ρmδ⟩ − δ
n−1∑
k=m

⟨Aϕ, ρkδ⟩

∣∣∣∣∣ ,
where δ is a small parameter, suitably chosen in depending on ϵ. Then, to prove Theo-
rem 1.4, the key idea consists in introducing the random distribution f by

⟨ϕ, ft⟩ = ⟨ϕ, ρt⟩ − ⟨ϕ, ρ0⟩ −
∫ t

0

⟨Aϕ, ρs⟩ds, ∀ϕ ∈ H2(Td),

and show that ρ− ρ̄ depends path-by-path continuously on f , thus producing an estimate
on ρ− ρ̄ from an estimate on f .
As for Theorem 1.5, its proof relies on the following energy inequality

d

dt
∥ρt∥2L2(Td) ≤ −2κ

∥ρt∥4L2(Td)

∥ρt∥2H−1(Td)

and a bound on ∥ρt∥2H−1(Td)
obtained applying Theorem 1.4 with s = 1. More details are

given in the corresponding Chapter 5.

1.3 What is not included here

A part from the principal line of research outlined above, during my PhD studies I have
had the possibility of doing research on different topics. As a consequence, I have authored
several works that do not group together in a coherent, systematic way: some of them
are a little more than exercises, which I wrote as an excuse to master new techniques (a
practice that, I hope, will be forgiven to a novice PhD student); others are the starting
point of lines of research never properly explored, admittedly due to my laziness; all of
them are ultimately motivated, directly or indirectly, by my interest in fluid dynamics.

11



Chapter 1. Introduction

1.3.1 Well-posedness theory for some geophysical models in 2D

Fluid dynamics is more than Navier-Stokes and Euler equations. For geophysical appli-
cations, it often makes sense to study other equations that take into account peculiarities
of the system Earth.
Together with Francesco Grotto and borrowing techniques from [AC90] and [Fla18], I
have established in [GP21] existence of stationary solutions (q, V ), preserving a physi-
cally relevant Gibbsian measure, of the two-dimensional Barotropic Quasi-Geostrophic
equations in a channel R = S1 × [0, π] (see [MW06]):

∂tq +∇⊥ψ · ∇q = 0,

q = ∆ψ̃ + h+ βy,

ψ = −V y + ψ̃,

V̇ = − 1
|R|

∫
R
∂xh(z)ψ̃(z)dz,

where q denotes the potential vorticity, ψ is the stream function, V is a function of time
only describing a large scale mean flow, h is the topography and β ∈ R approximates the
Coriolis force.
With the same techniques, jointly with Franco Flandoli and Milo Viviani [FPV22] I have
shown a similar result for the Zeitlin’s discretization of two-dimensional Euler equations
on the sphere (cfr. [Zei04, MV20]).
In [GP22b] (co-authored by Francesco Grotto), we identified a generalized enstrophy for-
mally preserved by two-dimensional Primitive equations with dissipation and additive
noise:

∂tω +∇⊥A(ω) · ∇ω = −(−∆)θω +
√
2(−∆)θ/2∂tW,

where ω is a generalized vorticity (defined as the derivative in the vertical direction of the
horizontal velocity) and A(ω) satisfies −∂zA(ω) = ω (plus suitable boundary conditions).
Using the formalism of [GJ13] (cfr. also [GT19]), for θ > 2 we can prove existence
of stationary solutions to Primitive equations preserving the generalized enstrophy; for
θ > 3, we can also prove pathwise uniqueness of solutions.

1.3.2 Bursts of Euler and Surface Quasi-Geostrophic vortices

Francesco Grotto and I have authored also [GP22a], where we gave a rigorous construction
of solutions to the Euler point vortices system on the plane R2 ≈ C:

˙̄zj =
1

2πi

∑
k ̸=j

ξk
zj − zk

,

where z1, . . . , zN : (0,∞) → C are the positions of N point vortices, N ≥ 3, each one
with intensity ξ1, . . . , ξN ∈ R \ {0}, in which three vortices burst out of a single one.
More precisely, we proved that given any configuration of N − 2 distinct vortices on
the plane at time t = 0, in a small time interval (0, T ) there exists a solution of Euler
point vortices system with N vortices, three of which burst out of a single one from the
initial configuration, with their intensities summing up to the split vortex one. By time
inversion, this implies existence of arbitrarily large configurations in which three vortices
collide in finite time.

12



1.3. What is not included here

Systems of three vortices are integrable, and self-similar bursts and collapses of three
vortices have been explicitly known since a while. On the other hand, the case N > 3 has
been a long-standing open problem. Our strategy consists in showing first existence of
bursts of three vortices under the influence of a suitable external vector field, by expressing
the system in a convenient coordinate system describing closeness to the self-similar free
solution, and reformulating the problem as a fixed point problem. This is an interesting
result per se: for instance we will deduce from it the existence of bursts of three vortices
in periodic or bounded domains. Existence of a burst of three vortices out of one in a
system of many vortices then follows from this preliminary result, dividing the system
into three bursting vortices under the external influence of the other ones, and the rest
of the configuration, involving only vortices that do not collapse or burst.

1.3.3 Non-autonomous attractors of Random Dynamical Sys-
tems

In the work [FPT22], joint with Franco Flandoli and Elisa Tonello, we tried to identify a
mathematical framework adequate to formal definition of concepts like weather, climate,
and connection between them. The work is very speculative and this line of research is
still in an embryonic state; yet the main ideas can be described here.
We start from the assumption that weather is statistically described by a family of ran-
dom, time-dependent measures µω(t) on the Borel subsets of a state space X and its dy-
namics is encoded into a non-autonomous Random Dynamical System Uω(s, t) : X → X,
s, t ∈ R, satisfying

Uω(s, t)∗ µω(s) = µω(t).

The typical time-scale at which we appreciate fluctuations of µω is ϵ ≪ 1 (usually cor-
responding to hours or days), assuming s, t denote macroscopic time variables proper of
climate (with typical time-scale of years or decades).
How to define climate, then? Heuristically, we want climate to capture at once daily
fluctuations of weather and slow-varying, long-term climate trends. In the ideal infinite
time-scale separation limit, we exhibit sufficient conditions based on the random attractor
of Uω that guarantee the existence of a limit (up to subsequences) of µω = µϵω as ϵ → 0,
see [FPT22, Theorem 1.1]. The limiting object is a Young measure on the product space
R×X and encodes both daily fluctuations of the weather (µ(t, ·) is a measure on X for
every fixed t ∈ R) and long-term climate trends (t 7→ µ(t, ·) is in general non-constant).

1.3.4 LDP for SDEs in Hilbert spaces with non-Lipschitz drift

Finally, in [Pap22a] I have studied Large Deviations, as ϵ→ 0, for the family of stochastic
differential equations in a infinite dimensional separable Hilbert space H

Ẋϵ = AXϵ +B(Xϵ) + ϵ Ẇ ,

where A : D(A) ⊂ H → H is a negative-definite self-adjoint operator such that (−A)1+δ
is trace-class for some δ ∈ (0, 1), B : H → H is continuous with at most linear growth
and W is a cylindrical Wiener process on H. The initial condition is a deterministic
Xϵ

0 = x0 ∈ D((−A)δ/2).
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Chapter 1. Introduction

In this setting, I have proved the analogous of Freidlin-Wentzell Theorem [FW12] for
Xϵ: for every α ∈ (0, δ/2) there exists T > 0 such that a Large Deviation Principle on
C([0, T ], D((−A)α) holds for Xϵ, with rate ϵ2 and action functional given by

S(φ) =
1

2

∫ T

0

∥φ̇t − Aφt −B(φt)∥2Hdt,

if φ ∈ W 1,2([τ, T ], H) ∩ L2([τ, T ], D(A)) for every τ ∈ (0, T ), φ(0) = 0, and S(φ) = +∞
otherwise. Moreover, if B is bounded the thesis holds for every choice of T <∞.
The main novelty of [Pap22a] consists in the fact that the non-linear term B need not to
be (locally) Lipschitz continuous; in particular, the unperturbed equation ϵ = 0 may lack
uniqueness (whereas well-posedness for ϵ > 0 has been proved in [DPFPR13]), so that
the classical weak convergence approach by Budhiraja, Dupuis and Maroulas [BDM08]
becomes unfeasible. The method of [Pap22a], inspired by [Her01], consists in the approx-
imation of the non-linear drift B with a sequence of Lipschitz and bounded drifts. The
approximation is non-trivial and relies on the Kirszbraun extension Theorem. Once such
approximation is given, Large Deviation estimates for Xϵ are recovered using an auxil-
iary equation, with a more regular non-linearity, for which Large Deviation estimates are
classical.

1.4 Frequently used notation

Given two Banach spaces U , V , let L(U, V ) denote the Banach space of continuous linear
operators mapping U to V , endowed with the operator norm. Hilbert spaces will be
usually denoted with the letter H, and the symbol ⟨·, ·⟩H will indicate the scalar product
in H, and ∥ · ∥H the norm. When no confusion may arise, we set ⟨·, ·⟩ := ⟨·, ·⟩H and
∥ · ∥ = ∥ · ∥H . Hilbert spaces will be always separable.
Given a (possibly unbounded) self-adjoint negative-definite operator A0 : D(A0) ⊂ H →
H, we define the H-based Sobolev space Hs, s ∈ R by the relation Hs := D((−A0)

s/2),
with scalar product ⟨f, g⟩Hs := ⟨(−A0)

s/2f, (−A0)
s/2g⟩H . Sobolev spaces form a Hilbert

scale in the sense of Krein-Petunin [KP66]; in particular, the map (−A0)
s/2 : Hr → Hr+s

is an isomorphism for every s, r ∈ R and the following interpolation inequality holds
between Hs1 and Hs2 , for s1, s2 ∈ R and λ ∈ (0, 1):

∥f∥Hsλ ≤ ∥f∥λHs1∥f∥1−λHs2 , sλ = λs1 + (1− λ)s2.

In the following, Sobelev spaces will be often defined over H := {f ∈ L2(Td),
∫
Td f = 0}

or H := {u ∈ [L2(Td)]d,
∫
Td u = 0, divu = 0}, with A0 equal to some multiple of the

Laplace operator.
A finite or countable collection of standard i.i.d. Brownian motions is denoted by
{W k}k∈I . We shall always assume the existence of an underlying filtered probability
space (Ω,F , {Ft}t≥0,P) supporting the family {W k}k∈I . Filtration will always be right-
continous and complete. A cylindrical Wiener process on H shall be denoted by W . We
call the tuple (Ω,F , {Ft}t≥0,P,W ) a stochastic basis.
Itō differential equations as, for instance, dY = −Y dt + Q1/2dW will sometimes be
abbreviated in Ẏ = −Y + Q1/2Ẇ . Accordingly, stochastic integration in the sense of
Stratonovich will be denoted by either ◦dW or ◦Ẇ . For (stochastic) partial differential
equations we use the symbol ∂t for derivatives with respect to time when we use the
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1.4. Frequently used notation

concrete form of the equations, as for instance in ∂tu = ∆u + ∂tW , whereas we use the
convention du = Audt+ dW or u̇ = Au+ Ẇ if we interpret the equation as an evolution
in some abstract Hilbert space.
We use the symbol ≲ to indicate inequality up to an unimportant constant C ∈ (0,∞).
Whenever we need to stress that C depends of parameters p1, . . . , pn we use the symbol
≲p1,...,pn instead.
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Chapter 2

Stochastic model reduction

Here we recall the equations satisfied by the processes (Xϵ, Y ϵ){
Ẋϵ
t = F (t,Xϵ

t ) + σ(t,Xϵ
t )Y

ϵ
t + ϵ1/2β(Y ϵ

t , Y
ϵ
t ),

Ẏ ϵ
t = −ϵ−1Y ϵ

t + ϵ−1Q1/2Ẇt,

and X̄
˙̄Xt = F (t, X̄t) + C(t, X̄t) + σ(t, X̄t)Ẇt +

∑
ℓ,m∈N

bℓ,m
˙̄W ℓ,m
t .

The large-scale processes Xϵ and X̄ are set to start at time t = 0 from a deterministic
initial condition x0 ∈ Hd. As for the small-scale process Y ϵ, it is worth mentioning that
its precise initial condition is somewhat less important in applications, because of the
typical decorellation time of Y ϵ is of order ϵ1/2; therefore, for simplicity we impose Y ϵ to
be stationary. In particular, we set

Y ϵ
t :=

∫ t

−∞
ϵ−1e−ε

−1(t−s)Q1/2dWs, t ≥ 0,

where W is a cylindrical Wiener process in H∞ with real-valued time parameter.

Remark 2.1. A Wiener process with real-valued time parameter can be obtained in the
following way: given two independent Wiener processes (W+

t )t≥0 and (W−
t )t≥0 defined on

filtered probability spaces (Ω+, (F+
t ),P+) and (Ω−, (F−

t ),P−), respectively, setWt = W+
t ,

for t ≥ 0, and Wt = W−
−t, for t < 0. Using such a representation of W , we can also write

Y ϵ
t = −

∫ ∞

0

ϵ−1e−ϵ
−1(t+s)Q1/2dW−

s +

∫ t

0

ϵ−1e−ϵ
−1(t−s)Q1/2dW+

s , t ≥ 0,

which clearly is a stationary Ornstein-Uhlenbeck process on (Ω,F−
∞ ⊗F+

∞,P) with initial
value Y ϵ

0 = −
∫∞
0
ϵ−1e−ϵ

−1(t+s)Q1/2dW−
s , where Ω = Ω− × Ω+ and P = P− ⊗ P+, see

[DPZ14]. Furthermore, setting up the stochastic basis for our processes (Xϵ, Y ϵ), let
(Ω,F ,P) be the completion of (Ω,F−

∞ ⊗F+
∞,P), and (Ft)t≥0 be the augmentation of the

filtration (F−
∞ ⊗F+

t )t≥0. Note that this filtration would satisfy the usual conditions.

Stochastic model reduction of finite-dimensional systems similar to (1.4) were extensively
discussed in [MTVE01]. However, for the weak convergence the authors rely on a per-
turbation method based on a theorem by Kurtz [Kur73], and then they briefly describe a
so-called direct averaging method for strong convergence, based on limits of solutions to
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Chapter 2. Stochastic model reduction

stochastic differential equations. Their approach is not immediately applicable to infinite
dimensional systems like ours (not to mention some lack of rigour in their proofs).
There have been earlier attempts of proving similar abstract results of Wong-Zakai type
[WZ65] in infinite dimensions, see for instance [BCF88, Twa93, TZ06]. However, we would
like to emphasise that these earlier attempts dealt with piecewise linear approximations
of noise rather than an infinite dimensional Ornstein-Uhlenbeck process. To see why the
process Y ϵ is an approximation of a white noise, take the time integral∫ t

0

Y ϵ
s ds =

∫ t

0

Y ϵ
0 e

−ϵ−1sds+

∫ t

0

(∫ s

0

ϵ−1e−ϵ
−1(s−r)Q1/2dWr

)
ds

=

∫ t

0

Y ϵ
0 e

−ϵ−1sds+

∫ t

0

(∫ t

r

ϵ−1e−ϵ
−1(s−r)ds

)
Q1/2dWr

=

∫ t

0

Y ϵ
0 e

−ϵ−1sds+

∫ t

0

(
1− e−ϵ

−1(s−r)
)
Q1/2dWr

= Q1/2Wt +O(ϵ1/2).

Note that it is typical for Wong-Zakai results that stochastic integral terms of limiting
equations are interpreted in the sense of Stratonovich.
Finally, it is worth comparing our results with those in the literature concerning averaging
principles, see for instance [FW12, Section 7.9], [PV01, PV03] and references therein.
Roughly speaking, in those results the unresolved variables satisfy the equation Ẏ ϵ

t =
−ϵ−1Y ϵ

t + ϵ
−1/2Q1/2Ẇt, with a weaker noise intensity compared to ours, and therefore the

resolved variables only undergo a change of drift in the limit ϵ → 0. On the contrary, in
our setting a diffusion term also appears in the limit.

Remark 2.2. For notational simplicity, in what follows we shall writeW instead of Q1/2W
for a Q-Wiener process on H∞. In this way

∫ t
0
Y ϵ
s ds formally converges towards Wt as

ϵ→ 0 (and not towards Q1/2Wt). This convention applies only to the present chapter.

Finally, let us describe how this chapter is organized.
In section 2.1, we give the proof of the strong convergence stated in Theorem 1.1 when
β = 0. The proof relies on preliminary localization and discretization arguments which
allow to consider instead its discrete version

lim
ϵ→0

P
{
sup
k

∥Xϵ
tk
− X̄tk∥Hd

> δ

}
= 0, ∀δ > 0,

for only finitely many tk ∈ [0, T ].
In section 2.2, we give the proof of the weak convergence of Theorem 1.1 which, at the
beginning, requires a careful analysis of the quadratic term β(Y ϵ

t , Y
ϵ
t ), but otherwise is

an adaptation of the proof given in the previous section.
In section 2.3, we eventually use the results of section 2.1 and section 2.2 to prove Theo-
rem 2.15 under quite natural conditions, thus making the connection to our main appli-
cations in climate modelling.

2.1 Strong convergence

In this section we give the proof of the strong convergence stated in Theorem 1.1, under
the additional assumption β = 0. The proof is divided into several steps, here summa-
rized.
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2.1. Strong convergence

First, by localization, we argue that we can restrict ourselves to |Xϵ
t |, |X̄t| ≤ R, for some

large R, which is effectively leading to Lipschitz continuity of the coefficients of (1.4) and
(1.5).
Second, we discretize the problem, which allows us to reduce the desired convergence to
its discrete version:

lim
ϵ→0

P
{
sup
k

|Xϵ
tk
− X̄tk | > δ

}
= 0, ∀δ > 0,

for only finitely many tk ∈ [0, T ]. Here, we choose tk = k∆, where ∆ = ∆ϵ is a positive
parameter whose ϵ-dependence has to be carefully chosen in the proof—see Remark 2.3.
Third, we prove the above discretized version.

2.1.1 Localization

Fix ϵ > 0, δ ∈ (0, 1), and define

τ ϵR = inf{t ≥ 0 : |Xϵ
t | ≥ R + 1} ∧ inf{t ≥ 0 : |X̄t| ≥ R}, for R > 0,

so that

P
{
sup
t≤T

|Xϵ
t − X̄t| > δ

}
= P

{
sup
t≤T

|Xϵ
t − X̄t| > δ, sup

t≤T
|X̄t| ≥ R

}
+ P

{
sup
t≤T

|Xϵ
t − X̄t| > δ, sup

t≤T
|X̄t| < R

}
= P

{
sup
t≤T

|Xϵ
t − X̄t| > δ, sup

t≤T
|X̄t| ≥ R

}
+ P

{
sup

t≤T∧τϵR
|Xϵ

t − X̄t| > δ, sup
t≤T

|X̄t| < R

}

≤ P
{
sup
t≤T

|X̄t| ≥ R

}
+ P

{
sup

t≤T∧τϵR
|Xϵ

t − X̄t| > δ

}
. (2.1)

Therefore, since global existence for X̄ implies

P
{
sup
t≤T

|X̄t| ≥ R

}
→ 0, as Rto∞,

to prove the desired convergence it is sufficient to show the convergence of the second
summand on the right-hand side of (2.1), when ϵ → 0, for fixed δ ∈ (0, 1), R > 0.
Furthermore, by Markov inequality,

P

{
sup

t≤T∧τϵR
|Xϵ

t − X̄t| > δ

}
≤ δ−p E

[
sup

t≤T∧τϵR
|Xϵ

t − X̄t|p
]
, (2.2)

for every p > 0, δ ∈ (0, 1), and hence showing convergence of the above right-hand side,
only, is enough. To keep notation light, we are going to use τ ϵ instead of τ ϵR, as R > 0
will be fixed in what follows.
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Chapter 2. Stochastic model reduction

2.1.2 Discretization

Fix ϵ > 0. We show that the expectation on the right-hand side of (2.2) can be replaced
by an expectation of the same quantity, but with the supremum taken over a finite number
(diverging to ∞, as ϵ→ 0) of times tk, see Corollary 2.6 below.
To start with, we have the following useful a priori estimate.

Lemma 2.1. For any p > 1, the Ornstein-Uhlenbeck process Y ϵ satisfies

E
[
sup
t≤T

|Y ϵ
t |
p

]
≲ ϵ−p/2 logp/2(1 + ϵ−1).

Proof. First, using the decomposition Y ϵ
t = Y ϵ

0 +(Y ϵ
t − Y ϵ

0 ), Gaussian estimates on Y ϵ
0 and

[JZ20, Theorem 2.2], the result is true in one dimension. In the infinite dimensional case,
by Hölder’s inequality we can suppose p > 2 without any loss of generality. Therefore,
since Q is trace class with eigenvalues satisfying

∑
m∈N qm <∞, when α = (p− 2)/p, we

obtain that

E
[
sup
t≤T

|Y ϵ
t |
p

]
= E

sup
t≤T

( ∑
m∈N,qm>0

qαmq
−α
m |Y ϵ,m

t |2
)p/2


≲

( ∑
m∈N,qm>0

q−αp/2m E
[
sup
t≤T

|Y ϵ,m
t |p

])(∑
m∈N

qαp/(p−2)
m

)(p−2)/2

≲ ϵ−p/2 logp/2(1 + ϵ−1),

having used the one-dimensional result for the coordinates Y ϵ,m
t = ⟨Y ϵ

t , fm⟩, for any
m ∈ N.

Now, we introduce the discretization of the time interval [0, T ]. Let ∆ > 0, and let [T/∆]
be the largest integer less or equal than T/∆. In what follows, ∆ will also depend on ϵ,
in a way to be determined later. Also, to make it easier to bound terms by powers of ϵ
or ∆, without loss of generality, we will always assume that both ϵ,∆ are less than one.
The next two lemmas control the excursion of Xϵ between adjacent nodes.

Lemma 2.2. For any p > 1, and any deterministic time τ > 0,

E

 sup
k=0,1,...,[T/∆]
t≤τ, t+k∆≤T∧τϵ

|Xϵ
t+k∆ −Xϵ

k∆|p

 ≲
τ p

ϵp/2
logp/2(1 + ϵ−1).

Proof. Since β = 0 the increment Xϵ
t+k∆ −Xϵ

k∆ can be written as

Xϵ
t+k∆ −Xϵ

k∆ =

∫ t+k∆

k∆

F (s,Xϵ
s)ds+

∫ t+k∆

k∆

σ(s,Xϵ
s)dW

ϵ
s ,

for t + k∆ ≤ T ∧ τ ϵ, where W ϵ
t :=

∫ t
0
Y ϵ
s ds. Therefore, using our assumptions on the

coefficients F, σ, boundedness of Xϵ on [0, τ ϵ], and Lemma 2.1, we obtain that

E

 sup
k=0,1,...,[T/∆]
t≤τ, t+k∆≤T∧τϵ

|Xϵ
t+k∆ −Xϵ

k∆|p

 ≲ τ p
(
1 + E

[
sup

t≤T∧τϵ
|Y ϵ
t |
p

])

≲
τ p

ϵp/2
logp/2(1 + ϵ−1).
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2.1. Strong convergence

Lemma 2.3. For any p > 1, and any fixed k ∈ {0, 1, . . . , [T/∆]} such that k∆ ≤ T ,

E
[
|Xϵ

(k+1)∆∧τϵ −Xϵ
k∆∧τϵ |p

]
≲ ∆p/2 + ϵp/2 logp/2(1 + ϵ−1) +

∆2p

ϵp
logp(1 + ϵ−1).

Proof. It suffices to bound every single term on the right-hand side of the equation

Xϵ
(k+1)∆∧τϵ −Xϵ

k∆∧τϵ =

∫ (k+1)∆∧τϵ

k∆∧τϵ
F (s,Xϵ

s)ds

+

∫ (k+1)∆∧τϵ

k∆∧τϵ
(σ(s,Xϵ

s)− σ(k∆ ∧ τ ϵ, Xϵ
k∆∧τϵ)) dW

ϵ
s

+

∫ (k+1)∆∧τϵ

k∆∧τϵ
σ(k∆ ∧ τ ϵ, Xϵ

k∆∧τϵ)dW
ϵ
s .

In what follows, we shall use implicitly the regularity assumptions on F, σ without further
mention. First, by boundedness of Xϵ on [0, τ ϵ], we have that

E

[∣∣∣∣∣
∫ (k+1)∆∧τϵ

k∆∧τϵ
F (s,Xϵ

s)ds

∣∣∣∣∣
p]

≲ ∆p.

Second, using Hölder’s inequality with q′ > 1/p and Lemma 2.1,

E

[∣∣∣∣∣
∫ (k+1)∆∧τϵ

k∆∧τϵ
(σ(s,Xϵ

s)− σ(k∆ ∧ τ ϵ, Xϵ
k∆∧τϵ)) dW

ϵ
s

∣∣∣∣∣
p]

≲ E

[
sup
t≤T

|Y ϵ
t |
p

∣∣∣∣∣
∫ (k+1)∆∧τϵ

k∆∧τϵ
|σ(s,Xϵ

s)− σ(k∆ ∧ τ ϵ, Xϵ
k∆∧τϵ)| ds

∣∣∣∣∣
p]

≲ ϵ−p/2 logp/2(1 + ϵ−1)E

∣∣∣∣∣
∫ (k+1)∆∧τϵ

k∆∧τϵ
|σ(s,Xϵ

s)− σ(k∆ ∧ τ ϵ, Xϵ
k∆∧τϵ)| ds

∣∣∣∣∣
pq′
1/q′

.

Since pq′ > 1 by assumption, we can estimate the integral above using Hölder’s inequality
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Chapter 2. Stochastic model reduction

with exponents pq′ and pq′/(pq′ − 1). Then Lemma 2.2 gives

E

∣∣∣∣∣
∫ (k+1)∆∧τϵ

k∆∧τϵ
|σ(s,Xϵ

s)− σ(k∆ ∧ τ ϵ, Xϵ
k∆∧τϵ)| ds

∣∣∣∣∣
pq′
1/q′

≲ E

∣∣∣∣∣
∫ (k+1)∆∧τϵ

k∆∧τϵ
ds

∣∣∣∣∣
pq′−1 ∫ (k+1)∆∧τϵ

k∆∧τϵ
|σ(s,Xϵ

s)− σ(k∆ ∧ τ ϵ, Xϵ
k∆∧τϵ)|

pq′ ds

1/q′

≲ ∆p−1/q′ E

[∫ (k+1)∆∧τϵ

k∆∧τϵ

(
|Xϵ

s −Xϵ
k∆∧τϵ|

pq′ + (s− k∆)pq
′
)
ds

]1/q′

≲ ∆p−1/q′

(∫ (k+1)∆∧τϵ

k∆∧τϵ
E
[
|Xϵ

s −Xϵ
k∆∧τϵ|

pq′ + (s− k∆)pq
′
]
ds

)1/q′

≲ ∆p−1/q′

(∫ (k+1)∆∧τϵ

k∆∧τϵ
(s− k∆)pq

′
(
ϵ−pq

′
logpq

′/2(1 + ϵ−2) + 1
)
ds

)1/q′

≲ ϵ−p/2 logp/2(1 + ϵ−1)∆p−1/q′

(∫ (k+1)∆∧τϵ

k∆∧τϵ
(s− k∆)pq

′
ds

)1/q′

≲ ϵ−p/2 logp/2(1 + ϵ−1)∆2p.

Finally,

E

[∣∣∣∣∣
∫ (k+1)∆∧τϵ

k∆∧τϵ
σ(k∆ ∧ τ ϵ, Xϵ

k∆∧τϵ)dW
ϵ
s

∣∣∣∣∣
p]

≲ E
[∣∣W ϵ

(k+1)∆∧τϵ −W ϵ
k∆∧τϵ

∣∣p]
≲ ∆p/2 + ϵp/2 logp/2(1 + ϵ−1),

because, for every t2 > t1 ≥ 0,

W ϵ
t2
−W ϵ

t1
=

∫ t2

t1

(∫ s

−∞
ϵ−1e−ϵ

−1(s−r)dWr

)
ds (2.3)

=Wt2 −Wt1 −
∫ t2

−∞
e−ϵ

−1(t2−r)dWr +

∫ t1

−∞
e−ϵ

−1(t1−r)dWr.

The next lemma controls the excursion of the limiting process X̄ between adjacent nodes.

Lemma 2.4. For any p > 1, any deterministic time τ ∈ (0, 1), and any fixed k ∈
{0, 1, . . . , [T/∆]},

E
[

sup
t≤τ, t+k∆≤T∧τϵ

|X̄t+k∆ − X̄k∆|p
]
≲ τ

p
2 .

Proof. Since β = 0 the increment X̄t+k∆ − X̄k∆ can be written as

X̄t+k∆ − X̄k∆ =

∫ t+k∆

k∆

(
F (s, X̄s) + C(s, X̄s)

)
ds+

∫ t+k∆

k∆

σ(s, X̄s)dWs,
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2.1. Strong convergence

at least for t+k∆ ≤ T∧τ ϵ. Therefore, using boundedness ofXϵ on [0, τ ϵ] and Burkholder-
Davis-Gundy’s inequality, we obtain that

E
[

sup
t≤τ, t+k∆≤T∧τϵ

|X̄t+k∆ − X̄k∆|p
]
≲ τ p + E

[
sup

t≤τ, t+k∆≤T∧τϵ

∣∣∣∣∫ t+k∆

k∆

σ(s, X̄s)dWs

∣∣∣∣p
]

≲ τ p + τ
p
2 ,

which proves the lemma since τ < 1.

Corollary 2.5. For any p > 1,

E

 sup
k=0,1,...,[T/∆]

t≤∆, t+k∆≤T∧τϵ

|X̄t+k∆ − X̄k∆|p

 ≲ ∆
p
2
−1.

Proof. The claim easily follows from Lemma 2.4 with τ = ∆, and the inequality

E

 sup
k=0,1,...,[T/∆]

t≤∆, t+k∆≤T∧τϵ

|X̄t+k∆ − X̄k∆|p

 ≲
[T/∆]∑
k=0

E
[

sup
t≤∆, t+k∆≤T∧τϵ

|X̄t+k∆ − X̄k∆|p
]

≲
[T/∆]∑
k=0

∆p/2 = ∆
p
2
−1.

Corollary 2.6. Let ∆ = ∆ϵ > 0 depend on ϵ such that ∆/ϵ1/2 → 0 as ϵ→ 0. Then,

E
[

sup
t≤T∧τϵ

|Xϵ
t − X̄t|2

]
≲ E

 sup
k=0,1,...,[T/∆]

k∆≤τϵ

|Xϵ
k∆ − X̄k∆|2

+ o(1).

Proof. First, by Hölder’s inequality with q > 1 and Corollary 2.5, we have that

E

 sup
k=0,1,...,[T/∆]

t≤∆, t+k∆≤T∧τϵ

|X̄t+k∆ − X̄k∆|2

 ≲ E

 sup
k=0,1,...,[T/∆]

t≤∆, t+k∆≤T∧τϵ

|X̄t+k∆ − X̄k∆|2q


1/q

≲ ∆1−1/q → 0 as ϵ→ 0,

since we have taken q > 1. Thus, the proof can easily be completed by combining the
above and Lemma 2.2, while taking into account

|Xϵ
t − X̄t|2 ≲ |Xϵ

t −Xϵ
[t/∆]∆|2 + |Xϵ

[t/∆]∆ − X̄[t/∆]∆|2 + |X̄[t/∆]∆ − X̄t|2,

where [t/∆] is again our notation for the floor of t/∆.
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Chapter 2. Stochastic model reduction

2.1.3 Proof of the discretized version

We now discuss our strategy to prove the discretized version of the strong convergence
in Theorem 1.1. Recall that we want

P
{
sup
t≤T

|Xϵ
t − X̄t| > δ

}
→ 0,

for every fixed δ > 0, as ϵ → 0. As we have seen, by (2.1), (2.2) and Corollary 2.6, it
suffices to prove

E

 sup
k=0,...,[T/∆]

k∆≤τϵ

∣∣Xϵ
k∆ − X̄k∆

∣∣2
→ 0, ϵ→ 0, (2.4)

for some ∆ = ∆ϵ = o(ϵ). The proof is inspired by [IW14, Section VI.7].

Hereafter, ∂σ denotes the derivative of σ with respect its first variable, and Dσ denotes
the derivative of σ with respect its second variable. To start with, by (2.3), we have that

Xϵ
(k+1)∆ =Xϵ

k∆ +

∫ (k+1)∆

k∆

F (s,Xϵ
s)ds+

∫ (k+1)∆

k∆

σ(s,Xϵ
s)dW

ϵ
s (2.5)

=Xϵ
k∆ +

∫ (k+1)∆

k∆

(F (s,Xϵ
s)− F (k∆, Xϵ

k∆)) ds

+

∫ (k+1)∆

k∆

F (k∆, Xϵ
k∆)ds

+

∫ (k+1)∆

k∆

(σ(s,Xϵ
s)− σ(k∆, Xϵ

k∆)) dW
ϵ
s +

∫ (k+1)∆

k∆

σ(k∆, Xϵ
k∆)dW

ϵ
s

=Xϵ
k∆ +

∫ (k+1)∆

k∆

(F (s,Xϵ
s)− F (k∆, Xϵ

k∆)) ds

+

∫ (k+1)∆

k∆

F (k∆, Xϵ
k∆)ds

+

∫ (k+1)∆

k∆

(∫ s

k∆

(∂σ(r,Xϵ
r) +Dσ(r,Xϵ

r)F (r,X
ϵ
r)) dr

)
dW ϵ

s

+

∫ (k+1)∆

k∆

(∫ s

k∆

(Dσ(r,Xϵ
r)σ(r,X

ϵ
r)−Dσ(k∆, Xϵ

k∆)σ(k∆, X
ϵ
k∆)) dW

ϵ
r

)
dW ϵ

s

+

∫ (k+1)∆

k∆

(∫ s

k∆

(
Dσ(k∆, Xϵ

k∆)σ(k∆, X
ϵ
k∆)−Dσ(k∆, X̄k∆)σ(k∆, X̄k∆)

)
dW ϵ

r

)
dW ϵ

s

+

∫ (k+1)∆

k∆

(∫ s

k∆

Dσ(k∆, X̄k∆)σ(k∆, X̄k∆)dW
ϵ
r

)
dW ϵ

s

+

∫ (k+1)∆

k∆

σ(k∆, Xϵ
k∆)dWs

+ σ(k∆, Xϵ
k∆)ϵ

(
Y ϵ
k∆ − Y ϵ

(k+1)∆

)
=Xϵ

k∆ + Ik1 + Ik2 + Ik3 + Ik4 + Ik5 + Ik6 + Ik7 + Ik8 ,

for any k = 0, . . . , [T/∆] such that (k + 1)∆ ≤ T .
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2.1. Strong convergence

Similarly, the process X̄ satisfies

X̄(k+1)∆ = X̄k∆ +

∫ (k+1)∆

k∆

(
F (s, X̄s)− F (k∆, X̄k∆)

)
ds (2.6)

+

∫ (k+1)∆

k∆

F (k∆, X̄k∆)ds

+

∫ (k+1)∆

k∆

(
C(s, X̄s)− C(k∆, X̄k∆)

)
ds

+

∫ (k+1)∆

k∆

C(k∆, X̄k∆)ds

+

∫ (k+1)∆

k∆

(
σ(s, X̄s)− σ(k∆, X̄k∆)

)
dWs +

∫ (k+1)∆

k∆

σ(k∆, X̄k∆)dWs

= X̄k∆ + Jk1 + Jk2 + Jk3 + Jk4 + Jk5 + Jk6 .

Having in mind to apply Gronwall’s lemma, it turns out to be useful to summarise the
contributions of the right-hand sides of (2.5), (2.6) as follows:

Xϵ
h∆ − X̄h∆ =

h−1∑
k=0

(
Ik2 − Jk2

)
+

h−1∑
k=0

(
Ik6 − Jk4

)
+

h−1∑
k=0

(
Ik7 − Jk6

)
+

h−1∑
k=0

Ik5 (2.7)

+
h−1∑
k=0

(
Ik1 + Ik3 + Ik4 + Ik8 − Jk1 − Jk3 − Jk5

)
,

for any h = 1, . . . , [T/∆], which splits the difference Xϵ
h∆ − X̄h∆ into five sums.

We at first prove that the second and the fifth sum can be neglected when proving (2.4).
The summands of the fifth sum are discussed in Lemma 2.7 below. The contribution of
the second sum though is more delicate and requires a martingale argument similar to
that of [IW14, Theorem VI.7.1].

The remaining sums will be controlled in terms of the difference Xϵ − X̄ itself, which
allows them to be estimated via Gronwall’s lemma.

Of course, the function F is uniformly continuous when restricted to [0, T ] × BR(0),
where BR(0) is the closed ball of radius R in Hd. In what follows, we will denote by
ωF : [0, T ] → [0,∞) the (local) modulus of continuity of F (·, x):

|F (t, x)− F (s, x)| ≤ ωF (|t− s|), for every t, s ∈ [0, T ], and x ∈ BR(0).

Obviously, the function ωF vanishes at zero, and without loss of generality, it can be cho-
sen to be both non-decreasing and continuous. Denote by ωσ the corresponding modulus
of continuity of the derivative Dσ(·, x), and let ωF,σ = ωF + ωσ. Recall that, under our
assumption on the coefficient σ, one can take ωσ(t) = Ctγ for some positive constant C
and γ ∈ (0, 1).
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Lemma 2.7. For any p > 1:

E

 sup
h=1,...,[T/∆]

h∆≤τϵ

∣∣∣∣∣
h−1∑
k=0

Ik1

∣∣∣∣∣
p

+

∣∣∣∣∣
h−1∑
k=0

Ik3

∣∣∣∣∣
p
 ≲

(
∆

ϵ1/2

)p
logp/2(1 + ϵ−1) + ωF (∆)p;

E

 sup
h=1,...,[T/∆]

h∆≤τϵ

∣∣∣∣∣
h−1∑
k=0

Ik4

∣∣∣∣∣
p
 ≲

(
∆2

ϵ3/2

)p
log3p/2(1 + ϵ−1)

+

(
∆

ϵ

)p
logp(1 + ϵ−1)ωσ(∆)p;

E

 sup
h=1,...,[T/∆]

h∆≤τϵ

∣∣∣∣∣
h−1∑
k=0

Ik8

∣∣∣∣∣
p
 ≲

( ϵ
∆

)p/2
logp/2(1 + ϵ−1)

+
( ϵ
∆

)p
logp(1 + ϵ−1)

+

(
∆

ϵ1/2

)p
logp(1 + ϵ−1);

E

 sup
h=1,...,[T/∆]

h∆≤τϵ

∣∣∣∣∣
h−1∑
k=0

Jk1

∣∣∣∣∣
p

+

∣∣∣∣∣
h−1∑
k=0

Jk3

∣∣∣∣∣
p

+

∣∣∣∣∣
h−1∑
k=0

Jk5

∣∣∣∣∣
p
 ≲ ∆p/2 + ωF,σ(∆)p.

Proof. For
∑
Ik1 , by Hölder’s inequality and Lemma 2.2,

E

 sup
h=1,...,[T/∆]

h∆≤τϵ

∣∣∣∣∣
h−1∑
k=0

Ik1

∣∣∣∣∣
p
 ≲ E

 sup
h=1,...,[T/∆]

h∆≤τϵ

∣∣∣∣∣
h−1∑
k=0

∫ (k+1)∆

k∆

(|Xϵ
s −Xϵ

k∆|+ ωF (s− k∆)) ds

∣∣∣∣∣
p


≲
[T/∆]−1∑
k=0

∫ (k+1)∆

k∆

E [|Xϵ
s∧τϵ −Xϵ

k∆∧τϵ|
p + ωF (∆)p] ds

≲

(
∆

ϵ1/2

)p
logp/2(1 + ϵ−1) + ωF (∆)p.

For
∑
Ik3 , by Hölder’s inequality and Lemma 2.1,

E

 sup
h=1,...,[T/∆]

h∆≤τϵ

∣∣∣∣∣
h−1∑
k=0

Ik3

∣∣∣∣∣
p
 ≲ E

 sup
h=1,...,[T/∆]

h∆≤τϵ

∣∣∣∣∣ supt≤T
|Y ϵ
t |

h−1∑
k=0

∫ (k+1)∆

k∆

(s− k∆) ds

∣∣∣∣∣
p


≲ E

sup
t≤T

|Y ϵ
t |
p

[T/∆]−1∑
k=0

∫ (k+1)∆

k∆

|s− k∆|p ds


≲

(
∆

ϵ1/2

)p
logp/2(1 + ϵ−1).
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For
∑
Ik4 , by Hölder’s inequality, Lemma 2.1 and Lemma 2.2,

E

 sup
h=1,...,[T/∆]

h∆≤τϵ

∣∣∣∣∣
h−1∑
k=0

Ik4

∣∣∣∣∣
p


≲ E

 sup
h=1,...,[T/∆]

h∆≤τϵ

∣∣∣∣∣ supt≤T
|Y ϵ
t |

2
h−1∑
k=0

∫ (k+1)∆

k∆

(∫ s

k∆

(|Xϵ
r −Xϵ

k∆|+ ωσ(r − k∆)) dr

)
ds

∣∣∣∣∣
p


≲ E

 sup
h=1,...,[T/∆]

h∆≤τϵ

sup
t≤T

|Y ϵ
t |

2p
h−1∑
k=0

∫ (k+1)∆

k∆

∣∣∣∣∫ s

k∆

(|Xϵ
r −Xϵ

k∆|+ ωσ(r − k∆)) dr

∣∣∣∣p ds


≲ ϵ−p logp(1 + ϵ−1)

×

[T/∆]−1∑
k=0

∫ (k+1)∆

k∆

(s− k∆)pq
′−1

∫ s

k∆

(
E
[
|Xϵ

r∧τϵ −Xϵ
k∆∧τϵ|

pq′ + ωσ(∆)pq
′
]
dr
)
ds

1/q′

≲ ϵ−3p/2 log3p/2(1 + ϵ−1)

[T/∆]−1∑
k=0

∫ (k+1)∆

k∆

(s− k∆)2pq
′
ds

1/q′

+

(
∆

ϵ

)p
logp(1 + ϵ−1)ωσ(∆)p

≲

(
∆2

ϵ3/2

)p
log3p/2(1 + ϵ−1) +

(
∆

ϵ

)p
logp(1 + ϵ−1)ωσ(∆)p.

We now consider
∑
Ik8 . Here, the idea is to convert Y ϵ-increments into Xϵ-increments

via integration by parts since Xϵ-increments are easier to control. This way, applying
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Lemma 2.1 and Lemma 2.3,

E

 sup
h=1,...,[T/∆]

h∆≤τϵ

∣∣∣∣∣
h−1∑
k=0

Ik8

∣∣∣∣∣
p


≲ E

 sup
h=1,...,[T/∆]

h∆≤τϵ

∣∣∣∣∣
h−1∑
k=0

σ(k∆, Xϵ
k∆)ϵ

(
Y ϵ
k∆ − Y ϵ

(k+1)∆

)∣∣∣∣∣
p


≲ E

 sup
h=1,...,[T/∆]

h∆≤τϵ

∣∣∣∣∣
h∑
k=1

(
σ(k∆, Xϵ

k∆)− σ((k − 1)∆, Xϵ
(k−1)∆)

)
ϵY ϵ

k∆

∣∣∣∣∣
p


≲ E

 sup
h=1,...,[T/∆]

h∆≤τϵ

sup
t≤T

|ϵY ϵ
t |
p

∣∣∣∣∣
h∑
k=1

(∣∣Xϵ
k∆ −Xϵ

(k−1)∆

∣∣+∆
)∣∣∣∣∣
p


≲ E
[
sup
t≤T

|ϵY ϵ
t |
pq

]1/q
E

 sup
h=1,...,[T/∆]

h∆≤τϵ

∣∣∣∣∣
h∑
k=1

(∣∣Xϵ
k∆ −Xϵ

(k−1)∆

∣∣+∆
)∣∣∣∣∣
pq′


1/q′

≲ ϵp/2 logp/2(1 + ϵ−1)∆1/q′−p

×

[T/∆]∑
k=1

E
[∣∣Xϵ

k∆∧τϵ −Xϵ
(k−1)∆∧τϵ

∣∣pq′ +∆pq′
]1/q′

≲ ϵp/2 logp/2(1 + ϵ−1)∆−p

×

(
∆pq′/2 + ϵpq

′/2 logpq
′/2(1 + ϵ−1) +

(
∆

ϵ1/2

)2pq′

logpq
′
(1 + ϵ−1)

)1/q′

≲
( ϵ
∆

)p/2
logp/2(1 + ϵ−1) +

( ϵ
∆

)p
logp(1 + ϵ−1) +

(
∆

ϵ1/2

)p
logp(1 + ϵ−1).

In a similar way, for
∑
Jk1 and

∑
Jk3 , now applying Lemma 2.4,

E

 sup
h=1,...,[T/∆]

h∆≤τϵ

∣∣∣∣∣
h−1∑
k=0

Jk1

∣∣∣∣∣
p

+

∣∣∣∣∣
h−1∑
k=0

Jk3

∣∣∣∣∣
p


≲ E

 sup
h=1,...,[T/∆]

h∆≤τϵ

∣∣∣∣∣
h−1∑
k=0

∫ (k+1)∆

k∆

(∣∣X̄s − X̄k∆

∣∣+ ωF,σ(s− k∆)
)
ds

∣∣∣∣∣
p


≲
[T/∆]−1∑
k=0

∫ (k+1)∆

k∆

E
[∣∣X̄s∧τϵ − X̄k∆∧τϵ

∣∣p + ωF,σ(∆)p
]
ds

≲ ∆p/2 + ωF,σ(∆)p.
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For the last sum
∑
Jk5 , by Burkholder-Davis-Gundy’s inequality and Lemma 2.4,

E

 sup
h=1,...,[T/∆]

h∆≤τϵ

∣∣∣∣∣
h−1∑
k=0

Jk5

∣∣∣∣∣
p
 ≲ E

 sup
h=1,...,[T/∆]

h∆≤τϵ

∣∣∣∣∣
h−1∑
k=0

∫ (k+1)∆

k∆

(
σ(s, X̄s)− σ(k∆, X̄k∆)

)
dWs

∣∣∣∣∣
p


≲ E


∣∣∣∣∣∣
[T/∆]−1∑
k=0

∫ (k+1)∆∧τϵ

k∆∧τϵ

∣∣σ(s, X̄s)− σ(k∆, X̄k∆)
∣∣2 ds

∣∣∣∣∣∣
p/2


≲ E

∣∣∣∣∣∣
[T/∆]−1∑
k=0

∫ (k+1)∆∧τϵ

k∆∧τϵ

∣∣σ(s, X̄s)− σ(k∆, X̄k∆)
∣∣2 ds

∣∣∣∣∣∣
p 1/2

≲

[T/∆]−1∑
k=0

∫ (k+1)∆

k∆

E
[∣∣X̄s∧τϵ − X̄k∆∧τϵ

∣∣2p + (s− k∆)2p
]
ds

1/2

≲ ∆p/2.

Remark 2.3. The estimates given in Lemma 2.7 motivate the following choice of how
∆ = ∆ϵ should behave when ϵ goes to zero:

∆2

ϵ3/2
log3/2(1 + ϵ−1) → 0,

∆

ϵ
log(1 + ϵ−1)ωσ(∆) → 0,

ϵ

∆
log1/2(1 + ϵ−1) → 0.

Such a choice is always possible. Indeed, one can take ωσ(t) = Ctγ for some positive

constant C and γ ∈ (0, 2/3), and therefore the choice ∆ϵ = ϵ
1

1+γ/2 satisfies all the require-
ments above. We will maintain this choice of ∆ in the remainder of the chapter.

We now discuss the second sum on the right-hand side of (2.7), that is

h−1∑
k=0

(∫ (k+1)∆

k∆

(∫ s

k∆

Dσ(k∆, X̄k∆)σ(k∆, X̄k∆)dW
ϵ
r

)
dW ϵ

s −
∫ (k+1)∆

k∆

C(k∆, X̄k∆)ds

)
,

the i-th component of which, when plugging in the expression for the Stratonovich cor-
rector C, reads

h−1∑
k=0

∑
ℓ,m∈N

∑
j=1,...,d

Djσ
i,m(k∆, X̄k∆)σ

j,ℓ(k∆, X̄k∆)
(
ckℓ,m(∆, ϵ)− δℓ,m

qm
2
∆
)
,

where ckℓ,m(∆, ϵ) is given by

ckℓ,m(∆, ϵ) =

∫ (k+1)∆

k∆

(∫ s

k∆

dW ϵ,ℓ
r

)
dW ϵ,m

s .
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Taking the conditional expectation of ckℓ,m(∆, ϵ) with respect to Fk∆ yields

E
[
ckℓ,m(∆, ϵ) | Fk∆

]
=

∫ (k+1)∆

k∆

(∫ s

k∆

E
[
Y ϵ,ℓ
r Y ϵ,m

s | Fk∆

]
dr

)
ds

=Y ϵ,ℓ
k∆Y

ϵ,m
k∆

∫ (k+1)∆

k∆

(∫ s

k∆

e−ϵ
−1(r+s−2k∆)dr

)
ds

+ δℓ,m

∫ (k+1)∆

k∆

(∫ s

k∆

qℓ
ϵ−1

2

(
e−ϵ

−1(s−r) − e−ϵ
−1(r+s−2k∆)

)
dr

)
ds,

where the following representation of Y ϵ,

Y ϵ,m
s = Y ϵ,m

k∆ e−ϵ
−1(s−k∆) +

∫ s

k∆

e−ϵ
−1(s−r)ϵ−1dWm

r ,

has been used, and this conditional expectation can easily be calculated as

E
[
ckℓ,m(∆, ϵ) | Fk∆

]
=
ϵ2

2
Y ϵ,ℓ
k∆Y

ϵ,m
k∆

(
e−ϵ

−1∆ − 1
)2

+ δℓ,m
qm
2

(
∆+ ϵ

(
−3

2
+ 2e−ϵ

−1∆ − 1

2
e−2ϵ−1∆

))
. (2.8)

Now, since
∑

j=1,...,dDjσ
i,m(k∆, X̄τϵ∧(k∆))σ

j,ℓ(k∆, X̄τϵ∧(k∆)) is Fk∆ measurable, for every

ℓ,m ∈ N, i = 1, . . . , d, each process M i
h, h = 1, . . . , [T/∆], given by

M i
h =

h−1∑
k=0

∑
ℓ,m∈N

∑
j=1,...,d

Djσ
i,m(k∆, X̄τϵ∧(k∆))σ

j,ℓ(k∆, X̄τϵ∧(k∆))

×
(
ckℓ,m(∆, ϵ)− E

[
ckℓ,m(∆, ϵ) | Fk∆

])
,

is a discrete martingale with respect to the filtration (Fh∆)
[T/∆]
h=1 .

Lemma 2.8. For each i = 1, . . . , d,

E

 sup
h=1,...,[T/∆]

h∆≤τϵ

∣∣M i
h

∣∣2
 ≲

∆2

ϵ
log(1 + ϵ−1) + ∆ log2(1 + ϵ−1).

Proof. Combining Doob’s maximal inequality and martingale property gives

E

 sup
h=1,...,[T/∆]

h∆≤τϵ

∣∣M i
h

∣∣2
 ≲ E

[∣∣M i
[T/∆]

∣∣2]

≲
[T/∆]−1∑
k=0

E

∣∣∣∣∣ ∑
ℓ,m∈N

ckℓ,m(∆, ϵ)− E
[
cℓ,m(∆, ϵ) | Fk∆

]∣∣∣∣∣
2
 ,

where

E

∣∣∣∣∣ ∑
ℓ,m∈N

ckℓ,m(∆, ϵ)− E
[
ckℓ,m(∆, ϵ) | Fk∆

]∣∣∣∣∣
2
 ≲ E

∣∣∣∣∣ ∑
ℓ,m∈N

ckℓ,m(∆, ϵ)

∣∣∣∣∣
2
 ,
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2.1. Strong convergence

for each k = 0, . . . , [T/∆] − 1, because the conditional expectation is an L2-projection.
Thus, by independence of Y ϵ,ℓ and Y ϵ,m, for every ℓ ̸= m, we can estimate

E

 sup
h=1,...,T/∆
h∆≤τϵ

∣∣M i
h

∣∣2
 ≲

T/∆−1∑
k=0

∑
ℓ,m∈N

E

∣∣∣∣∣
∫ (k+1)∆

k∆

(
W ϵ,ℓ
s −W ϵ,ℓ

k∆

)
dW ϵ,m

s

∣∣∣∣∣
2


≲
T/∆−1∑
k=0

∑
ℓ,m∈N

∆

∫ (k+1)∆

k∆

E
[∣∣∣(W ϵ,ℓ

s −W ϵ,ℓ
k∆

)
Y ϵ,m
s

∣∣∣2] ds
≲

T/∆−1∑
k=0

∑
ℓ,m∈N

∆

∫ (k+1)∆

k∆

E
[∣∣∣W ϵ,ℓ

s −W ϵ,ℓ
k∆

∣∣∣2q]1/q E [|Y ϵ,m
s |2q

′
]1/q′

ds

≲
T/∆−1∑
k=0

∑
ℓ,m∈N

qℓqm∆ϵ
−1 log(1 + ϵ−1)

∫ (k+1)∆

k∆

(
∆+ ϵ log(1 + ϵ−1)

)
ds

≲
∆2

ϵ
log(1 + ϵ−1) + ∆ log2(1 + ϵ−1).

To eventually cover the remainder of the second sum on the right-hand side of (2.7), after
subtracting the martingale term Mh, we introduce

N i
h =

h−1∑
k=0

∑
ℓ,m∈N

∑
j=1,...,d

Djσ
i,m(k∆, X̄k∆)σ

j,ℓ(k∆, X̄k∆)

×
(
E
[
ckℓ,m(∆, ϵ) | Fk∆

]
− δℓ,m

qm
2
∆
)
.

Lemma 2.9. For each i = 1, . . . , d,

E

 sup
h=1,...,[T/∆]

h∆≤τϵ

∣∣N i
h

∣∣2
 ≲

( ϵ
∆

)2
log2(1 + ϵ−1).

Proof. The proof is an easy consequence of (2.8). Indeed,

E

 sup
h=1,...,[T/∆]

h∆≤τϵ

∣∣N i
h

∣∣2
 ≲ E

 sup
h=1,...,[T/∆]

h∆≤τϵ

∣∣∣∣∣
h−1∑
k=0

∑
ℓ,m∈N

∣∣∣E [ckℓ,m(∆, ϵ) | Fk∆

]
− δℓ,m

qm
2
∆
∣∣∣∣∣∣∣∣
2


≲ ϵ2 log2(1 + ϵ−1)∆−1

[T/∆]−1∑
k=0

∑
ℓ,m∈N

qℓqm ≲
( ϵ
∆

)2
log2(1 + ϵ−1).

All in all, Lemma 2.8 and Lemma 2.9 together imply

E

 sup
h=1,...,[T/∆]

h∆≤τϵ

∣∣∣∣∣
h−1∑
k=0

(
Ik6 − Jk4

)∣∣∣∣∣
2
 = E

 sup
h=1,...,[T/∆]

h∆≤τϵ

|(Mh +Nh)|2


≲

∆2

ϵ
log(1 + ϵ−1) + ∆ log2(1 + ϵ−1) +

( ϵ
∆

)2
log2(1 + ϵ−1),
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showing that the second sum on the right-hand side of (2.7) can be neglected, like the
fifth one, when ϵ→ 0, and ∆ = ∆ϵ behaves as described in Remark 2.3.
Recall that we wanted to control the remaining sums in terms of the difference Xϵ − X̄
itself, which is obvious for the first and third sum on the right-hand side of (2.7). However,
in case of the fourth sum, applying almost the same martingale argument used in case of
the second sum, each term Ik5 can be formally replaced by∫ (k+1)∆

k∆

(
C(k∆, Xϵ

k∆)− C(k∆, X̄k∆)
)
ds,

subject to a sufficiently small ϵ-correction, eventually leading to the wanted contraction
argument in this case, too.
On the whole, we have justified that, if ∆ = ∆ϵ behaves as described in Remark 2.3, then
for any h = 1, . . . , [T/∆]:

E

 sup
k′=0,...,h
k′∆≤τϵ

∣∣Xϵ
k′∆ − X̄k′∆

∣∣2
 ≲ r(∆, ϵ) +

h−1∑
k=0

∆E

 sup
k′=0,...,k
k′∆≤τϵ

∣∣Xϵ
k′∆ − X̄k′∆

∣∣2
 ,

where r(∆, ϵ) → 0, ϵ→ 0, finally proving (2.4), by Gronwall’s lemma.
The proof of the strong convergence in Theorem 1.1 is thus complete.

2.2 Weak convergence

In this section we prove the first part of Theorem 1.1 on weak convergence: Xϵ → X̄ in
law. The idea of the proof is similar to the one outlined in the previous section for strong
convergence, except that now β ̸= 0 is possible: it is the presence of this bilinear term
which prevents us from proving convergence in probability—we only succeed in showing
convergence in law, see also Remark 2.5. First, we prove weak convergence of the bilinear
term alone; second, we prove convergence in law of Xϵ, ϵ→ 0.

2.2.1 Weak convergence of the bilinear term

For any ϵ > 0, define the process U ϵ by

U ϵ
t =

∫ t

0

ϵ1/2β(Y ϵ
s , Y

ϵ
s )ds, t ∈ [0, T ], (2.9)

where Y ϵ is the stationary Ornstein-Uhlenbeck process introduced in Remark 2.1. Since
by assumption β : H∞×H∞ → Hd is a continuous bilinear map and

∑
ℓ∈N⟨β(fℓ, fℓ), ei⟩Hd

qℓ =
0, for all i = 1, . . . , d, the process U ϵ has zero-mean and its second moments,

E

ϵ∫ t

0

⟨β(Y ϵ
s , Y

ϵ
s ), ei⟩︸ ︷︷ ︸

βi(Y ϵ
s ,Y

ϵ
s )

ds

∫ t

0

⟨β(Y ϵ
r , Y

ϵ
r ), ej⟩︸ ︷︷ ︸

βj(Y ϵ
r ,Y

ϵ
r )

dr

 ,
can be calculated to be

1

2

∑
ℓ,m∈N

⟨β(fℓ, fm), ei⟩︸ ︷︷ ︸
βi
ℓ,m

⟨β(fℓ, fm), ej⟩︸ ︷︷ ︸
βj
ℓ,m

qℓqm

(
t+

ϵ

2

(
e−2ϵ−1t − 1

))
,
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2.2. Weak convergence

for i, j = 1, . . . , d, and ℓ,m ∈ N.
Next, since dY ϵ,ℓ

t = −ϵ−1Y ϵ,ℓ
t dt+ ϵ−1d⟨Wt, fℓ⟩, Itô’s formula implies

Y ϵ,ℓ
t Y ϵ,m

t = Y ϵ,ℓ
0 Y ϵ,m

0 − 2ϵ−1

∫ t

0

Y ϵ,ℓ
s Y ϵ,m

s ds+ ϵ−1

∫ t

0

Y ϵ,ℓ
s d⟨Ws, fm⟩

+ ϵ−1

∫ t

0

Y ϵ,m
s d⟨Ws, fℓ⟩+

tϵ−2

2
qℓδℓ,m,

for any ℓ,m ∈ N, and hence

U ϵ,i
t = ϵ1/2

∫ t

0

∑
ℓ,m∈N

βiℓ,mY
ϵ,ℓ
s Y ϵ,m

s ds

= ϵ1/2
∫ t

0

∑
ℓ,m∈N

βiℓ,mY
ϵ,ℓ
s d⟨Ws, fm⟩

− ϵ3/2

2

∑
ℓ,m∈N

βiℓ,m

(
Y ϵ,ℓ
t Y ϵ,m

t − Y ϵ,ℓ
0 Y ϵ,m

0

)
+
ϵ−1/2

4
t
∑
ℓ∈N

βiℓ,ℓqℓ

=M ϵ,i
t − 1

2
V ϵ,i
t +

ϵ−1/2

4
t
∑
ℓ∈N

βiℓ,ℓqℓ,

where M ϵ is a d-dimensional continuous local martingale, while the process V ϵ satisfies

E
[
sup
t≤T

|V ϵ
t |
p

]
= E

[
sup
t≤T

∣∣ϵ3/2 (β (Y ϵ
t , Y

ϵ
t )− β (Y ϵ

0 , Y
ϵ
0 ))
∣∣p]

≲ ϵp/2 logp(1 + ϵ−1), ∀ p > 1, (2.10)

by combining bilinearity of β and Lemma 2.1.

Remark 2.4. Using
∑

ℓ,m∈N β
i
ℓ,mqℓqm < ∞ for every i = 1, . . . , d, it is possible to prove

that M ϵ is a square integrable martingale for every ϵ > 0. However, we will not need this
in the following.

The above representation of U ϵ, though very simple, has been used in a variety of cases
in a fruitful way, see for instance [Oll94] or [IPP08]. Observe that, by assumption, the
Itô-correction actually cancels out, being otherwise a contribution of order ϵ−1/2. The
process U ϵ, nevertheless, has got an interesting limit in law:

Proposition 2.10. The couple of processes (U ϵ,W ) converges in law, ϵ → 0, to a
pair of processes (η, ω), where η is a d-dimensional Wiener process with covariance
(
∑

ℓ,m∈N b
i
ℓ,mb

j
ℓ,m)

d
i,j=1, and ω is a Q-Wiener process, like W . Furthermore, η and ω are

independent.

Proof. First, by (2.10), it is sufficient to prove the proposition for (M ϵ,W ) instead of
(U ϵ,W ). Since all components of the processes M ϵ, ϵ > 0, and of W are continuous local
martingales, the distributional properties of the limit (η, ω) would follow from [EK86,
Chapter VII, Theorem 1.4] (readily adapted to our infinite dimensional case, thanks to
the trace-class assumption on Q), if we can prove

E

([M ϵ,i,M ϵ,j
]
t
− t

∑
ℓ,m∈N

biℓ,mb
j
ℓ,m

)2
→ 0, ϵ→ 0, (2.11)
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Chapter 2. Stochastic model reduction

for each t ∈ [0, T ], and i, j = 1, . . . , d, as well as

E
[
(
[
M ϵ,i, ⟨W, fm⟩

]
t
)2
]
→ 0, ϵ→ 0,

for each t ∈ [0, T ], i = 1, . . . , d, and m ∈ N. So, let us focus on these two convergences.
First, fix t ∈ [0, T ], as well as i, j = 1, . . . , d. Then, the quadratic covariation [M ϵ,i,M ϵ,j]t
is given by

[
M ϵ,i,M ϵ,j

]
t
= ϵ

∫ t

0

∑
m∈N

∑
ℓ,ℓ′∈N

βiℓ,mβ
j
ℓ′,mqmY

ϵ,ℓ
s Y ϵ,ℓ′

s ds,

so that

E

([M ϵ,i,M ϵ,j
]
t
− t

∑
ℓ,m∈N

biℓ,mb
j
ℓ,m

)2


= ϵ2
∫∫ t

0

∑
m,m∈N

∑
ℓ,ℓ′∈N
ℓ,ℓ′∈N

βiℓ,mβ
j
ℓ′,mβ

i
ℓ,mβ

j
ℓ′,m

qmqmE
[
Y ϵ,ℓ
s Y ϵ,ℓ′

s Y ϵ,ℓ
r Y ϵ,ℓ′

r

]
dsdr

− 2ϵ

∫ t

0

∑
m∈N

∑
ℓ,ℓ′∈N

βiℓ,mβ
j
ℓ′,mqmE

[
Y ϵ,ℓ
s Y ϵ,ℓ′

s

]
ds

(
t
∑
ℓ,m∈N

biℓ,mb
j
ℓ,m

)
+

(
t
∑
ℓ,m∈N

biℓ,mb
j
ℓ,m

)2

.

Now, using the fact that one can easily calculate E
[
Y ϵ,ℓ
s Y ϵ,ℓ′

s

]
= ϵ−1

2
qℓδℓ,ℓ′ , from Isserlis-

Wick’s theorem (see for instance [Jan97, Theorem 1.28]) it follows that

E
[
Y ϵ,ℓ
s Y ϵ,ℓ′

s Y ϵ,ℓ
r Y ϵ,ℓ′

r

]
=
ϵ−2

4

(
qℓqℓδℓ,ℓ′δℓ,ℓ′ + qℓqℓ′e

−2ϵ−1|s−r| (δℓ,ℓδℓ′,ℓ′ + δℓ,ℓ′δℓ′,ℓ
))
,

which yields

E

([M ϵ,i,M ϵ,j
]
t
− t

∑
ℓ,m∈N

biℓ,mb
j
ℓ,m

)2
 =

(
t
∑
ℓ,m∈N

biℓ,mb
j
ℓ,m − t

∑
ℓ,m∈N

biℓ,mb
j
ℓ,m

)2

+O(ϵ) ≲ ϵ,

proving (2.11). Moving to the second desired convergence, fix t ∈ [0, T ], as well as
i = 1, . . . , d, m ∈ N. Then,

[
M ϵ,i, ⟨W, fm⟩

]
t
=

∫ t

0

βi(ϵ1/2Y ϵ
s , Qfm) ds,

where, using Lemma 2.1,

E

[∣∣∣∣∫ t

0

βi(ϵ1/2Y ϵ
s , Qfm) ds

∣∣∣∣2
]
= E

[∣∣∣∣βi(ϵ1/2 ∫ t

0

Y ϵ
s ds ,Qfm)

∣∣∣∣2
]

≲ E
[
|

ϵ1/2Wt−ϵ3/2(Y ϵ
t −Y ϵ

0 )︷ ︸︸ ︷
ϵ1/2
∫ t

0

Y ϵ
s ds |2 q2m

]
ϵ→0−→ 0,

finishing the proof of the proposition.

34



2.2. Weak convergence

Remark 2.5. i) Of course, a d-dimensional Wiener process with covariance (
∑

ℓ,m∈N b
i
ℓ,mb

j
ℓ,m)

d
i,j=1

can always be represented by
∑

ℓ,m∈N bℓ,mW̄
ℓ,m, where {W̄ ℓ,m}ℓ,m∈N is a family of inde-

pendent one-dimensional standard Wiener processes.
ii) We would like to stress that we do not expect a much stronger convergence of U ϵ,
when ϵ → 0, as the one stated in the above proposition. Indeed, it turns out to be that
the sequence {M ϵ}ϵ>0 is not even a Cauchy sequence in L2(Ω;Rd). To see this, for fixed
0 < ϵ < ϵ, and some 1 ≤ i ≤ d, consider

E
[
sup
t≤T

∣∣∣M ϵ,i
t −M ϵ,i

t

∣∣∣2] = E

sup
t≤T

∣∣∣∣∣
∫ t

0

∑
ℓ,m∈N

βiℓ,m
(
ϵ1/2Y ϵ,ℓ

s − ϵ1/2Y ϵ,ℓ
s

)
d⟨Ws, fm⟩

∣∣∣∣∣
2
 .

But, by Burkholder-Davis-Gundy’s inequality, the above expectation can be bound from
below by

E

∫ T

0

∑
m∈N

(∑
ℓ∈N

βiℓ,m
(
ϵ1/2Y ϵ,ℓ

s − ϵ1/2Y ϵ,ℓ
s

))2

qmds

 = T
∑
ℓ,m∈N

(βiℓ,m)
2qℓqm

(
1− 2ϵ−1/2ϵ−1/2

ϵ−1 + ϵ−1

)
,

where

lim
ϵ→0

(
1− 2ϵ−1/2ϵ−1/2

ϵ−1 + ϵ−1

)
= 1, for every fixed ϵ > 0,

so that {M ϵ,i}ϵ>0 cannot be Cauchy in L2(Ω).

2.2.2 Weak convergence of solutions

We now prove Xϵ → X̄, in law, when ϵ→ 0. First, for each ϵ > 0, let X̂ϵ be the solution
of

X̂ϵ
t = x0 +

∫ t

0

(
F (s, X̂ϵ

s) + C(s, X̂ϵ
s)
)
ds+

∫ t

0

σ(s, X̂ϵ
s)dWs + U ϵ

t , t ∈ [0, T ], (2.12)

where U ϵ is given by (2.9), and let τ ϵR = inf{t ≥ 0 : |Xϵ
t | ≥ R} ∧ inf{t ≥ 0 : |X̂ϵ

t | ≥ R}.
Notice that, if both equations (1.4) and (1.5) admit global solutions on [0, T ], then the
coefficients F,C, σ, β must have properties such that the above equation admits global
solutions on [0, T ], too.
Next, taking into account E

[∣∣sups∈[0,T ] ϵ1/2β(Y ϵ
s , Y

ϵ
s )
∣∣p] ≲ ϵ−p/2 logp(1 + ϵ−1) we can esti-

mate increments of U ϵ with

E

 sup
k=0,1,...,[T/∆]

t≤τ, t+k∆≤T∧τϵR

|U ϵ
t+k∆ − U ϵ

k∆|p

 ≲
( τ

ϵ1/2

)p
logp(1 + ϵ−1). (2.13)

As a consequence, it can easily be verified that the analogous of Lemma 2.2 and Lemma 2.3
are still valid for the process Xϵ, despite β ̸= 0, on the one hand, and that the following
versions Lemma 2.4 and Corollary 2.5:

E

[
sup

t≤τ, t+k∆≤T∧τϵR
|X̂ϵ

t+k∆ − X̂ϵ
k∆|p

]
≲ τ

p
2 +

( τ

ϵ1/2

)p
logp(1 + ϵ−1),
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where p > 1, τ ∈ (0, 1), k ∈ {0, 1, . . . , [T/∆]}; and

E

 sup
k=0,1,...,[T/∆]

t≤∆, t+k∆≤T∧τϵR

|X̂ϵ
t+k∆ − X̂ϵ

k∆|p

 ≲ ∆
p
2
−1 +

∆p−1

ϵp/2
logp(1 + ϵ−1),

for p > 1; would hold true when replacing X̄ by X̂ϵ, on the other. We point out that the
proof of this claim differs from those in Section 5.3 only for the term U ϵ, which however
can be controlled by (2.13).
Therefore, when expanding Xϵ and X̂ϵ as in (2.5) and (2.6), but including the β-term,
and then arguing as in the proof of strong convergence in the previous section, it would
immediately follow that Xϵ

·∧τϵR
− X̂ϵ

·∧τϵR
→ 0, in probability, ϵ → 0, for any R > 0, once

the following lemma is also available.

Lemma 2.11. Assume that ∆ = ∆ϵ behaves as described in Remark 2.3. Then,

E

 sup
h=1,...,[T/∆]
h∆≤τϵR

∣∣∣∣∣
h−1∑
k=0

∫ (k+1)∆

k∆

(∫ s

k∆

Dσ(r,Xϵ
r)ϵ

1/2β(Y ϵ
r , Y

ϵ
r )dr

)
dW ϵ

s

∣∣∣∣∣
2
→ 0, ϵ→ 0.

Proof. To start with, write∫ (k+1)∆

k∆

(∫ s

k∆

Dσ(r,Xϵ
r)ϵ

1/2β(Y ϵ
r , Y

ϵ
r )dr

)
dW ϵ

s

=

∫ (k+1)∆

k∆

(∫ s

k∆

(
Dσ(r,Xϵ

r)ϵ
1/2β(Y ϵ

r , Y
ϵ
r )−Dσ(k∆, Xϵ

k∆)ϵ
1/2β(Y ϵ

r , Y
ϵ
r )
)
dr

)
dW ϵ

s

+

∫ (k+1)∆

k∆

(∫ s

k∆

Dσ(k∆, Xϵ
k∆)ϵ

1/2β(Y ϵ
r , Y

ϵ
r )dr

)
dW ϵ

s ,

which creates two summands, for any fixed 0 ≤ k ≤ [T/∆]− 1. We estimate the impact
of each summand separately.
First, using |Dσ(r,Xϵ

r)−Dσ(k∆, Xϵ
k∆)| ≲ |Xϵ

r −Xϵ
k∆|+ ωσ(∆), we obtain that

E

 sup
h=1,...,[T/∆]
h∆≤τϵR

∣∣∣∣∣
h−1∑
k=0

∫ (k+1)∆

k∆

(∫ s

k∆

(
Dσ(r,Xϵ

r)ϵ
1/2β(Y ϵ

r , Y
ϵ
r )−Dσ(k∆, Xϵ

k∆)ϵ
1/2β(Y ϵ

r , Y
ϵ
r )
)
dr

)
dW ϵ

s

∣∣∣∣∣
2


≲ ϵ−2 log2(1 + ϵ−1)E

 sup
h=1,...,[T/∆]
h∆≤τϵR

∣∣∣∣∣
h−1∑
k=0

∫ (k+1)∆

k∆

(∫ s

k∆

(|Xϵ
r −Xϵ

k∆|+ ωσ(∆)) dr

)
ds

∣∣∣∣∣
2


≲ ϵ−2 log2(1 + ϵ−1)E

⌈T∧τϵR⌉/∆−1∑
k=0

∫ (k+1)∆

k∆

∣∣∣∣∫ s

k∆

(|Xϵ
r −Xϵ

k∆|+ ωσ(∆)) dr

∣∣∣∣2 ds


≲ ϵ−2 log2(1 + ϵ−1)

[T/∆]−1∑
k=0

∫ (k+1)∆

k∆

(s− k∆)

∫ s

k∆

(
E
[
|Xϵ

r∧τϵR
−Xϵ

k∆∧τϵR
|2
]
+ ωσ(∆)2

)
drds

≲
∆4

ϵ3
log3(1 + ϵ−1) +

(
∆

ϵ

)2

log2(1 + ϵ−1)ωσ(∆)2.
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Second, we approach

h−1∑
k=0

∫ (k+1)∆

k∆

(∫ s

k∆

Dσ(k∆, Xϵ
k∆)ϵ

1/2β(Y ϵ
r , Y

ϵ
r )dr

)
dW ϵ

s (2.14)

following the method used when discussing the second sum on the right-hand side of (2.7)
in the proof of strong convergence, but now for triple moments of Y ϵ. Indeed, define

ckℓ,m,n(∆, ϵ) =

∫ (k+1)∆

k∆

(∫ s

k∆

Y ϵ,ℓ
r Y ϵ,m

r dr

)
Y ϵ,n
s ds,

and take the conditional expectation with respect to Fk∆, that is

E
[
ckℓ,m,n(∆, ϵ) | Fk∆

]
=

∫ (k+1)∆

k∆

(∫ s

k∆

E
[
Y ϵ,ℓ
r Y ϵ,m

r Y ϵ,n
s | Fk∆

]
dr

)
ds.

Since

E
[
Y ϵ,ℓ
r Y ϵ,m

r Y ϵ,n
s | Fk∆

]
=Y ϵ,ℓ

k∆Y
ϵ,m
k∆ Y ϵ,n

k∆ e
−ϵ−1(s+2r−3k∆)

+
(
Y ϵ,ℓ
k∆δm,nqn + Y ϵ,m

k∆ δℓ,nqn + Y ϵ,n
k∆ δℓ,mqℓ

) ϵ−1

2

×
(
e−ϵ

−1(s−k∆) − e−ϵ
−1(s+2r−3k∆)

)
,

we have that

E
[
ckℓ,m,n(∆, ϵ) | Fk∆

]
=Y ϵ,ℓ

k∆Y
ϵ,m
k∆ Y ϵ,n

k∆

ϵ2

2

(
1− e−ϵ

−1∆ − 1

3
+

1

3
e−3ϵ−1∆

)
+
(
Y ϵ,ℓ
k∆δm,nqn + Y ϵ,m

k∆ δℓ,nqn + Y ϵ,n
k∆ δℓ,mqℓ

)
× ϵ

2

(
∆

ϵ
e−ϵ

−1∆ +
1

2
− 1

2
e−ϵ

−1∆ +
1

6
− 1

6
e−3ϵ−1∆

)
.

Next, for each i = 1, . . . , d, the process M i
h, h = 1, . . . , [T/∆], given by

M i
h =

h−1∑
k=0

∑
ℓ,m,n∈N

∑
j=1,...,d

Djσ
i,n(k∆, Xϵ

τϵR∧k∆)ϵ
1/2βjℓ,m

(
ckℓ,m,n(∆, ϵ)− E

[
ckℓ,m,n(∆, ϵ) | Fk∆

])
,

is a martingale with respect to the filtration (Fh∆)
[T/∆]
h=1 , and arguing as in the proof of

Lemma 2.8 yields

E

 sup
h=1,...,[T/∆]
h∆≤τϵR

∣∣M i
h

∣∣2
 ≲

∆3

ϵ2
log3(1 + ϵ−1), i = 1, . . . , d.

So, it remains to prove that the remainder, after subtracting the martingale term Mh

from (2.14), also vanishes, when ϵ → 0. For i = 1, . . . , d, the ith coordinate of this
remainder reads

N i
h =

h−1∑
k=0

∑
ℓ,m,n∈N

∑
j=1,...,d

Djσ
i,n(k∆, Xϵ

k∆)ϵ
1/2Bj

ℓ,mE
[
ckℓ,m,n(∆, ϵ) | Fk∆

]
,
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and we can easily calculate the below bound,

E

 sup
h=1,...,T/∆
h∆≤τϵR

∣∣N i
h

∣∣2
 ≲ ∆−1

T/∆−1∑
k=0

E
[∣∣ϵE [ckℓ,m,n(∆, ϵ) | Fk∆

]∣∣2] ≲ ( ϵ
∆

)2
log3(1 + ϵ−1),

finishing the proof of the lemma.

Corollary 2.12. For any R > 0, if ∆ = ∆ϵ behaves as described in Remark 2.3,

E

[
sup

t≤T∧τϵR
|Xϵ

t − X̂ϵ
t |2
]
→ 0, ϵ→ 0,

and hence Xϵ
·∧τϵR

− X̂ϵ
·∧τϵR

→ 0, in probability, ϵ→ 0, in particular.

The above corollary suggests that it would be sufficient to show that X̂ϵ
·∧τϵR

→ X̄·∧τϵR ,
in law, when ϵ → 0, subject to some procedure allowing to let R go to infinity, after-
wards. So, we at first prove the weak convergence for fixed R, and then discuss the
limit-procedure for R → ∞.
Modify the coefficients F, σ outside the set {(t, x) : |x| < R} in such a way that the new
coefficients FR, σR, but also DσR, are globally bounded, and that both functions FR(t, ·)
and DσR(t, ·) are globally Lipschitz, uniformly in t ∈ [0, T ]. Of course, X̂ϵ

·∧τϵR
coincides

with X̂ϵ,R
·∧τϵR

, where X̂ϵ,R denotes the solution to the equation obtained when replacing the

coefficients of (2.12) by FR, σR, and the Stratonovich correction CR associated with σR.
Also, let X̄R denote the solution to the equation obtained when replacing the coefficients
F, σ, C by FR, σR, CR.

Proposition 2.13. Fix R > 0. Then, X̂ϵ,R converges to X̄R, in law, when ϵ→ 0.

Proof. Since

X̂ϵ,R
t − U ϵ

t = x0 +

∫ t

0

(
FR(s, X̂

ϵ,R
s ) + CR(s, X̂

ϵ,R
s )
)
ds+

∫ t

0

σR(s, X̂
ϵ,R
s )dWs,

by boundedness of the coefficients on the above right-hand side, we obtain that

E
[
sup
t≤T

|X̂ϵ,R
t − U ϵ

t |
]
≲ |x0|+ T + E

[
sup
t≤T

|
∫ t

0

σR(s, X̂
ϵ,R
s )dWs|

]
,

where Burkholder-Davis-Gundy’s inequality gives E
[
supt≤T |

∫ t
0
σR(s, X̂

ϵ,R
s )dWs|

]
≲ T 1/2.

Similarly, E
[
|(X̂ϵ,R

t2 − U ϵ
t2
)− (X̂ϵ,R

t1 − U ϵ
t1
)|p
]
≲ |t2 − t1|p/2, for any |t2 − t1| < 1, and any

p > 1. Thus, by Kolmogorov continuity theorem, for every α ∈ (0, 1), one can find
∆ ∈ (0, 1) such that

P

{
sup

t1,t2∈[0,T ], |t2−t1|≤∆

|(X̂ϵ,R
t2 − U ϵ

t2
)− (X̂ϵ,R

t1 − U ϵ
t1
)|

|t2 − t1|γ
≤ K

}
≥ 1− α, ∀ ϵ > 0,

where K depends on γ, but not on ϵ, and γ ∈ (0, 1/2) can be freely chosen.
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We therefore have equi-boundedness and equi-continuity of {X̂ϵ,R−U ϵ}ϵ>0 with arbitrarily
high probability, and hence the family {X̂ϵ,R−U ϵ}ϵ>0 is tight with respect to the uniform
topology in C([0, T ],Rd), first applying Arzelà-Ascoli, followed by Prokhorov’s theorem.
Moreover, {U ϵ}ϵ>0 is trivially tight by Proposition 2.10, so that adding X̂ϵ,R−U ϵ and U ϵ

would make {X̂ϵ,R}ϵ>0 tight, too. All in all, the family of triples {( X̂ϵ,R, U ϵ,W )}ϵ>0 is
tight.
Next, for ϵ > 0, let PR,ϵ be the pushforward measure P ◦ (X̂ϵ,R, U ϵ,W )−1 on the space

Ω̃ = C([0, T ], Hd)× C([0, T ], Hd)× C([0, T ], H∞)

equipped with the Borel-σ-algebra B, and let (ξ, η, ω) denote the coordinate process on
Ω̃. By tightness of {(X̂ϵ,R, U ϵ,W )}ϵ>0, there exists a subsequence (ϵn)n∈N such that PR,ϵn
weakly converges to a probability measure PR on (Ω̃,B), when n
to∞.
Let F̃ be the PR- completion of B, and let (F̃t)t∈[0,T ] be the smallest filtration the process
(ξ, η, ω) is adapted to, on the one hand, and which satisfies the usual conditions with
respect to PR, on the other. Also, introduce F̃n, (F̃n

t )t∈[0,T ] in a similar way with respect
to PR,ϵn , n ∈ N.
Now, it easily follows from Proposition 2.10 that, on (Ω̃, F̃ ,PR), the following distribu-
tional properties must hold for the pair of processes (η, ω): η is a d-dimensional Wiener
process with covariance (

∑
ℓ,m∈N b

i
ℓ,mb

j
ℓ,m)

d
i,j=1, ω is a Q-Wiener process, η and ω are

independent.
Introduce

MR
t = ξt − x0 −

∫ t

0

(FR(s, ξs) + CR(s, ξs)) ds− ηt, t ∈ [0, T ], (2.15)

and observe that each component of both processes MR and ω, but also

MR,i
t MR,j

t −
∫ t

0

∑
m∈N

σi,mR (s, ξs)σ
j,m
R (s, ξs)qmds, t ∈ [0, T ], i, j = 1, . . . , d,

MR,i
t ωmt −

∫ t

0

σi,mR (s, ξs)qmds, t ∈ [0, T ], i = 1, . . . , d, m ∈ N,

ωℓtω
m
t − tδℓ,mqm, t ∈ [0, T ], ℓ,m ∈ N,

are continuous local martingales with respect to (F̃n
t )t∈[0,T ] on (Ω̃, F̃n,PR,ϵn), for any

n ∈ N, and hence they are continuous local martingales with respect to (F̃t)t∈[0,T ] on

(Ω̃, F̃ ,PR), too, by [JS03, IX. Cor.1.19].
Therefore, applying [DPZ14, Theorem 8.2] to the pair of process (MR, ω) yields

MR
t =

∫ t

0

σR(s, ξs)dW
R
s , ωt =

∫ t

0

1 dWR
s = WR

t , t ∈ [0, T ],

on (Ω̃, F̃ ,PR), or an enlargement of this space we still denote by (Ω̃, F̃ ,PR), where WR

is another Q-Wiener process, which, by the above representation, even PR- almost surely
coincides with ω, so that

MR
t =

∫ t

0

σR(s, ξs)dωs, t ∈ [0, T ], PR- a.s.
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Chapter 2. Stochastic model reduction

Thus, equation (2.15) can be written as

ξt = x0 +

∫ t

0

(FR(s, ξs) + CR(s, ξs)) ds+

∫ t

0

σR(s, ξs)dωs + ηt, t ∈ [0, T ], PR- a.s.,

where ω is a Q-Wiener process, while η is a d-dimensional Wiener process, independent of
ω, and with covariance (

∑
ℓ,m∈N b

i
ℓ,mb

j
ℓ,m)

d
i,j=1. Observe that the process X̄R satisfies the

same type of equation, as
∑

ℓ,m∈N bℓ,mW̄
ℓ,m from (1.5) is a d-dimensional Wiener process

with covariance (
∑

ℓ,m∈N b
i
ℓ,mb

j
ℓ,m)

d
i,j=1, too. But, since this type of equation admits a

unique strong solution, the laws of ξ and X̄R must be the same, proving X̂ϵn,R → X̄R, in
law, when n
to∞. However, the same argument applies to any converging subsequence, and the limit
will always be the same, finally proving X̂ϵ,R → X̄R, in law, when ϵ→ 0.

It remains to discuss how R can be taken to infinity. Recall that X̄ is the solution of
(1.5), and it is not difficult to see that X̄R converges to X̄, in law, as R → ∞. Now take
a function φR ∈ C(C([0, T ],Rd), [0, 1]), such that φR(u) = 0, if supt∈[0,T ] |ut| ≤ R − 1,
and φR(u) = 1, if supt∈[0,T ] |ut| > R. Then,

P{τ ϵR < T} ≤ P

{
sup
t∈[0,T ]

|X̂ϵ,R
t | ≥ R

}
≤ E

[
φR(X̂

ϵ,R)
]
,

and because X̂ϵ,R → X̄R, in law, when ϵ→ 0, we deduce that

lim sup
ϵ→0

P{τ ϵR < T} ≤ E
[
φR(X̄

R)
]
≤ P

{
sup
t∈[0,T ]

|X̄R
t | ≥ R− 1

}
= P

{
sup
t∈[0,T ]

|X̄t| ≥ R− 1

}
,

where the last probability converges to zero, when R → ∞, because X̄ is a global solution.
As a consequence, for any ψ ∈ Cb(C([0, T ],Rd),R),∣∣E [ψ(Xϵ)]− E

[
ψ(X̄)

]∣∣ ≤ ∣∣∣E [ψ(Xϵ)]− E
[
ψ(Xϵ

·∧τϵR
)
]∣∣∣+ ∣∣∣E [ψ(Xϵ

·∧τϵR
)
]
− E

[
ψ(X̂ϵ,R

·∧τϵR
)
]∣∣∣

+
∣∣∣E [ψ(X̂ϵ,R

·∧τϵR
)
]
− E

[
ψ(X̂ϵ,R)

]∣∣∣+ ∣∣∣E [ψ(X̂ϵ,R)
]
− E

[
ψ(X̄R)

]∣∣∣
+
∣∣E [ψ(X̄R)

]
− E

[
ψ(X̄)

]∣∣ .
Here, when taking R large enough, we can make all the summands on the right-hand side,
except for the second and fourth, arbitrarily small, uniformly in ϵ, and, for fixed R, the
remaining terms go to zero, when ϵ→ 0. Thus, by a diagonal argument, the convergence
in law of Xϵ → X̄, ϵ→ 0, follows, completing the proof of the theorem.

2.3 Application to Climate Models

We now apply Theorem 1.1 to perform stochastic model reduction for a subclass of the
stochastic climate models given by (1.4) in the Introduction: we restrict ourselves to a
simpler version of the fast dynamics, omitting fast forcing ϵ−1/2A2

2Y
ϵ
t and ϵ−1f 2 and also

neglecting the interactions B2
12(X

ϵ
t , Y

ϵ
t ) and B

2
21(Y

ϵ
t , X

ϵ
t ).
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2.3. Application to Climate Models

For each ϵ > 0, let (Xϵ, Y ϵ) be a pair of processes satisfying

dXϵ
t

dt
= F 1

t + A1
1X

ϵ
t + A1

2Y
ϵ
t +B1

11(X
ϵ
t , X

ϵ
t ) +B1

12(X
ϵ
t , Y

ϵ
t ) + ϵ1/2B1

22(Y
ϵ
t , Y

ϵ
t ), (2.16)

dY ϵ
t

dt
= ϵ−1A2

1X
ϵ
t + ϵ−1B2

11(X
ϵ
t , X

ϵ
t )− ϵ−1Y ϵ

t + ϵ−1Ẇt, (2.17)

where A1
1 : Hd → Hd, A

1
2 : H∞ → Hd, A

2
1 : Hd → H∞ are bounded linear operators,

B1
11 : Hd × Hd → Hd, B

1
12 : Hd × H∞ → Hd, B

1
22 : H∞ × H∞ → Hd, B

2
11 : Hd × Hd →

H∞ are continuous bilinear maps, and F 1 : [0, T ] → Hd is a deterministic continuous
external force. Notice that we have grouped together terms B1

12 and B1
21 without any

loss of generality. Stochastic basis and Wiener process W are taken to be the same as in
Remark 2.1.
In what follows, the above equations will always have initial conditions (x0, y0), where

x0 ∈ Hd can be chosen arbitrarily, while y0 =
∫ 0

−∞ ϵ−1eϵ
−1sdWs will be fixed to ensure

pseudo stationarity of the scaled unresolved variables. Note that fixing y0 ∈ H∞ this way
would not restrict the initial data of the reduced equations.
In fluid dynamics settings it is customary to assume that A is self-adjoint, and that
the full nonlinearity is skew-symmetric: ⟨B(z′, z), z⟩H = 0, z, z′ ∈ H, see [MW06]. We
therefore make the following assumptions on the projected coefficients:

(C1) A2
1 = (A1

2)
∗;

(C2) ⟨B1
11(x

′, x), x⟩Hd
= 0, for all x, x′ ∈ Hd;

(C3) ⟨B1
12(x

′, y), x⟩Hd
= −⟨B2

11(x
′, x), y⟩H∞ , for all x, x′ ∈ Hd, y ∈ H∞.

Also, without loss of generality, we can assume that B1
22 is symmetric in the sense of

⟨B1
22(fℓ, fm), ei⟩Hd

= ⟨B1
22(fm, fℓ), ei⟩Hd

, for all i, ℓ,m; and finally we will need the analogue
assumption on β, that is

(C4)
∑

ℓ∈N⟨B1
22(fℓ, fℓ), ei⟩Hd

qℓ = 0, for all i = 1, . . . , d.

Note that the latter condition is indeed satisfied for many fluid-dynamics models—it
usually holds independently of the structure of the noise because ⟨B1

22(fℓ, fm), ei⟩Hd
would

be zero on the diagonal, when ℓ = m, for all i.
Next, we bring equations (2.16),(2.17) into a form which makes them comparable to (1.4).
Using the definition of y0, we have the following mild formulation of (2.17),

Y ϵ
t = Ỹ ϵ

t +

∫ t

0

ϵ−1e−ϵ
−1(t−s) (A2

1X
ϵ
s +B2

11(X
ϵ
s, X

ϵ
s)
)
ds, t ∈ [0, T ], (2.18)

where

Ỹ ϵ
t =

∫ t

−∞
ϵ−1e−ϵ

−1(t−s)dWs, t ∈ R,

is a stationary Ornstein-Uhlenbeck process. Plugging (2.18) into (2.16), Xϵ alternatively
satisfies for every t ∈ [0, T ]

Xϵ
t = x0 +

∫ t

0

(
F 1
s + A1

1X
ϵ
s +B1

11(X
ϵ
s, X

ϵ
s)
)
ds+

∫ t

0

A1
2Z

ϵ
sds+

∫ t

0

B1
12 (X

ϵ
s, Z

ϵ
s) ds

+

∫ t

0

A1
2Ỹ

ϵ
s ds+

∫ t

0

B1
12(X

ϵ
s, Ỹ

ϵ
s )ds

+

∫ t

0

ϵ1/2B1
22(Ỹ

ϵ
s , Ỹ

ϵ
s )ds+ 2

∫ t

0

ϵ1/2B1
22(Ỹ

ϵ
s , Z

ϵ
s)ds+

∫ t

0

ϵ1/2B1
22 (Z

ϵ
s, Z

ϵ
s) ds, (2.19)
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Chapter 2. Stochastic model reduction

when using the abbreviation

Zϵ
s =

∫ s

0

ϵ−1e−ϵ
−1(s−r) (A2

1X
ϵ
r +B2

11(X
ϵ
r , X

ϵ
r)
)
dr.

Since Zϵ
s is close to A2

1X
ϵ
s + B2

11(X
ϵ
s, X

ϵ
s), for small ϵ, and since both terms B1

22(Ỹ
ϵ
s , Z

ϵ
s)

and B1
22 (Z

ϵ
s, Z

ϵ
s) will be shown to vanish with ϵ, too, the process Xϵ should be close to

X̃ϵ satisfying

X̃ϵ
t = x0 +

∫ t

0

(
F 1
s + A1

1X̃
ϵ
s +B1

11(X̃
ϵ
s, X̃

ϵ
s)
)
ds+

∫ t

0

A1
2

(
A2

1X̃
ϵ
s +B2

11(X̃
ϵ
s, X̃

ϵ
s)
)
ds

+

∫ t

0

B1
12

(
X̃ϵ
s,
(
A2

1X̃
ϵ
s +B2

11(X̃
ϵ
s, X̃

ϵ
s)
))

ds

+

∫ t

0

A1
2Ỹ

ϵ
s ds+

∫ t

0

B1
12(X̃

ϵ
s, Ỹ

ϵ
s ) ds+

∫ t

0

ϵ1/2B1
22(Ỹ

ϵ
s , Ỹ

ϵ
s ) ds, (2.20)

which is an equation of type (1.4) with

F (t, x) = F 1
t + A1

1x+B1
11(x, x) + A1

2

(
A2

1x+B2
11(x, x)

)
+B1

12

(
x,
(
A2

1x+B2
11(x, x)

))
,

σ(t, x) = A1
2 +B1

12(x, ·) ,
β = B1

22 .

Thus, in this setting, the analogue of (1.5) would read

X̄t =x0 +

∫ t

0

(
F 1
s + A1

1X̄s +B1
11(X̄s, X̄s)

)
ds+

∫ t

0

A1
2

(
A2

1X̄s +B2
11(X̄s, X̄s)

)
ds

+

∫ t

0

B1
12

(
X̄s,

(
A2

1X̄s +B2
11(X̄s, X̄s)

))
ds+

∫ t

0

C(X̄s) ds

+ A1
2Wt +

∫ t

0

B1
12(X̄s, dWs) +

∑
ℓ,m∈N

bℓ,mW̄
ℓ,m
t , (2.21)

where the Stratonovich correction term C : Hd → Hd simplifies to

⟨C(x), ei⟩Hd
=

1

2

∑
m∈N

qm

d∑
j=1

⟨B1
12(ej, fm), ei⟩Hd

⟨B1
12(x, fm), ej⟩Hd

, i = 1, . . . , d,

and

biℓ,m = ⟨B1
22(fℓ, fm), ei⟩Hd

√
qℓqm
2

, i = 1, . . . , d, ℓ,m ∈ N.

Proposition 2.14. When assuming (C1)-(C3), equation (2.21) admits a unique global
strong solution on [0, T ].

Proof. First, regularity of coefficients guarantees the existence of a unique local strong
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2.3. Application to Climate Models

solution. Second, by Itô’s formula,

1

2
|X̄t∧τ |2 =

1

2
|x0|2 +

∫ t∧τ

0

⟨F 1
s + A1

1X̄s +B1
11(X̄s, X̄s), X̄s⟩ ds

+

∫ t∧τ

0

⟨A1
2

(
A2

1X̄s +B2
11(X̄s, X̄s)

)
, X̄s⟩ ds

+

∫ t∧τ

0

⟨B1
12

(
X̄s,

(
A2

1X̄s +B2
11(X̄s, X̄s)

))
, X̄s⟩ ds +

∫ t∧τ

0

⟨C(X̄s), X̄s⟩ ds

+

∫ t∧τ

0

⟨A1
2dWs, X̄s⟩+

∫ t∧τ

0

⟨B1
12(X̄s, dWs), X̄s⟩+

∑
ℓ,m∈N

∫ t∧τ

0

⟨bℓ,m, X̄s⟩ dW̄ ℓ,m
s

+
1

2

∑
m∈N

|A1
2fm|2qm(t ∧ τ) +

1

2

∑
m∈N

∫ t∧τ

0

|B1
12(X̄s, fm)|2qm ds+

1

2

∑
ℓ,m∈N

|bℓ,m|2(t ∧ τ),

for any fixed t ∈ [0, T ], and any stopping time τ smaller than a possible explosion time.

Applying (C1)-(C3), we have the identities

⟨B1
11(X̄s, X̄s), X̄s⟩Hd

= 0,

⟨A1
2B

2
11(X̄s, X̄s), X̄s⟩Hd

= ⟨B2
11(X̄s, X̄s), A

2
1X̄s⟩H∞ ,

⟨B1
12(X̄s, A

2
1X̄s), X̄s⟩Hd

= −⟨B2
11(X̄s, X̄s), A

2
1X̄s⟩H∞ ,

⟨B1
12(X̄s, B

2
11(X̄s, X̄s)), X̄s⟩Hd

= −∥B2
11(X̄s, X̄s)∥2H∞ ,

leading to

E
[
sup
t′≤t

|X̄t′∧τ |2
]
≲

(
1 +

∫ t

0

E
[
sup
s′≤s

|X̄s′∧τ |2
]
ds

)
,

again using the regularity of the coefficients combined with Burkholder-Davis-Gundy’s
inequality. Thus, by Gronwall, the local solution X̄ has to be global on [0, T ].

Remark 2.6. In a very similar way, it can be shown that both equations (2.19) and (2.20)
admit unique global strong solutions on [0, T ], too, and hence those proofs are omitted.
As a consequence, simply substituting the solution of (2.19) into (2.18), for each ϵ > 0,
there is a unique pair of processes (Xϵ, Y ϵ) satisfying (2.16), (2.17) on [0, T ].

Theorem 2.15. Assume (C1)-(C3), fix ϵ > 0, and let (Xϵ, Y ϵ) be the unique pair of
processes satisfying (2.16),(2.17) on a given climate time interval [0, T ]. Then:

i) If (C4), then Xϵ converges in law, ϵ→ 0, to the unique process X̄ satisfying (2.21).

ii) However, if (C4) comes via B1
22 = 0, then the strong convergence in probability holds

true.

Proof. Recall the process X̃ϵ satisfying (2.20), which is an equation of type (1.4) with
coefficients F, σ, β satisfying the assumptions of Theorem 1.1. Furthermore, by Proposi-
tion 2.14 and Remark 2.6, global existence of solutions is satisfied, too, while assumptions
on β descend from (C4).

All in all, Theorem 1.1 implies that both parts i) and ii) of Theorem 2.15 hold true when
replacing Xϵ by X̃ϵ. Thus, it is sufficient to prove convergence in probability of Xϵ− X̃ϵ

to zero, ϵ → 0, uniformly on compact subsets of a localising stochastic interval, which
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Chapter 2. Stochastic model reduction

can easily be shown following the lines of proof of Theorem 1.1. Indeed, by localization
and discretization arguments, one would first derive for any h = 1, . . . , [T/∆]

E

 sup
k′=0,...,h
k′∆≤τϵR

∣∣∣Xϵ
k′∆ − X̃ϵ

k′∆

∣∣∣2
 ≲ r(∆, ϵ) +

h−1∑
k=0

∆E

 sup
k′=0,...,k
k′∆≤τϵR

∣∣∣Xϵ
k′∆ − X̃ϵ

k′∆

∣∣∣2
 ,

where τ ϵR = inf{t ≥ 0 : |Xϵ
t | ≥ R} ∧ inf{t ≥ 0 : |X̃ϵ

t | ≥ R}, and r(∆, ϵ) → 0, ϵ → 0, for a
suitable choice of ∆ = ∆ϵ. Then, combining Gronwall’s lemma and Markov’s inequality,
one would obtain

lim
ϵ→0

P

{
sup

t≤T∧τϵR
∥Xϵ

t − X̃ϵ
t ∥Hd

> δ

}
= 0, ∀ δ > 0,

which yields the convergences stated in parts i) and ii) of Theorem 2.15 up to time τ ϵR.
Since X̄ is globally defined, both types of convergence can be extended to the whole
interval [0, T ], using similar arguments given in the proof of the corresponding parts of
Theorem 1.1.
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Chapter 3

From additive to transport noise in
2D fluids

In this chapter we intend to prove Theorem 1.2 on the convergence of the large-scale
component of the system

dΞϵt + (uϵt + vϵt) · ∇Ξϵtdt = ν∆Ξϵtdt+ qϵtdt,

dξϵt + (uϵt + vϵt) · ∇ξϵtdt = −ϵ−1ξϵtdt+ ϵ−1
∑

k∈N ςkdW
k
t ,

uϵt = −∇⊥(−∆)−1Ξϵt,

vϵt = −∇⊥(−∆)−1ξϵt .

(3.1)

towards the solution of{
dΞt + ut · ∇Ξtdt+

∑
k∈N σk · ∇Ξt ◦ dW k

t = ν∆Ξtdt+ qtdt,

ut = −∇⊥(−∆)−1Ξt,
(3.2)

where σk = −∇⊥(−∆)−1ςk.
Let (Ω̃, F̃ , {F̃t}t≥0, P̃) be an auxiliary probability space and let w be a standard R2-valued
Wiener process defined on (Ω̃, F̃ , {F̃t}t≥0, P̃). The strategy of the proof of Theorem 1.2
is based on the study of the stochastic characteristics

ϕϵt(x) = x+

∫ t

0

uϵs(ϕ
ϵ
s(x))ds+

∫ t

0

vϵs(ϕ
ϵ
s(x))ds+

√
2νwt, (3.3)

ϕt(x) = x+

∫ t

0

us(ϕs(x))ds+
∑
k∈N

∫ t

0

σk(ϕs(x)) ◦ dW k
s +

√
2νwt, (3.4)

for t ∈ [0, T ], x ∈ T2, and the representation formulae

Ξϵt = Ẽ
[
Ξ0 ◦ (ϕϵt)−1 +

∫ t

0

qϵs ◦ ϕϵs ◦ (ϕϵt)−1ds

]
, (3.5)

Ξt = Ẽ
[
Ξ0 ◦ (ϕt)−1 +

∫ t

0

qs ◦ ϕs ◦ (ϕt)−1ds

]
, (3.6)

where Ẽ is the expectation on Ω̃ with respect to P̃.
We adopt an abstract point of view on the problem, dropping the assumption that the
large-scale velocity uϵ is generated by Ξϵ via the Biot-Savart law. We highlight very
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minimal conditions on u, uϵ and other quantities involved in (3.1),(3.2) allowing us to
prove the desired convergence, see assumptions (A1)-(A7) below. In this way we are able
to include at once Navier-Stokes, Euler and passive scalar equations at large scales into
the scope of applicability of our Theorem 1.2.
With respect to other works on Wong-Zakai approximation results, [FP22] here discussed
is the first work where the velocity field approximating the white noise one is the solution
of a nonlinear fluid mechanics equation.
The present chapter is organized as follows.
In Section 3.1 we introduce some notation and recall classical results, among others: main
properties of the Biot-Savart kernel on the torus; a useful Gronwall-type lemma for ODEs
with log-Lipschitz drift; notions of solution and well-posedness results for stochastic Euler
equations (unresolved component of (3.1)), equations of characteristics (3.3) and (3.4),
and large-scale dynamics in (3.1) and (3.2). Also, here we introduce our main working
assumptions (A1)-(A7), and in the last part of this section we state our main result on
convergence of characteristics Theorem 3.1.1.
In the first part of Section 3.2, we define a linearized version of (the second component of)
(3.1), where we neglect the nonlinear term. This approach is similar to that of [FP21],
and the key idea is that, although the solution θϵ of linearized equation is not close
to the actual solution ξϵ of (3.1), the characteristics generated by θϵ are close to the
characteristics generated by ξϵ, in particular they have the same limit as ϵ→ 0.
In the same section we present two main technical results, needed in the proof of Theo-
rem 3.1.1. The first of those results is Proposition 3.6, which ensures that the linear part
θϵ of the small-scale dynamics behaves as a Stratonovich white-in-time noise as ϵ → 0,
at least in a distributional sense. The second result Proposition 3.7, instead, aims to
rigorously prove the closeness of the characteristics generated by θϵ and ξϵ, and it is one
of the main novelties of [FP22] with respect to [FP21].
The proof of Theorem 3.1.1 is contained in Section 3.3, and it is based on a Gronwall-type
lemma and Itō Formula applied to a smooth approximation gδ(x) of the absolute value
|x|, x ∈ R2. The proof of Theorem 1.2 can be found in Section 3.4, and it relies on
representation formulae (3.5) and (3.6) and a measure-theoretic argument.
Finally, in Section 3.5 we discuss how our main motivational examples fit our abstract
setting. In particular, the non-trivial one is the coupled system given by deterministic
Navier-Stokes equations at large scales plus stochastic Euler equations at small scales;
we identify an additional but very natural condition (A8) on the limit external source q
that allows to verify assumptions (A1)-(A7) for the system under consideration.

3.1 Notation and preliminaries

3.1.1 Properties of the Biot-Savart kernel

Here we briefly recall some useful properties of the Biot-Savart kernel K. We refer to
[MP94, BFM16] for details and proofs.
First of all, the Biot-Savart kernel K is defined as K := −∇⊥G = (∂2G,−∂1G), where G
is the Green function of the Laplace operator on the torus T2 with zero mean.
For p ∈ (1,∞) and ξ ∈ Lp(T2) with zero-mean, the convolution with K represents the
Biot-Savart operator:

K ∗ ξ = −∇⊥(−∆)−1ξ,
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that to every zero-mean ξ ∈ Lp(T2) associates the unique zero-mean, divergence-free
velocity vector field u ∈ W 1,p(T2,R2) such that curlu = ξ. Moreover, for every p ∈ (1,∞)
there exist constants c, C such that for every zero-mean ξ ∈ Lp(T2)

c∥ξ∥Lp(T2) ≤ ∥K ∗ ξ∥W 1,p(T2,R2) ≤ C∥ξ∥Lp(T2).

Also, recall that since K ∈ L1(T2,R2) the convolution K ∗ ξ is well-defined for every
ξ ∈ Lp(T2), p ∈ [1,∞] and the following estimate holds:

∥K ∗ ξ∥Lp(T2,R2) ≤ ∥K∥L1(T2,R2)∥ξ∥Lp(T2). (3.7)

Let r ≥ 0. Denote γ : [0,∞) → R the concave function:

γ(r) = r(1− log r)1{0<r<1/e} + (r + 1/e)1{r≥1/e}.

The following two lemmas are proved in [MP94] and [BFM16].

Lemma 3.1. There exists a constant C such that:∫
T2

|K(x− y)−K(x′ − y)| dy ≤ Cγ(|x− x′|)

for every x, x′ ∈ T2.

Lemma 3.2. Let T > 0, λ > 0, a0 ∈ [0, exp(1 − 2eλT )] be constants. Let a : [0, T ] → R
be such that for every t ∈ [0, T ]:

at ≤ a0 + λ

∫ t

0

γ(as)ds.

Then for every t ∈ [0, T ] the following estimate holds:

at ≤ ea
exp(−λt)
0 .

3.1.2 Stochastic flows of measure-preserving homeomorphisms

As a convention, in the following we say that N ⊂ Ω (respectively Ñ ⊂ Ω̃) is negligible if
it is measurable and P(N ) = 0 (respectively P̃(Ñ ) = 0), without explicit mention of the
reference probability measure. Unless otherwise specified, we will always denote with N
negligible sets in Ω, and with Ñ negligible sets in Ω̃.
Let us begin this paragraph with the following fundamental definition.

Definition 3.1. A measurable map ϕ : Ω × Ω̃ × [0, T ] × T2 → T2 is a stochastic flow
of measure-preserving homeomorphisms provided there exist negligible sets N ⊂ Ω and
Ñ ⊂ Ω̃ such that:

� for every ω ∈ N c, ω̃ ∈ Ñ c and t ∈ [0, T ], the map ϕ(ω, ω̃, t, ·) : T2 → T2 is a
homeomorphism of the torus and∫

T2

f(x)dx =

∫
T2

f(ϕ(ω, ω̃, t, y))dy

for every f ∈ L1(T2);
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� for every ω̃ ∈ Ñ c and x ∈ T2, the stochastic process ϕ(·, ω̃, ·, x) : Ω× [0, T ] → T2 is
progressively measurable with respect to the filtration (Ft)t∈[0,T ].

In some circumstances it can be useful to have the following:

Definition 3.2. A stochastic flow of measure-preserving homeomorphisms ϕ is called
inviscid if there exist negligible sets N ⊂ Ω and Ñ ⊂ Ω̃, and a measurable map ψ :
Ω× [0, T ]× T2 → T2 such that for every ω ∈ N c, ω̃ ∈ Ñ c, t ∈ [0, T ] and x ∈ T2

ϕ(ω, ω̃, t, x) = ψ(ω, t, x).

With a little abuse of notation, hereafter we identify an inviscid stochastic flow of measure-
preserving homeomorphisms ϕ with its ω̃-independent representative ψ.
Let us now clarify the meaning of (3.3), (3.4).
A measurable map ϕϵ : Ω × Ω̃ × [0, T ] × T2 → T2 is a solution of (3.3) if there exist
negligible sets N ⊂ Ω and Ñ ⊂ Ω̃ such that for every ω ∈ N c, ω̃ ∈ Ñ c, t ∈ [0, T ] and
x ∈ T2:

ϕϵ(ω, ω̃, t, x) = x+

∫ t

0

uϵ(ω, s, ϕϵ(ω, ω̃, s, x))ds

+

∫ t

0

vϵ(ω, s, ϕϵ(ω, ω̃, s, x))ds+
√
2νw(ω̃, t),

where the previous identity can be interpreted as an equation on T2 since one can check
ϕϵ(ω, ω̃, t, x+ 2πe) = ϕϵ(ω, ω̃, t, x) + 2πe for e = (1, 0) and e = (0, 1).
Similarly, a measurable map ϕ : Ω × Ω̃ × [0, T ] × T2 → T2 is a solution of (3.4) if there
exist negligible sets N ⊂ Ω and Ñ ⊂ Ω̃ such that for every ω̃ ∈ Ñ c and x ∈ T2, the
stochastic process ϕ(·, ω̃, ·, x) : Ω × [0, T ] → T2 is progressively measurable with respect
to the filtration (Ft)t∈[0,T ], and for every ω ∈ N c, ω̃ ∈ Ñ c, t ∈ [0, T ] and x ∈ T2:

ϕ(ω, ω̃, t, x) = x+

∫ t

0

u(ω, s, ϕ(ω, ω̃, s, x))ds

+
∑
k∈N

(∫ t

0

σk(ϕ(·, ω̃, s, x))) ◦ dW k
s

)
(ω) +

√
2νw(ω̃, t).

Notice that progressive measurability of the process ϕ(·, ω̃, ·, x) : Ω × [0, T ] → T2 is
necessary to make sense of the Stratonovich stochastic integral appearing in the equation
above.

3.1.3 Notions of solution and some well-posedness results

The aim of the present subsection is twofold. On the one hand, we provide a suitable
notion of solution for (3.1), in some sense highlighting the minimal requirements on the
solutions to prove our results. On the other hand, we show the existence of solutions
in the general case, as well as uniqueness in the case of the large-scale process being a
passive scalar. In the following, we say that a field uϵ is compatible with the large-scale
process Ξϵ if: either Ξϵ is a passive scalar, or: Ξϵ is an active scalar and uϵ is reconstructed
from the latter by the Biot–Savart law. We adopt a similar terminology for the limiting
quantities u, Ξ. In this subsection we make assumptions directly on the fields uϵ, u. we
shall see in Section 3.5 that, even for active scalars, fields compatible with large-scale
processes satisfy our assumptions.
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Well-posedness of small-scale dynamics and characteristics

First we make the following assumptions on the external fields:

(A1) uϵ, u : Ω× [0, T ]×T2 → R2 and for every t ∈ [0, T ] the maps uϵ, u|Ω×[0,t] : Ω× [0, t]×
T2 → R2 are Ft ⊗ B[0,t] ⊗ BT2 measurable, where B denotes the Borel sigma-field;

(A2) there exist a constant C and a negligible set N ⊂ Ω such that, for every ω ∈ N c,
ϵ > 0 and t ∈ [0, T ]: divuϵ(ω, t, ·) = divu(ω, t, ·) = 0, and

|uϵ(ω, t, x)| ≤ C, |uϵ(ω, t, x)− uϵ(ω, t, y)| ≤ Cγ(|x− y|),
|u(ω, t, x)| ≤ C, |u(ω, t, x)− u(ω, t, y)| ≤ Cγ(|x− y|),

for every x, y ∈ T2.

Also, we make the following assumption on the coefficients (ςk)k∈N:

(A3) there exists ℓ ≥ 1 such that ςk ∈ W ℓ,∞(T2) with zero-mean for every k ∈ N, and
moreover ∑

k∈N

∥ςk∥W ℓ,∞(T2) <∞.

Given a stochastic flow of measure-preserving homeomorphisms ϕ we will use ϕt(x) as a
notational shortcut for ϕ(ω, ω̃, t, x), thus making implicit the dependence of the random-
ness variables ω, ω̃. The same convention may be used for the fields u, v, et cetera.
The next result can be proved repeating the arguments contained in [BFM16] and [FP21].

Proposition 3.3. Assume (A1)-(A3). Then:

� for every ϵ > 0 there exist a unique Lagrangian solution ξϵ of (3.1), namely there
exists a unique stochastic process ξϵ : Ω × [0, T ] → L∞(T2) weakly progressively
measurable with respect to (Ft)t∈[0,T ] such that the equation

ψϵt(x) = x+

∫ t

0

uϵs(ψ
ϵ
s(x))ds+

∫ t

0

vϵs(ψ
ϵ
s(x))ds,

with vϵ = K ∗ ξϵ, admits a unique inviscid stochastic flow of measure-preserving
homeomorphisms ψϵ as a solution, and moreover

ξϵt (ψ
ϵ
t(x)) = ϵ−1

∑
k∈N

∫ t

0

e−ϵ
−1(t−s)ςk(ψ

ϵ
s(x))dW

k
s ; (3.8)

� for every ϵ > 0 there exists a unique stochastic flow of measure-preserving homeo-
morphisms ϕϵ solution of (3.3), with vϵ = K ∗ ξϵ;

� there exists a unique stochastic flow of measure-preserving homeomorphisms ϕ so-
lution of (3.4).

Remark 3.1. If ν = 0, then both ϕϵ and ϕ are inviscid stochastic flows of measure-
preserving homeomorphisms, and actually ϕϵ = ψϵ. The terminology is thus justified,
since ν = 0 corresponds to null diffusivity/viscosity in the equations for the large-scale
dynamics in (3.1) and (3.2).
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Remark 3.2. Formula (3.8) above corresponds to the solution of (3.1) with initial con-
dition ξϵ0 = 0, that we assume throughout this paper for the sake of simplicity. More
general initial conditions, as those considered in [FP21], can be taken into account by
simply modifying (3.8) into

ξϵt (ψ
ϵ
t(x)) = e−ϵ

−1tξϵ0(x) + ϵ−1
∑
k∈N

∫ t

0

e−ϵ
−1(t−s)ςk(ψ

ϵ
s(x))dW

k
s .

Notion of solution to the large-scale dynamics

By previous Proposition 3.3, under assumption (A1)-(A3) we can use the Euler flow to
represent the large-scale solutions of (3.1) and (3.2). To be more precise, our notion of
solution is given exactly by those processes Ξϵ, Ξ for which (3.5) and (3.6) hold true, and
it is inspired by the notion of generalized solution in [BF95, Definition 2.2].

Definition 3.3. Assume (A1)-(A3), qϵ, q ∈ L1([0, T ], L∞(T2)) for every ϵ > 0 and Ξ0 ∈
L∞(T2) with zero mean. Then:

� for every ϵ > 0, a measurable map Ξϵ : Ω × [0, T ] × T2 → R is called generalized
solution to (the first component of) (3.1) if it is compatible with uϵ and for every
t ∈ [0, T ] it holds

Ξϵt = Ẽ
[
Ξ0 ◦ (ϕϵt)−1 +

∫ t

0

qϵs ◦ ϕϵs ◦ (ϕϵt)−1ds

]
,

as an equality in L∞(Ω × T2), where ϕϵ is the unique stochastic flow of measure-
preserving homeomorphisms solution of (3.3);

� a measurable map Ξ : Ω× [0, T ]× T2 → R is called generalized solution to (3.2) if
it is compatible with u and for every t ∈ [0, T ] it holds

Ξt = Ẽ
[
Ξ0 ◦ (ϕt)−1 +

∫ t

0

qs ◦ ϕs ◦ (ϕt)−1ds

]
,

as an equality in L∞(Ω × T2), where ϕ is the unique stochastic flow of measure-
preserving homeomorphisms solution of (3.4).

Notice that this notion of solution immediately implies existence and uniqueness in the
case of passive large-scale dynamics: we can state that in the following

Proposition 3.4. Under the same assumptions as above, suppose Ξϵ (resp. Ξ) are passive
scalars. Then the exists a unique generalized solution to (3.1) (resp. (3.2)).

Proof. Indeed, for passive scalars the compatibility condition is void, and Ξϵ (resp. Ξ)
depends only on the initial datum Ξ0, the external sources qϵ (resp. q), and the charac-
teristics ϕϵ (resp. ϕ), the latter existing and being unique by Proposition 3.3.

For active dynamics the previous picture is not correct, since the compatibility condition
between the external field and the large-scale variable is not encoded in the representation
formula itself. However, we will not investigate in this paper well-posedness for this notion
of solution in full generality. For active scalars, we limit ourselves to show existence of
generalized solutions, see Proposition 3.5 below.
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Also, it is worth of mention that every sufficiently smooth generalized solution of the first
component of (3.1) or (3.2) is also a classical solution, as can be proved following the lines
of [CI08, Theorem 2.2 and Proposition 2.7]. On the other hand, our notion of generalized
solution is weaker than the notion of L∞-weak solution contained in [BFM16], that we
recall now:

Definition 3.4. Assume (A1)-(A3), qϵ, q ∈ L1([0, T ], L∞(T2)) for every ϵ > 0 and Ξ0 ∈
L∞(T2) with zero mean. For f, g : T2 → R, denote ⟨f, g⟩ :=

∫
T2 f(x)g(x)dx. Then:

� for every ϵ > 0, a stochastic process Ξϵ : Ω× [0, T ] → L∞(T2) is called a L∞-weak
solution of (3.1) if it is weakly progressively measurable with respect to (Ft)t∈[0,T ],
it is compatible with uϵ and for every smooth test function f ∈ C∞(T2) it holds
P-a.s. for every t ∈ [0, T ]:

⟨Ξϵt, f⟩ − ⟨Ξϵ0, f⟩ =
∫ t

0

⟨Ξϵs, (uϵs + vϵs) · ∇f⟩ds

+

∫ t

0

⟨Ξϵs, ν∆f⟩ds+
∫ t

0

⟨qϵs, f⟩ds;

� a stochastic process Ξ : Ω× [0, T ] → L∞(T2) is called a L∞-weak solution of (3.2)
if it is weakly progressively measurable with respect to (Ft)t∈[0,T ], it is compatible
with u and for every smooth test function f ∈ C∞(T2) it holds P-a.s. for every
t ∈ [0, T ]:

⟨Ξt, f⟩ − ⟨Ξ0, f⟩ =
∫ t

0

⟨Ξs, us · ∇f⟩ds+
∑
k∈N

∫ t

0

⟨Ξs, σk · ∇f⟩ ◦ dW k
s

+

∫ t

0

⟨Ξs, ν∆f⟩ds+
∫ t

0

⟨qs, f⟩ds.

In [BFM16] well-posedness of L∞-weak solution to stochastic Euler Equations is shown.
With minor modifications in the argument one can prove existence of L∞-weak solu-
tions to (3.1) and (3.2) in the general case. For active scalars, those provide generalized
solutions in the sense of Definition 3.3, that is the content of the following:

Proposition 3.5. Assume (A1)-(A3), qϵ, q ∈ L1([0, T ], L∞(T2)) for every ϵ > 0 and
Ξ0 ∈ L∞(T2). Then every L∞-weak solution to the second component of (3.1) is also a
generalized solution, and every L∞-weak solution to (3.2) is also a generalized solution.

Proof. The strategy of the proof is similar to [BFM16, Proposition 5.3] and [FGP10,
Theorem 20], and consists in taking the convolution of a L∞-weak solution with a smooth
mollifier ϑδ = δ−2ϑ(δ·), δ > 0, and then taking the limit for δ → 0.
Let Ξϵ be a L∞-weak solution of (3.1) and Ξ be a L∞-weak solution of (3.2), in the sense
of the previous definition. Using f = ϑδ(y − ·) as a test function, y ∈ T2, and denoting
Ξϵδ := ϑδ ∗ Ξϵ, Ξδ := ϑδ ∗ Ξ we get (omitting the parameter ω)

Ξϵδ(t, y)− Ξϵδ(0, y) =

∫ t

0

∫
T2

Ξϵ(s, x)(uϵ(s, x) + vϵ(s, x)) · ∇xϑδ(y − x)dxds

+ ν

∫ t

0

∫
T2

Ξϵ(s, x)∆xϑδ(y − x)dxds

+

∫ t

0

∫
T2

qϵ(s, x)ϑδ(y − x)dxds,
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and

Ξδ(t, y)− Ξδ(0, y) =

∫ t

0

∫
T2

Ξ(s, x)u(s, x) · ∇xϑδ(y − x)dxds

+
∑
k∈N

∫ t

0

∫
T2

Ξ(s, x)σk(x) · ∇xϑδ(y − x)dx ◦ dW k
s

+ ν

∫ t

0

∫
T2

Ξ(s, x)∆xϑδ(y − x)dxds

+

∫ t

0

∫
T2

q(s, x)ϑδ(y − x)dxds.

Since Ξϵδ, Ξδ are smooth functions in the variable y, we can write the equivalent expressions
in differential notation

dΞϵδ(t, y) +∇Ξϵδ(t, y) · (uϵ(t, y) + vϵ(t, y))dt

=

∫
T2

Ξϵ(t, x)(uϵ(t, x) + vϵ(t, x)) · ∇xϑδ(y − x)dxdt

+ ν

∫
T2

Ξϵ(t, x)∆xϑδ(y − x)dxdt+

∫
T2

qϵ(t, x)ϑδ(y − x)dxdt

+∇Ξϵδ(t, y) · (uϵ(t, y) + vϵ(t, y))dt,

and

dΞδ(t, y) +∇Ξδ(t, y) · u(t, y)dt+
∑
k∈N

∇Ξδ(t, y) · σk(y) ◦ dW k
t

=

∫
T2

Ξ(t, x)u(t, x) · ∇xϑδ(y − x)dxdt

+
∑
k∈N

∫
T2

Ξ(t, x)σk(x) · ∇xϑδ(y − x)dx ◦ dW k
t

+ ν

∫
T2

Ξ(t, x)∆xϑδ(y − x)dxdt+

∫
T2

q(t, x)ϑδ(y − x)dxdt

+∇Ξδ(t, y) · u(t, y)dt+
∑
k∈N

∇Ξδ(t, y) · σk(y) ◦ dW k
t .

Notice that the following formulas for the gradient of the convolution hold true: ∇Ξϵδ(t, y) =
−
∫
T2 Ξ

ϵ(t, x)∇xϑδ(y− x), and ∇Ξδ(t, y) = −
∫
T2 Ξ(t, x)∇xϑδ(y− x); also, ∆xϑδ(y− x) =

∆yϑδ(y − x). Substituting into the previous expressions, we get

dΞϵδ(t, y) +∇Ξϵδ(t, y) · (uϵ(t, y) + vϵ(t, y))dt

= [−ϑδ ∗ (∇Ξϵt · (uϵt + vϵt)) + (uϵt + vϵt) · (ϑδ ∗ ∇Ξϵt)] (y)dt

+ ν∆Ξϵδ(t, y)dt+ qϵδ(t, y)dt

= Rδ [u
ϵ
t + vϵt ,Ξ

ϵ
t] (y)dt+ ν∆Ξϵδ(t, y)dt+ qϵδ(t, y)dt,
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and

dΞδ(t, y) +∇Ξδ(t, y) · u(t, y)dt+
∑
k∈N

∇Ξδ(t, y) · σk(y) ◦ dW k
t

= [−ϑδ ∗ (∇Ξt · ut) + ut · (ϑδ ∗ ∇Ξt)] (y)dt

+
∑
k∈N

[−ϑδ ∗ (∇Ξt · σk) + σk · (ϑδ ∗ ∇Ξt)] (y) ◦ dW k
t

+ ν∆Ξδ(t, y)dt+ qδ(t, y)dt

= Rδ [ut,Ξt] (y)dt+
∑
k∈N

Rδ [σk,Ξt] (y) ◦ dW k
t

+ ν∆Ξδ(t, y)dt+ qδ(t, y)dt,

where we have defined qϵδ := ϑδ ∗ qϵ, qδ := ϑδ ∗ q and the commutator

Rδ [v,Ξ] := −ϑδ ∗ (∇Ξ · v) + v · (ϑδ ∗ ∇Ξ) .

We have obtained differential equations for the spatially smooth processes Ξϵδ and Ξδ.
Applying the backwards Itō Formula to the processes s 7→ Ξϵδ(s, ϕ

ϵ
s((ϕ

ϵ
t)

−1(y))) and s 7→
Ξδ(s, ϕs((ϕt)

−1(y))), for fixed t ∈ [0, T ], and taking the expectation with respect to P̃, we
obtain that the process Ξϵδ is given by

Ξϵδ(t, y) = Ẽ
[
Ξϵδ(0, (ϕ

ϵ
t)

−1(y)) +

∫ t

0

qϵδ(s, ϕ
ϵ
s((ϕ

ϵ
t)

−1(y)))ds

]
(3.9)

+ Ẽ
[∫ t

0

Rδ [u
ϵ
s + vϵs,Ξ

ϵ
s] (ϕ

ϵ
s((ϕ

ϵ
t)

−1(y)))ds

]
,

whereas the process Ξδ is given by

Ξδ(t, y) = Ẽ
[
Ξδ(0, (ϕt)

−1(y)) +

∫ t

0

qδ(s, ϕs((ϕt)
−1(y)))ds

]
(3.10)

+ Ẽ
[∫ t

0

Rδ [us,Ξs] (ϕs((ϕt)
−1(y)))ds

]
+
∑
k∈N

Ẽ
[∫ t

0

Rδ [σk,Ξs] (ϕs((ϕt)
−1(y))) ◦ dW k

s

]
Let us focus on (3.9). By well-known properties of mollifiers, for every fixed ω ∈ Ω and
t ∈ [0, T ], the right-hand side Ξϵδ(ω, t, ·) → Ξϵ(ω, t, ·) in L1(T2) as δ → 0. Concerning the
left-hand side, a commutator lemma [FGP10, Lemma 17] yields for every fixed ϵ > 0

lim
δ→0

∫
T2

∣∣∣∣Ẽ [∫ t

0

Rδ [u
ϵ
s + vϵs,Ξ

ϵ
s] (ϕ

ϵ
s((ϕ

ϵ
t)

−1(y)))ds

]∣∣∣∣ dy = 0,

and by well-known properties of mollifiers and Lebesgue dominated convergence Theorem
we can prove the convergence

Ẽ
[
Ξϵδ(0, (ϕ

ϵ
t)

−1) +

∫ t

0

qϵδ(s, ϕ
ϵ
s((ϕ

ϵ
t)

−1))ds

]
+ Ẽ

[∫ t

0

Rδ [u
ϵ
s + vϵs,Ξ

ϵ
s] (ϕ

ϵ
s((ϕ

ϵ
t)

−1))ds

]
→ Ẽ

[
Ξϵ(0, (ϕϵt)

−1) +

∫ t

0

qϵ(s, ϕϵs((ϕ
ϵ
t)

−1))ds

]
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in L1(T2) as δ → 0, for almost every ω ∈ Ω and t ∈ [0, T ]. Therefore, by (3.10) we have
and the uniqueness of the L1(T2) limit, for almost every ω ∈ Ω, t ∈ [0, T ] and y ∈ T2:

Ξϵ(t, y) = Ẽ
[
Ξϵ(0, (ϕϵt)

−1(y)) +

∫ t

0

qϵ(s, ϕϵs((ϕ
ϵ
t)

−1(y)))ds

]
,

that is exactly the desired representation formula (3.5). The argument for (3.10) is
similar, with only a little complication due to the stochastic integral, and we leave it to
the reader.

As a final remark, since we have seen that the notion of generalized solution is weaker
than the notion of L∞-weak solution, our results are indeed very general: they can be
applied at least to every L∞-weak solution.

3.1.4 Convergence of characteristics

We remind the reader that, for externally given uϵ and u satisfying (A1)-(A3), there exist
unique solutions of the characteristic equations and the large-scale dynamics, assuming
the latter is passive (cfr. Proposition 3.4). Strictly speaking, the results in this section
are formulated for passive scalars; however, we shall see in Section 3.5 that, a posteriori,
even in the active case, fields generated by large-scale processes satisfy all the needed
assumptions. Therefore the following Theorem 3.1.1 holds true in the more general case,
simply looking at an active large-scale process as a passive scalar compatible with the
external fields it generates.
Denote |x − y| the geodesic distance on the flat two dimensional torus between points
x, y ∈ T2. To keep the notation simple, we define the following quantity associated with
a measurable map ϕ : T2 → T2:

∥ϕ∥L1(T2,T2) :=

∫
T2

|ϕ(x)|dx.

Notice that ∥ · ∥L1(T2,T2) is not a norm on the space of measurable maps ϕ : T2 → T2, in
particular it is not positively homogeneous. However, ∥ · ∥L1(T2,T2) induces a distance on
the space C(T2,T2) of continuous maps ϕ : T2 → T2. Similarly, we define ∥ · ∥L∞(T2,T2) as

∥ϕ∥L∞(T2,T2) := ess sup
x∈T2

|ϕ(x)|.

In order to prove convergence of characteristics ϕϵ → ϕ, it is clear that one needs some
sort of control for the difference uϵ − u. Therefore, we assume:

(A4) there exist a constant C and a negligible set N ⊂ Ω such that for every ω ∈ N c,
ϵ > 0 and t ∈ [0, T ]:

∥uϵ(ω, t, ·)− u(ω, t, ·)∥L1(T2,R2) ≤ Cγ
(
Ẽ
[
∥ϕϵt − ϕt∥L1(T2,T2)

])
+ C

∫ t

0

γ
(
Ẽ
[
∥ϕϵs − ϕs∥L1(T2,T2)

])
ds+ cϵ,

where cϵ ∈ R is infinitesimal as ϵ → 0, ϕϵt = ϕϵ(ω, ω̃, t, ·) is the unique solution of
(3.3), and ϕt = ϕ(ω, ω̃, t, ·) is the unique solution of (3.4).
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A little less clear, at this point, is our next assumption on the coefficients (ςk)k∈N:

(A5) for every x ∈ T2 it holds
∑

k∈N((K ∗ ςk) · ∇ςk)(x) = 0.

The motivations for assuming (A5) will become evident during the proof of Proposition 3.7
in Section 3.2.
We are ready to state our main result on the convergence of characteristics:

Theorem 3.1.1. Assume (A1)-(A5). Let Ê [·] := EẼ [·] denote the expectation on Ω̂ :=
Ω× Ω̃ with respect to the probability measure P̂ := P⊗ P̃. Then

sup
t∈[0,T ]

Ê
[
∥ϕϵt − ϕt∥L1(T2,T2)

]
→ 0 as ϵ→ 0.

3.2 Technical results

3.2.1 Linearized dynamics

For ϵ > 0, denote θϵ the solution of the linear problem

dθϵt = −ϵ−1θϵtdt+ ϵ−1
∑
k∈N

ςkdW
k
t ,

with initial condition θϵ|t=0 = 0. The process θϵ is explicitly given by the formula θϵt =∑
k∈N ςkη

ϵ,k
t , where

ηϵ,kt := ϵ−1

∫ t

0

e−ϵ
−1(t−s)dW k

s , k ∈ N,

is the so called Ornstein-Uhlenbeck process with null initial condition. By [JZ20, Theorem
2.2], for every fixed p ≥ 1 it holds uniformly in k ∈ N

E

[
sup
t∈[0,T ]

|ηϵ,kt |p
]
≲ ϵ−p/2 logp/2(1 + ϵ−1), (3.11)

and therefore by assumption (A3)

E

[
sup
t∈[0,T ]

∥θϵt∥
p
W 1,∞(T2)

]
≲ ϵ−p/2 logp/2(1 + ϵ−1). (3.12)

The difference ζϵ := ξϵ−θϵ between the small-scale vorticity ξϵ and θϵ solves the equation

dζϵt + (uϵt + vϵt) · ∇ζϵtdt = −ϵ−1ζϵtdt− (uϵt + vϵt) · ∇θϵtdt

with initial condition ζϵ0 = 0, whose solution satisfies

ζϵt (ψ
ϵ
t(x)) = −

∫ t

0

e−ϵ
−1(t−s)((uϵs + vϵs) · ∇θϵs)(ψϵs(x))ds. (3.13)

In the following, for t ∈ [0, T ] and x ∈ T2 we denote zϵt (x) = (K ∗ ζϵt )(x).
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3.2.2 Main technical results

We are going to prove two main technical results, needed for the proof of Theorem 3.1.1.
Since our strategy consists in replicating the proof of [FP21, Proposition 4.1], the first
result we need is the following:

Proposition 3.6. Assume (A1)-(A3). Then the following inequality holds:

Ê

 sup
t∈[0,T ]

∥∥∥∥∥∑
k∈N

∫ t

0

σk(ϕ
ϵ
s(·))ηϵ,ks ds−

∑
k∈N

∫ t

0

σk(ϕ
ϵ
s(·)) ◦ dW k

s

∥∥∥∥∥
L1(T2,R2)


≲ ϵ1/42 log47/42(1 + ϵ−1).

In [FP21, Section 4] a similar estimate was proven along the way, using a considerable
amount of auxiliary lemmas and computations. In view of this, here we refrain from
going again into full detail, and the proof of Proposition 3.6 will only be sketched.
On the other hand, the nonlinear term in (3.1) produces a new term in the equation of
characteristcs, that was absent in [FP21]. Although the final results is not affected by
this new term, it is not trivial to actually prove so. We need the following:

Proposition 3.7. Assume (A1)-(A5). Then:

Ê

[
sup
t∈[0,T ]

∥∥∥∥∫ t

0

zϵs(ϕ
ϵ
s(·))ds

∥∥∥∥
L∞(T2,R2)

]
≲ ϵ1/12 log11/12(1 + ϵ−1).

The proof of Proposition 3.7 relies strongly on assumption (A5) and the following Itō
Formulas, yielding for every fixed t ∈ [0, T ] and k, h ∈ N:

ηϵ,kt ηϵ,ht = −ϵ−1

∫ t

0

e−ϵ
−1(t−s)ηϵ,ks ηϵ,hs ds

+ ϵ−1

∫ t

0

e−ϵ
−1(t−s)ηϵ,ks dW h

s + ϵ−1

∫ t

0

e−ϵ
−1(t−s)ηϵ,hs dW k

s

+ δk,h
ϵ−2

2

∫ t

0

e−ϵ
−1(t−s)ds,

ηϵ,kt ηϵ,ht = −2ϵ−1

∫ t

0

ηϵ,ks ηϵ,hs ds

+ ϵ−1

∫ t

0

ηϵ,ks dW h
s + ϵ−1

∫ t

0

ηϵ,hs dW k
s + δk,h

ϵ−2t

2
,

with δk,h being the Kronecker delta function, allowing to control the time integral of

quadratics ηϵ,ks ηϵ,hs . In the formula above we have used ηϵ,k0 = ηϵ,h0 = 0, although the
computations could be performed also for more general initial conditions.

3.2.3 Proof of Proposition 3.6

In this paragraph we recall the argument contained in [FP21]. Roughly speaking, Propo-
sition 3.6 is a sort of Wong-Zakai result for the Ornstein-Uhlenbeck process ηϵ,k converging
to a white-in-time noise, that is the formal time derivative of the Wiener process W k.
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We need to exploit a discretization of (3.3) to show the closeness, in a certain sense to
be specified, between the Stratonovich-to-Itō corrector c : T2 → R2, given by:

c(x) =
1

2

∑
k∈N

∇σk(x) · σk(x), x ∈ T2,

coming from the stochastic integral, and the iterated time integral of the Ornstein-
Uhlenbeck process.
In order to discretize the problem, for every ϵ > 0 take a mesh δ > 0 such that T/δ
is an integer. For any n = 0, . . . , T/δ − 1 and fixed x ∈ T2, consider the following
decomposition:∑
k∈N

∫ (n+1)δ

nδ

σk(ϕ
ϵ
s(x))η

ϵ,k
s ds =

∑
k∈N

∫ (n+1)δ

nδ

(∫ s

nδ

∇σk(ϕϵr(x)) · uϵr(ϕϵr(x))dr
)
ηϵ,ks ds

+
∑
k∈N

∫ (n+1)δ

nδ

(∫ s

nδ

∇σk(ϕϵr(x)) · zϵr(ϕϵr(x))dr
)
ηϵ,ks ds

+
∑
k,h∈N

∫ (n+1)δ

nδ

(∫ s

nδ

∇σk(ϕϵr(x)) · σh(ϕϵr(x))ηϵ,hr dr

)
ηϵ,ks ds

+
∑
k∈N

∫ (n+1)δ

nδ

(∫ s

nδ

∇σk(ϕϵr(x)) ·
√
2νdwr

)
ηϵ,ks ds

+
∑
k∈N

∫ (n+1)δ

nδ

σk(ϕ
ϵ
nδ(x))dW

k
s

−
∑
k∈N

∫ (n+1)δ

nδ

σk(ϕ
ϵ
nδ(x))ϵdη

ϵ,k
s

=: Iϵ1(n) + Iϵ2(n) + Iϵ3(n) + Iϵ4(n) + Iϵ5(n) + Iϵ6(n),

where the terms Iϵ2(n) and I
ϵ
3(n) come from the identity

vϵr(ϕ
ϵ
r(x)) = zϵr(ϕ

ϵ
r(x)) +

∑
h∈N

σh(ϕ
ϵ
r(x))η

ϵ,h
r ,

which can be obtained applying the Biot-Savart law to the identity ζϵ = ξϵ − θϵ defining
ζϵ. Regarding the Stratonovich integral, we can rewrite:∑

k∈N

∫ (n+1)δ

nδ

σk(ϕ
ϵ
s(x)) ◦ dW k

s =
∑
k∈N

∫ (n+1)δ

nδ

(σk(ϕ
ϵ
s(x))− σk(ϕ

ϵ
nδ(x))) dW

k
s

+
∑
k∈N

∫ (n+1)δ

nδ

σk(ϕ
ϵ
nδ(x))dW

k
s

+

∫ (n+1)δ

nδ

(c(ϕϵs(x))− c(ϕϵnδ(x))) ds

+

∫ (n+1)δ

nδ

c(ϕϵnδ(x))ds

=: J ϵ1(n) + J ϵ2(n) + J ϵ3(n) + J ϵ4(n).

The ingredients for the proof of Proposition 3.6 are:
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� a good estimate on Ê
[
supt∈[0,T ] |zϵt (ϕϵt(x))|

]
(cfr. Lemma 3.8), needed to control

Iϵ2(n);

� a good estimate on Ê
[
supτ≤δ |ϕϵτ+nδ(x)− ϕϵnδ(x)|

]
(cfr. Lemma 3.9), needed to

approximate Iϵ3(n) with∑
k,h∈N

∇σk(ϕnδ(x)) · σh(ϕnδ(x))
∫ (n+1)δ

nδ

(∫ s

nδ

ηϵ,hr dr

)
ηϵ,ks ds; (3.14)

� a better estimate on Ê
[
|ϕϵ(n+1)δ(x)− ϕϵnδ(x)|

]
(cfr. Lemma 3.10), needed to control

Iϵ6(n) with a discrete integration by parts.

Notice that Iϵ5(n) = J ϵ2(n). Also, the expression in (3.14) (which approximates Iϵ3(n))
must be compensated by subtracting J ϵ4(n).

Lemma 3.8. Assume (A1)-(A3). Then for every fixed p ≥ 1 it holds

E

[
sup
t∈[0,T ]

∥ζϵt∥
p
L∞(T2)

]
≲ logp(1 + ϵ−1).

In particular, since zϵt = K ∗ ζϵt we alse have

E

[
sup
t∈[0,T ]

∥zϵt∥
p
L∞(T2)

]
≲ logp(1 + ϵ−1).

Proof. We prove in the first place the weaker estimate:

E

[
sup
t∈[0,T ]

∥ζϵt∥
p
L∞(T2)

]
≲ ϵ−p. (3.15)

Since θϵ satisfies the bound above by (3.12), it suffices to prove it for ξϵ. DenoteM ϵ
t (x) =∑

k∈N
∫ t
0
ςk(ψ

ϵ
s(x))dW

k
s . Since for every s, t ∈ [0, T ]

E
[
∥M ϵ

t −M ϵ
s∥4L∞(T2)

]
≲

(∑
k∈N

∥ςk∥2L∞(T2)

)2

(t− s)2,

by (A3) and Kolmogorov continuity Theorem the process M ϵ : Ω × [0, T ] → L∞(T2)
has a modification M̃ ϵ that is α-Hölder continuous for every α < 1/4, with α-Hölder
constant Kϵ,α bounded in Lp(Ω) for every p <∞ uniformly in ϵ. SinceM ϵ has continuous
trajectories, M ϵ

t = M̃ ϵ
t a.s. as random variables in L∞(T2) and

ξϵt (ψ
ϵ
t(x)) = ϵ−1

∫ t

0

e−ϵ
−1(t−s)dM ϵ

s(x)

= ϵ−1

∫ t

0

e−ϵ
−1(t−s)d(M ϵ

s(x)−M ϵ
t (x))

= ϵ−1
[
e−ϵ

−1(t−s)(M ϵ
s(x)−M ϵ

t (x))
]s=t
s=0

− ϵ−2

∫ t

0

e−ϵ
−1(t−s)(M ϵ

s(x)−M ϵ
t (x))ds.
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Clearly ∥ξϵt∥L∞(T2) = ∥ξϵt ◦ ψϵt∥L∞(T2), and therefore

∥ξϵt∥L∞(T2) ≤ ϵ−1e−ϵ
−1t∥M ϵ

t ∥L∞(T2) + ϵ−1Kϵ,α,

and (3.15) follows.
Recalling (3.13), the following inequality holds

∥ζϵt∥L∞(T2) ≤
∫ t

0

e−ϵ
−1(t−s)∥(uϵs + vϵs) · ∇θϵs∥L∞(T2)ds. (3.16)

Using assumption (A2) and vϵs = K ∗ ζϵs +K ∗ θϵs we get

∥(uϵs + vϵs) · ∇θϵs∥L∞(T2) ≲
(
1 + ∥ζϵs∥L∞(T2) + ∥θϵs∥L∞(T2)

)
∥∇θϵs∥L∞(T2),

that can be plugged back into (3.16) to produce the recursive estimate

∥ζϵt∥L∞(T2) ≲
∫ t

0

e−ϵ
−1(t−s) (1 + ∥θϵs∥L∞(T2)

)
∥∇θϵs∥L∞(T2)ds

+

∫ t

0

e−ϵ
−1(t−s)∥ζϵs∥L∞(T2)∥∇θϵs∥L∞(T2)ds

≲ ϵ

(
sup
s∈[0,T ]

∥θϵs∥L∞(T2) + sup
s∈[0,T ]

∥ζϵs∥L∞(T2)

)
sup
s∈[0,T ]

∥∇θϵs∥L∞(T2).

By Hölder inequality and (3.15) we deduce from the previous inequality

E

[
sup
t∈[0,T ]

∥ζϵt∥
p
L∞(T2)

]
≲ logp(1 + ϵ−1) + ϵ−p/2 logp/2(1 + ϵ−1),

improving the bound (3.15) itself. Iterating the same argument one more time we obtain
the desired estimate.

Lemma 3.9. Assume (A1)-(A3). Then for every fixed p ≥ 1 and α ∈ (0, 1/2)

Ê

 sup
t+τ≤T
τ≤δ

∥ϕϵt+τ − ϕϵt∥
p
L∞(T2,T2)

 ≲ δpϵ−p/2 logp/2(1 + ϵ−1) + δpα.

Proof. The increment ϕϵt+τ (x)− ϕϵt(x) can be written as

ϕϵt+τ (x)− ϕϵt(x) =

∫ t+τ

t

uϵs(ϕ
ϵ
s(x))ds+

∑
k∈N

∫ t+τ

t

σk(ϕ
ϵ
s(x))η

ϵ,k
s ds

+

∫ t+τ

t

zs(ϕ
ϵ
s(x))ds+

√
2ν(wt+τ − wt),

therefore, by assumption (A2) we have

sup
t+τ≤T

∥ϕϵt+τ − ϕϵt∥L∞(T2,T2) ≲ τ + τ
∑
k∈N

∥σk∥L∞(T2) sup
s∈[0,T ]

|ηϵ,ks |

+ τ sup
s∈[0,T ]

∥ζϵs∥L∞(T2) +Kατ
α,

where Kα denotes the α-Hölder constant of w. The thesis follows easily by (A3), (3.11)
and Lemma 3.8.
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Lemma 3.10. Assume (A1)-(A3). Then for every fixed p ≥ 1 we have, uniformly in
n = 0, . . . , T/δ − 1:

Ê
[
∥ϕϵ(n+1)δ − ϕϵnδ∥

p
L∞(T2,T2)

]
≲ δ2pϵ−p logp(1 + ϵ−1)

+ δp(1+α)ϵ−p/2 logp/2(1 + ϵ−1)

+ δp/2 + ϵp/2 logp/2(1 + ϵ−1).

Proof. The increment ϕϵ(n+1)δ(x)− ϕϵnδ(x) can be written as

ϕϵ(n+1)δ(x)− ϕϵnδ(x) =

∫ (n+1)δ

nδ

uϵs(ϕ
ϵ
s(x))ds

+
∑
k∈N

∫ (n+1)δ

nδ

(σk(ϕ
ϵ
s(x))− σk(ϕ

ϵ
nδ(x))) η

ϵ,k
s ds

+
∑
k∈N

∫ (n+1)δ

nδ

σk(ϕ
ϵ
nδ(x))η

ϵ,k
s ds

+

∫ (n+1)δ

nδ

zϵs(ϕ
ϵ
s(x))ds+

√
2ν(w(n+1)δ − wnδ).

The first, fourth and fifth term are easy. The second one is bounded in L∞(T2,T2)
uniformly in n by∫ δ

0

∑
k∈N

∥∇σk∥L∞(T2,R4) sup
t+s≤T

∥ϕϵt+s − ϕϵt∥L∞(T2,T2) sup
s∈[0,T ]

|ηϵ,ks |ds,

and by (A3) and Hölder inequality with exponent q > 1

Ê

[(∫ δ

0

∑
k∈N

∥∇σk∥L∞(T2,R4) sup
t+s≤T

∥ϕϵt+s − ϕϵt∥L∞(T2,T2) sup
s∈[0,T ]

|ηϵ,ks |ds

)p]

≤ δp−1

(∑
k∈N

∥∇σk∥L∞(T2,R4)

)p−1 ∫ δ

0

∑
k∈N

∥∇σk∥L∞(T2,R4)

× Ê
[
sup
t+s≤T

∥ϕϵt+s − ϕϵt∥
pq
L∞(T2,T2)

]1/q
Ê

[
sup
s∈[0,T ]

|ηϵ,ks |pq′
]1/q′

ds

≲ δp−1

∫ δ

0

(
spϵ−p logp(1 + ϵ−1)ds+ spαϵ−p/2 logp/2(1 + ϵ−1)

)
ds

≲ δ2pϵ−p logp(1 + ϵ−1) + δp(1+α)ϵ−p/2 logp/2(1 + ϵ−1).

The third term is bounded in L∞(T2,R2) by

∑
k∈N

∥σk∥L∞(T2,R2)

∣∣∣∣∣
∫ (n+1)δ

nδ

ηϵ,ks ds

∣∣∣∣∣ =∑
k∈N

∥σk∥L∞(T2,R2)

∣∣W k
(n+1)δ −W k

nδ

∣∣
+
∑
k∈N

∥σk∥L∞(T2,R2)ϵ
∣∣∣ηϵ,k(n+1)δ − ηϵ,knδ

∣∣∣ ,
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from which we deduce as usual

Ê

[(∑
k∈N

∥σk∥L∞(T2,R2)

∣∣∣∣∣
∫ (n+1)δ

nδ

ηϵ,ks ds

∣∣∣∣∣
)p]

≲ δp/2 + ϵp/2 logp/2(1 + ϵ−1).

Putting all together, the thesis follows.

Proof of Proposition 3.6. For any given t ∈ [0, T ], let ⌊t⌋ =: mδ be the largest multiple
of δ strictly smaller than t. We can therefore decompose∑

k∈N

∫ t

0

σk(ϕ
ϵ
s(x))η

ϵ,k
s ds =

∑
k∈N

∫ mδ

0

σk(ϕ
ϵ
s(x))η

ϵ,k
s ds+

∑
k∈N

∫ t

mδ

σk(ϕ
ϵ
s(x))η

ϵ,k
s ds

=
6∑
j=1

m−1∑
n=0

Iϵj (n) +
∑
k∈N

∫ t

mδ

σk(ϕ
ϵ
s(x))η

ϵ,k
s ds,

and in a similar fashion∑
k∈N

∫ t

0

σk(ϕ
ϵ
s(x)) ◦ dW k

s =
∑
k∈N

∫ mδ

0

σk(ϕ
ϵ
s(x)) ◦ dW k

s +
∑
k∈N

∫ t

mδ

σk(ϕ
ϵ
s(x)) ◦ dW k

s

=
4∑
j=1

m−1∑
n=0

J ϵj (n) +
∑
k∈N

∫ t

mδ

σk(ϕ
ϵ
s(x)) ◦ dW k

s .

By (3.11), the following estimate holds true

Ê

 sup
m=0,...,T/δ−1

t≤δ

∥∥∥∥∥∑
k∈N

∫ t

mδ

σk(ϕ
ϵ
s(·))ηϵ,ks ds

∥∥∥∥∥
L1(T2,R2)

 ≲ δϵ−1/2 log1/2(1 + ϵ−1).

Also, by (A3) and Kolmogorov continuity Theorem, for every fixed α ∈ (0, 1/2) we have

Ê

 sup
m=0,...,T/δ−1

t≤δ

∥∥∥∥∥∑
k∈N

∫ t

mδ

σk(ϕ
ϵ
s(·)) ◦ dW k

s

∥∥∥∥∥
L1(T2,R2)

 ≲ δα.

Finally, by calculations similar to those performed in Lemma 4.6 and Lemma 4.7 of
[FP21], for every fixed α ∈ (0, 1/2)

Ê

 sup
m=0,...,T/δ−1

∥∥∥∥∥
6∑
j=1

m−1∑
n=0

Iϵj (n)−
4∑
j=1

m−1∑
n=0

J ϵj (n)

∥∥∥∥∥
L1(T2,R2)


≲ δϵ−1/2 log3/2(1 + ϵ−1) + δα−1ϵ1/2 log(1 + ϵ−1)

+δ2ϵ−3/2 log3/2(1 + ϵ−1) + δ1+αϵ−1 log(1 + ϵ−1) + δα.

We conclude the proof fixing α close to 1/2 so that (1 + α)−1 < 3/4 < (2 − 2α)−1, for
instance α = 3/8, and optimizing over δ: for δ = ϵ16/21 log−4/21(1 + ϵ−1), it follows the
desired inequality

Ê

 sup
t∈[0,T ]

∥∥∥∥∥∑
k∈N

∫ t

0

σk(ϕ
ϵ
s(·))ηϵ,ks ds−

∑
k∈N

∫ t

0

σk(ϕ
ϵ
s(·)) ◦ dW k

s

∥∥∥∥∥
L1(T2,R2)


≲ ϵ1/42 log47/42(1 + ϵ−1).
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3.2.4 Proof of Proposition 3.7

Recall the content of Proposition 3.7: we need to prove, under assumptions (A1)-(A5)

Ê

[
sup
t∈[0,T ]

∥∥∥∥∫ t

0

zϵs(ϕ
ϵ
s(·))ds

∥∥∥∥
L∞(T2,R2)

]
≲ ϵ1/12 log11/12(1 + ϵ−1).

Comparing the desired inequality with Lemma 3.8, one realizes that time integration of
the process zϵs(ϕ

ϵ
s(x)) allows a better control due to cancellation of opposite-sign oscilla-

tions, even if the latter may become of large magnitude for ϵ going to zero.
Concerning the strategy of the proof, in the first place we prove the following:

Lemma 3.11. For every fixed t ∈ [0, T ] it holds

Ê

[∥∥∥∥∫ t

0

zϵs(ϕ
ϵ
s(·))ds

∥∥∥∥
L∞(T2,R2)

]
≲ ϵ1/6 log5/6(1 + ϵ−1).

Having at hands the previous result, the proof of Proposition 3.7 goes as follows: for
some parameter δ = T/m > 0, m ∈ N to be chosen, write

sup
t∈[0,T ]

∥∥∥∥∫ t

0

zϵs(ϕ
ϵ
s(·))ds

∥∥∥∥
L∞(T2,R2)

≤ sup
n=0,...,m−1

∥∥∥∥∫ nδ

0

zϵs(ϕ
ϵ
s(·))ds

∥∥∥∥
L∞(T2,R2)

+ sup
n=0,...,m−1

t≤δ

∥∥∥∥∫ nδ+t

nδ

zϵs(ϕ
ϵ
s(·))ds

∥∥∥∥
L∞(T2,R2)

≤
m−1∑
n=0

∥∥∥∥∫ nδ

0

zϵs(ϕ
ϵ
s(·))ds

∥∥∥∥
L∞(T2,R2)

+ δ sup
s∈[0,T ]

∥zϵs(ϕϵs(·))∥L∞(T2,R2).

Hence, by Lemma 3.8 and Lemma 3.11

Ê

[
sup
t∈[0,T ]

∥∥∥∥∫ t

0

zϵs(ϕ
ϵ
s(·))ds

∥∥∥∥
L∞(T2,R2)

]
≤

m−1∑
n=0

Ê

[∥∥∥∥∫ nδ

0

zϵs(ϕ
ϵ
s(·))ds

∥∥∥∥
L∞(T2,R2)

]

+ δÊ

[
sup
s∈[0,T ]

∥zϵs(ϕϵs(·))∥L∞(T2,R2)

]
≲ δ−1ϵ1/6 log5/6(1 + ϵ−1) + δ log(1 + ϵ−1),

and the thesis follows by optimizing the choice of δ.

Proof of Lemma 3.11. We will work with fixed x ∈ T2. The reader can easily check that
all the inequalities present in the proof hold uniformly in x. Recall zϵt = K ∗ ζϵt , and for
ψϵt,s(x) := ψϵs((ψ

ϵ
t)

−1(x)) the formula

ζϵt (x) = −
∫ t

0

e−ϵ
−1(t−s)((uϵs +K ∗ ζϵs) · ∇θϵs)(ψϵt,s(x))ds

−
∫ t

0

e−ϵ
−1(t−s)((K ∗ θϵs) · ∇θϵs)(ψϵt,s(x))ds.
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For notational simplicity let Θϵ
s := (K ∗ θϵs) · ∇θϵs, and rewrite

ζϵt (x) = −
∫ t

0

e−ϵ
−1(t−s)((uϵs +K ∗ ζϵs) · ∇θϵs)(ψϵt,s(x))ds

−
∫ t

0

e−ϵ
−1(t−s) (Θϵ

s(ψ
ϵ
t,s(x))−Θϵ

s(x)
)
ds

−
∫ t

0

e−ϵ
−1(t−s)Θϵ

s(x)ds

=: ζϵ,1t (x) + ζϵ,2t (x) + ζϵ,3t (x).

Let us focus on the terms ζϵ,j, j = 1, 2, 3 separately. Concerning ζϵ,1,

∥ζϵ,1t ∥L∞(T2) ≲
∫ t

0

e−ϵ
−1(t−s)ds

(
1 + sup

s∈[0,T ]
∥ζϵs∥L∞(T2)

)
× sup

s∈[0,T ]
∥∇θϵs∥L∞(T2,R2),

and thus the following holds by assumption (A2) and Lemma 3.8

sup
t∈[0,T ]

Ê
[
∥ζϵ,1t ∥L∞(T2)

]
≲ ϵ1/2 log3/2(1 + ϵ−1). (3.17)

Moving to ζϵ,2, notice that |ψϵt,s(x)−x| = |ψϵt,s(x)−ψϵt,t(x)|, and letting y = (ψϵt)
−1(x) we

have

|ψϵt,s(x)− ψϵt,t(x)| = |ψϵs(y)− ψϵt(y)|

≤
∫ t

s

|uϵr(ψϵr(y))|dr +
∫ t

s

|vϵr(ψϵr(y))|dr

≲ |t− s|

(
1 + sup

r∈[0,T ]
∥ζϵr∥L∞(T2) + sup

r∈[0,T ]
∥θϵr∥L∞(T2)

)
,

therefore

∥ζϵ,2t ∥L∞(T2) ≲
∫ t

0

e−ϵ
−1(t−s)|t− s|ds sup

s∈[0,T ]
∥∇Θϵ

s∥L∞(T2,R2)

×

(
1 + sup

r∈[0,T ]
∥ζϵr∥L∞(T2) + sup

r∈[0,T ]
∥θϵr∥L∞(T2)

)
,

that implies

sup
t∈[0,T ]

Ê
[
∥ζϵ,2t ∥L∞(T2)

]
≲ ϵ1/2 log3/2(1 + ϵ−1). (3.18)

Finally, let us consider the term ζϵ,3, which requires a preliminary manipulation. Since
θϵs(x) =

∑
k∈N σk(x)η

ϵ,k
s , we can rewrite for every x ∈ T2

Θϵ
s(x) =

∑
k,h∈N

(σk · ∇ςh)(x)ηϵ,ks ηϵ,hs =:
∑
k,h∈N

Θk,h(x)η
ϵ,k
s ηϵ,hs ,

63



Chapter 3. From additive to transport noise in 2D fluids

where we have used σk = K ∗ ςk and Θk,h := σk · ∇ςh. Also, rewrite:

ζϵ,3t (x) = −
∫ t

0

e−ϵ
−1(t−s)Θϵ

s(x)ds

= −
∑
k,h∈N

Θk,h(x)

∫ t

0

e−ϵ
−1(t−s)ηϵ,ks ηϵ,hs ds.

By Itō Formula, for every fixed t and k, h ∈ N it holds

ηϵ,kt ηϵ,ht = −ϵ−1

∫ t

0

e−ϵ
−1(t−s)ηϵ,ks ηϵ,hs ds

+ ϵ−1

∫ t

0

e−ϵ
−1(t−s)ηϵ,ks dW h

s + ϵ−1

∫ t

0

e−ϵ
−1(t−s)ηϵ,hs dW k

s

+
ϵ−2

2
δk,h

∫ t

0

e−ϵ
−1(t−s)ds,

with δk,h being the Kronecker delta function: δk,h = 1 if k = h and δk,h = 0 if k ̸= h.
Otherwise said:

∫ t

0

e−ϵ
−1(t−s)ηϵ,ks ηϵ,hs ds = −ϵηϵ,kt ηϵ,ht (3.19)

+

∫ t

0

e−ϵ
−1(t−s)ηϵ,ks dW h

s +

∫ t

0

e−ϵ
−1(t−s)ηϵ,hs dW k

s

+
1− eϵ

−1t

2
δk,h.

By (3.19) and assumption (A5), for every x ∈ T2 we have

ζϵ,3t (x) =
∑
k,h∈N

Θϵ
k,h(x)ϵη

ϵ,k
t ηϵ,ht

−
∑
k,h∈N

Θϵ
k,h(x)

(∫ t

0

e−ϵ
−1(t−s)ηϵ,ks dW h

s +

∫ t

0

e−ϵ
−1(t−s)ηϵ,hs dW k

s

)
,

and therefore we can rewrite

∫ t

0

(K ∗ ζϵ,3s )(ϕϵs(x))ds =
∑
k,h∈N

∫ t

0

(K ∗Θϵ
k,h)(ϕ

ϵ
s(x))ϵη

ϵ,k
s ηϵ,hs ds

−
∑
k,h∈N

∫ t

0

(K ∗Θk,h)(ϕ
ϵ
s(x))

(∫ s

0

e−ϵ
−1(s−r)ηϵ,kr dW h

r +

∫ s

0

e−ϵ
−1(s−r)ηϵ,hr dW k

r

)
ds.
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Thus,

Ê
[∣∣∣∣∫ t

0

(K ∗Θϵ
k,h)(ϕ

ϵ
s(x))

∫ s

0

e−ϵ
−1(s−r)ηϵ,kr dW h

r ds

∣∣∣∣]
= Ê

[∣∣∣∣∫ t

0

(∫ t

r

(K ∗Θϵ
k,h)(ϕ

ϵ
s(x))e

−ϵ−1(s−r)ds

)
ηϵ,kr dW h

r

∣∣∣∣]

≲ Ê

[∣∣∣∣∫ t

0

(∫ t

r

(K ∗Θϵ
k,h)(ϕ

ϵ
s(x))e

−ϵ−1(s−r)ds

)
ηϵ,kr dW h

r

∣∣∣∣2
]1/2

≲ Ê

[∫ t

0

(∫ t

r

(K ∗Θϵ
k,h)(ϕ

ϵ
s(x))e

−ϵ−1(s−r)ds

)2

|ηϵ,kr |2dr

]1/2
≲ ϵ1/2 log1/2(1 + ϵ−1).

The last non-trivial term is manipulated as follows. Let δ = t/m > 0, m ∈ N to be
suitably chosen. We have∑

k,h∈N

∫ t

0

(K ∗Θk,h)(ϕ
ϵ
s(x))ϵη

ϵ,k
s ηϵ,hs ds (3.20)

=
∑
k,h∈N

m−1∑
n=0

∫ (n+1)δ

nδ

((K ∗Θk,h)(ϕ
ϵ
s(x))− (K ∗Θk,h)(ϕ

ϵ
nδ(x))) ϵη

ϵ,k
s ηϵ,hs ds

+
∑
k,h∈N

m−1∑
n=0

(K ∗Θk,h)(ϕ
ϵ
nδ(x))

∫ (n+1)δ

nδ

ϵηϵ,ks ηϵ,hs ds.

Recalling (3.3), for every α ∈ (0, 1/2) it holds

|ϕϵt(x)− ϕϵs(x)| ≤
∫ t

s

|uϵr(ϕϵr(x))|dr +
∫ t

s

|vϵr(ϕϵr(x))|dr +
√
2ν(wt − ws)

≲ |t− s|

(
1 + sup

r∈[0,T ]
∥ζϵr∥L∞(T2) + sup

r∈[0,T ]
∥θϵr∥L∞(T2)

)
+ |t− s|α,

which implies

Ê

[∣∣∣∣∣∑
k,h∈N

m−1∑
n=0

∫ (n+1)δ

nδ

((K ∗Θk,h)(ϕ
ϵ
s(x))− (K ∗Θk,h)(ϕ

ϵ
nδ(x))) ϵη

ϵ,k
s ηϵ,hs ds

∣∣∣∣∣
]

(3.21)

≲ δϵ−1/2 log3/2(1 + ϵ−1) + δα log(1 + ϵ−1).

Also, we can apply Itō Formula again to find an alternative representation for the time
integral of the quadratics ηϵ,ks ηϵ,hs , similar to (3.19). Indeed,

ηϵ,k(n+1)δη
ϵ,h
(n+1)δ − ηϵ,knδ η

ϵ,h
nδ = −2ϵ−1

∫ (n+1)δ

nδ

ηϵ,kt ηϵ,ht dt

+ ϵ−1

∫ (n+1)δ

nδ

ηϵ,kt dW h
t + ϵ−1

∫ (n+1)δ

nδ

ηϵ,ht dW k
t

+
ϵ−2δ

2
δk,h,
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and rearranging the terms we obtain∫ (n+1)δ

nδ

ϵηϵ,kt ηϵ,ht dt =
ϵ2

2

(
ηϵ,knδ η

ϵ,h
nδ − ηϵ,k(n+1)δη

ϵ,h
(n+1)δ

)
(3.22)

+
ϵ

2

∫ (n+1)δ

nδ

ηϵ,kt dW h
t +

ϵ

2

∫ (n+1)δ

nδ

ηϵ,ht dW k
t +

δ

4
δk,h.

Finally, making use of (3.22) above and assumption (A5) we can rewrite

∑
k,h∈N

m−1∑
n=0

(K ∗Θk,h)(ϕ
ϵ
nδ(x))

∫ (n+1)δ

nδ

ϵηϵ,ks ηϵ,hs ds

=
∑
k,h∈N

m−1∑
n=0

(K ∗Θk,h)(ϕ
ϵ
nδ(x))

ϵ2

2

(
ηϵ,knδ η

ϵ,h
nδ − ηϵ,k(n+1)δη

ϵ,h
(n+1)δ

)
+
∑
k,h∈N

m−1∑
n=0

(K ∗Θk,h)(ϕ
ϵ
nδ(x))

(
ϵ

2

∫ (n+1)δ

nδ

ηϵ,kt dW h
t +

ϵ

2

∫ (n+1)δ

nδ

ηϵ,ht dW k
t

)
.

We have

Ê

[∣∣∣∣∣∑
k,h∈N

m−1∑
n=0

(K ∗Θk,h)(ϕ
ϵ
nδ(x))

ϵ2

2

(
ηϵ,knδ η

ϵ,h
nδ − ηϵ,k(n+1)δη

ϵ,h
(n+1)δ

)∣∣∣∣∣
]

(3.23)

≲ δ−1ϵ log(1 + ϵ−1),

and

Ê

[∣∣∣∣∣∑
k,h∈N

m−1∑
n=0

(K ∗Θk,h)(ϕ
ϵ
nδ(x))

ϵ

2

∫ (n+1)δ

nδ

ηϵ,kt dW h
t

∣∣∣∣∣
]

(3.24)

≲
m−1∑
n=0

ϵÊ

∣∣∣∣∣
∫ (n+1)δ

nδ

ηϵ,kt dW h
t

∣∣∣∣∣
2
1/2

≲ δ−1/2ϵ1/2 log1/2(1 + ϵ−1).

It only remains to choose δ in a suitable way, so that all the terms (3.21), (3.23) and
(3.23) are infinitesimal in the limit ϵ → 0. Taking for instance α = 1/3 and optimizing
over δ gives

Ê
[∣∣∣∣∫ t

0

(K ∗ ζϵ,3s )(ϕϵs(x))ds

∣∣∣∣] ≲ ϵ1/6 log5/6(1 + ϵ−1). (3.25)

Considering (3.17), (3.18) and (3.25), we finally get the desired estimate: the proof is
complete.

3.3 Convergence of characteristics

In this section we prove our major result on convergence of characteristics Theorem 3.1.1.
The proof is based on Itō Formula for a smooth approximation gδ(x) of the absolute value
|x|.
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Proof of Theorem 3.1.1. The difference ϕϵ−ϕ solves P̂-a.s. for every t ∈ [0, T ] and x ∈ T2:

ϕϵt(x)− ϕt(x) =

∫ t

0

uϵs(ϕ
ϵ
s(x))ds−

∫ t

0

us(ϕ
ϵ
s(x))ds

+

∫ t

0

us(ϕ
ϵ
s(x))ds−

∫ t

0

us(ϕs(x))ds

+
∑
k∈N

∫ t

0

σk(ϕ
ϵ
s(x))η

ϵ,k
s ds−

∑
k∈N

∫ t

0

σk(ϕ
ϵ
s(x)) ◦ dW k

s

+
∑
k∈N

∫ t

0

σk(ϕ
ϵ
s(x)) ◦ dW k

s −
∑
k∈N

∫ t

0

σk(ϕs(x)) ◦ dW k
s

+

∫ t

0

zϵs(ϕ
ϵ
s(x))ds.

For δ > 0, introduce the smooth function gδ : R2 → R defined by gδ(x) := (|x|2+ δ)1/2. It
holds ∂xjgδ(x) = xjgδ(x)

−1 and ∂xj∂xigδ(x) = gδ(x)
−1(δi,j−xixjgδ(x)

−2) for every x ∈ R2

and j = 1, 2, and moreover |x| ≤ gδ(x) ≤ |x|+ δ1/2.
Denote

Rϵ
t(x) :=

∫ t

0

zϵs(ϕ
ϵ
s(x))ds+

∑
k∈N

∫ t

0

σk(ϕ
ϵ
s(x))η

ϵ,k
s ds−

∑
k∈N

∫ t

0

σk(ϕ
ϵ
s(x)) ◦ dW k

s ,

and

Zϵ
t (x) := ϕϵt(x)− ϕt(x)−Rϵ

t(x),

both seen as functions on the whole plane R2. Applying Itō Formula to gδ(Z
ϵ
t (x)) yields:

dgδ(Z
ϵ
t (x)) = Zϵ

t (x)gδ(Z
ϵ
t (x))

−1 · (uϵt(ϕϵt(x))− ut(ϕ
ϵ
t(x))) dt

+ Zϵ
t (x)gδ(Z

ϵ
t (x))

−1 · (ut(ϕϵt(x))− ut(ϕt(x))) dt

+
∑
k∈N

Zϵ
t (x)gδ(Z

ϵ
t (x))

−1 · (σk(ϕϵt(x))− σk(ϕt(x))) dW
k
t

+ Zϵ
t (x)gδ(Z

ϵ
t (x))

−1 · (c(ϕϵt(x))− c(ϕt(x))) dt

+
∑
k∈N

2∑
i,j=1

gδ(Z
ϵ
t (x))

−1(δi,j − (Zϵ
t (x))

i(Zϵ
t (x))

jgδ(Z
ϵ
t (x))

−2)

× (σk(ϕ
ϵ
t(x))− σk(ϕt(x)))

i (σk(ϕ
ϵ
t(x))− σk(ϕt(x)))

j dt,

and therefore

Ê [|ϕϵt(x)− ϕϵt(x)|] ≤ Ê [|Zϵ
t (x)|] + Ê [|Rϵ

t(x)|] ≤ Ê [gδ(Z
ϵ
t (x))] + Ê [|Rϵ

t(x)|]

≲ δ1/2 + Ê [|Rϵ
t(x)|] + Ê

[∫ t

0

|uϵs(ϕϵs(x))− us(ϕ
ϵ
s(x))| ds

]
+ Ê

[∫ t

0

|us(ϕϵs(x))− us(ϕs(x))| ds
]

+ Ê
[∫ t

0

|ϕϵs(x)− ϕs(x)| ds
]
+ δ−1/2Ê

[
sup
t∈[0,T ]

|Rϵ
t(x)|

]
,

67



Chapter 3. From additive to transport noise in 2D fluids

where in the last line we have used gδ(Z
ϵ
s(x))

−1 ≤ δ−1/2 and |ϕϵs(x)− ϕs(x)| ≲ |Zϵ
s(x)| +

|Rϵ
s(x)|.

Taking the integral over x ∈ T2 and using assumptions (A2), (A4), concavity of the
function γ, Jensen inequality, Proposition 3.6 and Proposition 3.7 we get

Ê
[
∥ϕϵt − ϕt∥L1(T2,T2)

]
≲ δ1/2 + δ−1/2ϵ1/42 log47/42(1 + ϵ−1) + cϵ

+

∫ t

0

γ
(
Ê
[
∥ϕϵs − ϕs∥L1(T2,T2)

])
ds

uniformly in t ∈ [0, T ] and δ > 0. Taking δ = ϵ1/42 log47/42(1+ ϵ−1) we deduce the desired
result by Lemma 3.2.

3.4 Convergence of large-scale dynamics

In order to prove the convergence of the large-scale processes Ξϵ → Ξ, we need assump-
tions on the source terms. Hence, let qϵ, q : [0, T ]× T2 → R be such that:

(A6) there exists a constant C such that for every ϵ > 0 it holds qϵ, q ∈
L1([0, T ], L∞(T2)) and

∫ T

0

∥qϵs∥L∞(T2)ds ≤ C,

∫ T

0

∥qs∥L∞(T2)ds ≤ C;

(A7) qϵ − q converges to zero in L1([0, T ], L∞(T2)).

Recall the representation formulas for the solutions of (3.1) and (3.2)

Ξϵt = Ẽ
[
Ξ0 ◦ (ϕϵt)−1 +

∫ t

0

qϵs ◦ ϕϵs ◦ (ϕϵt)−1ds

]
,

Ξt = Ẽ
[
Ξ0 ◦ (ϕt)−1 +

∫ t

0

qs ◦ ϕs ◦ (ϕt)−1ds

]
,

with ϕϵ and ϕ solving respectively (3.3) and (3.4).

As made clear by the following proof, these representation formulas are the key ingredient
needed to show Theorem 1.2, thus justifying our Definition 3.3 in terms of these identities.
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Proof of Theorem 1.2. Let f ∈ L1(T2) and t ∈ [0, T ]. We have∣∣∣∣∫
T2

Ξϵt(x)f(x)dx−
∫
T2

Ξt(x)f(x)dx

∣∣∣∣
≤
∣∣∣∣∫

T2

Ẽ
[
Ξ0((ϕ

ϵ
t)

−1(x))
]
f(x)dx−

∫
T2

Ẽ
[
Ξ0((ϕt)

−1(x))
]
f(x)dx

∣∣∣∣
+

∣∣∣∣∫
T2

Ẽ
[∫ t

0

qϵs(ϕ
ϵ
s((ϕ

ϵ
t)

−1(x)))ds

]
f(x)dx−

∫
T2

Ẽ
[∫ t

0

qs(ϕs((ϕt)
−1(x)))ds

]
f(x)dx

∣∣∣∣
=

∣∣∣∣Ẽ [∫
T2

Ξ0((ϕ
ϵ
t)

−1(x))f(x)dx−
∫
T2

Ξ0((ϕt)
−1(x))f(x)dx

]∣∣∣∣
+

∣∣∣∣Ẽ [∫
T2

∫ t

0

qϵs(ϕ
ϵ
s((ϕ

ϵ
t)

−1(x)))dsf(x)dx−
∫
T2

∫ t

0

qs(ϕs((ϕt)
−1(x)))dsf(x)dx

]∣∣∣∣
=

∣∣∣∣Ẽ [∫
T2

Ξ0(y)f(ϕ
ϵ
t(y))dy −

∫
T2

Ξ0(y)f(ϕt(y))dy

]∣∣∣∣
+

∣∣∣∣Ẽ [∫ t

0

∫
T2

qϵs(ϕ
ϵ
s(y))f(ϕ

ϵ
t(y))dyds−

∫ t

0

∫
T2

qs(ϕs(y))f(ϕt(y)dyds

]∣∣∣∣ .
Taking expectation with respect to P, the first summand is bounded by

E
∣∣∣∣Ẽ [∫

T2

Ξ0(y)f(ϕ
ϵ
t(y))dy −

∫
T2

Ξ0(y)f(ϕt(y))dy

]∣∣∣∣
≤ ∥Ξ0∥L∞(T2)Ê

[∫
T2

|f(ϕϵt(y))− f(ϕt(y))| dy
]
. (3.26)

As for the second term, we can rewrite∫ t

0

∫
T2

qϵs(ϕ
ϵ
s(y))f(ϕ

ϵ
t(y))dyds−

∫ t

0

∫
T2

qs(ϕs(y))f(ϕt(y))dyds

=

∫ t

0

∫
T2

qϵs(ϕ
ϵ
s(y))f(ϕ

ϵ
t(y))dyds−

∫ t

0

∫
T2

qϵs(ϕ
ϵ
s(y))f(ϕt(y))dyds

+

∫ t

0

∫
T2

qϵs(ϕ
ϵ
s(y))f(ϕt(y))dyds−

∫ t

0

∫
T2

qs(ϕ
ϵ
s(y))f(ϕt(y))dyds

+

∫ t

0

∫
T2

qs(ϕ
ϵ
s(y))f(ϕt(y))dyds−

∫ t

0

∫
T2

qs(ϕs(y))f(ϕt(y))dyds,

with estimates

Ê
[∣∣∣∣∫ t

0

∫
T2

qϵs(ϕ
ϵ
s(y))f(ϕ

ϵ
t(y))dyds−

∫ t

0

∫
T2

qϵs(ϕ
ϵ
s(y))f(ϕt(y))dyds

∣∣∣∣]
≤
∫ t

0

∥qϵs∥L∞(T2)dsÊ
[∫

T2

|f(ϕϵt(y))− f(ϕt(y))|dy
]
; (3.27)

Ê
[∣∣∣∣∫ t

0

∫
T2

qϵs(ϕ
ϵ
s(y))f(ϕt(y))dyds−

∫ t

0

∫
T2

qs(ϕ
ϵ
s(y))f(ϕt(y))dyds

∣∣∣∣]
≤
∫ t

0

∥qϵs − qs∥L∞(T2)ds∥f∥L1(T2); (3.28)
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and

Ê
[∣∣∣∣∫ t

0

∫
T2

qs(ϕ
ϵ
s(y))f(ϕt(y))dyds−

∫ t

0

∫
T2

qs(ϕs(y))f(ϕt(y))dyds

∣∣∣∣]
≤ Ê

[∫ t

0

∫
T2

|qs(ϕϵs(y))− qs(ϕs(y))||f(ϕt(y))|dyds
]

=: Ê
[∫ t

0

∫
T2

|qs(ϕϵs(y))− qs(ϕs(y))|dµ(y)ds
]
, (3.29)

where dµ(y) := |f(ϕt(y))|dy is a random Radon measure on T2.

By assumptions (A6) and (A7), the terms (3.26), (3.27) and (3.28) go to zero as ϵ → 0,
using the same reasoning of [FP21, Theorem 5.1]. Therefore, here we restrict ourselves
to only consider the remaining term (3.29).

Let us argue per absurdum. Suppose by contradiction that there exists a subsequence
ϵk → 0 such that

Ê
[∫ t

0

∫
T2

|qs(ϕϵks (y))− qs(ϕs(y))|dµ(y)ds
]
≥ C (3.30)

for some C > 0 and for every ϵk.

Let N and N be negligible sets such that ϕt is measure preserving for every ω ∈ N c and
ω̃ ∈ Ñ c.

Take δ > 0. By Lusin Theorem [Rud70, Theorem 2.23] there exists a measurable set
Cδ ⊂ [0, t] × T2 with L[0,t] ⊗ LT2([0, t] × T2 \ Cδ) < δ and a continuous function Qδ ∈
C([0, t]× T2) that coincides with q on Cδ. Therefore∫ t

0

∫
T2

|qs(ϕϵks (y))− qs(ϕs(y))|dµ(y)ds =
∫
Cδ

|qs(ϕϵks (y))− qs(ϕs(y))|dµ(y)ds

+

∫
[0,t]×T2\Cδ

|qs(ϕϵks (y))− qs(ϕs(y))|dµ(y)ds

≤
∫
[0,t]×T2

|Qδ(s, ϕ
ϵk
s (y))−Qδ(s, ϕs(y))|dµ(y)ds

+ 2

∫
[0,t]×T2\Cδ

∥qs∥L∞(T2)dµ(y)ds.

Let us consider the second term first. Recalling dµ(y) = |f(ϕt(y))|dy, we have∫
[0,t]×T2\Cδ

∥qs∥L∞(T2)dµ(y)ds =

∫
[0,t]×T2\Cδ

∥qs∥L∞(T2)|f(ϕt(y))|dyds

=

∫
ϕ−1
t (Cc

δ )

∥qs∥L∞(T2)|f(y)|dyds,

with ϕ−1
t (Cc

δ) := {(s, y) : (s, ϕt(y)) ∈ Cc
δ}. Since ϕt is measure preserving for every

ω ∈ N c and ω̃ ∈ Ñ c, it is easy to check

L[0,t] ⊗ LT2(ϕ−1
t (Cc

δ)) = L[0,t] ⊗ LT2(Cc
δ) < δ
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P̂-almost surely, and since ∥q∥L∞(T2)|f | ∈ L1([0, t]× T2), absolute continuity of Lebesgue

integral gives the existence of δ > 0 such that for every ω ∈ N c and ω̃ ∈ Ñ c∫
[0,t]×T2\Cδ

∥qs∥L∞(T2)dµ(y)ds < C/3.

We fix such a δ hereafter. For the first term we argue as follows: since we have proved

sup
t∈[0,T ]

Ê
[
∥ϕϵkt − ϕt∥L1(T2,T2)

]
→ 0

as ϵk → 0, then for every fixed s ∈ [0, T ] there exists a subsequence (that we still denote
ϵk) such that the maps

Φϵk
s : Ω̂× T2 → [0, T ]× T2,

Φϵk
s (ω̂, y) = (s, ϕϵ(ω̂, s, y))

converge P̂⊗LT2-almost everywhere to Φs given by Φs(ω̂, y) = (s, ϕ(ω̂, s, y)). By almost
sure continuity in time of Φϵk

s and Φs, it is possible to extract a common subsequence
ϵk → 0 such that Φϵk

s converges P̂⊗ LT2-almost everywhere to Φs simultaneously for all
s ∈ [0, T ].
Therefore, since Qδ is continuous on [0, t]× T2, also Qδ(Φ

ϵk) converges P̂⊗ L[0,t] ⊗ LT2-
almost everywhere to Qδ(Φ), and since µ is absolutely continuous with respect to LT2

for almost every ω̂ ∈ Ω̂, the convergence is actually P̂ ⊗ L[0,t] ⊗ µω̂-almost everywhere;
moreover, Qδ(Φ

ϵk) is dominated by the constant sups∈[0,t],y∈T2 |Qδ(s, y)|, and Lebesgue

dominated convergence yields convergence in L1(Ω̂× [0, T ]× T2, P̂⊗ L[0,t] ⊗ µω̂), that is

Ê
[∫

[0,t]×T2

|Qδ(s, ϕ
ϵk
s (y))−Qδ(s, ϕs(y))|dµ(y)ds

]
→ 0,

as ϵk → 0. This contradicts (3.30), and therefore we have proved: for every f ∈ L1(T2)

E
∣∣∣∣∫

T2

Ξϵt(x)f(x)dx−
∫
T2

Ξt(x)f(x)dx

∣∣∣∣→ 0 as ϵ→ 0,

for every fixed t ∈ [0, T ]. Since ∥Ξϵt∥L∞(T2) is bounded uniformly in ϵ > 0 and t ∈
[0, T ], pointwise converges implies convergence in Lp([0, T ]) for every finite p by Lebesgue
dominated convergence Theorem.
Finally, if q ∈ L1([0, T ], Lip(T2)) and f ∈ Lip(T2) with [f ]Lip(T2) ≤ 1, we have

Ê
[∫

T2

|f(ϕϵt(y))− f(ϕt(y))| dy
]
≤ Ê

[∫
T2

|ϕϵt(y)− ϕt(y)| dy
]

≤ sup
t∈[0,T ]

Ê
[
∥ϕϵt − ϕt∥L1(T2,T2)

]
,

controlling (3.26) and (3.27) uniformly in f ; also, since ∥f∥L∞(T2) ≤ 1 it holds

Ê
[∫ t

0

∫
T2

|qs(ϕϵs(y))− qs(ϕs(y))||f(ϕt(y))|dyds
]

≤ Ê
[∫ t

0

∫
T2

∥qs∥Lip(T2)|ϕϵs(y)− ϕs(y)|dyds
]

≤
∫ t

0

∥qs∥Lip(T2)ds sup
s∈[0,T ]

Ê
[
∥ϕϵs − ϕs∥L1(T2,T2)

]
,
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allowing to bound (3.29) in a simpler way. Putting all together, we have proved the desired
convergence uniformly in t ∈ [0, T ] and f ∈ Lip(T2) with [f ]Lip(T2) ≤ 1, ∥f∥L∞(T2) ≤ 1.
The proof is complete.

3.5 Examples

Let us finally discuss how assumptions (A1)-(A7) are fulfilled by our main motivational
examples, namely advection-diffusion or Navier-Stokes equations at large scales coupled
with stochastic Euler equations at small scales.
First of all, notice that in the case of passive scalars, like in the advection-diffusion
equations, there is nothing to actually prove since all the subjects of assumptions (A1)-
(A7) are given a priori. On the other hand, in the Navier-Stokes system the fields uϵ,
u are given by uϵ = K ∗ Ξϵ, u = K ∗ Ξ, and therefore (A1), (A2) and (A4) need to be
checked. The verification of (A4) needs an additional requirement on the external source
q: assume

(A8) there exists a constant C such that for almost every t ∈ [0, T ] and almost every
x, y ∈ T2

|q(t, x)− q(t, y)| ≤ Cγ(|x− y|).

Proposition 3.12. Let ν ≥ 0, Ξ0 ∈ L∞(T2) with zero spatial average and consider the
Navier-Stokes (ν > 0) or Euler (ν = 0) system

dΞϵt + (uϵt + vϵt) · ∇Ξϵtdt = ν∆Ξϵtdt+ qϵtdt,

dξϵt + (uϵt + vϵt) · ∇ξϵtdt = −ϵ−1ξϵtdt+ ϵ−1
∑

k∈N ςkdW
k
t ,

uϵt = −∇⊥(−∆)−1Ξϵt,

vϵt = −∇⊥(−∆)−1ξϵt ,

and the limiting large-scale dynamics{
dΞt + ut · ∇Ξtdt+

∑
k∈N σk · ∇Ξt ◦ dW k

t = ν∆Ξtdt+ qtdt,

ut = −∇⊥(−∆)−1Ξt.

Assume (A3), (A5)-(A8) and take qϵt , qt with zero spatial average for almost every t ∈
[0, T ]. Then the velocity fields uϵ, u satisfy (A1), (A2) and (A4).

Proof. Concerning (A1), measurability can be deduced by uϵ = K ∗ Ξϵ, u = K ∗ Ξ,
representation formulas (3.5) and (3.6), and the fact that ϕϵ, ϕ are stochastic flows
of measure-preserving homeomorphisms. Assumption (A2) is given by uϵ = K ∗ Ξϵ,
u = K ∗ Ξ, (3.7) and Lemma 3.1.
Finally, let us then verify (A4). Recall

uϵt(x) =

∫
T2

K(x− y)Ξϵt(y)dy

=

∫
T2

K(x− y)Ẽ
[
Ξ0((ϕ

ϵ
t)

−1(y)) +

∫ t

0

qϵs(ϕ
ϵ
s((ϕ

ϵ
t)

−1(y)))ds

]
dy

= Ẽ
[∫

T2

K(x− ϕϵt(y))Ξ0(y)dy

]
+ Ẽ

[∫
T2

K(x− ϕϵt(y))

∫ t

0

qϵs(ϕ
ϵ
s(y))dsdy

]
,

72



3.5. Examples

and

ut(x) =

∫
T2

K(x− y)Ξt(y)dy

=

∫
T2

K(x− y)Ẽ
[
Ξ0((ϕt)

−1(y)) +

∫ t

0

qs(ϕs((ϕt)
−1(y)))ds

]
dy

= Ẽ
[∫

T2

K(x− ϕt(y))Ξ0(y)dy

]
+ Ẽ

[∫
T2

K(x− ϕt(y))

∫ t

0

qs(ϕs(y))dsdy

]
.

We have∫
T2

|uϵt(x)− ut(x)|dx

≤ Ẽ
[∫

T2

∫
T2

|K(x− ϕϵt(y))−K(x− ϕt(y))| |Ξ0(y)|dydx
]

+ Ẽ
[∫

T2

∣∣∣∣∫
T2

K(x− ϕϵt(y))

∫ t

0

qϵs(ϕ
ϵ
s(y))dsdy −

∫
T2

K(x− ϕt(y))

∫ t

0

qs(ϕs(y))dsdy

∣∣∣∣ dx]
≤ Ẽ

[∫
T2

∫
T2

|K(x− ϕϵt(y))−K(x− ϕt(y))| |Ξ0(y)|dydx
]

+ Ẽ
[∫

T2

∫
T2

|K(x− ϕϵt(y))−K(x− ϕt(y))|
∣∣∣∣∫ t

0

qϵs(ϕ
ϵ
s(y))ds

∣∣∣∣ dydx]
+ Ẽ

[∫
T2

∫
T2

|K(x− ϕt(y))|
∫ t

0

|qϵs(ϕϵs(y))− qs(ϕ
ϵ
s(y))ds| dydx

]
+ Ẽ

[∫
T2

∫
T2

|K(x− ϕt(y))|
∫ t

0

|qs(ϕϵs(y))− qs(ϕs(y))ds| dydx
]

≲ γ
(
Ẽ
[
∥ϕϵt − ϕt∥L1(T2,T2)

])
+

∫ t

0

∥qϵs − qs∥L∞(T2)ds

+

∫ t

0

γ
(
Ẽ
[
∥ϕϵs − ϕs∥L1(T2,T2)

])
ds,

that is the desired estimate, since
∫ t
0
∥qϵs − qs∥L∞(T2)ds → 0 as ϵ → 0 by assumption

(A7).
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Chapter 4

From additive to transport noise in
3D fluids

In this chapter we will prove Theorem 1.3 on the convergence of the slow component of
the coupled fast-slow Navier-Stokes system. For the sake of generality here we look at{

duϵt = Auϵtdt+ b(uϵt, u
ϵ
t)dt+ b(vϵt , u

ϵ
t)dt,

dvϵt = ϵ−1Cvϵtdt+ Avϵdt+ b(uϵt, v
ϵ
t)dt+ b(vϵt , v

ϵ
t)dt+ ϵ−1Q1/2dWt,

(4.1)

where A and C are (possibly unbounded) negative definite linear operators on a separable
Hilbert space H, and the map b : H ×H → H is bilinear and enjoys suitable properties
detailed below in assumptions (B1)-(B4). We shall always assume solutions (uϵ, vϵ) satisfy
divuϵ = div vϵ = 0 (in distributional sense) with deterministic initial condition (u0, y0) ∈
H ×H.
Under suitable conditions, we are able to prove the convergence of uϵ towards a solution
of

dut = Autdt+ b(ut, ut)dt+ b((−C)−1Q1/2 ◦ dWt, ut) + b(r, ut)dt, (4.2)

in the sense of Theorem 1.3; of course the latter theorem on the Navier-Stokes system
descends from the general case by specialization.
Let us describe the strategy of the proof. The method here presented is originally due
to Papanicolaou, Stroock and Varadhan [PSV88]. New developments and a presentation
may be found in the book [FGPS10]. It has been recently extended to infinite dimension
and partial differential equations, see for instance [dBG12, DdMV16, DV12, DV21].
Consider the normalized small-scale process yϵ := ϵ1/2vϵ. The evolution of the Markov
process (uϵ, yϵ) is described by its infinitesimal generator L ϵ, which takes the following
form when applied to a suitable test function φ:

L ϵφ(u, y) = ⟨Au+ b(u, u), Duφ⟩+ ϵ−1/2⟨b(y, u), Duφ⟩
+ ⟨Ay + b(u, y), Dyφ⟩+ ϵ−1/2⟨b(y, y), Dyφ⟩

+ ϵ−1⟨Cy,Dyφ⟩+
ϵ−1

2
Tr(QD2

yφ).

Since we are interested in the limiting behaviour of uϵ as the parameter ϵ goes to zero,
we add correctors to φ in order to cancel out singular terms in the expression of L ϵφ, on
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the one hand, and simultaneously eliminate the dependence on y in the terms of order
one, on the other. Thus, consider the perturbed test function

φϵ(u, y) = φ(u) + ϵ1/2φϵ1(u, y) + ϵφϵ2(u, y),

where φϵ1 and φϵ2 are suitable correctors.
It is immediately clear that terms of order ϵ−1 in the expression of L ϵφϵ vanish, since φ
does not depend on y.
Denoting L ϵ

y the operator

L ϵ
y = ⟨Cϵy,Dy·⟩+

1

2
Tr(QD2

y·), Cϵ := C + ϵA,

and wanting to cancel out terms of order ϵ−1/2, we impose φϵ1 to be a solution to the
Poisson equation:

L ϵ
yφ

ϵ
1(u, y) = −⟨b(y, u), Duφ⟩. (4.3)

As for the terms of order one in the expression of L ϵφϵ, they equal:

⟨Au+ b(u, u), Duφ⟩+ ⟨b(y, u), Duφ
ϵ
1⟩+ ⟨b(y, y), Dyφ

ϵ
1⟩+ L ϵ

yφ
ϵ
2.

Now we make the following key observation: replacing the process yϵ by its linear coun-
terpart Y ϵ, satisfying:

dY ϵ
t = ϵ−1CϵY

ϵ
t dt+ ϵ−1/2Q1/2dWt, Y ϵ

0 = 0,

one can rewrite (we shall see that any φϵ1 satisfying (4.3) is linear in both u and y)

⟨b(y, u), Duφ
ϵ
1(y)⟩ = ⟨b(Y, u), Duφ

ϵ
1(Y )⟩+ ⟨b(y − Y, u), Duφ

ϵ
1(Y )⟩

+ ⟨b(y, u), Duφ
ϵ
1(y − Y )⟩,

⟨b(y, y), Dyφ
ϵ
1(u)⟩ = ⟨b(Y, Y ), Dyφ

ϵ
1(u)⟩+ ⟨b(y − Y, Y ), Dyφ

ϵ
1(u)⟩

+ ⟨b(y, y − Y ), Dyφ
ϵ
1(u)⟩,

and prove that the terms involving the difference y − Y are infinitesimal as ϵ → 0 when
evaluated at y = yϵt , Y = Y ϵ

t , and integrated with respect to time. Therefore, the actual
terms of order one in the expression of L ϵφϵ are given by

⟨Au+ b(u, u), Duφ⟩+ ⟨b(Y, u), Duφ
ϵ
1(Y )⟩+ ⟨b(Y, Y ), Dyφ

ϵ
1(u)⟩+ L ϵ

yφ
ϵ
2(u, Y ), (4.4)

It is not necessary to require the previous quantity to be zero, but it is sufficient to just
seek for φϵ2 such that it does not depend on Y , namely

L 0φ(u) = ⟨Au+ b(u, u), Duφ⟩+ ⟨b(Y, u), Duφ
ϵ
1(Y )⟩

+ ⟨b(Y, Y ), Dyφ
ϵ
1(u)⟩+ L ϵ

yφ
ϵ
2(u, Y )

for some effective generator L 0. In this way, one would formally get L ϵφϵ(uϵ, yϵ) =
L 0φ(uϵ) and identify the limit behaviour of L ϵφ(uϵ), up to an infinitesimal correction
as ϵ→ 0.
As already mentioned our results are very general and we are able to study many different
systems, some of them notably difficult to study in the Lagrangian formulation, highlight-
ing the fundamental nature of transport noise in fluids. More precisely, in [DP22, Section
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7] we show that our method also applies (with minor modifications) also to the Surface
Quasi-Geostrophic equations and to the Primitive equations.
Let us briefly describe how the present chapter is structured.
In Section 4.1 we introduce the necessary notation and preliminaries for our analysis. In
particular, we introduce the abstract spaces and operators governing our system, and we
identify their key properties. Also, here we present the notion of bounded-energy family
{(uϵ, yϵ)}ϵ∈(0,1) of weak martingale solutions to our system, that is a family of solutions
enjoying some uniform-in-ϵ bound on the energy.
In Section 4.2 we introduce a class of test functions ψ for which it is possible to solve
implicitly the Poisson equation L ϵ

yϕ = −ψ. The class consists in quadratic functions on
H that are continuous maps from some Sobolev space Hθ to R. We also show that, de-
pending on the regularity of C, solutions of the Poisson equations so constructed are more
regular than the datum ψ, and recover bounds on the regularity of ϕ and its derivative
in terms of the regularity of ψ and C.
In Section 4.3 we apply abstract results on the Poisson equation to carry on the program
presented in the Introduction; we identify suitable correctors φϵ1 and φϵ2 to cancel out
divergent terms in the expression of L ϵφ, and recover the limiting behaviour of the slow
variable uϵ alone.
In Section 4.4, we prove our main Theorem 1.3 dividing the proof into three different
steps: at first, we prove that the family (of the laws of) {uϵ}ϵ∈(0,1) is tight in a suitable
space of functions; then, checking that the contribution due to correctors φϵ1 and φϵ2 is
actually negligible as ϵ→ 0, we prove that every weak accumulation point u is a solution
of a limit closed equation; finally, we recognize the different terms in the equation solved
by u as the sum of the original slow dynamics, a Stratonovich transport noise and an
Itō-Stokes drift.

4.1 Preliminaries and assumptions

4.1.1 Abstract spaces and operators

The linear operator A and Sobolev spaces

In what follows, the operator A : D(A) ⊂ H → H is unbounded, self-adjoint and negative
definite. For s ∈ R, Sobolev space Hs is defined by the relation Hs := D((−A)s/2).
For α ∈ (0, 1), p ≥ 1 and s ∈ R, we define Wα,p([0, T ], Hs) as the Sobolev-Slobodeckij
space of all u ∈ Lp([0, T ], Hs) such that∫ T

0

∫ T

0

∥ut − us∥pHs

|t− s|1+αp
dtds <∞,

endowed with the norm

∥u∥pWα,p([0,T ],Hs)
:=

∫ T

0

∥ut∥pHsdt+

∫ T

0

∫ T

0

∥ut − us∥pHs

|t− s|1+αp
dtds.

We recall the following compactness criterium from [Sim86].

Lemma 4.1. For σ > 0, α > 1/p and β ∈ (0, σ) we have the compact embeddings:

L2([0, T ], H1) ∩Wα,p([0, T ], H−σ) ⊂ L2([0, T ], H);

L∞([0, T ], H) ∩Wα,p([0, T ], H−σ) ⊂ C([0, T ], H−β).
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Denote S := ∩s∈RHs the class of smooth elements h ∈ H, and define

F := {φ : H → R, ∃h ∈ S such that φ(u) = ⟨u, h⟩} .

Distributions on H are elements of the space S ′ := ∪s∈RHs. Every φ ∈ F is continuous
from S ′ to R.

The linear operator C

We assume

(C1) The operator C : D(C) ⊂ H → H is self-adjoint and negative definite, with
principal eigenvalue −λ0 < 0;

(C2) There exist Γ ≥ γ > 1/4 such that ∥x∥2
Hs+βγ ≲ ∥(−C)β/2x∥2Hs ≲ ∥x∥2

Hs+βΓ for every
s ∈ R, β > 0.

The previous assumptions imply that the operators C and Cϵ := C + ϵA generate C0-
semigroups on H, that we denote respectively eCt and eCϵt, t > 0. Moreover, for every
s ∈ R and β1 > 0 it holds uniformly in t > 0 and ϵ ∈ (0, 1):

∥(−Cϵ)β1eCϵt∥Hs→Hs ≲
e−λ0t/2

tβ1
;

by interpolation, since the operators (−Cϵ)−1C and (−Cϵ)−1ϵA are bounded, we also have

for every θ ∈ [γ, 1], λ = λ0(1−θ)
2(1−γ) :

∥eCϵt∥Hs→Hs+2θβ1 ≲ ∥(−C)β1eCϵt∥
1−θ
1−γ

Hs→Hs∥(−A)β1eCϵt∥
θ−γ
1−γ

Hs→Hs ≲ ϵ−β1
θ−γ
1−γ

e−λt

tβ1
.

In addition, for every s ∈ R and β2 ∈ [0, 1] they hold:

∥(−Cϵ)−β2(eCϵt − 1)∥Hs→Hs ≲ tβ2 , ∥eCϵt − 1∥Hs→Hs−2Γβ2 ≲ tβ2

uniformly in t > 0 and ϵ ∈ (0, 1), and moreover the difference of the semigroups eCϵt−eCt
satisfies1 ∥eCϵt − eCt∥Hθ+2β2→Hθ ≲ ϵβ2 uniformly in t > 0.
Finally, for every β2 ∈ [0, 1] the operator Gϵ := (−Cϵ)−1 − (−C)−1 = ϵ(−C)−1A(−Cϵ)−1

satisfies ∥Gϵ∥Hs→Hs+2γ(1+β2)−2β2 ≲ ϵβ2 .

The bilinear operator b

Concerning the nonlinearity b, we suppose the validity of the following properties:

(B1) b : Hs ×Hθ0 → Hs is bilinear and continuous for every s ∈ R, s < 3/2, θ0 > 5/2;

(B2) b : Hs × Hθ1 → Hs is bilinear and continuous for every s ∈ R, s ≥ 3/2 and
θ1 > 1 + s;

(B3) b : Hs×Hr → Hs+r−5/2 is bilinear and continuous if s, r−1 ∈ (−3/2, 3/2), s+r > 1.

1To see this, one can define yt := eCϵtx − eCtx, x ∈ H and notice that yt =
∫ t

0
Cysds +

ϵ
∫ t

0
AeCϵsxds; since y0 = 0, Duhamel’s Formula gives yt = ϵ

∫ t

0
eC(t−s)AeCϵsxds, and using

∥ϵ1−β2(−A)1−β2eCϵt∥Hs→Hs ≲ e−λ0t/2tβ2−1 produces the desired inequality.
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(B4) ⟨b(x1, x2), x3⟩ = −⟨b(x1, x3), x2⟩ for every xi ∈ S ′, i = 1, 2, 3 such that either one
of the scalar products is well-defined.

We point out that properties (B1)-(B4) hold true for the Navier-Stokes system in velocity
form, with spatial domain equal to the three-dimensional torus equipped with periodic
boundary conditions. In the following, we will denote without explicit mention θ0, θ1 =
θ1(s) any constants such that (B1) and (B2) hold.

The covariance operator Q

We assume that the covariance operator Q : H → H satisfies the following properties:

(Q1) Q is symmetric, positive semidefinite and commutes with C. The following opera-
tors on H are trace-class for every t ≥ 0:

eCtQeCt, Q∞ :=

∫ ∞

0

eCtQeCtdt =
1

2
(−C)−1Q;

(Q2) Denoting N (0, Q∞) the Gaussian measure on H with covariance Q∞ and s0 =
max{θ0, 2Γ}, it holds

∫
H
∥w∥2Hs0dN (0, Q∞)(w) <∞.

In (Q2) above, θ0 can be any real number such that (B1) holds true and Γ is as in
(C2). It is easy to see that under (Q1)-(Q2) to following hold true: eCϵtQeCϵt, Qϵ

∞ :=∫∞
0
eCϵtQeCϵtdt are trace-class (although in general Qϵ

∞ ̸= 1
2
(−Cϵ)−1Q since we do not as-

sumeA andQ commuting) and
∫
H
∥w∥2

Hθ0
dN (0, Qϵ

∞)(w) ≤ 1+
∫
H
∥w∥2

Hθ0
dN (0, Q∞)(w) <

∞ for every ϵ ∈ (0, 1).

4.1.2 Ornstein-Uhlenbeck semigroup

Assume (Q1)-(Q2). For every ϵ ∈ (0, 1) and y ∈ H there exists a unique solution
Y y = Y y(ϵ) of the Ornstein-Uhlenbeck equation

dY y
t = CϵY

y
t dt+Q1/2dWt, Y y

0 = y,

that is explicitly given by the formula

Y y
t = eCϵty +WCϵ,Q

t , WCϵ,Q
t =

∫ t

0

eCϵ(t−s)Q1/2dWs.

The Ornstein-Uhlenbeck semigroup P ϵ
t : Cb(H) → Cb(H) is defined by

P ϵ
t ψ(y) := E [ψ(Y y

t )] , ψ ∈ Cb(H), y ∈ H,

and it is a semigroup by Markov property. It can be extended uniquely to a strongly
continuous semigroup of 1-Lipschitz maps on L2(H,µϵ), µϵ := N (0, Qϵ

∞), see [DPZ02,
Theorem 10.1.5]. The Gaussian measure µϵ is concentrated on Hθ0 ⊂ H, and µϵ is
invariant for P ϵ

t , i.e.∫
H

P ϵ
t ψ(y)dµ

ϵ(y) =

∫
H

ψ(y)dµϵ(y), ∀ψ ∈ L2(H,µϵ).

The domain D(L ϵ
y ) of the generator L ϵ

y : D(L ϵ
y ) → L2(H,µϵ) is defined as the set

D(L ϵ
y ) :=

{
ψ ∈ L2(H,µϵ) : ∃ lim

t→0+

P ϵ
t ψ − ψ

t
∈ L2(H,µϵ)

}
,

and L ϵ
y acts on ψ ∈ D(L ϵ

y ) as L ϵ
yψ := limt→0+

P ϵ
t ψ−ψ
t

. The generator L ϵ
y is a closed

operator on L2(H,µϵ).
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4.1.3 Notion of solution and energy estimates

Let us consider again system (4.1), and denote yϵt = ϵ1/2vϵt :{
duϵt = Auϵtdt+ b(uϵt, u

ϵ
t)dt+ ϵ−1/2b(yϵt , u

ϵ
t)dt,

dyϵt = ϵ−1Cyϵtdt+ Ayϵtdt+ b(uϵt, y
ϵ
t)dt+ ϵ−1/2b(yϵt , y

ϵ
t)dt+ ϵ−1/2Q1/2dWt.

(4.5)

In the following, Hw denotes the space H endowed with the weak topology.

Definition 4.1. We say that the family {(uϵ, yϵ)}ϵ∈(0,1) is a bounded-energy family of
weak martingale solutions to (4.5) if for every ϵ ∈ (0, 1) there exists a stochastic basis
(Ω,F , {Ft}t≥0,P,W ) such that the following hold :

(S1) (uϵ, yϵ) : Ω× [0, T ] → H ×H is {Ft}-progressively measurable, with paths uϵ, yϵ ∈
C([0, T ], Hw) ∩ L2([0, T ], H1), P-almost surely;

(S2) for every h ∈ S , the following equalities hold P-almost surely for every t ∈ [0, T ]:

⟨uϵt, h⟩ = ⟨u0, h⟩+
∫ t

0

⟨uϵs, Ah⟩+
∫ t

0

⟨b(uϵs, uϵs), h⟩ds+ ϵ−1/2

∫ t

0

⟨b(yϵs, uϵs), h⟩ds,

⟨yϵt , h⟩ = ⟨y0, h⟩+ ϵ−1

∫ t

0

⟨yϵs, Ch⟩ds+
∫ t

0

⟨yϵs, Ah⟩ds+
∫ t

0

⟨b(uϵs, yϵs), h⟩ds

+ ϵ−1/2

∫ t

0

⟨b(yϵs, yϵs), h⟩ds+ ϵ−1/2⟨Q1/2Wt, h⟩;

(S3) the family {uϵ}ϵ∈(0,1) is uniformly bounded in

U := L∞(Ω, C([0, T ], Hw)) ∩ L∞(Ω, L2([0, T ], H1));

(S4) for every fixed p <∞, the family {yϵ}ϵ∈(0,1) is uniformly bounded in

Y := Lp(Ω, C([0, T ], Hw)) ∩ L2(Ω, L2([0, T ], H1)).

It is worth to comment on the previous definition.
First of all, since we are working on the intersection of two fields and to avoid any confu-
sion with the terminology, let us specify that here we are working with analytically weak,
probabilistically martingale solutions. Solutions are analytically weak since they solve
(4.5) only when tested again smooth test functions h ∈ S . They are martingale solu-
tions (sometimes referred to also as probabilistically weak solutions) since the stochastic
basis in not given a priori (that would be called pathwise or probabilistically strong so-
lutions). To avoid any misunderstanding we point out that hereafter the stochastic basis
{(Ωϵ,F ϵ, {F ϵ

t }t≥0,Pϵ,W ϵ)}ϵ∈(0,1) will be always dependent on ϵ, but we shall drop the
indices for notational simplicity.
Second, our solutions form a bounded-energy family since in (S3)-(S4) we require suitable
energy bounds to hold uniformly in ϵ ∈ (0, 1) (recall that the range of every elements
in C([0, T ], Hw) is bounded in H by Banach-Steinhaus Theorem). In classical theory of
deterministic Navier-Stokes equations subject to external forcing f ∈ L1([0, T ], H):{

dut + (ut · ∇)utdt = ν∆utdt+∇ptdt+ ftdt,

divut = 0,
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a very fundamental concept is that of Leray-Hopf weak solutions, namely (analytically)
weak solutions u enjoying the energy inequality

1

2
∥ut∥2H +

∫ t

0

∥us∥2H1ds ≤
1

2
∥u0∥2H +

∫ t

0

⟨us, fs⟩ds.

In the stochastic setting the picture is more complicated since, when the external forcing
f = Q1/2W is a stochastic process: i) sensible bounds can only be obtained in expected
value; and ii) formally applying Itō Formula to ∥ut∥2H introduces and additional term
Tr(Q)dt on the right hand side of the estimate.
In [FR08], the authors propose a notion of solution which encodes the energy inequality
in the requirement that the process

Ep
t :=

1

2
∥ut∥2pH + p

∫ t

0

∥us∥2p−2
H ∥us∥2H1ds−

1

2
∥u0∥2pH

− p(2p− 1)

2
Tr(Q)

∫ t

0

∥us∥2p−2
H ds

be an almost sure super martingale for every positive integer p, namely E [Ep
t ] < ∞ for

all t ∈ [0, T ] and there exists a Lebesgue measurable set T ⊂ (0, T ], with null Lebesgue
measure, such that E [Ep

t 1A] ≤ E [Ep
s1A] for every s ∈ T , every t ≥ s and every A ∈ Fs.

However, for our purposes there are some limitations in considering solutions satisfying
some kind of energy inequality, since: i) it does not seem immediate to recover uniform
bounds in ϵ ∈ (0, 1), and ii) we do not need energy inequality but just energy bounds,
and recents developments in convex integration suggest that the class of weak solutions
to Navier-Stokes equations with bounded energy may be stricly larger than the class
of Leray-Hopf weak solutions, see [BV19] for a deterministic result and [HZZ21] for a
stochastic one (even though the solutions constructed there are not known to satisfy H1

bounds in the space variable).
In order to construct a bounded-energy family of weak martingale solutions to (4.5), one
can make use of classical compactness arguments involving the Galerkin approximation
scheme:

duϵ,nt = Auϵ,nt dt+Πnb(u
ϵ,n
t , uϵ,nt )dt+ ϵ−1/2Πnb(y

ϵ,n
t , uϵ,nt )dt,

dyϵ,nt = ϵ−1Cyϵ,nt dt+ Ayϵ,nt dt+Πnb(u
ϵ,n
t , yϵ,nt )dt+ ϵ−1/2Πnb(y

ϵ,n
t , yϵ,nt )dt

+ϵ−1/2ΠnQ
1/2dWt,

(4.6)

where {Πn}n∈N is a family of Galerkin projectors and the initial condition is (uϵ,n0 , yϵ,n0 ) =
(Πnu0,Πny0). Indeed, since solutions of (4.6) above are smooth in space, uniform energy
estimates (S3)-(S4) can be rigorously proved for (uϵ,n, yϵ,n) making use of Itō Formula;
then, for every fixed ϵ ∈ (0, 1), it is possible to prove via Ascoli-Arzelà Theorem that there
exist uϵ, yϵ such that uϵ,n → uϵ and yϵ,n → yϵ with respect to a topology that permits
to take the limit in the energy estimates (S3)-(S4), on the one hand, and in the weak
formulation of the equation (S2), on the other (up to a possible change in the underlying
stochastic basis, in order to gain adaptedness of the processes uϵ, yϵ).

Proposition 4.2. There exists at least one bounded-energy family {(uϵ, yϵ)}ϵ∈(0,1) of weak
martingale solutions to (4.5).

81



Chapter 4. From additive to transport noise in 3D fluids

Existence of a weak martingale solution for fixed ϵ ∈ (0, 1) is known since [FG95]. The
only difference here is uniform in ϵ energy bounds, which require suitable estimates at the
level of Galerkin truncations (cfr. Lemma 4.3 and Lemma 4.4 below) and compactness
arguments well-suited for the passage to the limit n→ ∞.

Remark 4.1. Notice that if (4.5) admits pathwise uniqueness then one obtain the existence
of probabilistically strong solution, namely the stochastic basis can be taken independent
of ϵ.

Before the proof of Proposition 4.2, we show the needed energy bounds in the following
lemmas.

Lemma 4.3. For every positive integer p it holds

sup
ϵ∈(0,1),
n∈N

∫ T

0

E
[
∥yϵ,ns ∥2p−2

H ∥yϵ,ns ∥2Hγ

]
ds ≲ 1.

Proof. Let ϵ ∈ (0, 1) and n ∈ N be fixed, and take an arbitrary t ∈ [0, T ]. Applying Itō
Formula to 1

2
∥yϵ,nt ∥2pH we get

1

2
∥yϵ,nt ∥2pH + ϵ−1p

∫ t

0

∥yϵ,ns ∥2p−2
H ∥(−C)1/2yϵ,ns ∥2Hds+ p

∫ t

0

∥yϵ,ns ∥2p−2
H ∥yϵ,ns ∥2H1ds

=
1

2
∥Πny0∥2pH + ϵ−1/2p

∫ t

0

∥Πny
ϵ
s∥

2p−2
H ⟨yϵ,ns ,ΠnQ

1/2dWs⟩

+ ϵ−1p(2p− 1)

2
Tr(ΠnQΠn)

∫ t

0

∥yϵ,ns ∥2p−2
H ds.

Taking expectations in the expression above with p = 1 we obtain

ϵ−1

∫ t

0

E
[
∥yϵ,ns ∥2Hγ

]
ds ≤ 1

2M
∥y0∥2 + ϵ−1Tr(Q)

2M
t,

where we have used ∥(−C)1/2yϵ,ns ∥2H ≥ M∥yϵ,ns ∥2Hγ for some unimportant constant M ;
thus we deduce

sup
ϵ∈(0,1),
n∈N

∫ T

0

E
[
∥yϵ,ns ∥2Hγ

]
ds ≤ ϵ

2M
∥y0∥2H +

Tr(Q)T

2M
≲ 1.

For p > 1, we argue as follows: first, recalling ∥y∥2Hγ ≥ νγ0 ∥y∥2H for some ν0 > 0 (the
principal eigenvalue of the operator −A), for every t ∈ [0, T ] we have∫ t

0

E
[
∥yϵ,ns ∥2p−2

H ∥yϵ,ns ∥2Hγ

]
ds

≤ ϵ

2pM
∥y0∥2pH +

2p− 1

2M
Tr(Q)

∫ t

0

E
[
∥yϵ,ns ∥2p−2

H

]
ds

≤ ϵ

2pM
∥y0∥2pH +

2p− 1

2M
νγ0Tr(Q)

∫ t

0

E
[
∥yϵ,ns ∥2p−4

H ∥yϵ,ns ∥2Hγ

]
ds;

then, since p−1 is a positive integer, by induction we have the desired inequality uniformly
in ϵ ∈ (0, 1) and n ∈ N.
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Lemma 4.4. For every p ≥ 2 it holds

sup
ϵ∈(0,1),
n∈N

sup
t∈[0,T ]

(
E [∥yϵ,nt ∥pH ] +

∫ t

0

E
[
∥yϵ,ns ∥p−2

H ∥yϵ,ns ∥2H1

]
ds

)
≲ 1.

Proof. As in the previous Lemma 4.3, it is sufficient to prove the result for every positive
even integer p. Let us introduce the auxiliary process Y ϵ,n

t solution of

dY ϵ,n
t = ϵ−1CϵY

ϵ,n
t dt+ ϵ−1/2ΠnQ

1/2dWs, Y ϵ,n
0 = 0,

so that, by Itō Formula, the difference process ζϵ,nt := yϵ,nt − Y ϵ,n
t satisfies, for every

t ∈ [0, T ] and p ≥ 2

∥ζϵ,nt ∥pH + ϵ−1pM

∫ t

0

∥ζϵ,ns ∥p−2
H ∥ζϵ,ns ∥2Hγds+ p

∫ t

0

∥ζϵ,ns ∥p−2
H ∥ζϵ,ns ∥2H1ds (4.7)

≤ ∥y0∥pH + p

∫ t

0

∥ζϵ,ns ∥p−2
H ⟨b(uϵ,ns , Y ϵ,n

s ), ζϵ,ns ⟩ds

+ ϵ−1/2p

∫ t

0

∥ζϵ,ns ∥p−2
H ⟨b(yϵ,ns , Y ϵ,n

s ), ζϵ,ns ⟩ds

≤ ∥y0∥p +M1

∫ t

0

∥ζϵ,ns ∥p−1
H ∥uϵ,ns ∥H∥Y ϵ,n

s ∥Hθ0ds

+ ϵ−1/2M1

∫ t

0

∥ζϵ,ns ∥p−1
H ∥yϵ,ns ∥H∥Y ϵ,n

s ∥Hθ0ds,

where M1 is another unimportant constant. By Young inequality

∥Y ϵ,n
s ∥Hθ0∥ζϵ,ns ∥p−1

H ≤
∥Y ϵ,n

s ∥p
Hθ0

p
+
p− 1

p
∥ζϵ,ns ∥pH ,

and, for every positive constant c:

ϵ−1/2∥yϵ,ns ∥H∥Y ϵ,n
s ∥Hθ0∥ζϵ,ns ∥p−1

H ≤ c−p

2p
∥yϵ,ns ∥2pH +

c−p

2p
∥Y ϵ,n

s ∥2p
Hθ0

+ ϵ−
p

2(p−1)
(p− 1)c

p
p−1

p
∥ζϵ,ns ∥pH .

Choosing c =
(

p2M
2(p−1)νγ0M1

) p−1
p
, the previous inequalities can be plugged into (4.7) to get

∥ζϵ,nt ∥pH++ ϵ−1

∫ t

0

∥ζϵ,ns ∥p−2
H ∥ζϵ,ns ∥2Hγds+

∫ t

0

∥ζϵ,ns ∥p−2
H ∥ζϵ,ns ∥2H1ds

≲ ∥y0∥pH +

∫ t

0

∥Y ϵ,n
s ∥p

Hθ0
ds+

∫ t

0

∥yϵ,ns ∥2pH ds+
∫ t

0

∥Y ϵ,n
s ∥2p

Hθ0
ds.

Since E
[
∥Y ϵ,n

s ∥2p
Hθ0

]
is bounded uniformly in ϵ, n and s by assumption (Q2), and invoking

previous Lemma 4.3, the previous inequality produces the bounds for ζϵ,n:

sup
ϵ∈(0,1),
n∈N

sup
t∈[0,T ]

(
E [∥ζϵ,nt ∥pH ] +

∫ t

0

E
[
∥ζϵ,ns ∥p−2

H ∥ζϵ,ns ∥2H1

]
ds

)
≲ 1, (4.8)

sup
ϵ∈(0,1),
n∈N

ϵ−1

∫ T

0

E
[
∥ζϵ,ns ∥p−2

H ∥ζϵ,ns ∥2Hγ

]
ds ≲ 1. (4.9)

Since yϵ,n = Y ϵ,n + ζϵ,n, from (4.8) we deduce the thesis.
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We also recall the following result, which is an immediate corollary of Ascoli-Arzelà
Theorem.

Lemma 4.5. Let E be a separable Banach space and let F ⊂ E be a dense subset. Let
{fn}n∈N be a sequence of measurable functions such that fn : [0, T ] → E∗. Assume
that for every t ∈ [0, T ] the sequence {fnt }n∈N is equibounded in E∗, and for any fixed
h ∈ F the sequence of real-valued functions {t 7→ ⟨fnt , h⟩}n∈N is equicontinuous. Then,
fn ∈ C([0, T ]; (E∗)w) for every n ∈ N, and there exists f ∈ C([0, T ]; (E∗)w) such that, up
to a subsequence,

fn → f strongly in C([0, T ]; (E∗)w).

We are ready to prove our existence result.

Proof of Proposition 4.2. Fix a stochastic basis (Ω,F , {Ft}t≥0,P,W ). Since the Galerkin
system (4.6) is finite-dimensional for every ϵ ∈ (0, 1) and n ∈ N, it is classical to show that
for every ϵ ∈ (0, 1) and n ∈ N a strong solution to (4.6) exists on (Ω,F , {Ft}t≥0,P,W ).
Hereafter, we fix ϵ ∈ (0, 1) and we focus on the sequences {uϵ,n}n∈N and {yϵ,n}n∈N. Our
aim is to prove that the aforementioned sequences are relatively compact with respect to
a suitable topology.
Applying Itō Formula to the function ∥uϵ,nt ∥2H , t ∈ [0, T ], we get

∥uϵ,nt ∥2H + 2

∫ t

0

∥uϵ,ns ∥2H1ds = ∥Πnu0∥2H .

Moreover, recalling Lemma 4.4:

sup
ϵ∈(0,1),
n∈N

sup
t∈[0,T ]

(
E
[
∥yϵ,nt ∥2H

]
+

∫ t

0

E
[
∥yϵ,ns ∥2H1

]
ds

)
≲ 1.

Therefore, for any p < ∞ the sequences {uϵ,n}n∈N and {yϵ,n}n∈N are uniformly bounded
respectively in the space Lp(Ω, L2([0, T ], H1)) and L2(Ω, L2([0, T ], H1)) and there exist
uϵ ∈ Lp(Ω, L2([0, T ], H1)) and yϵ ∈ L2(Ω, L2([0, T ], H1)) such that, up to a subsequence
that we still denote n:

uϵ,n ⇀ uϵ, weakly in Lp(Ω, L2([0, T ], H1)),

yϵ,n ⇀ yϵ, weakly in L2(Ω, L2([0, T ], H1)).

Also, again by Lemma 4.4, for every p <∞ the functions uϵ,n, yϵ,n are measurable maps
from [0, T ] with values in Lp(Ω, H) = (Lq(Ω, H))∗, 1/p+ 1/q = 1, that are equibounded
in Lp(Ω, H) for every fixed t ∈ [0, T ] (actually uniformly in t ∈ [0, T ]). Moreover, for
every fixed h ∈ L∞(Ω,S ) and s, t ∈ [0, T ], s < t we have

|E [⟨uϵ,nt − uϵ,ns , h⟩]| ≤
∫ t

s

E [|⟨uϵ,nr , Ah⟩|] dr +
∫ t

s

E [|⟨b(uϵ,nr , uϵ,nr ), h⟩|] dr

ϵ−1/2

∫ t

s

E [|⟨b(uϵ,nr , uϵ,nr ), h⟩|] dr

≲ |t− s|
(
1 + ϵ−1/2

)
∥h∥L∞(Ω,Hθ0 ),
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and

|E [⟨yϵ,nt − yϵ,ns , h⟩]| ≤ ϵ−1

∫ t

s

E [|⟨yϵ,nr , Cϵh⟩|] dr +
∫ t

s

E [|⟨b(uϵ,nr , yϵ,nr ), h⟩|] dr

ϵ−1/2

∫ t

s

E [|⟨b(yϵ,nr , yϵ,nr ), h⟩|] dr

+ ϵ−1/2E
[
⟨ΠnQ

1/2(Wt −Ws), h⟩
]

≲ |t− s|
(
1 + ϵ−1

)
∥h∥L∞(Ω,Hθ0 ) + |t− s|1/2ϵ−1/2∥h∥L∞(Ω,H),

meaning that the sequences of real-valued functions {t 7→ ⟨uϵ,nt , h⟩}n∈N and {t 7→ ⟨yϵ,nt , h⟩}n∈N
are equicontinuous for every fixed h ∈ L∞(Ω,S ). Since L∞(Ω,S ) is dense in Lq(Ω, H),
by previous Lemma 4.5 we have, up to a subsequence that we still denote n:

uϵ,n → uϵ, yϵ,n → yϵ, strongly in C([0, T ], (Lp(Ω, H))w).

Therefore, for every p <∞ and t ∈ [0, T ] the limiting process uϵ satisfies

∥uϵt∥2Lp(Ω,H) + 2∥uϵ∥2Lp(Ω,L2([0,T ],H1))

≤ lim inf
n→∞

∥uϵ,nt ∥2Lp(Ω,H) + 2∥uϵ,n∥2Lp(Ω,L2([0,T ],H1)) ≲ 1,

which implies that the same bound holds P-almost surely being it uniform in p <∞, and
condition (S3) of Definition 4.1 follows; similarly, the process yϵ satisfies (S4) for every
fixed p <∞.
In order to finish the proof, we are left to check (S1) and (S2). Since (uϵ,n, yϵ,n) is a
strong solution of (4.6) for every ϵ ∈ (0, 1) and n ∈ N, for every fixed t ∈ [0, T ] and
h ∈ L∞(Ω,S ) we have

E [⟨uϵ,nt , h⟩] = ⟨u0, h⟩+
∫ t

0

E [⟨uϵ,ns , Ah⟩] +
∫ t

0

E [⟨b(uϵ,ns , uϵ,ns ),Πnh⟩] ds

+ ϵ−1/2

∫ t

0

E [⟨b(yϵ,ns , uϵ,ns ),Πnh⟩] ds,

E [⟨yϵ,nt , h⟩] = ⟨y0, h⟩+ ϵ−1

∫ t

0

E [⟨yϵ,ns , Cϵh⟩] ds+
∫ t

0

E [⟨b(uϵ,ns , yϵ,ns ),Πnh⟩] ds

+ ϵ−1/2

∫ t

0

E [⟨b(yϵ,ns , yϵ,ns ),Πnh⟩] ds+ ϵ−1/2E
[
⟨Q1/2Wt,Πnh⟩

]
.

Let us restrict to h ∈ L∞(Ω,S ) of the form h = ϕg, for some ϕ ∈ L∞(Ω) and g ∈ S .
Since uϵ,n → uϵ and yϵ,n → yϵ strongly in C([0, T ], (Lp(Ω, H))w), and Πng → g strongly
in H, letting n→ ∞ in the expression above yields

E [⟨uϵt, g⟩ϕ] = E [⟨u0, g⟩ϕ] +
∫ t

0

E [⟨uϵs, Ag⟩ϕ] +
∫ t

0

E [⟨b(uϵs, uϵs), g⟩ϕ] ds

+ ϵ−1/2

∫ t

0

E [⟨b(yϵs, uϵs), g⟩ϕ] ds,

E [⟨yϵt , g⟩ϕ] = E [⟨y0, g⟩ϕ] + ϵ−1

∫ t

0

E [⟨yϵs, Cϵg⟩ϕ] ds+
∫ t

0

E [⟨b(uϵs, yϵs), g⟩ϕ] ds

+ ϵ−1/2

∫ t

0

E [⟨b(yϵs, yϵs), g⟩ϕ] ds+ ϵ−1/2E
[
⟨Q1/2Wt, g⟩ϕ

]
.
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Being ϕ ∈ L∞(Ω) arbitrary, we deduce the desired P-almost sure identities (S2). Finally,
if pathwise uniqueness holds for (4.5) then solutions are necessarily adapted, that is (S1);
otherwise, arguing as in the proof of Proposition 4.21 and using martingale representation
[DPZ14, Theorem 8.2], we also get adaptedness up to a possible change in the underlying
stochastic basis.

The previous Lemma 4.4 gives the uniform-in-ϵ bounds necessary for the proof of Propo-
sition 4.2. As a by-product of the previous proof we have also obtained (4.9), that permits
to control the difference between the Galerkin approximation of the small scale process
yϵ,n and its linearised counterpart Y ϵ,n in the Sobolev space Hγ. Recall that we have
assumed γ > 1/4, and we can assume γ ∈ (1/4, 1] without loss of generality. A close
inspection of the proof of Proposition 4.2 shows that the bound (4.9) is stable under
passage to the limit n→ ∞; therefore, we can deduce the following

Proposition 4.6. Let {(uϵ, yϵ)}ϵ∈(0,1) be a bounded-energy family of weak martingale
solutions to (4.5). For every ϵ ∈ (0, 1) let Y ϵ be the unique strong solution of

dY ϵ
t = ϵ−1CϵY

ϵ
t dt+ ϵ−1/2Q1/2dWs, Y ϵ

0 = 0. (4.10)

Then

sup
ϵ∈(0,1)

ϵ−1

∫ T

0

E
[
∥yϵs − Y ϵ

s ∥2Hγ

]
ds ≲ 1.

The previous result will be fundamental in performing the linearisation trick presented
at the beginning of this chapter; cfr. also Proposition 4.14.

4.2 Quadratic functions and solution to the Poisson

equation

Recall that we shall define correctors φϵ1, φ
ϵ
2 as solutions to certain Poisson equations

L ϵ
yϕ = −ψ. In this section we develop the technology needed to solve the Poisson

equation for a class of functions ψ that is large enough for our purposes, namely the
class of quadratic functions on Sobolev spaces Hθ. Moreover, we also provide partial
regularity estimates for the so obtained solution ϕ in terms of analogous bounds on ψ,
showing improved regularity (see Corollary 4.11). To avoid any confusion for the reader,
we point out that all the estimates in the present section are uniform in ϵ ∈ (0, 1).

4.2.1 Quadratic functions

Denote Eθ ⊂ L2(H,µϵ), θ ∈ (−∞, θ0] the space of quadratic functions ψ : Hθ → R,
namely ψ ∈ E if there exist a0 ∈ R, a1 : Hθ → R linear and bounded, and a2 : H

θ×Hθ →
R bilinear, symmetric and bounded such that ψ(y) = a0+a1(y)+a2(y, y) for every y ∈ Hθ.
The inclusion in L2(H,µϵ) holds true by (Q2). Notice that every ψ ∈ Eθ admits a unique
rewriting as ψ = a0 + a1 + a2: indeed ψ(ry) = a0 + ra1(y) + r2a2(y, y), and therefore

a0 = ψ(0), a1(y) =
d

dr
ψ(ry)

∣∣∣∣
r=0

,
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and by taking the difference a2(y, y) = ψ(y)− a1(y)− a0, defining uniquely the quadratic
form a2(y, y) and also its associated symmetric bilinear map, via polarization formula.
For future purposes define

∥ψ∥Eθ := |a0|+ ∥a1∥Hθ→R + ∥a2∥Hθ×Hθ→R

= |a0|+ sup
y∈Hθ,

∥y∥
Hθ=1

|a1(y)|+ sup
y,y′∈Hθ,

∥y∥
Hθ=∥y′∥

Hθ=1

|a2(y, y′)|.

The space Eθ is Banach when endowed with the norm ∥·∥Eθ , and Eθ ⊂ Eθ′ with continuous
embedding if θ ≤ θ′. As a notational convention, denote E := E0.

Lemma 4.7. Let ψ ∈ E, then for every t ≥ 0 it holds P ϵ
t ψ ∈ D(L ϵ

y ) and L ϵ
yP

ϵ
t ψ =

P ϵ
t L

ϵ
yψ.

Proof. By Markov property P ϵ
sP

ϵ
t ψ = P ϵ

t+sψ. Recalling that Y y is a strong solution of
dY y

t = CϵY
y
t dt+Q1/2dWt, Y

y
0 = y, by Itō Formula we have

P ϵ
sP

ϵ
t ψ − P ϵ

t ψ = E
[
ψ(Y ·

t+s)
]
− E [ψ(Y ·

t )]

=

∫ t+s

t

E
[
⟨CϵY ·

r , Dyψ(Y
·
r )⟩+

1

2
Tr(QD2

yψ(Y
·
r ))

]
dr.

Let ψ(y) = a0 + a1(y) + a2(y, y) be the canonical decomposition of ψ ∈ E . Since∫
H
∥Cϵy∥H∥y∥Hdµϵ(y) <∞ uniformly in ϵ by our assumptions on C and Q, we have

ψ̄ := ⟨Cϵy,Dyψ(y)⟩+
1

2
Tr(QD2

yψ)

= a1(Cϵy) + 2a2(Cϵy, y) +
1

2
Tr(QD2

ya2) ∈ L2(H,µϵ).

In addition, the semigroup P·ψ̄ is right continuous at time t, with respect to the L2(H,µϵ)
topology, and therefore we have in the limit s→ 0+∥∥∥∥P ϵ

sP
ϵ
t ψ − P ϵ

t ψ

s
− P ϵ

t ψ̄

∥∥∥∥
L2(H,µϵ)

=

∥∥∥∥1s
∫ t+s

t

P ϵ
r ψ̄dr − P ϵ

t ψ̄

∥∥∥∥
L2(H,µϵ)

≤ 1

s

∫ t+s

t

∥∥P ϵ
r ψ̄ − P ϵ

t ψ̄
∥∥
L2(H,µϵ)

dr → 0.

In particular, this means P ϵ
t ψ ∈ D(L ϵ

y ) and L ϵ
yP

ϵ
t ψ = P ϵ

t ψ̄. Finally, taking t = 0 in the
previous formula we deduce L ϵ

yψ = ψ̄, that yields L ϵ
yP

ϵ
t ψ = P ϵ

t ψ̄ = P ϵ
t L

ϵ
yψ.

Lemma 4.8. The semigroup P ϵ
t is exponentially mixing at zero when restricted to Eθ,

θ ∈ (−∞, θ0], namely for every ψ ∈ Eθ and t ≥ 0∣∣∣∣P ϵ
t ψ(0)−

∫
H

ψ(w)dµϵ(w)

∣∣∣∣ ≲ ∥ψ∥Eθe−λ0t.

Proof. Let ψ ∈ Eθ be given by ψ(y) = a0 + a1(y) + a2(y, y), y ∈ Hθ. Recall

P ϵ
t ψ(y) = a0 + E

[
a2(W

Cϵ,Q
t ,WCϵ,Q

t )
]
+ a1(e

Cϵty) + a2(e
Cϵty, eCϵty)

= P ϵ
t ψ(0) + a1(e

Cϵty) + a2(e
Cϵty, eCϵty),
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and therefore

|P ϵ
t ψ(0)− P ϵ

t ψ(y)| ≤
∣∣a1(eCϵty)

∣∣+ ∣∣a2(eCϵty, eCϵty)
∣∣

≲ ∥ψ∥Eθe−λ0t∥y∥Hθ + ∥ψ∥Eθe−2λ0t∥y∥2Hθ .

Since µϵ is invariant for P ϵ
t ,∣∣∣∣P ϵ

t ψ(0)−
∫
H

ψ(w)dµϵ(w)

∣∣∣∣ = ∣∣∣∣P ϵ
t ψ(0)−

∫
H

P ϵ
t ψ(w)dµ

ϵ(w)

∣∣∣∣
≤
∫
H

|P ϵ
t ψ(0)− P ϵ

t ψ(w)| dµϵ(w)

≲ ∥ψ∥Eθe−λ0t
∫
H

∥w∥Hθdµϵ(w)

+ ∥ψ∥Eθe−2λ0t

∫
H

∥w∥2Hθdµ
ϵ(w)

≲ ∥ψ∥Eθe−λ0t.

4.2.2 Solution to the Poisson equation

Recall that the operator L ϵ
y is closed under our assumptions, and therefore the space

D(L ϵ
y ) is complete when endowed with the graph norm

∥ψ∥D(L ϵ
y )

:= ∥ψ∥L2(H,µϵ) + ∥L ϵ
yψ∥L2(H,µϵ).

Also, by Lemma 4.7 we have E ⊂ D(L ϵ
y ) with continuous embedding, in virtue of the

following inequality:

∥ψ∥2D(L ϵ
y )

≲
∫
H

|ψ(w)|2dµϵ(w) +
∫
H

|⟨Cϵw,Dyψ(w)⟩|2 dµϵ(w) + Tr(QD2
yψ)

2

≲ ∥ψ∥2E
(∫

H

∥w∥2Hdµϵ(w) +
∫
H

∥w∥H2Γ(1 + ∥w∥H)dµϵ(w) + Tr(Q)2
)

≲ ∥ψ∥2E .

Lemma 4.9. Let ψ ∈ Eθ, θ ∈ [0, θ0), be given by ψ(y) = a1(y). Then for every T > 0 we

have ψ(eCϵT ·) ∈ E,
∫ T
1/T

ψ(eCϵt·)dt ∈ E, and

lim
T→∞

∫ T

1/T

ψ(eCϵt·)dt = ψ((−Cϵ)−1·),

the limit being understood with respect to the D(L ϵ
y ) topology.

Proof. First of all, there exists a vector a1 ∈ H−θ such that a1(y) = ⟨y, a1⟩ for every
y ∈ Hθ. Hence, for every T > 0 we have ψ(eCϵT ·) ∈ E since |ψ(eCϵTy)| = |⟨eCϵTy, a1⟩| ≤
∥eCϵTy∥Hθ∥a1∥H−θ ≲ e−λ0T/2γT−θ/2∥y∥H∥a1∥H−θ . As a consequence,

∫ T
1/T

ψ(eCϵt·)dt ∈
E ⊂ D(L ϵ

y ) as well, since∥∥∥∥∫ T

1/T

ψ(eCϵt·)dt
∥∥∥∥
E
≤
∫ T

1/T

∥ψ(eCϵt·)∥Edt <∞.
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Let us finally check
∫ T
1/T

ψ(eCϵt·)dt→ ψ((−Cϵ)−1·) in D(L ϵ
y ) as T → ∞. For every T > 0

and y ∈ H we have∫ T

1/T

ψ(eCϵty)dt =

∫ T

1/T

⟨eCϵty, a1⟩dt = ⟨
(∫ T

1/T

eCϵtdt

)
y, a1⟩

= ⟨(eCϵ/T − eCϵT )(−Cϵ)−1y, a1⟩,

and therefore we only have to check ⟨(eCϵ/T − eCϵT − 1)(−Cϵ)−1·, a1⟩ → 0 and ⟨(eCϵ/T −
eCϵT − 1)·, a1⟩ → 0 in L2(H,µϵ) (recall that D2

yψ = 0 since ψ is linear). We only prove
the second convergence, the former being easier.∫

H

∣∣⟨(eCϵ/T − eCϵT − 1)w, a1⟩
∣∣2 dµϵ(w) ≲ ∫

H

∣∣⟨(eCϵ/T − 1)w, a1⟩
∣∣2 dµϵ(w)

+

∫
H

∣∣⟨eCϵTw, a1⟩
∣∣2 dµϵ(w)

≤
∫
H

∥(eCϵ/T − 1)w∥2Hθ∥a1∥2H−θdµ
ϵ(w)

+

∫
H

∥eCϵTw∥2Hθ∥a1∥2H−θdµ
ϵ(w)

≲ T (θ−θ0)/Γ∥a1∥2H−θ

∫
H

∥w∥2Hθ0dµ
ϵ(w)

+ e−λ0T∥a1∥2H−θ

∫
H

∥w∥2Hθdµ
ϵ(w) → 0.

Lemma 4.10. Let ψ ∈ Eθ, θ ∈ [0, θ0), be given by ψ(y) = a2(y, y). Then for every T > 0

we have ψ(eCϵT ·) ∈ E,
∫ T
1/T

ψ(eCϵt·)dt ∈ E, and there exists ϕ ∈ Eθ−δ ∩D(L ϵ
y ) for every

δ ∈ (0, γ) satisfying ∥ϕ∥Eθ−δ
≲ ∥ψ∥Eθ , such that

lim
T→∞

∫ T

1/T

ψ(eCϵt·)dt = ϕ,

the limit being understood with respect to the D(L ϵ
y ) topology.

Proof. First of all, there exists a linear bounded operator A2 : Hθ → H−θ such that
a2(y, v) = ⟨y, A2v⟩ = ⟨A2y, v⟩ for every y, v ∈ Hθ, and ∥ψ∥Hθ = ∥A2∥Hθ→H−θ . Then, for
every T > 0 we have ψ(eCϵT ·) ∈ E since |ψ(eCϵTy)| ≤ ∥ψ∥Hθ∥eCϵTy∥2

Hθ ≲ ∥ψ∥Hθe−λ0TT−θ/γ∥y∥2H ,
and similarly

∫ T
1/T

ψ(eCϵt·)dt ∈ E . In addition, for every T > 0 and y ∈ Hθ

∫ T

1/T

ψ(eCϵty)dt =

∫ T

1/T

⟨eCϵty, A2e
Cϵty⟩dt = ⟨y,

(∫ T

1/T

eCϵtA2e
Cϵtdt

)
y⟩,

and since for every δ1, δ2 ≥ 0 satisfying δ1 + δ2 = δ < γ it holds∫ ∞

0

∥∥eCϵtA2e
Cϵt
∥∥
Hθ−2δ1→H2δ2−θ dt ≲ ∥A2∥Hθ→H−θ

∫ ∞

0

e−λ0t

tδ/γ
dt <∞,
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there exists a linear bounded operator A∞
2 : Hθ−2δ1 → H2δ2−θ such that∫ T

1/T

eCϵtA2e
Cϵtdt→ A∞

2

strongly as T → ∞ for every δ1 + δ2 = δ < γ, and ⟨y, A∞
2 v⟩ = ⟨A∞

2 y, v⟩ for every
y, v ∈ Hθ−δ. In particular, using δ1 = δ2 = δ/2, we can define ϕ ∈ Eθ−δ given by

ϕ(y) = ⟨y, A∞
2 y⟩, y ∈ Hθ−δ,

which of course satisfies ∥ϕ∥Eθ−δ
= ∥A∞

2 ∥Hθ−δ→Hδ−θ ≲ ∥A2∥Hθ→H−θ = ∥ψ∥Eθ . Let us now
check ϕ ∈ D(L ϵ

y ): we have for every y ∈ Hθ

⟨Cϵy,Dyϕ(y)⟩ = 2⟨Cϵy, A∞
2 y⟩ = −⟨y, A2y⟩,

where the last equality comes from an integration by parts. Also, given a complete
orthonormal system {ek}k∈N of H and choosing δ ∈ (0, γ) such that θ − δ ≤ θ0 − γ, by
(Q2) it holds

1

2
Tr(QD2

yϕ) =
∑
k∈N

⟨Q1/2ek, A
∞
2 Q

1/2ek⟩

≤ ∥A∞
2 ∥Hθ−δ→Hδ−θ

∑
k∈N

∥Q1/2ek∥2Hθ−δ <∞.

Putting all together,

∥ϕ∥2D(Ly) ≲
∫
H

|ϕ(w)|2dµϵ(w) +
∫
H

|⟨y, A2y⟩|2dµϵ(w) + Tr(QD2
yϕ)

2

≲ ∥A∞
2 ∥Hθ−δ→Hδ−θ

∫
H

∥w∥2Hθ−δdµ
ϵ(w)

+ ∥A2∥Hθ→H−θ

∫
H

∥w∥2Hθdµ
ϵ(w)

+ Tr(QD2
yϕ)

2 <∞.

Let us finally prove limT→∞
∫ T
1/T

ψ(eCϵt·)dt = ϕ in the D(L ϵ
y ) topology. To ease the

notation, denote AT2 =
∫ T
1/T

eCϵtA2e
Cϵtdt, so that

∫ T
1/T

ψ(eCϵty)dt = ⟨y, AT2 y⟩ for every

y ∈ H. First, we have∥∥∥∥∫ T

1/T

ψ(eCϵt·)dt− ϕ

∥∥∥∥2
L2(H,µϵ)

=

∫
H

|⟨w, (AT2 − A∞
2 )w⟩|2dµϵ(w)

≤ ∥AT2 − A∞
2 ∥Hθ−δ→Hδ−θ

∫
H

∥w∥2Hθ−δdµ
ϵ(w) → 0,

as T → ∞, since AT2 → A∞
2 strongly. Second, the following identities hold true:

L ϵ
y

(∫ T

1/T

ψ(eCϵt·)dt
)
(y) = 2⟨Cϵy, AT2 y⟩+ Tr(QAT2 )

= ⟨y, (eCϵTA2e
CϵT − eCϵ/TA2e

Cϵ/T )y⟩+ Tr(QAT2 );

L ϵ
yϕ(y) = −⟨y, A2y⟩+ Tr(QA∞

2 ),
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from which we get∥∥∥∥L ϵ
y

(∫ T

1/T

ψ(eCϵt·)dt
)
− L ϵ

yϕ

∥∥∥∥2
L2(H,µϵ)

≲
∫
H

|⟨w, (eCϵTA2e
CϵT + A2 − eCϵ/TA2e

Cϵ/T )w⟩|2dµϵ(w)

+ |Tr(QAT2 )− Tr(QA∞
2 )|2

≲
∫
H

|⟨w, eCϵTA2e
CϵTw⟩|2dµϵ(w) +

∫
H

|⟨w,A2(1− eCϵ/T )w⟩|2dµϵ(w)

+

∫
H

|⟨w, (1− eCϵ/T )A2e
Cϵ/Tw⟩|2dµϵ(w)

+

∣∣∣∣∣∑
k∈N

⟨Q1/2ek, (A
T
2 − A∞

2 )Q1/2ek⟩

∣∣∣∣∣
2

≲ e−λ0T∥A2∥Hθ→H−θ

∫
H

∥w∥2Hθdµ
ϵ(w)

+ T (θ−θ0)/2Γ∥A2∥Hθ→H−θ

(
1 + e−λ0T

) ∫
H

∥w∥Hθ∥w∥Hθ0dµ
ϵ(w)

+ ∥AT2 − A∞
2 ∥2Hθ−δ→Hδ−θ

∣∣∣∣∣∑
k∈N

∥Q1/2ek∥2Hθ−δ

∣∣∣∣∣
2

→ 0.

Corollary 4.11. Under the hypotheses Lemma 4.10, let ϕ = limT→∞
∫ T
1/T

ψ(eCϵt·)dt.
Then for every δ1, δ2 ≥ 0, δ1 + δ2 < γ it holds ⟨Dyϕ(·), v⟩ ∈ Eθ−2δ1 for every v ∈ Hθ−2δ2,
with ∥⟨Dyϕ(·), v⟩∥Eθ−2δ1

≲ ∥ψ∥Eθ∥v∥Hθ−2δ2 .

Proof. It is sufficient to recall the expression ϕ(y) = ⟨y, A∞
2 y⟩, valid for y ∈ S , and notice

that for every v ∈ Hθ−2δ2 it holds ⟨v,Dyϕ(y)⟩ = 2⟨v,A∞
2 y⟩. To conclude, notice that

|⟨v,Dyϕ(y)⟩| ≲ ∥y∥Hθ−2δ1∥ψ∥Eθ∥v∥Hθ−2δ2 because A∞
2 : Hθ−2δ1 → H2δ2−θ is continuous

with ∥A∞
2 ∥Hθ−2δ1→H2δ2−θ ≲ ∥ψ∥Eθ , and therefore the identity ⟨v,Dyϕ(y)⟩ = 2⟨v,A∞

2 y⟩
extends to every y ∈ Hθ−2δ1 .

The next proposition permits to solve the Poisson equation L ϵ
yϕ = −ψ in the unknown ϕ,

under suitable assumptions on the datum ψ. We need, in particular, ψ to be a quadratic
function on some Sobolev space Hθ, θ ∈ [0, θ0), with zero average with respect to the
invariant measure µϵ, namely

∫
H
ψ(w)dµϵ(w) = 0. This latter condition being necessary

is clear from invariance of µϵ under the Ornstein-Uhlenbeck semigroup P ϵ
t and∣∣∣∣∫

H

L ϵ
yϕ(w)dµ

ϵ(w)

∣∣∣∣ ≤ ∣∣∣∣∫
H

(
L ϵ
yϕ(w)−

1

t
(P ϵ

t ϕ− ϕ) (w)

)
dµϵ(w)

∣∣∣∣→ 0

as t → 0+; by the proposition, the zero-average condition on ψ is also sufficient, at least
when we restrict ourselves to ψ ∈ Eθ. Finally, notice that the solution of the Poisson
equation is more regular than the datum, namely: if ψ ∈ Eθ, then ϕ ∈ Eθ−δ for every
δ ∈ (0, γ), and ⟨Dyϕ(·), v⟩ ∈ Eθ−2δ1 for every v ∈ Hθ−2δ2 , δ1, δ2 ≥ 0, δ1 + δ2 < γ.
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Proposition 4.12. Let ψ ∈ Eθ, θ ∈ [0, θ0) be such that
∫
H
ψ(w)dµϵ(w) = 0. Then there

exists ϕ ∈ Eθ−δ ∩D(L ϵ
y ) for every δ ∈ (0, γ) satisfying ∥ϕ∥Eθ−δ

≲ ∥ψ∥Eθ , such that

ϕ = lim
T→∞

∫ T

1/T

P ϵ
t ψdt

with respect to topology of D(L ϵ
y ), and L ϵ

yϕ = −ψ. Moreover, ⟨Dyϕ(·), v⟩ ∈ Eθ−2δ1 for
every v ∈ Hθ−2δ2, δ1, δ2 ≥ 0, δ1 + δ2 < γ, with ∥⟨Dyϕ(·), v⟩∥Eθ−2δ1

≲ ∥ψ∥Eθ∥v∥Hθ−2δ2 .

Proof. First we prove that the limit exists. Let ψ(y) = a0 + a1(y) + a2(y, y). We have

Ptψ(y) = Ptψ(0) + a1(e
Cϵty) + a2(e

Cϵty, eCϵty),

and by Lemma 4.9 and Lemma 4.10, the quantity
∫ T
1/T

(
a1(e

Cϵty) + a2(e
Cϵty, eCϵty)

)
dt

converges with respect to the D(L ϵ
y ) topology to some ϕ⋆ ∈ Eθ−δ ∩ D(L ϵ

y ) for every
δ ∈ (0, γ). Moreover, by Lemma 4.8

|P ϵ
t ψ(0)| = |P ϵ

t ψ(0)−
∫
H

ψ(w)dµϵ(w)| ≲ ∥ψ∥Eθe−λ0t

is integrable with respect to time, and so it converges with respect to the D(L ϵ
y ) topology

to a constant ϕ0. Putting all together,

lim
T→∞

∫ T

1/T

P ϵ
t ψdt = ϕ0 + ϕ⋆ =: ϕ ∈ Eθ−δ ∩D(L ϵ

y ).

Let us show that ϕ is indeed a solution of the Poisson equation L ϵ
yϕ = −ψ. Notice that

L ϵ
y : D(L ϵ

y ) → L2(H,µϵ) is bounded, and therefore by continuity we have

L ϵ
yϕ = L ϵ

y

(
lim
T→∞

∫ T

1/T

P ϵ
t ψdt

)
= lim

T→∞
L ϵ
y

(∫ T

1/T

P ϵ
t ψdt

)
,

where the first limit is understood with respect to the D(L ϵ
y ) topology, and the second

one with respect to the L2(H,µϵ) topology. Since
∫ T
1/T

∥P ϵ
t ψ∥Edt < ∞ for every T > 0

we have
∫ T
1/T

P ϵ
t ψdt ∈ E ⊂ D(L ϵ

y ) for every T > 0, and by Lemma 4.7 we have

L ϵ
y

(∫ T

1/T

P ϵ
t ψdt

)
=

∫ T

1/T

L ϵ
yP

ϵ
t ψdt =

∫ T

1/T

P ϵ
t Lyψdt = P ϵ

Tψ − P ϵ
1/Tψ.

In particular,

L ϵ
yϕ = lim

T→∞

(
P ϵ
Tψ − P ϵ

1/Tψ
)
.

Since we already know that P ϵ
1/Tψ → ψ ∈ L2(H,µϵ) as T → ∞ by continuity of the

semigroup, we are left to check limT→∞ P ϵ
Tψ = 0 ∈ L2(H,µϵ). We have:

|P ϵ
Tψ(y)| ≤ |P ϵ

Tψ(0)|+ |a1(eCϵTy)|+ |a2(eCϵTy, eCϵTy)|
≤ |P ϵ

Tψ(0)|+ ∥ψ∥Eθ(∥eCϵTy∥Hθ + ∥eCϵTy∥2Hθ)

≲ ∥ψ∥Eθe−λ0T + ∥ψ∥Eθ(e−λ0T∥y∥Hθ + e−2λ0T∥y∥2Hθ) → 0

as T → ∞ in L2(H,µϵ). Finally, the assertion about the derivative Dyϕ follows by the
explicit construction of Lemma 4.9 and Corollary 4.11.
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4.3 Perturbed test function method

Let us move back to the problem of identifying φϵ1, φ
ϵ
2 in the expression of the test function

φϵ. Recall we are looking for a perturbation of φ = φ(u) of the following form

φϵ(u, y) = φ(u) + ϵ1/2φϵ1(u, y) + ϵφϵ2(u, Y ).

For our purposes it is sufficient to consider φ ∈ F , namely φ(u) = ⟨u, h⟩ for some given
smooth test function h ∈ S . With this choice of φ, we have in particular

Duφ = h, D2
uφ = 0.

4.3.1 Finding φ1

Recalling (4.3), the first corrector φϵ1 needs to solve the Poisson equation

L ϵ
yφ

ϵ
1(u, y) = −⟨b(y, u), h⟩.

For every fixed u ∈ H, we can apply Proposition 4.12 to the function ψu = ⟨b(·, u), h⟩ ∈ E .
Indeed

∫
H
ψu(w)dµ(w) = 0, therefore there exists ϕϵu ∈ E such that L ϵ

yϕ
ϵ
u = −ψu.

Moreover, since ψu is linear in y, following the construction of Lemma 4.9 it is easy to
check

ϕϵu = ⟨b((−Cϵ)−1·, u), h⟩.

Finally, we define:

φϵ1(u, y) = ϕϵu(y) = ⟨b((−Cϵ)−1y, u), h⟩. (4.11)

Notice that for every v ∈ S :

⟨Dyφ
ϵ
1(u), v⟩ = ⟨b((−Cϵ)−1v, u), h⟩

⟨Duφ
ϵ
1(y), v⟩ = ⟨b((−Cϵ)−1y, v), h⟩.

Proposition 4.13. For every u, y ∈ Hs, s ∈ R, we have Dyφ
ϵ
1(u), Duφ

ϵ
1(y) ∈ H2θ+s for

every θ ∈ [γ, 1], with

∥Dyφ
ϵ
1(u)∥H2θ+s ≲ ϵ−

θ−γ
1−γ ∥h∥Hθ1∥u∥Hs , ∥Duφ

ϵ
1(y)∥H2θ+s ≲ ϵ−

θ−γ
1−γ ∥h∥Hθ1∥y∥Hs ,

for some θ1 = θ1(s) sufficiently large.

Proof. Take θ1 = θ1(s) such that (B2) holds true. For every v ∈ H2γ+s we have

|⟨Dyφ
ϵ
1(u), (−A)γ+s/2v⟩| = |⟨b((−Cϵ)−1(−A)γ+s/2v, u), h⟩|

≲ ∥(−Cϵ)−1(−A)γ+s/2v∥H−s∥h∥Hθ1∥u∥Hs

≲ ∥(−C)−1(−A)γ+s/2v∥H−s∥h∥Hθ1∥u∥Hs

≲ ∥v∥H∥h∥Hθ1∥u∥Hs ,
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and similarly for every v ∈ H2+s

|⟨Dyφ
ϵ
1(u), (−A)1+s/2v⟩| = |⟨b((−Cϵ)−1(−A)1+s/2v, u), h⟩|

≲ ∥(−Cϵ)−1(−A)1+s/2v∥H−s∥h∥Hθ1∥u∥Hs

≲ ∥(−ϵA)−1(−A)1+s/2v∥H−s∥h∥Hθ1∥u∥Hs

≲ ϵ−1∥v∥H∥h∥Hθ1∥u∥Hs .

Since v is arbitrary, by interpolation we deduce

∥Dyφ
ϵ
1(u)∥H2θ+s ≲ ∥Dyφ

ϵ
1(u)∥

1−θ
1−γ

H2γ+s∥Dyφ
ϵ
1(u)∥

θ−γ
1−γ

H2+s ≲ ϵ−
θ−γ
1−γ ∥h∥Hθ1∥u∥Hs .

The argument is similar for the term involving Duφ
ϵ
1: first, for every v ∈ H2γ+s

|⟨Duφ
ϵ
1(y), (−A)γ+s/2v⟩| ≲ |⟨b((−Cϵ)−1y, (−A)γ+s/2v), h⟩|

≲ ∥(−Cϵ)−1y∥H2γ+s∥h∥Hθ1∥(−A)γ+s/2v∥H−2γ−s

≲ ∥(−C)−1y∥H2γ+s∥h∥Hθ1∥(−A)γ+s/2v∥H−2γ−s

≲ ∥y∥Hs∥h∥Hθ1∥v∥H ,

whereas for every v ∈ H2+s

|⟨Duφ
ϵ
1(y), (−A)1+s/2v⟩| ≲ |⟨b((−Cϵ)−1y, (−A)1+s/2v), h⟩|

≲ ∥(−Cϵ)−1y∥H2+s∥h∥Hθ1∥(−A)1+s/2v∥H−2−s

≲ ∥(−ϵA)−1y∥H2+s∥h∥Hθ1∥(−A)1+s/2v∥H−2−s

≲ ϵ−1∥y∥Hs∥h∥Hθ1∥v∥H .

The thesis follows by interpolation.

4.3.2 Finding φ2

Let us move to equation (4.4) for the second corrector:

⟨Au+ b(u, u), h⟩+ ⟨b(Y, u), Duφ
ϵ
1(Y )⟩+ ⟨b(Y, Y ), Dyφ

ϵ
1(u)⟩+ L ϵ

yφ
ϵ
2(u, Y ).

As already discussed, the previous expression is obtained by manipulating the analogous
expression with y replacing Y .
In order to motivate this substitution, let ζ ∈ H indicate the difference ζ = y − Y . We
can prove the following:

Proposition 4.14. For every δ ∈ (0, γ − 1/4), u ∈ H1−δ, y ∈ Hγ and Y ∈ Hθ0−γ it
holds:

|⟨b(y, u), Duφ
ϵ
1(y)⟩ − ⟨b(Y, u), Duφ

ϵ
1(Y )⟩| ≲ ∥ζ∥H∥h∥Hθ1∥Y ∥Hθ0−γ∥u∥H

+ ϵ−
1−γ−δ
2(1−γ)∥ζ∥Hγ∥h∥Hθ1∥y∥H∥u∥H1−δ ,

|⟨b(y, y), Dyφ
ϵ
1(u)⟩ − ⟨b(Y, Y ), Dyφ

ϵ
1(u)⟩| ≲ ∥ζ∥H∥h∥Hθ1∥Y ∥Hθ0−γ∥u∥H

+ ϵ−
1−γ−δ
2(1−γ)∥ζ∥Hγ∥h∥Hθ1∥y∥H∥u∥H1−δ .
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Proof. Recall

⟨b(y, u), Duφ
ϵ
1(y)⟩ − ⟨b(Y, u), Duφ

ϵ
1(Y )⟩ = ⟨b(ζ, u), Duφ

ϵ
1(Y )⟩+ ⟨b(y, u), Duφ

ϵ
1(ζ)⟩,

⟨b(y, y), Dyφ
ϵ
1(u)⟩ − ⟨b(Y, Y ), Dyφ

ϵ
1(u)⟩ = ⟨b(ζ, Y ), Dyφ

ϵ
1(u)⟩+ ⟨b(y, ζ), Dyφ

ϵ
1(u)⟩,

and by (B3) and Proposition 4.13 with θ = 1+γ−δ
2

the following estimates hold:

|⟨b(ζ, u), Duφ
ϵ
1(Y )⟩| ≲ ∥ζ∥H∥h∥Hθ1∥Y ∥Hθ0−γ∥u∥H ,

|⟨b(y, u), Duφ
ϵ
1(ζ)⟩| ≲ ϵ−

1−γ−δ
2(1−γ)∥ζ∥Hγ∥h∥Hθ1∥y∥H∥u∥H1−δ ,

|⟨b(ζ, Y ), Dyφ
ϵ
1(u)⟩| ≲ ∥ζ∥H∥h∥Hθ1∥Y ∥Hθ0−γ∥u∥H ,

|⟨b(y, ζ), Dyφ
ϵ
1(u)⟩| ≲ ϵ−

1−γ−δ
2(1−γ)∥ζ∥Hγ∥h∥Hθ1∥y∥H∥u∥H1−δ ,

where we have used b : H ×H2γ+1−δ → Hδ−1 and b : H ×H2+γ−2δ → H−γ continuous by
(B3) and our choice of δ.

Remark 4.2. The previous proposition will be used in Section 4.4 to check rigorously that
we can actually replace the small-scale process yϵ with Y ϵ, up to a correction which is
infinitesimal as ϵ. Indeed, since 1−γ−δ

2(1−γ) <
1
2
we can compensate diverging factors in ϵ in

the previous proposition with a factor ϵ1/2 coming from Proposition 4.6, having taken
expectation and time integral.

Thus, our goal is to find φϵ2 = φϵ2(u, Y ) such that (4.4) is independent of Y . Let then
u ∈ H be fixed. The idea is again to apply Proposition 4.12 to

ψϵu = ⟨b(·, u), Duφ
ϵ
1(·)⟩+ ⟨b(·, ·), Dyφ

ϵ
1(u)⟩.

For every θ > 5
4
− γ it holds ψϵu ∈ Eθ, with ∥ψϵu∥Eθ ≲ ∥h∥Hθ1∥u∥H . However, ψϵu does

not satisfy the hypotheses of that proposition: indeed, it has not necessarily zero average
with respect to the invariant measure µϵ. To deal with this issue, let us consider instead

Ψϵ
u = ψϵu −

∫
H

ψϵu(w)dµ
ϵ(w).

With this choice of Ψϵ
u we have Ψϵ

u ∈ Eθ and
∫
H
Ψϵ
u(w)dµ

ϵ(w) = 0, thus Proposition 4.12
applies. Given u ∈ H and Φϵ

u ∈ Eθ′ ∩ D(L ϵ
y ), θ

′ > 5
4
− 2γ such that L ϵ

yΦ
ϵ
u = −Ψϵ

u, we
finally define

φϵ2(u, Y ) = Φϵ
u(Y ), ∥φϵ2(u, ·)∥Eθ′ ≲ ∥Ψϵ

u∥Eθ ≲ ∥h∥Hθ1∥u∥H . (4.12)

With this choice of φϵ2, (4.4) can be rewritten as

⟨Au+ b(u, u), h⟩+
∫
H

ψϵu(w)dµ
ϵ(w) =: L 0,ϵφ(u), (4.13)

which is indeed a function of the sole variable u.
In the following, specifically when computing L ϵφϵ = L ϵ

(
φ+ ϵ1/2φϵ1 + ϵφϵ2

)
, we will

need control over the derivatives Duφ
ϵ
2, DY φ

ϵ
2 to check that the corrections we impose on

the test function φ do not change the underlying dynamics in the limit ϵ→ 0, i.e. L ϵφϵ is
close to L 0,ϵφ in a suitable sense. Control over DY φ

ϵ
2 is already encoded in the statement

of Proposition 4.12, as a straightforward consequence of Corollary 4.11: indeed, for every
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θ > 5
4
− γ, δ1, δ2 ≥ 0, δ1 + δ2 < γ, and v ∈ Hθ−2δ2 it holds ⟨DY φ

ϵ
2(u, ·), v⟩ ∈ Eθ−2δ1 , with

uniform-in-ϵ bound:

∥⟨DY φ
ϵ
2(u, ·), v⟩∥Eθ−2δ1

≲ ∥Ψϵ
u∥Eθ∥v∥Hθ−2δ2 ≲ ∥h∥Hθ1∥u∥H∥v∥Hθ−2δ2 . (4.14)

On the other hand, to control Duφ
ϵ
2 we need the following preliminary lemma:

Lemma 4.15. For every θ < θ0 + 2γ − 1 there exists θ1 sufficiently large such that
⟨v,DuΨ

ϵ
u(·)⟩ ∈ Eθ0 for every v ∈ H−θ with

∥⟨v,DuΨ
ϵ
u(·)⟩∥Eθ0 ≲ ∥h∥Hθ1∥v∥H−θ .

Proof. By (B4) and (B2), for every θ < θ0 + 2γ − 1 we have b : Hθ0 ×Hθ0+2γ → Hθ and
b : Hθ0 ×Hθ0 → Hθ−2γ continuous, hence by Proposition 4.13 it holds for every v ∈ H−θ

|⟨b(Y, v), Duφ
ϵ
1(Y )⟩| ≲ ∥b(Y,Duφ

ϵ
1(Y ))∥Hθ∥v∥H−θ ≲ ∥Y ∥2Hθ0∥h∥Hθ1∥v∥H−θ ,

and,

|⟨v, ⟨b(Y, Y ), DuDyφ
ϵ
1(u)⟩⟩| = |⟨b((−Cϵ)−1b(Y, Y ), v), h⟩|

≲ ∥b(Y, Y )∥Hθ−2γ∥v∥H−θ∥h∥θ1
≲ ∥h∥θ1∥Y ∥2Hθ0∥v∥H−θ .

Thus, the desired result is true for if we replace Ψϵ
u by ψϵu. To conclude the proof, just

notice that by the same computation as above,∫
H

|⟨v,DuΨ
ϵ
u(w)|dµϵ(w) ≲ ∥h∥θ1∥v∥H−θ

∫
H

∥w∥2Hθ0dµ
ϵ(w) ≲ ∥h∥θ1∥v∥H−θ ,

since the integral is finite by (Q2).

Proposition 4.16. For every θ < θ0 + 2γ − 1 and v ∈ H−θ it holds ⟨v,Duφ
ϵ
2(·)⟩ ∈ Eθ0−δ

for every δ ∈ (0, γ) with

∥⟨v,Duφ
ϵ
2(·)⟩∥Eθ0−δ

≲ ∥h∥Hθ1∥v∥H−θ .

Proof. Recalling

ψϵu(Y ) = ⟨b(Y, u), Duφ
ϵ
1(Y )⟩+ ⟨b(Y, Y ), Dyφ

ϵ
1(u)⟩,

Ψϵ
u(Y ) = ψϵu(Y )−

∫
H

ψϵu(w)dµ
ϵ(w),

we have for every v ∈ S

⟨Duψ
ϵ
u(Y ), v⟩ = ⟨b(Y, v), Duφ

ϵ
1(Y )⟩+ ⟨b(Y, Y ), ⟨DuDyφ

ϵ
1, v⟩⟩,

⟨DuΨ
ϵ
u(Y ), v⟩ = ⟨Duψ

ϵ
u(Y ), v⟩ −

∫
H

⟨Duψ
ϵ
u(w), v⟩dµ(w),

and the previous quantity is independent of u ∈ H. Recall that we have defined φϵ2(u, ·) =
Φϵ
u = limT→∞

∫ T
1/T

P ϵ
tΨ

ϵ
udt, where the limit is taken inD(L ϵ

y ); we prove now that for every

v ∈ H we have

⟨Duφ
ϵ
2(·), v⟩ = lim

T→∞

∫ T

1/T

P ϵ
t ⟨DuΨ

ϵ
u, v⟩dt.
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Denote φϵ,T2 (u, ·) =
∫ T
1/T

P ϵ
tΨ

ϵ
udt ∈ E , and consider for r ∈ R

φϵ,T2 (u+ rv, ·)− φϵ,T2 (u, ·) =
∫ T

1/T

P ϵ
tΨ

ϵ
u+rvdt−

∫ T

1/T

P ϵ
tΨ

ϵ
udt

=

∫ T

1/T

P ϵ
t

(
Ψϵ
u+rv −Ψϵ

u

)
dt

=

∫ T

1/T

P ϵ
t (r⟨DuΨ

ϵ
u, v⟩) dt

= r

∫ T

1/T

P ϵ
t ⟨DuΨ

ϵ
u, v⟩dt,

where we have used linearity of P ϵ
t and the fact that Ψϵ

u is linear in u. The map y 7→
⟨DuΨ

ϵ
u(y), v⟩ satisfies the assumptions of Proposition 4.12, and therefore we can take the

limit in D(L ϵ
y ) of the previous expression, as T → ∞, to obtain

φϵ2(u+ rv, ·)− φϵ2(u, ·) = r lim
T→∞

∫ T

1/T

P ϵ
t ⟨DuΨ

ϵ
u, v⟩dt.

Finally, rearranging and taking the limit as r → 0 we get

⟨Duφ
ϵ
2(·), v⟩ = lim

r→0

1

r
(φϵ2(u+ rv, ·)− φϵ2(u, ·)) = lim

T→∞

∫ T

1/T

P ϵ
t ⟨DuΨ

ϵ
u, v⟩dt.

Since it holds ⟨DuΨ
ϵ
u(·), v⟩ ∈ Eθ0 with ∥⟨v,DuΨ

ϵ
u(·)⟩∥Eθ0 ≲ ∥h∥Hθ1∥v∥H−θ for every v ∈

H−θ and θ < θ0 + 2γ − 1, by Proposition 4.12 we have ⟨Duφ
ϵ
2(·), v⟩ ∈ Eθ0−δ for every

δ ∈ (0, γ) with

∥⟨Duφ
ϵ
2(·), v⟩∥Eθ0−δ

≲ ∥⟨v,DuΨ
ϵ
u(·)⟩∥Eθ0 ≲ ∥h∥Hθ1∥v∥H−θ .

Finally, the previous bound extend to all v ∈ H−θ by continuity. The proof is complete.

4.4 Convergence to transport noise

In this section we state and prove convergence of uϵ stated in Theorem 1.3. The proof is
split in three parts. In the first place, invoking Simon compactness criterium (Lemma 4.1),
we prove that the laws of the processes {uϵ}ϵ∈(0,1) are tight as probability measures on the
space L2([0, T ], H) ∩ C([0, T ], H−β) for every β > 0 (see Proposition 4.20 below); next,
in subsequent Proposition 4.21 we show that every weak accumulation point (u,Q1/2W )
is an analytically weak solution of the equation with effective generator L 0 and Itō
transport noise (cfr. (4.23)); finally, we check that the generator L 0 can be split into
the sum of the Itō-to-Stratonovich corrector (which together with the Itō integral gives
the Stratonovich transport noise) and the Itō-Stokes drift (Equations (4.26), (4.27), and
(4.28)).

Remark 4.3. When the limit equation does not admit uniqueness, we do not know whether
or not different subsequences can converge towards different solutions of the limit equa-
tion. It might well be that, notwithstanding the fact that the limit equation admits
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multiple solutions, this approximating procedure only selects some special solution with
enjoys additional properties. However, we are not able to answer this question at the
moment: we can only provide a partial selection criterium based on the fact that ev-
ery selected solution u must satisfy the same energy bounds (S3) of the approximating
sequence {uϵ}ϵ∈(0,1) (this latter property can be deduced first on Galerkin projections
{Πmu}m∈N, and then checked to be uniform in m ∈ N). This is of particular interest if
we start with solutions satisfying the energy inequality as in [FR08].

As a preliminary step towards the proof of Theorem 1.3, we need a version of the cel-
ebrated Itō Formula suited for our solution processes (uϵ, yϵ). Indeed, since (4.5) only
holds in analytically weak sense (S2), the classical Itō Formula [DPZ02, Theorem 4.32] is
not a priori applicable to the process Φ(uϵt, y

ϵ
t) unless Φ only depends on a finite number of

projections ⟨uϵt, hi⟩, ⟨yϵt , ki⟩, for some hi, ki ∈ S . Thus, our approach consists in applying
first the classical Itō Formula to Galerkin projections Πnu

ϵ, Πny
ϵ, and then pass to the

limit as n→ ∞, under suitable controls over DuΦ, DyΦ.

Lemma 4.17 (Itō Formula). Let Φ : H ×H → R be such that, for every fixed u, y ∈ H,
it holds Φ(u, ·),Φ(·, y) ∈ E and

∥DuΦ(u, y)∥H1 ≲ 1 + ∥u∥H + ∥y∥H , ∥DyΦ(u, y)∥H1 ≲ 1 + ∥u∥H + ∥y∥H . (4.15)

Let (uϵ, yϵ) be a solution to (4.5) in the sense of Definition 4.1. Then for every fixed
ϵ ∈ (0, 1) the following Itō Formula holds P-a.s. for every t ∈ [0, T ]

Φ(uϵt, y
ϵ
t) = Φ(u0, y0) +

∫ t

0

L ϵΦ(uϵs, y
ϵ
s)ds+

∫ t

0

⟨DyΦ(u
ϵ
s, y

ϵ
s), Q

1/2dWs⟩.

Proof. Let {Πn}n∈N be a family of Galerkin projectors and let h ∈ H be fixed. Since
Πnh ∈ S for every n ∈ N, by (S2) we have P-a.s. for every t ∈ [0, T ]:

⟨uϵt,Πnh⟩ = ⟨u0,Πnh⟩+
∫ t

0

⟨uϵs, AΠnh⟩+
∫ t

0

⟨b(uϵs, uϵs),Πnh⟩ds

+ ϵ−1/2

∫ t

0

⟨b(yϵs, uϵs),Πnh⟩ds,

⟨yϵt ,Πnh⟩ = ⟨y0,Πnh⟩+ ϵ−1

∫ t

0

⟨yϵs, CϵΠnh⟩ds+
∫ t

0

⟨b(uϵs, yϵs),Πnh⟩ds

+ ϵ−1/2

∫ t

0

⟨b(yϵs, yϵs),Πnh⟩ds+ ϵ−1/2⟨Q1/2Wt,Πnh⟩.

Letting h freely vary in H in the previous expression, we deduce that the process
(Πnu

ϵ,Πny
ϵ) is an Itō process satisfying

Πnu
ϵ
t = Πnu0 +

∫ t

0

ΠnAu
ϵ
sds+

∫ t

0

Πnb(u
ϵ
s, u

ϵ
s)ds+ ϵ−1/2

∫ t

0

Πnb(y
ϵ
s, u

ϵ
s)ds,

Πny
ϵ
t = Πny0 + ϵ−1

∫ t

0

ΠnCϵy
ϵ
sds+

∫ t

0

Πnb(u
ϵ
s, y

ϵ
s)ds

+ ϵ−1/2

∫ t

0

Πnb(y
ϵ
s, y

ϵ
s)ds+ ϵ−1/2ΠnQ

1/2Wt
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in strong analytical sense. In particular, by (S1) and classical Itō Formula, the following
a.s. identity holds for every t ∈ [0, T ]:

Φ(Πnu
ϵ
t,Πny

ϵ
t) = Φ(Πnu0,Πny0) +

∫ t

0

L ϵ,n
uϵs,y

ϵ
s
Φ(Πnu

ϵ
s,Πny

ϵ
s)ds

+

∫ t

0

⟨DyΦ(Πnu
ϵ
s,Πny

ϵ
s),ΠnQ

1/2dWs⟩,

where L ϵ,n
uϵs,y

ϵ
s
Φ(Πnu

ϵ
s,Πny

ϵ
s) is given by

L ϵ,n
uϵs,y

ϵ
s
Φ(Πnu

ϵ
s,Πny

ϵ
s) = ⟨ΠnAu

ϵ
s +Πnb(u

ϵ
s, u

ϵ
s), DuΦ(Πnu

ϵ
s,Πny

ϵ
s)⟩

+ ϵ−1/2⟨Πnb(y
ϵ
s, u

ϵ
s), DuΦ(Πnu

ϵ
s,Πny

ϵ
s)⟩

+ ⟨Πnb(u
ϵ
s, y

ϵ
s), DyΦ(Πnu

ϵ
s,Πny

ϵ
s)⟩

+ ϵ−1/2⟨Πnb(y
ϵ
s, y

ϵ
s), DyΦ(Πnu

ϵ
s,Πny

ϵ
s)⟩

+ ϵ−1⟨ΠnCϵy
ϵ
s, DyΦ(Πnu

ϵ
s,Πny

ϵ
s)⟩

+
ϵ−1

2
Tr(ΠnQΠnD

2
yΦ(Πnu

ϵ
s)).

Because Φ ∈ E whenever any of its two argument is fixed, it is easy to check that P-a.s.
for every t ∈ [0, T ] the convergences Φ(Πnu

ϵ
t,Πny

ϵ
t) → Φ(uϵt, y

ϵ
t) and Φ(Πnu0,Πny0) →

Φ(u0, y0) hold true as n→ ∞. By (S3), (4.15) and Lebesgue dominated convergence, we
have, up to subsequences, P-a.s. for every t ∈ [0, T ]∫ t

0

L ϵ,nΦ(Πnu
ϵ
s,Πny

ϵ
s)ds→

∫ t

0

L ϵΦ(uϵs, y
ϵ
s)ds.

Similarly, since
∫ t
0
∥ΠnDyΦ(Πnu

ϵ
s,Πny

ϵ
s)∥2ds →

∫ t
0
∥DyΦ(u

ϵ
s, y

ϵ
s)∥2ds a.s. as n → ∞, the

following convergence in probability holds true∫ t

0

⟨DyΦ(Πnu
ϵ
s,Πny

ϵ
s),ΠnQ

1/2dWs⟩ →
∫ t

0

⟨DyΦ(u
ϵ
s, y

ϵ
s), Q

1/2dWs⟩,

and the convergence is almost sure up to extracting a subsequence, concluding the proof.

Remark 4.4. i) As a consequence of Lemma 4.17 and the definition of correctors φϵ1, φ
ϵ
2

from the previous section, we immediately deduce that φϵ1 and φϵ2 belong to the domain
of the generator L ϵ and the Itō Formula holds for the processes φϵ1(u

ϵ, yϵ) and φϵ2(u
ϵ, yϵ).

However, strictly speaking we do not actually need such a strong result. For instance,
it would have been sufficient to show the existence of generalized correctors φ̃ϵ1, φ̃

ϵ
2 and

adapted processes Hϵ,i, i = 1, 2 such that P-a.s. for every t ∈ [0, T ]:

φ̃ϵi(u
ϵ
t, y

ϵ
t) = φ̃ϵi(u0, y0) +

∫ t

0

Hϵ,i
s ds+

∫ t

0

⟨Dyφ̃
ϵ
i(u

ϵ
s, y

ϵ
s), Q

1/2dWs⟩, i = 1, 2,

with the additional requirement that Hϵ + ϵα1Hϵ,1 + ϵα2Hϵ,2 converges to some explicit
process H0 in a suitable sense, for some αi > 0 (here Hϵ denotes an adapted process such
that φ(uϵt) = φ(u0) +

∫ t
0
Hϵ
sds, that exists by (S2)). In particular, it is not necessary that

generalized correctors φ̃ϵ1 and φ̃ϵ2 are in the domain of L ϵ.
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On the other hand, whenever the arguments of previous sections work and produce correc-
tors φϵ1, φ

ϵ
2 within the domain of L ϵ, it is natural to choose them to apply the perturbed

function method. Moreover, we can not avoid proving the validity of some Itō Formula for
the processes φϵ1(u

ϵ, yϵ) and φϵ2(u
ϵ, yϵ), since it does not descend directly from our notion

of solution (whereas an Itō Formula for φ(uϵ) does); thus, proving previous Lemma 4.17
is a fully justified effort.
ii) Since Y ϵ is regular, it is possible to consider functions Φ1(u, y, Y ) = Φ1(Φ(u, y), Y )
and prove an analogous Itō Formula for the process Φ1(u

ϵ
t, y

ϵ
t , Y

ϵ
t ).

4.4.1 Tightness

In this paragraph we prove that the laws of the processes {uϵ}ϵ∈(0,1) are tight as probability
measures on the space L2([0, T ], H)∩C([0, T ], H−β) for every β > 0. The idea is to apply
Simon compactness criterium Lemma 4.1. In order to do so, we need estimates on the
increments E

[
∥uϵt − uϵs∥

p
H−σ

]
, s, t ∈ [0, T ], where p > 2 and σ > 0 are suitable parameters.

Making use of the formula

∥uϵt − uϵs∥2H−σ =
∑
k∈N

(
φk(uϵt)− φk(uϵs)

)2
λ2σk

, φk(u) = ⟨u, ek⟩, (4.16)

for {ek}k∈N a complete orthonormal system in H, we reduce the problem to providing
suitable estimates for the quantity E

[
(φk(uϵt)− φk(uϵs))

p
]
, which can be obtained applying

Itō Formula Lemma 4.17 to the test function φk,ϵ(uϵ, yϵ) = φk(uϵ) + ϵ1/2φk,ϵ1 (uϵ, yϵ), with
φk,ϵ1 being given by (4.11).
We prove first the following auxiliary lemma, consisting of an estimate on some negative
Sobolev norm of the time increments uϵt − uϵs and y

ϵ
t − yϵs.

Lemma 4.18. Let {(uϵ, yϵ)}ϵ∈(0,1) be a bounded-energy family of weak martingale solu-
tions to (4.5), and for every ϵ ∈ (0, 1) let Y ϵ be the unique strong solution of (4.10).
Then for every p ≥ 1 and θ = max{θ0,Γ} the following estimates hold:

E
[
∥uϵt − uϵs∥

p

H−θ0

]
≲ ϵ−p/2|t− s|p;

E
[
∥Y ϵ

t − Y ϵ
s ∥

p

H−θ0

]
≲ ϵ−p/2|t− s|p/2;

E
[
∥yϵt − yϵs − (Y ϵ

t − Y ϵ
s )∥

p
H−θ

]
≲ ϵ−p|t− s|p.

Proof. Let us start from the estimate on uϵ. We have for every h ∈ Hθ0

⟨uϵt − uϵs, h⟩ =
∫ t

s

⟨uϵr, Ah⟩dr +
∫ t

s

⟨b(uϵr, uϵr), h⟩dr + ϵ−1/2

∫ t

s

⟨b(yϵr, uϵr), h⟩dr,

hence, using (B1)

|⟨uϵt − uϵs, h⟩| ≲
∫ t

s

∥uϵr∥H∥h∥H2dr +

∫ t

s

∥uϵr∥2H∥h∥Hθ0dr + ϵ−1/2

∫ t

s

∥yϵr∥H∥uϵr∥H∥h∥Hθ0dr.

Therefore, taking the supremum over h ∈ Hθ0 with ∥h∥Hθ0 = 1, elevating to the p-th
power and taking expectations:

E
[
∥uϵt − uϵs∥

p

H−θ0

]
≲ ϵ−p/2|t− s|p.
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In order to get the estimate on Y ϵ, we preliminarily rewrite the increment Y ϵ
t − Y ϵ

s using
the mild formulation of (4.10):

Y ϵ
t − Y ϵ

s =
(
eϵ

−1Cϵ(t−s) − 1
)
Y ϵ
s + ϵ−1/2

∫ t

s

eϵ
−1Cϵ(t−r)Q1/2dWr,

from which we are able to deduce, on the one hand

E
[∥∥∥(eϵ−1Cϵ(t−s) − 1

)
Y ϵ
s

∥∥∥p
H−θ0

]
≲ ϵ−p/2|t− s|p/2E

[
∥Y ϵ

s ∥
p

HΓ−θ0

]
≲ ϵ−p/2|t− s|p/2,

and, applying Itō Isometry:

E
[∥∥∥∥ϵ−1/2

∫ t

s

eϵ
−1Cϵ(t−r)Q1/2dWr

∥∥∥∥p
H−θ0

]
≲ |t− s|p/2,

on the other.
Let us move to the estimate on yϵ. First, since Y ϵ is a strong solution of (4.10), for every
fixed h ∈ Hθ0 and s, t ∈ [0, T ], s < t, we have the following weak reformulation of (4.10):

⟨Y ϵ
t − Y ϵ

s , h⟩ = ϵ−1

∫ t

s

⟨Y ϵ
r , Cϵh⟩dr + ϵ−1/2⟨Q1/2(Wt −Ws), h⟩,

so that putting the previous expression together with (S2) we get

⟨yϵt − yϵs − (Y ϵ
t − Y ϵ

s ), h⟩ = ϵ−1

∫ t

s

⟨yϵr − Y ϵ
r , Cϵh⟩dr +

∫ t

s

⟨b(uϵr, yϵr), h⟩dr

+ ϵ−1/2

∫ t

s

⟨b(yϵr, yϵr), h⟩dr.

Hence, arguing as with uϵt − uϵs we obtain

E
[
∥yϵt − yϵs − (Y ϵ

t − Y ϵ
s )∥

p
H−θ

]
≲ ϵ−p|t− s|p.

We move now to the main computation of this subsection. We have:

Lemma 4.19. There exists α > 0 depending only on γ, Γ and θ0 such that the following
holds. For every p > 2 there exists σ > 0 such that, for every s, t ∈ [0, T ]:

E
[
∥uϵt − uϵs∥

p
H−σ

]
≲ |t− s|αp.

Proof. Let us consider as test function φk,ϵ = φk + ϵ1/2φk,ϵ1 as above, namely φk(u) =
⟨u, ek⟩ and {ek}k∈N a complete orthonormal system in H, and φk,ϵ1 given by (4.11). With
this choice of φk we have Duφ

k = ek and

φk,ϵ1 (uϵ, yϵ) = ⟨b((−Cϵ)−1yϵ, uϵ), ek⟩,
Duφ

k,ϵ
1 (yϵ) = −b((−Cϵ)−1yϵ, ek),

Dyφ
k,ϵ
1 (uϵ) = ⟨b((−Cϵ)−1·, uϵ), ek⟩.
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Applying Itō Formula to φk,ϵ(uϵ, yϵ) we get almost surely for any given s, t ∈ [0, T ], s < t:

φk(uϵt)− φk(uϵs) = ϵ1/2(φk,ϵ1 (uϵs, y
ϵ
s)− φk,ϵ1 (uϵt, y

ϵ
t)) (4.17)

+

∫ t

s

L ϵφk,ϵ(uϵr, y
ϵ
r)dr +

∫ t

s

⟨Dyφ
k,ϵ
1 (uϵr), Q

1/2dWr⟩.

Therefore, using (4.16) and Hölder inequality, for every σ > 0 satisfying
∑

k∈N λ
−2σ
k <∞

we get the following inequality

E
[
∥uϵt − uϵs∥

p
H−σ

]
= E

(∑
k∈N

(
φk(uϵt)− φk(uϵs)

)2
λ2σk

)p/2
 (4.18)

≤

(∑
k∈N

1

λ2σk

) p−2
p

E

[∑
k∈N

(
φk(uϵt)− φk(uϵs)

)p
λ2σk

]
.

Let us estimate the summands on the right-hand-side of (4.17) to complete the proof
of the proposition. We start from the terms involving the time increment φk,ϵ1 (uϵs, y

ϵ
s) −

φk,ϵ1 (uϵt, y
ϵ
t): for every s, t ∈ [0, T ], s < t it holds

|φk,ϵ1 (uϵs, y
ϵ
s)− φk,ϵ1 (uϵt, y

ϵ
t)| ≤ |φk,ϵ1 (uϵs − uϵt, y

ϵ
s)|+ |φk,ϵ1 (uϵt, y

ϵ
s − yϵt)|

= |⟨b((−Cϵ)−1yϵs, ek), u
ϵ
s − uϵt⟩|+ |⟨b((−Cϵ)−1(yϵs − yϵt), ek), u

ϵ
t⟩|

≲ ∥uϵs − uϵt∥H−2γ∥yϵs∥H∥ek∥Hθ1 + ∥yϵs − yϵt∥H−2γ∥uϵt∥H∥ek∥Hθ0 .

We can invoke Lemma 4.18 and interpolation inequality to estimate the H−2γ norm of
the time increments uϵs − uϵt and y

ϵ
s − yϵt , and get (without loss of generality we assume

γ ≤ θ0/4)

ϵp/2 E
[(
φk,ϵ1 (uϵs, y

ϵ
s)− φk,ϵ1 (uϵt, y

ϵ
t)
)p]

≲ ϵp/2∥ek∥pHθ1
E
[
∥uϵt − uϵs∥

2γp/θ0
H−θ0

∥uϵt − uϵs∥
(1−2γ/θ0)p
H ∥yϵt∥

p
H

]
+ ϵp/2∥ek∥pHθ0

E
[
∥yϵt − yϵs∥

2γp/θ

H−θ ∥yϵt − yϵs∥
(1−2γ/θ)p
H ∥uϵs∥

p
H

]
≲ ∥ek∥pHθ1

ϵp/2ϵ−2γp/θ0|t− s|2γp/θ0 + ∥ek∥pHθ0
ϵp/2ϵ−2γp/θ|t− s|γp/θ

≲ ∥ek∥pHθ1
|t− s|2γp/θ0 + ∥ek∥pHθ0

|t− s|γp/θ,

where we recall θ = max{θ0,Γ}. Let us move now the term with the time integral of
L ϵφk,ϵ(uϵr, y

ϵ
r). We conveniently rewrite this term as L ϵφk,ϵ = Φk,ϵ + ϵ1/2Φk,ϵ

1 , where for
r ∈ [0, T ], Φk,ϵ,Φk,ϵ

1 are implicitly given by

L ϵφk,ϵ(uϵr, y
ϵ
r) = ⟨Auϵr + b(uϵr, u

ϵ
r), Duφ

k⟩+ ⟨b(yϵr, uϵr), Duφ
k,ϵ
1 (yϵr)⟩+ ⟨b(yϵr, yϵr), Dyφ

k,ϵ
1 (uϵr)⟩

+ ϵ1/2
(
⟨Auϵr + b(uϵr, u

ϵ
r), Duφ

k,ϵ
1 (yϵr)⟩+ ⟨b(uϵr, yϵr), Dyφ

k,ϵ
1 (uϵr)⟩

)
=: Φk,ϵ(uϵr, y

ϵ
r) + ϵ1/2Φk,ϵ

1 (uϵr, y
ϵ
r).

We have the inequalities

|⟨Auϵr + b(uϵr, u
ϵ
r), Duφ

k⟩| = |⟨Auϵr + b(uϵr, u
ϵ
r), ek⟩|

≲ ∥uϵr∥H∥ek∥H2 + ∥uϵr∥2H∥ek∥Hθ0 ,

|⟨b(yϵr, uϵr), Duφ
k,ϵ
1 (yϵr)⟩| ≲ ∥ek∥Hθ1∥yϵr∥H∥yϵr∥H3/2−2γ∥uϵr∥H1 ,

|⟨b(yϵr, yϵr), Dyφ
k,ϵ
1 (uϵr)⟩| ≲ ∥ek∥Hθ1∥yϵr∥H1∥yϵr∥H3/2−2γ∥uϵr∥H ,

102



4.4. Convergence to transport noise

so that the time integral of Φk,ϵ(uϵr, y
ϵ
r) satisfies:

E
[(∫ t

s

Φk,ϵ(uϵr, y
ϵ
r)dr

)p]
≲ ∥ek∥pHθ1

|t− s|(γ−1/4)p

uniformly in ϵ. Similarly,

|⟨Auϵr, Duφ
k,ϵ
1 (yϵr)⟩| ≲ ∥ek∥Hθ1∥uϵr∥H1∥yϵr∥H1−2γ ,

|⟨b(uϵr, uϵr), Duφ
k,ϵ
1 (yϵr)⟩| ≲ ∥ek∥Hθ1∥uϵr∥H1∥uϵr∥H3/2−2γ∥yϵr∥H ,

|⟨b(uϵr, yϵr), Dyφ
k,ϵ
1 (uϵr)⟩| ≲ ∥ek∥Hθ1∥yϵr∥H1∥uϵr∥H3/2−2γ∥uϵr∥H ,

and we can bound the time integral of Φk,ϵ
1 (uϵr, y

ϵ
r) with

ϵp/2E
[(∫ t

s

Φk,ϵ
1 (uϵr, y

ϵ
r)dr

)p]
≲ ϵp/2∥ek∥pHθ1

|t− s|(γ−1/4)p.

The last term remaining is the stochastic integral; we have by Itō Isometry

E
[(∫ t

s

⟨Dyφ
k,ϵ
1 (uϵr), Q

1/2dWr⟩
)p]

= E
[(∫ t

s

⟨b((−Cϵ)−1Q1/2dWr, u
ϵ
r), ek⟩

)p]
≲ ∥ek∥pHθ0

|t− s|p/2.

Putting all together, we finally arrive to the following bound, uniform in ϵ and valid for
every k ∈ N, s, t ∈ [0, T ], s < t and for every p > 2:

E
[(
φk(uϵt)− φk(uϵs)

)p]
≲ ∥ek∥pHθ1

|t− s|αp, α = min {2γ/θ0, γ/θ, γ − 1/4} . (4.19)

Recall that in order to estimate the H−σ norm of uϵt − uϵs we have to sum (4.19) above
over all k ∈ N; for this reason, we further require that σ is such that∑

k∈N

∥ek∥pHθ1

λ2σk
<∞,

so that by Fubini-Tonelli Theorem, (4.18) and (4.19)

E
[
∥uϵt − uϵs∥

p
H−σ

]
= E

(∑
k∈N

(
φk(uϵt)− φk(uϵs)

)2
λ2σk

)p/2


≤

(∑
k∈N

1

λ2σk

) p−2
p

E

[∑
k∈N

(
φk(uϵt)− φk(uϵs)

)p
λ2σk

]
≲ |t− s|αp.

Thus, we are ready to prove the first part of Theorem 1.3, that is:

Proposition 4.20. For every β > 0, the laws of the processes {uϵ}ϵ∈(0,1) are tight as
probability measures on the space L2([0, T ], H) ∩ C([0, T ], H−β).

Proof. Let α0 be given by previous Lemma 4.19, and take α ∈ (0, α0), p > 1/α and
σ > 0 such that the lemma holds. By the aforementioned lemma, E

[
∥uϵ∥Wα,p([0,T ],H−σ)

]
is bounded uniformly in ϵ; since in addition E

[
∥uϵ∥L∞([0,T ],H)

]
and E

[
∥uϵ∥L2([0,T ],H1)

]
are

also bounded uniformly in ϵ by assumption (S3), Simon compactness criterium Lemma 4.1
yields tightness of the sequence of laws of the processes {uϵ}ϵ∈(0,1) in the space L2([0, T ], H)
∩ C([0, T ], H−β) for every β > 0.

103



Chapter 4. From additive to transport noise in 3D fluids

4.4.2 Identification of the limit

Let φ = ⟨·, h⟩ ∈ F be a test function, and denote φϵ(u, y, Y ) = φ(u) + ϵ1/2φϵ1(u, y) +
ϵφϵ2(u, Y ), where φϵ1 and φϵ2 are given by (4.11) and (4.12) respectively. Let us also
introduce the homogeneous corrector φ1 via the formula

φ1(u, y) := ⟨b((−C)−1y, u), h⟩, (4.20)

and the limiting effective generator L 0 by

L 0φ(u) = ⟨Au+ b(u, u), h⟩+
∫
H

ψu(w)dµ(w), (4.21)

where ψu(w) = ⟨b(w, u), Duφ1(w)⟩+ ⟨b(w,w), Dyφ1(u)⟩ and µ = N (0, Q∞).
Since (uϵ, yϵ) is a weak solution of system (4.5) and Y ϵ is a strong solution to (4.10), by
Itō Formula Lemma 4.17 we have almost surely for every t ∈ [0, T ]:

φϵ(uϵt, y
ϵ
t , Y

ϵ
t ) = φϵ(u0, y0, 0) +

∫ t

0

L ϵφϵ(uϵs, y
ϵ
s, Y

ϵ
s )ds

+ ϵ−1/2

∫ t

0

⟨Dyφ
ϵ(uϵs, y

ϵ
s, Y

ϵ
s ), Q

1/2dWs⟩,

or equivalently,

φ(uϵt) = φ(u0) +

∫ t

0

L 0φ(uϵs)ds+

∫ t

0

⟨b((−C)−1Q1/2dWs, u
ϵ
s), h⟩ (4.22)

+

∫ t

0

(
L 0,ϵφ(uϵs)− L 0φ(uϵs)

)
ds+

∫ t

0

⟨b(
(
(−Cϵ)−1 − (−C)−1

)
Q1/2dWs, u

ϵ
s), h⟩

+ ϵ1/2 (φϵ1(u0, y0)− φϵ1(u
ϵ
t, y

ϵ
t)) + ϵ (φϵ2(u0, 0)− φϵ2(u

ϵ
t, Y

ϵ
t ))

+

∫ t

0

Φϵ
0(u

ϵ
s, y

ϵ
s, Y

ϵ
s )ds+ ϵ1/2

∫ t

0

Φϵ
1(u

ϵ
s, y

ϵ
s, Y

ϵ
s )ds+ ϵ

∫ t

0

Φϵ
2(u

ϵ
s, Y

ϵ
s )ds

+ ϵ1/2
∫ t

0

⟨DY φ
ϵ
2(u

ϵ
s, Y

ϵ
s ), Q

1/2dWs⟩,

where L 0 is the limiting effective generator defined by (4.21), L 0,ϵ is the effective gen-
erator defined by (4.13) and we have denoted for notational simplicity

Φϵ
0(u, y, Y ) = ⟨b(y, u), Duφ

ϵ
1(y)⟩+ ⟨b(y, y), Dyφ

ϵ
1(u)⟩

− ⟨b(Y, u), Duφ
ϵ
1(Y )⟩+ ⟨b(Y, Y ), Dyφ

ϵ
1(u)⟩,

Φϵ
1(u, y, Y ) = ⟨Au+ b(u, u), Duφ

ϵ
1(y)⟩+ ⟨b(u, y), Dyφ

ϵ
1(u)⟩

+ ⟨b(y, u), Duφ
ϵ
2(Y )⟩,

Φϵ
2(u, Y ) = ⟨Au+ b(u, u), Duφ

ϵ
2(Y )⟩.

Equation (4.22) clearly indicates the candidate limit dynamics - first line of the equation
- and the remainder terms - lines second to fifth. Our aim consists in proving, on the one
hand the convergence of the first line to the same quantity evaluated at uϵ = u (for a
possibly different Wiener process W ; recall that at this stage the stochastic basis is still
dependent on ϵ), and on the other hand the convergence of all remainders to zero.
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4.4. Convergence to transport noise

In order to conveniently pass to the limit ϵ → 0, we invoke a standard combination of
Prokhorov Theorem and Skorokhod Theorem. Indeed, since the family of laws of the
processes {uϵ}ϵ∈(0,1) is tight on the space L2([0, T ], H) ∩ C([0, T ], H−β) for every β > 0,
and {Q1/2W = Q1/2W ϵ}ϵ∈(0,1) is a family of identically distributed C([0, T ], H)-valued
random variables, by Prokhorov Theorem there exists a subsequence ϵn → 0 such that
(uϵn , Q1/2W ϵn) converges in distribution as n→ ∞ towards a process (u,Q1/2W )2 taking
values in the space:

X :=
(
L2([0, T ], H) ∩ C([0, T ], H−β)

)
× C([0, T ], H).

Then, given any subsequence such that (uϵn , Q1/2W ϵn) → (u,Q1/2W ) in distribution (not
necessarily that one provided by Prokhorov Theorem), in virtue of Skorokhod Theorem
there exists a new probability space (Ω̃, F̃ , P̃) supporting X -valued random variables
(ũ, Q1/2W̃ ) ∼ (u,Q1/2W ) and (ũn, Q1/2W̃ n) ∼ (uϵn , Q1/2W ϵn) for every n ∈ N such that
(ũn, Q1/2W̃ n) → (ũ, Q1/2W̃ ) P̃-almost surely as random variables in X . Of course, as
usually done in these situations we drop the tildes in what follows.

Proposition 4.21. Let (un, Q1/2W n) → (u,Q1/2W ) as above. Then for every φ ∈ F we
have the almost sure identity

φ(ut) = φ(u0) +

∫ t

0

L 0φ(us)ds+

∫ t

0

⟨b((−C)−1Q1/2dWs, us), h⟩, ∀t ∈ [0, T ]. (4.23)

Proof. We divide the proof in three steps. First, we show that the remainder terms are
infinitesimal in mean square as n→ ∞; second, we prove that the deterministic effective
dynamics is a continuous function of the path ξ ∈ C([0, T ], H−β) ∩ L2([0, T ], H); finally,
we invoke a martingale representation theorem to identify the limit behaviour of the
martingale term in (4.23).
Step 1. Let us focus on the remainder terms in the right-hand-side of (4.22). They are
of several kinds: i) terms involving the differences∫ t

0

L 0,ϵnφ(uϵns )ds−
∫ t

0

L 0φ(uϵns )ds,

∫ t

0

⟨b(GϵnQ
1/2dWs, u

ϵn
s ), h⟩,

where the operator Gϵn := (−Cϵn)−1 − (−C)−1 = ϵn(−C)−1A(−Cϵ)−1, which are con-
trolled using the bounds ∥Gϵn∥Hs→Hs+2γ(1+β)−2β ≲ ϵn

β and ∥eCϵn t−eCt∥Hθ+2β→Hθ ≲ ϵn
β for

every β ∈ [0, 1], uniformly in t ∈ [0,∞), and go to zero in mean square as n → ∞ (and

ϵn → 0); ii) terms of the form ϵ
1/2
n φϵn1 (unt , y

n
t ) or ϵnφ

ϵn
2 (unt , Y

n
t ), t ∈ [0, T ], Y n := Y ϵn ,

which can be easily shown to converge to zero in mean square as n → ∞ as a conse-
quence of energy bounds for (uϵ, yϵ), the bound ∥φϵn2 (unt , ·)∥Eθ′ ≲ ∥h∥Hθ1∥unt ∥H for some
θ′ > 5/4− 2γ and

|φϵn1 (unt , y
n
t )| ≲ ∥ynt ∥H∥unt ∥H∥h∥Hθ0 ,

|φϵn2 (unt , Y
n
t )| ≲ (1 + ∥Y n

t ∥2Hθ′ )∥h∥Hθ1∥unt ∥H ;

iii) the term
∫ t
0
Φϵn

0 (uns , y
n
s , Y

n
s )ds, which is infinitesimal in mean square by Proposi-

tion 4.14 and Proposition 4.6; iv) the terms involving the time integrals of Φϵn
1 (uns , y

n
s , Y

n
s )

2Recall that any Wiener process with covariance operator Q can be written as Q1/2W for some
cylindrical Wiener process W on H.
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and Φϵn
2 (uns , Y

n
s ), which are controlled by Proposition 4.13, Proposition 4.16 and the es-

timates:

|Φϵn
1 (uns , y

n
s , Y

n
s )| ≲ |⟨Auns + b(uns , u

n
s ), Duφ

ϵn
1 (yns )⟩|+ |⟨b(uns , yns ), Dyφ

ϵn
1 (uns )⟩|

+ |⟨b(yns , uns ), Duφ
ϵn
2 (Y n

s )⟩|
≲ ∥uns∥H(1 + ∥uns∥H1)∥yns ∥H∥h∥Hθ1

+ ∥uns∥H∥yns ∥H∥Y n
s ∥2Hθ0∥h∥Hθ1 ,

|Φϵn
2 (uns , Y

n
s )| ≲ ∥uns∥H(1 + ∥uns∥H)∥Y n

s ∥2Hθ0∥h∥Hθ1 ;

and finally, v) the stochastic integral ϵ
1/2
n

∫ t
0
⟨DY φ

ϵn
2 (uns , Y

n
s ), Q

1/2dW n
s ⟩, which by Itō

Isometry satifies

ϵnE

[(∫ t

0

⟨DY φ
ϵn
2 (uns , Y

n
s ), Q

1/2dW n
s ⟩
)2
]
= ϵnE

[∫ t

0

∥Q1/2DY φ
ϵn
2 (uns , Y

n
s )∥2Hds

]
→ 0.

Thus all the remainders converge to zero in mean square.
Step 2. Let us consider on the path space X equipped with its Borel sigma field B the
pushforward probability measures

Qn := P ◦ (un, Q1/2W n)−1, Q := P ◦ (u,Q1/2W )−1.

Of course Qn weakly converges towards Q as n → ∞. Let A be the Q-completion of B,
and let {At}t∈[0,T ] be the smallest filtration of A that satisfies the usual conditions with
respect to Q and such that the coordinate process (ξ, ω) on X is adapted. Introduce An

and {An
t }t∈[0,T ] similarly. Define the process

ρt := φ(ξt)− φ(ξ0)−
∫ t

0

L 0φ(ξs)ds, t ∈ [0, T ]. (4.24)

Let us show that ρt is a continuous function of ξ.
First of all, notice that every φ ∈ F , φ(ξ) = ⟨ξ, h⟩ for some h ∈ S , is a continuous
function from H−β to R. Therefore if ξn → ξ in C([0, T ], H−β) we have φ(ξn) → φ(ξ)
in C([0, T ]) as well. Let us now consider the term involving the effective generator L 0.
Recall

L 0φ(ξ) = ⟨Aξ + b(ξ, ξ), h⟩+
∫
H

ψξ(w)dµ(w).

Let us show that the map L2([0, T ], H) ∋ ξ 7→
∫ ·
0
L 0φ(ξs)ds ∈ C([0, T ]) is sequentially

continuous, or equivalently ∫ t

0

L 0φ(ξns )ds→
∫ t

0

L 0φ(ξs)ds (4.25)

in C([0, T ]). For every s ∈ [0, t], rewrite

L 0φ(ξns )− L 0φ(ξs) = ⟨Aξns + b(ξns , ξ
n
s ), h⟩ − ⟨Aξs + b(ξs, ξs), h⟩

+

∫
H

ψξns (w)dµ(w)−
∫
H

ψξs(w)dµ(w).

106



4.4. Convergence to transport noise

Let us bound the terms in the right-hand-side of the previous expression separately.
Making use of the usual estimates on b, we have

|⟨A(ξns − ξs), h⟩| ≤ ∥ξns − ξs∥H∥h∥H2 ;

|⟨b(ξns , ξns )− b(ξs, ξs), h⟩| ≤ |⟨b(ξns , ξns − ξs), h⟩|+ |⟨b(ξns − ξs, ξs), h⟩|
≲ (∥ξns ∥H + ∥ξs∥H)∥ξns − ξs∥H∥h∥Hθ0 ;∣∣∣∣∫

H

ψξns (w)dµ(w)−
∫
H

ψξs(w)dµ(w)

∣∣∣∣ ≲ ∥h∥Hθ1∥ξns − ξs∥H
∫
H

∥w∥2Hθ0dµ(w)

≲ ∥h∥Hθ1∥ξns − ξs∥H .

Putting all together, we finally obtain the following bound

|L 0φ(ξns )− L 0φ(ξs)| ≲ (1 + ∥ξns ∥H + ∥ξs∥H)∥ξns − ξs∥H .

In particular, recalling that ξn → ξ in L2([0, T ], H) we have:

sup
t∈[0,T ]

∣∣∣∣∫ t

0

L 0φ(ξns )ds−
∫ t

0

L 0φ(ξs)ds

∣∣∣∣ ≤ ∫ T

0

|L 0φ(ξns )− L 0φ(ξs)|ds

≲

(∫ T

0

(1 + ∥ξns ∥H + ∥ξs∥H)2ds
)1/2(∫ T

0

∥ξns − ξs∥2Hds
)1/2

→ 0.

Step 3. By weak convergence Qn → Q and previous steps it is easy to show (cfr. for
instance [FG95, Theorem 3.1] or [DPZ14, Chapter 8.4]) that the couple (ρ, ω) is a con-
tinuous square-integrable martingale on (X ,A, {At}t∈[0,T ],Q) with quadratic covariations
({ek}k∈N is a complete orthonormal system of H):

[ρ, ρ]t =

∫ t

0

∥Q1/2Dyφ1(ξs)∥2Hds,

[ρ, ⟨ek, ω⟩]t =
∫ t

0

⟨Q1/2Dyφ1(ξs), Q
1/2ek⟩ds,

[⟨ek, ω⟩, ⟨ek, ω⟩]t = ⟨Q1/2ek, Q
1/2ek⟩t.

This is basically due to the fact that ρ can be written as the sum of a martingale on
(X ,A, {An

t }t∈[0,T ],Qn) plus remainder terms which are infinitesimal in mean square as
n → ∞. By [DPZ14, Theorem 8.2], up to a possible enlargement of the underlying
probability space, there exists a cylindrical Wiener process ω̃ on (X ,A, {At}t∈[0,T ],Q)
such that the following martingale representation formulae hold Q-almost surely for every
t ∈ [0, T ]:

ωt =

∫ t

0

Q1/2dω̃s = Q1/2ω̃t,

ρt =

∫ t

0

⟨Dyφ1(ξs), Q
1/2dω̃s⟩ =

∫ t

0

⟨Dyφ1(ξs), dωs⟩.

In particular, since the auxiliary Wiener process ω̃ satisfies ωt = Q1/2ω̃t, the equation for
ρt above holds true also in the original probability space, without necessarily taking an
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Chapter 4. From additive to transport noise in 3D fluids

enlargement thereof. Thus, recalling (4.24) we have the following Q-almost sure identity
on the path space X :

φ(ξt) = φ(ξ0) +

∫ t

0

L 0φ(ξs)ds+

∫ t

0

⟨Dyφ1(ξs), dωs⟩, ∀t ∈ [0, T ],

that by Q = P◦ (u,Q1/2W )−1 and the explicit expression of φ1 (4.20) is equivalent to our
thesis.

4.4.3 Itō-Stokes drift and Stratonovich corrector

In this subsection, we provide an interpretation of the limiting equation in terms of
different contribution to the dynamics. Recall that every weak accumulation point u of
the family {uϵt}ϵ∈(0,1) satisfies, for every φ ∈ F , φ(u) = ⟨u, h⟩ for some h ∈ S , t ∈ [0, T ]
the almost sure identity (4.23):

φ(ut) = φ(u0) +

∫ t

0

L 0φ(us)ds+

∫ t

0

⟨b((−C)−1Q1/2dWs, us), h⟩,

where the limiting effective generator L 0 is given by (4.21). For the reader’s convenience,
here we rewrite L 0φ more explicitly as

L 0φ(u) = ⟨Au+ b(u, u), h⟩+
∫
H

⟨b(w, u), Duφ1(w)⟩dµ(w) +
∫
H

⟨b(w,w), Dyφ1(u)⟩dµ(w)

= ⟨Au+ b(u, u), h⟩+
∫
H

⟨b((−C)−1w, b(w, u)), h⟩dµ(w)

+

∫
H

⟨b((−C)−1b(w,w), u), h⟩dµ(w).

Let us compare (4.23) with the dynamics of uϵ, ϵ ∈ (0, 1). Of course, the term ⟨Aus +
b(us, us), h⟩ reflects the deterministic dynamics ⟨Auϵs+ b(uϵs, uϵs), h⟩ in the evolution of uϵ.
On the other hand, the fast-oscillating term ϵ−1/2⟨b(yϵs, uϵs), h⟩ in the equation for uϵ

is responsible for the additional terms in the limit. We can distinguish three different
contributions:

� The Itō integral: ∫ t

0

⟨b((−C)−1Q1/2dWs, us), h⟩; (4.26)

� The Stratonovich corrector:∫ t

0

∫
H

⟨b((−C)−1w, b(w, us)), h⟩dµ(w)ds; (4.27)

� The Itō-Stokes drift: ∫ t

0

∫
H

⟨b((−C)−1b(w,w), us), h⟩dµ(w)ds. (4.28)
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Of course the term denoted ”Itō-Stokes drift” equals
∫ t
0
⟨b(r, us), h⟩ds by the very defi-

nition of the Itō-Stokes drift velocity r =
∫
H
(−C)−1b(w,w)dµ(w). Moreover, we shall

see that the term called ”Stratonovich corrector” (4.27) above is indeed the Stratonovich
corrector of the term called ”Ito integral” (4.26), namely:∫ t

0

⟨Dyφ1(us), Q
1/2 ◦ dWs⟩ =

∫ t

0

⟨Dyφ1(us), Q
1/2dWs⟩ (4.29)

+

∫ t

0

∫
H

⟨b(w, us), Duφ1(w)⟩dµ(w)ds.

Therefore, (4.23) is exactly the weak formulation of the equation in Theorem 1.3, which
is then proved.

We are left to check the validity of (4.29). Let h ∈ S be fixed, and let W =
∑

k ekW
k,

where {ek}k∈N is a complete orthonormal system in H and {W k}k∈N is a family of one-
dimensional i.i.d. Wiener processes. As a matter of fact, one can rewrite the Itō integral
(4.26) as∫ t

0

⟨b((−C)−1Q1/2dWs, us), h⟩ = −
∑
k∈N

∫ t

0

⟨b((−C)−1Q1/2ek, h), us⟩dW k
s ;

since for h ∈ S it holds b((−C)−1Q1/2ek, h) ∈ S as well, the quadratic variation between
the processes ⟨b((−C)−1Q1/2ek, h), u⟩ and W k is given by

[
⟨b((−C)−1Q1/2ek, h), u⟩,W k

]
t
= −

∫ t

0

⟨b((−C)−1Q1/2ek, us), b((−C)−1Q1/2ek, h)⟩ds.

(4.30)

On the other hand, (4.27) equals∫ t

0

∫
H

⟨b((−C)−1w, b(w, us)), h⟩dµ(w)ds =
∑
k∈N

∫ t

0

⟨b((−C)−1Q1/2
∞ ek, b(Q

1/2
∞ ek, us)), h⟩ds

(4.31)

= −
∑
k∈N

∫ t

0

⟨b((−C)−1Q1/2
∞ ek, h), b(Q

1/2
∞ ek, us)⟩ds.

Recall that, since C and Q commute, the covariance operator Q∞ of the invariant measure
µ = N (0, Q∞) can be written as Q∞ = 1

2
(−C)−1Q. In particular, there exists a complete

orthonormal system {ek}k∈N of H that diagonalizes C, Q and Q∞ simultaneously, namely

Cek = −λkek, Qek = qkek, Q∞ek =
qk
2λk

ek,

and therefore by (4.30) and (4.31) we finally get

1

2

[
⟨b((−C)−1Q1/2ek, h), u⟩,W k

]
t
=

∫ t

0

∫
H

⟨b((−C)−1w, b(w, us)), h⟩dµ(w)ds.
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Remark 4.5. i) The attentive reader would have noticed that this is the first time we are
actually using that C and Q commute. In particular, the convergence result described in
this chapter still holds true in the case CQ ̸= QC. In this case, we believe that∑

k∈N

∫ t

0

⟨b((−C)−1Q1/2ek, us), b((−C)−1Q1/2ek, h)⟩ds

̸=
∑
k∈N

∫ t

0

⟨b((−C)−1Q1/2
∞ ek, h), b(Q

1/2
∞ ek, us)⟩ds

and the limit equation cannot be interpreted as an equation with Strotonovich transport
noise.
ii) Assume that Q is isotropic, i.e. every basis of eigenvectors of A also diagonalizes Q.
Under this circumstance, the Itō-Stokes drift equals zero for the Navier-Stokes system,
since for the particular choice

ek,i = ak,i cos(2πk · x), or ek,i = ak,i sin(2πk · x),

where k ∈ Zd \ {0} , i = 1, . . . , d− 1, and ak,i ∈ k⊥ for every k, i, it holds

b(ek,i, ek,i) = −Π((ek,i · ∇)ek,i) = ±Π

(ak,i · 2πk)︸ ︷︷ ︸
=0

cos(2πk · x) sin(2πk · x)

 = 0.
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Chapter 5

Quantitative mixing and enhanced
dissipation of Ornstein-Uhlenbeck
flow

We recall the equation satisfied by ρ:

∂tρ+ vϵ · ∇ρ = κ∆ρ in [0, 1]× Td, (5.1)

with initial value ρ|t=0 = ρ0 ∈ L2(Td) with zero mean, and by ρ̄, with the same initial
condition:

∂tρ̄ = (κ∆+ L)ρ̄ in [0, 1]× Td. (5.2)

The vector field vϵ has been defined as

vϵ =
∑
j∈J

vjη
ϵ,j,

where J is a finite set, {vj}j∈J is a family of smooth, divergence-free vector fields and
ηϵ,j are stationary one-dimensional i.i.d. Ornstein-Uhlenbeck processes. Details are given
below.

In this chapter we prove mixing (Theorem 1.4) and dissipation enhancement (Theo-
rem 1.5) for the solution ρ of (5.1). The key point is that our result is truly quantitative.
This is important because, as we have already seen, transport noise in Stratonovich form
is a good model to take into account small-scales unresolved variables in several systems
only in the infinite scale-separation limit, that is obviously a crude idealization; in reality,
scale-separation is always finite (or there is no scale-separation at all) and thus it is useful
to quantify what error we make when using the ideal white-in-time noise.

The chapter is structured as follows.

In Section 5.1 we recall some classical result concerning well-posedness of (5.1) and (5.2).
A precise description of our model is carried on in Section 5.1.2.

In Section 5.2 we collect some auxiliary results concerning the time increments of the
process ρ solution of (5.1). There we prove that ρ has a.s. regular trajectories as a
process taking value in a space of distributions, and we obtain good bounds for the
expectation of its increments – see Lemma 5.2 and Lemma 5.3. In addition, we state the
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Chapter 5. Quantitative mixing and enhanced dissipation of Ornstein-Uhlenbeck flow

key result Proposition 5.4, needed for the proof of Theorem 1.4, that consists in a bound
on the quantity

sup
n,m=1,...,1/δ−1

n>m

(nδ −mδ)−θ

∣∣∣∣∣⟨ϕ, ρnδ⟩ − ⟨ϕ, ρmδ⟩ − δ

n−1∑
k=m

⟨Aϕ, ρkδ⟩

∣∣∣∣∣ ,
where δ is a small parameter, suitably chosen in depending on ϵ.
In Section 5.3, we give the proof of Theorem 1.4 and Theorem 1.5.
Concerning the first result, the key idea consists in introducing the random distribution
f defined via the formula

⟨ϕ, ft⟩ = ⟨ϕ, ρt⟩ − ⟨ϕ, ρ0⟩ −
∫ t

0

⟨Aϕ, ρs⟩ds, ∀ϕ ∈ H2(Td), ∀t ∈ [0, 1] :

of course if one could prove f = 0, then one would have ρt = ρ̄t for every t ∈ [0, 1];
however, it turns out that the difference ρ − ρ̄ depends path-by-path continuously on f ,
(Lemma 5.6) and therefore we are able to deduce an estimate on ρ− ρ̄ from an estimate
on f – cfr. Proposition 5.5.
As for Theorem 1.5, its proof relies on the following energy inequality

d

dt
∥ρt∥2L2(Td) ≤ −2κ

∥ρt∥4L2(Td)

∥ρt∥2H−1(Td)

and a bound on ∥ρt∥2H−1(Td)
obtained applying Theorem 1.4 with s = 1. Since our result

on mixing is truly quantitative, we are able to say that ∥ρt∥2H−1(Td)
is smaller than a

certain threshold (depending on t) with high probability, and using this information in
the previous inequality we deduce an explicit rate of decay for the L2(Td) norm of ρ.
Finally, in Section 5.4 we prove Proposition 5.4. Its proof is based on a discretization
procedure very common in the literature about averaging andWong-Zakai approximations
theorems for stochastic differential equations, and are inspired by our previous works
[AFP21, FP21]. The advection-diffusion equation (5.1) is interpreted in a pathwise sense,
although the velocity field v is random – it is usually referred to as random PDE rather
than SPDE; the key Lemma 5.6 is analytic as well; the results contained in Section 5.4
are more probabilistic in the spirit, and rely on explicit computability of the Ornstein-
Uhlenbeck process, Doob maximal inequality, Burkholder-Davis-Gundy inequality and
Kolmogorov continuity criterion.

5.1 Notation and preliminaries

5.1.1 Functional analytic setting

Let ek(x) = (2π)−d/2eik·x, k ∈ Zd. The set {ek}k∈Zd is a complete orthonormal system
of L2(Td,C) made of eigenfunctions of the Laplace operator: ∆ek = −|k|2ek for every
k ∈ Zd. A generic function f ∈ L2(Td,C) can be then represented as a Fourier series:

f(x) =
∑
k∈Zd

f̂kek(x), x ∈ Td,
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5.1. Notation and preliminaries

for a (unique) square summable sequence {f̂k}k∈Zd of Fourier coefficients. The Fourier
map F : L2(Td,C) → ℓ2(Zd,C), that associates to every f the sequence of its Fourier
coefficients, is an isomorphism of Hilbert spaces; it can be extended to an isomorphism
between the space of (complex-valued) tempered distributions S ′(Td,C) and space of
sequences of Fourier coefficients {f̂k}k∈Zd such that

∑
k∈Zd |k|2s|f̂k|2 <∞ for some s ∈ R.

Unless otherwise stated, we will only work in the following with the space S ′(Td) ⊂
S ′(Td,C) of real-valued distributions with zero mean, that corresponds to sequences

{f̂k}k∈Zd such that f̂0 = 0 and f̂k = f̂−k for every k ∈ Zd. We denote Zd0 = Zd \ {0}.
For s ∈ R, define the Sobolev space

Hs(Td) =

f ∈ S ′(Td) : ∥f∥Hs :=
∑
k∈Zd

0

|k|2s|f̂k|2 <∞

 ,

which is a Hilbert space when equipped with the scalar product

⟨f, g⟩Hs(Td) =
∑
k∈Zd

0

|k|2sf̂kĝ−k, f, g ∈ Hs(Td).

In the special case s = 0, the Sobolev space corresponds to the space L2(Td) of real-
valued, square integrable functions on the torus with zero mean. The scalar product
⟨·, ·⟩ := ⟨·, ·⟩H0(Td) is also a duality map between Hs(Td) and H−s(Td) for every s ∈ R:

⟨f, g⟩ =
∑
k∈Zd

0

f̂kĝ−k, f ∈ Hs(Td), g ∈ H−s(Td).

Sobolev spaces form a Hilbert scale with respect to the operator (−∆)1/2; in particular,
the following interpolation inequality holds between Hs1(Td) and Hs2(Td), for s1, s2 ∈ R,
s1 < s2 and θ ∈ (0, 1):

∥f∥Hsθ (Td) ≤ ∥f∥θHs1 (Td)∥f∥
1−θ
Hs2 (Td)

, sθ = θs1 + (1− θ)s2. (5.3)

Finally, we have the following lemma, cfr. [BCD11, Corollary 2.55] for a proof in the full
space:

Lemma 5.1. Let s1, s2 ∈ R such that s1, s2 < d/2 and s1 + s2 > 0. Then for every
f ∈ Hs1(Td) and g ∈ Hs2(Td) the product fg ∈ Hs1+s2−d/2(Td) and

∥fg∥Hs1+s2−d/2(Td) ≲s1,s2 ∥f∥Hs1 (Td)∥g∥Hs2 (Td).

Remark 5.1. Condition d ≥ 3 stated in the introduction is a technical limitation of
our method, due to application of Lemma 5.1, but there is no physical reason for this
constraint. Also, the case d = 2 in Theorem 1.4 and Theorem 1.5 is readily implied
by our results in dimension d = 3 and the following observation: for every s ∈ R and
f ∈ Hs(T2), the function g : T3 → R defined by g(x1, x2, x3) := f(x1, x2) satisfies for
every k = (k1, k2, k3) ∈ Z3

0

ĝ(k1,k2,k3) =

{
f̂(k1,k2) if k3 = 0,

0 if k3 ̸= 0,

and thus g ∈ Hs(T3) with ∥g∥Hs(T3) = ∥f∥Hs(T2).
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5.1.2 The model

Stationary Ornstein-Uhlenbeck processes

Let J be a finite index set of cardinality |J |, and let (Ω+, {F+
t }t≥0,P+) and (Ω−, {F−

t }t≥0,P−)
be two filtered probability spaces, satisfying the usual conditions, which support two fam-
ilies of i.i.d. Brownian motions {W+,j}j∈J and {W−,j}j∈J . Set W j

t = W+,j
t , for t ≥ 0,

and W j
t = W−,j

−t , for t < 0.
For every ϵ < 1, the processes

ηϵ,j(t) :=

∫ t

−∞
ϵ−1e−ϵ

−1(t−s)dW j
s , t ∈ [0, 1], j ∈ J, (5.4)

constitute a family of i.i.d. stationary Ornstein-Uhlenbeck processes solutions of

dηϵ,j = −ϵ−1ηϵ,jdt+ ϵ−1dW j
t , t ∈ [0, 1], j ∈ J,

on the filtered probability space (Ω, {Ft}t∈[0,1],P) defined by Ω := Ω−×Ω+, P := P−⊗P+,
and where {Ft}t≥0 is the augmentation of the filtration {F−

∞⊗F+
t }t∈[0,1]. Notice that this

filtration satisfies the usual conditions. Moreover, by (5.4) it holds for every t ∈ [0, 1],

ηϵ,j(t) = −
∫ ∞

0

ϵ−1e−ϵ
−1(t+s)dW−,j

s +

∫ t

0

ϵ−1e−ϵ
−1(t−s)dW+,j

s (5.5)

= e−ϵ
−1tηϵ,j(0) + ϵ−1

∫ t

0

e−ϵ
−1(t−s)dW j

s ,

where in the second line we have used W+,j
s = W j

s for every s ≥ 0 and

ηϵ,j(0) = −
∫ ∞

0

ϵ−1e−ϵ
−1sdW−,j

s .

5.1.3 Notion of solution to (5.1) and (5.2)

We assume {vj}j∈J to be a family of smooth vector fields vj : Td → Rd such that div vj = 0
for every j ∈ J .
We give now the notion of solution for the random PDE (5.1)

∂tρ+ vϵ · ∇ρ = κ∆ρ in [0, 1]× Td,

with (deterministic) initial value ρ|t=0 = ρ0 ∈ L2(Td). We shall use this notion of
solution throughout the chapter. A general time interval [0, T ] can be handled with
no difficulties In what follows, D(Td) stands for the space of real-valued, zero-mean,
smooth test functions.

Definition 5.1. Assume κ > 0. A stochastic process ρ : Ω × [0, 1] → L2(Td), adapted
to the filtration {Ft}t∈[0,1], is a (analytically weak, probabilistically strong) solution of

(5.1) if there exists a full-measure set Ω̃ ⊂ Ω such that for every ω ∈ Ω̃ it holds: ρ(ω, ·) ∈
L∞([0, 1], L2(Td)) ∩ L2([0, 1], H1(Td)) and

⟨ϕ, ρt⟩ = ⟨ϕ, ρs⟩+
∫ t

s

⟨vϵ(r) · ∇ϕ, ρr⟩dr + κ

∫ t

s

⟨∆ϕ, ρr⟩dr,

for every s < t and ϕ ∈ D(Td).
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For every initial datum ρ0 ∈ L2(Td) and κ > 0, (5.1) is well-posed in the sense of the
previous definition. Indeed, the advection velocity vϵ is almost surely smooth in space
and Hölder continuous in time, thus by [Paz83, Corollary 2.2] the only solution is given
by Duhamel formula

ρt = eκ∆tρ0 +

∫ t

0

eκ∆(t−s) (vϵ(s) · ∇ρs) ds.

Existence of (probabilistically strong) solution can be proved by standard approximation
schemes and Yamada-Watanabe theorem. Also, by linearity of the equation and molli-
fication we can also check that the map t 7→ ∥ρt∥2L2(Td)

has a.s. absolutely continuous

trajectories and the following energy inequality (as variables in L1([0, 1])) holds with
probability one:

d

dt
∥ρt∥2L2(Td) = −2κ∥ρt∥2H1(Td), (5.6)

In particular, from (5.6) we deduce the following almost sure energy estimate, which we
will use extensively in the following:

sup
t∈[0,1]

(
∥ρt∥2L2(Td) + 2κ

∫ t

0

∥ρs∥2H1(Td)ds

)
≤ ∥ρ0∥2L2(Td). (5.7)

By (5.6) and using the inequality ∥ρt∥2L2(Td)
≤ ∥ρt∥2H1(Td)

, one can deduce the following

almost sure decay of L2(Td) norm for the solution of (5.1):

∥ρt∥L2(Td) ≤ e−κt∥ρ0∥L2(Td). (5.8)

In the inviscid case κ = 0, we must introduce the flow Vϵ associated to vϵ to exhibit
the (Lagrangian) solution ρt = ρ0 ◦ (Vϵ)−1, which however need not to have trajectories
in L2([0, T ], H1). Energy inequalities (5.7) and (5.8) in this case read as ∥ρt∥L2(Td) ≤
∥ρ0∥L2(Td).
Concerning equation (5.2), it is well known [Paz83, Theorem 5.2] that the operator A
generates an analytic semigroup of negative type eA· on S ′(Td), and the unique solution
of (5.2) is given by the Duhamel formula

ρ̄t = eAtρ0, t ∈ [0, 1].

Decay of L2(Td) norm of ρ̄ can be estimated as follows:

∥ρ̄t∥L2(Td) ≤ e−λt∥ρ̄0∥L2(Td),

where λ is the principal eigenvalue of the operator −A. Notice that λ ≥ κ since L is a
negative-semidefinite operator.

Remark 5.2. The inequality ∥ρt∥2L2(Td)
≤ ∥ρt∥2H1(Td)

, used to deduce (5.8) above, may
be very loose if the energy of ρ is distributed at high wavenumbers, viz. the Fourier
coefficients {ρ̂k}k∈Zd

0
do not decrease sufficiently fast as |k| → ∞. This is in fact the case:

indeed, by Theorem 1.4, for every fixed t > 0

E
[
∥πNρt∥L2(Td)

]
≤ NE

[
∥ρt∥H−1(Td)

]
≤ N

(
∥ρ̄t∥H−1(Td) + E

[
∥ρt − ρ̄t∥H−1(Td)

])
≲ N∥ρ0∥L2(Td)

(
e−λt +

(
α + ϵκµ2+γ

)ς)
,
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where πN : S ′(Td) → C∞(Td) denotes the projector onto Fourier modes |k| ≤ N , N ∈ N.
The previous inequality suggests that energy is actually transferred to high wavenumbers
if t > 0, α, ϵ ≪ 1 and λ ≫ 1, and hence we do not expect inequality (5.8) to be sharp –
that is indeed the content of Theorem 1.5.

5.2 Useful estimates

In this section, we prove some auxiliary results concerning the time increments of the
process ρ solution of (5.1). Proofs are mostly inspired by our previous works [AFP21,
FP21].

Recall that ρ has trajectories taking values in L∞([0, 1], L2(Td)) almost surely. Forth-
coming Lemma 5.2 and (5.3) allow to estimate the increments ρt+δ − ρt with respect to
Sobolev norms Hs(Td), s ∈ [−1, 0]. It turns out that ρ is actually a.s. Hölder continuous
as a variable taking values in Hs(Td) for s ∈ (−1, 0], and it is a.s. Lipschitz continuous as
variable taking values in H−1(Td); however, its Hölder and Lipschitz constants diverge to
infinity for ϵ → 0, and therefore we need Lemma 5.3 to better control them in expected
value.

The subsequent Proposition 5.4 aims to control the error between the actual solution ρ
of (5.1) and a discretized version of (5.2). We will make an essential use of the latter in
the proof of Proposition 5.5 in Section 5.3. Its proof, however, is quite long: for the sake
of a clear and effective presentation we postpone it to Section 5.4.

To start with, we recall that for every p ≥ 1 and j ∈ J the supremum of the Ornstein-
Uhlenbeck process ηϵ,j can be estimated in expected value with

E

[
sup
s∈[0,1]

|ηϵ,j(s)|p
]
≲p ϵ

−p/2 log(1 + ϵ−1)p/2. (5.9)

From (5.9) and the definition of µ, one can deduce the following inequalities:

E

[
sup
s∈[0,1]

∥vϵ(s)∥p
Hd/2−γ(Td)

]
≲p µ

pϵ−p/2 logp/2(1 + ϵ−1); (5.10)

E

[
sup
s∈[0,1]

∥vϵ(s)∥p
L∞(Td)

]
≲p µ

pϵ−p/2 logp/2(1 + ϵ−1). (5.11)

We prove now the following result, which allows to control the time increments of the
process ρ in a Sobolev space of negative order.

Lemma 5.2. Let δ⋆ > 0 such that δ⋆ϵ
−1 log(1 + ϵ−1) > 1. Then for every p ≥ 1 the

following inequality holds:

E

 sup
t+δ≤1
δ≤δ⋆

∥ρt+δ − ρt∥pH−1(Td)

 ≲p ∥ρ0∥pL2(Td)
µpδp⋆ϵ

−p/2 logp/2(1 + ϵ−1).

116



5.2. Useful estimates

Proof. By the very definition of weak solution of (5.1) and (5.7), for every test function
ϕ ∈ D(Td) one has the following almost sure inequality

|⟨ϕ, ρt+δ − ρt⟩| ≤
∫ t+δ

t

|⟨vϵ(s) · ∇ϕ, ρs⟩|ds+ κ

∫ t+δ

t

|⟨∆ϕ, ρs⟩|ds

≤ ∥ϕ∥H1(Td)

∫ t+δ

t

∥vϵ(s)∥L∞(Td)∥ρs∥L2(Td)ds

+ κ∥ϕ∥H1(Td)

∫ t+δ

t

∥ρs∥H1(Td)ds

≤ ∥ϕ∥H1(Td)∥ρ0∥L2(Td)δ sup
s∈[0,1]

∥vϵ(s)∥L∞(Td)

+ ∥ϕ∥H1(Td)∥ρ0∥L2(Td)κ
1/2δ1/2.

Since ϕ is arbitrary, we deduce

∥ρt+δ − ρt∥H−1(Td) ≤ ∥ρ0∥L2(Td)

(
δ sup
s∈[0,1]

∥vϵ(s)∥L∞(Td) + κ1/2δ1/2

)
.

Taking the supremum (raised to power p) over δ, and then expectation, (5.11) yields

E

 sup
t+δ≤1
δ≤δ⋆

∥ρt+δ − ρt∥pH−1(Td)

 ≲p ∥ρ0∥pL2(Td)

(
δp⋆µ

pϵ−p/2 logp/2(1 + ϵ−1) + κp/2δp/2⋆

)
.

The thesis follows recalling that κp/2δ
p/2
⋆ < δp⋆µ

pϵ−p/2 logp/2(1 + ϵ−1), due to our choice of
parameters.

The previous lemma can be used to deduce the following result. In view of interpolation
inequality (5.3), the next lemma can be used together with Lemma 5.2 in order to obtain
better estimates – needed in the following – on the increments of ρ in Sobolev spaces
Hs(Td), with s ∈ (−2,−1).

Lemma 5.3. Let d ≥ 3, δ ∈ (0, 1) such that δϵ−1 log(1+ ϵ−1) > 1 and µδ4/3ϵ−1 log1/3(1+
ϵ−1) < 1. Then for every γ ∈ (0, (d − 2)/2) and p ≥ 1 the following inequality holds for
every fixed t ∈ [0, 1− δ]:

E
[
∥ρt+δ − ρt∥pH−2−γ(Td)

]
≲γ,p ∥ρ0∥pL2(Td)

µp
(
δp/2 + ϵp/2 logp/2(1 + ϵ−1)

)
.

Proof. As in the proof of Lemma 5.2, we have the following almost sure inequality for
every given test function ϕ ∈ D(Td)

|⟨ϕ, ρt+δ − ρt⟩| ≤
∫ t+δ

t

|⟨vϵ(s) · ∇ϕ, ρs − ρt⟩|ds

+

∣∣∣∣∫ t+δ

t

⟨vϵ(s) · ∇ϕ, ρt⟩ds
∣∣∣∣+ κ

∫ t+δ

t

|⟨∆ϕ, ρs⟩|ds.
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Let us deal with each term separately. Using Lemma 5.1 with s1 = d/2 − γ, s2 = 1 + γ
and Lemma 5.2 we get∫ t+δ

t

|⟨vϵ(s) · ∇ϕ, ρs − ρt⟩|ds ≤
∫ t+δ

t

∥vϵ(s) · ∇ϕ∥H1(Td) ∥ρs − ρt∥H−1(Td) ds

≲γ ∥ϕ∥H2+γ(Td)

∫ t+δ

t

∥vϵ(s)∥Hd/2−γ(Td) ∥ρs − ρt∥H−1(Td) ds,

where we use d/2− γ < d/2, 1 + γ < d/2 to apply Lemma 5.1, which correspond to the
conditions d ≥ 3, γ ∈ (0, (d− 2)/2).

Moving to the next term, recall that vϵ(s)ds =
∑

j∈J vjη
ϵ,j(s)ds =

∑
j∈J vjdW

j
s −

ϵ
∑

j∈J vjdη
ϵ,j(s), and thus∣∣∣∣∫ t+δ

t

⟨vϵ(s) · ∇ϕ, ρt⟩ds
∣∣∣∣ = ∣∣∣∣〈(∫ t+δ

t

vϵ(s)ds

)
· ∇ϕ, ρt

〉∣∣∣∣
≤ ∥ϕ∥H1(Td)∥ρ0∥L2(Td)

∑
j∈J

∥vj∥L∞(Td)

∣∣W j
t+δ −W j

t

∣∣
+ ∥ϕ∥H1(Td)∥ρ0∥L2(Td)ϵ sup

s∈[0,1]
∥vϵ(s)∥L∞(Td).

Finally, ∫ t+δ

t

|⟨∆ϕ, ρs⟩|ds ≤ ∥ϕ∥H2(Td)∥ρ0∥L2(Td)δ.

Therefore, since ϕ is arbitrary and ∥ϕ∥H1(Td), ∥ϕ∥H2(Td) ≤ ∥ϕ∥H2+γ(Td) for every γ > 0:

∥ρt+δ − ρt∥H−2−γ(Td) ≲γ sup
s∈[0,1]

∥vϵ(s)∥Hd/2−γ(Td)

∫ t+δ

t

∥ρs − ρt∥H−1(Td)ds

+ ∥ρ0∥L2(Td)

∑
j∈J

∥vj∥L∞(Td)

∣∣W j
t+δ −W j

t

∣∣
+ ∥ρ0∥L2(Td)ϵ sup

s∈[0,1]
∥vϵ(s)∥L∞(Td) + ∥ρ0∥L2(Td)δ.

Using (5.10), (5.11), Lemma 5.2, and the inequality E
[∣∣W j

t+δ −W j
t

∣∣p] ≲p δ
p/2 valid for

every p ≥ 1 we get (recall that δ < 1 and therefore δ < δ1/2)

E
[
∥ρt+δ − ρt∥pH−2−γ(Td)

]
≲γ,p ∥ρ0∥pL2(Td)

µ2pδ2pϵ−p logp(1 + ϵ−1)

+ ∥ρ0∥pL2(Td)
µpδp/2

+ ∥ρ0∥pL2(Td)
µpϵp/2 logp/2(1 + ϵ−1).

The thesis now follows recalling our choice of parameters.

For the next proposition we need some preparation. Divide the interval [0, 1] into subin-
tervals of the form [nδ, (n + 1)δ], for some δ ∈ (0, 1). In the following δ will be taken
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small, and it may depend on the parameter ϵ. The idea behind this subdivision is to
control the following quantity:

sup
n,m=1,...,1/δ−1

n>m

(nδ −mδ)−θ

∣∣∣∣∣⟨ϕ, ρnδ⟩ − ⟨ϕ, ρmδ⟩ − δ

n−1∑
k=m

⟨Aϕ, ρkδ⟩

∣∣∣∣∣ , (5.12)

for any given test function ϕ ∈ D(Td) and some θ > 0, where we have used the symbol A
as an abbreviation for the operator κ∆+ L. To be precise, we will prove the following:

Proposition 5.4. Let d ≥ 3, β > d/2 + 1 and γ ∈ (0, (d − 2)/6) be fixed. Then there
exist θ > 0, κ > 0 and δ > 0 such that 1/δ is an integer and for every ϵ sufficiently small

E

 sup
n,m=1,...,1/δ−1

n>m

(nδ −mδ)−θ

∣∣∣∣∣⟨ϕ, ρnδ⟩ − ⟨ϕ, ρmδ⟩ − δ
n−1∑
k=m

⟨Aϕ, ρkδ⟩

∣∣∣∣∣


≲γ ∥ϕ∥Hβ(Td)∥ρ0∥L2(Td)

(
α + ϵκµ2+γ

)
.

The proof of the previous result is quite long and technical, and we postpone it to Sec-
tion 5.4. The particular choice of the parameters θ,κ and δ is specified therein. In the
statement of the proposition, ϵ sufficiently small means more precisely: µϵp1 logp2(1 +
ϵ−1) < 1, for some p1, p2 > 0 depending only on the parameters γ, θ and κ. More details
are given in the proof of the proposition.
Moreover, since we always work at fixed γ, hereafter we omit the dependence of γ in the
symbol ≲γ.

5.3 Quantitative mixing and dissipation enhancement

In the first part of this section we prove our main result Theorem 1.4. The idea is very
simple, but effective.
Define the random distribution f : Ω×[0, 1] → H−2(Td) as follows: for every test function
ϕ ∈ H2(Td),

⟨ϕ, ft⟩ := ⟨ϕ, ρt⟩ − ⟨ϕ, ρ0⟩ −
∫ t

0

⟨Aϕ, ρs⟩ds, t ∈ [0, 1].

If one could prove f = 0, then by [Bal77] we would have ρt − eAtρ0 = ρt − ρ̄t = 0 for
every t ∈ [0, 1]. Of course this is not the case, since f ̸= 0; however, owing to [GLT06,
Theorem 1] we can prove that the difference ρ − ρ̄ is a continuous function of f (with
respect to suitable topologies), and therefore ρ− ρ̄ is small if also f is.
The “right” topology in which to prove smallness of f turns out to be that of Hölder
continuous functions Cθ([0, 1], H−β(Td)), for some small θ ∈ (0, 1) and β > d/2 + 1 (cfr.
Lemma 5.6). We would like to stress that any θ ∈ (0, 1) sufficiently small works: in
particualr, it can be taken arbitrarily small. This comes with no surprise: the reader
familiar with SPDEs would recognize f as a sort of additive noise perturbing the linear
equation (5.2).
In the forthcoming Proposition 5.5 we provide suitable estimates for the Hölder norm
of f . As just discussed, we will use this result in the subsequent Section 5.3.2 to prove
Theorem 1.4.
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Finally, we will prove Theorem 1.5 in Section 5.3.3. We will deduce this theorem from
Theorem 1.4 and energy equality (5.6), using as an intermediate step Markov inequality
to prove that the quantity supt∈[0,1] ∥ρt − ρ̄t∥H−1(Td) is small with high probability.

5.3.1 Estimate on f

We begin with the following remark: since f0 = 0 and the time interval is compact, the
Hölder norm of f is equivalent to the Hölder seminorm

∥f∥Cθ([0,1],H−β(Td)) ∼ sup
0<s<t<1

∥ft − fs∥H−β(Td)

|t− s|θ
.

Proposition 5.5. Let d ≥ 3, β > d/2 + 1 and γ ∈ (0, (d − 2)/6). Then there exists θ
sufficiently small such that, for every ϵ sufficiently small:

E
[
∥f∥Cθ([0,1],H−β(Td))

]
≲ ∥ρ0∥L2(Td)

(
α + ϵκµ2+γ

)
Proof. Let s, t ∈ [0, 1], s < t and let ϕ ∈ D(Td) be a test function. Given δ as in
Proposition 5.4, we distinguish two cases:

� if |t−s| ≤ δ, then arguing as in the proof of Lemma 5.2 one can prove the following
a.s. inequality:

|⟨ϕ, (ρt − ρs)⟩| ≤ ∥ϕ∥H2(Td)∥ρt − ρs∥H−2(Td)

≤ ∥ϕ∥H2(Td)∥ρ0∥L2(Td)|t− s|

(
sup
s∈[0,1]

∥vϵ∥L∞(Td) + κ

)

≤ ∥ϕ∥H2(Td)∥ρ0∥L2(Td)|t− s|θδ1−θ
(

sup
s∈[0,1]

∥vϵ∥L∞(Td) + κ

)
.

The previous inequality, together with∣∣∣∣∫ t

s

⟨Aϕ, ρr⟩dr
∣∣∣∣ ≲ ∥ϕ∥H2(Td)∥ρ0∥L2(Td)µ

2|t− s|,

gives

sup
0<s<t<1,
|t−s|≤δ

∥ft − fs∥H−β(Td)

|t− s|θ
≲ ∥ρ0∥L2(Td)δ

1−θ

(
sup
s∈[0,1]

∥vϵ∥L∞(Td) + µ2

)
.

� if |t − s| > δ, then there exist n,m ∈ N, n ≥ m, such that t ∈ (nδ, (n + 1)δ] and
s ∈ [(m−1)δ,mδ). Of course with this choice we have |t−nδ|, |nδ−mδ|, |mδ−s| ≤
|t− s|, and therefore

∥ft − fs∥H−β(Td)

|t− s|θ
≤

∥ft − fnδ∥H−β(Td)

|t− nδ|θ
+

∥fnδ − fmδ∥H−β(Td)

|nδ −mδ|θ

+
∥fmδ − fs∥H−β(Td)

|mδ − s|θ
,
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whenever n > m, and

∥ft − fs∥H−β(Td)

|t− s|θ
≤

∥ft − fnδ∥H−β(Td)

|t− nδ|θ
+

∥fnδ − fs∥H−β(Td)

|nδ − s|θ
,

in the special case n = m. Since |t− nδ|, |mδ − s| ≤ δ, we can estimate

sup
0<s<t<1

∥ft − fs∥H−β(Td)

|t− s|θ
≲ sup

0<s<t<1,
|t−s|≤δ

∥ft − fs∥H−β(Td))

|t− s|θ

+ sup
n,m=1,...,1/δ−1

n>m

∥fnδ − fmδ∥H−β(Td)

|nδ −mδ|θ
.

Putting all together, we finally get

∥f∥Cθ([0,1],H−β(Td)) ≲ ∥ρ0∥L2(Td)δ
1−θ

(
sup
s∈[0,1]

∥vϵ∥L∞(Td) + µ2

)

+ sup
n,m=1,...,1/δ−1

n>m

∥fnδ − fmδ∥H−β(Td)

|nδ −mδ|θ
,

and therefore the thesis follows by (5.11), Proposition 5.4 and the choice of δ, whenever
θ is sufficiently small.

5.3.2 Proof of Theorem 1.4

We are ready to prove our main result Theorem 1.4. In the first place, we recall [GLT06,
Theorem 1], that in our setting reads as follows:

Lemma 5.6. Let θ ∈ (0, 1). Then for all ϑ < θ there exists a linear map

S : Cθ([0, 1], H−β(Td)) → Cϑ([0, 1], H−β(Td))

that associates to every X ∈ Cθ([0, 1], H−β(Td)) the unique weak solution u of the evolu-
tion equation

ut −
∫ t

0

Ausds = Xt, u0 = 0.

Moreover,

∥S(X)∥Cϑ([0,1],H−β(Td)) ≲ ∥X∥Cθ([0,1],H−β(Td)).

Proof of Theorem 1.4. By definition of f , the process ρt is almost surely the weak solution
of

ρt − ρ0 −
∫ t

0

Aρsds = ft,

whereas ρ̄ solves

ρ̄t − ρ0 −
∫ t

0

Aρ̄sds = 0.
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Applying Lemma 5.6 with u = ρ− ρ̄ and X = f we get the almost sure inequality

∥ρ− ρ̄∥Cϑ([0,1],H−β(Td)) ≲ ∥f∥Cθ([0,1],H−β(Td)). (5.13)

Recall that, by Proposition 5.5, there exists θ sufficiently small such that, for every ϵ
sufficiently small

E
[
∥f∥Cθ([0,1],H−β(Td))

]
≲ ∥ρ0∥L2(Td)

(
α + ϵκµ2+γ

)
;

hence, the thesis of the theorem follows for every s ≥ β, while for s ∈ (0, β), (5.7), (5.13)
and interpolation inequality (5.3) yield

E
[
∥ρ− ρ̄∥Cϑ([0,1],H−s(Td))

]
≤ E

[
∥ρ0∥1−s/βL2(Td)

∥ρ− ρ̄∥s/β
Cϑ([0,1],H−β(Td))

]
≲ E

[
∥ρ0∥1−s/βL2(Td)

∥f∥s/β
Cθ([0,1],H−β(Td))

]
≤ ∥ρ0∥1−s/βL2(Td)

E
[
∥f∥Cθ([0,1],H−β(Td))

]s/β
≲ ∥ρ0∥L2(Td)

(
α + ϵκµ2+γ

)s/β
.

The proof is complete.

5.3.3 Proof of Theorem 1.5

In this paragraph we are concerned with the proof of Theorem 1.5, that quantifies dis-
sipation enhancement of L2(Td) for the solution of (5.1) when κ > 0. We insist once
again that our result states that a suitable velocity field vϵ can dissipate energy almost
instantaneously, i.e. for every fixed t > 0, without the necessity of taking t large enough
to have E

[
∥ρt∥L2(Td)

]
below a certain threshold.

Proof of Theorem 1.5. The following proof is mostly inspired by the proof of [BBPS20,
Theorem 1.4]. By energy equality (5.6) and interpolation inequality (5.3), we have

d

dt
∥ρt∥2L2(Td) = −2κ∥ρt∥2H1(Td) ≤ −2κ

∥ρt∥4L2(Td)

∥ρt∥2H−1(Td)

. (5.14)

From the previous inequality it is clear that, in order to control ∥ρt∥L2(Td), it is sufficient
to have a good bound from above on the quantity ∥ρt∥H−1(Td). Notice that the trivial
bound ∥ρt∥H−1(Td) ≤ ∥ρt∥L2(Td) produces the equally trivial estimate (5.8). To have a
better control on ∥ρt∥H−1(Td) we will exploit Theorem 1.4 as follows.

Denote c = C1/2 (α + ϵκµ2+γ)
ς/2

> 0, as in the statement of the theorem. By Theorem 1.4
and Markov inequality we have

P

{
sup
t∈[0,1]

∥ρt − ρ̄t∥H−1(Td) > c∥ρ0∥L2(Td)

}
≤ c, (5.15)

hence with probability at least 1− c it holds

∥ρt∥2H−1(Td) ≤ 2∥ρ̄t∥2H−1(Td) + 2∥ρt − ρ̄t∥2H−1(Td) ≤ 2∥ρ0∥2L2(Td)

(
e−2λt + c2

)
.
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In view of this, (5.14) implies on a set of probability at least 1− c

∥ρt∥2L2(Td) ≤
∥ρ0∥2L2(Td)

1 + κ
∫ t
0

ds
e−2λs+c2

=
∥ρ0∥2L2(Td)

1 + κ
2λc2

log
(
c2e2λt+1
c2+1

) ,
where in the last equality we have used c > 0. This completes the proof of the first part
of the theorem. As for the second part, it immediately follows from the a.s. inequality
(5.8), (5.15) and

E
[
∥ρt∥L2(Td)

]
= E

[
∥ρt∥L2(Td)1{supt∈[0,1] ∥ρt−ρ̄t∥H−1(Td)>c∥ρ0∥L2(Td)}

]
+ E

[
∥ρt∥L2(Td)1{supt∈[0,1] ∥ρt−ρ̄t∥H−1(Td)≤c∥ρ0∥L2(Td)}

]
.

Remark 5.3. Looking back at (5.14) one realizes that an alternative approach could be
that of producing a lower bound for ∥ρt∥H1(Td) instead of an upper bound for ∥ρt∥H−1(Td).
In order to do this, we present an heuristic argument. Write

∥ρt∥2H1(Td) = ∥πNρt∥2H1(Td) + ∥(I − πN)ρt∥2H1(Td)

≥ ∥πNρt∥2L2(Td) +N2∥(I − πN)ρt∥2L2(Td)

= (1−N2)∥πNρt∥2L2(Td) +N2∥ρt∥2L2(Td),

where πN denotes the Fourier projector onto modes |k| ≤ N , N ∈ N. Plugging into
(5.14), and assuming N2 ≫ κ−1, we have formally

∥ρt∥2L2(Td) ≤ e−2κN2t∥ρ0∥2L2(Td) +

∫ t

0

e−2κN2(t−s)2κ(N2 − 1)∥πNρs∥2L2(Td)ds (5.16)

∼ e−2κN2t∥ρ0∥2L2(Td) + ∥πNρt∥2L2(Td).

Using the inequality above with N2 = λ/κ, λ≫ 1 and recalling Remark 5.2

E
[
∥πNρt∥L2(Td)

]
≲ N∥ρ0∥L2(Td)

(
e−λt +

(
α + ϵκµ2+γ

)ς)
,

gives

E
[
∥ρt∥L2(Td)

]
≲
λ1/2

κ1/2
(
e−λt +

(
α + ϵκµ2+γ

)ς) ∥ρ0∥L2(Td).

Comparing with (1.9), the previous estimate has in addition the term (α + ϵκµ2+γ)
ς
on

the right hand side, and the implicit constant in the inequality. Moreover, it has been
recovered assuming λ ≫ 1 in order to approximate the time integral in (5.16) with
∥πNρt∥2L2(Td)

. On the other hand, the statement of Theorem 1.5 is valid for every value
of λ.
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5.4 Proof of Proposition 5.4

In this section we give the proof of Proposition 5.4. Recall that we are interested in the
expression (5.12), given by

sup
n,m=1,...,1/δ−1

n>m

(nδ −mδ)−θ

∣∣∣∣∣⟨ϕ, ρnδ⟩ − ⟨ϕ, ρmδ⟩ − δ

n−1∑
k=m

⟨Aϕ, ρkδ⟩

∣∣∣∣∣ ,
where ϕ ∈ D(Td) is a smooth test function, θ > 0 and A = κ∆+ L.
The choice of the parameter δ in the expression above is crucial. We will see that, in order
to have the result of Proposition 5.4, the parameters δ and ϵ must satisfy very particular
relations.

5.4.1 A convenient decomposition

In order to control (5.12), we first consider the quantity

⟨ϕ, ρnδ⟩ − ⟨ϕ, ρmδ⟩ − δ
n−1∑
k=m

⟨Aϕ, ρkδ⟩, n > m,

or equivalently

⟨ϕ, ρ(n+1)δ⟩ − ⟨ϕ, ρmδ⟩ − δ
n∑

k=m

⟨Aϕ, ρkδ⟩, n ≥ m.

Let us preliminarily rewrite the previous expression in a more convenient way. For every
k = 0, . . . , 1/δ − 1 it holds

⟨ϕ, ρ(k+1)δ⟩ − ⟨ϕ, ρkδ⟩ =
∫ (k+1)δ

kδ

⟨vϵ(s) · ∇ϕ, ρs⟩ds+ κ

∫ (k+1)δ

kδ

⟨∆ϕ, ρs⟩ds (5.17)

= I1(k) + I2(k).

Let us further decompose

I1(k) =

∫ (k+1)δ

kδ

⟨vϵ(s) · ∇ϕ, ρs⟩ds

=

∫ (k+1)δ

kδ

⟨vϵ(s) · ∇ϕ, (ρs − ρkδ)⟩ds+
∫ (k+1)δ

kδ

⟨vϵ(s) · ∇ϕ, ρkδ⟩ds

=

∫ (k+1)δ

kδ

∫ s

kδ

⟨vϵ(r) · ∇(vϵ(s) · ∇ϕ), (ρr − ρkδ)⟩drds

+

∫ (k+1)δ

kδ

∫ s

kδ

⟨vϵ(r) · ∇(vϵ(s) · ∇ϕ), ρkδ⟩drds

+ κ

∫ (k+1)δ

kδ

∫ s

kδ

⟨∆(vϵ(s) · ∇ϕ), ρr⟩drds

+

∫ (k+1)δ

kδ

⟨vϵ(s) · ∇ϕ, ρkδ⟩ds

= I11(k) + I12(k) + I13(k) + I14(k),
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where we have used vϵ(s) ·∇ϕ ∈ D(Td) as a test function in order to pass from the second
to the third line. Indeed, since div vϵ(s) = 0 for every s ∈ [0, 1] we have

⟨1, vϵ(s) · ∇ϕ⟩ = ⟨1, div (vϵ(s)ϕ)⟩ = −⟨∇1, vϵ(s)ϕ⟩ = 0.

The term I12(k) can be rewritten as follows:

I12(k) =

∫ (k+1)δ

kδ

∫ s

kδ

⟨vϵ(r) · ∇(vϵ(s) · ∇ϕ), ρkδ⟩drds

=
∑
j,j′∈J

∫ (k+1)δ

kδ

∫ s

kδ

⟨vj′ηϵ,j
′
(r) · ∇(vjη

ϵ,j(s) · ∇ϕ), ρkδ⟩drds

=
∑
j,j′∈J

⟨vj′ · ∇(vj · ∇ϕ), ρkδ⟩
∫ (k+1)δ

kδ

∫ s

kδ

ηϵ,j(s)ηϵ,j
′
(r)drds

=
∑
j,j′∈J

⟨vj′ · ∇(vj · ∇ϕ), ρkδ⟩

(∫ (k+1)δ

kδ

∫ s

kδ

ηϵ,j(s)ηϵ,j
′
(r)drds− δj,j′

δ

2

)
+ δ⟨Lϕ, ρkδ⟩

= I121(k) + I122(k).

As for the term I2(k) in (5.17), we have

I2(k) = κ

∫ (k+1)δ

kδ

⟨∆ϕ, ρs⟩ds

= κ

∫ (k+1)δ

kδ

⟨∆ϕ, (ρs − ρkδ)⟩ds+ κ

∫ (k+1)δ

kδ

⟨∆ϕ, ρkδ⟩ds

= I21(k) + I22(k).

Taking the sum of (5.17) over k = m, . . . , n we get

⟨ϕ, ρ(n+1)δ⟩ − ⟨ϕ, ρm⟩ − δ
n∑

k=m

⟨Aϕ, ρkδ⟩ (5.18)

=
n∑

k=m

(I11(k) + I121(k) + I13(k) + I14(k) + I21(k)) .

125



Chapter 5. Quantitative mixing and enhanced dissipation of Ornstein-Uhlenbeck flow

5.4.2 Controlling the terms I11(k), I13(k) and I21(k)

Lemma 5.7. Let d ≥ 3 and γ ∈ (0, (d−2)/6). Let δ > 0 be such that δϵ−1 log(1+ϵ−1) > 1
and µδ4/3ϵ−1 log1/3(1 + ϵ−1) < 1. Then the following estimates hold:

E

 sup
n,m=1,...,1/δ−1

n≥m

∣∣∣∣∣
n∑

k=m

I11(k)

∣∣∣∣∣
 ≲ ∥ϕ∥H2+3γ(Td) ∥ρ0∥L2(Td) µ

2+γδ1+γϵ−1−γ/2 log1+γ/2(1 + ϵ−1);

E

 sup
n,m=1,...,1/δ−1

n≥m

∣∣∣∣∣
n∑

k=m

I13(k)

∣∣∣∣∣
 ≲ ∥ϕ∥H2+2γ(Td)∥ρ0∥L2(Td)µδ

(1+γ)/2ϵ−1/2 log1/2(1 + ϵ−1);

E

 sup
n,m=1,...,1/δ−1

n≥m

∣∣∣∣∣
n∑

k=m

I21(k)

∣∣∣∣∣
 ≲ ∥ϕ∥H2+γ(Td)∥ρ0∥L2(Td)µ

γδγϵ−γ/2 logγ/2(1 + ϵ−1).

Proof. Throughout the proof, we will use without explicit mention the following key
inequality:

E

 sup
n,m=1,...,1/δ−1

n≥m

∣∣∣∣∣
n∑

k=m

I(k)

∣∣∣∣∣
 ≤

1/δ−1∑
k=1

E [|I(k)|] , I = I11, I13, I21.

Let us start from I11(k):

I11(k) =

∫ (k+1)δ

kδ

∫ s

kδ

⟨vϵ(r) · ∇(vϵ(s) · ∇ϕ), (ρr − ρkδ)⟩drds.

Using Lemma 5.1 and (5.3), for every γ ∈ (0, (d− 2)/6)

|I11(k)| ≤
∫ (k+1)δ

kδ

∫ s

kδ

∥vϵ(s) · ∇ϕ∥H1+2γ(Td) ∥v
ϵ(r)(ρr − ρkδ)∥H−2γ(Td) drds

≲
∫ (k+1)δ

kδ

∫ s

kδ

∥vϵ(s)∥Hd/2−γ(Td) ∥ϕ∥H2+3γ(Td) ∥v
ϵ(r)∥Hd/2−γ(Td) ∥(ρr − ρkδ)∥H−γ(Td) drds

≤ ∥ϕ∥H2+3γ(Td) sup
s∈[0,1]

∥vϵ(s)∥2Hd/2−γ(Td) ∥ρ0∥
1−γ
L2(Td)

∫ (k+1)δ

kδ

∫ s

kδ

∥(ρr − ρkδ)∥γH−1(Td)
drds.

Hence Lemma 5.2 and (5.10) yield

E

 sup
n,m=1,...,1/δ−1

n≥m

∣∣∣∣∣
n∑

k=m

I11(k)

∣∣∣∣∣
 ≤

1/δ−1∑
k=1

E [|I11(k)|]

≲ ∥ϕ∥H2+3γ(Td) ∥ρ0∥L2(Td) µ
2+γδ1+γϵ−1−γ/2 log1+γ/2(1 + ϵ−1).

As for the term I13(k) we have

I13(k) = κ

∫ (k+1)δ

kδ

∫ s

kδ

⟨∆(vϵ(s) · ∇ϕ), ρr⟩drds.
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By Lemma 5.1, Hölder inequality and (5.7), for every γ ∈ (0, (d− 2)/4)

|I13(k)| ≤ κ

∫ (k+1)δ

kδ

∫ s

kδ

∥vϵ(s) · ∇ϕ∥H1+γ(Td)∥ρr∥H1−γ(Td)drds

≲ κ

∫ (k+1)δ

kδ

∫ s

kδ

∥vϵ(s)∥Hd/2−γ(Td)∥ϕ∥H2+2γ(Td)∥ρr∥H1−γ(Td)drds

≤ κ∥ϕ∥H2+2γ(Td) sup
s∈[0,1]

∥vϵ(s)∥Hd/2−γ(Td)∥ρ0∥
γ
L2(Td)

∫ (k+1)δ

kδ

∫ s

kδ

∥ρr∥1−γH1(Td)
drds

≤ κ(1+γ)/2∥ϕ∥H2+2γ(Td) sup
s∈[0,1]

∥vϵ(s)∥Hd/2−γ(Td)∥ρ0∥L2(Td)δ
(3+γ)/2.

Hence using (5.10)

E

 sup
n,m=1,...,1/δ−1

n≥m

∣∣∣∣∣
n∑

k=m

I13(k)

∣∣∣∣∣
 ≤

1/δ−1∑
k=1

E [|I13(k)|]

≲ ∥ϕ∥H2+2γ(Td)∥ρ0∥L2(Td)µδ
(1+γ)/2ϵ−1/2 log1/2(1 + ϵ−1).

Let us move finally to the term I21(k):

I21(k) = κ

∫ (k+1)δ

kδ

⟨∆ϕ, (ρs − ρkδ)⟩ds.

By (5.3) we have

|I21(k)| ≤ κ

∫ (k+1)δ

kδ

∥ϕ∥H2+γ(Td)∥ρs − ρkδ∥H−γ(Td)ds

≤ κ∥ρ0∥1−γL2(Td)

∫ (k+1)δ

kδ

∥ϕ∥H2+γ(Td)∥ρs − ρkδ∥γH−1(Td)
ds.

Hence using (5.11) and Lemma 5.2 we obtain

E

 sup
n,m=1,...,1/δ−1

n≥m

∣∣∣∣∣
n∑

k=m

I21(k)

∣∣∣∣∣
 ≤

1/δ−1∑
k=1

E [|I21(k)|]

≲ ∥ϕ∥H2+γ(Td)∥ρ0∥L2(Td)µ
γδγϵ−γ/2 logγ/2(1 + ϵ−1).

5.4.3 Controlling the term I121(k)

The term I121(k) requires more care. We will deduce estimates for this term using a
martingale argument due to Nakao, that can be found for instance in [IW81]. Recall

I121(k) =
∑
j,j′∈J

⟨vj′ · ∇(vj · ∇ϕ), ρkδ⟩

(∫ (k+1)δ

kδ

∫ s

kδ

ηϵ,j(s)ηϵ,j
′
(r)drds− δj,j′

δ

2

)
.
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Define the following quantity

cj,j′(k) =

∫ (k+1)δ

kδ

∫ s

kδ

ηϵ,j(s)ηϵ,j
′
(r)drds.

By the explicit expression of the Ornstein-Uhlenbeck process (5.5), the conditional ex-
pectation of cj,j′(k) with respect to Fkδ gives

E [cj,j′(k) | Fkδ] =

∫ (k+1)δ

kδ

∫ s

kδ

E
[
ηϵ,j(s)ηϵ,j

′
(r) | Fkδ

]
drds

= ηϵ,j(kδ)ηϵ,j
′
(kδ)

∫ (k+1)δ

kδ

∫ s

kδ

e−ϵ
−1(s−kδ)e−ϵ

−1(r−kδ)drds

+ δj,j′

∫ (k+1)δ

kδ

∫ s

kδ

E
[
ϵ−2

∫ s

kδ

e−ϵ
−1(s−s′)dW j

s′

∫ r

kδ

e−ϵ
−1(r−r′)dW j

r′

]
drds

= ηϵ,j(kδ)ηϵ,j
′
(kδ)

∫ (k+1)δ

kδ

∫ s

kδ

e−ϵ
−1(s−kδ)e−ϵ

−1(r−kδ)drds

+ δj,j′ϵ
−2

∫ (k+1)δ

kδ

∫ s

kδ

∫ r

kδ

e−ϵ
−1(s−r′)e−ϵ

−1(r−r′)dr′drds

= ηϵ,j(kδ)ηϵ,j
′
(kδ)

ϵ2

2

(
1− e−ϵ

−1δ
)2

+ δj,j′

(
δ

2
+ ϵ

(
e−ϵ

−1δ − 1 +
1

4

(
1− e−2ϵ−1δ

)))
.

We introduce now the following auxiliary processes:

Mn =
n−1∑
k=1

∑
j,j′∈J

⟨vj′ · ∇(vj · ∇ϕ), ρkδ⟩ (cj,j′(k)− E [cj,j′(k) | Fkδ]) .

Rn =
n−1∑
k=1

∑
j,j′∈J

⟨vj′ · ∇(vj · ∇ϕ), ρkδ⟩
(
E [cj,j′(k) | Fkδ]− δj,j′

δ

2

)
.

Since ρkδ is Fkδ-measurable, the process {Mn}n=1,...,1/δ is a discrete martingale with re-
spect to the filtration Gn := F(n−1)δ with initial condition M1 = 0. By Doob maximal
inequality and the martingale property we have the following

E

[
sup

n=1,...,1/δ

M2
n

]
≲ E

[
M2

1/δ

]
=

1/δ−1∑
k=1

E
[
|Mk+1 −Mk|2

]
=

1/δ−1∑
k=1

E

∣∣∣∣∣∑
j,j′∈J

⟨vj′ · ∇(vj · ∇ϕ), ρkδ⟩ (cj,j′(k)− E [cj,j′(k) | Fkδ])

∣∣∣∣∣
2
 .

Using the inequality, valid for γ ∈ (0, (d− 2)/2),

|⟨vj′ · ∇(vj · ∇ϕ), ρkδ⟩| ≤ ∥vj · ∇ϕ∥H1(Td)∥vj′ρkδ∥L2(Td)

≲ ∥vj∥Hd/2−γ(Td)∥ϕ∥H2+γ(Td)∥vj′∥L∞(Td)∥ρ0∥L2(Td),
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we arrive at the following estimate∣∣∣∣∣∑
j,j′∈J

⟨vj′ · ∇(vj · ∇ϕ), ρkδ⟩ (cj,j′(k)− Ecj,j′(k) | Fkδ)

∣∣∣∣∣
2

≲
∑
j,j′∈J

∥ϕ∥2H2+γ(Td)∥ρ0∥
2
L2(Td)∥vj∥

2
Hd/2−γ(Td)∥vj′∥

2
L∞(Td)

×
∑
j,j′∈J

(cj,j′(k)− E [cj,j′(k) | Fkδ])
2

= ∥ϕ∥H2+γ(Td)∥ρ0∥L2(Td)

∑
j∈J

∥vj∥2Hd/2−γ(Td)

∑
j′∈J

∥vj′∥2L∞(Td)

×
∑
j,j′∈J

(cj,j′(k)− E [cj,j′(k) | Fkδ])
2 .

Since the conditional expectation is a L2(Ω)-projection,

E

[
sup

n=1,...,1/δ

|Mn|

]
≤ E

[
sup

n=1,...,1/δ

M2
n

]1/2

≲ ∥ϕ∥H2+γ(Td)∥ρ0∥L2(Td)

(∑
j∈J

∥vj∥2Hd/2−γ(Td)

∑
j′∈J

∥vj′∥2L∞(Td)

)1/2

×

1/δ−1∑
k=1

∑
j,j′∈J

E
[
(cj,j′(k)− E [cj,j′(k) | Fkδ])

2]1/2

≤ ∥ϕ∥H2+γ(Td)∥ρ0∥L2(Td)

(∑
j∈J

∥vj∥2Hd/2−γ(Td)

∑
j′∈J

∥vj′∥2L∞(Td)

)1/2

×

1/δ−1∑
k=1

∑
j,j′∈J

E
[
cj,j′(k)

2
]1/2

≲ ∥ϕ∥H2+γ(Td)∥ρ0∥L2(Td)µ
2δϵ−1/2 log1/2(1 + ϵ−1),

where the last inequality follows from

E
[
cj,j′(k)

2
]
= E

(∫ (k+1)δ

kδ

∫ s

kδ

ηϵ,j(s)ηϵ,j
′
(r)drds

)2


= E

(∫ (k+1)δ

kδ

ηϵ,j(s)
(
W j′

s −W j′

kδ − ϵ
(
ηϵ,j

′
(s)− ηϵ,j

′
(kδ)

))
ds

)2


≲ δ

∫ (k+1)δ

kδ

E

[
sup
s∈[0,1]

|ηϵ,j′(s)|2
(
|W j′

s −W j′

kδ|
2 − ϵ2 sup

s∈[0,1]
|ηϵ,j′(s)|2

)]
ds

≲ δ3ϵ−1 log(1 + ϵ−1) + δ2 log(1 + ϵ−1).
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As for the remaining term,

E

[
sup

n=1,...,1/δ

|Rn|

]
≲ ∥ϕ∥H2+γ(Td)∥ρ0∥L2(Td)

∑
j∈J

∥vj∥Hd/2−γ(Td)

∑
j′∈J

∥vj′∥L∞(Td)

×
1/δ−1∑
k=1

∑
j,j′∈J

E
[∣∣∣∣E [cj,j′(k) | Fkδ]− δj,j′

δ

2

∣∣∣∣]
≲ ∥ϕ∥H2+γ(Td)∥ρ0∥L2(Td)µ

2δ−1ϵ log(1 + ϵ−1),

where we have used

E
[∣∣∣∣E [cj,j′(k) | Fkδ]− δj,j′

δ

2

∣∣∣∣] ≲ ϵ log(1 + ϵ−1).

Putting all together, and recalling
∑n

k=m I121(k) =Mn+1 +Rn+1 −Mm −Rm, we deduce
the following:

Lemma 5.8. Let d, γ, δ and ϵ−1 as in Lemma 5.7. Then

E

 sup
n,m=1,...,1/δ−1

n≥m

∣∣∣∣∣
n∑

k=m

I121(k)

∣∣∣∣∣
 ≲ ∥ϕ∥H2+γ(Td)∥ρ0∥L2(Td)µ

2δ−1ϵ log(1 + ϵ−1).

5.4.4 Controlling the remaining terms

Consider now the term I14(k) in (5.18):

I14(k) =

∫ (k+1)δ

kδ

⟨vϵ(s) · ∇ϕ, ρkδ⟩ds =

〈(∫ (k+1)δ

kδ

vϵ(s)ds

)
· ∇ϕ, ρkδ

〉
.
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Recall vϵ(s)ds =
∑

j∈J vjη
ϵ,j(s)ds =

∑
j∈J vjdW

j
s − ϵ

∑
j∈J vjdη

ϵ,j(s), and thus

I14(k) =
∑
j∈J

⟨vj · ∇ϕ, ρkδ⟩
(
W j

(k+1)δ −W j
kδ

)
−
∑
j∈J

⟨vj · ∇ϕ, ρkδ⟩ϵ
(
ηϵ,j((k + 1)δ)− ηϵ,j(kδ)

)
=
∑
j∈J

⟨vj · ∇ϕ, ρkδ⟩
(
W j

(k+1)δ −W j
kδ

)
−
∑
j∈J

∫ (k+1)δ

kδ

⟨vj · ∇ϕ, ρs⟩dW j
s

+
∑
j∈J

∫ (k+1)δ

kδ

⟨vj · ∇ϕ, ρs⟩dW j
s

−
∑
j∈J

⟨vj · ∇ϕ, ρkδ⟩ϵ
(
ηϵ,j((k + 1)δ)− ηϵ,j(kδ)

)
=
∑
j∈J

∫ (k+1)δ

kδ

⟨vj · ∇ϕ, ρkδ − ρs⟩dW j
s

+
∑
j∈J

∫ (k+1)δ

kδ

⟨vj · ∇ϕ, ρs⟩dW j
s

−
∑
j∈J

⟨vj · ∇ϕ, ρkδ⟩ϵ
(
ηϵ,j((k + 1)δ)− ηϵ,j(kδ)

)
= I141(k) + I142(k) + I143(k).

We have the forthcoming:

Lemma 5.9. Let d, γ, δ and ϵ be as in Lemma 5.7 and denote θ = 1+γ
1+2γ

. Then

E

 sup
n,m=1,...,1/δ−1

n≥m

∣∣∣∣∣
n∑

k=m

I141(k)

∣∣∣∣∣
 ≲ ∥ϕ∥H2+γ(Td)∥ρ0∥L2(Td)µ

2δϵ−1/2 log1/2(1 + ϵ−1);

E

 sup
n,m=1,...,1/δ−1

n≥m

∣∣∣∣∣
n∑

k=m

I143(k)

∣∣∣∣∣
 ≲ ∥ϕ∥H2+2γ(Td)∥ρ0∥L2(Td)µ

2

×
(
δ(θ−1)/2ϵ(1−θ)/2 log(1+θ)/2(1 + ϵ−1) + δθ−1ϵ1−θ log(1 + ϵ−1)

)
.

Proof. Concerning the term I141(k), we have

n∑
k=m

I141(k) =
∑
j∈J

∫ (n+1)δ

mδ

⟨vj · ∇ϕ, ρ[s] − ρs⟩dW j
s ,

where we denote by [s] the largest multiple of δ smaller than s. Therefore by Burkholder-
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Davis-Gundy inequality and Lemma 5.2,

E

 sup
n,m=1,...,1/δ−1

n≥m

∣∣∣∣∣
n∑

k=m

I141(k)

∣∣∣∣∣
 ≲ E

[
sup
t∈[0,1]

∣∣∣∣∣∑
j∈J

∫ t

0

⟨vj · ∇ϕ, ρ[s] − ρs⟩dW j
s

∣∣∣∣∣
]

≲ E

∣∣∣∣∣∑
j∈J

∫ 1

0

⟨vj · ∇ϕ, ρ[s] − ρs⟩2ds

∣∣∣∣∣
1/2


≲ E

∣∣∣∣∣
∫ 1

0

∑
j∈J

∥vj∥2Hd/2−γ(Td)∥ϕ∥
2
H2+γ(Td)∥ρ[s] − ρs∥2H−1(Td)ds

∣∣∣∣∣
1/2


≲ ∥ϕ∥H2+γ(Td)∥ρ0∥L2(Td)µ
2δϵ−1/2 log1/2(1 + ϵ−1).

Let us move now to I143(k). Since the increments of ηϵ,j are difficult to control, we perform
a discrete integration by parts to get

n∑
k=m

I143(k) = −
n∑

k=m

∑
j∈J

⟨vj · ∇ϕ, ρkδ⟩ϵ
(
ηϵ,j((k + 1)δ)− ηϵ,j(kδ)

)
= −ϵ

n∑
k=m

⟨(vϵ((k + 1)δ)− vϵ(kδ)) · ∇ϕ, ρkδ⟩

= ϵ
n∑

k=m+1

⟨vϵ(kδ) · ∇ϕ, (ρkδ − ρ(k−1)δ)⟩

− ϵ
∑
j∈J

⟨vϵ(mδ) · ∇ϕ, ρmδ⟩

− ϵ⟨vϵ((n+ 1)δ) · ∇ϕ, ρnδ⟩.
By the usual estimates, taking γ ∈ (0, (d− 2)/4) we have∣∣∣∣∣

n∑
k=m

I143(k)

∣∣∣∣∣ ≲ ϵ∥ϕ∥H2+2γ(Td) sup
s∈[0,1]

∥vϵ(s)∥Hd/2−γ(Td)

×

(
∥ρ0∥L2(Td) +

n∑
k=m+1

∥ρkδ − ρ(k−1)δ∥H−1−γ(Td)

)

=:
n∑

k=m

I ′143(k).

Interpolation inequality (5.3) with θ = 1+γ
1+2γ

gives:

∥ρkδ − ρ(k−1)δ∥H−1−γ(Td) ≤ ∥ρkδ − ρ(k−1)δ∥θH−1(Td)∥ρkδ − ρ(k−1)δ∥1−θH−2−2γ(Td)
,

and therefore by Lemma 5.2 and Lemma 5.3:

E

 sup
n,m=1,...,1/δ−1

n≥m

∣∣∣∣∣
n∑

k=m

I143(k)

∣∣∣∣∣
 ≤ E

1/δ−1∑
k=1

I ′143(k)


≲ ∥ϕ∥H2+2γ(Td)∥ρ0∥L2(Td)µ

2

×
(
δ(θ−1)/2ϵ(1−θ)/2 log(1+θ)/2(1 + ϵ−1) + δθ−1ϵ1−θ log(1 + ϵ−1)

)
.
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5.4.5 Proof of Proposition 5.4

In this paragraph we are going to prove Proposition 5.4. We want to show

E

 sup
n,m=1,...,1/δ−1

n>m

(|n−m|δ)−θ
∣∣∣∣∣⟨ϕ, ρkδ⟩ − ⟨ϕ, ρmδ⟩ − δ

n−1∑
k=m

⟨Aϕ, ρkδ⟩

∣∣∣∣∣


≲ ∥ϕ∥Hβ(Td)∥ρ0∥L2(Td)

(
α + ϵκµ2+γ

)
,

for some θ,κ sufficiently small and ϵ, β, γ, δ as in the statement of the proposition. Let
us preliminarily discuss the condition on δ. First, in order to apply Lemma 5.3, the
parameter δ must be chosen depending on ϵ (and µ) so that

δϵ−1 log(1 + ϵ−1) > 1, µδ4/3ϵ−1 log1/3(1 + ϵ−1) < 1. (5.19)

Moreover, recall the following decomposition (5.18)

⟨ϕ, ρnδ⟩ − ⟨ϕ, ρmδ⟩ − δ
n−1∑
k=m

⟨Aϕ, ρkδ⟩

=
n−1∑
k=m

(I11(k) + I121(k) + I13(k) + I141(k) + I142(k) + I143(k) + I21(k)) .

We are assuming 1/δ to be an integer, so that the previous decomposition is well-
calibrated – the interval [0, 1] is split exactly into 1/δ subintervals of length δ.
To simplify the notation, write I(k) as an abbreviation for |I11(k)|+ |I12(k)|+ |I13(k)|+
|I141(k)| + |I143(k)| + |I21(k)|. The only term remaining is that involving |I142(k)|, that
will be treated separately. We shall prove next that for every θ sufficiently small there
exists κ > 0 such that

E

 sup
n,m=1,...,1/δ−1

n>m

(|n−m|δ)−θ
n−1∑
k=m

I(k)

 ≲ ∥ϕ∥H2+γ(Td)∥ρ0∥L2(Td)ϵ
κµ2+γ. (5.20)

Invoking Lemma 5.7, and in particular the estimate for the term involving I11, one im-
mediately realizes that for the previous estimate to be true it is necessary that

δ1+γ−θϵ−(1+γ/2+κ) log1+γ/2(1 + ϵ−1) < 1. (5.21)

Then, once (5.19) and (5.21) are both satisfied, from Lemma 5.7, Lemma 5.8 and Lemma 5.9
we deduce (5.20) (possibly taking smaller θ and κ if needed). Let θ, κ such that

1 <
1 + γ − θ

1 + γ/2 + κ
,

which is always possible taking θ and κ sufficiently small. Then δ is chosen by

δ = c1ϵ
c2 , max

{
4

5
,
1 + γ/2 + κ
1 + γ − θ

}
< c2 < 1,
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and c1 is an auxiliary constant such that 1/δ is an integer. With such a choice of δ, con-
ditions (5.19) and (5.21) hold true for small ϵ, since logarithmic factors become negligible
when compared with powers of ϵ.
Let us move next to the term

∑n−1
k=m I142(k), given by

n−1∑
k=m

I142(k) =
∑
j∈J

∫ nδ

mδ

⟨vj · ∇ϕ, ρr⟩dW j
r .

Since by Sobolev embedding Theorem ∥∇ϕ∥L∞(Td) ≲ ∥ϕ∥Hβ(Td) for every β > d/2 + 1,
Burkholder-Davis-Gundy inequality gives

E

∣∣∣∣∣∑
j∈J

∫ t

s

⟨vj · ∇ϕ, ρr⟩dW j
r

∣∣∣∣∣
3
 ≲ E

∣∣∣∣∣∑
j∈J

∫ t

s

|⟨vj · ∇ϕ, ρr⟩|2dr

∣∣∣∣∣
3/2


≲ |t− s|3/2α3∥ϕ∥3Hβ(Td)∥ρ0∥
3
L2(D).

Therefore, by Kolmogorov continuity criterion the stochastic integral in the expression
above is θ-Hölder continuous for every θ < 1/6, and its Hölder constant Kθ satisfies

E

 sup
0<s<t<1

∣∣∣∑j∈J
∫ t
s
⟨vj · ∇ϕ, ρr⟩dW j

r

∣∣∣
|t− s|θ

 = E [Kθ] ≲ α∥ϕ∥Hβ(Td)∥ρ0∥L2(Td).

The proof is complete.
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