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Abstract. The valuative criterion for proper maps of schemes has many applications in
arithmetic, e.g. specializingQp-points toFp-points. For algebraic stacks, the usual valuative
criterion for proper maps is ill-suited for these kind of arguments, since it only gives a
specialization point defined over an extension of the residue field, e.g. a Qp-point will
specialize to an Fpn -point for some n. We give a new valuative criterion for proper maps of
tame stacks which solves this problem and is well-suited for arithmetic applications. As a
consequence, we prove that the Lang–Nishimura theorem holds for tame stacks.

1. Introduction

The well known and extremely useful valuative criterion for properness says, in
particular, that if X → Y is a proper morphism of schemes, R is a DVR with
quotient field K and residue field k, and we have a commutative diagram

Spec K X

Spec R Y

there exists a unique lifting Spec R → X of Spec R → Y extending Spec K → X .
This has many arithmetic applications: most of them use that the statement above
ensures the existence of a lifting Spec k → X of the composite Spec k ⊆ Spec R →
Y .

If X and Y are algebraic stacks, and X → Y is a proper morphism, then this
fails, even in very simple examples, unless X → Y is representable. The correct
general statement is that there exists a local extension of DVR R → R′, such that
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if we denote by K ′ the fraction field of R′, the composite Spec R′ → Spec R → Y
has a lifting Spec R′ → X extending the composite Spec K ′ → Spec K → X
(see for example [18, Tag 0CLY]). For arithmetic applications this is problematic,
because the extension R ⊆ R′ will typically induce a nontrivial extension of residue
fields, so it does not imply that Spec k → Y lifts to Spec k → X , as in the case of
schemes.

When X and Y are Deligne–Mumford stacks over a field of characteristic 0 a
substitute was found by the first author in 2019, see [4, Appendix B]. In this note we
extend this, in a somewhat more precise form, to positive and mixed characteristic.
In this context the correct generality is that of tame stacks, in the sense of [2].
Tame stacks are algebraic stacks with finite inertia, such that the automorphism
group scheme of any object over a field is linearly reductive. In characteristic 0
they coincide with Deligne–Mumford stacks with finite inertia, but in positive and
mixed characteristic there are Deligne–Mumford stacks with finite inertia that are
not tame, and tame stacks that are not Deligne–Mumford.

In our version the role of the DVR R′ above is played by a root stack n√Spec R;
this is not a scheme, but a tame stack with a map n√Spec R → Spec R, which is an
isomorphism above Spec K ⊆ Spec R (see the discussion at the beginning of 3).
The statement of our main theorem 3.1 is that if X → Y is a proper morphism of
tame algebraic stacks and we have a commutative diagram as above, there exists a
unique positive integer n and a unique representable lifting n√Spec R → X of the
composite n√Spec R → Spec R → Y extending Spec K → X . The key point for
arithmetic applications is that the closed point Spec k → Spec R lifts to Spec k →
n√Spec R. This statement is much harder to prove in arbitrary characteristic than in
characteristic 0.

Besides the original applications to Grothendieck’s section conjecture in [4]
[5], this valuative criterion has been applied in [12] to give new proofs and stronger
versions of the genericity theorem for essential dimension.

Recall that the Lang–Nishimura theorem states that the property of having a
rational point is a birational invariant of smooth proper varieties. Another conse-
quence of our version of the valuative criterion is that the Lang–Nishimura theorem
generalizes to tame stacks, see 4.1. Our version of the Lang–Nishimura theorem
has an immediate corollary, which we find surprising: ifM is a smooth tame stack
which is generically a scheme and M → M is a resolution of singularities of the
coarse moduli spaceM → M , then a rational point of M(k) lifts toM if and only
if it lifts to M . This gives a hint of the applications of the Lang–Nishimura theorem
to fields of moduli, see [6–11].

Daniel Loughran pointed out to us that, in 2021, J. Ellenberg, M. Satriano
and D. Zureick-Brown introduced the related concept of tuning stack [13]. With
notation as above, if we only assume that X and Y have finite inertia (as opposed
to being tame), they prove that there exists a unique algebraic stack C with finite
inertia, coarse moduli space equal to Spec R, a lifting Spec K ⊂ C which is an
open embedding and a faithful extension C → X of Spec K → X unique up to a
unique isomorphism. The morphism C → X is called a universal tuning stack for
Spec K → X . From this point of view our theorem says that, for tame stacks, the
universal tuning stack is a root stack and hence it has a rational point in the special
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fiber. If we drop the tameness assumption, the universal tuning stack might have
no rational points in the special fiber, see Examples 4.2 and 4.3.

2. Notations and conventions

We will follow the conventions of [14] and [15]; so the diagonals of algebraic
spaces and algebraic stacks will be separated and of finite type. In particular, every
algebraic space will be decent, in the sense of [18, Definition 03I8].

We will follow the terminology of [2]: a tame stack is an algebraic stack X with
finite inertia, such that its geometric points have linearly reductive automorphism
group. This is equivalent to requiring that X is étale locally over its moduli space
a quotient by a finite, linearly reductive group scheme [2, Theorem 3.2].

More generally, a morphism f : X → Y of algebraic stacks is tame if the
relative inertia group stack IX/Y → X , defined as in [18, Section 050P], is finite
and has linearly reductive geometric fibers. See [3, 3].

Using [18, Lemma 0CPK] one can easily prove the following.

Proposition 2.1. Let f : X → Y be a morphism of algebraic stacks. The following
conditions are equivalent.

(1) f is tame.
(2) If Z → Y is a morphism, and Z is a scheme, then Z ×Y X is a tame stack.
(3) If Z → Y is a morphism, and Z a tame stack, then Z ×Y X is also tame.

Furthermore, if X is tame, then the morphism f is also tame.

3. The valuative criterion

A basic example of tame stacks is root stacks (see [1, Appendix B2]). Let S be
a scheme with an effective Cartier divisor D ⊂ S, and let π ∈ OS(D)(S) be a
global section defining D. If n is a positive integer, we will denote by n√S, D the
nth root of D ⊂ A. It is a stack over S, such that given a morphism φ : T → S, the
groupoid of liftings T → n√S, D is equivalent to the groupoid whose objects are
triples (L , s, α), where L is an invertible sheaf on T , s ∈ L(T ) is a global section
of L , and α is an isomorphism L⊗n 	 φ∗OS(D), such that α(s⊗n) = φ�(π).
This definition does not depend on the choice of π : if we replace π with λπ for
some invertible global section λ ∈ O∗

S(S) we obtain an isomorphic stack. The
morphism ρ : n√S, D → S is an isomorphism on S\D. If S = Spec R is affine and
OS(D) is trivial, e.g. if S is the spectrum of a DVR, n√S, D can be alternatively
described as the quotient stack [Spec R[t]/(tn − π)/µn], where the action of µn
on Spec R[t]/(tn − π) is by multiplication on t .

If R is a DVR with residue field k and π ∈ R is a uniformizing parameter,
we simply write n√Spec R. In this case, the reduced fiber ρ−1(Spec k)red is non-
canonically isomorphic to the classifying stackBkµn . In particular the embedding
Spec k → Spec R lifts to a morphism Spec k → n√Spec R.

The following is our version of the valuative criterion for properness.

https://stacks.math.columbia.edu/tag/050P
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Theorem 3.1. Let f : X → Y be a tame, proper morphism of algebraic stacks, R
a DVR with quotient field K . Suppose that we have a 2-commutative square

Spec K X

Spec R Y

f

Then there exists a unique positive integer n and a representable lifting n√Spec R →
X of the given morphism Spec R → Y , making the diagram

Spec K X

n√Spec R Spec R Y

2-commutative. Furthermore, the lifting is unique up to a unique isomorphism.

Corollary 3.2. In the situation above, if k is the residue field of R, the composite
Spec k ⊆ Spec R → Y has a lifting Spec k → X.

As one would expect, these statements fail without the tameness hypothesis,
even when Y is a scheme and X is a separated Deligne–Mumford stack.

Example 3.3. Let p be a prime, R a DVR whose fraction field K has characteristic
0 and contains a p-th root of 1, denoted by ζp, while its residue field k has charac-
teristic p and is not perfect. An example would be the localization of Z[ζp][t] at a
prime ideal of height 1 containing p.

Choose an element a ∈ R∗ whose image in k is not a p-th power, and set
R′ def= R(

p√a). Then R′ is a DVR, since the R′ ⊗R k = k(
p√
a) is a field (here a is

the class of a in k). Write K ′ = K (
p√a) for its fraction field and k′ = k(

p√
a) for its

residue field.
CallCp the cyclic group of order p generated by ζp ∈ K ∗. The extension K ′/K

is Galois with cyclic Galois group Cp acting by p√a �→ ζp
p√a. The action of Cp

on K ′ naturally extends to R′.
Let X be the quotient stack [Spec R′/Cp]; this is a separated Deligne–Mumford

stack, but it is not tame. Since (R′)Cp = R the moduli space of X is Spec R, and we
have a natural map X → Spec R, which is an isomorphism over Spec K ⊆ Spec R.
The morphism Spec R′ → X ′ is surjective and the composition Spec R′ → X →
Spec R is proper, hence X → Spec R is proper as well. Since k′/k is purely
inseparable, then Xk(k) is empty: such a k-rational point would correspond to a
Cp-torsor Spec A → Spec k with an equivariant morphism Spec A → Spec k′
and thus an embedding of k′ in the étale k-algebra A, which is clearly absurd. In
particular, there is no map n√Spec R → X for any n.

Definition 3.4. In the situation of Theorem 3.1, we call the integer n the loop index
of the diagram at the place associated with R ⊆ K . If the morphisms Spec R → Y ,
X → Y are implicit in the context (e.g. if Y is Spec R or the spectrum of a base
field) we simply call n the loop index of the morphism Spec K → X at the place
associated with R ⊆ K . If the loop index is 1, we say that Spec K → X (more
generally, the diagram) is untangled.
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Lemma 3.5. Let R ⊆ R′ be an extension of DVRs with ramification index e, and
let K ⊆ K ′ be the fraction fields of R and R′ respectively. If X is a tame stack
proper over R and Spec K → X is a morphism with loop index n, the composite
Spec K ′ → Spec K → X has loop index equal to n/ gcd(n, e).

Proof. Write m
def= n/ gcd(n, e). The statement follows from the fact that there

is a natural representable morphism m
√
Spec R′ → n√Spec R inducing the given

morphism Spec K ′ → Spec K ; let us construct it.
Let π , π ′ be uniformizing parameters of R, R′. Write λ

def= π · π ′−e ∈ R′∗ and
b

def= e/ gcd(n, e), we have me = nb. Let φ : T → Spec R′ be a scheme over R′,
we want to give a functor m

√
Spec R′(T ) → m

√
Spec R′(T ). Let T → m

√
Spec R′

be a section associated with a triple (L , s, α), where L is an invertible sheaf over
T , s ∈ L(T ) is a global section and α is an isomorphism L⊗m 	 OT such that
α(s⊗m) = φ�(π ′).

The triple (L⊗b, s⊗b, φ�(λ)·α⊗e)defines a sectionT → n√Spec R, henceweget
a morphism m

√
Spec R′ → n√Spec R. The corresponding morphismBμm → Bμn

of reduced fibers is faithful since it is associatedwith the homomorphismμm → μn

defined by x �→ xb, which is injective since b is prime with m. It follows that
m
√
Spec R′ → n√Spec R is faithful. �

We spend the rest of this section proving Theorem 3.1. Given a DVR R and π ∈

R a uniformizing parameter, write R(n) def= R[t]/(tn − π), K (n) def= K [t]/(tn − π).
We have n√Spec R = [Spec R(n)/µn].
Lemma 3.6. Let R be a DVR, m, n integers. A morphism m√Spec R → n√Spec R
over R exists if and only if n|m, and in this case it is unique up to equivalence.

Proof. This follows from the fact that a section Spec R(m) → n√Spec R exists if
and only if n|m, and in this case it is unique up to equivalence. �

Lemma 3.7. Let R be a DVR, D ⊂ Spec R the divisor corresponding to the closed
point, m, ni , ri for i = 1, . . . ,m positive integers, with ni ≥ 2 for every i . The
fibered product over R

X =
m∏

i=1

ni
√
Spec R, ri D

is normal if and only if m = 1 and r1 = 1.

Proof. Notice that X has only two points, an open one and a closed one, and the
open one is normal. Hence, X is normal if and only if it is normal at the closed
point.

Let Vn,r be the schemeSpec R[t, s]s/(tns−πr ), there is an action ofGm on Vn,r

given by (λ, t, s) �→ (λt, λ−ns) and n√Spec R, r D 	 [Vn,r/Gm], see [1, Appendix
B]. Consider the fibered product

Y =
∏

i

Vni ,ri = Spec R[t1, s1, . . . , tm, sm]s1···sm/(tnii si − πri ).
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The prime ideal p = (t1, . . . , tm, π) is the generic point of the special fiber and
has height 1. Since Vr,n → n√Spec R, r D is surjective and smooth, then Y → X is
smooth. Since pmaps to the closed point of X , then X is normal if and only if Y is
normal at p.

Now consider the prime ideal p0 = (t1, . . . , tm, π) ⊂ R[t1, s1, . . . , tm, sm],
p and p0 have equal residue fields and there is a natural surjective linear map
p0/p

2
0 → p/p2. We have that p0/p20 has dimension m + 1 generated by the classes

of [ti ], [π ]. If m = 1 and r1 = 1, then p0/p
2
0 has dimension 2 and [π ] is in the

kernel of p0/p20 → p/p2, hence Y is normal at p.
On the other hand, assume that Y is normal at p, so that p/p2 has dimension 1.

Since ni ≥ 2 for every i , the kernel of p0/p20 → p/p2 is generated by the classes
[πri ] and hence has dimension 1 if ri = 1 for some i , and dimension 0 otherwise.
Since p0/p20 has dimensionm+1 and p/p2 has dimension 1, this implies thatm = 1
and r1 = 1. �

Lemma 3.8. Let A be a Dedekind domain with fraction field K , D ⊂ Spec A an
effective, reduced divisor. Let f : X → n

√
(Spec A, D) be a representable, proper

morphism. Every generic section Spec K → X of f extends uniquely to a global
section n

√
(Spec A, D) → X.

Proof. Let Y ⊂ X be the schematic image of a generic section Spec K → X ,
we want to prove that Y → n

√
(Spec A, D) is an isomorphism. Since the problem

is local, we may assume that A = R is a DVR and D is either empty or the
closed point. If D is empty, then n√Spec R, D = Spec R and this is simply the
valuative criterion of properness. Suppose that D is the closed point. Consider
the flat morphism Spec R(n) → n√Spec R and write X ′ = X ×n√Spec R Spec R(n),

Y ′ = Y ×n√Spec R Spec R(n). Thanks to [18, Lemma 0CMK] we have that Y ′ ⊂ X ′

is the schematic image of the induced generic section Spec K (n) → X ′. By the
valuative criterion of properness, there is a section Spec R(n) → X ′ which is a
closed immersion since X ′ is representable, this implies that Y ′ → Spec R(n) is an
isomorphism. It follows that Y → n√Spec R is an isomorphism, too. �

Lemma 3.9. Let R be a DVR, n,m positive integers. Assume that n is prime with
the residue characteristic of R. Consider the μn-torsor Spec R(n) → n√Spec R.
There exists a unique way of extending the action of μn to

m
√
Spec R(n), and the

quotient [m
√
Spec R(n)/μn] is isomorphic to mn√Spec R.

Proof. We have a natural action ρ : m
√
Spec R(n) ×R μn → m

√
Spec R(n) induced by

the action on Spec R(n). The action ρ gives a structure of μn-torsor to the natural
morphism m

√
Spec R(n) → mn√Spec R. Let η : m

√
Spec R(n) ×R μn → m

√
Spec R(n)

be an action such that the diagram

m
√
Spec R(n) ×R μn

m
√
Spec R(n)

Spec R(n) ×R μn Spec R(n)

η

https://stacks.math.columbia.edu/tag/0CMK
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is 2-commutative, we want to show that ρ and η are equivalent.
Let D ⊂ Spec R(n)×Rμn be the pullback of the closed point of Spec R(n), since

μn is finite étale over R we have that D is a reduced divisor. Since μn is étale, the
naturalmorphism m

√
Spec R(n) ×R μn, D → m

√
Spec R(n)×Rμn is an isomorphism.

The scheme Spec R(n) ×R μn is finite étale over Spec R(n), hence it is a disjoint
union of Dedekind domains, and m

√
Spec R(n) ×R μn = m

√
Spec R(n) ×R μn, D is

a disjoint union of root stacks over Dedekind domains.
The stack Isom(ρ, η) has a proper, representable morphism

Isom(ρ, η) → m
√
Spec R(n) ×R μn,

and for every connected component of m
√
Spec R(n)×Rμn there is a generic section.

By Lemma 3.8, these generic sections extend to global sections, hence η 	 ρ. �

Corollary 3.10. Let R be a DVR, n,m positive integers. Assume that n is prime
with the residue characteristic of R. Let X → n√Spec R be a morphism, and
assume that the base change of X to Spec R(n) is isomorphic to

m
√
Spec R(n). Then

X 	 mn√Spec R.

Lemma 3.11. Let R′/R be an étale extension of DVRs and X an algebraic stack
over R, X ′ def= XR′ . If X ′ 	 n

√
Spec R′, then X 	 n√Spec R.

Proof. Let K be the residue field of R, clearly we have that XK → Spec K is an
isomorphism.Write A = Spec R′⊗R R′, since R′ is étale over R then A is a product
of Dedekind domains with a finite number of closed points. Let D ⊂ Spec A be the
effective, reduced divisor of all closed points and S

def= n
√
Spec R′×n√Spec R

n
√
Spec R′,

it is easy to see that S 	 n
√

(Spec A, D).
Let φ : n

√
Spec R′ 	 X ′ → X be the composite, and consider the two pro-

jections p1, p2 : S → n
√
Spec R′. Since XR′ is separated, then X is separated,

too, and hence Isom(p∗
1φ, p∗

2φ) is an algebraic stack with a proper, representable
morphism to S. There is a generic section SK → Isom(p∗

1φ, p∗
2φ) which extends

to a global section thanks to Lemma 3.8, this gives descent data for a morphism
f : n√Spec R → X (the cocycle condition can be checked on the generic point,
where it is obvious). Since the base change to R′ of f is an isomorphism, we have
that f is an isomorphism, too. �

Proposition 3.12. Let X be a normal, tame stack of finite type over a DVR R, and
assume that there is a generic section Spec K → X which is an open, scheme-
theoretically dense embedding. Then X 	 n√Spec R for some n.

Proof. Since X is of finite type over R, there exists a DVR R0 ⊂ R which is the
localization of a Z-algebra of finite type and a stack X0/R0 such that X 	 X0,R .
Furthermore, we may assume that the uniformizing parameter of R0 maps to a
uniformizing parameter of R, so that n√Spec R0 ×R0 Spec R 	 n√Spec R. Up to
replacing R, X with R0, X0 we may assume that R is Nagata. Let k be the residue
field of R and p its characteristic.
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By [2, Theorem 3.2], there exists a DVR R′ étale over R and a finite, flat,
linearly reductive group scheme G/R′ with an action on a scheme U finite over
R′ such that XR′ 	 [U/G]. Up to enlarging R′, by [2, Lemma 2.17] there exists a
diagonalizable flat, closed subgroup 
 ⊂ G such that H

def= G/
 is constant and
tame. We may furthermore assume that the degree of 
 is a power of p. Thanks to
Lemma 3.11, we may assume R′ = R.

Case 1. X is tame and Deligne-Mumford. Since 
k is connected and X is
Deligne-Mumford and generically a scheme, the action of 
 is free (because oth-
erwise X would have ramified inertia), hence up to replacingU withU/
 we may
assume that G is constant and tame. Since X is normal and G is constant and tame,
then U is normal, too. If u ∈ U is a geometric point, the stabilizer Gu acts faith-
fully on the tangent space, hence the automorphism groups of the points of X are
cyclic and tame. By [17, Lemma 8.5] and Lemma 3.7, since X is normal we have
X 	 n√Spec R for some n.

Case 2. X is tame. Let V
def= U/
 and Y0

def= [V/H ], we have that Y0 is Deligne-
Mumford and there is a natural birational morphism X → Y0 whose relative inertia
is diagonalizable. Let Y → Y0 be the normalization, it is finite over Y0 since R is
Nagata and since X is normal the morphism X → Y0 lifts to a morphism X → Y .
By case 1, there exists an n prime with p and an isomorphism Y 	 n√Spec R.
Consider the morphism Spec R(n) → n√Spec R, it is a μn-torsor and hence finite
étale since n is prime with p, it follows that the base change X ×n√Spec R Spec R(n)

is normal with diagonalizable inertia. By [17, Lemma 8.5] and Lemma 3.7, we have
X ×n√Spec R Spec R(n) 	 m

√
Spec R(n) for some integer m, hence X 	 mn√Spec R

thanks to Corollary 3.10. �

Proof of Theorem 3.1. By base change, we may assume that Y = Spec R and that
X is a tame stack proper over R. With an argument similar to the one in the proof
of Proposition 3.12, we may reduce to the case in which R is Nagata.

By [17, Theorem B], we may assume that Spec K → X is an open, scheme
theoretically dense embedding. Since R is Nagata, the normalization X is finite
and representable over X . By Proposition 3.12 we have X = n√Spec R, hence an
extension exists. Ifm is another integer with a representable extension m√Spec R →
X , it factors through X = n√Spec R since m√Spec R is normal by Lemma 3.7. We
conclude the proof of Theorem 3.1 by Lemma 3.6. �


4. The Lang–Nishimura theorem

Here is our version of the Lang–Nishimura theorem for tame stacks.

Theorem 4.1. Let S be a scheme and X ��� Y a rational map of algebraic stacks
over S, with X locally noetherian and integral and Y tame and proper over S. Let
k be a field, s : Spec k → S a morphism. Assume that s lifts to a regular point
Spec k → X; then it also lifts to a morphism Spec k → Y .

In the standard version of the Lang–Nishimura theorem (see for example [16,
Theorem 3.6.11]), which is a standard tool in arithmetic geometry, X and Y are
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schemes, and S = Spec k. In the applications that we have in mind, the additional
flexibility of having a base scheme is important.

Proof. According to [15, Théorème 6.3] we can find a smooth morphism U → X
with a lifting Spec k → U of Spec k → X ; hence we can replace X by U , and
assume that X is scheme. Furthermore, if x denotes the image of Spec k → X
and k(x) its residue field, we have a factorization Spec k → Spec k(x) → X , and
we may assume k = k(x). If x has height 0, then Spec k dominates X , and the
composite Spec k → X ��� Y is well defined.

Otherwise, callU ⊆ X the open subset where f is defined. By [12, Lemma 4.3]
there exists a DVR R with residue field k = k(x) and a morphism Spec R → X
that maps the generic point Spec K of Spec R into U . Thus we get a morphism
Spec K → U , and we apply Corollary 3.2 to the diagram

Spec K U Y

Spec R X S

f

thus getting the desired morphism Spec k → Y . �

The Lang–Nishimura theorem fails for non-tame separated stacks. Let us give

two examples, one in mixed characteristic, the other in positive characteristic.

Example 4.2. Let X → Spec R be the stack constructed in 3.3, it is a non-tame
regular Deligne-Mumford stack. Let k be the residue field of R. There is a rational
map Spec R ��� X and Spec R has a k rational point, but X has no k-rational
points.

Example 4.3. Let C0 be a smooth, projective curve of positive genus over a finite
field F of characteristic p with C0(F) �= ∅. Let a be an indeterminate, write
k

def= F(a) and C
def= C0,k ; since C0 has positive genus C(k) = C0(F) is finite. Let

f ∈ k(C) be a rational function such that each rational point is a zero of f (this
can be easily found using Riemann-Roch). Consider the ramified cover D → C
given by the equation

t p − f p−1t = a;
in other words, D is the smooth projective curve associated with the field extension
k(C)[t]/(t p − f p−1t − a). Let c ∈ C(k) be a rational point, and write Rc

def=
OC,c[t]/(t p − f p−1t − a), it is a normal domain: if Rc is the normalization, both
Rc ⊗ k(C) → Rc ⊗ k(C) and Rc ⊗ k → Rc ⊗ k are isomorphisms for degree
reasons since Rc ⊗ k = k[t]/(t p − a) is a field of degree p over k. Hence, Rc is
a DVR with residue field k′ def= k[t]/(t p − a). It follows that D has no k-rational
points.

The cyclic groupCp acts on D by t �→ t+ f , the field extension k(D)/k(C) is a
cyclic Galois cover andC is the quotient scheme D/Cp. Let X be the quotient stack
[D/Cp], there is a natural birational morphism X → C = D/Cp. A rational point
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Spec k → X corresponds to a Cp-torsor Spec A → Spec k with an equivariant
morphism Spec A → D: since the fibers of D → C over rational points are
isomorphic to Spec k′, a rational point of X gives an embedding of k′ in an étale
algebra A, which is clearly absurd. It follows that X is a proper Deligne-Mumford
stack over k with X (k) = ∅ and a birational map C ��� X .

As a consequence of Theorem 4.1, we can decide whether a residual gerbe of a
tame stack is neutral or not by looking at a resolution of singularities of the coarse
moduli space. We find this rather surprising.

Corollary 4.4. Let X be a locally noetherian, regular and integral tame stack with
coarse moduli space X → M, and M → M a proper birational morphism, with M
integral and regular. Assume that there is a lifting Spec k(M) → X of the generic
point Spec k(M) → M.

If k is a field and m : Spec k → M a morphism, then m lifts to a morphism
Spec k → X if and only if it lifts to a morphism Spec k → M. ♠

So, for example, if M is regular all morphisms Spec k → M lift to X , and all
residual gerbes are neutral.
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