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Introduction

A CR structure on a 2n+1-dimensional manifold M is a n-dimensional subbun-
dle T (1,0)M of TM⊗C such that T (1,0)M∩T (1,0)M = 0 and [T (1,0)M,T (1,0)M ] ⊆
T (1,0)M . This definition is inspired by complex analysis: in fact every real hy-
persurface of Cn+1 has a natural CR structure, and this definition permits to
study in an abstract way the geometry of these hypersurfaces.

A CR structure is called nondegenerate if H(M) = Re(T (1,0)M⊕T (0,1)M) is
a contact distribution, and in such case a contact form on it is called a pseudo-
Hermitian structure.

The choice of a contact form determines a rich geometric structure. For
example it determines a pseudo-Riemannian metric gθ, and the CR manifold is
said pseudoconvex if it is Riemannian. Furthermore θ determines a connection
called Tanaka-Webster connection, and a curvature tensor.

Since a pseudo-Hermitian structure on a nondegenerate CR structure is de-
fined up to the multiplication by a smooth function, their study leads naturally
to study problems of conformal geometry.

In particular, since gθ can be used to contract the curvature tensor, the
choice of θ determines a scalar curvature invariant R called Webster curvature.
Thus it is natural to study the Webster curvature prescription problem, and

as a particular case the CR Yamabe problem. If θ̃ = u
4

Q−2 θ then the Webster
curvature R̃ relative to θ̃ is

R̃ = u
Q+2
Q−2 (−bn∆b +R)u, (1)

where ∆b is a second order differential operator called sublaplacian, and Q =
2n + 2 is the homogeneous dimension. The similarity between this formula
and the formula for the conformal change of scalar curvature shows the strong
relationship between CR geometry and conformal Riemannian geometry.

The most important CR manifold is the Heisenberg group Hn. It plays a
role in CR geometry analogous to the one of Rn in Riemannian geometry. In
particular it is flat, and every pseudoconvex CR manifold has local coordinates
with domain in Hn which preserve the structure at first order, analogously to
the normal coordinates of Riemannian geometry.

For these reasons it is interesting to study contact forms on Hn for which the
curvature satisfies special properties. A natural choice is to look for constant
positive Webster curvature. By formula (1) the problem is equivalent to find
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positive solutions to the equation

−∆bu = u
Q+2
Q−2 . (2)

In Rn positive solutions of the analogous equation

−∆u = u
n+2
n−2 , (3)

which correspond to metrics u
4

n−2 gRn with positive constant scalar curvature
(up to an inessential constant) are completely classified (see [CGS]), and are

uλ,x0(x) =

( √
n(n− 2)λ

λ2 + |x− x0|2

)n−2
2

.

Geometrically the metrics corresponding to this family of solutions are the round
metric of the sphere pushed forward to Rn through the stereographic projection.

The problem of classifying solution of (3) on Rn \ {0} has also been studied
and completely solved. In fact has been proven (see [CGS]) that all solutions
(besides the restrictions of regular solutions) are radial, and this allows to study
a one dimensional problem, which turns out to be a Hamiltonian dynamic sys-
tem. It turns out that there are two kinds of solutions: a homogeneous so-
lution, cn

|x|(n−2)/2 , corresponding to the standard metric on the cylinder, and a

family of solutions called Fowler solutions verifying the homogeneity property
u(λx) = λ−(n−2)/2u for some λ, which geometrically correspond to periodic
metrics on the cylinder, known as Delaunay metrics (see [MP] and the refer-
ences cited therein). These solutions have been used to study general singular
solutions, in blow-up theory, and to build singular metrics.

These classification results were proved using the method of moving planes,
which cannot be extended to the Heisenberg group because it does not have
enough symmetries.

Positive solutions of Equation (1) on Hn were classified by Jerison and Lee

(see [JL2]) under the integrability hypothesis u ∈ L
Q+2
Q−2 . Such solutions are

ω(z, t) =
c0(

t2 + (1 + |z|2)
2
)(Q−2)/4

with dilations and translates thereof, where (z, t) are the standard coordinates
of Hn defined in Chapter 2. Geometrically these solutions correspond to the
standard contact form on the sphere S2n+1 transported on Hn through the
Cayley transform, and thus there is a strong analogy with the Riemannian case.

In this thesis we investigate singular solutions of Equation (1) on Hn \ {0},
and in particular we prove the existence of solutions analogous to the homoge-
neous one and to the Fowler solutions.

The appropriate generalization of the notion of homogeneity is obtained by
the natural dilations of Hn defined as δλ(z, t) = (λz, λ2t) (see Chapter 2).

In Chapter 3 we prove the following theorem about the existence of solutions
analogous to the Fowler’s ones on Rn (see [A1]).
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Theorem 1. There exists T0 such that for T ≥ T0 there exists a positive solution
of the equation

−∆bu = u
Q+2
Q−2

on Hn \ {0} such that u ◦ δT = T−
Q−2

2 u, and T is the smallest period.

In order to prove the above Theorem, we will formulate the problem as
the Euler-Lagrange equation for the functional, defined on a suitable functional
space XT ,

JT (u) =

∫
ΩT

(
|∇Hnu|2 − 1

2∗
|u|2

∗
)
,

where ΩT = {1 ≤ |x| ≤ T} and |X| is the subriemannian norm. Then we will
define a family ZT of approximate solutions Ψλ,T , depending on a parameter
λ ∈ R, by adding infinitely many dilates of ω. We will prove various estimates
that show that Ψλ,T is in fact an approximate critical point of JT , and that
d2JT is nondegenerate on ZT on the orthogonal of the tangent. This will
allow us to use the Lyapunov-Schmidt method to find an exact solution as a
perturbation of the approximate one.

In Chapter 4 we will prove the existence of a homogeneous solution (see
[A2]).

Theorem 2. There exists a non zero solution Ψ of the equation

−∆Ψ = Ψ
Q+2
Q−2 ,

defined on Hn \ {0}, such that Ψ ◦ δλ = λ
Q−2

2 Ψ for all λ > 0 and Ψ(z, t) =
Ψ(|z|, t).

The strategy that we adopt to prove the above theorem is to perform a con-
formal change with the form θ̃ = 1

|x|2 θ, which is invariant by Heisenberg dila-

tions, and then to impose symmetries to get a one-dimensional variational prob-
lem. In order to perform the conformal change on the annulus {1 ≤ |x| ≤ T}
in the Riemannian case one can use the fact the problem of prescribing scalar
curvature on the interior of a manifold and mean curvature on the bound-
ary (known in the literature as Escobar problem) has a variational formulation
through a conformally covariant functional. In CR geometry such formulation
did not exist, so we provided it by defining an appropriate notion of curva-
ture of a hypersurface of a CR manifold which is conformally covariant (see
[CHMY, CCWYY] for related problems in dimension three).

In Rn the Fowler solutions bifurcate from the homogeneous one, as can
be proved by ODE analysis. In Chapter 4 we prove the following bifurcation
theorem for the homogeneous solution Ψ found by us.

Theorem 3. There exists arbitrarily large values of T for which d2JT (Ψ)
is singular, and every such value is a bifurcation value of non-homogeneous
solutions.
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In Chapter 5 we move to another important matter in CR geometry, that is
the Einstein-Hilbert functional.

In Riemannian geometry the Einstein-Hilbert functional is defined as

R(g) =

∫
M

RgdVg,

and the renormalized, scaling-invariant, version thereof is

R̃(g) = Vol(M)
2−n
n R(g).

The Einstein-Hilbert functional plays a fundamental role in the study of
Riemannian manifolds. Critical metrics for R are Ricci-flat metrics, and critical
metrics for R̃ are Einstein metrics. There is also a significant relation to the
Yamabe problem, ince if the infimum of R̃ in a given conformal is smaller than
that on the standard sphere, this infimum is attained by a Yamabe metric.

In particular Sn with the standard metric is a critical point for R̃(g). It can

be proved that it is a saddle point: d2R̃(g) is zero on the tangent of the space
of variations that arise by pulling back the metric by diffeomorphisms, positive
definite on the tangent to the space of conformal variations, and negative definite
of the orthogonal of the sum of these two subspaces.

Given a compact, non degenerate, 2n + 1-dimensional pseudo-Hermitian
manifold, we define the Einstein-Hilbert functional as

W =

∫
M

W θ ∧ (dθ)n

and the renormalized version as

W̃ = Volθ(M)−
Q−2
Q W .

In Chapter 5 first we characterize the critical CR structures for W̃ .

Theorem 4. A pseudo-Hermitian structure is stationary for W̃ if and only if
it has constant Webster curvature and zero torsion.

If c1(T (1,0)M) = 0, this is equivalent to the pseudo-Hermitian structure
being pseudo-Einstein.

Then we study the second variation of W̃ on S2n+1 with its standard CR
structure and contact form, which, thanks to the former theorem, is a critical
point. Thanks to a theorem of Gray, we can suppose that a variation has the
same contact distribution, and so we have to consider variations of the couple

(J, θ). As for the variations of θ, they are conformal variations, and so d2W̃
is positive semidefinite on these direction by the solution of the CR Yamabe
problem.

As for the variations of J , let us denote J̇ = 2E. S1 acts naturally on
S2n+1 ⊂ Cn+1 by

ρ(eiθ)(z1, . . . , zn+1) = (eiθz1, . . . , e
iθzn+1),
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and accordingly on all tensor spaces on S2n+1. Let us denote by E(m) the m-th
Fourier component corresponding of E with respect to this action. Then we will
prove the following formula.

Theorem 5. With respect to the Fourier decomposition defined above, the sec-

ond variation of W̃ with respect to J is given by

d2
JW̃ (θ0, J0)[E,E] = n

∑
m∈Z

(m+ 4)

∫
S3

∣∣∣E(m)
∣∣∣2 θ0 ∧ (dθ0)n.

This formula can be interpreted thanks to results of Bland and Duchamp
characterizing the Fourier components E(m). When n ≥ 2, it turns out that

d2W̃ is negative definite, as in the Riemannian case. When n = 1 the second

variation d2W̃ is negative definite on the subspace of embeddable perturbations,
while it is negative definite on the orthogonal thereof.

We recall that every pseudoconvex CR manifold of dimension greater or
equal than 5 is embeddable by a result of Boutet de Monvel, while in dimension
3 CR manifolds in general are not CR embeddable. CR embeddability is strictly
connected to the analytic and geometric properties of CR manifolds, and in
various questions embeddable CR manifold behave like the Riemannian case,
in opposition to non embeddable CR manifolds. For example this is the case
for the positivity of pseudo-Hermitian mass and for the behavior of the CR
Yamabe functional (see [CMY1, CMY2]). So our result on the variation of the
CR Einstein-Hilbert functional is a further result that corroborates this pattern.

The plan of the thesis is as follows.
In Chapter 1 we will give an introduction to CR geometry, trying to give

as best as possible the motivations from complex analysis, and introducing the
funfamental concepts that will be used in the following chapters such as the
Tanaka-Webster connection and the associated curvature.

In Chapter 2 we will introduce the Heisenberg group Hn, which is most
important example of CR manifold and the main subject of this thesis. We
will motivate its definition by symmetry arguments, then we will describe the
main tools we will need like the fundamental solution of the sublaplacian and
the Jerison-Lee solution of Equation 2.

In Chapter 3 we will prove the existence of the Fowler-type solutions of
Equation 2 on Hn \ {0}.

In Chapter 4 we will prove the existence of a homogeneous solution of Equa-
tion 2 on Hn \ {0} and the bifurcation result described above.

In Chapter 5 we will study the first variation of the CR Einstein-Hilbert func-
tional on pseudo-Hermitian manifolds and the second variation on the spheres.
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Chapter 1

CR geometry

1.1 CR manifolds

The study of analysis in several complex variables shows that real hypersurfaces
of Cn or of complex manifolds are not holomorphically equivalent and possess ge-
ometric properties that distinguish them, and, in the case of boundaries, hugely
influence the complex analytic properties of domains. CR structures are a way
to study the geometry of these hypersurfaces abstractly and in an intrinsic way
that does not depend on a specific immersion in Cn.

To find a way to achieve this goal, one cannot simply act through restriction
from the definition of complex manifold through charts, so a more suitable
equivalent definition is used.

We recall that given complex coordinates z1, . . . , zn, the usual coframe used
is the local frame of the complexified cotangent bundle given by the differentials
of the coordinates and their conjugates, dz1, . . . , dzn, dz1, . . . , dzn, and the local
frame of vector fields used is the dual frame of the latter,

∂

∂z1
, . . . ,

∂

∂zn
,
∂

∂z1 , . . . ,
∂

∂zn
,

given explicitly by
∂

∂zα
=

1

2

(
∂

∂xα
− i ∂

∂yα

)
.

First of all, let us recall that a function Cn → Ck is holomorphic if and only
if it is real differentiable, and the differential is complex linear. Furthermore
a real linear operator between complex vector spaces is complex linear if and
only if it commutes with the multiplication by i, which, by the real point of
view, is a linear operator. When considering this on the tangent spaces, the
operator of “multiplication by i” on TpC

n which characterizes the differentials
of holomorphic functions in this way is evidently the one that maps ∂

∂xα

∣∣
p

to

∂
∂yα

∣∣∣
p

and ∂
∂yα

∣∣∣
p

to − ∂
∂xα

∣∣
p
. We cannot indicate it with the symbol i because

7
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it already denotes the multiplication by i in the complexification, so we denote
it by Jp. On the complex frame, J ∂

∂zα = i ∂
∂zα and ∂

∂zα = −i ∂
∂zα .

It turns out that the tensor J is invariant by biholomorphism, and so it
can be defined on complex manifolds. This can be verified through a simple
computation, or alternatively it can be noted that J0 is the differential of the
multiplication by i, and apply the elementary formula d(ϕ(iz)) = i(dϕ)(iz) in
z = 0.

Because of the latter considerations, a function ϕ : M → N is holomorphic
if and only if dϕ ◦ JM = JN ◦ dϕ. Furthermore, applying this to the identity,
we see that J determines uniquely the structure of a complex manifold.

We recall that operator J on a real vector space V is the multiplication by
i with respect to a complex vector structure extending the real one if and only
if J2 = −I, and that such an operator is called a complex structure on V . In
light of the preceding considerations, the following definition arises naturally.

Definition 1.1 (Almost complex structure). An almost complex structure on
a manifold M is a tensor J ∈ End(TM) which is a complex structure on the
tangent space of every point p ∈M .

J is diagonalizable and has i and −i as eigenvalues, and so is determined by
its eigenspaces, which we call T (1,0)M and T (0,1)M . Since J is a linear opera-

tor, T (0,1)M = T (1,0)M , and so J is determined by T (1,0)M alone. Hence an
equivalent definition of almost complex structure on a 2n-dimensional man-
ifold is a subbundle T (1,0)M ⊂ TM ⊗ C such that dimT (1,0)M = n and
T (1,0)M ∩ T (1,0)M = {0}.

In the case of a complex manifold, with respect to local coordinates

T (1,0)M = span

{
∂

∂z1
, . . . ,

∂

∂zn

}
,

and so T (1,0)M respects the formal integrability condition

[Γ(T (1,0)M),Γ(T (1,0)M)] ⊆ Γ(T (1,0)M).

A deep theorem establishes that the converse is true.

Theorem 1.2 (Newlander–Nirenberg). An almost complex manifold is a com-
plex manifold if and only if [Γ(T (1,0)M),Γ(T (1,0)M)] ⊆ Γ(T (1,0)M). 1

Therefore a 2n-dimensional complex manifold can be equivalently character-
ized as a subbundle T (1,0)M ⊂ TM ⊗C such that dimT (1,0)M = n, T (1,0)M ∩
T (1,0)M = {0} and [Γ(T (1,0)M),Γ(T (1,0)M)] ⊆ Γ(T (1,0)M). This definition is
suitable to restriction, and hence the following definition is motivated.

Definition 1.3 (CR manifold). A CR structure on a 2n+ 1-dimensional man-
ifold M is a n-dimensional subbundle T (1,0)M of TM ⊗C such that:

1For a proof see [CS, Theorem 5.4.4] and the references cited therein at the end of the
chapter
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• T (1,0)M ∩ T (0,1)M = 0, where T (0,1)M = T (1,0)M ,

• [Γ(T (1,0)M),Γ(T (1,0)M)] ⊆ Γ(T (1,0)M).

As anticipated, real hypersurfaces of a complex manifold carry a natural CR
structure.

Proposition 1.4. If M is a real hypersurface of a n-dimensional complex man-
ifold X, then T (1,0)X ∩ (TM ⊗C) is a CR structure on M .

If M is a 2k + 1-dimensional real submanifold of X, with k < n, then
T (1,0)X ∩ (TM ⊗ C) is not in general a CR structure on M because it can
have dimension less than k. If dim(T (1,0)X ∩ (TM ⊗C)) = k then it is a CR
structure.

We define
H(M) = Re(T (1,0)M ⊕ T (0,1)M).

Inspired by complex manifolds, we define a complex structure J on H(M) such
that the i-eigenspace on the complexification H(M)⊗C = T (1,0)M ⊕ T (0,1)M
is T (1,0)M ; that is, by the explicit formula,

J(Z + Z) = i(Z − Z).

H(M) and J determine the CR structure. This can be used to give an alterna-
tive definition of CR structure as a subbundle of TM and a complex structure J
on it verifying certain integrability conditions (see [DT, formulas 1.8 and 1.9]).

1.2 Pseudo-Hermitian structures

Let E be a subbundle of TM of codimension one. We want to define a notion
of “maximal non-integrability” for E. Let us consider the antisymmetric map

B : Γ(E)× Γ(E)→ Γ(TM/E)

defined as B(X,Y ) = [X,Y ] mod E. It is well defined because

B(fX, gY ) = −gY (f)X + fX(g)Y + fg[X,Y ] mod E = fg[X,Y ] mod E.

E is integrable if and only if B is zero. Then we say that E is a contact
distribution if B is nondegenerate at every point. 2 Since B in antisymmetric,
this implies that dimE is even, and so dimM is odd.

Definition 1.5. A CR structure is said nondegenerate if H(M) is a contact
distribution.

Definition 1.6. Given a contact distribution E, a differential form θ such that
E = ker θ is called a contact form.

2Most authors use the equivalent characterization of Proposition 1.16 as a definition
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Definition 1.7. Given a CR structure, a pseudo-Hermitian structure is a dif-
ferential form such that H(M) = ker θ.

Given a pseudo-Hermitian structure θ, every other pseudo-Hermitian struc-
ture is of the form ϕθ with ϕ nowhere zero.

Since such a form descends to a nowhere zero section of (TM/H(M))∗ '
TM/H(M), it exists only if TM/H(M) has nowhere zero sections, or equiva-
lently, given that dim(TM/H(M)) = 1, if and only if TM/H(M) is orientable.
Since H(M) is oriented by the complex structure J , this happens if and only if
M is orientable.

As we will show, a pseudo-Hermitian structure on a CR manifold allows to
build a rich geometric structure on it, especially in the nondegenerate case.

Lemma 1.8. θ is a contact form if and only if it is nowhere zero and the
restriction of dθ to ker θ is nondegenerate at every point.

Proof. Since θ descends to a nowhere zero section of (TM/ ker θ)∗, it is contact
if and only if the map (X,Y ) 7→ θ([X,Y ]) is nondegenerate on ker θ. Since, for
X,Y ∈ ker θ, θ([X,Y ]) = −dθ(X,Y ), the thesis follows.

Definition 1.9. The Levi form of a pseudo-Hermitian manifold is the section
of (T (1,0)M)∗ ⊗ (T (0,1)M)∗ defined by

Lθ(Z,W ) = iθ([Z,W ]) = −idθ(Z,W ).

The Levi form is Hermitian:

Lθ(W,Z) = −iθ([W,Z]) = iθ([Z,W ]) = Lθ(Z,W ).

If θ̃ = ϕθ with ϕ > 0 smooth, then, since

dθ̃ = d(ϕθ) = dϕ ∧ θ + ϕdθ

and θ (identified with its complexified) vanishes on H(M) ⊗ C = T (1,0)M ⊕
T (0,1)M , the Levi form transforms as

θ̃ = ϕLθ. (1.1)

Proposition 1.10. A pseudo-Hermitian manifold is nondegenerate if and only
if its Levi form is nondegenerate at every point.

Proof. The nondegeneracy of a pseudo-Hermitian structure is equivalent to that
of dθ restricted to H(M) by Lemma 1.8, and since degeneracy is left invariant by
complexification, dθ(·, ·) is zero on (T (1,0)M ⊗ T (1,0)M)⊕ (T (0,1)M ⊗ T (0,1)M),

and T (1,0)M ⊗ T (0,1)M = T (0,1)M ⊗ T (1,0)M , this condition is equivalent to dθ
being nondegenerate on T (1,0)M ⊗T (0,1)M , and so to the nondegeneracy of the
Levi form.
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Definition 1.11. A pseudo-Hermitian structure is said strictly pseudoconvex
if Lθ is positive definite everywhere. A CR structure is called strictly pseudo-
convex if the Levi form of one (and hence all, by formula 1.1) pseudo-Hermitian
structure on it is definite at every point (and hence positive definite up to
changing the sign of the contact form).

Given a vector space V , if V ⊗C = W ⊕W then the complexification BC of
every bilinear symmetric form B on V can be restricted to W ⊗W to generate a
Hermitian form H = Φ(B). Every such a Hermitian form arises in this way, but
not from a unique B. If we impose that its complexified BC is zero restricted to
W ⊗W , then a unique form Ψ(H) is determined. Ψ is a right inverse of Φ which
is a natural way to associate a symmetric form on V to any Hermitian form on
W . If J is the complex structure on V whose i-eigenspace is W , Ψ(H) can be
alternatively determined by the condition that Ψ(H)(Jv, Jw) = Ψ(H)(v, w).

Proposition 1.12. The signature of Ψ(H) is the double of the signature of H.

Proof. Let W = W+ ⊕W− ⊕W0 where H is positive definite on W+, negative
definite on W−, null on W0, and W+, W−, W0 are orthogonal with respect to H.
Then the signature of H is (dimW+,dimW−,dimW0). If V+ = Re(W+⊕W+),
V− = Re(W− ⊕W−) and V0 = Re(W0 ⊕W0) then it can be easily verified that
V+, V− and V0 are orthogonal and that Ψ(H)|V+×V+

= Ψ
(
H
∣∣
W+×W+

)
. Since

Φ preserves definite or null products, Ψ(H) is positive definite on V+, negative
definite on V− and null on V0, and so the thesis follows.

Applying the latter considerations to the Levi form, we get that there exists
a canonical symmetric form Gθ on H(M), which is nondegenerate, or positive
definite, if and only if the Levi form is, and such that

Gθ(JX, JY ) = Gθ(X,Y ).

An explicit formula for Gθ is

Gθ(X,Y ) = dθ(X, JY )

(the only non trivial thing to verify to prove this is that dθ(·, J ·) is symmetric;
see [DT, Section 1.1.2] for a proof).

When (M,T (1,0)M, θ) is pseudoconvex, (M,H(M), Gθ) ia a sub-Riemannian
manifold.

Proposition 1.13. Given a contact form θ there exists a unique vector field T
such that

θ(T ) = 1 and iT dθ = 0.

Proof. Since dθ is antisymmetric and its restriction to ker θ is nondegenerate,
its radical has dimension one and must be transverse to ker θ, and from this the
thesis easily follows.

We call the vector field T of the preceding theorem the Reeb vector field.
We can use T to extend Gθ to a pseudo-Riemannian metric on M .
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Definition 1.14. The Webster metric gθ is the pseudo-Riemannian metric on
M that coincides with Gθ on H(M) and such that T is orthogonal to H(M)
and gθ(T, T ) = 1.

Furthermore, we extend J to the whole TM by imposing JT = 0.

Definition 1.15. The horizontal gradient of a function u ∈ C 1(M) is the vector
field ∇θu ∈ Γ(H(M)) such that

Gθ(∇θu,X) = du(X)

for every X ∈ Γ(H(M)). It coincides with the projection onto H(M) of the
gradient with respect to gθ.

On pseudo-Hermitian manifolds there is a canonical volume form.

Proposition 1.16. θ is a contact form if and only if θ ∧ (dθ)n is a volume
form.

Thanks to this property the divergence operator for vector fields can be
defined by

LX(θ ∧ (dθ)n) = divθ(X)θ ∧ (dθ)n.

Finally we define the sublaplacian ∆b as the divergence of the horizontal gradi-
ent:

∆bu = divθ(∇θu).

1.2.1 Hypersurfaces

Let M be an orientable hypersurface on the complex manifold X, and let j :
M → X be the inclusion. We want to define a pseudo-Hermitian structure on
M with its natural CR structure as a restriction of a form on X.

We recall that the decomposition TX ⊗C = T (1,0)X ⊕ T (0,1)X gives rise to
a dual decomposition on 1-forms Ω1(X)⊗C = Ω(1,0)(X)⊕ Ω(0,1)(X). In local
coordinates Ω(1,0)(X) has dz1, . . . , dzn as a frame, Ω(0,1)(X) has dz1, . . . , dzn.

Composing the exterior differential with the projections we get two operators
∂ : C∞(X)→ Ω(1,0)(X) and ∂ : C∞(X)→ Ω(0,1)(X) such that d = ∂ + ∂.

Since M is orientable, there exist a defining function ϕ : X → R such that
M = ϕ−1(0) and dϕ 6= 0 on M . Since ϕ is real, this implies that ∂ϕ 6= 0 on M ,
and so ker(∂ϕ) = T (1,0)X, and therefore

ker(j∗∂ϕ) = T (1,0)M. (1.2)

The real and imaginary part of j∗∂ϕ are real forms which are zero on H(M).
The former is always zero because

2Re(j∗∂ϕ) = j∗(∂ϕ+ ∂ϕ) = j∗(dϕ) = d(ϕ ◦ j) = 0

and hence the latter is nowhere zero, because j∗∂ϕ is nowhere zero due to for-
mula (1.2). Therefore θϕ = −2Im(j∗∂ϕ) = j∗(i(∂−∂)ϕ) is a pseudo-Hermitian
structure on M .



1.3. THE TANAKA-WEBSTER CONNECTION 13

If u is a nowhere zero function then uϕ is another defining function for M ,
and

θuϕ = j∗(i(∂ − ∂)(uϕ)) = j∗(iϕ(∂ − ∂)u+ iu(∂ − ∂)ϕ) = uj∗(i(∂ − ∂)ϕ) = uθϕ

and so every pseudo-Hermitian structure on M coincides with θϕ for some defin-
ing function ϕ.

1.3 The Tanaka-Webster connection

To study the geometry of pseudo-Hermitian manifolds it would be useful to
have an affine connection on them. In the nondegenerate case, since there is
the canonical Webster metric, one could think that the Levi-Civita connection
could be used, but T (1,0)M is not parallel with respect to it, and so it is not a
good connection to study pseudo-Hermitian manifolds.

Actually T (1,0)M is not parallel with respect to any torsion-free connection:
in fact for any connection ∇ for which T (1,0)M is parallel

θ(T∇(Z,W )) = θ(∇ZW −∇WZ − [Z,W ]) = −θ([Z,W ]) = iLθ(Z,W ). (1.3)

Let us suppose that ∇ is a connection such that

H(M) is parallel, (1.4)

∇gθ = 0, (1.5)

∇J = 0. (1.6)

It is not hard to prove that this implies that also T (1,0)M , θ and T are parallel.
Since the obstruction that we found to ∇ having zero torsion is (1.3), which fixes
the T -component of T∇ restricted to T (1,0)M × T (0,1)M , let us impose that it
is the only component, that is that

T∇(Z,W ) = iLθ(Z,W )T. (1.7)

By a similar computation it can be proved that θ(T∇(Z,W )) = 0, so let us
impose further that

T∇(Z,W ) = 0. (1.8)

These conditions are compatible, but are not enough to determine a unique
connection, so let us look for conditions to impose on the remaining parts of
the torsion, which are determined by the tensor τ : TM → TM given by
τ(X) = T∇(T,X).

Given a connection ∇, it is well known that all other connections on M can
be expressed as ∇XY +A(X)Y where A ∈ Ω1(EndTM), and it holds that

T∇+A(X,Y ) = T∇(X,Y ) +A(X)Y −A(Y )X.

If ∇ is a connection which verifies conditions (1.4)-(1.8), in order that ∇ + A
also verifies them, the following conditions (of standard verification) on A are
required:
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1. H(M) is parallel with respect to ∇+A if and only if it is A(X)-invariant
for every X;

2. gθ is parallel with respect to ∇+A if and only if A(X) is anti-self-adjoint
with respect to gθ for every X;

3. J is parallel with respect to ∇ + A if and only if A(X)J = JA(X) for
every X;

4. ∇+ A verifies conditions 1.7 and 1.8 if and only if A(X)Y = A(Y )X for
every X,Y ∈ Γ(H(M))

(the proof of these is a standard computation).
Condition 3 implies that A(X)T = 0 for every X, and so

τ∇+A = τ∇ +A(T ) (1.9)

and condition 1 implies that A(T ) is an endomorphism of H(M).
Condition 2 and formula (1.9) imply that formulas (1.4)-(1.8) determine the

self-adjoint part of τ , which in general is not zero, and suggest that we could try
to make zero the anti-self-adjoint part of τ ; so a possible condition to impose
on τ is self-adjointness.

To analyse condition 4, let us define Λ : Γ(End(H(M))) → Γ(End(H(M)))
as ΛA = J ◦A ◦ J . Since it is an involution, Γ(End(H(M))) = P+ ⊕ P−, where

P+ = {A | ΛA = A} = {A | A ◦ J + J ◦A = 0}

and
P− = {A | ΛA = −A} = {A | A ◦ J − J ◦A = 0}.

So condition 4 and formula (1.9) imply that formulas (1.4)-(1.8) determine the
projection on P+ of τ , and suggest that we could try to impose that τ ∈ P+.

Condition 4 does not involve A(T ) directly, so it is of no help.
It turns out that the two conditions on τ that we conjectured, that is self-

adjointness and the condition τ ◦J+J ◦τ , can be both be achieved. Even more,
the second alone implies the first, and with all the other conditions determines
a unique connection.

Theorem 1.17. On a nondegenerate pseudo-Hermitian manifold there exists a
unique connection ∇ such that:

• H(M) is parallel with respect to ∇,

• ∇J = 0, ∇gθ = 0,

• T∇(Z,W ) = 0 for every Z,W ∈ Γ(T (1,0)M),

• T∇(Z,W ) = iLθ(Z,W )T for every Z,W ∈ Γ(T (1,0)M),

• if τ(X) = T∇(T,X) then τ ◦ J + J ◦ τ = 0.
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For a proof, see [DT, Theorem 1.3] or [T, Proposition 3.1].
The connection of Theorem 1.17 is called the Tanaka-Webster connection of

the pseudo-Hermitian structure.
The restriction of the torsion to T (1,0)M⊕T (0,1)M can be expressed in terms

of Lθ and T , and so it is trivial in a certain sense. Since the remaining part
of the torsion is determined by the tensor τ , this gets called pseudo-Hermitian
torsion.

Proposition 1.18. The Tanaka-Webster connection also satisfies the following
properties:

(I) T (1,0)M is parallel;

(II) ∇T = 0, ∇θ = 0, ∇dθ = 0;

(III) τ(T (1,0)M) ⊆ T (0,1)M ;

(IV) τ is self-adjoint with respect to gθ;

(V) tr τ = 0.

Proof. (I) It is an easy verification.

(II) The first is [DT, formula 1.41], the other two follow easily.

(III) See [DT, Lemma 1.2].

(IV) See [DT, Lemma 1.4].

(V) It is sufficient to notice that

tr τ = − tr(J−1τJ) = − tr τ.

1.4 Local computations

Let (M,T (1,0)M, θ) be a nondegenerate pseudo-Hermitian manifold and let
Z1, . . . , Zn be a local frame of T (1,0)M . Define Zα = Zα and Z0 = T . Let
(θ1, . . . , θn, θ1, . . . , θn, θ0) be the dual frame of (Z1, . . . , Zn, Z1, . . . , Zn, Z0) (in
particular we take θ0 = θ). Given a tensor T of type (k, `) and indexes
Ai, Bi ∈ {1, . . . , n, 1, . . . , n, 0} let us define

TA1...Ak
B1...B` = T(θA1 , . . . , θAk , ZB1

, . . . , ZB`).

We separate indexes relative to covariant derivatives with respect to the Tanaka-
Webster connection through a comma.

Let hαβ = Lθ(Zα, Zβ) be the coefficients of the Levi form. hαβ and its

inverse hαβ can be used to raise and lower indexes. By definition

dθ = ihαβθ
α ∧ θβ .
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Let ωα
β be the connection forms defined by

∇Zα = ωα
β ⊗ Zβ

which implies that ∇θβ = −ωαβ ⊗ θα. The equation ∇dθ = 0 in coordinates
becomes

dhαβ = hαγωβ
γ + hγβωα

γ .

Define the functions Aα
β by

τ(Zα) = Aα
βZβ

and the torsion forms τβ = Aα
βθα, so that

τ = τα ⊗ Zα + τα ⊗ Zα.

Then
dθα(X,Y ) = X(θα(Y ))− Y (θα(X))− θα([X,Y ]) =

= ∇X(θα(Y ))−∇Y (θα(X))− θα([X,Y ]) =

= −ωβα(X)θβ(Y ) + θα(∇XY ) + ωβ
α(Y )θβ(X)− θα(∇YX)− θα([X,Y ]) =

= (θβ ∧ ωβα)(X,Y ) + θα(T∇(X,Y )).

Simple computations show that θα(T∇(X,Y )) = (θ ∧ τα)(X,Y ). Therefore

dθα = θβ ∧ ωβα + θ ∧ τα.

Since Gθ(τ(X), Y ) = Gθ(X, τ(Y )) for X,Y sections of H(M),

dθ(τ(X), JY ) = Gθ(τ(X), Y ) = Gθ(X, τ(Y )) = dθ(X, Jτ(Y )) = −dθ(X, τ(JY ))

so, since J is invertible on H(M),

dθ(τ(X), Y ) + dθ(X.τ(Y )) = 0.

Applying this formula with X = Zα, Y = Zβ one gets that Aαβ = Aβα. In
terms of the torsion forms, this is equivalent to τα ∧ θα = 0.

The properties proved in this section characterize the Tanaka-Webster con-
nection.

Theorem 1.19. On a nondegenerate pseudo-Hermitian manifold there exist
unique forms ωα

β, τβ such that

• dθα = θβ ∧ ωβα + θ ∧ τα,

• dhαβ = hαγωβ
γ + hγβωα

γ ,

• τα ∧ θα = 0.

They are the connection and torsion forms of the Tanaka-Webster connection.
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Proof. We proved above that the connection and torsion forms of the Tanaka-
Webster connection verify these equations. Uniqueness is proved in [We].

Given a function u, since du = u,0θ + u,αθ
α + u,αθ

α then the horizontal
gradient of u is

∇θu = u,αZα + u,αZα.

It is standard to prove that there always exists a frame such that hαβ = ±δαβ
(an orthonormal frame in the pseudoconvex case).

Proposition 1.20. If X = XαZα +XαZα then

divθ(Z) = Xα
,α +Xα

,α.

Proof. Since the formula is tensorial it can be proved using any frame, and in
particular we can assume that hαβ = ±δαβ . In this case using

θ ∧ (dθ)n = in(−1)n(n−1)/2(−1)pθ ∧ θ1 ∧ . . . ∧ θn ∧ θ1 ∧ . . . ∧ θn

(where p is the negativity ndex of hαβ), and differentiating the relation
Lθ(Zα, Zα) = 0 one gets

θα(∇XZα) + θα(∇XZα) = Lθ(∇XZα, Zα) + Lθ(Zα,∇XZα) = 0

and so, evaluating the formula divX(θ ∧ (dθ)n) = LX(θ ∧ (dθ)n) on
(T,Z1. . . . , Zn, Z1, . . . , Zn) we get that

div(X) = −
∑
A

θA(LXZA) = −
∑
A

θA([X,ZA]) =

= −
∑
A

θA(∇XZA −∇ZAX − T∇(X,ZA)) =

= −
∑
α

(
θα(∇XZα) + θα(∇XZα)

)
+
∑
α

(
θα(∇ZαX) + θα(∇ZαX)

)
=

= Xα
,α +Xα

,α.

In particular we get the following formula for the sublaplacian:

∆bu = u,αα + u,αα = u,αα + u,αα. (1.10)
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1.5 Curvature

As for every connection, the Tanaka-Webster connection has a curvature tensor

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

which is an End(TM)-valued 2-form on M . In pseudo-Hermitian geometry, a
certain restriction of the curvature tensor has particular importance.

Definition 1.21. The pseudo-Hermitian curvature tensor is the section of
(T (1,0)M)∗ ⊗ (T (0,1)M)∗ ⊗ (T (1,0)M)∗ ⊗ T (1,0)M defined as

R(Z,W )X = ∇Z∇WX −∇W∇ZX −∇[Z,W ]X

for Z,W,X ∈ Γ(T (1,0)M). It is well defined because T (1,0)M is parallel.

Given a frame Zα we indicate the components of the pseudo-Hermitian cur-
vature by

Rαβµ
ν = Lθ(R(Zα, Zβ)Zµ, Zν).

As in Riemannian geometry, from the pseudo-Hermitian curvature tensor we
can derive other notions of curvature.

Definition 1.22. The pseudo-Hermitian Ricci is the tensor with components
Rαβ = Rµβα

µ. The pseudo-Hermitian or Webster scalar curvature is R =

hαβRαβ .

We will need the the transformation law for the Webster curvature under
conformal changes of metric (see [JL1, Chapter 3] or [DT, page 160]).

Proposition 1.23. If θ̃ = u
4

Q−2 θ then

R̃ = u
Q+2
Q−2 (−bn∆b +R)u (1.11)

where bn = 2Q
Q−2 .

1.5.1 Pseudo-Hermitian sectional curvature

The pseudo-Hermitian sectional curvature of a J-invariant plane σ ⊂ H(M)p is

kθ(σ) = −1

4

R(X, JX)X,JX)

Gθ(X,X)2

where X is a non zero element of σ (the proof of the well-posedness of this
definition is standard). Equivalently, if Z is a non zero vector in σ ⊗ C, the
pseudo-Hermitian sectional curvature of σ is

kθ(σ) =
1

4

R(Z,Z)Z,Z)

Lθ(Z,Z)2
.
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A classification theorem for manifolds with constant pseudo-Hermitian sec-
tional curvature similar to the Riemannian one holds, under the assumption
that the pseudo-Hermitian torsion is zero.

The natural candidates for zero and positive curvature will be defined in the
next Chapter, and Hn and S2n+1 respecively. Inspired by the hyperbolic space,
we define

Qn =
{
z ∈ Cn+1

∣∣q(z) = 1
}

where q(z) = |zn+1|2−
∑n
α=1 |zα|2. Qn has a unique (up to constant multiples)

pseudo-Hermitian structure invariant by the natural CR action of U(n, 1), given
by θQn = i

2 (∂−∂)q. Qn is a trivial S1-bundle on the complex hyperbolic space.

Let Q̃n be its universal covering, and θQ̃n the pull-back of θQn .

Theorem 1.24. If a simply connected pseudo-Hermitian manifold complete
with respect the Webster metric has constant pseudo-Hermitian sectional cur-
vature K and zero pseudo-Hermitian torsion then it is isomorphic to:

• the Heisenberg group (Hn, θHn) if K = 0;

• the sphere (S2n+1, 1
K θS2n+1) if K > 0;

• (Q̃n, 1
K θQ̃n) if K < 0.

1.5.2 Invariant decomposition

We want to better motivate the definition of the pseudo-Hermitian curvature
tensor, following [M]. We do it in the pseudoconvex case for simplicity of nota-
tion, but mutatis mutandis this could be extended to the general case.

First of all, we note that a pseudoconvex pseudo-Hermitian structure is
associated naturally to a U(n) principal bundle. Let P the SO(2n+1) principal
bundle of orthogonal frames with respect to the Webster metric, and let σ the
standard action of SO(2n+ 1) on R2n+1, so that TM ' P×σ R2n+1.

Let Q be the principal bundle over U(n) with fiber

Qp =
{

(v1, . . . , vn) orthonormal base of T (1,0)M with respect to Lθ

}
and the natural U(n) action. Then, if ρ is the natural action of U(n) on Cn,

T (1,0)M ' Q×ρ Cn. (1.12)

Since TM ⊗ C = T (1,0)M ⊕ T (0,1)M ⊕ C∞(M)T , we can also recover the
complexified tangent bundle:

TM ⊗C ' Q×ρ⊕ρ⊕ε (Cn ×Cn ×C) (1.13)

where ρ is the conjugate representation of ρ and ε is the trivial representation
of U(n) on C.

The operator c : Cn × Cn × C → Cn × Cn × C given by c(z, w, ζ) =
(w, z, ζ) intertwines the representation ρ ⊕ ρ ⊕ ε, and thus gives rise (through
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the isomorphism of equation (1.13)) to an automorphism of the bundle TM⊗C
which is obviously the complex conjugation. So TM , which is the subset of
vectors of TM invariant by conjugation, can be recovered through the restriction
ρ′ of ρ⊕ ρ⊕ ε to V = ker(c− id):

TM = Q×ρ′ V.

Given the natural isomorphism ϕ : V → R2n+1 given by ϕ(z, z, t) = (Rez, Imz, t),
ϕ ◦ ρ′(P ) ∈ SO(2n + 1) for every P ∈ U(n), there exists a homomorphism
Φ : U(n)→ O(2n+ 1) such that σ(Φ(P )) = ϕ(ρ′(P )) for every P ∈ U(n), given
explicitly by

Φ(P ) =

1 0 0
0 ReP ImP
0 −ImP ReP

 .

Composing ρ′ with ϕ one gets a representation ρ̃ of U(n) on R2n+1 such that

TM = Q×ρ̃ R2n+1. (1.14)

Since T is parallel and the curvature tensor is real, the curvature R(X,Y )Z
is completely determined by its restriction to Z ∈ T (1,0)M , which has values
in T (1,0)M . Since it is antisymmetric in X and Y and its action on T (1,0)M
is skew-Hermitian, it can be seen as a section of so(TM) ⊗ u(T (1,0)M), and
so, thanks to (1.12) and (1.14), it corresponds to a U(n)-equivariant map from
Q to so(R2n+1) ⊗ u(Cn). dρ̃ : u(n) → so(R2n+1) is an injective morphism of
representations, given explicitly by

dρ̃(A) =

0 0 0
0 ReA ImA
0 −ImA ReA

 .

The orthogonal of the subrepresentation dρ̃(u(n)) ⊂ so(R2n+1) is the subrepre-
sentation

w =


0 vT wT

v A B
w B −A

∣∣∣∣∣∣A,B ∈ so(n), v, w ∈ Rn

 .

The decomposition so(R2n+1) = dρ̃(u(n)) ⊕ w gives rise to a decomposition
so(R2n+1)⊗u(Cn) = (dρ̃(u(n))⊗ u(Cn))⊕(w⊗ u(Cn)). It can be easily shown
that the pseudo-Hermitian curvature tensor corresponds to the projection on the
first factor.

The second factor is zero, and so the pseudo-Hermitian curvature represents
the whole curvature tensor, if and only if the pseudo-Hermitian torsion is zero.
This follows from [DT, Equations 1.85 and 1.86].



Chapter 2

The Heisenberg group

2.1 Definition

For any geometric structure it is important to know the most symmetric ex-
amples of it. For example in Riemannian geometry the Euclidean space, the
sphere and the hyperbolic space are the most fundamental examples of Rieman-
nian manifold.

So we want to find very symmetric examples of CR or pseudo-Hermitian
manifolds, expecially pseudoconvex ones. The easiest way that we have to
define a CR manifold is to take a real hypersurface of a complex manifold, so
we look for boundaries of symmetric complex manifolds.

The natural complex manifolds to be considered are Cn+1, Pn+1(C) and
Bn+1 = B1(0) ⊂ Cn+1. 1

Since Cn+1 and Pn+1(C) do not have a boundary, we use Bn+1. So we find
our first CR manifold with many symmetries, the sphere ∂Bn+1 = S2n+1.

We recall that Bn+1 is a model of the complex hyperbolic space. If we define
the Hermitian product 〈·|·〉 on Cn+2 as

〈z, w〉 =

n+1∑
k=1

zkwk − zn+2wn+2

then the complex hyperbolic space is defined as

H n+1 = {[z] ∈ Pn+1(C) | 〈z, z〉 < 0}.

The function ϕ : Bn+1 →H n+1 defined as ϕ(z) = [(z, 1)] is a biholomorphism.
The group PU(n + 1, 1) acts holomorphically on H n+1, and it turns out to

1For example they are the only simply connected manifolds which support complete Kähler
metrics with constant curvature (see [KN, Theorems 7.8 and 7.9]). Unlike the Riemannian
case, they are not characterized by having a biholomorphism group of maximal dimension;
in particular dim Aut(Pn(C)), dim Aut(Bn) < ∞ while many complex manifolds have infi-
nite dimensional biholomorphism group. However they are characterized by a fairly weak
homogeneity property (see [GKK, Theorems 6.1.1 and 6.1.3])

21
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be the group of biholomorphisms Aut(H n+1) (this follows from [R, Theorem
2.1.1]).

H n+1 (and hence Bn+1) can be endowed with a natural Hermitian metric,
which is the unique (up to a multiplicative constant) invariant by Aut(H n+1).

Every element of Aut(Bn+1) extends to a CR automorphism of S2n+1; all
CR automorphisms of S2n+1 arise in this way, 2 so AutCR(S2n+1) ' Aut(Bn+1).

In the study of the real hyperbolic space, in addition to the hyperboloid
model and the ball model, there is a third important and useful model, the half-
space model, which for example is useful to study isometries with a fixed point
at the infinity. It is obtained by the ball model by a spherical inversion, and it
is relevant to us because that isometry extends to the boundary of the ball, the
Euclidean sphere, minus a point, and takes it to Rn, and so we would like to do
the same to get an analogue of Rn in CR geometry. In the complex case spherical
inversion are not holomorphic, and if n ≥ 2 the sphere is not biholomorphically
equivalent to a half-space. So we try to apply the simplest biholomorphism
which takes a point of ∂Bn+1 to the infinity, that is a projectivity:

F (z1, . . . , zn+1) =

(
z1

1 + z1
, . . . ,

zn
1 + zn

, i
1− zn+1

1 + zn+1

)
.

F takes Bn+1 to the Siegel domain

U =

{
Imzn+1 >

n∑
k=1

|zk|2
}

and the sphere S2n+1 \ {p}, where p = (0, . . . , 0,−1), to its boundary

∂U =

{
Imzn+1 =

n∑
k=1

|zk|2
}
.

CR automorphisms of S2n+1 which fix p lead to CR automorphisms of ∂U .
By studying the stabilizer of a null line with respect to PU(n + 1, 1), it can
be proved that the automorphisms that arise in this way can be decomposed
uniquely as Λλ ◦ ΞP ◦ τ(w,t) where, if (z, ζ) ∈ Cn−1 ×C:

• Λλ(z, ζ) = (λz, λ2ζ) for λ ∈ (0,∞);

• ΞP (z, ζ) = (Pz, ζ) for P ∈ U(n− 1);

• τ(w,t)(z, ζ) = (z + w, ζ + t+ 2iz · w + i|w|2). 3

2To prove this fact, one can use the results of [JL2] to prove this only for automorphisms
which preserve the standard pseudo-Hermitian structure on S2n+1 which will be defined at
the end of this section, and then apply dimensional considerations as in [We, Theorem (1.2)]
or [M, Theorem 4.10]

3this decomposition could be seen as an Iwasawa decomposition for the group
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This resembles what happens with the real hyperbolic space, when doing the
same thing gives rise, on the boundary Rn of the half-space model, to dilations,
linear isometries and translations.

As for the translations in Rn, the set {τ(w,t)}(z,t)∈Cn−1×R forms a subgroup
of Aut(∂U ), since

τ(z,t) ◦ τ(w,s) = τ(z+w,t+s+2Im(z·w)) and τ−1
(z,t) = τ(−z,−t).

So we are lead to the following definition.

Definition 2.1. The Heisenberg group Hn is Cn ×R with the group law

(z, t) · (w, s) = (z + w, t+ s+ 2Im(z · w)).

τ(·,·) defines a CR action of Hn on ∂U . Since this action is free and transitive,
we can fix the point 0 ∈ Cn+1 as an origin and identify the Heisenberg group
with ∂U by defining

ψ(z, t) = τ(z,t)0 = (z, t+ i|z|2).

In this way the Heisenberg group can be endowed with a CR structure, given
explicitly by

T (1,0)Hn = d(ψ−1)(T (1,0)(∂U )).

Let us define the left translation by x ∈ Hn as Lxy = x · y. Then

(ψ ◦ Lx)(y) = τxy0 = τx(τy(0)) = (τx ◦ ψ)(y)

and so Lx = ψ−1 ◦τx ◦ψ is a composition of CR automorphisms, therefore it is a
CR automorphism, or, in other words, the CR structure on Hn is left-invariant.

Through ψ we can transport the families of CR automorphisms Λλ and ΞP
to Hn: we define

δλ = ψ−1 ◦ Λλ ◦ ψ
and

ρP = ψ−1 ◦ ΞP ◦ ψ
for λ ∈ (0,∞) and P ∈ U(n). Explicitly

δλ(z, t) = (λz, λ2t) (2.1)

and
ρP (z, t) = (Pz, t). (2.2)

It holds that δλ1
◦ δλ2

= δλ1λ2
and ρP1

◦ ρP2
= ρP1P2

.
Furthermore both δλ and ρP are, in addition to CR automorphisms, also

group automorphisms of Hn.
We need to compute a frame for T (1,0)Hn. We have that T (∂U )|0 ' Cn ×

{0}, and so T (1,0)(∂U )|0 ' T (1,0)Cn × {0} and, calling 0 the identity of Hn,
T (1,0)Hn|0 = d(ψ−1)(T (1,0)(∂U )|0) ' T (1,0)Cn × {0}. Therefore(

∂

∂z1

∣∣∣∣
0

, . . . ,
∂

∂zn

∣∣∣∣
0

)
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is a basis of T (1,0)Hn|0. Since T (1,0)Hn is left-invariant, the left-invariant ex-
tensions of this vectors form a frame of it, which can be computed esplicitly
as

Zα =
∂

∂zα
+ izα

∂

∂t
.

The coframe associated with this frame is dz1, . . . , dzn,
Now we want to define a pseudo-Hermitian structure on Hn. Obviously

there exists only one such structure that is left-invariant, up to multiplication
by a constant. At the identity dt|0 is an element of T ∗0M such that it annihilates
Z1|0, . . . , Zn|0, and extending it to a left invariant form one gets the pseudo-
Hermitian structure

θ = dt+ i

n∑
α=1

(zαdzα − zαdzα) .

θ is invariant also by the operators ρP .
The Levi form is

Lθ = −idθ =

n∑
α=1

(dzα ∧ dzα − dzα ∧ dzα) = 2

n∑
α=1

dzα ∧ dzα

and so hαβ = 2δαβ and Hn is strictly pseudoconvex. 4

The Reeb vector field with respect to θ is T = ∂
∂t .

Applying Theorem 1.19 we deduce that ωα
β = 0 and τα = 0 for every α, β.

So we proved the following.

Proposition 2.2. On the Heisenberg group Hn any left invariant vector field
is parallel, and thus the Tanaka-Webster connection is flat; furthermore the
pseudo-Hermitian torsion τ is zero.

This suggests that Hn should have the same role among pseudoconvex
pseudo-Hermitian manifolds that Rn has among Riemannian manifolds. We
will show that this intuition is true.

F−1◦ψ is a CR isomorphism between Hn ans S2n+1\{p}. The push-forward
of θ (F−1◦ψ∗θ is a pseudo-Hermitian structure on S2n+1\{p}, but we will verify
that it does not extend continuously to S2n+1. To define a canonical contact
form on S2n+1 the natural condition to impose is invariance by the elements of
AutCR(S2n+1) which preserve the usual Riemannian metric. It can be shown
that this subgroup is U(n+ 1). Since U(n+ 1) acts transitively on S2n+1, there
can exist only one U(n+ 1)-invariant pseudo-Hermitian structure on S2n+1 up
to multiplication by a constant. Thanks to the results of Subsection 1.2.1 it is
quite easy find explicitly such a structure, namely θS2n+1 = i

2 (∂ − ∂)|z|2.
The commutation relations are

[Zα, Zβ ] = −2iδαβT and [Zα, Zβ ] = [Zα, T ] = 0

4This could have been known beforehand by who knows analysis in several complex vari-
ables by noting that Hn is, by construction, locally CR equivalent to S2n+1, which is the
boundary of a strictly convex domain
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or, with respect to the real frame,

[Xα, Yβ ] = −4δαβT and [Xα, Xβ ] = [Xα, T ] = [Yα, T ] = 0

and thus Hn is a nilpotent Lie group.
Thanks to formula (1.10), and since hαβ = 2δαβ ,

∆b =
1

2

n∑
α=1

(ZαZα + ZαZα) =
1

4

n∑
α=1

(X2
α + Y 2

α ).

The volume form associated with the contact form is

θ ∧ (dθ)n = 4nn!dt ∧ dx1 ∧ dy1 ∧ . . . ∧ dxn ∧ dyn

which induces a multiple of the Lebesgue measure; since θ is left invariant,
the Lebesgue measure is a left Haar measure. Since the group inverse map
is (z, t) 7→ (−z,−t) preserves the Lebesgue measure, it is also a right Haar
measure, and so Hn is unimodular. 5

2.2 Symmetry and homogeneity

The group automorphisms of Hn can be explicitly classified (see [F2, Theorem
1.22]).

Proposition 2.3. Every group automorphism of Hn can be decomposed uniquely
as ϕ1ϕ2ϕ3ϕ4 where:

• ϕ1(x, y, t) = (A(x, y), t) where A is a symplectic operator;

• ϕ2 is an inner automorphism; it can be computed that

(a, b, s)(x, y, t)(a, b, s)−1 = (x, y, t+ a · y − b · x);

• ϕ3 = δλ for some λ ∈ (0,∞) (as defined in (2.1));

• ϕ4 is either the identity or the involution

(x, y, t) 7→ (y, x,−t).

It is also interesting to study which automorphisms preserve the other struc-
tures we put on Hn.

Proposition 2.4. An automorphism of Hn preserves the distribution H(Hn)
if and only if, in the notation of Proposition 2.3, ϕ2 = id.

An automorphism of Hn preserves the distribution H(Hn) and the sub-
Riemannian metric Gθ on it if and only if ϕ2 = ϕ3 = id and ϕ1(z, t) = (Pz, t)
with P ∈ U(n).

5in fact every nilpotent group is unimodular, see [K, Corollary 8.31]
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Proof. The proof consists of routine verifications, except for the fact that auto-
morphisms ϕ1 which preserve the metric must be unitary, which follows from
the fact that O(2n) ∩ Sp(2n) = U(n) (see [F2, Proposition 4.6]; this is part of
the famous “two out of three” property of the unitary group).

The family of operators δλ enjoys many similarities with the dilations of Rn.
We give a general definition of dilation on a Lie group.

Definition 2.5. A family of dilations on Lie algebra g is a family of automor-
phisms of the form eA log λ, where A is a diagonalizable operator on A with
positive eigenvalues. The corresponding family of operators on the simply con-
nected group with Lie algebra G are also called dilations.

Many results of this section could be formulated in this more general contest.
The push forward of the Lebesgue measure under the dilations is

(δλ)#L n = λ2n+2L n. (2.3)

Because of this, as we will see, in many matters the number Q = 2n + 2 plays
the role of the dimension of Rn; because of this Q is known as homogeneous
dimension of Hn.

Definition 2.6. A distribution Λ on Hn (or, more generally, on an open
cone, that is a set closed under dilations) is said homogeneous of degree α
if 〈Λ, ϕ ◦ δλ〉 = λα−Q 〈Λ, ϕ〉 for every ϕ ∈ D(Hn). If Λ arises from a function u
in L1

loc this is equivalent to u ◦ δλ = λαu.

For example the Dirac distribution at the origin δ0 is homogeneous of degree
−Q.

Definition 2.7. A linear operator T : D(Hn)→ D ′(Hn) is said homogeneous
of degree α if 〈T (ϕ ◦ δλ), ψ〉 = λα−Q

〈
Tϕ, ψ ◦ δ1/λ

〉
.

The vector fields Zα, Xα and Yα are operators homogeneous of degree −1,
while T is homogeneous of degree −2. Since the composition (on the appropriate
domain) of an operator homogeneous of degree α and an operator homogeneous
of degree β is homogeneous of degree α + β, the sublaplacian is homogeneous
of degree −2.

Let Z be the infinitesimal generator of the group of dilations, that is, the
vector field defined by

d

dλ

∣∣∣∣
λ=1

(u ◦ δλ) = Zu

for u ∈ C 1(Hn). An explicit expression for it is

Z =

n∑
k=1

xk
∂

∂xk
+ yk

∂

∂yk
+ 2t

∂

∂t
.

It is easy to verify that

λ
d

dλ
(u ◦ δλ) = Z(u ◦ δλ) = (Zu) ◦ δλ. (2.4)
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Using this formula, it is easy to prove the following analogue of Euler’s theorem
on homogeneous functions on Rn.

Proposition 2.8. A function u is homogeneous of degree α if and only if Zu =
αu.

On Rn a known characterization of the laplacian is that every linear differ-
ential operator commuting with translations and isometries is a polynomial of
the Laplacian (see [F3, Theorem 8.51]). We want to study analogous character-
izations of invariant operators on Hn.

Proposition 2.9. A linear differential operator L on Hn commutes with left
translations and with the operators ρP for P ∈ U(n) defined in (2.2) if and only
if L = p(T,∆b) for some polynomial p in two variables.

Proof. Let G be the group generated by the left translations and the operators
ρP , and H be the stabilizer of the origin with respect to the natural action of G
on Hn, that is the subgroup formed by the ρP , so that H ' U(n). Let m ⊂ g be
the Lie algebra of the subgroup of left translations. Now we apply [H, Theorem
4.9]. 6 Thanks to that general theorem, the thesis becomes equivalent to prove
that a polynomial p(Rez, Imz, t) invariant by the action of U(n) on z is of the
form p(Rez, Imz, t) = p(|z|2, t). Writing p(Rez, Imz, t) =

∑
α t

αpα(Rez, Imz)
this becomes equivalent to prove that a polynomial pα(Rez, Imz) invariant by
the action of U(n) is a polynomial of |z|2, and this is elementary.

2.3 Analysis

|(z, t)| =
(
|z|4 + t2

)1/4
.

It verifies the following properties:

• it is continuous and |x| = 0⇐⇒ x = 0;

• |δλx| = λ|x|;

• |x−1| = |x|;

• |xy| ≤ |x|+ |y|.

As in the case of Rn, it can be proved that all norms are equivalent.
The convolution of two measurable functions f and g on Hn is

(f ∗ g)(x) =

∫
Hn

f(xy−1)g(y) =

∫
Hn

f(y)g(y−1x)

6For convenience of the reader, we point out that in the cited reference D(G/H) is defined
in Chapter 2, section 4.1, page 274; m is any AdG(h)-invariant subspace of g such that g = h⊕m
(see page 284); I(m) is defined in Corollary 4.8; S(m) and λ are defined in Theorem 4.3; the
definition of “reductive” is given at the bottom of page 284.
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whenever the integral is defined for almost every x. Convolution can be defined
in general on locally compact Hausdorff groups with respect to a left Haar
measure, with some care required if the group is not unimodular.

As in the case of Rn, convolution can be extended to measures and distri-
butions.

Convolution is associative, but unlike Rn it is not commutative as a con-
sequence of the non commutativity of the group structure, as shown by the
formula δx ∗ δy = δxy.

Proposition 2.10. If X is a left invariant vector field, then X(f ∗g) = f ∗(Xg).

We point out that it is not true that X(f∗g) = (Xf)∗g. This can be deduced
for example from the not hard to prove formula δx ∗Xf ∗ δx−1 = Adx(X)f .

We will need integral inequalities for the convolution. To state them in the
most general form, we recall briefly the notion of Lorentz spaces. Given a σ-
finite measure space (X,µ) and 1 ≤ p <∞, 1 ≤ q ≤ ∞, the Lorentz quasinorm
is defined as

‖u‖Lp,q(X) = p1/q
∥∥∥λµ{|u| > λ}1/p

∥∥∥
Lq(dt/t)

.

Furthermore we define ‖u‖L∞,∞(X) = ‖u‖L∞(X). The Lorentz space Lp,q(X) is

the set of functions such that this quantity is finite. When p = q, ‖u‖Lp,p =
‖u‖Lp , while when q =∞, Lp,∞ coincides with the weak Lp space.

Theorem 2.11. If 1 < p, p1, p2 <∞, 1 ≤ q, q1, q2 ≤ ∞ are such that

1

p1
+

1

p2
= 1 +

1

p
and

1

q1
+

1

q2
=

1

q

then there exists C such that for every f ∈ Lp1,q1(Hn), g ∈ Lp2,q2(Hn) it holds

‖f ∗ g‖Lp,q(Hn) ≤ C ‖f‖Lp1,q1 (Hn) ‖g‖Lp2,q2 (Hn) .

Whenever p = q, p1 = q1 and p2 = q2 the inequality holds with C = 1:

‖f ∗ g‖Lp(Hn) ≤ ‖f‖Lp1 (Hn) ‖g‖Lp2 (Hn)

and also for p = 1,∞.

Proof. The theorem follows from [ON, Theorem 2.6] (with the corrections in
[Y]) and [Gr, Theorem 1.2.12, Remark 1.2.11].

Lemma 2.12. If 0 < s ≤ Q then a measurable function homogeneous of degree
−s and boundend on {|x| = 1} belongs to LQ/s,∞.

Proof. It follows easily from formula (2.3).

All of this suggests that the study of fundamental solutions for left invariant
differential operators on Hn should have the same role of fundamental solutions
for constant coefficients operators (which is equivalent to translation invariant)
operators on Rn.
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Regarding the sublaplacian, since it is homogeneous of degree −2, and δ0 is
homogeneous of order −Q, we can expect that if it has a fundamental solution,
it is homogeneous of order −Q + 2. It turns out that this is the case, and the
fundamental solution, discovered by Folland, is known explicitly.

Proposition 2.13. There exists a constant c0 such that −∆b|x|−Q+2 = c0δ0.

For the proof, see [F1], [FS, Theorem 6.2], [CS, Theorem 10.1.1] [DT, The-
orem 3.9]. The latter three references study, more generally, the homogeneous
operators −∆b + αT (α ∈ C), which is useful to study the Kohn Laplacian
(a version of the Hodge Laplacian for pseudo-Hermitian manifolds). We define
Φ = 1

c0|x|Q−2 .

Proposition 2.14. If u ∈ E ′(Hn) then −∆b(u ∗ Φ) = (−∆bu) ∗ Φ = u.

Proof. The fact that −∆b(u ∗ Φ) = u follows from Proposition 2.10. If v ∈
D(Hn) then

〈(−∆bu) ∗ Φ, v〉 = 〈−∆bu, v ∗ Φ〉 = 〈u,−∆b(v ∗ Φ)〉 = 〈u, v〉 .

Now we introduce the analogues of the Sobolev spaces. To define them, if
I = (α1, . . . , αn, β1, . . . , βn) is a multi-index, we use the notation

XIu = Xα1
1 . . . Xαn

n Y α1
1 . . . Y αnn u.

Definition 2.15. If U ⊆ Hn is open, we define the Folland-Stein space

Sk,p(U) = {u ∈ Lp(U)|XIu ∈ Lp(U) for every multi-index I with |I| ≤ k}

with norm
‖u‖Sk,p(U) =

∑
|I|≤k

XIu.

Proposition 2.16 (Properties of Folland-Stein spaces). • Sk,p(U) is a Ba-
nach space;

• smooth functions are dense in Sk,p(U); smooth compactly supported func-
tions are dense in Sk,p(Hn);

• If u ∈ Sk,p(U), |u| ∈ Sk,p(U) and ‖|u|‖Sk,p = ‖u‖Sk,p .

Theorem 2.17. If u ∈ S1,p(Hn) with 1 ≤ p < Q and 1
p∗ = 1

p −
1
Q then

‖u‖Lp∗ ≤ C ‖∇u‖Lp .

Proof. Let us denote Xn+α = Yα. By Proposition 2.16 we can suppose that u
is smooth and compactly supported. Then by Proposition 2.14

u = u ∗ δ = u ∗ (−∆bΦ) = u ∗ (−∆bδ) ∗ Φ = −1

4

2n∑
α=1

u ∗ (X2
αδ) ∗ Φ =
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= −1

4

2n∑
α=1

u ∗ (Xαδ ∗Xαδ) ∗ Φ = −1

4

2n∑
α=1

(Xαu) ∗ (Xαδ ∗ Φ).

Xαδ ∗Φ is equal to Xr
αΦ where Xr

α is the right invariant vector field coinciding
with Xα at the origin. In particular, if Rα = − 1

4X
r
αΦ, then

u =

2n∑
α=1

(Xαu) ∗Rα (2.5)

and Rα are functions smooth outside the origin and homogeneous of degree
−Q+ 1. By Theorem 2.11 and Lemma 2.12, if 1 < p < Q,

‖u‖Lp∗ ≤
2n∑
α=1

‖(Xαu) ∗Rα‖Lp∗ ≤ C1

2n∑
α=1

‖Xαu‖Lp ≤ C ‖∇u‖Lp .

This proof does not work for p = 1, because the operator f 7→ f ∗ Φ does not

map L1 to L
Q
Q−1 . Nevertheless if K is a homogeneous function of degree −Q+1

the operator f 7→ f ∗K maps L1 continuously to L
Q
Q−1 ,∞, that is, explicitly,

sup
t>0

t|{|u ∗K| > t}|
Q−1
Q ≤ ‖u‖L1 .

and this is sufficient to prove the desired inequality thanks to a trick by Maz’ya.
By Proposition 2.16 we can suppose that u ≥ 0. Let us set Ak = {2k < u ≤

2k+1} and uk = min{0,max{u− 2k, 2k}}. From formula (2.5) we deduce that

|u| ≤
2n∑
α=1

|Xαu| ∗ |Rα| ≤ C|∇u| ∗K

where K =
∑
Rα. Then

|Ak+1| ≤ |{uk > 2k−1} ≤
∣∣{|∇uk| ∗K| > C−12k−1

}∣∣ ≤
≤ C1

(
1

2k

∫
Hn

|∇uk|
) Q
Q−1

≤ C1

(
1

2k

∫
Ak

|∇u|
) Q
Q−1

and thus∫
Hn

u
Q
Q−1 =

∑
k∈Z

∫
Ak

u
Q
Q−1 ≤

∑
k∈Z

(2k+1)
Q
Q−1 |Ak| ≤ C2

∑
k∈Z

(∫
Ak

|∇u|
) Q
Q−1

≤

≤ C2

(∑
k∈Z

∫
Ak

|∇u|

) Q
Q−1

= C2

(∫
Hn

|∇u|
) Q
Q−1

.
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2.4 Contact form with constant Webster curva-
ture in Hn

Because of formula (1.11), the problem of finding pseudo-Hermitian structures
with positive constant scalar curvature K is equivalent, up to some non essential
multiplicative constant, to finding positive solutions to the equation

−∆bu =
Q− 2

2Q
Ku

Q+2
Q−2 .

Without loss of generality we can assume K = 2Q
Q−2 , so that we are lead to the

equation

−∆bu = u
Q+2
Q−2 . (2.6)

There is an obvious family of solutions. In fact we know, from Section 2.1,
that there exists a CR isomorphism from the sphere minus a point S2n+1 \ {p}
to Hn, given by the formula

F (z) =

(
z1

1 + zn+1
, . . . ,

zn
1 + zn+1

,Re

(
1− zn+1

1 + zn+1

))
.

F is known as Cayley transform.
On S2n+1 the form θS2n+1 = i

2 (∂ − ∂)|z|2 has constant scalar curvature
by symmetry, and we know that it is positive. So the form (F−1)∗θS2n+1 is a
pseudo-Hermitian structure on Hn with constant positive scalar curvature, and
computing its conformal factor with respect to the standard Heisenberg form,
it can be found that a solution of equation (2.6) is

ω(z, t) =
c0(

t2 + (1 + |z|2)
2
)(Q−2)/4

(2.7)

for some constant c0.
From ω we can find other solutions through CR automorphisms: if Ψ =

ρP ◦ δλ ◦ Lx ∈ AutCR(Hn) then

Ψ∗(ω
4

Q−2 θ) = (ρP ◦ δλ ◦Lx)∗(ω
4

Q−2 θ) = (ω
4

Q−2 ◦ρP ◦ δλ ◦Lx) · (ρP ◦ δλ ◦Lx)∗θ =

= (ω
4

Q−2 ◦ δλ ◦ Lx) · λ2θ =
(
λ
Q−2

2 ω ◦ δλ ◦ Lx
) 4
Q−2

θ,

so λ
Q−2

2 ω ◦ δλ ◦ Lx is a solution of Equation (2.6) too. Let us denote ωλ,x =

λ−
Q−2

2 ω ◦ δ1/λ ◦ Lx−1 .
On Rn it is known that all metrics with constant scalar curvature confor-

mal to the flat one are pull-backs, through the stereographic projection, of the
standard metric on the sphere (see [CGS]). Jerison and Lee proved a similar
result on the Heisenberg group, under some integrability hypotheses (see [JL2,
Corollary 4.2]).
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Theorem 2.18. All positive solutions of Equation (2.6) on the Heisenberg group

belonging to L
2Q
Q−2 are of the form ωλ,x for some λ ∈ (0,∞) and x ∈ Hn.

We remark that since the volume form associated to u
4

Q−2 θ is u
2Q
Q−2 θ∧(dθ)n,

the hypothesis that u ∈ L
2Q
Q−2 is equivalent to say that it has finite volume. In

particular this holds for pull-backs from metrics on S2n+1 through the Cayley
transform. So we get the following.

Corollary 2.19. • Pseudo-Hermitian structures on Hn with its CR struc-
ture which have finite volume and constant scalar curvature are
(F−1)∗θS2n+1 and its multiples and pull-backs through CR automorphisms.

• Pseudo-Hermitian structures on S2n+1 with its CR structure are pull-backs
of θS2n+1 through CR automorphisms.

The proof of the classification in Rn is through the method of moving planes.
On Hn this method does not work because the group of pseudo-Hermitian
isomorphisms is too small. The proof of Jerison and Lee was inspired by a proof
of Obata of the classification of Riemannian metrics of constant scalar curvature
on Sn conformal to the standard one (see [Ob, Proposition 6.1]). Obata’s proof
is based on the fact that if g̃ = ϕ−2gSn has constant scalar curvature, then the
formula

div(Bijϕ,i∂j) = ϕ|B|2

holds, where B is the traceless Ricci tensor. Integrating over Sn then leads to
deduce that B = 0, and this permits to prove the theorem.

Jerison and Lee conjectured the existence of some formula that equates the
divergence of a vector field with a sum of squares so that integration would lead
to deduce the vanishing of the squares. Through a computer program, they
found that in fact formulas of his kind exist, and they were able to use them to
prove the classification theorem.

The hypothesis that u ∈ L
2Q
Q−2 is used, in the proof of Jerison and Lee, to

prove that after the integration by parts the boundary term tends to zero at
infinity. It is conjectured that, as in Rn, this integrability hypothesis is not
necessary, but this is still an open problem.

In [Wa], Jerison and Lee’s formula was generalized to prove an Obata-like
theorem on pseudo-Einstein manifolds.



Chapter 3

Periodic singular CR
Yamabe structures

As seen in the introduction, in Rn \ {0} constant curvature metrics conformal
to the Euclidean one are completely classified. The problem is equivalent to
classify all positive solutions of the equation

−∆u = u
2n
n−2 .

On Hn the analogous problem brings to the equation

−∆bu = u
2Q
Q−2 . (3.1)

We want to find conformal metrics analogues to the Fowler solutions on Rn,
that is, such that there exist T > 0 such that δT is a pseudo-Hermitian isometry

of the associated form u
4

Q−2 θ. This condition is equivalent to

u
4

Q−2 θ = (δT )∗(u
4

Q−2 θ) = (u ◦ δT )
4

Q−2T 2θ

that is, u ◦ δT = T−
Q−2

2 u.
Let ΩT = {1 ≤ |x| ≤ T}. The natural space in which study the problem is

the Hilbert space

XT =
{
u ∈ S1,2

loc (Hn)
∣∣∣u ◦ δT = T−

Q−2
2 u

}
with the product

〈u, v〉 =

∫
ΩT

∇u · ∇v.

Lemma 3.1. ∫
δλ(E)

|u|
2Q
Q−2 =

∫
E

|λ
Q−2

2 u ◦ δλ|
2Q
Q−2

33
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and ∫
δλ(E)

|∇u|2 =

∫
E

|λ
Q−2

2 ∇(u ◦ δλ)|2

whwnever u is a function such that the terms in the formulas are defined.
If u ∈ XT then ∫

δλΩT

|u|
2Q
Q−2 =

∫
ΩT

|u|
2Q
Q−2 , (3.2)∫

δλΩT

∇u · ∇v =

∫
ΩT

∇u · ∇v. (3.3)

Proof. The first two formulas follow a simple change of variables.
If 1 ≤ λ ≤ T then∫

δλΩT

|u|
2Q
Q−2 =

∫
ΩT \Ωλ

|u|
2Q
Q−2 +

∫
ΩλT \ΩT

|u|
2Q
Q−2 =

=

∫
ΩT \Ωλ

|u|
2Q
Q−2 +

∫
Ωλ

|T
Q−2

2 u ◦ δT |
2Q
Q−2 =

∫
ΩT

|u|
2Q
Q−2 .

From this by induction Formula (3.2) for λ ≥ 1 is proved, and simply extended
to all λ. Formula (3.3) is proved analogously.

Lemma 3.2. If u.v ∈ XT then∫
ΩT

∇u · ∇v = −
∫

ΩT

∆bu · v.

Proof. Thanks to a partition of unity we can write v = v1 +v2 with u1, u2 ∈ XT ,

suppu1 ∩ ΩT ⊂
◦
ΩT and suppu2 ∩ δ√TΩT ⊂ δ√T

◦
ΩT .

Then, using formula (3.3),∫
ΩT

∇u · ∇v =

∫
ΩT

∇u · ∇v1 +

∫
ΩT

∇u · ∇v2 =

= −
∫

ΩT

∆Hnu · v1 +

∫
δ√TΩT

∇u · ∇v2 =

= −
∫

ΩT

∆Hnu · v1 −
∫
δ√TΩT

∆Hnu · v2 =

= −
∫

ΩT

∆Hnu · v1 −
∫

ΩT

∆Hnu · v2 = −
∫

ΩT

∆Hnu · v.

We want to give a variational formulation to Equation (3.1) in XT . Let us
define

JT (u) =

∫
ΩT

(
|∇u|2 − 1

2∗
|u|2

∗
)
.
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Since

dJT (u)[ϕ] =

∫
ΩT

∇u · ∇ϕ− u|u|2
∗−2ϕ

thanks to Lemma 3.2 critical points of JT are solutions of Equation (3.1).
In the proof we will need to work in the closed subspace ofXT of the functions

of the form u(|z|, t), which we denote by X̃T . Functions on XT are functions
invariant by the action of U(n) on Hn, so, thanks to Palais’ symmetric criticality

principle (see [P]), critical points of JT restricted to X̃T are critical points of
JT on XT .

The second differential of JT is

d2JT (u)[ϕ,ψ] =

∫
ΩT

(
∇ϕ · ∇ψ − (2∗ − 1)|u|2

∗−2ϕψ
)
.

We call J ′′
T the associated operator:

〈J ′′
T (u)[ϕ], ψ〉 = d2JT (u)[ϕ,ψ].

3.1 Estimate of the Sobolev constant on XT

In order to carry out the estimates in the next Sections, we will need an explicit
bound on the Sobolev constant on XT .

Proposition 3.3. If f is an Lploc function on Hn \{0} such that f ◦δT = T−αf
and αp = Q then(

TQ − 1

TQ

)1/p

‖u‖Lp,∞(Hn) ≤ C2 ‖u‖Lp(ΩT ) ≤ Q
1/p(log T )1/p ‖u‖Lp,∞(Hn) .

Proof. Let us call f(λ) = µ{x ∈ ΩT | u(x) > λ} and g(t) = µ{x ∈ Hn | u(x) >
λ}. Then it holds that

g(λ) =
∑
k∈Z

TQkf(λTα).

Therefore for every λ > 0, since f is decreasing,

‖u‖pLp(ΩT ) = p

∫ ∞
0

ξp−1f(ξ)dξ = p
∑
k∈Z

∫ λTαk

λTα(k−1)

ξp−1f(ξ)dξ ≥

≥ p
∑
k∈Z

f(λTαk)

∫ λTαk

λTα(k−1)

ξp−1dξ =
∑
k∈Z

f(λTαk)
(

(λTαk)p − (λTα(k−1))p
)

=

=
TQ − 1

TQ
λp
∑
k∈Z

TQkf(λTαk) =
TQ − 1

TQ
λpg(λ).

Taking the supremum with respect to λ we get the first inequality.
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For the other one, let us pick an integer N > 0 and write

‖u‖pLp(ΩT ) = p

∫ ∞
0

ξp−1f(ξ)dξ = p
∑
k∈Z

∫ Tα(k+1)/N

Tαk/N
ξp−1f(ξ)dξ ≤

≤ p
∑
k∈Z

f(Tαk/N )

∫ Tα(k+1)/N

Tαk/N
ξp−1dξ =

=

N∑
m=1

∑
j∈Z

(Tαp/N − 1)TαpjTαpm/Nf(TαjTαm/N ) =

= (TQ/N − 1)

N∑
m=1

TQm/N
∑
j∈Z

TQjf(TαjTαm/N ) =

= (TQ/N − 1)

N∑
m=1

TQm/Ng(Tαm/N ) ≤ N(TQ/N − 1) ‖u‖pLp,∞ .

Taking the limit for N →∞ we get the second inequality.

Proposition 3.4. If u ∈ L2,∞(Hn) is such that ∇u ∈ L2,∞(Hn) then

‖u‖
L

2Q
Q−2

,∞ ≤ C ‖∇u‖L2,∞ .

Proof. The proof is essentially the same as that one of (2.17), that is, proving
that

u =

2n∑
α=1

(Xαu) ∗Rα (3.4)

and then applying Theorem 2.11. There is a technical complication, that is,
in the proof Theorem 2.17, Formula (3.4) is proved for smooth compactly sup-
ported functions and then extended by density, but smooth compactly supported
functions are not dense in weak Lp spaces.

To overcome the problem, let us define E = u > 1, Ec = Hn \ E, u1 =
uχEc + χE and u2 = (u − 1)χE , so that u = u1 + u2. It is standard to prove
that u1 and u2 have weak sub-Riemannian gradient and that ∇u1 = (∇u)χEc ,
∇u2 = (∇u)χE . It is easy to prove that u1 ∈ S1,p(Hn) for p > 2 and that
u2 ∈ S1,q(Hn) for q < 2. Therefore

uk =

2n∑
α=1

(Xαuk) ∗Rα

for k = 1, 2, and by summing, Formula (3.4) is proved.

Combining the last two Propositions, we get a Sobolev inequality for XT

with an explicit constant.
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Proposition 3.5. There exist a constant C independent by T such that for
every u ∈ XT

‖u‖
L

2Q
Q−2 (ΩT )

≤ C(log T )
Q−2
2Q

(
TQ

TQ − 1

)1/2

‖u‖XT .

3.2 Construction of a family of approximate so-
lutions

We define a family of approximate critical points of JT , with the intention to
apply a perturbative method to find an exact critical point. The family is

Ψλ,T =
∑
k∈Z

ωλ/Tk =
∑
k∈Z

T
Q−2

2 kωλ ◦ δTk

where ωλ = λ−
Q−2

2 ω ◦ δ1/λ. Dependence on T will be omitted whenever not
relevant.

We notice that ω verifies the elementary estimates

ω(x) ≤ C

1 + |x|Q−2
, |∇ω(x)| ≤ C

1 + |x|Q−1
.

Lemma 3.6. Ψλ,T is well defined and belongs to XT .

Proof. The series defining Ψλ,T converges uniformly on compact sets K, be-
cause, if x ∈ K

Ψλ,T (x) =
∑
k∈Z

T
Q−2

2 kωλ ◦ δTk ≤ Cλ,K
∑
k∈Z

T
Q−2

2 k 1

1 + T (Q−2)k
≤ C ′λ,K .

Analogously

|∇Ψλ,T (x)| =

∣∣∣∣∣∑
k∈Z

T
Q−2

2 kT k (∇ωλ ◦ δTk) (x)

∣∣∣∣∣ ≤
≤ Cλ,K

∑
k∈Z

T
Q
2 k

1

1 + T k(Q−1)
≤ C ′λ,K

(where, we recall, ∇(u ◦ δλ) = λ(∇u) ◦ δλ because the sub-Riemannian gradient
is a homogeneous operator of degree −1). So Ψλ,T is of class C 1. Since

Ψλ,T ◦ δT =
∑
k∈Z

T
Q−2

2 kωλ ◦ δTk ◦ δT =

= T−
Q−2

2

∑
k∈Z

T
Q−2

2 (k+1)ωλ ◦ δTk+1 = T−
Q−2

2 Ψλ

then Ψλ,T ∈ XT .
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It holds that

ΨTλ =
∑
k∈Z

T
Q−2

2 kωTλ ◦ δTk =
∑
k∈Z

T
Q−2

2 k 1

T
Q−2

2

ωλ ◦ δ1/T ◦ δTk =

=
∑
k∈Z

T
Q−2

2 (k−1)ωλ ◦ δTk−1 =
∑
k∈Z

T
Q−2

2 (k−1)ωλ ◦ δTk−1 = Ψλ.

Therefore the set ZT = {Ψλ | λ ∈ (0,∞)} is a closed curve in XT .
Moreover, using formula (2.4), it can be computed that

∂Ψλ

∂λ
=

∂

∂λ

∑
k∈Z

ωλ/Tk =
∑
k∈Z

∂

∂λ

(
λ−

Q−2
2 ω1/Tk ◦ δλ−1

)
=

=
∑
k∈Z

(
−Q− 2

2

1

λ
ωλ/Tk − λ−

Q−2
2

1

λ2
λZ(ω1/Tk ◦ δλ−1)

)
=

=
∑
k∈Z

(
−Q− 2

2

1

λ
ωλ/Tk −

1

λ
Z(ωλ/Tk)

)
=

= −Q− 2

2

1

λ
Ψλ −

1

λ
Z(Ψλ). (3.5)

This implies that the curve ZT is immersed for T big enough, because if ∂Ψλ
∂λ

was zero then Z(Ψλ) = −Q−2
2 Ψλ would be zero, and by Proposition 2.8 Ψλ

would be homogeneous of degree −Q−2
2 ; but it is clearly not by construction if

T is big enough.
Now we want to prove that Φλ is an approximate critical point of JT if T

is big enough. So we compute the differential of JT in Ψλ:

dJT (Ψλ)[u] =

∫
ΩT

∇Ψλ · ∇u−Ψ2∗−1
λ u =

=

∫
ΩT

∑
k∈Z

∇ωλ/Tk · ∇u−

(∑
k∈Z

ωλ/Tk

)2∗−1

u =

=
∑
k∈Z

(∫
ΩT

∇ωλ/Tk · ∇u− ω
Q+2
Q−2

λ/Tk
u

)
+

−
∫

ΩT

(∑
k∈Z

ωλ/Tk

)Q+2
Q−2

−
∑
k∈Z

ω
Q+2
Q−2

λ/Tk

u =

:= A+B. (3.6)

Lemma 3.7. In the above notation, A = 0.
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Proof. We have

A =
∑
k∈Z

∫
ΩT

T
Q−2

2 k(∇ωλ ◦ δTk) · ∇u− (T
Q−2

2 k)
Q+2
Q−2 (ωλ ◦ δTk)

Q+2
Q−2u =

=
∑
k∈Z

∫
ΩT

T
Q
2 k(∇ωλ) ◦ δTk · ∇u− T

Q+2
2 k(ωλ ◦ δTk)

Q+2
Q−2u =

=
∑
k∈Z

∫
δ
Tk

(ΩT )

T−kQ
[
T
Q
2 k∇ωλ · (∇u) ◦ δT−k − T

Q+2
2 kω

Q+2
Q−2

λ u ◦ δT−k
]

=

=
∑
k∈Z

∫
δ
Tk

(ΩT )

T−
Q
2 kT k∇ωλ · ∇(u ◦ δT−k)− ω

Q+2
Q−2

λ u =

=
∑
k∈Z

∫
δ
Tk

(ΩT )

∇ωλ · ∇u− ω
Q+2
Q−2

λ u =

∫
Hn

∇ωλ · ∇u− ω
Q+2
Q−2

λ u.

Let us pick a family of smooth functions ϕε,R such that ϕε,R ≡ 1 on BR \B2ε,
ϕε,R ≡ 0 on Bε and Hn \BR+1, |∇ϕε,R| ≤ C

ε on B2ε \Bε and |∇ϕε,R| ≤ C on
BR+1 \BR. Then

A = lim
ε→0
R→∞

∫
Hn

(
∇ωλ · ∇u− ω

Q+2
Q−2

λ u

)
ϕε,R =

= lim
ε→0
R→∞

∫
Hn

−(∆Hnωλ + ω
Q+2
Q−2

λ )uϕε,R − u∇ωλ · ∇ϕε,R =

= − lim
R→∞

∫
BR+1\BR

u∇ωλ · ∇ϕε,R − lim
ε→0

∫
B2ε\Bε

u∇ωλ · ∇ϕε,R.

If x → ∞ then ∇ωλ . 1
|x|Q−1 and u . |x|−

Q−2
2 , and so the first limit is zero.

If x → 0 then ∇ωλ . 1 and u . |x|−
Q−2

2 , and so also the second limit is zero.
Therefore A = 0.

Lemma 3.8. The term B in formula (3.6) verifies

|B| ≤ C log T

(
1

T

)Q(Q−2)
2(Q+2)

‖u‖XT .

Proof. For x ∈ ΩT , let λ(x) be the number such that |x|
λ(x) ∈

[
1√
T
,
√
T
)

. Then

|B| ≤
∫

ΩT

(∑
k∈Z

ωλ/Tk

)Q+2
Q−2

−
∑
k∈Z

ω
Q+2
Q−2

λ/Tk

 |u| ≤
≤
∫

ΩT

(∑
k∈Z

ωλ/Tk

)Q+2
Q−2

− ω
Q+2
Q−2

λ(x)

 |u| ≤
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≤


∫

ΩT

(∑
k∈Z

ωλ/Tk

)Q+2
Q−2

− ω
Q+2
Q−2

λ(x)


2Q
Q+2


Q+2
2Q

‖u‖
L

2Q
Q−2 (ΩT )

≤

≤ C(log T )
Q−2
2Q ‖u‖XT


∫

ΩT

(∑
k∈Z

ωλ/Tk

)Q+2
Q−2

− ω
Q+2
Q−2

λ(x)


2Q
Q+2


Q+2
2Q

=

= C(log T )
Q−2
2Q ‖u‖XT ·

·


∫

ΩT

(∑
k∈Z

|x|
Q−2

2 ωλ/Tk

)Q+2
Q−2

− (|x|
Q−2

2 ωλ(x))
Q+2
Q−2


2Q
Q+2

dx

|x|Q


Q+2
2Q

by Proposition 3.5 (taking T ≥ T0 big, since all following estimates are valid for

T big enough). Let us define ηλ = |x|
Q−2

2 ωλ. Then

|B| ≤ C(log T )
Q−2
2Q ‖u‖XT


∫

ΩT

(∑
k∈Z

ηλ/Tk

)Q+2
Q−2

− η
Q+2
Q−2

λ(x)


2Q
Q+2

dx

|x|Q


Q+2
2Q

.

η is bounded, and if k ≥ 0 and T is large enough then ηλ(x)/Tk satisfies estimates

|ηλ(x)/Tk(x)| .


(
Tk

λ

)
|x|

1 +
(
Tk

λ

)2

|x|2


Q−2

2

.

(
T k
|x|
λ

)−Q−2
2

≤
(

1

T

)(k− 1
2 )Q−2

2

and

|ηλ(x)/T−k(x)| .


(
T−k

λ

)
|x|

1 +
(
T−k

λ

)2

|x|2


Q−2

2

.

(
1

T k
|x|
λ

)Q−2
2

≤
(

1

T

)(k− 1
2 )Q−2

2

uniformly in λ. It is elementary to verify that, for α, β ≥ 1 the function

[(x+ y)α − xα]
β

x(α−1)βyβ + yαβ

is bounded on (0,∞)2, and so there exist C such that

[(x+ y)α − xα]
β ≤ C(x(α−1)βyβ + yαβ)
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for x, y ≥ 0. Taking

x = ηλ, y =
∑

k∈Z\{0}

ηλ(x)/Tk , α =
Q+ 2

Q− 2
and β =

2Q

Q+ 2

one gets that

|B| ≤ C(log T )
Q−2
2Q ‖u‖XT


∫

ΩT

η 8Q
(Q+2)(Q−2)

λ(x)

 ∑
k∈Z\{0}

ηλ(x)/Tk


2Q
Q+2

+

+

 ∑
k∈Z\{0}

ηλ(x)/Tk


2Q
Q−2

 dx

|x|Q


Q+2
2Q

.

. C(log T )
Q−2
2Q ‖u‖XT

{∫
ΩT

[(
1

T

)Q−2
4 ·

2Q
Q+2

+

(
1

T

)Q−2
4 ·

2Q
Q−2

]
dx

|x|Q

}Q+2
2Q

.

. C(log T )
Q−2
2Q ‖u‖XT


(

1

T

)Q(Q−2)
2(Q+2)

∫
ΩT

dx

|x|Q


Q+2
2Q

.

. C(log T )
Q−2
2Q ‖u‖XT


(

1

T

)Q(Q−2)
2(Q+2)

log T


Q+2
2Q

−→ 0

uniformly in λ.

Putting the former lemmas together, we proved that the functions Ψλ are
an approximate critical points of JT .

Proposition 3.9. There exist T0 and C, depending only on by n, such that if

T ≥ T0 then ‖∇JT ‖ < C log T
(

1
T

)Q(Q−2)
2(Q+2) on ZT .

3.3 Non degeneracy of the second differential

Now we want to prove the nondegeneracy of d2JT (Ψλ) on the orthogonal of

the tangent to ZT when restricted to X̃T (which contains ZT ). To prove this,
we will use the characterization of the kernel of d2J (ω), where

J (u) =

∫
Hn

(
|∇u|2 − 1

2∗
|u|2

∗
)
,

operated in [MU, Lemma 5].
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Theorem 3.10. A function u ∈ S1(Hn) is in the kernel of J ′′(ω), or equiva-
lently a solution of the following equation:

−∆Hnu = (2∗ − 1)ω2∗−2u (3.7)

if and only if there exist coefficients µ, ν1, . . . , ν2n ∈ R such that

u = µ
∂ωλ
∂λ

∣∣∣∣
λ=1

+

2n∑
i=0

νiXi(ωλ)

(where X0 = T and Xn+k = Yk). Furthermore J ′′(ω) is an operator of the
form I+K with K compact, and has Morse index one, with negative eigenspace
generated by ω.

The fact that J ′′(ω) has Morse index one is not explicitly stated in [MU],
but follows from the proof of Lemma 5. The fact that ω is an eigenvector and
has negative eigenvalue follows from the fact that it solves Equation (3.1).

Theorem 3.10 implies that there exists a constant C such that if u ∈ S1(Hn)
and ∫

Hn

∇u · ∇∂ωλ
∂λ

= 0,

∫
Hn

∇u · ∇Xi(ωλ) = 0,

∫
Hn

∇u · ∇ωλ = 0 (3.8)

then

d2J (ωλ)[u, u] ≥ C
∫
Hn

|∇u|2. (3.9)

Furthermore, under the same hypotheses, since J ′′ is selfadjoint and ωλ is an
eigenfunction,

d2J (ωλ)[ωλ, u] = 0 (3.10)

and since the corresponding eigenvalue is negative,

d2J (ωλ)[ωλ, ωλ] ≤ −C
∫
Hn

|∇ωλ|2. (3.11)

In the following we will need the Hardy inequalities for S1,2(Hn) and for
XT .

Proposition 3.11. For every u ∈ S1,2(Hn)∫
Hn

|u|2

|x|2
≤ C

∫
Hn

|∇u|2.

For every u ∈ XT ∫
ΩT

|u|2

|x|2
≤ C log T

∫
ΩT

|∇u|2

Proof. The first follows from the Young-O’Neil inequality 2.11, the second from
Proposition 3.5 and Hölder’s inequality.
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To carry out the estimates of this Section, it will be convenient to introduce
on XT the norm

‖u‖2T,H =

∫
ΩT

(
|∇u|2 +

∣∣∣∣ u|x|
∣∣∣∣2
)
.

Thanks to Proposition 3.11,

‖u‖XT ≤ ‖u‖T,H ≤ C(log T )1/2 ‖u‖XT . (3.12)

Our strategy to prove that d2JT (Ψλ) is nondegenerate on XT in the or-

thogonal of ∂Ψλ
∂λ is to use Formulas 3.9, 3.10 and 3.11 to prove that if u ∈ X̃T ,∫

ΩT

∇u · ∇∂Ψλ

∂λ
= 0 (3.13)

and ∫
ΩT

∇u · ∇Ψλ = 0, (3.14)

then, given ε > 0, for T large

d2JT (Ψλ)[u, u] ≥ C
∫

ΩT

|∇u|2 +

∣∣∣∣ u|x|
∣∣∣∣2 ,

d2JT (Ψλ)[Ψλ,Ψλ] ≥ −C
∫

ΩT

|∇Ψλ|2 +

∣∣∣∣Ψλ

|x|

∣∣∣∣2
and

|d2JT (Ψλ)[Ψλ, u]| < ε ‖Ψλ‖T,H ‖u‖T,H .
The estimates

|∇Ψλ,T | ≤ C
1

|x|Q2
,

∣∣∣∣∇∂Ψλ,T

∂λ

∣∣∣∣ ≤ C

λ

1

|x|Q2
. (3.15)

hold, the first because Ψλ,T ∈ XT and is of class C 1, the second follows from
formula (3.5).

Meanwhile by the computations in formula (3.5) follows that

∂ωλ
∂λ

= −Q− 2

2

1

λ
ωλ −

1

λ
Z(ωλ)

and from this it can be proved that ∂ωλ
∂λ satisfies the estimate∣∣∣∣∇∂ωλ∂λ
∣∣∣∣ ≤ C

λ

1

|x|Q2
. (3.16)

Now let u ∈ X̃T be fixed. Let W = (B2T \BT ) ∪ (B1 \B1/2). The quantity

λQ
∫
W

(
|∇(u ◦ δλ)|2 +

∣∣∣∣ u|x| ◦ δλ
∣∣∣∣2
)
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is continuous with respect to λ and periodic with respect to log λ, so we can
suppose that it is minimal for λ = 1. Since in ΩT ∪ δTΩT there are ∼ log T
mutually disjoint sets of the form δλW , there holds the inequality∫

W

(
|∇u|2 +

∣∣∣∣ u|x|
∣∣∣∣2
)
≤ C

log T

∫
ΩT

(
|∇u|2 +

∣∣∣∣ u|x|
∣∣∣∣2
)

=
C

log T
‖u‖2T,H . (3.17)

Let us take a radial function ρ = ρ(|x|) such that ρ = 1 on ΩT , ρ = 0 on
B1/2 ∪ (Hn \B2T , 0 ≤ ρ ≤ 1, |∇ρ| ≤ C on B1 \B1/2, |∇ρ| ≤ C/T on B2T \BT .
In particular |∇ρ(x)| ≤ C/|x| everywhere.

Lemma 3.12. If ρ is a cut-off function as above, there exists T0 such that for
T ≥ T0 if (3.13) and (3.14) hold then for some C∣∣∣∣∫

Hn

∇(ρu)∇∂ΨT,λ

∂λ

∣∣∣∣ ≤ C

(log T )1/2

1

λ
‖u‖T,H

and ∣∣∣∣∫
Hn

∇(ρu)∇ΨT,λ

∣∣∣∣ ≤ C

(log T )1/2
‖u‖T,H .

Proof. ∫
Hn

∇(ρu)∇∂Ψλ

∂λ
=

∫
Hn

∇(ρu)∇∂Ψλ

∂λ
−
∫

ΩT

∇u · ∇∂Ψλ

∂λ
=

=

∫
W

[
(ρ∇u+ u∇ρ)∇∂Ψλ

∂λ

]
so, thanks to formulas (3.15) and (3.17),∣∣∣∣∫

Hn

∇(ρu)∇∂Ψλ

∂λ

∣∣∣∣ ≤ C

λ

(∫
W

(ρ∇u+ u∇ρ)2

)1/2(∫
W

1

|x|Q

)1/2

≤

≤ C

λ

(∫
W

(
|∇u|2 +

∣∣∣∣ u|x|
∣∣∣∣2
))1/2

≤ C

(log T )1/2

1

λ
‖u‖T,H .

The proof of the second estimate is identical.

Lemma 3.13. For every ε there exists T0 such that for T ≥ T0 if (3.13) and
(3.14) hold then ∣∣∣∣∫

Hn

∇(ρu)∇∂ωλ
∂λ

∣∣∣∣ ≤ C

(log T )1/2

1

λ
‖u‖T,H

and ∣∣∣∣∫
Hn

∇(ρu)∇ωλ
∣∣∣∣ ≤ C

(log T )1/2
‖u‖T,H .
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Proof. Applying Lemma 3.12 we can estimate∣∣∣∣∫
Hn

∇(ρu)∇∂ωλ
∂λ

∣∣∣∣ ≤ ∣∣∣∣∫
Hn

∇(ρu)∇∂ΨT,λ

∂λ

∣∣∣∣+ ∣∣∣∣∫
Hn

∇(ρu)

(
∇∂ωλ
∂λ
− ∂ΨT,λ

∂λ

)∣∣∣∣ ≤
≤ C

(log T )1/2

1

λ
‖u‖T,H + C ‖u‖T,H

(∫
ΩT∪W

∣∣∣∣∇∂Ψλ

∂λ
−∇∂ωλ

∂λ

∣∣∣∣2
)1/2

.

Using Formula (3.16) the term(∫
ΩT∪W

∣∣∣∣∇∂Ψλ

∂λ
−∇∂ωλ

∂λ

∣∣∣∣2
)1/2

can be estimated in an essentially identical way as in the proof of Lemma 3.8,
getting the thesis.

The proof of the second inequality estimate is identical.

Lemma 3.14. There exist constants T0 and C such that for T ≥ T0 if (3.13)
and (3.14) hold then

|d2J (ωλ)[ρu, ρu]| ≥ C
∫
Hn

|∇(ρu)|2 +

∣∣∣∣ρu|x|
∣∣∣∣2 ,

and

|d2J (ωλ)[ωλ, ρu]| ≤ C

(log T )1/2
‖u‖T,H .

Proof. Since u ∈ X̃T , uρ is invariant with respect to the symmetry (x, t) 7→
(−x, t), one has ∫

Hn

∇(ρu) · ∇Ti(ωλ) = 0.

The claim follows by Lemma 3.13, by equations (3.9) and (3.10), and elementary
Hilbert space theory.

Lemma 3.15. There exist constants T0 and C such that for T ≥ T0 if conditions
(3.13) and (3.14) hold, then

|d2JT (Ψλ)[u, u]| ≥ C ‖u‖2T,H ,

d2JT (Ψλ)[Ψλ,Ψλ] ≤ −C ‖Ψλ‖2T,H

and

|d2JT (Ψλ)[Ψλ, u]| ≤ C

(log T )1/2
‖Ψλ‖T,H ‖u‖T,H .
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Proof. By direct computation we find∣∣d2J (ωλ)[ρu, ρu]− d2JT (Ψλ)[u, u]
∣∣ =

=

∣∣∣∣∫
Hn

|∇(ρu)|2 − (2∗ − 1)|ωλ|2
∗−2ρ2u2+

−
∫

ΩT

|∇u|2 − (2∗ − 1)|Ψλ|2
∗−2u2

∣∣∣∣ ≤
≤ (2∗ − 1)

∣∣∣∣∫
ΩT

(
|Ψλ|2

∗−2 − |ωλ|2
∗−2
)
u2

∣∣∣∣+
+(2∗ − 1)

∣∣∣∣∫
W

|ωλ|2
∗−2ρ2u2

∣∣∣∣+ 2

∣∣∣∣∫
W

(u2|∇ρ|2 + ρ2|∇u|2)

∣∣∣∣ .
The first term can be estimated as in Lemma 3.8, the second in a standard way,
and the third has been essentially already estimated, to prove that for every ε
there exists T big enough to ensure that the whole sum is bounded by ε ‖u‖2T,H.

Analogously∣∣∣∣∣∣
∫
Hn

(
|∇(ρu)|2 +

∣∣∣∣ρu|x|
∣∣∣∣2
)
−
∫

ΩT

(
|∇u|2 +

∣∣∣∣ u|x|
∣∣∣∣2
∣∣∣∣∣
2
 ≤ ε ‖u‖2T,H .

This and Lemma 3.14 imply the first part of the thesis. The other statements
are deduced in an analogous manner.

Proposition 3.16. There exist constants T0 and C such that for T ≥ T0

the operator J ′′
T (Ψλ) is invertible on the orthogonal space of ∂Ψλ

∂λ in XT , and∥∥J ′′
T (Ψλ)−1

∥∥
L (XT )

≤ C log T .

Proof. It follows from Lemma 3.15 and basic Hilbert space theory that J ′′
T (Ψλ)

is invertible on the orthogonal space of ∂Ψλ
∂λ inXT , with norm uniformly bounded

in T with respect to operator norm associated to ‖·‖T,H. This and Formula 3.3
imply the thesis.

3.4 Existence of solutions

We have proved that, for T big enough, on the orthogonal in X̃T of the tangent
of the curve ZT the second differential of JT is non degenerate. Let us call W
this orthogonal in the point Ψλ ∈ Z and π the orthogonal projection on W .
We remember that our aim is to solve ∇JT (u) = 0. Following the standard
reasoning in [AM, Section 2.2] we note that this is equivalent to solve

π∇JT (Ψλ + w) = 0

(auxiliary equation) and

(I − π)∇JT (Ψλ + w) = 0

(bifurcation equation) with w ∈W .
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Lemma 3.17. There exists T0 such that the auxiliary equation has a unique
solution wT (λ); furthermore supλ ‖wT (λ)‖ → 0 for T →∞.

Proof. Write

∇JT (Ψλ + w) = ∇JT (Ψλ) + J ′′
T [w] +R(Ψλ, w)

with R(Ψλ, w) = o(‖w‖) and R(Ψλ, w) − R(Ψλ, v) = o(‖w − v‖), so that the
auxiliary equation becomes

π∇JT (Ψλ) + πJ ′′
T (Ψλ)[w] + πR(Ψλ, w) = 0,

namely

w = −(πJ ′′
T (Ψλ))−1 [π∇JT (Ψλ) + πR(Ψλ, w)] := Nλ(w).

By Propositions 3.9 and 3.16, N is a contraction if T is big enough, and so the
auxiliary equation has a unique solution w = wT (λ). Furthermore for every
r > 0 there exists T big enough such that Br(Ψλ) ∩W is mapped into itself by
N . So supλ ‖wT (λ)‖ tends to zero for T →∞.

Finally we can prove that the desired solutions exist.

Theorem 3.18. There exists T0 such that for T ≥ T0 there exists a positive
solution of the equation

−∆bu = u
Q+2
Q−2

on Hn \ {0} such that u ◦ δT = T−
Q−2

2 u, and T is the smallest period.

Proof. Let us consider the function

Φ(λ) = JT (Ψλ + w(λ)).

Φ is continuous and periodic, so it has stationary point λ0. Following the
standard argument of Theorem 2.12 and Remark 2.14 in [AM], with the need

for only formal modifications, the fact that Φ′(λ0) = J ′
T (Ψλ0

+w(λ0)) ·(∂Ψλ0
∂λ +

w′(λ0)) implies u = Ψλ0
+w(λ0) to solve the bifurcation equation, and so to be

a stationary point of JT .
The smoothness of the solution can be proved with the same method of

Appendix B in [S].
Also λ(2−Q)/2u ◦ δλ−1 is a critical point of JT , and by the unicity in the

fixed point theorem it must be equal to Ψλ0λ +w(λ0λ), and so the whole curve

Z̃T = {Ψλ + w(λ)} consists of critical points of J .
To prove the positivity, let us notice that from the proof of Proposition 3.16

follows that J (ωλ) has Morse index one on
{
λ∂ωλ∂λ

}⊥
. By continuity, the same

holds for the orthogonal to the tangent space to Z̃T . Since dJT is zero on Z̃T ,

the tangent of Z̃T is in the kernel of J ′′
T . So the Morse index of JT on X̃T is

one.
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By a slight adaptation of the proof of Proposition 3.2 in [BCD] the set
{u 6= 0} has at most one connected component modulo δT , and so u does not
change sign. By construction it is evident that it must be weakly positive (and
even if it was not, it would be enough to change sign). The strict positivity
follows from Bony’s maximum principle (see [Bo]).

The last assertion follows by construction.



Chapter 4

Cylindrical and nearly
cylindrical singular
solutions

This chapter is devoted to prove the existence of a pseudo-Hermitian structure
on Hn \ {0} conformal to the standard one and such that the dilations δλ are
isometries. This is equivalent to find solutions of the equation

−∆bu = u
Q+2
Q−2 (4.1)

such that u ◦ δλ = λ
Q−2

2 u.
The above result is proved by posing the problem in a variational form, and

then performing a conformal change that trasforms Hn \ {0} in a pseudohermi-
tian cylinder, and imposing symmetries in order to reduce the problem to an
ODE with variational structure.

The main difficulty is that, because of the non compactness of Hn \ {0}, the
problem has to be formulated on a closed annulus {1 ≤ |x| ≤ r} (where | · | is the
homogeneous norm), and so one has to put boundary conditions that, under a
conformal change, behave in a treatable way. It is known that the mean curva-
ture behaves in such a way, indeed the prescription of the mean curvature of the
boundary is considered the most natural boundary condition in the prescribed
curvature problem for manifolds with boundary (see, for example, [E]). In our
case there is not such a concept, except in dimension three (see [CHMY]). So
we introduce, in arbitrary dimension, the notion of canonical pseudohermitian
normal curvature. In such a way we can formulate variationally the problem
of the prescription of the Webster curvature with boundary conditions, with a
functional that is conformally invariant.

In this section we will need the following formulas for conformal changes of
pseudo-Hermitian metric from [L1].

49
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Proposition 4.1. Under the conformal change θ 7→ θ̃ = e2fθ, the connection
forms trasform as

ω̃βα = ωβα + 2(fβθ
α − fαθβ) + δβα(fγθ

γ − fγθγ) + F · θ

(where F is a function of f explicitly known, but whose expression is irrelevant
for our purposes).

4.1 The canonical pseudohermitian normal cur-
vature

Let M be a pseudo-Hermitian manifold, and let Σ be a two-sided hypersurface
in M such that, calling V = TΣ∩H(M), dimV = 2n−1 at every point. If N is
a normal vector field to Σ with respect to gθ, the normalization of his orthogonal
projection on H(M), ν, is normal to V . Equivalently, ν is (one of the two) unit
length vector orthogonal to V . Let ξ = −Jν ∈ V . This is a canonical direction
(given an orientation on Σ). So we define the canonical pseudohermitian normal
curvature of Σ as

κ = gθ(∇ξξ, ν).

Proposition 4.2. Under the conformal change θ 7→ θ̃ = u2/nθ, κ the canonical
pseudohermitian normal curvature of the new pseudohermitian metric is given
by the formula

κu− 3

n
ν(u) = u1+ 1

n κ̃.

Proof. Since ξ ∈ T (1,0)M and is an unit vector with respect to gθ, there exists
an orthonormal frame Z1, . . . , Zn for T (1,0)M such that Z1 + Z1 =

√
2ξ. Then

ν = i√
2
(Z1 − Z1) Because of Theorem 1.19, ω1

1
= −ω1

1 , and so

κ = gθ(∇ξξ, ν) =
1

2
gθ(∇ξZ1 +∇ξZ1, i(Z1 − Z1)) =

= −1

2
dθ(ωα1 (ξ)Zα + ωα

1
(ξ)Zα, Z1 + Z1) =

= − i
2
ω1

1(ξ)Lθ(Z1, Z1)− i

2
ω1

1(ξ)Lθ(Z1, Z1) = −iω1
1(ξ).

Applying Proposition 4.1, since h11 = 1 we obtain that

ω̃1
1 = ω1

1 + 2(f1θ
1 − f1θ

1) + δ1
1(f1θ

1 − f1θ1) + F · θ =

= ω1
1 + 3(Z1fθ

1 − Z1fθ
1
) mod θ.

Considering that after the conformal change the Levi form is multiplied by e2f ,
and so the canonical tangent vector becomes ξ̃ = e−fξ, we obtain that

κ̃ = −iω̃1
1(ξ̃) = −ie−f (ω1

1 + 3(Z1fθ
1 − Z1fθ

1
))(ξ) =
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= e−fκ− 3i√
2

(Z1fθ
1 − Z1fθ

1
))(Z1 + Z1) = e−fκ− 3i√

2
(Z1 − Z1)f =

= e−fκ− 3ν(f).

Now let us pick a local orthonormal frame Z1, . . . , Zn of T (1,0)M such that
ξ = 1√

2
(Zn + Zn) and ν = i√

2
(Zn − Zn). Then if e2α−1 = 1√

2
(Zα + Zα) and

e2α = i√
2
(Zα − Zα), e1, . . . , e2n is an orthononormal frame with respect to Gθ.

Let e1, . . . , e2n be the associated coframe. Then θα = 1√
2
(e2α−1 + ie2α).

So, by definition of the Levi form, we have

dθ = i

n∑
α=1

θα ∧ θα =
i

2

n∑
α=1

(e2α−1 + ie2α) ∧ (e2α−1 − ie2α) =
n∑
α=1

e2α−1 ∧ e2α,

therefore

θ ∧ (dθ)n = θ ∧

(
n∑
α=1

e2α−1 ∧ e2α

)n
= n!θ ∧ e1 ∧ . . . ∧ en = n! volgθ .

Inspired by Riemannian geometry, we want to give a variational formulation
to the problem of the prescription of the Webster curvature and the prescription
of the canonical pseudohermitian normal curvature on the boundary.

Proposition 4.3. The functional

Q(v) =

∫
M

(bn|∇v|2 +Wv2)θ ∧ (dθ)n − cn
∫
∂M

κv2σ ∧ θ,

where cn = n bn3 n! and σ = e1∧e2∧. . .∧e2n−1, is invariant by the transformation

θ 7→ θ̃ = u2/nθ, v 7→ ṽ = vu−1.

Proof. Under this conformal change Gθ 7→ u2/nGθ, and so ∇̃ = u−2/n∇. There-
fore ∫

M

|∇̃ṽ|2θ̃ ∧ (dθ̃)n =

∫
M

u−2/n|∇(u−1v)|2u2(n+1)/nθ ∧ (dθ)n =

= u2

∫
M

|u−1∇v − u−2v∇u|2θ ∧ (dθ)n =

=

∫
M

(
|∇v|2 + u−2v2|∇u|2 − 2u−1v∇u · ∇v

)
θ ∧ (dθ)n =

=

∫
M

|∇v|2 +

∫
M

(
v2|∇ log u|2 −∇ log u · ∇(v2)

)
θ ∧ (dθ)n =

=

∫
M

|∇v|2+

∫
M

v2
(
|∇ log u|2 + ∆b log u

)
θ∧(dθ)n−2nn!

∫
∂M

v2gθ(∇ log u, ξ)V ,
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where V is the volume form associated to the restriction of gθ. It is easy to
verify that V = σ ∧ θ, and that for every X in H(M), gθ(ξ,X) = e2n(X). So∫

M

|∇̃ṽ|2θ̃ ∧ (dθ̃)n =

=

∫
M

|∇v|2 +

∫
M

v2
(
|∇ log u|2 + ∆b log u

)
θ∧ (dθ)n− 2nn!

∫
∂M

v2ν(log u)σ ∧ θ.

Thanks to the conformal change formula,∫
M

W̃ ṽ2θ̃ ∧ (dθ̃)n =

∫
M

(−bnu−1−2/n∆bu+Wu−2/n)v2u−2u2+2/nθ ∧ (dθ)n =

=

∫
M

(−bnu−1∆bu+W )v2θ ∧ (dθ)n.

It holds that

∆b log u = div(∇ log u) = div

(
∇u
u

)
=

∆bu

u
− |∇u|

2

u2
=

∆bu

u
− |∇ log u|2,

and so∫
M

W̃ ṽ2θ̃∧ (dθ̃)n =

∫
M

Wv2θ∧ (dθ)n− bn
∫
M

(∆b log u+ |∇ log u|2)v2θ∧ (dθ)n.

Finally∫
∂M

κ̃ṽ2σ̃ ∧ θ̃ =

∫
∂M

(
u−1/nκ− 3

n
u−1−1/nν(u)

)
v2u−2u2+1/nσ ∧ θ =

=

∫
∂M

κv2σ ∧ θ − 3

n

∫
∂M

ν(log u)v2σ ∧ θ.

By summing the above identities we get the desired result.

Proposition 4.4. A conformal change has Webster curvature W1 and canonical
pseudohermitian normal curvature κ1 if and only if it is a stationary point of
the functional

IW1,κ1
(v) = Q(v)− n

n+ 1

∫
M

W1v
2+2/nθ ∧ (dθ)n +

ncn
2n+ 1

∫
∂M

κ1v
2+1/nσ ∧ θ,

that is invariant for the same transformation of Proposition 4.3.

4.2 Existence of a homogeneous solution

Now that we have a variational and conformally covariant formulation of the
problem of prescribed curvature with boundary conditions, thanks to Proposi-
tion 4.4, we study this problem on suitable annuli, imposing that the boundary
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has zero curvature, a natural condition because of the simmetry given by the
Cayley transform. So let us study the problem{

−bn∆bu = u1+2/n on Ar

− 3
nν(u) + κAru = 0 on ∂Ar

where Ar = Br \B1, and Br = Br(0). The latter problem is equivalent to find
the critical points of

I(v) = bn

∫
M

|∇v|2θ ∧ (dθ)n − cn
∫
∂M

κv2σ ∧ θ − n

n+ 1

∫
M

v2+2/nθ ∧ (dθ)n.

Let us consider the conformal change

θ 7→ θ̃ = ρ−2θ,

where ρ = |x|.

Lemma 4.5. The Webster curvature of θ̃ is

W̃ = −bn
4
u−1− 2

n∆bu = −bnρn+2∆b(ρ
−n) =

bn
4
n2 |x|2

ρ2
,

and the mean curvature of the boundary of Ar is zero.

Proof. We have

Xα(ρ4) =

(
∂

∂xα
+ 2yα

∂

∂t

)
(|x|4 + t2) =

= 4(x3
α + (|x|2 − x2

α)xα + yαt) = 4(|x|2xα + yαt);

Yα(ρ4) =

(
∂

∂yα
− 2xα

∂

∂t

)
(|x|4 + t2) = 4(|x|2yα − xαt);

X2
α(ρ4) = 4

(
∂

∂xα
+ 2yα

∂

∂t

)
(x3
α + |yα|2xα + yαt) = 4(|x|2 + 2|xα|2 + 2|yα|2);

Y 2
α (ρ4) = 4

(
∂

∂yα
− 2xα

∂

∂t

)
(y3
α + |xα|2yα − xαt) = 4(|x|2 + 2|xα|2 + 2|yα|2).

X2
α(ρ−n) = Xα(Xα((ρ4)−n/4)) = −n

4
Xα(ρ−n−4Xα(ρ4)) =

=
n(n+ 4)

16
ρ−n−8|Xα(ρ4)|2 − n

4
ρ−n−4X2

α(ρ4) =

=
n(n+ 4)

16
ρ−n−816(|x|2xα + yαt)

2 − n

4
ρ−n−44(|x|2 + 2|xα|2 + 2|yα|2) =
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= n(n+ 4)ρ−n−8(|x|2xα + yαt)
2 − nρ−n−4(|x|2 + 2|xα|2 + 2|yα|2),

and analogously

Y 2
α (ρ−n) = n(n+ 4)ρ−n−8(|x|2yα − xαt)2 − nρ−n−4(|x|2 + 2|xα|2 + 2|yα|2),

so

∆b(ρ
−n) =

1

4

n∑
α=1

(X2
α + Y 2

α )(ρ−n) =

=
1

4
n(n+ 4)ρ−n−8(|x|6 + |x|2t2)− 2n(n+ 2)ρ−n−4|x|2 = −n

2

4
ρ−n−4|x|2.

Using u = ρ−n in Proposition (1.23) we get the desired result.
It can be readily verified that the Kelvin transform is isopseudohermitian

with respect to θ̃ (that is, it preserves the pseudohermitian structure). Since
transformations of Hn of the form (z, t) 7→ (Az, t) with A unitary are isopseudo-
hermitian, for every point x of ∂Ar, there is a isopseudohermitian transformation
that fixes x, leaves its component of ∂Ar invariant, but reverses the orientation.
Since reversing the orientation changes sign to κ̃, it follows that κ̃ = 0.

Therefore, thanks to Proposition 4.4,

Ĩ(v) = bn

∫
Ar

(
|∇̃v|2

θ̃
+ n2 |x|2

ρ2
v2

)
θ̃ ∧ (dθ̃)n − n

n+ 1

∫
Ar

v2+2/nθ̃ ∧ (dθ̃)n.

We want to impose that the solution is homogeneous and symmetric, in the

sense that u ◦ δλ = λ
Q−2

2 u and u(x, t) = u(|x|, t).
We need to express this functional in suitable coordinates.

Lemma 4.6. If v = v(|x|, t), in the coordinates l = 1
n log ρ ∈ R, τ = t/ρ2 ∈

[−1, 1] and γ = x/|x| ∈ S2n−1, it holds that

|∇̃v|2
θ̃

= (1− τ2)3/2

∣∣∣∣∂v∂τ
∣∣∣∣2 +

1

4n2
(1− τ2)1/2

∣∣∣∣∂v∂l
∣∣∣∣2 .

Proof. Since transformations of Hn of the form (x, t) 7→ (Ax, t) with A unitary
are isomorphisms of the pseudohermitian structure, this kind of transformations
preserves the sphere of unit radius, and the action of the unitary group is tran-
sitive between vectors of the same length, we can calculate |∇̃v|2

θ̃
on the points

of the curve
(

4
√

1− t2, 0, . . . , 0, t).

At such points

Xα =
∂

∂xα

for every α = 1, . . . , n,

Yα =
∂

∂yα
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for every α 6= 1, and

Y1 =
∂

∂y1
− 2

4
√

1− t2 ∂
∂t
.

Using the symmetry of v in x, we get

|∇̃v|2
θ̃

= v−2/n|∇v|2θ =
1

4
|X1u|2 +

1

4
|Y1u|2 =

=
1

4

∣∣∣∣ ∂v∂x1

∣∣∣∣2 + (1− t)1/2

∣∣∣∣∂v∂t
∣∣∣∣2 .

Since
∂τ

∂x1
= −1

2
τ3 ∂(τ−2)

∂x1
= −1

2

τ3

t2
∂

∂x1
(x4

1 + t2) = −2tx3
1;

∂l

∂x1
=

1

n

∂ log ρ

∂x1
=

1

4n

∂ρ4

∂x1
=

1

n
x3

1;

∂τ

∂t
=

1

2
τ−1 ∂(τ2)

∂t
=

1

2
t−1(2t− 2t3) = (1− t2);

∂l

∂t
=

1

4n

∂ρ4

∂t
=

1

2n
t,

we obtain

|∇̃v|2
θ̃

=
1

4

∣∣∣∣ ∂v∂x1

∣∣∣∣2 + (1− t2)1/2

∣∣∣∣∂v∂t
∣∣∣∣2 =

=
1

4

∣∣∣∣−2tx3
1

∂v

∂τ
+
x3

1

n

∂v

∂l

∣∣∣∣2 + (1− t2)1/2

∣∣∣∣|x|4 ∂v∂τ +
t

2n

∂v

∂l

∣∣∣∣2 =

= t2(1− t2)3/2

∣∣∣∣∂v∂τ
∣∣∣∣2 +

1

4n2
(1− t2)3/2

∣∣∣∣∂v∂l
∣∣∣∣2 − 1

n
t(1− t2)3/2 ∂v

∂τ

∂v

∂l
+

+(1− t2)5/2

∣∣∣∣∂v∂τ
∣∣∣∣2 +

1

4n2
t2(1− t2)1/2

∣∣∣∣∂v∂l
∣∣∣∣2 +

1

n
(1− t2)3/2t

∂v

∂τ

∂v

∂l
=

= (1− t2)3/2

∣∣∣∣∂v∂τ
∣∣∣∣2 +

1

4n2
(1− t2)1/2

∣∣∣∣∂v∂l
∣∣∣∣2 .

By the dilation invariance of θ̃ we obtain the formula in the general case.

Now we compute the volume form.

Lemma 4.7. In the coordinates of Lemma 4.6

θ̃ ∧ (dθ̃)n = n!(1− τ2)(n−2)/2dl ∧ dγ ∧ dτ.
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Proof. The volume form becomes

θ̃ ∧ (dθ̃)n = ρ−2(n+1)θ ∧ (dθ)n =
n!

ρ2(n+1)
volgθ =

n!

ρ2(n+1)
|x|2n−1d|x| ∧ dγ ∧ dt.

By an easy computation

d|x| = 1

4|x|3
d(ρ4 − t2) =

1

4|x|3
d(e4ln(1− τ2)) =

=
1

4(1− τ2)3/4e3nl
e4ln(4n(1− τ2)dl − 2τdτ) =

= eln
(
n(1− τ2)1/4dl − τ

2(1− τ2)3/4
dτ

)
;

dt = d(e2nlτ) = e2nl(2nτdl + dτ);

d|x| ∧ dt = e3nl 1

(1− τ2)3/4
dl ∧ dτ,

so

θ̃ ∧ (dθ̃)n = − n!

ρ2(n+1)
(1− τ2)(2n−1)/4ρ2n−1d|x| ∧ dt ∧ dγ =

= − n!

e3nl
(1− τ2)(2n−1)/4e3nl 1

(1− τ2)3/4
dl ∧ dτ ∧ dγ =

= n!(1− τ2)(n−2)/2dl ∧ dγ ∧ dτ,

as desired.

Using Lemmas 4.6 and 4.7 we have that

Ĩ(v) = bn

∫
Ar

(
(1− τ2)3/2

∣∣∣∣∂v∂τ
∣∣∣∣2 +

1

4n2
(1− τ2)1/2

∣∣∣∣∂v∂l
∣∣∣∣2 v2+

+n2(1− τ2)1/2
)
n!(1− τ2)(n−2)/2dl ∧ dγ ∧ dτ+

− n

n+ 1

∫
Ar

v2+2/nn!(1− τ2)(n−2)/2dl ∧ dγ ∧ dτ =

= bn2nn!

∫ log r
n

0

∫ 1

−1

(
(1− τ2)(n+1)/2

∣∣∣∣∂v∂τ
∣∣∣∣2 +

1

4n2
(1− τ2)(n−1)/2

∣∣∣∣∂v∂l
∣∣∣∣2 v2+

+n2(1− τ2)(n−1)/2
)
dl ∧ dτ − nn!

n+ 1

∫ log r
n

0

∫ 1

−1

v2+2/n(1− τ2)(n−2)/2dl ∧ dτ.

If τ = sin s, then

Ĩ(v) = bn2nn!

∫ log r
n

0

∫ π
2

−π2

(
(cos s)n+1

(cos s)2

∣∣∣∣∂v∂s
∣∣∣∣2 +

1

4n2
(cos s)n−1

∣∣∣∣∂v∂l
∣∣∣∣2 +
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+n2(cos s)n−1v2
)
dl(cos s)ds− nn!

n+ 1

∫ log r
n

0

∫ π
2

−π2
v2+2/n(cos s)n−2dl(cos s)ds =

= bn2nn!

∫ log r
n

0

∫ π
2

−π2
(cos s)n

(∣∣∣∣∂v∂s
∣∣∣∣2 +

1

4n2

∣∣∣∣∂v∂l
∣∣∣∣2 + n2v2

)
dlds+

− nn!

n+ 1

∫ log r
n

0

∫ π
2

−π2
v2+2/n(cos s)n−1dlds.

Now let us look for homogeneous solutions. Homogeous solutions in the orig-
inal setting correspond to solutions invariant by translation (in the l direction),
and so let us set ∂v

∂l = 0, and v = v(s). In this special case we have

Ĩ(v) = bnn!
log r

n

∫ π
2

−π2
(cos s)n

(
(v′)2 + n2v2

)
ds+

− nn!

n+ 1

log r

n

∫ π
2

−π2
v2+2/n(cos s)n−1ds.

The Euler-Lagrange equation for this functional is

− d

ds
((cos s)nv′(s)) + n2(cos s)nv(s) =

n

2(n+ 1)
(cos s)n−1v(s)1+2/n,

or equivalently

− cos sv′′(s) + n sin sv′(s) + n2 cos sv(s) =
n

2(n+ 1)
v(s)1+2/n,

on the interval
(
−π2 ,

π
2

)
, with Neumann boundary conditions, that is also the

Euler-Lagrange equation (up to rescaling, thanks to homogeneity) of

J(v) =

∫ π
2

−π2
(cos s)n

(
(v′)2 + n2v2

)
ds∫ π

2

−π2
v2+2/n(cos s)n−1ds

.

Let us define the weighted Sobolev and Lebesgue spaces

X =

{
u ∈ H1

loc

(
−π

2
,
π

2

) ∣∣∣∣∣
∫ π

2

−π2
(cos s)n

(
(v′)2 + v2

)
ds <∞

}
,

Y =

{
u ∈ L1

loc

(
−π

2
,
π

2

) ∣∣∣∣∣
∫ π

2

−π2
(cos s)n−1v2+2/nds <∞

}
.

Proposition 4.8. X embeds compactly in Y .
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Proof. Let Z be the subspace of H1(Sn+1) formed by functions invariant by
rotation around the last coordinate axis. Every such function is of the form
v(x) = u(cosxn+2), and it is easy to verify thar under such an identification

‖v‖Z = ‖u‖X .

So this is an isometric isomorphism between X and Z. By Rellich-
-Kondrachov’s theorem, Z embeds compactly into Lp(Sn) for every
p ∈ [1, 2n+1

n−1 ), which by similar arguments is isometrically isomorphic to

Lp
(
(
(
−π2 ,

π
2

)
, (cos s)nds

)
. Given α > 0, q > 1,∫ −π2

−π2
(cos s)n−1v2+2/nds =

∫ −π2
−π2

(cos s)n−1+α

(cos s)α
ds ≤

≤

(∫ −π2
−π2

v(2+2/n)q(cos s)(n− 1 + α)qds

)1/q (∫ −π2
−π2

(cos s)−αq
′
ds

)1/q′

.

If we impose that (n − 1 + α)q = n, then taking α small enough, we can find
that p =

(
2 + 2

nq
)
< 2n+1

n−1 and αq′ < n, getting that∫ −π2
−π2

(cos s)n−1v2+2/nds ≤ C
∫ −π2
−π2

(vp(cos s)nds)
1/q

,

that is
‖v‖Y ≤ C ‖v‖Lp((cos s)nds) ,

and so Lp
((
π
2 ,

π
2

)
(cos s)nds

)
embeds into Y . So we get the thesis.

Finally we can prove the existence of the desired homogeneous solution.

Theorem 4.9. There exists a non zero solution Ψ of the equation

−∆Ψ = Ψ
Q+2
Q−2 ,

defined on Hn \ {0}, such that Ψ ◦ δλ = λ
Q−2

2 Ψ and Ψ(z, t) = Ψ(|z|, t).

Proof. The existence of a solution on Ωr can be proved, in a standard way,
by the direct methods of the calculus of variation. Since it is homogeneous by
construction, it does not depend on r, and can be extended to Hn \ {0} by
homogeneity.

4.3 Bifurcation of non-homogeneous solutions

We proved the existence of a homogeneous solution Ψ of degree −Q−2
2 of Equa-

tion
−∆bu = u

Q+2
Q−2 (4.2)
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on Hn \ {0}, and in Chapter 3 we studied solution that are verify the condition

u ◦ δT = T−
Q−2

2 u. Obviously Ψ verifies the condition Ψ ◦ δT = T−
Q−2

2 Ψ. It is

natural to ask whether non homogeneous solutions verifying u ◦ δT = T−
Q−2

2 u
bifurcate from the homogeneous one for certain values of T . In the Euclidean
case, in which explicit computation may be performed, the answer is affermative.
In this Chapter we will prove that also in Hn the answer is affermative.

Proposition 4.10. The Morse index of JT (Ψ) is finite and tends to infinity
as T →∞.

Proof. The Morse index is finite because the operator on XT associated to the
bilinear form

d2JT (Ψ)[u, v] =

∫
ΩT

(
∇u∇v − (2∗ − 1)Ψ2∗−2uv

)
is the sum of the identity and a compact operator (thanks to the Rellich-
Kondrachov theorem for the Stein-Folland space).

The signature of a simmetric bilinear form remains invariant passing to the
complexification and extending it to a hermitian form. So let us take

u(x) = exp

(
i

1

M
log |x|

)
Ψ(x),

with
log T

2πM
∈ Z.

Then

d2JT (Ψ)[u, u] =

∫
ΩT

(∣∣∣∣∇(exp

(
i

1

M
log |x|

)
Ψ

)∣∣∣∣2 − (2∗ − 1)Ψ2∗−2Ψ2

)
=

=

∫
ΩT

(
1

M2|x|2
Ψ2 + |∇Ψ|2 + 2

1

M |x|
Ψ∇Ψ · ∇|x| − (2∗ − 1)Ψ2∗

)
=

=

∫
ΩT

(
1

M2|x|2
Ψ2 + 2

1

M |x|
Ψ∇Ψ · ∇|x| − (2∗ − 2)Ψ2∗

)
=

= −(2∗ − 2)

∫
ΩT

Ψ2∗ +

∫
ΩT

(
1

M2|x|2
Ψ2 + 2

1

M |x|
Ψ∇Ψ · ∇|x|

)
.

By homogeneity the three integrals∫
ΩT

Ψ2∗ ,

∫
ΩT

1

|x|2
Ψ2,

∫
ΩT

1

|x|
Ψ∇Ψ · ∇|x|

are constant multiples of log T , so there exists a constant C such that if M ≥ C
then d2JT (Ψ)[u, u] is negative. Given k ∈ N, let T be big enough so that

2πk

log T
≤ 1

C
.
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Then the functions

um(x) = exp

(
i

2πm

log T
log |x|

)
Ψ(x)

with m = 1, . . . , k, are such that d2JT (Ψ)[um, um] ≤ −ε log T is negative. If f
is a homogeneous function of degree zero and m 6= 0 then

∫
ΩT

exp

(
i

2πm

log T
log |x|

)
f(x)

|x|Q
=

∫
S1

dσf

∫ T

1

dr
exp

(
i 2πm

log T log r
)

r
= 0.

When calculating
d2JT (Ψ)[um, uj ]

with m 6= j, the result is a sum of terms of this kind, so it is zero. So the
functions um span a vector space of dimension k on which d2JT (Ψ) is negative
definite.

Now let us apply the conformal transformation corresponding to the homo-
geneous solution Ψ. Thanks to Proposition 4.4, we get the functional

J̃T (u) =

∫
ΩT

(
|∇̃Hnu|2 +

1

2
u2 − 1

2∗
|u|2

∗
)
,

defined on the space

YT =
{ u

Ψ

∣∣∣ u ∈ XT

}
=
{
u ∈ S1

loc(Hn)
∣∣ u ◦ δT = u

}
.

Let Σ be the unit sphere with respect to the Euclidean metric 1. Let ϕj be
a complete set in L2(Σ) consisting of analytic functions. So

γj,m,T (x) = ϕj

(
x

|x|eucl

)
sin

(
i

2πm

log T
log |x|eucl

)
is a complete set of functions in H1(ΩT ), analytic with respect to the couple
(x, T ). So it is complete also in S1(ΩT ). With the Gram-Schmidt algorithm, we
can obtain a family of Hilbert bases ψk,T of S1(ΩT ), and preserve the analyticity
property. Let us define the isometry ΨT between YT and Y2 obtained sending
ψk,T into ψk,2. Let us call

LT = ΨT ◦ J̃ ′′
T (1) ◦Ψ−1

T .

Then, for every l, k,

〈LTu2,k, u2,k〉Y2
=
〈
J̃ ′′
T (1)uk,T , ul,T

〉
YT

=

1this is necessary to perform the next steps of the proofs because the sphere with respect
to the Heisenberg metric is not smooth
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=

∫
ΩT

∇̃uk,T ∇̃ul,T + uk,Tul,T − (2∗ − 1)uk,Tul,T

is an analytic operator-valued function, and, calling Π the projection of YT onto
the constant functions, it holds that〈

J̃ ′′
T (1)u, v

〉
=

∫
ΩT

∇̃u∇̃v + uv − (2∗ − 1)uv =

=

∫
ΩT

∇̃u∇̃v − (2∗ − 2) (∆(GT ((I −Π)u)) + Πu) v =

=

∫
ΩT

∇̃u∇̃v + (2∗ − 2)∇̃(GT ((I −Π)u))∇̃v − (2∗ − 2)(Πu)v,

where GT : YT → YT is the Green’s operator, so

J̃ ′′
T (1) = I + (2∗ − 2)GT + (J̃ ′′

T (1)− I) ◦Π.

Since LT is, by definition, conjugated to J̃ ′′
T (1), it is of the form I − K(T ),

where K(T ) is an analytic operator-valued function of compact operators.
From this we can prove the following bifurcation theorem for JT .

Theorem 4.11. There exists arbitrarily large values of T for which d2JT (Ψ)
is singular, and every such value is a bifurcation value.

Proof. It suffices to apply Theorem 8.9 in [MW]. In our case the hypotheses
of that Theorem are all either trivial or standardly verifiable, with exception of
hypothesis γ, that is consequence of Corollary 8.3 in the same book.
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Chapter 5

Variation of the
Einstein-Hilbert functional
on spheres

The Eistein-Hilbert functional (or action) of a Riemannian manifold (M, g)

R(g) =

∫
M

RgdVg

and the renormalized, scaling-invariant, version thereof,

R̃(g) = Vol(M)
2−n
n R(g)

are of central importance in Riemannian geometry.
A metric is critical for R(g) if and only if it is Ricci flat, and is critical for

R̃(g) if and only if it is Einstein.

In particular Sn with the standard metric is a critical point for R̃(g). Com-

puting the second variation shows that it is a saddle point: d2R̃(g) is zero on the
tangent of the space of variations that arise by pulling back the metric by diffeo-
morphisms, positive definite on the tangent to the space of conformal variations,
and negative definite of the orthogonal of the sum of these two subspaces.

Given a compact, non degenerate, pseudo-Hermitian manifold, the Einstein-
Hilbert functional is defined, in a similar manner of Riemannian geometry, as

W =

∫
M

W θ ∧ (dθ)n

and the renormalized version as

W̃ = (Volθ(M))
−Q−2

Q W .

In this Chapter we study the variation of the functional W̃ on S2n+1 with its
standard pseudo-Hermitian structure.

63
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5.1 Formulas for variations

In order to study variations of a pseudo-Hermitian structure, we use a well
known theorem of Gray, to study variations of pseudo-Hermitian structures we
can suppose that they have the same underlying contact distribution. So we
can study variations of the contact form and of the complex structure. It is not
hard to verify that these two kinds of variations are orthogonal with respect to
d2W , so they can be studied separately.

In the case of S2n+1, d2W is positive definite on variations of the contact
form, so we can study variations of the complex structure. This follows from
the fact that the CR Einstein-Hilbert functional resticted to a conformal class
obviously coincides with the CR Yamabe functional, and from the solution of
the CR Yamabe problem on spheres (see [JL1, JL2]).

Let J(t) be a family of complex structures. Let (Zα(t))α a local frame or-
thononormal with respect to the Levi form such that J(t)Zα(t) = iZα(t). Thus

J(t) = iθα(t) ⊗ Zα(t) − iθα(t) ⊗ Zα(t).

Let J̇ := d
dtJ(t).

Lemma 5.1. The variation J̇ of J can be expressed as

J̇ = 2E = 2Eα
βθα ⊗ Zβ + conj..

Proof. By definition J̇(Zα) = 2Eα
βZβ + 2Eα

βZβ . Differentiate the relation

J2
(t) = −Id with respect to t (at t = 0) to obtain:

J̇ ◦ J + J ◦ J̇ = 0.

Expressing this relation with respect to the basis (Zα)α and (Zα)α, we obtain(
Eα

β Eα
β

Eα
β Eα

β

)(
i 0
0 −i

)
+

(
i 0
0 −i

)(
Eα

β Eα
β

Eα
β Eα

β

)
= 0,

which implies Eα
β = Eα

β = 0, as claimed.

We consider next the variation of the basis vector fields with respect to t.

Lemma 5.2. Let us write the derivative of the frame (Zα)α in the form

Żα = Fα
βZβ +Gα

βZβ .

Then we can assume that Fα
β ∈ R, and that there holds

Gα
β = −iEαβ ; Fα

β + Fβ
α = 0. (5.1)

Moreover, at t = 0 we can take Fαβ = 0.
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Proof. We have dθ = i
∑
θα(t) ∧ θ

α
(t) (from hαβ = δβα), so

−2idθ(Zα(t) ∧ Zβ(t)) = δβα.

Differentiating this relation in t, we get

0 = −2idθ(Żα ∧ Zβ)− 2idθ(Zα ∧ Żβ)

= −2idθ((Fα
γZγ +Gα

γZγ) ∧ Zβ)− 2idθ(Zα ∧ (Fβ
γZγ +Gβ

γZγ))

= −2iFα
β − 2iFβ

α. (5.2)

On the other hand, we can always compose the frame (Zα)α with an element
of SU(n), which infinitesimally means adding to F βα a matrix Bβα such that

Bβα = −Bαβ . We can choose for example to add F
β

α, which satisfies this property
by the above relation (5.2): this means that we can choose F to be real, and
implies the second relation in (5.1).

To get the first one, differentiate J(t)Zα(t) = iZα(t) with respect to t, to find

0 = J̇Zα + JŻα − iŻα
= 2Eα

βZβ + Fα
βiZβ +Gα

β(−i)Zβ − i(Fα
βZβ +Gα

βZβ)

= 2Eα
βZβ − 2iGα

βZβ ,

so Gα
β = −iEαβ , as desired.

To prove that we can take F = 0 at t = 0, let F = F βα at t = 0 and consider
the new frame

Z̃α(t) = (e−tF)βαZβ .

Then, by cancellation

Z̃α(0) = Zα(0) and
d

dt t=0
Z̃α(t) = −iEβα(0)Z̃β(0),

concluding the proof.

We next derive some consequences of the integrability conditions

θ([Zα, Zβ ]) = 0; θγ([Zα, Zβ ]) = 0, (5.3)

which hold along all the deformation, i.e. for all t. We have the following result.

Lemma 5.3. For all indices α, β, γ we have that

Eαβ = Eβα; Eγα,β = Eγβ,α.

Proof. We differentiate in t the first relation in (5.3), obtaining

d

dt
[Zα, Zβ ] = [Żα, Zβ ] + [Zα, Żβ ]

= [F γαZγ − iEγαZγ , Zβ ] + [Zα, F
γ
βZγ − iE

γ
βZγ ],
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which by integrability yields

0 = θ

(
d

dt
[Zα, Zβ ]

)
= −iEγαθ([Zγ , Zβ ])− iEγβθ([Zα, Zγ ]).

Notice that

[Zγ , Zβ ] = ihβγT + ωlβ(Zγ)Zl − ωlγ(Zβ)Zl,

which in turn implies

0 = −iEγαihβγ + iEγβ ihαγ .

Since hβγ = δγβ , we deduce the first assertion of the lemma. We next differen-
tiate in t the second relation in (5.3) to get

0 = θ̇γ([Zα, Zβ ]) + θγ
(
d

dt
[Zα, Zβ ]

)
.

Since

θ̇γ = iEγl θ
l − F γ

l
θl,

and

[Zα, Zβ ] = ωlβ(Zα)Zl − ωlα(Zβ)Zl,

we obtain

0 = iEγl θ
l(ωlβ(Zα)− ωlα(Zβ))

+ θγ
(

[Zα, F
γ
βZγ − iE

γ
βZγ ] + [Zα, F

γ
βZγ − iE

γ
βZγ ]

)
= −iωlα(Zβ)Eγl + iωlβ(Zα)Eγl + iElαω

γ

l
(Zβ)

+ iZβ(Eγ)α − iElβω
γ

l
(Zα)− iZα(Elβ).

This implies

iEγα,β − iE
γ
β,α = 0,

which is the second assertion.

Lemma 5.4. ([L2]) For any point p ∈ M , there exists a neighborhood Up and
an admissible co-frame (θα)α such that ωβα = 0 at p.

Lemma 5.5. For all t, the variation of the torsion is given by

Ȧαγ = −iEαγ,0 +Aα
l
F lγ − Fαl Alγ , (5.4)

while for the variation of the connection we have

ω̇αβ =
[
i(AαγE

γ
β + EαγA

γ
β) + Fαβ,0

]
θ (5.5)

+ (−iEβγ,α − F
β
α,γ)θγ + (−iEαγ,β + Fαβ,γ)θγ .
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Proof. We start by differentiating in t the relations

θα(t)(Zβ(t)) = δαβ ; θα(t)(Zβ(t)) = θα(t)(T ) = 0,

to get

θ̇α(Zβ) + θα(Żβ) = 0; θ̇α(Zβ) + θα(Żβ) = 0; θ̇α(T ) = 0.

Recalling that by Lemma 5.2 Żα = Fα
βZβ − iEβαZβ , we obtain

θ̇α = −iEα
β
θβ − Fαβ θβ . (5.6)

Differentiate now in t the structure equation

dθα = θβ(t) ∧ ω
α
β(t) +Aαγ(t)θ ∧ θ

γ
(t)

to get

dθ̇α = θ̇β ∧ ωαβ + θβ ∧ ω̇αβ + Ȧαγ θ ∧ θγ +Aαγ θ ∧ θ̇γ

= −idEα
β
∧ θβ − iEα

β
dθβ − dFαβ ∧ θβ − Fαβ dθβ . (5.7)

At a given point p we may assume that ωαβ = 0, by Lemma 5.4. Therefore we
obtain at p

−idEα
β
∧ θβ = −iEα

β,0
θ ∧ θβ − iEα

β,γ
θγ ∧ θβ − iEα

β,γ
θγ ∧ θβ ;

dθβ = θγ ∧ ωβγ +Aβγθ ∧ θγ = Aβγθ ∧ θγ ;

−dFαβ ∧ θβ − Fαβ dθβ = −Fαβ,0θ ∧ θβ − Fαβ,γθγ ∧ θβ − Fαβ,γθγ ∧ θβ − Fαβ A
β
γθ ∧ θ

γ .

Comparing the coefficients of θ ∧ θγ in (5.7) we deduce the first assertion.
Write next

ω̇αβ = xαβθ + yαβγθ
γ + yαβγθ

γ . (5.8)

From the relation ωβα + ωα
β

= 0, which implies ω̇βα + ω̇α
β

= 0, we get the system{
xαβ + xβα = 0;

yαβγ = −yβαγ := −yβαγ .

Substituting (5.6), (5.4) and (5.8) into (5.7) we obtain{
xαβ = iEαγA

γ
β + iAαγE

γ
β + Fαβ,0;

yαβγ = −iEαγ,β + Fαβ,γ ,
(5.9)

which implies in particular yαβγ = −iEβγ,α − F
β
α,γ . We also get the relations

(yαβγ − Fαβ,γ)θβ ∧ θγ = 0; −iEα
β,γ
θγ ∧ θβ = 0
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giving the following constraints on the deformation tensors{
yαβγ − Fαβ,γ = yαγβ − Fαγ,β ;

Eα
β,γ

= Eα
γ,β
.

In this way, we obtain the second assertion as well.

We can now compute the derivative of the curvature tensor with respect to
t, together with its contractions.

Proposition 5.6. For the curvature tensor, the Ricci tensor and the Webster
curvature we have the following variation formulas

Ṙαβρσ = yαβσρ − yαβρσ + ixαβδρσ +RαβlσF
l
ρ +Rα

βρl
F lσ (5.10)

+AασE
β
ρ +AβρE

α
σ −AαγEγρ δβσ −AβγE

γ
σδαρ,

Ṙρσ(t) = iEγρ,γσ − iE
γ
σ,γρ − (Aγl E

l
γ +AlγE

γ
l )δρσ +RlσF

l
ρ +RρlE

l
σ, (5.11)

and

Ṙ = Ṙαα = iEγ
l,γl
− iEγ

l,γl
− (Aγl E

l
γ +AlγE

γ
l )n+RlγF

l
γ +RrγF

γ
r . (5.12)

Proof. Differentiate in t the structure equation

dωαβ(t) − ω
γ
β(t) ∧ ω

α
γ(t) = Rαβρσ(t)θ

ρ
(t) ∧ θ

σ
(t) +Wα

βρ(t)θ
ρ
(t) ∧ θ −W

α
βρθ

ρ
(t) ∧ θ

+ iθβ(t) ∧ τα(t) − iτβ(t) ∧ θα(t)

where, we recall,
τβ = Aβγθ

γ ; τα = Aαγ θ
γ ,

and Aαγ = Aαγ since hαβ = δβα. We then deduce

dω̇αβ − ω̇
γ
β ∧ ω

α
γ − ω

γ
β ∧ ω̇

α
γ = Ṙαβρσθ

ρ ∧ θσ +Rαβρσ(θ̇ρ ∧ θσ + θρ ∧ θ̇σ̄)

+ iθ̇β ∧Aαγθγ + iȦαγθ
β ∧ θγ + iAαγθ

β ∧ θ̇γ (5.13)

− iAβγ θ̇γ ∧ θα − iȦβγθγ ∧ θα − iAβγθγ ∧ θ̇α

mod. θα ∧ θ and θα ∧ θ.

Writing

dω̇αβ = xαβdθ + yα
βγl
θl ∧ θγ + yα

βγl
θl ∧ θγ + yαβγlθ

l ∧ θγ ,

keeping only terms of the type θρ ∧ θσ and using ωαγ (p) = 0, we get

Ṙαβρσ = yαβσρ − yαβρσ + ixαβδρσ +RαβlσF
l
ρ +Rα

βρl
F lσ (5.14)

+AασE
β
ρ +AβρE

α
σ −AαγEγρ δβσ −AβγE

γ
σδαρ.
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Recall that, from (5.9),

yαβσ = −iEασ,β + Fαβ,σ ⇒ yαβσρ = −iEασ,βρ + Fαβ,σρ;

yα
βγ

= −iEβρ,α − F
β
α,ρ ⇒ yαβρσ = −iEβρ,ασ − F

β
α,ρσ

and that xαβ = i(AγβE
α
γ + Aαγ + AαγE

γ
β ) + Fαβ,0. These last formulas, together

with (5.14), yield (5.10).
Contracting then (5.10), for the Ricci tensor Rρσ(t) := Rγγρσ(t) we obtain,

after some cancellation that uses Aαβ = Aβα

Ṙρσ(t) = iEγρ,γσ − iE
γ
σ,γρ − (Aγl E

l
γ +AlγE

γ
l )δρσ +RlσF

l
ρ +RρlE

l
σ. (5.15)

We then obtain for the Webster curvature W(t) = Rαα with a further contraction
(recall that hαβ = δαβ)

Ẇ = Ṙαα = iEγ
l,γl
− iEγ

l,γl
− (Aγl E

l
γ +AlγE

γ
l )n+RlγF

l
r +RrγF

l
γ ,

where we used F lr = F lγ = F lγ .

We can now pass to the calculation of the second derivative of the Webster
curvature with respect to t.

Proposition 5.7. For the second variation of W = W(t) at t = 0 we have the
formula

Ẅ = iĖγ
l,γl
−Aγl Ė

l
γn+RlγḞ

l
γ − nȦ

γ
l E

l
γ (5.16)

− ElρE
γ
ρ,γl − E

l
γE

γ
ρ,lρ − E

γ
l E

l
γ,ρρ − ElρElγ,γρ − Elγ,ρE

γ
ρ,l

− Eγl,ρE
l
γ,ρ − Elρ,ρElγ,γ − Elρ,ρE

γ
l,γ + conj..

Proof. From formula (5.12), we see that the contribution in the second variation
from Ė and Ḟ is given by

−(Aγl Ė
l
γ +AlγĖ

γ
l )n+RlγḞ

l
γ +RrγḞ

γ
r ,

giving the second and third term in the right-hand side of (5.16), plus their
conjugates. To compute the remaining terms, we can therefore assume that
Ė = 0 and Ḟ = 0.

We will need first some preliminary calculation: recall that

Eγα,β = Zβ(Eγα)− ωlα(Zβ)Eγl + ωγ
l
(Zβ)Elα.

Taking the t-derivative and using that Ė = 0 at t = 0 we get

0 = Żβ(Eγα)−
[
ω̇lα(Zβ) + ωlα(Żβ)

]
Eγl +

[
ω̇γ
l
(Zβ) + ωγ

l
(Żβ)

]
Elα.
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Recalling that at t = 0 we can take F = 0, we have

ω̇lα = i(AlγE
γ
α + ElγA

γ
α)θ − iElγ,αθγ − iEαγ,lθ

γ ,

which after some calculation implies

(Eγα,β)· = −iElαE
γ

β,l
+ iEβ

α,l
Eγl + iElβE

γ

α,l
.

In a similar manner, from the formula

Eγ
α,β

= Zβ(Eγα)− ωlα(Zβ)Eγl + ωγ
l
(Zβ)Elα

one finds, for t = 0

(Eγ
α,β

)· = iEρ
β
Eγα,ρ + iEγl E

l
β,α

+ iElαE
l
β,γ
.

We analyze the terms with second-order covariant derivatives. Notice that

Eγ
α,βρ

= Zρ(E
γ

α,β
)− ωlα(Zρ)E

γ

l,β
− ωl

β
(Zρ)E

γ

α,l
+ ωγ

l
(Zρ)E

l
α,β
.

Since ω = 0 at t = 0 and at a given point p, this implies

(Eγ
α,βρ

)· = Żρ(E
γ

α,β
) + Zρ(Ė

γ

α,β
)

− ω̇lα(Zρ)E
γ

l,β
− ω̇l

β
(Zρ)E

γ

α,l
+ ω̇γ

l
(Zρ)E

l
α,β
.

After some straightforward calculation, one then finds

(Eγ
α,βρ

)· = iElρE
γ

α,βl
+ iElρ,αE

γ

l,β
+ iElρ,γE

l
α,β
− iEβρ,lE

γ

α,l

+ i
(
El
β,ρ
Eγα,l + El

β
Eγα,lρ + Eγl,ρE

l
β,α

+ Eγl E
l
β,αρ

+ Elα,ρE
l
β,γ

+ ElαE
l
β,γρ

)
.

In particular, taking the trace we obtain after some cancellation

(Eγ
ρ,βρ

)· = i
(
ElρE

γ
ρ,γl + ElγE

γ
ρ,lρ + Eγl E

l
γ,ρρ + ElρE

l
γ,γρ

)
+ i
(
Elγ,ρE

γ
ρ,l + Eγl,ρE

l
γ,ρ + Elρ,ρE

l
γ,γ + Elρ,ρE

γ
l,γ

)
.

We have that

Ẅ = i(Eγ
l,γl

)˙− i(Eγ
l,γl

)˙− (Ȧγl E
l
γ + ȦlγE

γ
l )n

+ (ṘlγF
l
γ +RlγḞ

l
γ) + (ṘγlF

l
γ +RγlḞ

l
γ).

The second line indeed vanishes since F lγ = 0 at t = 0, and since F ll = 0 implies

(Rlγ +Rγl)Ḟ
l
γ =

1

n
(δlγ + δγl)Ḟ

l
γ =

2

n
WḞ ll = 0.

This concludes the proof.
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Now we can characterize stationarity for W̃ .

Theorem 5.8. A pseudo-Hermitian structure is stationary for W̃ if and only
if it has constant Webster curvature and zero torsion.

Proof. The restriction of W̃ to the conformal class is the renormalized Yamabe
functional, and is is well known that stationarity for the Yamabe functional is
equivalent to constancy of the Webster curvature.

As for the variation of J ,

˙̃
W =

∫
M

Ṙ =

∫
M

(
iEγ

l,γl
− iEγ

l,γl
− (Aγl E

l
γ +AlγE

γ
l )n+RlγF

l
γ +RrγF

γ
r

)
=

= −n
∫
M

(Aγl E
l
γ +AlγE

γ
l ).

By pseudo-Hermitian Bianchi’s identities (see [L2]) and Lemma 5.3 A is a valid
deformation tensor, and this allows to get the thesis.

We point out that under that hypothesis that the first Chern class of T (1,0)M ,
c1(T (1,0)M), is zero, it can be proved (see [ACMY]) that the thesis of Theo-
rem 5.8 can be strengthened and it can be deduced that the pseudo-Hermitian
structure is pseudo-Einstein, that is that the traceless pseudo-Hermitian Ricci
tensor is zero (see [L2]).

5.2 Second variation of W̃

Finally we can compute the second variation of W̃ .

Lemma 5.9. For the standard structure (S2n+1, J0, θ0) we have that

d2

dt2
|t=0W̃ (J(t), θ0) = −i n

∫
S2n+1

Eα
γ
,0Eγ

αθ0 ∧ (dθ0)n + conj., (5.17)

where E = 2 d
dt |t=0J(t).

Proof. Recalling (5.16), we first notice that the terms involving Ė and Ḟ vanish
since they correspond to the first variation of W̃ in the direction Ė, but we are
at a stationary point.

Concerning the quadratic terms in E, we observe that after integrating and
using Lemma 5.3, we obtain cancellation in (5.16) of the first with the seventh,
of the second with the fifth, of the third with the sixth and of the fourth with
the eighth. We are then left with

Ẅ = −n
∫
S2n+1

(Ȧγl E
l
γ + ȦlγE

γ
l )θ0 ∧ (dθ0)n.

Recalling formula (5.4) and the fact that we can take Fαβ = 0 at t = 0, we obtain
the desired conclusion.



72CHAPTER 5. VARIATION OF THE EINSTEIN-HILBERT FUNCTIONAL ON SPHERES

In order to study this formula, we introduce a family of vector fields and
forms due to Geller ([Ge]):

Xjk = zj
∂

∂zk
− zk

∂

∂zj
, θjk = zjdzk − zkdzj , j 6= k. (5.18)

It does not consist of linearly independent fields and forms, but it permits to
express them through simple formulas. In particular every form of type (0, 1)
can be written as

η =
∑

0≤j<k≤n

η(Xjk)θjk.

Similarly, any form of type (1, 0) can be written as

η =
∑

0≤j<k≤n

η(Xjk)θjk,

and any vector field of type (0, 1) as

X =
∑

0≤j<k≤n

θjk(X)Zjk.

Starting with tensor products of objects of the above form, by linearity a tensor
S of type ((0, 1); (1, 0)) can be written as

S =
∑

j<k,`<m

S(θjk, Z`m)Xjk ⊗ θ`m

Lemma 5.10. We have the following relations

∇TZjk = −iZjk for all j, k.

Proof. Since the pseudohermitian torsion is zero and T is parallel

∇TZjk = [T,Zjk] =
i

2

∑[
zα

∂

∂zα
− zα

∂

∂zα
, zj

∂

∂zk
− zk

∂

∂zj

]
=
i

2

(
−zj

∂

∂zk
+ zk

∂

∂zj
− zj

∂

∂zk
+ zk

∂

∂zj

)
= i

(
−zj

∂

∂zk
+ zk

∂

∂zj

)
= −iZjk,

In order to compute the second variation of W̃ we note that S1 acts on
S2n+1 ⊂ Cn+1 by

ρ(eiθ)(z1, . . . , zn+1) = (eiθz1, . . . , e
iθzn+1),

and accordingly on all tensor spaces on S2n+1. Let us denote by Γm the space
of tensors with only m-th Fourier component with respect to this action, and
with E(m) the projection of E on Γm.
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Theorem 5.11.

d2
JW̃ (θ0, J0)[E,E] =

∑
m∈Z

(m+ 4)

∫
S3

∣∣∣E(m)
∣∣∣2 θ0 ∧ (dθ0)n

Proof. We have that

(∇E)(θjk, Z`m;T ) = T (E(θjk, Z`m))− E(∇T θjk, Z`m)− E(θjk,∇TZ`m) =

= T (E(θjk, Z`m)) + 2iE(θjk, Z`m).

We notice that if E ∈ Γm, since the Reeb field for S2n+1 is

T =
i

2

n+1∑
α=1

zα
∂

∂zα
− zα

∂

∂zα
,

which is i
2 times the generator of the action ρ, then

T (E(θjk, Z`m)) =
m

2
E(θjk, Z`m).

Let
E(θjk, Z`m) =

∑
A,B

EA,Bjk`mz
AzB ,

with A,B multi-indices.
By orthogonality we can suppose that |A| − |B| = m. Then∑

(∇E)(θjk, Z`m;T )E(θαβ , Zµν)θµν(Zjk)θ`m(Zαβ) =

=
∑

i
(m

2
+ 2
)
EA,Bjk`mz

AzBEC,Dαβµνz
CzDθµν(Zjk)θ`m(Zαβ) =

= i
(m

2
+ 2
)∑

E(θjk, Z`m)E(θαβ , Zµν)θµν(Zjk)θ`m(Zαβ)

so

R̈ =
n

2

∑
m∈Z

(m+ 4)

∫
S3

((E(m))α
γ
(E(m))γ

α
+ conj. =

= n
∑
m∈Z

(m+ 4)

∫
S3

∣∣∣E(m)
∣∣∣2 .

Thanks to results of Bland and Duchamp in [Bl, BD], the above formula
implies that

• if n ≥ 2 then d2W̃ (θ0, J0) is negative semidefinite, analogously to the
Riemannian case;

• if n = 1 then d2W̃ (θ0, J0) is negative semidefinite on the subspace corre-
sponding to embeddable deformations

(see [ACMY] for further comments). We recall that it is known that every
pseudoconvex CR manifold of dimension greater or equal to 5 is embeddable
in CN for some N thanks to a result of Boutet de Monvel, while in dimension
three not every CR manifold is embeddable (see [CS]).
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