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ABSTRACT 

 

The worsening global climatic condition has necessitated increased investments in 

renewable energy resources and in turn increased penetration of these resources in electricity grids 

worldwide. Distributed photovoltaic (PV) energy is one of the rapidly growing and viable forms 

of renewable energy. Distributed PV systems currently exist in two modes, a few number of large 

or utility scale systems and a plethora of small or residential scale roof-top systems which are 

rapidly growing in terms of number. Residential systems are alternatively called Behind the Meter 

(BTM) systems because they are not directly monitored by utility operators and are therefore 

invisible vis-à-vis their performances. While an individual Behind-The-Meter (BTM) system's size 

holds little significance in comparison to the inertia of the utility grid, the collective presence of 

numerous interconnected BTM systems within a single feeder has the potential to jeopardize the 

stability and security of utility operations. Conventional protective devices within distribution 

networks are designed to accommodate a unidirectional downstream power flow. However, as the 

integration of PV generators into utility grids intensifies, the prospect of reverse or upstream power 

flow becomes more probable. This development raises various apprehensions, including the 

potential for voltage level breaches and a notable reduction in the operational longevity of these 

devices. 

 

BTM systems generally have a wide geographical coverage within a region and each 

system operates independently of others as well as the fact that their real-time performances are 

concealed in the net-load data relayed by electricity meters. Consequently, traditional forecasting 

methods have proved insufficient in predicting the outputs of PV systems on a regional level 

requiring the development of spatial aggregation approaches. Three basic sub-areas aimed at 

increasing the penetration of BTM PV generators in utility grids are the principal focus of this 

study. The sub-areas include performance analysis of BTM systems; day-ahead regional scale PV 

power forecasting model and a PV ramp events extraction model.  

 

The first sub-area tries to address the challenges with small scale solar power performance 

data access on a regional basis. The performance analysis was aimed at evaluating the credibility 

and reliability of BTM data from public webpages and their representativeness for high profile 
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research. Consequently, this sub-area proposes and investigates the feasibility of the 

instrumentation of every invisible solar system for near real-time data monitoring. The 

investigation involved detailing the convergence between simulated and reported power outputs 

on a spectrum of orientation and tilt angles. Two simulation methods as well as two case studies 

public web repositories from which a subset of representative solar sites were adopted to provide 

a basis for the proposed approach. The results show that the proposed model is viable and feasible 

depending on the participation of certain key stakeholders in electricity market discourses. 

 

Day-ahead forecasts are required by electricity market investors to make informed 

decisions on the trading floor. Whereas it is relatively easier to predict the performance of a few 

large-scale PV systems, a large number of small-scale PV systems with a wide geographical spread 

poses more challenges because they are not metered for real-time monitoring. This sub-area 

proposes an artificial neural network (ANN)-based model to achieve regional-scale day-ahead PV 

power forecasts from numerical weather predictions of weather variables excluding solar 

irradiance as inputs. The model was first implemented by dividing a region into clusters and 

selecting a representative site for each cluster using data dimension reduction algorithms. Solar 

irradiance forecasts were then generated for each representative PV system and the corresponding 

PV power was simulated. The cluster power output was obtained using a linear upscaling model 

and summed to produce regional-scale power forecasts. The model’s accuracy is validated using 

power generation data of several distributed systems in California. Compared with available 

benchmark models with similar objectives, the proposed model performed significantly better. 

 

Insufficient information on solar power ramp events is counterproductive to the operational 

flexibility and economics of electricity grids. Accurate solar ramp extraction and characterization 

in terms of ramp magnitude, rate and duration are useful to power system operators for system 

planning especially with regards to ensuring supply security and sizing ancillary services. The 

characterization of ramp events in historical databases is also useful for testing forecast models’ 

accuracy in predicting significant solar ramp events that are of more concern to utility operators. 

A novel technique for solar power ramp events (SPREs) detection using the modified swinging 

door algorithm (MSDA) considering different time resolutions and weather profile is proposed in 

this sub-area. Firstly, the swinging door algorithm (SDA) is used to create ramp segments of the 

solar power data that are collected from different randomly selected systems. Afterwards, the 
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power generation variability patterns of these segments are studied. The SDA is then modified to 

merge adjacent segments according to the observations made by comparing the variability patterns. 

The solar power data simulated from irradiances measured with different time resolutions is 

utilized for performance validation and testing. The proposed technique shows much improved 

performance than existing detection algorithms with respect to the number of detected ramps, 

detection accuracy and in some cases, computation time. 
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1 INTRODUCTION 

1.1 General 

The implementation of policies and initiatives with the aim of increasing the proliferation of 

renewable energy schemes has had various levels of success on national and global scales. Worthy 

of mentioning are feed-in-tariffs, net-metering and power purchase agreements which are policies 

adopted to incentivize distributed renewable energy investments in different scales by all 

stakeholders especially commercial and residential investors. From the International Energy 

Agency (IEA), Figure 1.1 shows a global average of 87% increment in renewable energy capacity 

addition every five years from 2002 to 2022. 

 

 

Figure 1.1. Total global renewable energy capacity additions from 2002 to 2022 in GW [1] 

 

Power generation from PV technology has been found to be more prevalent and widespread 

especially roof-top solar than any other form of distributed generation. Many buildings grid-tied 
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to the distribution feeders have rooftop capacity that can accommodate varying PV system sizes 

from just a few kW to over 100kW. Global total PV installed capacity reached over 0.5TW in 2018 

while almost 100GW were installed in 2018 alone with rooftop installations contributing about 

30% of that figure and is predicted to steadily rise to 44GW on a low scenario and 76.5GW on a 

high scenario basis in 2023 [2]. At the close of 2019, California’s residential solar PV installed 

capacity stood at 5128MW contributed by 923,405 solar projects [3]. 

 

 

Figure 1.2. Per capita Solar PV electricity generation in the US and Canada. We obtained the total 

electricity generation per country data from the International Energy Agency (IEA) [4] and then 

normalized the data by the corresponding country’s population to obtain the per capital data.  

1.2 Renewable Energy Support Programs and Policies 

One of the motivations for stakeholders to actively participate in rooftop PV investments 

includes the potential for financial returns accruable from energy bills savings. Notwithstanding 

the steep and continuous decline in the cost of PV materials, for investments to be economically 

viable and compete with large scale fossil fuel power generators counterparts, PV system owners 
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rely heavily on policies and support programs that offer sumptuous rebates on installation costs 

and incentives on energy sales to utility systems. Some of these programs include the Feed-in-

Tariffs (FITs) and Net Metering. The Net Metering package rolled out by SaskPower in November 

2018 and expected to run for 3 years or until a 16-megawatt cap is reached offered PV investors a 

rebate of $20,000 maximum ($0.61 per watt) to make up about 20% of equipment and installation 

cost [5]. However, this program was withdrawn and reviewed when the cap was reached just a 

year after its release because it couldn’t be further sustained due to claims of heavy financial 

burden on taxpayers. Figure 1.2 shows the electricity generation from PV sources on a per capita 

basis in Canada and the US. A steep rise in generation beginning in 2010 was preceded by the 

introduction of the net metering and FITs policies in Ontario, Canada in 2006 and British 

Columbia, Canada in 2008. The FITs program was simultaneously implemented in Vermont, US 

in 2008. Table 1.1 shows some of the interventions by the Canadian government to boost 

investments in renewable energy projects. 

Table 1.1. Some programs and policies implemented by the Canadian government to support 

renewable energy projects and cut greenhouse emissions . 

No Ref Program 
Year 

Introduced 
Description 

1 [6] The Clean Energy and 

Electrification Program 

2021 CAD $8 billion dollars to fund 

renewable energy-based projects for a 

5-year period. 

2 [7] Clean Energy for Rural 

and Remote Communities 

Program 

2016 Provides funding support to renewable 

energy projects in rural communities. 

3 [8] Smart Renewable and 

Electrification Pathways 

Program 

2020 CAD $1.56 billion funding support for 

electricity grid modernization and 

renewable energy-based projects for an 

8-year period 

4 [9] Sustainable Development 

Technology Canada 

(SDTC) 

2001 A foundation that has provided CAD 

$2.5+ billion funding support for clean 

energy projects. 
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5 [10] The Strategic innovation 

Fund 

2017 Funding support for research and 

development of innovative technology 

6 [11] The Low carbon Economy 

Fund 

2016 Over CAD $1.4 billion in Funding 

support for greenhouse gas emissions 

reduction projects. 

7 [12] The Pan-Canadian 

Framework on Clean 

Growth and Climate 

Change 

2016 Provide multifaceted support to 

renewable energy and energy efficiency 

projects. 

1.3 Problem Statement 

 

Figure 1.3. Schematical description of the basic setup of commercial and residential scale PV 

systems. 
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PV systems are either commercial or small-scale capacity as shown in Figure 1.3. Small 

scale installations are usually about 100kW and below and are often sited on the rooftops of 

residential or commercial buildings. In this document, small-scale systems are of interests and are 

synonymously called residential or rooftop or behind-the-meter PV systems. Granting that the 

impact of a single rooftop system could be negligible considering its capacity relative to the inertia 

of a distribution network, an aggregated output from a fleet of distributed systems on a single 

feeder network could significantly distort network stability. An underestimation of the impact of 

PV integration could significantly compromise the reliability, power quality, voltage fluctuation 

and frequency of the grid whereas an overestimation would limit the level of integration and in 

turn the economic, technical and environmental benefits accruable from renewables. There is 

therefore a need to accurately model the collective variability and uncertainty of grid-tied PV 

systems in order for utilities to fully understand and mitigate the challenges increased integration 

would pose to the grid. 

1.4 Research Objectives and Outcomes 

Basically, this research is aimed at supporting the increased penetration of distributed PV 

power in low voltage secondary networks. Because of the intermittency and variability of PV 

sources, increasing its penetration while maintaining power security requires two major actions. 

One involves designing sophisticated distribution grid planning tools that can effect highly detailed 

technical analysis to model real life systems considering different future scenarios of load and 

renewables integration and make recommendations for existing feeder lines upgrade requirements. 

The other action is to develop solar forecasting tools to provide various timescales forecasts with 

sufficient accuracies for generation scheduling and reserves operation. This thesis is further 

centered on the later aspect of forecast models development. Three broad concepts shown in Figure 

1.4 form the basis for this thesis. 

1. The first concept discussed in Chapter 2 and involving performance analysis of grid-tied 

residential PV systems was adopted to develop a proposition to securing a reliable and 

credible database of the performances of these systems. In this chapter, the problem of data 

unavailability stemming from the fact that behind-the-meter PV systems are not 

instrumented for direct monitoring is addressed and informed recommendations are made. 
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Figure 1.3 illustrates that only net load is visible to utility operators for residential PV 

systems as opposed to the actual generation in the case of commercial scale counterparts. 

2. In chapter 3, a day-ahead prediction model of regional-scale generation from residential 

PV systems is presented. The training and test datasets used in this chapter are sourced 

from the recommendations in Chapter 2. 

3. A solar power ramp events extraction algorithm is proposed in Chapter 4. The algorithm is 

developed as an alternative to traditional forecast models accuracy evaluation metrics. 

Ramp extraction is also relevant to electricity market stakeholders for determining ramping 

requirements of reserve and storage systems. 

Chapter 5 provides a summary of and concludes this thesis. 

 

Figure 1.4. Schematic representation of the research sub-sections.  
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2 PERFORMANCE ANALYSIS OF GRID-CONNECTED 

DISTRIBUTED PV SYSTEMS 

2.1 Introduction 

Roof-top PV systems are alternatively referred to as invisible solar or Behind the Meter 

(BTM) solar because their real online operating performances are not visible to utility system 

operators since they are located behind meters that relay only the net-load data. The performance 

of BTM solar systems alter the grid operating conditions by increasing the complexity of hourly 

net-load time series forecast which is a key input in the scheduling operation of generators [4][5]. 

Periods of low load coinciding with high renewables output increase the risk of overgeneration 

and consequently reverse power flow while the reverse is the case for high load and low PV output. 

On a regional scale, the collective impact of BTM solar on net-load could be ignored for a few 

systems but the proliferation of such systems on the distribution network underscores the need to 

innovate means to monitor how much is delivered to the grid in real time for research and 

forecasting. 

 

The accuracy of PV prediction models are improved by the availability of actual distributed 

data for training of these models [4]. Models for regional level forecasts make used of a subset of 

representative PV systems that capture the main features of the whole set. These features include 

the distribution of systems orientations and inclinations, installed capacity, module types and 

spatial distribution. Another benefit for having the performance data is it provides information on 

the economic viability of BTM solar and support the detection of possible design defects and 

maintenance requirements especially for small scale PV investors. 

 

Currently, various methods have been proposed to obtain the performance data. The U.S. 

Department of Energy offers funding support to researches exploring options to making BTM solar 

more visible: a combination of satellite weather data and detailed rooftop PV interconnection data 

is used to generate solar data sufficiently accurate for regional or utility scale aggregated output as 

input to California Independent Systems Operator (CAISO)  automatic load forecasting system 

[6]. Another proposition with widespread acceptance in the PV community is to use the 

performance Ratio (PR) of the considered PV systems obtained over a long period of weather 
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patterns to approximate the output from the same systems receiving specific levels of insolation 

[7]. The PR of a PV system is simply the actual energy output from a system scaled by the rated 

array capacity at standard test conditions and the plane of array (POA) irradiance received during 

the period being considered. The problems with these methods lies in the fact that they rely on 

error free and continuous irradiance data acquisition from ground mounted pyranometers in the 

plane of array of the PV systems and imagery that requires additional processing. For a regional 

PV fleet spread over a wide geographical area, these methods would be financially cost intensive 

and instrumentation reliability issues could prove counterproductive to accuracy requirements. 

 

Alternatively, we do not need to monitor every PV system continuously and directly or 

require weather data. Several other propositions to addressing the problem already discussed are 

data mining based options that rely on the assumption that the performances of neighboring PV 

systems exhibit sufficient levels of correlation to support the prediction of a system’s output using 

the performance data of neighboring systems. [5] proposed a method that depends only on the 

power generation and location (Euclidean distance between PV sites) data of a small subset of 

representative PV sites to estimate the total output of a large set of PV sites. Upon analysis, this 

method was found to perform adequately well for hourly resolution during clear-sky periods but 

showed a high degree of mismatch between predicted and actual values during cloudy periods 

owning to factors including ignoring the impact of PV orientation on the generation output. [7] 

developed the Bird Performance Index (BPI) that rely only on geographical location, geometry 

and power output measurements of N-1 systems to predict for N systems, but this method produced 

results that were reasonably accurate only for weekly and longer terms power generation 

predictions. 

 

In this subsection, our central focus and contribution to advancing knowledge involve the 

formulation of a proposition aimed at identifying a potentially robust and trustworthy data source, 

thus tackling the prevailing issue of data accessibility. We recommend the concept of a web-based 

monitoring and reporting model, designed to offer a viable solution. 

 

Furthermore, this subsection is enriched by furnishing illustrative case studies. These cases 

showcase existing platforms that cater to owners of independent photovoltaic (PV) systems, 

enabling them to effectively oversee their energy generation. Some of these platforms even extend 
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their capabilities to include energy consumption monitoring, providing a comprehensive utility for 

system owners. 

2.2 Web-Based Monitoring and Reporting 

This approach is premised on the rationale that every PV system could be a data logger or 

smart meter. Modern PV systems are equipped with data logging and communication devices for 

automatic live monitoring and reporting of generation output on webpages in the public domain 

or with controlled access. “It is very inexpensive to add data loggers to a PV system at installation 

time, and the communication cost are very low. Often homeowners themselves are interested in 

monitoring their PV system. As the power grid is a shared resource, regulators and the power 

companies need to apply more effort to collect the data necessary for making informed decisions” 

[4].  

 

The proposed approach requires utility operators to embark on the following: 

1. Set up central repositories or data collection servers (webpages) for PV systems within 

their jurisdiction. 

2. Create free accounts for PV system owners for automatic power generation data reporting 

and monitoring. 

3. As part of the conditions in their legal and regulatory framework for power grid 

interconnection, require prospecting PV system owners in their offtake agreement to 

continuously monitor and display live power generation on the reporting platform for the 

period the PV system will be grid-tied. 

4. Incentivize existing PV system owners to join the program. The incentivization could be 

providing free smart meters. Alternatively, utility operators can place the requirement for 

communicating output performance at the discretion of PV owners but tie certain benefits 

to compliance. 

5. Sensitize and mandate licensed PV modules installers to link new systems to the web 

platform and voluntarily act as support administrators for the web repository. 

 

A diagrammatic illustration of the proposed concept is show in Figure 2.1. 
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Figure 2.1. Diagrammatical illustration of the proposed web-based concept 

 

At present, small scale PV systems are not required to communicate their generated power 

to utility operators in real-time. In SaskPower’s Interconnection Agreements and Requirements 

document [8] which was revised in March 2005, it is clearly stated that the costs of future changes 

of generation facilities as required by SaskPower are the sole responsibility of generation investors. 

Also, as a metering requirement for interconnection of generators of capacity larger than 100kW, 

the brunt of providing facilities for communication and interfacing with and ensuring that 

generation output data is shared with SaskPower’s metering unit rest on the shoulders of generator 

owners. It is presumed that this clause wasn’t inserted for smaller systems because they constituted 

less risks as independent and sole systems and therefore their instrumentation for real-time 

monitoring was considered negligible. As earlier discussed, the trend in the proliferation of small-
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scale distributed resources whose aggregated installed capacity on a regional level would be large 

enough to cause a significant disturbance in the grid is a compelling argument for the current 

standards to be reviewed and amended for enhanced PV data collection and communication. 

 

Currently, there are online platforms that epitomize the model being discussed and 

although these platforms are not restricted on geographical regional basis, they offer various kinds 

of data and levels of access to the public domain. Table 2.1. contains a number of such existing 

webpages and synthetic PV data source. 

 

Table 2.1. Examples of existing online PV Data sources with brief descriptions of their contents 

Name of 

Webpage 

Description Number of PV 

Systems 

Predominant 

Country 

PVOutput1 Free online service 35,279 systems Australia 

Sunny Portal2 Private organization involved 

in PV systems design equipped 

with micro inverters for 

optional data sharing 

Over 83,187 systems Germany 

National 

Renewable Energy 

Laboratory3 

U.S. Department of Energy 

(2006 synthetic data) 

6000 hypothetical solar 

plants 

United States 

Solrenview4 Subscription-based monitoring 

services provider 

Over 4,942 systems United States 

 

Some potential benefits of creating the proposed platform where BTM solar output data 

are shared include: 

 
1 https://www.pvoutput.org/ladder.jsp 
2 https://www.sunnyportal.com/Templates/PublicPagesPlantList.aspx 
3 https://www.nrel.gov/electricity/transmission/solar_integration_%20methodology.html 
4 https://www.solrenview.com/cgi-bin/cgihandler.cgi?&sort=site_name&logo 
 

https://www.pvoutput.org/ladder.jsp
https://www.pvoutput.org/ladder.jsp
https://www.sunnyportal.com/Templates/PublicPagesPlantList.aspx
https://www.sunnyportal.com/Templates/PublicPagesPlantList.aspx
https://www.sunnyportal.com/Templates/PublicPagesPlantList.aspx
https://www.nrel.gov/electricity/transmission/solar_integration_%20methodology.html
https://www.nrel.gov/electricity/transmission/solar_integration_%20methodology.html
https://www.solrenview.com/cgi-bin/cgihandler.cgi?&sort=site_name&logo
https://www.solrenview.com/cgi-bin/cgihandler.cgi?&sort=site_name&logo
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1. It could be a primary source of numerous data containing excellent information of current 

real-world residential PV power generation performance for other methods of output 

estimation. 

2. It will allow for comparisons between monitored systems. 

3. It provides a basis for both technical, economic, and environmental impact assessments. 

4. Researchers could leverage on the primary data from the webpage for technological 

innovations and advancements in the renewable energy world. 

In SaskPower 2017 Stakeholder Engagement and Call for Evidence report [9] in 

collaboration with university researchers, stakeholders unanimously identified lack of PV 

education and community engagement as one of the barriers to growth in invisible PV investments 

and recommended enlightenment and support programs. The webpages could be made to have 

platforms for community discussion support forums where registered members talk about the 

health of their systems and share information relevant to the PV community – PVOutput offers 

this service. In addition, other estimation methods become outdated over time because of PV 

systems added to the grid and decommissioned or temporarily nonfunctioning systems either due 

to technical failures or dynamic site-specific issues like trees and high-rise buildings obscuring the 

path of the sun; snow covering and other objects casting shadows on the panels. 

 

Notwithstanding the plausible benefits highlighted above, there are certain concerns raised 

about the feasibility of monitoring every grid-tied PV system. Without addressing these concerns, 

the proposed approach will be practically unfeasible and counterproductive at best. The bulk of 

the issues raised can be summarized into extra cost of instruments for measurement and data 

transfer; uncoordinated user-subjective data handling and archiving; inconsistency in uploading 

data due to instrumentation unreliability. The impact of erratic reporting situations caused by 

failure of communication devices could be reduced by archiving the data at the generation point 

during downtimes and then telemetered when communication is reestablished. In addition, 

residential PV system owners are concerned about the security of their connections to the internet 

for data transfer to prevent unauthorized access to their private information. As such, the data 

transfer to public network servers should be done through secured authentication means and should 

not require the opening of extra ports on homes owners firewall [4]. 
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Unregulated or uncontrolled erroneous data (especially the site metadata) reporting can 

invalidate the benefits from accruable from continuous direct monitoring. The importance of 

correctly reporting the hardware data including the solar panel orientation, PV size rating and the 

site location cannot be overemphasized. Quality control techniques for detecting and correcting 

misreported PV data require accurate clear-sky models of PV output and rely on accurate PV site 

metadata to simulate the physical limits of the daily power measurements and in turn identify 

unexpected or outlying data [10]. The basic essence of the clear-sky model is to eliminate from 

the measured performance data the deterministic diurnal and seasonal solar variation signals 

caused by the relative motion between the earth and the sun leaving us with only the cloud-induced 

fluctuations. 

2.3 Credibility of Data Reporting: PV Power Modelling 

To recommend solutions for the concerns raised, it was needful to understand the impact of 

erroneously reported array orientation on simulated PV performances and the role utility operators 

can play in minimizing spurious reporting and increasing participation of more rooftop PV 

systems. Another objective is aimed at evaluating the credibility of the operational and 

performance data reported on existing public webpages by registered users whose PV systems are 

equipped with communication devices for live web-based monitoring and reporting. 

 

The main idea here was to simulate the output of each PV system at multiple orientations 

and contrast the results with the measured power output reported on the websites to check for 

intolerable inconsistencies. A similar research was carried out by the Australian Renewable Energy 

Agency (ARENA) [4] who had data loggers installed at residential buildings reporting rooftop PV 

performance on PVOutput.org and compared the reported performance with the results from the 

data loggers. 

 

Two simulation methods were adopted for this research. One involves combining the 

reported metadata with irradiance data from nearby ground weather station to model the hourly 

PV output whereas the other method relies on the European Commission PVGIS web application 

modeling tool. 
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Regardless of the simulation method adopted, the PV time series of each site was simulated 

using tilt angles within a tolerance of about 50% of the reported or expected value. To illustrate 

this, for a reported tilt of 200, a whole year’s PV output will be simulated from 100 to 300 at least 

with 10 step until a reasonable pattern is observed from the results. This tilt angle bracket was 

adopted from careful observations of inclined roof-tops and array images reported by PV owners. 

Similarly, a range of values from 00 to 3150 at intervals of 450 were considered for azimuth angle 

of every PV system. The angular measurements are usually from two reference directions (North 

and South) through a reference plane and towards the point of interest as shown in Figure 2.2. A 

10 step was deemed unnecessary because of the minimal changes in the results obtained for the 

step size. If the 10 step was adopted, the azimuth angle would have 360 different possible outcomes 

and that coupled with the minimum of 20 outcomes for the tilt angle would yield a combined 

outcome of 7200 (360 times 20) for a single data point. For a whole year and assuming 9 daytime 

hours, a single PV system would have approximately 24million (365 times 9 times 7200) hourly 

data points. 

 

 

Figure 2.2. North and South reference directions for evaluating the azimuth angle. For the South 

(S 00), the measurement goes in either the clockwise or the anticlockwise direction. 

 

2.4 PV Power Output Modeling 

2.4.1 Combination Of Ground Station Data and PV Metadata 

Historical one-minute averages of solar radiation dataset for a calendar year was obtained 

from the Australian Bureau of Meteorology ground-based weather station in Townsville. The solar 
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statistics included Solar Zenith Angle (SZA), Global Horizontal Irradiance (GHI), Direct Normal 

Irradiance (DNI) and Diffuse Horizontal Irradiance (DHI) obtained by point sensors at the 

horizontal plane. Measured power production data from the selected PV systems time-stamped 

and reported every five minutes on PVOutput server were also obtained for same period. 

2.4.2 Data Quality Control 

Two major issues were observed with the measured one-minute data: sensor deterioration-induced 

errors and in some cases a valuable percentage of missing measurements. Errors with the measured 

SZA were observed during periods of low solar altitude angles or when the sun was near the 

horizon which were likely due to the fact that the measurements were taken at a height of 4.4m 

above ground level. As such, if SZA >90o , Cos(SZA) was set to 0. Errant irradiance values that 

were physically impossible or were quite larger than the clear-sky power output and negative 

values were also removed. There were periods of partial equipment fault resulting in only the GHI 

and SZA values recorded while total malfunction meant no data recorded. Periods of full outages 

lasting over one hour and days having up to three hours were filtered out. Consequently, the daily 

study period was limited to be from 9am to 5pm. For partial outages, the missing data points were 

either interpolated from other values or estimated using a decomposition model or obtained using 

the relation: 

𝐺𝐻𝐼 = 𝐷𝐻𝐼 + 𝐷𝑁𝐼𝐶𝑜𝑠(𝑆𝑍𝐴)    (𝑊𝑚−2)                                                                                               (1) 

The Plane of Array (POA) irradiance measurements is very critical to evaluating the performance 

of PV systems because most practical PV systems in order to capture more of the available solar 

radiation are usually installed with varying orientations relative to the horizontal. Since in this 

case, only the irradiance data measured by point sensors on the horizontal plane are available, there 

is need to convert this data to fixed axis POA irradiance values for each of the select PV systems. 

Generating estimates of the power generations required two basic steps involving estimating the 

Plane-Of-Array Irradiance (𝐼𝑃𝑂𝐴) and then used as radiation resource input to simulate the output 

power. Estimating 𝐼𝑃𝑂𝐴 from available measurements requires a combination of decomposition 

and transposition models. 
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2.4.3 Irradiance Decomposition and Transposition 

Several empirical estimation models exists but for this analysis, the slightly modified Orgill 

and Hollands’ radiation model [11] was the preferred decomposition model to estimate the DHI 

component from the GHI dataset because of its mathematical simplicity and minimum input 

requirements of clearness index (𝐾𝐺𝐻) and site latitude. More importantly, the model was also 

found to outperform other models in this analysis because its parameters were calibrated uniquely 

to locations in Australia. The diffused fraction was first obtained using expressions (2) – (10) then 

(1) was used to estimate the DNI. Zero subscripts indicate performance at STC. 

𝐼𝐷𝐻 = 𝐼𝐺𝐻𝐾𝐷𝐻                                                                                                                                                (2) 

𝐾𝐷𝐻 = 𝐵 − 0.3𝐶        𝑖𝑓 𝐾𝐺𝐻 ≤ 0.3                                                                                                           (3) 

𝐾𝐷𝐻 = 𝐵 − 𝐾𝐺𝐻𝐶        𝑖𝑓 0.3 ≤ 𝐾𝐺𝐻 ≤ 0.75                                                                                           (4) 

𝐾𝐷𝐻 = 𝐵 − 0.75𝐶        𝑖𝑓 𝐾𝐺𝐻 ≥ 0.75                                                                                                      (5) 

𝐵 = 0.94 + 0.0118|∅|                                                                                                                                (6) 

𝐶 = 1.185 + 0.0135|∅|                                                                                                                              (7) 

The expression for the clearness index is given by (8) 

𝐾𝐺𝐻 =
𝐼𝐺𝐻

𝐼𝑒𝑥𝑡ℎ

                                                                                                                                                   (8) 

𝐼𝑒𝑥𝑡ℎ
= 𝐼𝑒𝑥𝑡𝐶𝑜𝑠(𝑆𝑍𝐴)                                                                                                                                  (9) 

𝐼𝑒𝑥𝑡 = 1367 (1 + 0.033 ∙ 𝐶𝑜𝑠 (
360

365
) ∙ 𝐷𝑂𝑇𝑌)                                                                                  (10) 

where: 

DOTY is the day of the year, 

∅ is the latitude, 

𝐼𝑒𝑥𝑡 is the extraterrestrial irradiance, and 

𝐼𝑒𝑥𝑡ℎ
 represents the extraterrestrial irradiance at the horizontal plane. 
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Transposition models estimate the total POA irradiance obtained from the basic equations 

(11) – (17) by calculating and summing up the direct, ground reflected diffuse and the diffuse 

component from the sky hemisphere on the array plane. 

𝐼𝑃𝑂𝐴 = 𝐼𝐷𝑁𝑃𝑂𝐴
+ 𝐼𝑔𝑟𝑑𝑃𝑂𝐴

+ 𝐼𝑠𝑘𝑦𝑃𝑂𝐴
                                                                                                        (11) 

𝐼𝐷𝑁𝑃𝑂𝐴
= 𝐼𝐷𝑁 ∙ cos 𝐴𝑂𝐼                                                                                                                             (12) 

𝐼𝑔𝑟𝑑𝑃𝑂𝐴
= 𝐼𝐺𝐻 ∙ 𝜎 ∙

1 − cos 𝛼

2
                                                                                                                   (13) 

The POA sky diffuse radiation was calculated using Hay/Davies’ model [12] since it was 

found to give the best results for this analysis: 

𝐼𝑠𝑘𝑦𝑃𝑂𝐴
= 𝐼𝐷𝐻 ∙ [𝐾𝐷𝑁 ∙ 𝑅𝑏 + (1 − 𝐾𝐷𝑁) ∙

1 + cos 𝛼

2
]                                                                         (14) 

𝑅𝑏 =
cos 𝐴𝑂𝐼

cos 𝑆𝑍𝐴
                                                                                                                                             (15) 

𝐾𝐷𝑁 =
𝐼𝐷𝑁

𝐼𝑒𝑥𝑡
                                                                                                                                                   (16) 

𝐴𝑂𝐼 = cos−1[cos 𝑆𝑍𝐴𝑆 ∙ cos 𝛼 + sin 𝑆𝑍𝐴𝑆 ∙ sin 𝛼 ∙ cos(𝛿𝑆 − 𝛿)]                                                 (17) 

where: 

𝛼 represent the  array tilt angle, 

𝜎 is the surface albedo, and 

𝐴𝑂𝐼 is the sun’s angle of incidence. 

 

It is worthy of note that since these models are purely empirical, their accuracies stated in the 

literature are subjective to the test data used in evaluating them. This means that a model could 

have lower accuracy levels when used on data from a different geographical location from the test 

data. Details of additional expressions for evaluating the model parameters are in [13]. 
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2.4.4 Power Output Simulation 

The horizontal solar radiation was transposed to different POA (tilt angles) and then the 

DC power output from the PV array was simulated using the PVWatts array performance model 

[14] provided by NREL because of its simple input parameters requirements and its average 

performance is similar to SAPM performance: 

𝑃𝑚𝑝𝐷𝐶
=

𝐼𝑒

1000
∙ 𝑃𝑚𝑝𝑜 ∙ [1 + 𝜗(𝑇𝑐 − 𝑇𝑆𝑇𝐶)]     𝑓𝑜𝑟 𝐼𝑃𝑂𝐴 > 125𝑊/𝑚2                                           (18) 

𝑃𝑚𝑝𝐷𝐶
=

0.008 ∙ 𝐼𝑒
2

1000
∙ 𝑃𝑚𝑝𝑜 ∙ [1 + 𝜗(𝑇𝑐 − 𝑇𝑆𝑇𝐶)]     𝑓𝑜𝑟 𝐼𝑃𝑂𝐴 ≤ 125𝑊/𝑚2                                 (19) 

where: 

𝑃𝑚𝑝𝐷𝐶
 represents the module power output at maximum power point, 

𝑃𝑚𝑝𝑜 is the module power rating, 

𝐼𝑒 is the POA effective irradiance, 

 𝜗 is the module power temperature coefficient, and 

𝑇𝑐 is the PV cell temperature respectively. 

 

CEC and Sandia National Laboratories carried out detailed field and laboratory test on a 

plethora of commercial inverters and PV modules to generate a database56 of inverter and modules 

parameters. The parameters for the inverters and modules for this analysis were obtained from this 

database. The empirically based Sandia Inverter model (19) – (23) [14] produced the best results 

for the AC power output 𝑃𝑚𝑝𝐴𝐶
 from the input power 𝑃𝑚𝑝𝐷𝐶

: 

𝑃𝑚𝑝𝐴𝐶
= [

𝑃𝑚𝑝𝐴𝐶0

𝑋 − 𝑌
− 𝑍(𝑋 − 𝑌)] ∙ (𝑃𝑚𝑝𝐷𝐶

− 𝑌) + 𝑍(𝑃𝑚𝑝𝐷𝐶
− 𝑌)

2
                                                   (20) 

𝑋 = 𝑃𝑚𝑝𝐷𝐶𝑜
[1 + 𝐶1(𝑉𝑚𝑝𝐷𝐶

− 𝑉𝑚𝑝𝐷𝐶𝑜
)]                                                                                                 (21) 

𝑌 = 𝑃𝑠𝑜𝐷𝐶
[1 + 𝐶2(𝑉𝑚𝑝𝐷𝐶

− 𝑉𝑚𝑝𝐷𝐶𝑜
)]                                                                                                     (22) 

 
5 https://pvpmc.sandia.gov/download/6840/ 

6 https://pvpmc.sandia.gov/applications/pv_lib-toolbox/ 

https://pvpmc.sandia.gov/download/6840/
https://pvpmc.sandia.gov/applications/pv_lib-toolbox/
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𝑍 = 𝐶𝑜[1 + 𝐶3(𝑉𝑚𝑝𝐷𝐶
− 𝑉𝑚𝑝𝐷𝐶𝑜

)]                                                                                                          (23) 

where: 

𝑉𝑚𝑝𝐷𝐶
 is the input DC voltage at optimum condition, 

𝑉𝑚𝑝𝐷𝐶𝑜
is the optimum DC voltage at STC, 

𝑃𝑚𝑝𝐴𝐶0
 is the inverter optimum AC power rating at STC,  

𝑃𝑚𝑝𝐷𝐶𝑜
 is the optimum DC power level at STC, and 

𝑃𝑠𝑜𝐷𝐶
 is the inverter starting DC power respectively.  

2.4.5 Power Output Simulation: PVGIS Modeling Tool 

Admittedly, power simulations using irradiance data from ground-based weather 

monitoring stations would offer more accurate results for reasons being that measurements are 

taken using high-quality sensors at a similar elevation as the PV sites at close proximities to the 

weather stations. However, maintaining such ground-based stations is tedious and cost-intensive 

especially as it requires regular calibration and cleaning of the sensors to minimize systematic 

errors. Hence, a relatively few numbers of these stations exist and are usually situated remotely 

from one another leaving a gap which is being filled by solar radiation data from satellite images. 

 

Consequently, since ground-based weather stations at locations considerably close to some 

of the selected PV sites for this research didn’t exist, the PVGIS tool was used to model the power 

outputs of these sites. PVGIS was developed by the European Commission Joint Research Centre 

to aid PV performance studies. The online PVGIS 5 interface leveraged on a database of surface 

solar radiation estimates from satellite images of cloud cover to evaluate PV performances of 

hourly time resolution mapped to UTC time zone. The tool used a quadratic mathematical model 

(24) – (26) to approximate the impact of the input parameters on module efficiency and output 

[15]:  

𝑃𝑚𝑝𝐴𝐶
= 𝐼 ∙ (𝑃𝑚𝑝𝑜 + 𝑐0 ∙ ln 𝐼 + 𝑐1 ∙ ln 𝐼2 + 𝑐2 ∙ �̂� + 𝑐3 ∙ �̂� ∙ ln 𝐼 + 𝑐4 ∙ �̂� ∙ ln 𝐼2 + 𝑐5 ∙ �̂�2)        (24) 

𝐼 =
𝐼𝑃𝑂𝐴

1000
                                                                                                                                                     (25) 

�̂� = 𝑇𝑐 − 𝑇𝑆𝑇𝐶                                                                                                                                               (26) 
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where: 

𝑐0 −  𝑐5 are the coefficients of the quadratic model calibrated by measured data, 

𝐼′ is the normalized plane of array irradiance, and  

�̂� is the module temperature. 

 

Primary input data required include coordinates of the PV site; the array orientation (tilt and 

azimuth); the system loss factor; the period being considered; the PV nominal power and 

technology. 

2.5 Case Study Public Webpages 

Two notable websites from which a number of registered PV systems were selected after 

being subjected to certain criteria are PVOutput and Solrenview. These were selected for this 

analysis because they have contrasting profiles in terms of level of regulation and geographical 

region of dominance. While Solrenview is concentrated on the US, and the telemetering devices 

are linked to the subscription-based webpage by licensed PV or data acquisition service facilities 

installers, the reverse is the case for PVOutput which is a user-driven database and PV owners 

report their data unchecked. Both sites have a high number of registered systems and in addition, 

the PV sites metadata and output measurements are available in the public domain without 

strenuous requirements for accessibility. A select sample of PV systems could not be aggregately 

analyzed but were treated as independent entities because they had differing orientations and 

geographically distant from one another. For this reason and the fact that only a few PV systems 

meet the selection criteria, only a total of 9 PV sites were selected from both webpages. 

2.5.1 PVOutput 

The choice of PV systems handpicked from the databases fulfilled the following 

conditions: they were continuously monitored for at least one calendar year; there was adequate 

description of the PV systems metadata; inverter capacity was larger than or equal to the array 

rating to avoid issues resulting from curtailment, and they had zero shading levels. 6 PV systems 

were selected from PVOutput with profiles shown in Table 2.2. The PV power data for each of the 
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systems in the box plots in Figure 2.3 are normalized to their nominal capacities. From the plots, 

the maximum instantaneous  power generated from any of the six systems is about 60% of the 

array rated capacity except for PV system 2 which contains outliers. The first 3 of these systems 

are located in Townsville and a ground-based weather station in active service was well within 

range so their 2018 PV datasets were collected and validated on individual basis with the 2018 PV 

output times series simulated using the modeling approach that relied on ground irradiance data. 

The 2016 datasets of the other 3 systems were similarly collected automatically using a web 

crawler and were compared with PV output time series simulated for same year using the PVGIS 

tool.  

 

 

Figure 2.3: Box plots of the six PV systems from PVOutput. The plots are essentially used to 

detail the presence of outliers and the energy density of the systems. 

All 6 PV systems have been reporting their AC power since 2012 in 5-minutes reporting 

time steps except for system 4 which started in 2015 and had about 9months records in 2016. 

Analysis on a one calendar year data when the systems were operational for most part of the year 

was deemed sufficient to capture seasonal trends in the accuracy of reported data and the 
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consistency in data reporting. In addition to the metadata shown in Table 2.2, all systems also 

reported their shading levels which was used to screen suitable systems. 

Table 2.2: Reported profiles of Selected PV systems from PVOutput 

Closest Weather Station:  Townsville Australia (-19.2483, 146.7661)7 

Site No PV system 1 PV system 2 PV system 3 

Array size 4kW 3.04kW 4.5kW 

Number of modules 16 16 18 

Distance from weather 

station 

5.63km 9.433km 5.67km 

Coordinates (Lat/Long) -19.2922/146.763 -19.3264, 146.731 -19.292/146.763 

Module brand CSUN250-60M Linuo-190 SNM-P250(72) 

Inverter brand SMA SB 4000-TL JSI-3000TL Aurora - 5000 

Tilt (0) 1 25 25 

Azimuth (00N) Northwest West North 

Site No PV system 4 PV system 5 PV system 6 

Array size 1.92kW 2.66kW 4kW 

Number of modules 8 14 16 

Location Germany Denmark UK 

Coordinates (Lat/Long) 51.77/6.119 55.1407/15.0125 52.7675/1.166 

Module brand Diverse China (1-crystal) Sanyo HIT-H250 

Inverter brand 4×Enecsys SMI-

D480 

Danfoss 3000 SMA SB 

4000TL 

Tilt (0) 20 45 30 

Azimuth (00N) Southeast South South 

 

Since it was a primary goal of this study to uncover the issues with data from public PV 

monitoring webpages, data quality control algorithms to comprehensively identify measurement 

errors were intentionally not implemented. However, the daylight hours considered was restricted 

 
7 http://reg.bom.gov.au/climate/reg/oneminsolar/ 

http://reg.bom.gov.au/climate/reg/oneminsolar/
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to 9hours (9am to 5pm) local time. This decision was made to minimize the impact of distortions 

arising from systematic influences like shadows cast on PV modules during sunrise and sunset on 

the dataset. Also, by visual observation of the PV datasets from PVOutput, the inverters/recording 

equipment were programmed to cut off data recording either at a particular time or when the 

generated power fell below a threshold value (usually <3% array rating). For instance, system 1 

consistently started/cut off reporting data from/below 48W while system 2 reporting was from 

7:05am to 6pm each day. 

2.5.2 Results and Analysis 

The reported PV datasets were compared with the modeled PV profiles over the 

approximately one-year time period for hourly time intervals to detail the difference between them 

since the actual values are presumably not known. Normalized Root Mean Square Difference 

(NRMSD), Normalized Mean Absolute Difference (NMAD) and Normalized Mean Bias 

Difference (NMBD) statistical error metrics were used. While NRMSD measures the variation, 

NMAD reveals the mean absolute deviation of the simulated from the measured performance 

values and NMBD provides information on the systematic error or bias to account for over 

estimation or underestimation.  

𝑁𝑀𝐴𝐷 =

1
𝑛

∑ |𝑥𝑚,𝑖 − 𝑥𝑟,𝑖|
𝑛
𝑖=1

𝑃𝑚𝑝𝑜
× 100%                                                                                                  (27) 

𝑁𝑅𝑀𝑆𝐷 =

√1
𝑛

∑ (𝑥𝑚,𝑖 − 𝑥𝑟,𝑖)
2𝑛

𝑖=1

𝑃𝑚𝑝𝑜
× 100%                                                                                        (28) 

𝑁𝑀𝐵𝐷 =

1
𝑛

∑ (𝑥𝑚,𝑖 − 𝑥𝑟,𝑖)
𝑛
𝑖=1

𝑃𝑚𝑝𝑜
× 100%                                                                                                (29) 

where: 

𝑛 is the number of values, 

𝑥𝑚,𝑖 is the ith modeled output values, 

𝑥𝑟,𝑖 is the ith reported outputs values. 
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Figures 2.4 – 2.9 display how the simulated power output changes relative to the measured 

counterpart while changing the inclination and azimuth angles as inputs to the simulation model 

obtained for the 6 PV systems. Since there is no standard threshold error value for determining the 

acceptable levels of disparity between reported and simulated values, the smallest difference 

(error) values obtained using the error metrics were regarded as best results and are shown in Table 

2.3. 

Table 2.3. Best results obtained for the PV systems and the corresponding tilt angles for the 

study period. Range of values indicates that the lowest NRMSD and NMAD values do not 

coincide on the same tilt angle. 

PV system 1 2 3 4 5 6 

NMBD (%) 1.85 -1.30 0.33 -1.38 1.50 1.90 

NMAD (%) 4.46 6.20 9.35 6.47 9.60 9.10 

NRMSD (%) 6.85 8.45 12.1 10.13 14.65 12.90 

Reported tilt (0) 1 25 25 20 45 30 

Best tilt (0) 1 26-27 15-20 3-5 34-35 12-14 

 

Several observations can be made from Figures 2.4 – 2.9 based on the NRMSD and NMAD 

curves. Generally, in all six cases the best results were obtained at orientation angles that either 

matched with the reported data or can be considered to be close enough not to introduce a 

substantial deviation in the simulated from the reported datasets. While the first two systems show 

a near-perfect match, the third system has its best results revolving around the reported tilt angles 

with an exception for system 5 being the only case where the reported azimuth angle happens not 

to be the best case (Southwest), differing by 450. If there’s anything to go by the steepness of the 

curves for systems 4 and 6 as they approach the reported tilt angles, the reported power output 

time series for these two systems are not reliable. A larger discrepancy between the reported tilt 

angles and the best fit is observed in both cases. 
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Figure 2.4. Variation of the error measures plotted against a steadily increasing angle of 

inclination of the PV array as input to the simulation model for PV systems from PVOutput 

webpage: PV System 1. 

 

 

Figure 2.5. Variation of the error measures plotted against a steadily increasing angle of 

inclination of the PV array as input to the simulation model for PV systems from PVOutput 

webpage: PV System 2. 
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Figure 2.6. Variation of the error measures plotted against a steadily increasing angle of 

inclination of the PV array as input to the simulation model for PV systems from PVOutput 

webpage: PV System 3. 

 

 

Figure 2.7. Variation of the error measures plotted against a steadily increasing angle of 

inclination of the PV array as input to the simulation model for PV systems from PVOutput 

webpage: PV System 4. 
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Figure 2.8. Variation of the error measures plotted against a steadily increasing angle of 

inclination of the PV array as input to the simulation model for PV systems from PVOutput 

webpage: PV System 5 

 

Figure 2.9. Variation of the error measures plotted against a steadily increasing angle of 

inclination of the PV array as input to the simulation model for PV systems from PVOutput 

webpage: PV System 6 
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The error measures for PV system 5 in Figure 2.8 when the reported azimuth angle of due 

South and best case of Southwest were used as inputs are shown. All other best results were gotten 

at the same azimuth angles reported by system owners. 

 

Figures 2.10 – 2.15 are scatter plots of the simulated vs. reported hourly averaged power 

output relationship. They reflect the results obtained for the best inclination angles shown in Table 

2.3. The plots were aimed at detailing the overall convergence of one power output dataset to the 

other while having neither as the standard or reference dataset. In other words, one can visualize 

the bias between both datasets from the scatter plots while the NMBD in Figures 2.10 – 2.15 show 

how this bias dynamically changes with the tilt angle however not in a linear manner. A perfect 

convergence would mean all the blue circles falling on the red line. Comprehensively, by visual 

observation there appears to be slightly positive bias indicating a power output overestimation. PV 

systems 1 and 2 show better alignment compared to the others although the best case did not 

necessarily mean the lowest NMBD. 

 

 

Figure 2.10. Scatter plots of simulated vs. measured or reported averaged hourly power output 

for the PV systems registered on PVOutput webpage for PV System 1. 
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Figure 2.11. Scatter plots of simulated vs. measured or reported averaged hourly power output 

for the PV systems registered on PVOutput webpage for PV System 2. 

 

 

Figure 2.12. Scatter plots of simulated vs. measured or reported averaged hourly power output 

for the PV systems registered on PVOutput webpage for PV System 3. 
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Figure 2.13. Scatter plots of simulated vs. measured or reported averaged hourly power output 

for the PV systems registered on PVOutput webpage for PV System 4 

 

 

Figure 2.14. Scatter plots of simulated vs. measured or reported averaged hourly power output 

for the PV systems registered on PVOutput webpage for PV System 5. 
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Figure 2.15. Scatter plots of simulated vs. measured or reported averaged hourly power output 

for the PV systems registered on PVOutput webpage for PV System 6. 

Temporal aggregation of the results into monthly energy yield shown in Figures 2.16 – 

2.21 uncover some unique features common among systems in the same geographical vicinity or 

that are expected to receive similar solar radiation. First, there is a better agreement between both 

datasets for each PV system which once again is more evident in the first three systems. Second, 

two clearly defined patterns of energy production can be observed. Systems 1-3 from Townsville 

Australia, have an almost regular energy generation all year round with the lowest output occurring 

precisely in the month of June while the maximum output was observed in the fourth quarter of 

the year. The first three months of system 3 were omitted from the analysis because a substantial 

lot of the dataset in this period was either missing or abysmally low due to faulty data logging 

equipment or downtime. This downtime couldn’t be attributed to shading or other causes because 

of the prolonged period it occurred on a daily basis. 

 

Systems 4-6 are situated in Europe which is in the northern hemisphere with Due South as 

the optimum azimuth angle. This second group also has a similar pattern with slight occasional 

breakaways and the energy outputs peaked towards the middle months of the year. The energy 
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yields in the winter months are significantly lower due to reduced number of sunshine hours per 

day and possibly snow cover. The results in Figures 2.16 – 2.21 are quite consistent with the annual 

weather reports of monthly average solar radiation received in these locations, the only anomaly 

being the mild deep in output witnessed in June in system 6. The October monthly output for 

System 4 was removed for same reason as in system 3. 

 

 

Figure 2.16. Monthly aggregated energy yield of the PV system 1 from PVOutput webpage. 

 

 

Figure 2.17. Monthly aggregated energy yield of the PV system 2 from PVOutput webpage. 
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Figure 2.18. Monthly aggregated energy yield of PV system 3 from PVOutput webpage. Months 

with huge misleading or zero outputs were omitted. 

 

Figure 2.19. Monthly aggregated energy yield of PV system 4 from PVOutput webpage. Months 

with huge misleading or zero outputs were omitted. 
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Figure 2.20. Monthly aggregated energy yield of PV system 5 from PVOutput webpage. 

 

Figure 2.21. Monthly aggregated energy yield of PV system 6 from PVOutput webpage. 
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Basically, the results of the first three PV systems showed better match than the other half. 

The first reason that comes to mind for this mismatch is the simulation model since the PVGIS 

modeling tool is simply an approximation of the characteristics of PV panels at various irradiance 

levels.   

2.5.3 SolrenView 

 

Figure 2.22. Box plots of the data of the three PV systems from SolrenView. 

 

Adequate description of each PV system metadata wasn’t reported as is the case in 

PVOutput and this creates more uncertainties in modelling the expected power output from 

measured irradiance with sufficient accuracy. The data provision requirement for grid integration 

or for systems (especially BTM) to receive feed-in tariff in many utility systems across the globe, 

includes only the address and nominal power.  A primary input parameter for modelling is the 

array orientation and since this data wasn’t provided, another method based on informed 

speculation although considered less effective was employed to obtain the tilt and azimuth angles. 

By visual inspection of the images reported by PV system owners and validating them with the 
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images from Google Earth of the reported addresses as shown in Figures 2.23 – 2.28, a range of 

values (a bracket) within which the angles were expected to fall was derived. The rationale was to 

obtain multiple simulations of the expected performance of each PV system using the orientation 

angles in the bracket and then using the best fitting results to identify the array orientation. 

Although there are no outliers in the box plot in Figure 2.22, a large percentage of power generation 

fell below 60% of the maximum generation. 

 

The criteria for handpicking PV systems from this webpage were similar to the case for 

PVOutput. The only additional requirement was for the pictures of the systems to be reported by 

the owners and for images from Google Earth to show similar images or the presence of PV 

systems at the reported locations. Three PV systems were found to be across the board in meeting 

these criteria and were deemed sufficient as representative systems for this analysis. Their hourly 

output dataset in 2015 were extracted and compared with the simulated values using the metadata 

shown in Table 2.4. 

 

Table 2.4. Reported profiles of selected PV systems from SolrenView. 

PV system  1 2 3 

Array size 121.275kW 12.2kW 49.704kW 

Number of modules 385 40 152 

Coordinates (Lat/Long) 41.637/-70.906 43.617/-72.96 32.851/-117.217 

Module brand SunPower SPR 315 Astroenergy 305 SunPower SPR 327 

Inverter brand Satcon PVS 100kW 4×Solectria PVI 

6500 

4×Solectria PVI 

20TL 

Expected tilt range (0) 0-5 30-45 5-15 

Azimuth (00S) South South south 

 

A vast majority of registered PV systems on Solrenview including the selected systems had 

100% reporting of hourly performance values round the clock for the spell of time they were active 

on the webpage. This would mean there were no periods of equipment failure however 

unprecedented it seems. 
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Figure 2.23. Pictures of site 1 reported by PV owners on SolrenView data monitoring webpage. 

 

 

Figure 2.24. Aerial view of site 1 from Google Earth using the address reported on SolrenView. 
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Figure 2.25. Pictures of site 2 reported by PV owners on SolrenView data monitoring webpage. 

 

 

Figure 2.26. Aerial view of site 2 from Google Earth using the address reported on SolrenView. 
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Figure 2.27. Pictures of site 3 reported by PV owners on SolrenView data monitoring webpage. 

 

 

Figure 2.28. Aerial view of site 3 from Google Earth using the address reported on SolrenView. 

2.5.4 Results and Analysis 

Since irradiance data measured from weather stations at sufficiently close proximity to the PV 

systems weren’t available, their outputs were estimated using the PVGIS Modeling Tool. The 
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modeled outputs were timestamped to UTC which was different from the local time at the locations 

of the PV systems. As such, there was need for time zone unification. From careful observations, 

the timestamping wasn’t impacted by daylight saving, so the unification was simply shifting either 

of the recorded time-series several time steps back depending on the time difference. 

 

Table 2.5. Best results obtained for the PV systems and the corresponding tilt angles for the 

study period. Range of values indicates that the lowest NRMSD and NMAD values do not 

coincide on the same tilt angle. 

PV system 1 2 3 

NMBD (%) 3.92 0.70 0.15 

NMAD (%) 6.97 3.2 3.16 

NRMSD (%) 10.01 8.01 6.30 

Expected tilt range (0) 0-5 30-45 2-15 

Best tilt (0) 0-3 20 13-15 

 

The pictures reported by PV owners in Figures 2.23 – 2.28 give informed guesses of the tilt angles 

while the Google Earth images shows the modules facing due south. Similar to the case in 

PVOutput, Figures 2.29 – 2.31 show that the best results either matched with or revolve around 

the expected information. Regardless, the error levels in all cases are significant and calls for 

investigation. 
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Figure 2.29. Variation of the error measures plotted against tilt angles of the PV array as input to 

the simulation model for PV systems registered on SolrenView webpage: PV system 1. 

 

 

Figure 2.30. Variation of the error measures plotted against tilt angles of the PV array as input to 

the simulation model for PV systems registered on SolrenView webpage: PV system 2. 

 



43 
 

 

Figure 2.31. Variation of the error measures plotted against tilt angles of the PV array as input to 

the simulation model for PV systems registered on SolrenView webpage: PV system 3. 

 

 Figures 2.32 – 2.34 show positive biases in all the systems from SolrenView webpage with 

system 3 showing a better convergence. Although the first system is rooftop mounted, its array 

nominal capacity is well over its 100kW inverter which resulted in inverter clipping observed in 

the measured output. The PVGIS simulation model does not factor into consideration situations 

where the inverter is smaller than the array in capacity and consequently leading to output 

overestimation. PV system 1 was not deemed unfit for the analysis in order to see the effect of 

inverter clipping on the convergence of the outputs. 
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Figure 2.32. Simulated vs. measured or reported averaged hourly power output for SolrenView 

PV systems. These scatter plots reflect the results obtained for the best inclination angles shown 

in Table 2.5 for PV system 1. 

 

Figure 2.33. Simulated vs. measured or reported averaged hourly power output for SolrenView 

PV systems. These scatter plots reflect the results obtained for the best inclination angles shown 

in Table 2.5 for PV system 2. 
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Figure 2.34. Simulated vs. measured or reported averaged hourly power output for SolrenView 

PV systems. These scatter plots reflect the results obtained for the best inclination angles shown 

in Table 2.5 for PV system 3. 

 

The results displayed in Figure 2.35 – 2.40 support the narrative of better agreement between 

modeled and reported datasets with reduced temporal granularity. The GHI dataset for each 

location obtained from NREL’s NSRDB datasets was modeled from satellite images using a 

physical model. On the other hand, comparing the systems with one another uncovers some 

information including the apparent case of system 1 showing less convergence possibly as a result 

of inverter clipping earlier discussed. Also, although all three systems are located in the US, there 

are two distinct energy generation profiles over the 12 months period howbeit the first two systems 

show a larger disagreement in February. Informed by reported array pictures, impact from shadows 

caused by nearby trees and high-rise buildings was ruled out as contributing to the obtained results. 

 

Systems 1 and 2 are located in Fairhaven, Massachusetts and Rutland, Vermont 

respectively and generally have a similar climate as reported in annual US climate data by NOAA.  

Upon further investigations, there was a record-breaking blizzard across parts of the US for almost 

all through February and early March 2015. Cities like Fairhaven and Rutland witnessed prolonged 

heavy snowfalls and extreme winter storms which affected the PV generation as shown in the 
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hourly outputs in Figure 2.36, Figure 2.38, and Figure 2.40. There were cases of zero or near zero 

reported daily outputs and since this scenario was common to both systems, it was considered to 

be highly unlikely due to instrumentation failure. A solar panel fully occluded by snow cover can 

have no output and the climate of both cities show a possibility of as much as one inch snow cover 

on the ground from December to March for certain days per month. 

 

The third system is located in San Diego, California and has a completely different climate 

compared to the other two systems. The results obtained for this system is corroborated by the fact 

that the lowest average daily sunshine hours in the city is just less than 8hours in December and 

there are no snow falls all year round. 

 

Figure 2.35. Monthly aggregated energy yield of PV system 1 from SolrenView webpage. 
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Figure 2.36. Hourly PV power generation and Global Horizontal Irradiance received from 9th to 

18th February 2015 for PV System 1 from SolrenView. 

 

Figure 2.37. Monthly aggregated energy yield of PV system 2 from SolrenView webpage. 
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Figure 2.38. Hourly PV power generation and Global Horizontal Irradiance received from 9th to 

18th February 2015 for PV System 2 from SolrenView. 

 

Figure 2.39. Monthly aggregated energy yield of PV system 3 from SolrenView webpage. 
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Figure 2.40. Hourly PV power generation and Global Horizontal Irradiance received from 9th to 

18th February 2015 for PV System 3 from SolrenView. 

2.6 Discussion 

A discrete step size of one degree for the tilt angle does not adversely impact the error metrics 

since they are statistical averages of a large number of data points. In other words, depending on 

the system nominal capacity, the hourly generation data is not much different when simulated 

using a tilt angle differing by one degree per se. Consequently, the methodology applied wasn’t 

focused on detecting the actual inclination and orientation angles with perfect accuracy but on 

revealing the possibility of the reported data being the actual case through the misalignment 

between reported and simulated power outputs. 

 

Nine independent rooftop PV systems were analyzed. Divided equally into three groups, one 

group is located in Australia, the other two are located in the US and Europe respectively. These 

differing locations were preferred to highlight their unique climates expressed in total monthly sun 

hours received for the periods under study depicted in Figures 2.41 – 2.42. A stark difference in 

climate is seen between Australia and the other locations and there is a good match between the 

monthly PV outputs and the sun hours received. The statistical error metrics show considerable 

levels of errors. However, almost in every PV system considered, the lowest errors occurred at 
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array positioning angles coinciding with the reported information granting that an accuracy of not 

up to one degree is acceptable. The scatter plots also showed a good following between the data 

points with the monthly averages demonstrating better results although this doesn’t reflect the 

large differences in the hourly data. 

 

 

Figure 2.41. Total monthly sun hours for a calendar year in the seven locations of the analyzed 

PV systems [16]. 2018 calendar year for Australia (AUS) and 2015 for the US. 

 

 

Figure 2.42. Total monthly sun hours for 2016 calendar year in three locations of the analyzed 

PV systems [16]. 
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In contrast, the errors in the results are significant and are attributable to several sources 

including measuring equipment failure or malfunctioning. The ground based pyranometers 

showed erratic behaviours evidenced by missing or physically impossible measurements. 

Irradiance values had to be reconstructed to fix this problem which is also common for solar 

radiation data from satellite images. Furthermore, some PV systems have multiple inverters and 

as such, the failure of one becomes less detectable from the reported data when other inverters are 

in good operation.  

 

The spread and systematic deviations displayed in the scatter plots bring to light a feature 

of the simulation methods used. A major difference is seen in the estimations at different irradiance 

levels. The PVGIS model performance drops at lower irradiances and that can be partly explained 

by the fact that irradiance modelling using cloud position and movement from satellite images is 

more prone to errors for images captured during periods of low sun elevation. Additionally, both 

PV output simulation models in this study are physical models that in simplifying the modelling 

process, make assumptions about certain parameters and physical processes which are not 

universally valid. As an example, a 14% system loss was assumed in the PVGIS model without a 

thorough analysis and the surface albedo for the transposition model was assumed to be constant 

at 0.2. 

 

Temporal averaging could have added to the mismatch between reported and modeled data. 

The ground-based sensors had a 1-min time resolution while PVOutput recorded instantaneous 

power output every 5-mins and both were averaged to hourly resolution. Other dynamic error 

sources that could not be categorically accounted for are solar module degradation, shading from 

dusts and dirt and localized issues.  

2.7 Conclusion 

Regardless of the errors, the output data from distributed solar systems reported on public 

webpages is a reliable source and sufficiently paints a picture of the real-world performance under 

different conditions. In other words, the web-based monitoring and reporting concept is valid and 

feasible based on the results. To ensure a better data quality for high profile usages, data filtering 

may be recommended. Filtering spurious or errant data could be done by comparing neighboring 

systems whereas identifying physically impossible irradiance values by solar angle of incidence 
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or solar zenith angle-based filtering. A data quality control method with tremendous advantages 

and widespread acceptability involves normalizing the dataset with the clear-sky output simulated 

using the system parameters. 

 

Contrasting the two case study webpages, it is needful to point out that there is need for 

upgrading the webpages. Although it is user-controlled, the installation of data logging equipment 

should be standardized or managed by utilities or licensed system installers. Adequate PV 

metadata description including the module orientation and inclination on the monitoring webpages 

is essential especially for research. Easy historical data access and acquisition should be ensured 

by impeccable cataloging. Hourly time resolution reduces the data storage requirement and 

reduced frequency of data logging could possibly minimize device failure. 

 

The relevance of the proposed approach appreciates with growing investments in PV 

systems. Commercial scale PV systems can also use the proposed platform. To minimize social 

resistance to implementing the approach, we recommend that utility operators initiate a Call for 

Evidence to in order for PV power stakeholders and other interested persons or organizations to 

provide their submissions on the proposed approach. 

 

Conclusions drawn may be questioned or considered misleading since the handpicked sites 

are only a minute fraction of the larger set that met the selection criteria and therefore not truly 

representative. Also, since every PV owner is acting independently of one another then 

generalizing the findings from a few systems to describe the whole lot as well as the selection 

process not being random could prove counterproductive at best. For the research scope and 

finitude, only a small number of systems could be analyzed. It is also a known fact that neighboring 

PV systems tend to have similar performances and since a consistency was found across the 

representative systems in this study, the conclusions reached are deemed valid. 
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3 DAY-AHEAD PV POWER PREDICTION SYSTEM FOR 

REGIONAL LEVEL FORECAST 

3.1 Introduction 

Electricity is an essential commodity to the world's GDP and as such the effective 

management of this precious item from generation to consumption is at the forefront of energy 

discourses. This brings on the concept of energy markets and the series of developments that have 

led to changes in the framework of how the market is managed. Innovations have exposed the 

inefficiency of a centrally controlled monopolized scheme necessitating the liberalization of the 

electricity market which gained global acceptance in the late nineties with California and some 

parts of the US adopting this market structure at the end of the century. Incorporating stochastic 

renewable energy power in electricity networks has certain impacts depending on its share in the 

generation mix. These stochastic means are sources of increased variability and unpredictability 

of the networks operation consequently impacting not only economic issues like the network 

operational cost and revenue [1],[2],  but also the electricity market paradigms involving how 

biddings are tendered and accepted on the trading floors. 

 

Wholesale electricity transactions or trading are done in different market pools – day-ahead, 

intra-day and balancing markets depending on the lead times when offers are made. Stakeholders 

in the forward or day-ahead market have to offer or accept offers at least 24hrs to the real time. 

The presence of renewables strongly impacts the market dynamics including the clearing price 

since they are categorized as potentially a free energy resource because of their associated zero 

fuel cost. As such, Independent System Operators (ISO) and renewable energy investors rely on 

day-ahead forecasts to function in this market floor. More accurate prediction of solar yields will 

tremendously improve decision-making and in turn result in increased integration of solar 

technologies in the grid [3]. 

 

Whereas predicting the output power is relatively easy for a single commercial-scale PV system, 

it is a challenging task for a large number of small-scale units spread within a regional utility system 

[4]–[6] due to the dynamism of installed capacity and performance inconsistencies that vary from 

site to site. Distributed energy resources, including rooftop PV systems, are currently increasing [7]. 

Energy yield from PV sources largely depends on two basic parameters: solar irradiance and outdoor 
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temperature (T) [8], [9]. Another important parameter is the efficiency of conversion from sunlight 

to electrical energy. Therefore, prediction models are  concerned with evaluating solar resource 

levels and also the conversion rate of various PV technologies. The final step involves upscaling the 

model from a single or few systems to regional-scale capacity output. Three basic concepts 

considered in this study for regional scale PV power forecasting are: 

1. Day-ahead irradiance forecasting model. 

2. PV power simulation model. 

3. Representative PV sites selection and PV power output upscaling model. 

 

Figure 3.1 represents the modeling approach for a regional level PV power forecasting. 

3.2 Day-Ahead Irradiance Forecasting Model for PV Power Prediction 

There are various available techniques for forecasting PV power and several models exist to 

this end depending on the forecast horizon and its intended application. The forecasting process 

could be any of basically three methods viz. statistical, physical and a combination of both 

methods. Forecasting techniques like Artificial Neural Networks (ANNs), regression and 

persistence models that try to extract empirical relationships or information in observed data to 

predict future behavior fall into the family of statistical methods while physical methods use Cloud 

Motion Vectors (CMV) and mathematical expressions like partial differential equations to model 

the dynamics of the atmosphere [1]. Numerical Weather Prediction (NWP), Sky Imagery and 

Satellite Imaging are categorized as physical models. The rationale for using a hybrid of both 

methods is aimed at exploiting the unique strengths of each method. In combining both physical 

and statistical concepts to obtain an optimal forecast, the ratio of the blend is dependent on various 

determinants including the desired lead times, location globally and perhaps the forecaster's 

(forecast model designer) expertise level.  
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Figure 3.1. Overview of the proposed PV power prediction model 

 

Very short-term forecasts which are usually provided within a couple of minutes to the real 

time are required by utility operators for balancing electricity supply with demand. Utility 

operators also make use of forecasts made available with a lead time of at least 24 hours with an 

hourly resolution for planning and scheduling operations of system infrastructure in the day-ahead 

market [10]. NWP of climatic and meteorological conditions at ground surface is significantly 

useful for this time range into the future because of the erratic and transient nature of clouds to 

deviate from previous situation. Irradiance observed during clear-sky days are less variable and 
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follow a diurnal pattern making it easier to predict than during overcast or cloudy periods where 

cloud movements modulate solar irradiance irregularly. 

Weather variables are interdependent. Aerosols in the atmosphere contribute to irradiance 

scattering while gases like water vapor and ozone absorb irradiance [10],[11]. Surface irradiance 

attenuated and trapped in the atmosphere by the presence of these constituents in addition to 

irradiance reflection from ground surfaces could explain observed variable degrees of irradiance 

sensitivity to atmospheric temperature, relative humidity (RH), precipitation, wind speeds and 

other meteorological variables. Badosa et al. [12] concluded that daily formation of clouds are 

impacted by atmospheric humidity, local wind speed and direction. Consequently, cloud thickness 

and horizontal spread will vary between locations having different wind velocity and humidity 

profiles. 

 

Another parameter to consider is the Solar Zenith Angle (𝜃𝑆𝑍𝐴) which describes in angular 

units the almost deterministic diurnal movement of the sun through the sky. At high SZAs, i.e. 

when the sun is closer to the horizon, sunlight has to navigate through a longer path through the 

atmosphere before reaching earth’s surface resulting in more light being absorbed or scattered by 

aerosols and atmospheric gases. There is also an increased potential for obstruction of light by 

mountainous terrains during this period. Incorporating SZA in addition to temperature and 

precipitation as inputs to an irradiance  forecast model will produce very good solar radiation 

estimates especially in locations with complex terrains and obstructed horizons [13]. 

 

Every forecasting effort is basically aimed at figuring out the sun’s position and detailing 

the variability of atmospheric contents effect on the amount of sunlight reaching earth’s surface. 

In other words, estimate the clear-sky irradiance (CSI) and then model how this irradiance is 

impacted by the presence of clouds. While simulating CSI is relatively easier, projecting into the 

future in excess of several hours cloud formation and dissipation to detail cloud cover distribution 

with good accuracy is a herculean task. Cloud cover is a non-prognostic variable hence we may 

have to rely on the relationships between other NWP outputs. 

 

Based on correlations among weather variables [9], [14], Marquez et al. [15] developed a set 

of criteria to make inference on the most relevant predictors for solar irradiance forecasting. 

Gamma test and genetic algorithm were employed to obtain information on the relationships 
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between 11 meteorological and geo-temporal potential predictors and irradiance. The study arrived 

at a conclusion that sky (cloud) cover, (probability of) precipitation, (maximum and minimum) 

temperatures, and Cos(SZA) are overwhelmingly and critically important to enhance the 

forecasting accuracy. While RH, wind speed and direction were examined and not included in the 

best case list, the study did show that these variables could significantly improve forecast accuracy. 

Excluding sky cover from a list of commonly available weather data, Sangrody et al. [16] and Qing 

et al. [17] found that temperature and humidity had the strongest influence on accuracy of 

irradiance forecasts. 

 

Simple models proposed in [18]–[20] trained irradiance forecast equations based on the 

empirical fit between sky cover data and the cloudless sky index. Yang et al. [21] developed a 

numerical model that used the upper air humidity as an input to estimate the hourly mean global 

horizontal irradiance (𝐼𝐺𝐻). The author proposed a method for estimating clear-sky index from RH 

profile in three atmospheric sublayers. The method simply involved simulating clear-sky radiation 

and then parameterizing cloud attenuation of this radiation using upper-air humidity classifications 

which represented different cloud types based on an assumption that a RH value above a threshold 

signified cloud existence. Humidity, temperature, and cloud amount data were fed into a fuzzy 

theory model for day-ahead insolation prediction in [22]; Si et al. [23] also included 𝜃𝑆𝑍𝐴, whereas 

Moreno et al. [24] relied on only temperature and cloudiness forecast maps (cloud cover) as input 

data for a similar task. A common feature of these models is simulating clear-sky radiation and 

then parameterizing the attenuation of this radiation using different classifications of weather 

variables presumed to represent different cloud types. 

 

The forecasted irradiances from these models show promising levels of correlation with 

ground-observed and satellite-derived benchmarks. Notwithstanding, the forecast performance 

status quo can be improved upon. In some cases, forecast models rely on only single predictor, 

such as cloud cover [19], which, if not reliably gathered, would severely impact the results. Yang’s 

model in [21] depends on preestablished pressure and relative humidity (RH) constants, which are 

location sensitive and are not universally valid. Most of these models also require 𝐼𝐺𝐻 as a predictor 

and/or are applicable only to a single or small number of commercial-scale PV systems. 

Furthermore, based on our search, there isn’t any preexisting literature on estimating day-ahead 

regional level distributed PV power without requiring solar irradiance as a primary input. 



61 
 

 

Figure 3.2. Time plot of the GHI variable. 

 

Figure 3.3. Time plot of the clear-sky GHI variable. 
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Figure 3.4. Time plot of the Cos(SZA) variable. 

 

 

Figure 3.5. Time plot of the temperature variable. 
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Figure 3.6. Time plot of the precipitation variable. 

 

Figure 3.7.Time plot of the relative humidity variable. 
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Figure 3.8. Time plot of the wind direction variable. 

 

Figure 3.9. Time plot of the wind speed variable. 
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Figure 3.10. Time plot of the cloud type variable. 

 

The data plotted in Figures 3.2 – 3.10 were obtained same period (first 30 days of January 

2015) for each of the weather variables from National Renewable Energy Laboratory’s (NREL) 

NSRDB datasets for a location with Latitude/Longitude 42.61/ -71.94. 

 

 These findings fueled our interests in exploring the possibility of developing irradiance 

forecast models featuring comparatively better accuracy consistent across test data from multiple 

sites. The model will also use multiple weather parameters as predictor variables to minimize the 

effect of single predictor errors on the results. In addition, global models of NWP in particular 

produce excessively coarse spatial and temporal resolution solar irradiance information that 

requires optimization in the form of bias correction to make it location-specific and sophisticated 

temporal interpolations for hourly applications [25]. For instance, the European Centre for 

Medium-Range Weather Forecasts (ECMWF) global model produces irradiance predictions with 

spatial and temporal resolutions of about 16 km and 3 hours, respectively [26]. 
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Figures 3.2 – 3.4 involving Global Horizontal Irradiance (GHI), Clear-sky GHI and Cos 

(SZA) showed a strong daily seasonal pattern reminiscing the daily sun movement in the sky or 

rather the rotation of the earth about its axis while the others show a cyclic behaviour. The 

temperature plot in Figure 3.5 resembles a daily pattern of a steep climb and drop while 

precipitation showed an irregular cyclic pattern. Relative humidity mimics a white noise plot, 

windspeed has an increasing amplitude. Wind direction and cloud type do not show any notable 

or observable trend. In all, a finer resolution of the plots will uncover more slight changes and 

trends. 

 

We use scatter plots to understand the relationships between the variables as shown in 

Figures 3.11 – 3.18. Data were obtained from the National Renewable Energy Laboratory’s 

(NREL) NSRDB datasets [27] for a location with latitude/longitude 42.61/ -71.94. Clear-sky GHI 

is the clear-sky global horizontal irradiance. Clear and recognizable patterns can be observed 

between clear-sky irradiance, Cos(SZA), RH, temperature and GHI while the other 4 plots appear 

random except for the windspeed plot showing a weak negative relationship between windspeed 

and GHI. The Correlation coefficients measure the strength of only the linear relationships and 

therefore could be misleading because a weak linear correlation might mean a stronger non-linear 

relationship. 

 

Figure 3.11. Solar irradiance plotted against clear-sky GHI variable with the corresponding 

correlation coefficient. 
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Figure 3.12. Solar irradiance plotted against Cos(SZA) variable with the corresponding 

correlation coefficient. 

 

 

Figure 3.13. Solar irradiance plotted against relative humidity variable with the corresponding 

correlation coefficient. 
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Figure 3.14. Solar irradiance plotted against temperature variable with the corresponding 

correlation coefficient. 

 

Figure 3.15. Solar irradiance plotted against wind direction variable with the corresponding 

correlation coefficient. 
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Figure 3.16. Solar irradiance plotted against wind speed variable with the corresponding 

correlation coefficient. 

 

Figure 3.17. Solar irradiance plotted against parameterized cloud type variable with the 

corresponding correlation coefficient. 
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Figure 3.18. Solar irradiance plotted against precipitation variable with the corresponding 

correlation coefficient. 

 

In this chapter, the main contributions include: 

1. A model for estimating distributed regional-scale PV power generation based on weather 

variables from NWPs is proposed. The three basic concepts considered in this study are day-

ahead irradiance forecasting, PV power simulation, and representative PV sites selection and 

power output upscaling. For day-ahead irradiance forecasts, A recalibrated clear-sky model 

is combined with an artificial neural network (ANN). Both physical and machine learning-

based models are explored for PV power simulation. Data dimension reduction techniques 

including k-means clustering and principal component analysis (PCA) are employed for 

cluster creation and representative site selection. The regional output is estimated using linear 

upscaling expressions. 

2. A basis for using autoregression of weather variables is provided to create input multiples 

for improved accuracy. 

3. A perspective for redundant and relevant input weather variables for solar irradiance 

forecasts is provided. 
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Generally, deep neural networks are increasingly more popular and potentially superior to 

ANNs in terms of accuracy, relevance and applicability especially for forecasting applications. 

Most recent machine-learning-based forecast models show a transition from ANNs to deep neural 

networks [28]. Chen et al. [29] proposed a deep learning model for short-term predictions of 

windspeed. The proposed model consisted of a layer of three separate windspeed predictions using 

extreme learning machine (ELM), Elman neural network (ENN) and long short-term memory 

(LSTM) neural networks with the aim of exploiting their individual strengths. A second later of 

ELM was subsequently used for a non-linear combination of all three predictions for best results. 

Zhao et al. [30] also proposed using an ensemble of deep learning methods for vehicular traffic 

flow predictions instead. Similar to [29], a second layer of no negative constraint theory (NNCT) 

weight integration strategy was used to aggregate a cluster of LSTM-based predictions from the 

first stage into a final result. 

 

However, the ANN is computationally simpler, requires less storage capacities and it is less 

time consuming than deep learning alternatives. The training data requirement for deep learning 

networks is huge [31] and not feasible for this study because of data availability constraints. Also, 

the performance of the proposed ANN-based model was comparatively sufficient and better given 

the prevailing realities of a small training data size and uncertain data quality. 

3.2.1 Clear-Sky Irradiance Estimation 

First, 𝜃𝑆𝑍𝐴 and 𝐼𝐺𝐻𝑐𝑠𝑘 are calculated by simple empirical means. 𝜃𝑆𝑍𝐴 is the angle between 

the sun and the zenith and is related to the sun’s elevation angle (𝛼𝑒) by (1). There is no universally 

accepted or valid expression for estimating 𝐼𝐺𝐻𝑐𝑠𝑘 due to sensitivity to local conditions and 

subjectivity to the training data. Several clear-sky models exist in the literature, ranging from basic 

models that require only the 𝜃𝑆𝑍𝐴 as input to complex models that are more difficult to implement 

due to unavailability of required input parameters. The choice of which model to use is found to 

be inconsequential, provided proper adjustment of the scaling is implemented to yield a 

sufficiently accurate representation of surface 𝐼𝐺𝐻𝑐𝑠𝑘 [32]. 

 

With respect to the daily power generation profile, our initial trial of a randomly picked 

clear-sky model showed high magnitude forecast errors coinciding with midday when the sun is 
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expected to be at the zenith. On a seasonal basis, the bulk of the errors would occur between April 

and September when the expected irradiance and average number of daily sun hours are higher 

[33]. Consequently, this finding supported the notion that a good forecast system would require 

estimating the 𝐼𝐺𝐻𝑐𝑠𝑘 component with good accuracy. 

𝜃𝑆𝑍𝐴 = 900 − 𝛼𝑒                                                                                                                                           (1) 

𝛼𝑒 = sin−1[sin 𝜎 sin ∅ + cos 𝜎 cos ∅ cos(𝐻𝑅𝐴)]                                                                                (2) 

where: 

 𝜎𝑑 is the declination angle, 

∅ is the latitude, and 

𝐻𝑅𝐴 is the hour angle. 

 

Further expressions to calculate 𝜎 and 𝐻𝑅𝐴 can be obtained from [34]. The clear-sky model 

by [35] and that requires only 𝜃𝑆𝑍𝐴 as its input is adopted to calculate 𝐼𝐺𝐻𝑐𝑠𝑘. However, the model 

coefficients were recalibrated by regression analysis (ordinary lease squares) using data from the 

NREL NSRDB for the same period and location considered in this study. It is observed that a 

single expression cannot sufficiently model the relationship between 𝜃𝑆𝑍𝐴 and 𝐼𝐺𝐻𝑐𝑠𝑘 at all 

irradiance levels, so we propose using (3) and (4) depending on a 𝜃𝑆𝑍𝐴 threshold obtained by 

optimization. This recalibration yields better results with error values that are below 3.5% of the 

reference data. 

𝐼𝐺𝐻𝑐𝑠𝑘(𝑡) = 1100 ∙ cos(𝜃𝑆𝑍𝐴(𝑡))
1.164

(𝑤 𝑚2⁄ )     𝑖𝑓 𝜃𝑆𝑍𝐴 < 810                                                       (3) 

𝐼𝐺𝐻𝑐𝑠𝑘(𝑡) = 1100 ∙ cos(𝜃𝑆𝑍𝐴(𝑡))
1.25

(𝑤 𝑚2⁄ )   𝑖𝑓 𝜃𝑆𝑍𝐴 ≥ 810                                                          (4) 

3.2.2 Artificial Neural Networks 

To capture the complex and non-linear empirical relationships between meteorological 

variables and 𝐼𝐺𝐻 hourly values, a neural network is a preferred forecasting method [8], [36]. There 

are six variables as inputs, and ANNs show sufficiently better accuracy and adaptability than other 

statistical alternatives, such as the autoregressive moving average extrapolation (ARMAX) [37] 

and the autoregressive integrated moving average (ARIMA) models [38], especially for handling 

uncertain weather conditions. ANNs are considered one of the most effective statistical forecasting 
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methods and have widespread acceptability in energy forecasting discourses due to their ability to 

capture sudden changes in input-output relationships [39]. 

 

 

Figure 3.19. Autocorrelation function (ACF) of clear-sky GHI predictor. The peaks and troughs 

are 24 hours apart. 

 

 

Figure 3.20. Autocorrelation function (ACF) of SZA predictor. The peaks and troughs are 24 

hours apart. SZA is the solar zenith angle. 
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Figure 3.21. Autocorrelation function (ACF) of the cloud type predictor. 

 

 

Figure 3.22. Autocorrelation function (ACF) of the relative humidity predictor. The peaks and 

troughs are 24 hours apart. 
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Figure 3.23. Autocorrelation function (ACF) of temperature predictor. The peaks and troughs are 

24 hours apart. 

 

 

Figure 3.24. Autocorrelation function (ACF) of wind speed predictors. The peaks and troughs are 

24 hours apart. 

 

A feed-forward neural network (FFNN) [39], also known as multi-layer perceptron, is 

implemented because we find it to be the most popular and simple to implement architecture. The 

proposed neural network architecture comprises of the input, output (or target) and hidden layers. 

As already discussed, there are six weather variables as inputs and one target parameter. There is 

no standardized method for determining the optimal number of hidden layers and neurons, most 

proposed approaches are derived by trial and error. A common approach suggested in available 
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literature for choosing the number of hidden layer parameters involves cross-validating the 

performance of a model using different network configurations and adopting the network that 

minimizes the statistical error while avoiding overfitting problems [40]. Other approaches involve 

deciding the number of neurons by the ratio between the number of inputs to the target variables 

[41]. 

 

Consequently, the network architecture comprises of a single hidden layer with the number 

of hidden neurons arbitrarily (trial and error) chosen to be about two-third the number of input 

variables. Since algorithms in existing literature for estimating an optimal number of hidden layers 

and neurons did not meaningfully improve our results, these algorithms [40], [41] are not discussed 

in detail. The network is trained using the Levenberg-Marquardt back-propagation algorithm; this 

algorithm is relatively more efficient and consumes less time [42]. Two different scenarios of the 

proposed forecast model based on the autoregression of the predictors as model inputs are 

considered. Scenario 1, which generated two cases (Cases 1 and 2), aims to explore and exploit 

the dependency between historical values of the predictors by their combination to yield multiples 

of input values fed to the ANN. Case 1 involves 18 input neurons comprising three sets of the six 

predictors for each hour (𝑡), the day before (𝑡 − 24), and two days before (𝑡 − 48). Case 2 uses 

hour (𝑡), one hour prior (𝑡 − 1), and two hours prior (𝑡 − 2) to consider a shorter lag time. In 

Scenario 2, only one set of the six predictors constituting six input variables is fed to the ANN. 

This exploration is motivated by plots of the autocorrelation coefficients in Figures 3.19 – 3.24 

with strong linear relationships between the lagged values. The autocorrelation function (ACF) 

plots show varying trends and seasonal behaviors. The cloud type plot shows a significant trend 

(positive ACF values), decaying slowly with time until the zero mark, while the others show a 

daily seasonality (scalloped shape) or a combination of both effects. 
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Figure 3.25. Block diagram of the proposed irradiance forecast model. Scenario 1 represents the 

exploratory Cases 1 and 2 with daily and hourly autoregressions of the predictor variables, 

respectively, whereas scenario 2 is without autoregressions. 

 

Figure 3.25 represents a schematic structure of the proposed irradiance forecast model. Six 

predictor variables are fed as inputs to the ANN to predict the measured irradiance in a day-ahead 

time horizon. Temperature, humidity, cloud cover and windspeed predictor variables are obtained 

from NDFD whereas CSI and 𝜃𝑆𝑍𝐴 are simulated. The measured irradiance fed to the ANN as 

target for training and testing purposes was sourced from ground-based weather monitoring 

stations. The outputs in Figure 3.25 are mathematically described by (5) to (7). 

Scenario 1: 

𝐶𝑎𝑠𝑒 1: 𝐼𝐺𝐻(𝑡) = 𝑓𝑁𝑁{𝑚(𝑡), 𝑚(𝑡 − 24), 𝑚(𝑡 − 48)}                                                                          (5) 
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𝐶𝑎𝑠𝑒 2: 𝐼𝐺𝐻(𝑡) = 𝑓𝑁𝑁{𝑚(𝑡), 𝑚(𝑡 − 1), 𝑚(𝑡 − 2)}                                                                               (6) 

Scenario 2: 𝐼𝐺𝐻(𝑡) = 𝑓𝑁𝑁{𝑚(𝑡)}                                                                                                           (7) 

where: 

𝑓𝑁𝑁 is the function approximated by the neural network, 

𝑚 represents a set of the six meteorological predictors and 

𝑡 is the time. 

 

The input meteorological data (except cos(𝜃𝑆𝑍𝐴) and 𝐼𝐺𝐻𝑐𝑠𝑘 which were simulated)  used 

for training the networks are archived NDFD forecasts. Therefore, for Case 1, the observed or 

measured 𝑚(𝑡 − 24) and 𝑚(𝑡 − 48) are actual values that are available during the forecasting 

process and, as such, are preferred with respect to potentially increased model accuracy. 

3.3 PV Power Simulation 

After irradiance prediction, simulating power production from PV modules or an array can 

be done using either a physical model, a machine learning (ML) model, or a hybrid of both. ML 

models require historical PV power production and measured irradiance data for training a model 

to approximate the relationship between power output and irradiance forecasts. Physical 

approaches are comprised of several mathematical equations that try to capture the dynamics of 

different processes characterizing the conversion of sunlight to power. The hybrid option applies 

the physical model and then smooths the results using ML. 

 

Although the physical model appears to be more cumbersome, it is often preferred as 

consistently monitored and reported historical power output data especially for behind-the-meter 

or residential PV systems are usually not available. Roof-top solar generators are alternatively 

called behind-the-meter systems because they are not equipped with the instrumentation for direct 

monitoring by utility operators. Every physical model requires 𝐼𝐺𝐻 to be decomposed into its direct 

normal (DNI) and diffused (DHI) components, and then fed to a transposition model that outputs 

the plane of array irradiance (𝐼𝑝𝑜𝑎). Several decomposition and transposition models exist [43] 

and can be applied depending on available input information and preferences informed by the 

location of the PV site. The accuracy of a model is location sensitive and changes accordingly 
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[43]. 𝐼𝑝𝑜𝑎 is converted to DC power and subsequently AC power output using a DC model and 

inverter model, respectively. The physical model illustrated in Figure 3.26 can be easily 

implemented using the PV_Lib Toolbox on MATLAB. The MATLAB scripts were developed by 

a collaboration of NREL and Sandia Laboratory for easier modelling of power output from PV 

arrays with fixed-tilt angles. Input variables include a description of the array metadata, the site 

location, irradiance (GHI) time series and the simulation period (date). 

 

 

Figure 3.26. Flowchart showing the sequence for power conversion from global horizontal 

irradiance using the physical model of PV power simulation. 

 

A major input parameter requirement for the physical model is the PV module orientation 

and inclination angles. The precision of decomposition and transposition models in estimating 𝐼𝑝𝑜𝑎 

from horizontal irradiance components is heavily impacted by the module tilts. These parameters 

reported on public or user-controlled webpages are sometimes plagued by a variety of human 

oversight errors resulting from inaccurately estimated or reported values. At other times, these 

parameters are not even made available on these websites, consequently necessitating reliance on 

ML techniques or inference from mere physical evaluation of pictures provided by users. As such, 

an alternative ML-based simulation model is employed in this work in addition to the physical 

model. The quadratic power projection procedure in [44] is adopted and further modified in this 

chapter. Our modified model produces results with substantial power simulation accuracy. The 

modifications involve using a nonlinear least squares (NLS) function to derive the coefficients, 

𝑎1 − 𝑎6, in (8) by fitting to measured PV power data: 

𝑃𝑓 = 𝑎1 + 𝑎2 ∙ 𝐼𝑝𝑜𝑎 ∙ 𝐿𝐹 + 𝑎3 ∙ 𝑇𝑎𝑚𝑏 + 𝑎4 ∙ 𝐼𝑝𝑜𝑎 ∙ 𝐿𝐹 ∙ 𝑇𝑎𝑚𝑏 + 𝑎5 ∙ (𝐼𝑝𝑜𝑎 ∙ 𝐿𝐹)
2

+ 𝑎6 ∙ 𝑇𝑎𝑚𝑏
2     (8)                                   

where: 

𝑃𝑓 is the projected power, 

LF is the loss factor, and 
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𝑇𝑎𝑚𝑏 is the ambient temperature. 

3.4 Representative PV Site Selection and Power Output Upscaling Model 

The number of distributed PV systems is on the rise and individual PV systems have 

differing unique features which make simulating a regional PV output as a single system 

unfeasible. Moreover, the basic idea of simulating every PV system in the region would require us 

to have a huge database of information as well as the capacity to handle a large number of 

computations. While regional utility operators maintain records of grid-tied PV systems, only the 

system capacity and location information are stored in all but metered large-scale systems. 

 

Other data required for power output simulation are not readily available, including hardware 

configuration, make of panels and inverters, and dynamic characteristics, such as snow cover, 

shading levels and equipment failures. As a result, independent PV systems with the same capacity 

and available solar radiation can have different power profiles. Therefore, a model to navigate 

these hurdles and produce regional-scale PV power generation outputs with sufficient accuracy is 

required to fill in this technical gap. 

 

Neighboring PV systems share similar power generation profiles, so a simplified model 

would be to simulate the PV power generation output of representative systems and then upscale 

the results to a regional level. This concept poses challenges with respect to how to optimally 

represent system parameters when selecting the representative lots as misrepresentation could 

introduce systematic errors. For a better description of the overall power production, basic 

properties including the distribution of system orientations, mix of module and inverter types, and 

an optimal spatial distribution of the representative set should be ensured. 

 

The model proposed for this study involves dividing the region into geographical clusters 

based on the Euclidean distance between PV sites and select representative systems. Selection 

criteria within each cluster include proximity to the centroid of a cluster, nominal capacity, and 

prevalent tilt and orientation angles. Next, we simulate power outputs from each representative 

system and then use a simple mapping function to estimate the regional level based on any of the 

two modes described by (9) to (11). 
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𝑃𝑟𝑒𝑔𝑖𝑜𝑛(𝑡) = 𝑓 (∑ 𝑃𝑟𝑒𝑝,𝑖(𝑡)

𝑁

𝑖=1

)                                                                                                                 (9) 

𝑃𝑐𝑙𝑢𝑠𝑡𝑒𝑟,𝑗(𝑡) = 𝑓 (𝑃𝑟𝑒𝑝,𝑗(𝑡))                                                                                                                   (10) 

𝑃𝑟𝑒𝑔𝑖𝑜𝑛(𝑡) = ∑ 𝑃𝑐𝑙𝑢𝑠𝑡𝑒𝑟,𝑘(𝑡)                                                                                                                  (11)

𝑚

𝑗=1

 

where: 

𝑃𝑟𝑒𝑔𝑖𝑜𝑛 is the regional-level PV system power outputs, 

𝑃𝑐𝑙𝑢𝑠𝑡𝑒𝑟 is the cluster-level PV system power outputs, 

𝑃𝑟𝑒𝑝 is the representative PV system power outputs, 

𝑁 is the total number of representative systems, 

𝑚𝑐 is the total number of clusters, 

𝑗 is the 𝑗 − 𝑡ℎ representative system, 

𝑘 is the 𝑘 − 𝑡ℎ cluster, and 

𝑓 is the mapping function representing the ratio between nominal capacities. 

3.5 The Proposed Model Execution 

3.5.1 Data Collection from Case Study Solar Sites 

To implement the proposed model, real-world data are used in this chapter. Three different 

datasets are collected, including measured solar irradiance from monitoring stations, weather data 

from NDFD and solar power measurements from a public webpage. Several webpages available 

in the public space with registered solar systems owners monitoring their outputs were considered 

for suitability for our study. Solrenview.com was preferred because the webpage offered round the 

clock data reporting with hourly time steps and minimal hurdles to automatic data extraction. 

However, individual PV systems had varying levels of inconsistencies and missing data entries. A 
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total of 25 independent systems within the state of California were selected to meet the research 

objectives. In addition to PV site metadata, power production data were collected for the period 

from March 2022 to September 2022 from the webpage. 

3.5.2 Weather and Irradiance Datasets Description 

The chosen 25 PV systems were divided into 4 clusters as shown in Table 3.1 and Figure 

3.34 using k-means clustering technique [7]. All solar irradiance and weather data were collected 

for only the 4 representative systems for the same period as the power data. A 3-h temporal 

resolution NDFD day-ahead forecasts of the input predictors were collected and interpolated for 

hourly intervals. Raw irradiance files from available ground-based weather monitoring stations  

closest to the selected representative sites were also collected for every cluster for training and 

testing purposes. Notably, it was practically impossible to find the ideal or perfect situation for all 

of the systems, with the perfect case being consistent power generation reporting for at least one 

calendar year. In this study, 70% of the data in the dataset were used for extracting the irradiance-

power relationship, and the remainder for out-of-sample testing. 

Table 3.1. Selected solar site metadata categorized into clusters. 

Clusters 1 2 3 4 

Representative solar module capacity (kW) 48.1 114.9 40.3 10.6 

Inverter capacity (kW) 42 100 42 10.8 

Proximity to weather station (km) 30 16 0 31 

Number of solar sites in a cluster 9 3 7 6 

Total nominal cluster capacity (kW) 488 276.4 379.6 1093 

 

3.5.3 Datasets Cleaning and Scaling 

Two common characteristics of measured 𝐼𝐺𝐻 data are non-zero nighttime entries and 

missing entries caused by equipment failure. Physically impossible irradiance values were flagged 

using (12) [44] and were excluded from the analysis. Similarly, filtering was applied based on 𝜃𝑆𝑍𝐴 
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to omit irradiances corresponding to 𝜃𝑆𝑍𝐴 values exceeding 95° (𝜃𝑆𝑍𝐴 > 95°) so that only daylight 

(𝐼𝐺𝐻 > 0) hours were considered. 𝐼𝑒𝑥𝑡 is the extraterrestrial irradiance. We also scaled the proposed 

model input and output parameters using a min and max values of 0 and 1 respectively in (13). 

𝐼𝐺𝐻 < 1.5 ∙ 𝐼𝑒𝑥𝑡 cos(𝜃𝑆𝑍𝐴)1.2                                                                                                                    (12) 

𝑃𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑃𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 − 𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛
                                                                                                                  (13) 

where: 

𝑃𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 is either the predictor or the target variable. 

 

For model validation and testing, the performance of  the proposed irradiance forecast 

model and regional PV power forecast results are discussed by comparing with Yang’s model in 

[21] and Perez’s model in [19]. The two existing models have similar objectives to ours since they 

omitted irradiance data as a predictor variable. The proposed model is implemented in MATLAB 

R2022a on a PC with an Intel Core i7-6700 3.40GHz CPU and 16 GB RAM. 

 

 

Figure 3.27. Irradiance time plots of the performance of the forecast models for the first 7 days 

of July 2022. Hourly and daily denote the autoregression lags. 

3.5.4 Error Statistics 

We use the following error metrics (14) – (16) to estimate how well the models under study 
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can replicate the measured or observed variables. 

 

Figure 3.28. Scatter plot with correlation coefficient (R) of measured vs. forecasted irradiances 

for the entire test period using Yang’s model. 

 

Figure 3.29. Scatter plot with correlation coefficient (R) of measured vs. forecasted irradiances 

for the entire test period using Perez’s model. 
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Figure 3.30. Scatter plot with correlation coefficient (R) of measured vs. forecasted irradiances 

for the entire test period using the hourly autoregression model. 

 

Figure 3.31. Scatter plot with correlation coefficient (R) of measured vs. forecasted irradiances 

for the entire test period using the model without autoregression. 
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Figure 3.32. Scatter plot with correlation coefficient (R) of measured vs. forecasted irradiance for 

the entire test period using the daily autoregression model. 

 

𝑁𝑅𝑀𝑆𝐸 =
√1

𝑛
∑ (𝐼𝐺𝐻𝑓,𝑖

− 𝐼𝐺𝐻𝑚,𝑖
)

2
𝑛
𝑖=1

𝐼𝐺𝐻𝑚,𝑝𝑒𝑎𝑘

× 100%                                                                                (14) 

𝑁𝑀𝐴𝐸 =

1
𝑛

∑ |𝐼𝐺𝐻𝑓,𝑖
− 𝐼𝐺𝐻𝑚,𝑖

|𝑛
𝑖=1

𝐼𝐺𝐻𝑚,𝑝𝑒𝑎𝑘

× 100%                                                                                         (15) 

𝑊𝑀𝐴𝑃𝐸 =
∑ (|𝐼𝐺𝐻𝑓,𝑖

− 𝐼𝐺𝐻𝑚,𝑖
|)𝑛

𝑖=1

∑ |𝐼𝐺𝐻𝑚,𝑖
|𝑛

𝑖=1

× 100%                                                                                    (16) 

3.5.5 Irradiance Forecast Model Performance 

Using the first cluster as a case study, the results shown in Figures 3.27 – 3.32 are obtained 

after several trainings of the networks for both scenarios. Figure 3.32 primarily represents positives 

of the proposed model, whereas Figures 3.28 – 3.32 goes further to highlight the convergence 

levels. The proposed model’s performance using some error metrics are shown in Table 3.2. The 
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Yang’s model visibly overestimated the irradiance in the scatter plot. Normalized to 𝐼𝐺𝐻𝑚,𝑝𝑒𝑎𝑘
, 

the daily autoregression model offered the best results, with an improved NMAE value of 4.58% 

compared to the 4.94% yield of the model without lags. This marginal improvement may question 

the justification of using autoregression because the results will not be significantly improved or 

affected irrespective of the combination of inputs to the network. Regardless, a slight change in 

accuracy metrics could mean a huge difference when the PV’s nominal capacity is large. Thus, the 

daily autoregression model is preferred for PV power simulation in this study.  

 

Furthermore, we employ the t-statistic (𝑡 − 𝑠𝑡𝑎𝑡) metric detailed in [45] to evaluate the 

statistical significance of the models under study in Table 3.2. We use the metric to compare the 

forecasts with the target irradiance, smaller t-stat values represent better forecasts. A model is 

statistically significant or useful if its t-statistic value is below t-critical (𝑡𝑐). All the models except 

Yang’s model have the t-statistic below the critical threshold. It is worthy of note that the t-statistic 

metric is reliable only for small samples or where the population variance is unknown. 

 

Table 3.2. Irradiance forecast accuracy using NRMSE and NMAE statistical metrics. 

Forecast Method NRMSE 

(%) 

NMAE 

(%) 

t-stat 

(𝒕𝒄 = 𝟏. 𝟔4) 

R 

Without Autoregression 8.44 4.94 0.194 0.96 

Hourly Autoregression 8.42 5.07 0.106 0.96 

Daily Autoregression 6.58 4.58 0.125 0.97 

Perez Model 9.90 5.74 0.07 0.95 

Yang Model 13.30 6.47 4.29 0.92 

 

In the daily irradiance profile in Figure 3.27, only Day 3 and Day 4 from the left are either 

partly or almost fully cloudy. Analyzing the model forecast strength based on only clear-sky days 

would be counterproductive because the actual 𝐼𝐺𝐻 corresponds to 𝐼𝐺𝐻𝑐𝑠𝑘 thereby concealing vital 

information about the model’s strengths. With keen interest in Day 4, the daily autoregressive 

model had a significantly better following with the measured irradiance than the other models. 

Although only select portions can be feasibly sampled, visual inspection of the time plots shows 

reasonable correlations between measured and forecasted irradiance, especially for the daily 
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model. This observation is further confirmed by scatter plots in Figures 3.28 – 3.32. 

 

Table 3.3. Pearson’s coefficient of correlation (R) between the six meteorological variables 

 CSI T RH CC WS SZA 

CSI 1.00 0.30 -0.22 0.01 0.26 -0.99 

T 0.30 1.00 -0.25 0.03 0.06 -0.33 

RH -0.22 -0.25 1.00 0.54 -0.34 0.22 

CC 0.01 0.03 0.54 1.00 -0.07 -0.01 

WS 0.26 0.06 -0.34 -0.07 1.00 -0.27 

SZA -0.99 -0.33 0.22 -0.01 -0.27 1.00 

 

3.5.6 Redundant Predictors Test 

One of our objectives is to achieve the optimal forecast accuracy with the minimum number 

of input parameters. From the correlation coefficients in Table 3.3, there is a strong negative linear 

relationship between the CSI and SZA, making one of the variables redundant. Omar et al. [46] 

observed a similar correlation level and eliminated SZA at a penalty of only a marginal model 

error increase. 

 

We carried out an analysis similar to the approach in [46] to identify, and if justified, 

exclude redundant variables as inputs. Based on strengths of the correlation coefficients in Figures 

3.11 – 3.18 and Table 3.3, a limited number of input variable combinations are experimented with. 

The bar chart in Figure 3.33 illustrates the results of our analysis. As expected, the input 

combinations involving CSI and/or SZA can produce considerably more accurate results because 

the intrinsic characteristics of both variables share a resemblance to 𝐼𝐺𝐻 in the absence of clouds. 

Although RH shows a higher correlation than temperature, only a slight difference exists in their 

forecast accuracies. The optimal accuracy occurs when all six variables are included. The analysis 

indicates that every input variable contributes to accuracy improvement, with CSI and SZA being 

the most relevant. SZA is not removed as a predictor because even a marginal contribution to 

model error reduction is significant to this work considering  a regional scale installed capacity. 
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Figure 3.33. Average forecast error of eight meteorological variables mixes for redundancy 

check. A: T only; B: RH only; C: SZA only; D: CSI only; E: cloud cover, wind speed, 

temperature, RH and CSI; F: cloud cover, wind speed, temperature, RH, and SZA; G: wind 

speed, temperature, RH, CSI, and SZA. 

3.5.7 Cluster Segmentation 

The choice of representative PV systems is made by applying data dimension reduction techniques 

to the curated datasets. First, the k-means clustering algorithm is used to create four clusters of solar 

sites (in Table 3.1). The optimal number of clusters is determined by the geographical layout of the 

sites as shown in Figure 3.34. The objective of the algorithm is to group similar sites into clusters 

using only their longitude and latitude data while ensuring the dissimilarity of one cluster from 

another. The algorithm uses unsupervised learning methods to iteratively identify centroids and 

calculate the Euclidean distances between the locations of the sites. The sites are grouped into 

clusters using a (distance) minimization objective function.  The solar site closest to the centroid of 

a cluster was considered a suitable candidate for modeling the whole cluster. 
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Figure 3.34. Clusters and centroids created using the k-means clustering algorithm. The 

Euclidean distance between the solar sites is the only determinants of the k-means clustering 

process. 

 

To ensure a chosen solar site is either truly representative of the whole cluster or is the best 

available case, PCA (a linear dimension reduction technique) [7] is implemented in addition to k-

means clustering on the normalized power generation time series data to rank the candidate sites 

in a cluster according to their principal components. The site containing more variant information 

is ranked the highest. Furthermore, the following conditions are taken into consideration in order 

of priority for selecting the representative sites: power production data and site metadata reporting; 

regular reporting without prolonged periods of missing data; reasonably close to a ground-based 

weather station providing irradiance measurement data with easy accessibility; and closest to the 

centroid of a cluster and the principal component using PCA. The sites with details in Table 3.1 

and close to the centroids in Figure 3.34 were selected as the representative sites. 
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Figure 3.35. Monthly average power generation data in 2019 for each solar site in cluster 1 

normalized to their reported respective nominal capacity in the clusters created using the k-

means clustering technique. 

 

Figure 3.36. Monthly average power generation data in 2019 for each solar site in cluster 2 

normalized to their reported respective nominal capacity in the clusters created using the k-

means clustering technique. 
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Figure 3.37. Monthly average power generation data in 2019 for each solar site in cluster 3 

normalized to their reported respective nominal capacity in the clusters created using the k-

means clustering technique. 

 

Figure 3.38. Monthly average power generation data in 2019 for each solar site in cluster 4 

normalized to their reported respective nominal capacity in the clusters created using the k-

means clustering technique. 
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Figures 3.35 – 3.38 demonstrate the rationale to use clusters of solar sites and 

representative systems. The line plots show the 25 PV systems categorized into four clusters. Their 

annual outputs are normalized to their individual nominal capacities and averaged on a monthly 

basis for easy visualization of power generation profiles.  While the results show a similar power 

generation profile for sites in a cluster is realistically possible, solar sites still experience errant 

profiles resulting from several causes. For some sites with multiple inverters, a large error is 

observed when there are inverter downtimes, or some inverters stop reporting power output. The 

downtimes can be either due to electrical faults or connection breakdowns between communication 

devices and the webpage database. Cluster 1 has a significantly lower than average cluster power 

profile throughout the year for some sites relative to the predominant number of solar sites. A 

possible contributor to this mismatch is the incorrectly reported nominal installed capacity or 

situations where some PV modules may be decommissioned without due updates on the webpage. 

Other factors, including cover from trees/high rise buildings and snow, dirt/dust on solar panel 

surfaces, and cloud cover, that could potentially reduce power production, may not have 

substantially contributed to anomalies in Clusters 1 and 3. 

 

 

Figure 3.39. Benchmarking of the regional-level PV power forecast performances of the three 

models. 
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Figure 3.40. Bar chart of the non-cumulative cluster-level NRMSE as a percentage of maximum 

instantaneous value: (A) Irradiance forecast; (B) representative system power modelling; (C) 

cluster-level power modelling. 

 

Figure 3.41. Time plot of a randomly sampled 7 days of the proposed model compared to Yang’s 

and Perez’ models for May 2022 regional-level power generation. 
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Figure 3.42. Scatter plot with the correlation coefficient of power generation at the regional level 

using Yang’s model. 

 

Figure 3.43. Scatter plot with the correlation coefficient of power generation at the regional level 

using Perez’s model. 
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Figure 3.44. Scatter plot with the correlation coefficient of power generation at the regional level 

using the proposed Daily model. 

3.5.8 Cluster And Regional Level Forecast Results 

The daily autoregressive day-ahead forecast model formulated in (5) is used to obtain day-

ahead irradiance predictions for the representative sites for the four clusters after conscientiously 

cleaning and normalizing the input data. A trial-and-error method informed by pictures of the solar 

sites is employed to estimate module inclinations for power simulation models. As expected, the 

ML option performs better relative to the physical model, primarily due to the latter’s heavy 

reliance on accurate input inclination angles [47], which in this case are obtained by the unreliable 

trial-and-error approach. The physical model of PV power simulation is recommended when all 

input parameters are readily available, accessible, and gathered with acceptable reliability. The 

regional-scale power output is estimated by upscaling cluster outputs using mapping functions (10) 

and (11). With the nighttime values removed, results obtained for each stage from forecasting 

irradiance to estimating the regional PV power generation are detailed in Figure 3.39 and Figure 

3.40 for easy visualization. 
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The proposed daily model yields result with NMAE and NRMSE errors of 3.62% and 

4.56%, respectively, and visible in the time and scatter plots of Figures 3.41 – 3.44. However, 

significant improvements can be observed compared to Yang’s and Perez’ models in Figure 3.39. 

Whereas the irradiance forecast errors are consistently lower across the clusters for the proposed 

model, as shown in Figure 3.40, a larger percentage of the errors is introduced at the power 

modelling stage, which subsequently affects the upscaling model accuracy. A quite prominent 

example occurs in Cluster 3, which has NRMSE values of 9.2% and 8.82% for the representative 

sites and cluster level power simulations, respectively. This is in part a direct consequence of the 

PV power modelling method we adopted, which is still the best available case considering 

constraints related to unavailability of the required system metadata. 

 

With regards to the WMAPE results, there is no distinctive or standout pattern observable 

in Figure 3.39 and Table 3.4 other than that the figures are considerably larger than the other error 

metrics and our proposed model is preferred. As the name suggests, the WMAPE in (15) is 

normalized by the sum of the absolutes of the measured variable. Consequently, the WMAPE is 

favorably biased towards positive errors (𝐼𝐺𝐻𝑚
> 𝐼𝐺𝐻𝑓

) and puts a heavier penalty on 

overestimations [48]. It is also rational to say that poor test data quality also contributed to  the 

inconsistencies in the WMAPE result. 

 

Although the PV power datasets feature 24-hour reporting, careful analysis reveals that 

some PV systems are configured to cut off reporting when the generated power is below a threshold 

and instead report a zero integer in place of actual power output. Effects of geographical 

aggregation/averaging are evident in error reductions at regional levels for all models in Table 3.4. 

The degree of averaging as analyzed in several studies [49], [50] is directly proportional to the 

spatial distribution of systems as well as the number and size of systems in the region of interest.  

 

Table 3.4. Evaluation of the proposed model performance in both the cluster and regional levels 

using NMAE and NRMSE metrics normalized to their maximum instantaneous power. 

 
Model 

Rep System 

Irradiance 

Rep System 

Power 

Cluster 

Power 

Cluster 1 NMAE (%) Yang 9.50 7.23 7.53 

Perez 8.07 5.72 7.41 

Daily 4.58 4.86 5.54 



98 
 

NRMSE (%) Yang 12.62 10.30 9.91 

Perez 10.69 8.18 9.28 

Daily 6.58 7.25 7.74 

WMAPE (%) Yang 21.44 18.86 21.8 

Perez 18.22 14.93 21.46 

Daily 10.29 13.00 17.12 

Cluster 2 NMAE (%) Yang 13.08 9.52 9.41 

Perez 7.33 4.90 5.34 

Daily 3.18 3.06 4.71 

NRMSE (%) Yang 18.62 12.99 13.08 

Perez 11.68 7.11 7.15 

Daily 5.00 6.64 7.18 

WMAPE (%) Yang 26.26 27.27 26.88 

Perez 14.73 14.02 14.85 

Daily 6.55 8.64 13.17 

Cluster 3 NMAE (%) Yang 6.47 7.55 8.08 

Perez 5.74 7.23 7.75 

Daily 4.50 6.53 6.67 

NRMSE (%)` Yang 13.30 11.49 11.35 

Perez 9.90 10.13 10.35 

Daily 4.50 9.20 8.82 

WMAPE (%) Yang 13.51 21.9 22.24 

Perez 11.98 20.93 21.29 

Daily 9.40 18.91 18.28 

Cluster 4 NMAE (%) Yang 10.04 8.41 8.77 

Perez 9.15 8.06 8.72 

Daily 3.50 4.58 5.17 

NRMSE (%) Yang 13.08 12.05 13.86 

Perez 11.68 10.93 14.39 

Daily 5.20 6.40 7.67 

WMAPE (%) Yang 23.97 26.4 39.53 

Perez 22.30 25.55 45.68 

Daily 8.52 14.29 20.90 

Regional 

Power 

 Yang Perez Daily  

NMAE (%) 5.11 6.73 3.62  

NRMSE (%) 6.5 8.38 4.56  

WMAPE (%) 20.51 21.60 16.73  

R 0.91 0.91 0.95  

 

The time plot in Figure 3.41 aims to reveal the trends in forecast and recorded hourly values 

with particular attention paid to cloudy days in spring or summer when most of forecast errors 
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occur [33]. The rationale for this interest was fueled by an observation consistent across different 

forecast models, i.e., that cloud movement in a clear-sky day resulting in significant and sudden 

drops in power generation is more difficult to predict than a completely cloudy or clear-sky 

situation. Whereas a forecast model might predict the magnitude of a steep power rise or fall 

reasonably well, the ability to make these predictions with accurate timestamps is occasional. The 

proposed model shows slight overestimation and the noticeable timestamp mismatch. 

 

Figure 3.45 shows convergence levels of the energy yield on a monthly basis. Apparently, 

all three models remarkably underestimated the energy yield for the first three consecutive months. 

In finding a plausible and coherent explanation for this observation, the energy yield with the 

monthly averaged irradiance is firstly compared in Figure 3.46 for power generation consistency. 

Although Figure 3.46 shares a resemblance with Figure 3.45 in terms of the overall output pattern, 

the former doesn’t explain the heavy overestimation in the latter. Also, the fact that the 

underestimations did not occur throughout the study period, we ruled out the PV power modeler 

being the major error contributor. Probing further, the power upscaling model, which is heavily 

reliant on accurate nominal capacity values, is examined. Although a PV system metadata is 

generally considered static in nature, careful investigation revealed possible changes of these data 

within the study period. As an illustration, in the measured power generation data from 

SolrenView, there were instances of instantaneous power exceeding the reported installed 

capacity. These instances are physically impossible, and they suggest of a likely increase of the 

installed capacities sometime within the study period or an erroneously reported nominal size. 
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Figure 3.45. Regional level monthly averaged solar energy yield for the test period. Temporal 

aggregation ignores timestamp mismatch errors. 

3.6 Conclusion 

In this study, a model for day-ahead regional distributed PV power generation prediction is 

proposed in situations where numerical weather predictions of solar irradiance are unavailable. 

The model is comprised of three main components: irradiance forecast, PV power simulation, and 

cluster creation and power upscaling. The irradiance forecast model employs an ANN-based 

algorithm to predict day-ahead solar radiation from NWP meteorological variables excluding 

irradiance as inputs. The proposed model is first implemented by dividing the region into clusters 

and selecting a representative site for each cluster. The irradiance forecast is then obtained for 

every representative system and PV power simulated. The cluster power output is obtained using 

a linear upscaling model and summed to produce the regional scale generated power. 

 

The results obtained justify the use of a small subset of representative solar sites to model 

the behavior of a larger set. The data dimension reduction techniques produce distinct clusters of 

solar systems with similar power profiles within each cluster. Spatial averaging in relation to a 

minimum distance between systems or region size produces a smoothing effect on the results. Day-
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ahead irradiance forecasting from NWPs with Daily autoregression results in improved accuracy 

compared to approaches without regression. 

 

 

Figure 3.46.  Cluster level monthly averaged irradiance forecast for the test period. 

 

A simple linear upscaling model is found to be sufficient in this chapter. The physical model 

for power simulation is recommended when input data are available and reliable. Research efforts 

should be directed at making distributed solar system data readily available with improved 

reliability and easy access by adding data loggers and real-time communication devices during 

installation. 

 

The output of the proposed model hold significance for the efficient operation of distribution 

networks and the optimization of dispatch scheduling. This model also carries potential utility for 

microgrids or independent electricity networks, encompassing residential units equipped with 

electric loads and photovoltaic (PV) generation capabilities, aiding in their planning endeavors. It 

is crucial to emphasize that the scope of the problem tackled within this subsection remains 

confined to situations where all pertinent PV systems are interconnected within the same 

distribution network. Without this shared network context, the issue and the solution become 
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inconsequential. The case study PV systems examined herein are geographically dispersed across 

California, as illustrated in Figure 3.34. Despite this geographical distribution implying 

connections to different distribution networks, the selection pool for case study systems was 

notably restricted due to the scarcity of BTM systems satisfying the stipulated criteria on public 

webpages. Consequently, our selection was dictated by this challenge in data availability. 

Moreover, it is worth noting that the extensive geographical dispersion of the systems primarily 

influences the model results through the mechanism of aggregation. However, research indicates 

that the impact of aggregation becomes minimal beyond a certain distance, thereby mitigating this 

effect's relevance in the context of the study. Information on regional scale PV power generation 

is also useful for the net-load forecasting since the net-load is the difference between the forecasted 

load and renewable energy generation.  
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4 SOLAR POWER RAMP EVENTS DETECTION USING A 

MODIFIED DATA COMPRESSION TECHNIQUE 

4.1 Introduction 

One of the major challenges with the integration of solar photovoltaic (PV) energy sources 

into electric grids stems from the frequent occurrences of short-term, high magnitude surges (ramp 

up) and drops (ramp down) in their output [1]. In an electric grid with a high penetration of solar 

PV energy sources, the variability occurring within a short time horizon of a few seconds can cause 

voltage flickering while sudden changes that last for elongated time horizons of  minutes can 

culminate into frequency problems for the grid [2],[3]. Sudden and high magnitude ramp events 

in the intervals of 5-25 minutes are of greater concerns to power system operators [4] as they would 

necessitate the availability of sufficient  spinning reserves with high ramp rates to contain the 

power deficit or surplus [5],[6]. 

 

Analysis from an economic standpoint show that a substantial reduction in the levelized 

cost of energy can be obtained by combining optimized energy storage sizing methodologies and 

ramp events forecasting and characterization techniques to deal with the renewables intermittency 

problem [1],[7]. In compensating for the changes in power output from PV sources, energy storage 

capacity or spinning reserve requirements are decided based on the magnitude of the largest ramps 

[8],[9]. Furthermore, decisions on the required charging and discharging times are informed by 

metrics like the frequency distribution and duration of ramping events giving relevance to the 

accurate forecasting and quantification of these ramps [10],[11]. 

 

Ramp event detection can also provide training datasets of ramp events for forecasting 

applications [12]–[14]. Ramp characterization metrics including the count, magnitude and duration 

on a seasonal and daily basis from observed patterns in historical forecasts databases can be used 

to build sample sets of ramp events useful for post-processing forecasting methods [15], [16]. This 

rationale is based on the grounds that acquiring comprehensive information about the previous and 

current situations will make for better and more accurate forecast of future scenarios [17]. Also, 

conventional forecast methods accuracy indicators are either scale-dependent or the percentage 

error. These statistical measures only describe the overall systematic error since in simplistic terms, 

they are averages of the deviation of the forecasts from actual values. These measures do not 
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suffice as metrics for automatically detailing how well forecast models capture ramping events 

that are more problematic to utility operators [18]. 

 

In characterizing ramping events, a model should be driven towards evaluating the 

frequency of occurrence within varying time intervals as well as the duration of ramp events 

especially those whose magnitudes fall within the classification of critical ramp events. Another 

area of interest is the distribution of these ramp events including the seasonal and daily patterns of 

occurrences. In this chapter, we proposed a model that characterizes Solar Power Ramp Events 

(SPREs) based on the above metrics. 

 

A diverse range of studies have been carried out on ramp detection methods. At present, 

there is limited literature on Wind Power Ramp Events (WPREs) [4], [15], [17], [19]–[24] and 

SPREs detection [4], [7], [19], [25]–[27]. Although any typical WPREs detection algorithms 

would similarly detect SPREs, these algorithms fall short in their performance since they do not 

take into account the peculiarity of the daily variability pattern of solar power. Consequently, 

without necessary adjustments, a detection algorithm solely designed for WPREs, if implemented 

on solar power data would inaccurately detect SPREs. 

 

Sevlian and Rajagopal [22] developed the L1-SW algorithm that used a dynamic 

programming recursion method to merge adjacent segments for WPREs detection. Leveraging on 

the auxiliary ramp rules established in the L1-SW method, Lyners et al. [21] proposed a multi-

parameter segmentation algorithm  for WPRE extraction. Cui et al. [24] developed a generalized 

Gaussian Mixture Model to characterize WPREs probability distributions. Qu et al. [15] proposed 

a Parameter and Resolution Adaptive Algorithm (PRAA) to address issues of bad data and 

computation speed in WPREs detection. Cui et al. [17] combined the advantages of the sliding 

window (SW) from [22] with the Swinging Door Algorithm (SDA) for ramp characterization. 

Hossain et al. [8] and Madhab et al. [26] carried out statistical ramp analysis from which they 

proposed empirical models for estimating SPREs distribution. Willy et al. [27] used the dead band 

data compression method for SPREs detection. An Optimized Swinging Door Algorithm 

(OpSDA) was proposed by Cui et al. [19], [20], [25] for WPREs and SPREs detection. The 

algorithm which was proposed as an improvement of the SDA, involved ramp trends identification 

and adjacent segments combination using dynamic programing. 
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The following are some of the drawbacks in existing literature with respect to SPREs 

detection that need to be addressed: 

 

1. In deciding an algorithm suitable for SPREs detection, we observed that most of the 

existing propositions share a common problem of computational complexity and as such, 

leave room for further improvements of the merging process. SPREs identification in an 

automated manner requires the process to be computationally simple and inexpensive to 

allow for online applications [4]. 

2. Other existing algorithms that could be considered simple to implement were tailored for 

WPREs and/or offered no definitive and consistent procedure for estimating the value of 

ε. 

3. The dynamic programming in the OpSDA is a slight adjustment to the L1-SW method and 

the robustness of both methods are considerably impacted by the tunable or penalty 

parameter (tolerance). In both methods, the tolerance was decided by mere visual 

inspection or user experience which in other words, is simply trial and error.  A suboptimal 

tolerance value will jeopardize their detection accuracy with respect to reproducibility and 

repeatability across different timeseries and databases with different time resolutions. 

 

We therefore propose a relatively more efficient algorithm for SPREs detection in this 

chapter. Our objective is to develop an algorithm to characterize and analyze significant ramps 

events (SREs) in solar power measurements using parameters including ramp distribution, 

duration, and magnitude. The phrases ramp extraction, ramp characterization and ramp detection 

are synonymously used in this chapter. 

 

The main contributions of this chapter include: 

 

1. A novel SPREs detection algorithm with improved efficiency, accuracy and applicability 

regardless of the sampling time horizon is proposed. 

2. Compared with the OpSDA, the proposed ramp detection with computational simplicity 

and lower execution time enables online applications. The proposed model performance is 

also less impacted by the SDA tolerance value. In existing literature, the OpSDA provides 

a more comprehensive account of SPREs detection and also a better performance than the 
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L1-SW or any other currently available SPREs detection algorithm, hence its choice as a 

benchmark in this study. The SDA is  superior to the arch chord and dead band models in 

[27] and also other non-SDA-based models. 

3. An expression for estimating an optimal value of the SDA tolerance for our model is 

proposed to ensure capturing the maximum possible ramp events with more accurate start- 

and stop-times. 

 

The rest of this chapter takes the following structure: the development of the MSDA is laid 

out in Section 4.2; the experimental results compared with the OpSDA [25] and SDA are discussed 

in Section 4.3; and the conclusion is drawn in Section 4.5. 

4.2 Modified Swinging Door Algorithm 

4.2.1 Swinging Door Algorithm 

Florita et al. first proposed using the SDA for WPREs and SPREs extraction in [4]. The 

SDA was formulated for data compression because of its structural simplicity, robustness and low 

computational requirements [4],[17]. The algorithm identifies ramps in a piecewise linear 

approximation manner by adopting a tunable threshold parameter (휀) called door width to create 

segments of the raw data as shown in Figure 4.1. 

 

Only the initial and final data points of a segment are retained in Figure 4.1. The final point 

of a segment becomes the initial point for the next segment. In Segment 1, the doors 

(3𝐴̅̅̅̅ , 7𝐴,̅̅ ̅̅ 3𝐵,̅̅ ̅̅̅ 7𝐵,̅̅ ̅̅̅ 3𝐶,̅̅ ̅̅ 3𝐷̅̅ ̅̅ ) iteratively swing (lines drawn) from the pivots (points 3 and 7 on the 

vertical axis) to accommodate new data points. At the data point where the doors are parallel to 

each other or where the doors have over 1800 interior angle, a new segment begins (at point D in 

Figure 4.1). Mathematically, this situation implies that 𝑦𝑙𝑏 < 𝑦𝑐 < 𝑦𝑢𝑏 is violated. 

where: 

𝑦 represents the signal magnitude, 

𝑡 is the time, 

the subscripts 𝑢𝑏 and 𝑙𝑏 are the upper and lower boundaries of the current signal point 

respectively, 

𝑐 is the current signal point, 
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𝑔 is the gate point (point B in Figure 4.1) and 

𝑠 is the start point of a segment. 

𝑦𝑢𝑏 = 𝑦𝑠 + (
𝑦𝑔 + 휀 − 𝑦𝑠

𝑡𝑔 − 𝑡𝑠
) (𝑡𝑐 − 𝑡𝑠)                                                                                                         (1) 

𝑦𝑙𝑏 = 𝑦𝑠 + (
𝑦𝑔 − 휀 − 𝑦𝑠

𝑡𝑔 − 𝑡𝑠
) (𝑡𝑐 − 𝑡𝑠)                                                                                                         (2) 

 

Figure 4.1. Schematic description of the swinging door algorithm [4] 

 

The accuracy of the SDA is heavily influenced by the door width (휀) predefined by the 

user [17]. A static 휀 creates redundant segmentation points and inaccurate detection of ramp start- 

and stop-times and invariably ramp magnitude as shown in Figure 4.2. The ideal situation in Figure 

4.2. beginning from point A should be a total of four significant SPREs (𝐴𝐵̅̅ ̅̅ , 𝐵𝐶̅̅ ̅̅ , 𝐶𝐷̅̅ ̅̅  𝑎𝑛𝑑 𝐷𝐸̅̅ ̅̅ ). 

Minimizing the problem of ramp segments redundancy by increasing the tolerance 휀 may mean 

ignoring significant inflection points and result in the identification of only a few large ramps when 

the SDA becomes under constrained [4]. The SDA therefore requires modifications to improve its 

suitability for SPREs detection and characterization. 
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Figure 4.2. Application of the SDA for PV power ramps extraction on a 30-min resolution data. 

4.2.2 Modified Swinging Door Algorithm Formulation 

Our proposed algorithm simplifies the SPREs detection process by merging adjacent ramp 

segments created using the SDA. The basic principle of the MSDA is to merge redundant ramp 

segments created by the SDA into single ramp events with larger magnitudes and longer durations 

by checking for the occurrences and sizes of inflections in the SDA-segmented data. We carried 

out a preliminary study on a variety of measured PV power from geographically diverse systems 

and recording time horizons to understand the uniqueness of solar power variability patterns. The 

algorithm is then configured according to the observed patterns for SPREs detection using 

empirical and statistical tests. The algorithm is also adjusted to factor into consideration the impact 

of time resolution due to our observation that depending on cloud speed and orientation, the 

magnitude of individual solar ramps between adjacent time steps resonates inversely with the time 

resolution. A flowchart of the whole detection process is shown in Figure 4.3. 

4.2.3 Significant Ramp Definitions 

The algorithm is developed in this chapter to extract only significant SPREs by definition. 
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Since there is no unified or standard definition for significant SPREs in the literature, the three 

definitions (3) – (6) detailed in [25] are adopted in this study. 

Definition 1: Solar power variation greater than 10% of 𝑃𝐺 . 

|𝑃𝑗 − 𝑃𝑘| > 0.1𝑃𝐺                                                                                                                                          (3) 

Definition 2: Solar power variation greater than 10% of 𝑃𝐺  occurring within an hour or less. 

|𝑃𝑗 − 𝑃𝑘| > 0.1𝑃𝐺 ,  𝑡𝑗 − 𝑡𝑘 ≤ 1 ℎ𝑜𝑢𝑟                                                                                                       (4) 

Definition 3(a): Solar power increment or up-ramp greater than 10% of 𝑃𝐺  occurring within an 

hour or less. 

𝑃𝑘 − 𝑃𝑗 > 0.1𝑃𝐺 ,  𝑡𝑗 − 𝑡𝑘 ≤ 1 ℎ𝑜𝑢𝑟                                                                                                          (5) 

Definition 3(b): Solar power decrement or down-ramp greater than 8% of 𝑃𝐺  occurring within 

an hour or less. 

𝑃𝑘 − 𝑃𝑗 < −0.08𝑃𝐺 ,  𝑡𝑗 − 𝑡𝑘 ≤ 1 ℎ𝑜𝑢𝑟                                                                                                    (6) 

where: 

𝑃𝐺  is the installed capacity of the PV system, 

𝑃𝑗 represents the instantaneous power at the beginning of a ramp segment, 

𝑃𝑘 represents the instantaneous power at the end of a ramp segment, 

𝑡𝑗 is the ramp segment start time, 

𝑡𝑘 is the ramp segment stop time. 

4.2.4 Natural Variability Index (NVI) 

There are no generally accepted methods for optimally determining the tunable parameter 

of the SDA. In deciding a procedure for estimating the tolerance, our priority is to make the SDA 

door width small enough to optimally capture even small twists and turns in the input data. 

Although smaller tolerance values imply that the SDA becomes more constrained, this scenario 

presents us with the advantage of more accurate detection of ramp start- and stop-times after 
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Figure 4.3. Flowchart of the overall solar power ramp events detection model proposed in this 

chapter. 

implementing the merging of adjacent ramp segments using the MSDA. Upon sufficient 

verifications, we propose using a variable called the Natural Variability Index (𝑁𝑉𝐼) [29] to 
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approximate an optimal value of 휀 for our model. Although primarily intended to be an irradiance 

variability pattern classification tool [30], it is found that the 𝑁𝑉𝐼 is dynamic and consistent across 

datasets with different timescales and from different geographical locations in estimating 휀. 

𝑁𝑉𝐼 =
𝜎∆𝑃

𝜇𝑃
                                                                                                                                                     (7) 

𝜎∆𝑃 = √
1

𝑘 − 1
∑(∆𝑃𝑖 − ∆�̅�)2

𝑘

𝑖=1

                                                                                                                 (8) 

where: 

𝜇𝑃 is the arithmetic mean of PV power. 

∆𝑃𝑖 is the 𝑖-th data point of power step change. 

∆�̅� is the arithmetic mean of power step change and 

𝑘 is the solar power data size. 

4.2.5 MSDA Ramp Segments Merging Process 

Consider a solar power time series 𝑌 = {(𝑝1, 𝑡1), … , (𝑝𝑖, 𝑡𝑖), … (𝑝𝑁, 𝑡𝑁)},  𝑖 ∈ 𝑁 where 𝑝𝑖 is the 

solar power and 𝑡𝑖 is the equivalent time stamp. Implement the SDA to extract 𝑀 number of data 

points of 𝑌: 𝑃 = {𝑃1, … , 𝑃𝑘, … , 𝑃𝑀},  (𝑘 = 1, … , 𝑀),  𝑀 ≤ 𝑁 − 1, 𝑃𝑘 = (𝑝𝑘, 𝑡𝑘) as segments 𝑆𝑘 =

𝑝𝑘𝑝𝑘+1̅̅ ̅̅ ̅̅ ̅̅ ̅. The segments are then merged based on changing ramp directions and magnitude of the 

differences between two data points: S = {𝑋1, … , 𝑋𝑗, … , 𝑋𝑇},  (𝑇 ≤ 𝑚),   𝑋𝑗 = (𝑠𝑗 , 𝑒𝑗), 𝑠𝑗 and 𝑒𝑗 

representing the start- and end-points of the 𝑗𝑡ℎ ramp event respectively. 𝑇 represents the total 

number of detected SPREs. For the period 1 < 𝑘 ≤ 𝑀, merge adjacent ramp segments using steps 

1 – 7 after saving 𝑠1 as the first data point. After the merging process, significant SPREs are sorted 

and extracted in Step 8. 

Step 1. Check for an inflection at 𝑝𝑘  using (9). If there’s no inflection, i.e. 
𝑝𝑘+1−𝑝𝑘

𝑝𝑘−𝑝𝑘−1
≥ 0, set 𝑒𝑗 =

𝑘 + 1. This means that the ramp event from 𝑆𝑘−1is assumed to continue into 𝑆𝑘 thereby 

merging segments 𝑆𝑘−1 with 𝑆𝑘. If 𝑝𝑘 = 0, set 𝑠𝑗+1 = 𝑘, a new ramp event begins at 𝑝𝑘. A 
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ramp event will always be terminated at any point power generation 𝑝𝑘 drops to zero. If there 

is an inflection, 
𝑝𝑘+1−𝑝𝑘

𝑝𝑘−𝑝𝑘−1
< 0 and 𝑝𝑘 ≠ 0, go to Step 2. 

𝑝𝑘+1 − 𝑝𝑘

𝑝𝑘 − 𝑝𝑘−1
<≥ 0                                                                                                                                     (9) 

Step 2. Compare the inflection size with the magnitude of the adopted significant ramp definition 

(𝐷) using (10). If |𝑝𝑘+1 − 𝑝𝑘| ≥ 𝐷, set 𝑠𝑗+1 = 𝑘. The point of inflection 𝑝𝑘 becomes the start 

point of a new ramp event. Otherwise, i.e. |𝑝𝑘+1 − 𝑝𝑘| < 𝐷, go to Step 3. 

|𝑝𝑘+1 − 𝑝𝑘| <≥ 𝐷                                                                                                                               (10) 

Step 3. Calculate the value of ℎ where ℎ = 60/𝑅. If ℎ ≤ 1, i.e., hourly resolution, go to the next 

step, otherwise (sub-hourly resolution), go to Step 6. 𝑅 is the time resolution of 𝑌 in minutes. 

Step 4. Check for a subsequent inflection at point 𝑝𝑘+1. If  
𝑝𝑘+2−𝑝𝑘+1

𝑝𝑘+1−𝑝𝑘
≥ 0, set 𝑠𝑗+1 = 𝑘 and save 

𝑝𝑘 to begin a new ramp event. If 
𝑝𝑘+2−𝑝𝑘+1

𝑝𝑘+1−𝑝𝑘
< 0, go to Step 5. 

Step 5. Calculate the lengths of lines 𝐿𝑘 and 𝐿𝑘+1 connecting the segments 𝑝𝑘𝑝𝑘+1̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑝𝑘+1𝑝𝑘+2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

respectively, using (11). If 𝐿𝑘 ≥ 𝐿𝑘+1, set 𝑠𝑗+1 = 𝑘, a new ramp begins. If 𝐿𝑘 < 𝐿𝑘+1, set 𝑒𝑗 =

𝑘 + 2 signifying the ramp event from segment 𝑆𝑘−1 continues to segment 𝑆𝑘+1. Go to Step 8. 

𝐿𝑘 = √(𝑝𝑘+1 − 𝑝𝑘)2 + (𝑡𝑘+1 − 𝑡𝑘)2                                                                                              (11) 

Step 6. Calculate 𝑚𝑘 and 𝑛𝑘+𝑖| 𝑖=2 using (12) – (13). If 𝑚 × 𝑛 > 0, set 𝑒𝑗 = 𝑘 + 𝑖, otherwise, go 

to Step 7. 

𝑚 =
𝑝𝑘 − 𝑝𝑘−1

𝑡𝑘 − 𝑡𝑘−1
                                                                                                                                    (12) 

𝑛 =
𝑝𝑘+𝑖 − 𝑝𝑘

𝑡𝑘+𝑖 − 𝑡𝑘
                                                                                                                                     (13) 

Step 7. Check if the magnitude of the significant ramp criteria is triggered using (14). If (14) holds, 

set 𝑠𝑗+1 = 𝑘, otherwise, repeat Step 6 with 𝑖 = 𝑖 + 1 until a condition is triggered or 𝑖 = ℎ 

(𝑖. 𝑒 𝑛𝑘+𝑖| ∀𝑖=2,…,ℎ). If no condition is triggered, set 𝑠𝑗+1 = 𝑘. Go to Step 8. 

|𝑝𝑘+𝑖 − 𝑝𝑘| ≥ 𝐷                                                                                                                                   (14) 
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Step 8. Since the proposed method was intended only to extract the significant ramps that are 

cloud-induced, ramping events simultaneously occurring both in the measured and clear-sky 

input datasets and that satisfy the threshold condition in (15) were omitted from the analysis. 

This is because solar variabilities caused by diurnal sun movement from sunrise to sunset are 

relatively deterministic and can be estimated with near perfect accuracies. Consequently, these 

variabilities pose no problems and are of no interest in this chapter.  

𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑟𝑎𝑚𝑝:  {𝑚𝑎𝑥 [𝑝𝑠𝑗
, 𝑝𝑒𝑗

] − 𝑚𝑖𝑛 [𝑝𝑠𝑗
, 𝑝𝑒𝑗

]} ∈ 𝐷                                                     (15) 

In situations where (15) did not hold because of the time constraint in ramp Definitions 2 and 

3, the ramp segments 𝑆𝑘=𝑛 occurring within the data range {𝑚𝑎𝑥 [𝑝𝑠𝑗
, 𝑝𝑒𝑗

] − 𝑚𝑖𝑛 [𝑝𝑠𝑗
, 𝑝𝑒𝑗

]} 

were subjected to a significant ramp test using (14) and reducing the range one segment (𝑛 −

1) each time (16) is not achieved. 𝑛 is the number of segments within the data range of interest. 

{𝑚𝑎𝑥 [𝑝𝑘,𝑠𝑗
, 𝑝𝑘,𝑒𝑗

] − 𝑚𝑖𝑛 [𝑝𝑘,𝑠𝑗
, 𝑝𝑘,𝑒𝑗

]} ∈ 𝐷                                                                                 (16) 

 

Basically, the SDA is employed to create ramp segments (blue boxes in Figure 4.2) from a 

solar power data with a window or tolerance value estimated using the NVI metric. The segments 

are then fed into the proposed algorithm which optimally merges adjacent segments that are in the 

same ramp direction to produce ramp events with more accurate characterizations. Thereafter, 

ramp events that reach pre-established thresholds of ramp definitions occurring only in the 

measured or actual power timeseries are labeled as significant solar ramp events. The next section 

details the implementation of the proposed method using a case study. 

4.3 Experimental Results 

4.3.1 Case Study Dataset Description and Preparation 

Simulated PV power from raw data files of measured solar radiation with their timestamps 

were used for validating the proposed ramp detection method. The data files were obtained from 

the National Renewable Energy Laboratory (NREL)’s Measurement and Instrumentation Data 

Centre (MIDC) – University of Oregon (SRML) site [31]. The datasets comprise of an hourly 
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resolution irradiance data with 8,760 entries and a 1-min resolution with 525,600 entries spanning 

a full calendar year period from January 1, 2018, to December 31, 2018. Corresponding clear-sky 

data for the same location, the timeframe and resolutions were either simulated or collected from 

NREL National Solar Radiation Database (NSRDB). Other lower data resolutions were 

interpolated from the 1-min resolution dataset. 

 

For data preprocessing, physically impossible data entries were filtered out – Negative 

power values occurring at lower sun elevation angles were replaced with zero. Nighttime power 

readings were also filtered to zero using a zenith-angle-based filter. Thereafter, the datasets were 

normalized relative to the installed capacity value. The proposed algorithm is implemented in 

Spyder (Python 3.8) on a PC with an Intel Xeon E5-2660v4 with two 2.00GHz CPU and 64 GB 

RAM. 

4.4 MSDA SPRE Detection Test Results 

The metrics proposed by [25] is used to evaluate and compare the accuracy of ramp detection 

by our proposed model with the OpSDA model. The comparisons are centered on computing time 

and statistical analysis of ramp features with respect to ramp rate and distribution. Basic visual 

inspection of portions of the detected ramping events are also considered valuable to detailing the 

improvement of the status quo by our proposed model. 

 

Figures 4.4 – 4.12. show typical examples of SPREs detection over a single day period for 

three resolutions. Again, a ramping event in the figures was designated significant using Definition 

1 and if not simultaneously occurring in the clear-sky power component. Table 4.1 displays the 

sizes (kW) of the extracted ramps depicted in Figures 4.4 - 4.12. The MSDA method produced 

larger magnitudes ramps. Figures 4.4 – 4.6. compares the SPREs extracted by the SDA, OpSDA 

and MSDA from an hourly resolution data having only 24 samples. Consistent across all three 

methods, only one up ramp and one down-ramp are extracted as significant. However, the MSDA 

showed a better performance in Figure 4.6 because it produces more accurate ramp start-time for 

the down-ramp and end-time for the up ramp. 
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Inaccurate detection of ramp start- and stop-times could be dire as information on the 

duration and size of the ramp would be erroneous. Therefore, optimally, the down ramp in Figures 

4.4 – 4.6 should begin at the 11th hour mark whereas the up ramp terminates at the 15th hour. 

 

Table 4.1. Detected ramps in kW using ramp definition 1 as shown in Figures 4.4 - 4.12. 

   1-min Resolution   

 SDA OPSDA MSDA 

 Up Ramp 

Down 

Ramp Up Ramp 

Down 

Ramp Up Ramp 

Down 

Ramp 

    115.03 122.13 120.32 

    102.3 193.22 101.1 

     192.4 190.9 

Count 0 0 0 2 3 3 

   5-min Resolution   

 SDA OPSDA MSDA 

 Up Ramp 

Down 

Ramp Up Ramp 

Down 

Ramp Up Ramp 

Down 

Ramp 

 111.39 110.923 111.39 110.923 178.06 136.477 

 126.093 128.569 185.88 128.569 239.693 138.42 

    115.046 117.08 119.23 

Count 2 2 2 3 3 3 

   1-hr Resolution   

 SDA OPSDA MSDA 

 Up Ramp 

Down 

Ramp Up Ramp 

Down 

Ramp Up Ramp 

Down 

Ramp 

 129.799 249.481 129.799 249.481 193.159 257.545 

Count 1 1 1 1 1 1 

 

Similar to the observation in Figures 4.4 – 4.6, the MSDA also comparatively produced 

better results with respect to the detected ramps magnitude and duration on the left side of Figure 

4.7 – 4.12. Due to higher resolutions, there is more data samples and in turn more ramp segments 

but with smaller magnitudes. SPREs detection from the 1-min resolution data in Figures 4.10 – 

4.12 makes apparent some remarkable observations. 
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Figure 4.4. Visual comparison with insets of the SDA detection performance on a solar power 

data with hourly resolution and using the significant ramp Definition 1. 

 

 

Figure 4.5. Visual comparison with insets of the OpSDA detection performance on a solar power 

data with hourly resolution and using the significant ramp Definition 1. 
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Figure 4.6. Visual comparison with insets of the MSDA detection performance on a solar power 

data with hourly resolution and using the significant ramp Definition 1. 

 

 

 

Figure 4.7. Visual comparison with insets of the SDA detection performance on a solar power 

data with 5-min resolution and using the significant ramp Definition 1. 
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Figure 4.8. Visual comparison with insets of the OpSDA detection performance on a solar power 

data with 5-min resolution and using the significant ramp Definition 1. 

 

 

Figure 4.9. Visual comparison with insets of the MSDA detection performance on a solar power 

data with 5-min resolution and using the significant ramp Definition 1. 
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Although 523 SDA segments are created in Figure 4.7, the difference between any two 

adjacent segments is not large enough to be classified as a significant ramp event. Increasing the 

SDA tolerance value would be beneficial in reducing the number of segments and as a direct 

consequence, a possible detection of more SPREs. However, the SPREs would be sub-optimal – 

more detailed analysis on the sensitivity of ramp detection to a changing tolerance with respect to 

run time and optimality of results is given in [15], [19]. 

 

Figure 4.10. Visual comparison with insets of the SDA detection performance on a solar power 

data with 1-min resolution and using the significant ramp Definition 1. 

 

Incidentally in Figure 4.12, the down-ramp which begins at about the 700th min and 

terminates at the 860th min appear to be inaccurate given its horizontal component. This is due to 

the significant ramp Definition 1 where the ramp magnitude is the only criterion for performance 

evaluation. 
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Figure 4.11. Visual comparison with insets of the OpSDA detection performances on a solar 

power data with 1-min resolution and using the significant ramp Definition 1. 

 

 

Figure 4.12. Visual comparison with insets of the MSDA detection performances on a solar 

power data with 1-min resolution and using the significant ramp Definition 1. 
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Figure 4.13. SDA detection performances on a solar power data with 1-min resolution and using 

an SDA tolerance value of 0.009. 

 

 

Figure 4.14. OpSDA detection performance on a solar power data with 1-min resolution and 

using an SDA tolerance value of 0.009. 
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Figure 4.15. MSDA detection performance on a solar power data with 1-min resolution and 

using an SDA tolerance value of 0.009. 

Similar to Figures 4.10 – 4.12, a 1-min resolution data is used to compare the models in 

Figures 4.13 – 4.15. To detail the proposed model performance in a different tolerance and climatic 

scenario, an 휀 value of 0.009 is used because it is the suggested optimal value in the OpSDA 

document. Also, the solar power data in Figur``es 4.13 – 4.15. was simulated using the irradiance 

data from NREL’s University of Nevada – Las Vegas measuring station, which is over 1,800km 

away from the main test data location (NREL’s University of Oregon). For easier visualization, a 

test day of relatively lower power generation and variability is selected. The maximum 

instantaneous power output is only about 35% of the nominal capacity as shown in Figures 4.13 – 

4.15. The SDA detected no ramp events because the 1-min step changes are not large enough in 

magnitude to trigger any of the ramp definitions. The MSDA once more has detected more ramps 

and with more accurate start- and stop-times. 

 

Tables 4.2., 4.3. and 4.4. show results of the number of detected ramps and the 

corresponding runtimes, the best results highlighted in bold. It is apparent that the basic SDA could 

be preferred to its modifications or optimizations because the former will always outperform the 
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latter if the performance evaluation criteria are based solely on computational simplicity and low 

execution time. However, if the number of detected ramps, ramp duration and magnitude detection 

accuracy are priority determinants, the MSDA will be best performer. 

      

Table 4.2. Detected ramps using different definitions for 1-h resolution data. 

Definitions Methods 
Up-

Ramps 
Down-Ramps Total Runtime (s) 

Definition 1 SDA 185 155 340 0.18 

OpSDA 152 153 305 960.20 

MSDA 194 169 363 0.99 

Definition 2 SDA 185 155 340 0.18 

OpSDA 148 155 303 960.17 

MSDA 188 169 357 0.92 

Definition 3 SDA 185 164 349 0.14 

OpSDA 148 156 304 960.16 

MSDA 188 177 365 0.84 

 

Table 4.3. Detected ramps using different definitions for 5-min resolution data. 

Definitions Methods 
Up-

Ramps 

Down-

Ramps 
Total Runtime (s) 

Definition 1 SDA 1097 1106 2203 5.12 

OpSDA 1188 1171 2359 4328.93 

MSDA 1324 1315 2639 12.72 

Definition 2 SDA 1097 1106 2203 5.04 

OpSDA 1183 1164 2347 4329.07 

MSDA 1221 1295 2516 12.63 

Definition 3 SDA 1097 1136 2233 5.58 

OpSDA 1183 1191 2374 4328.86 

MSDA 1221 1306 2527 12.90 
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Table 4.4. Detected ramps using different definitions for 1-min resolution data. 

Definitions Methods 
Up-

Ramps 
Down-Ramps Total Runtime (s) 

Definition 1 SDA 2206 2216 4422 55.05 

OpSDA 2420 2380 4800 10443.45 

MSDA 2747 2747 5494 63.31 

Definition 2 SDA 2208 2216 4424 56.37 

OpSDA 2420 2380 4800 10443.18 

MSDA 2691 2744 5435 62.95 

Definition 3 SDA 2208 2306 4514 57.42 

OpSDA 2420 2452 4872 1044.27 

MSDA 2691 2755 5446 63.94 

 

Some studies submitted that their proposed improvements of the SDA extracted more 

ramps than the SDA but they fail to also identify situations where the reverse might be the case or 

where the performances might be similar. It can be reasonably concluded that the number of ramps 

detected is influenced by some factors including the solar power data resolution and the magnitude 

of ramp definitions. Illustratively, a 1-h resolution might just be enough time for a majority of 

individual segments created by the SDA to be as large as 10% of the installed capacity. Whereas, 

several of these segments are merged into a single ramp by especially the OpSDA as evidenced in 

Table 4.2. Also worthy of mentioning is the measured power variability volatility or basically the 

weather profile. A highly variable climate is more likely to result in more SDA segments but fewer 

extracted ramps. 

 

In Figures 4.16 – 4.24, the features of the detected SPRE using empirical statistics 

(magnitude, duration and rate) in different timescales are compared. Irrespective of timescale and 

ramp definition of interest, it is evident that all three detection algorithms share a similar 

probability density profile with respect to ramp magnitude. However, the MSDA had a wider 

empirical distribution of ramp size covering a significant area under the plots from about 0.1 p.u. 
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to 0.4 p.u. In terms of the average ramp magnitude variation across the timescales, there was no 

substantial observation worthy of mentioning. 

 

As for the ramp rates and duration plots in Figures 4.16 – 4.24, considerable differences 

are observed. These differences could be attributed to a changing data resolution in the 

distributions. The ramp duration for 1-h resolution was longer and peaked around 60-min (the 

equivalent of a single step change) except for Figure 4.17 where the 1-h OpSDA showed a 

relatively horizontal distribution. Hence, the 1-min and 5-min timescales have higher ramp rates 

spread across the horizontal axis from 0 to 0.035p.u./min while the 1-h profile takes the 

resemblance of a normal distribution peaking around 0.003p.u./min. In all, the ramps detected by 

the MSDA have longer durations and larger magnitudes but with the penalty of lower ramp rates. 

 

Figure 4.16. Probability density distributions of the magnitudes of the detected ramps by 

Definition 1. 
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Figure 4.17. Probability density distributions of the durations of the detected ramps by Definition 

1. 

 

Figure 4.18. Probability density distributions of the rates of the detected ramps by Definition 1. 
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Figure 4.19. Probability density distributions of the magnitudes of the detected ramps by 

Definition 2. 

 

Figure 4.20. Probability density distributions of the durations of the detected ramps by Definition 

2. 
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Figure 4.21. Probability density distributions of the rates of the detected ramps by Definition 2. 

 

Figure 4.22. Probability density distributions of the magnitudes of the detected ramps by 

Definition 3. 
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Figure 4.23. Probability density distributions of the durations of the detected ramps by Definition 

3. 

 

Figure 4.24. Probability density distributions of the rates of the detected ramps by Definition 3. 
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Table 4.5. Quantitative metrics for evaluating the performance of ramping events algorithms. 

No Metric Representation Description 

1 POD 
𝑠𝑌𝑒𝑌

𝑠𝑌𝑒𝑌 + 𝑠𝑁𝑒𝑌
 

Higher POD indicates better 

performance. 

2 CSI 
𝑠𝑌𝑒𝑌

𝑠𝑌𝑒𝑌 + 𝑠𝑁𝑒𝑌 + 𝑠𝑌𝑒𝑁
 

Ranges from 0 (worst case) to 1 (best 

case). 

3 FBS 
𝑠𝑌𝑒𝑌 + 𝑠𝑌𝑒𝑁

𝑠𝑌𝑒𝑌 + 𝑠𝑁𝑒𝑌
 

<1: more ‘ends’ detected accurately. 

>1:  more ‘starts’ detected accurately 

4 SR 
𝑠𝑌𝑒𝑌

𝑠𝑌𝑒𝑌 + 𝑠𝑌𝑒𝑁
 

Higher SR means better performance. 

5 FAR 1 − 𝑆𝑅 Inverse proportionality to SR. 

 

 

Additionally, the quantitative metrics detailed in [19] is employed for performance 

evaluation. The metrics are essentially focused on figuring out how well the ramp start (s) and end 

(e) times are captured by the ramp detection algorithms under analysis. The point at which an 

extracted ramp begins or ends is deemed accurate if that point is a local minima or maxima, i.e. if 

there’s an inflection. If a ramping event start- and end-times are accurately detected, it is coded as 

sYeY (start-YES-end-YES) whereas it is coded sNeN (start-NO-end-NO) if the reverse is the case. 

Other combinations of detection include sYeN (start-YES-end-NO) and sNeY (start-NO-end-

YES). The metrics include the Probability of Detection (POD), Critical Success Index (CSIr), 

Frequency Bias Score (FBS), Success Ratio (SR) and False Alarm Ratio (FAR) as shown in Table 

4.5. This extensive analysis is motivated by the fact that accurate information on when a ramping 

event begins and terminates enables better informed scheduling decision making by utility 

operators [21]. 

 

For further performance evaluations, the results of the ramp start- and end-times detection 

accuracy in percentage of the total number of extracted ramps using Definition 1 are shown in 

Table 4.6. The best results (high SYEY and low SNEN) are highlighted in bold. The MSDA 

accurately detected an average of 69% and 3% of the total ramps SYEY and SNEN respectively 

for the three resolutions combined. The OpSDA and the SDA could only afford roughly 28%, 27% 

SYEY and 22%, 22% SNEN respectively. 
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Table 4.6. Results of the start- and end-points detection accuracy test fir 1-h, 5-min, and 1-min 

resolutions. 

1-h Resolution 

 SDA OpSDA MSDA 

End(Y) End(N) End(Y) End(N) End(Y) End(N) 

Start(Y) 109/32% 77/23% 98/32% 70/23% 182/50% 7/2% 

Start(N) 85/25% 69/20% 70/23% 67/22% 156/43% 18/5% 

Total 340 305 363 

5-min Resolution 

Start(Y) 595/27% 574/26% 637/27% 613/26% 2111/80% 158/6% 

Start(N) 594/27% 440/20% 637/27% 472/20% 317/12% 53/2% 

Total 2203 2359 2639 

1-min Resolution 

Start(Y) 973/22% 1149/26% 1104/23% 1248/26% 4230/77% 330/6% 

Start(N) 1150/26% 1150/26% 1248/26% 1200/25% 769/14% 165/3% 

Total 4422 4800 5494 

 

It is observed that the MSDA shows significant number of inaccurately detected ramp start-

times (SNEY) especially for the 1-h resolution (43%). Upon investigation, the only possible and 

plausible cause is the daily pattern of sun movement from sunrise to sunset. Daily PV power values 

would rise from 0 to peak around midday and return to 0 at sunset, hence, would fail the accuracy 

test in Table 4.6 since these are not inflection points. 

 

The results of the five metrics in Table 4.7 further corroborates the preference of the MSDA 

over its counterparts. Except for the dip in the POD in the 1-h resolution, the MSDA outperforms 

the other algorithms in almost all five performance indicators especially for 5-min and 1-min 

resolutions. This result is expected since the MSDA is designed to start and terminate a ramp only 

at large inflection and zero power points. 

 

Table 4.7. Numerical results of the ramp detection performance evaluation metrics. 

1-h Resolution 

POD CSI FBS SR FAR 

SDA 0.56 0.39 0.98 0.57 0.43 

OpSDA 0.58 0.41 0.99 0.59 0.41 

MSDA 0.54 0.53 0.55 0.97 0.03 
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5-min Resolution 

SDA 0.5 0.34 0.97 0.51 0.49 

OpSDA 0.51 0.34 0.98 0.52 0.48 

MSDA 0.87 0.82 0.94 0.93 0.07 

1-min Resolution 

SDA 0.45 0.29 1.00 0.45 0.55 

OpSDA 0.46 0.30 0.99 0.46 0.54 

MSDA 0.84 0.79 0.90 0.93 0.07 

4.5 Conclusion 

In this chapter, a novel solar power ramp detection algorithm is proposed using a modified 

swinging door algorithm (MSDA).  We programmed the MSDA for accurate detection of ramp 

start- and end-times while retaining the positives of the SDA. To demonstrate the robustness of 

the proposed model to produce good accuracy regardless of input data sampling rate, the results of 

the proposed model are compared with that of an existing optimization of the SDA (OpSDA) on 

the basis of the number of extracted ramps, ramp magnitude, duration, rate and other empirical 

parameters. 

 

The results show that relative to the OpSDA, the MSDA offered significant performance 

improvements in every evaluation metric. In some instances, the OpSDA relative to the SDA 

extracted fewer ramps because the former combined several more ramp segments into a single 

ramp resulting in slightly longer ramp durations and larger magnitudes. Instances are also observed 

where the SDA without any modifications is preferred because of its lower execution time, 

robustness and computational simplicity. 

 

Although the test data presented in this chapter is from residential (small scale) systems with 

small or inconsequential geographical spread, we affirm that the results are also valid for utility 

scale systems since the only difference would be reduced average variability due to geographical 

smoothing. The proposed model performance is not impacted by differing climates or geographical 

regions. We showed detailed results for different time resolutions representing varying variability 

rates or patterns. Also, since only solar variability profiles are considered for generating the model, 
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although very unlikely, the performance results might be different if the MSDA without any 

tweaking is applied on wind power data. In the future work, we will validate the MSDA for wind 

power ramp characterization and ramping events forecast. 
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5 SUMMARY AND CONCLUSIONS 

5.1 Summary 

The highly volatile nature of power generation from PV systems and its associated 

unreliability is counterproductive to the transition from fossil fuels to more sustainable alternatives 

for electricity generation. However, as global population grows leading to increased power 

consumption and as the outcry for emissions reduction becomes increasingly formidable, it 

becomes inevitable that reliance on renewable energy sources like PV systems will increase. 

Consequently, energy discourses are centered on how to accommodate the attending challenges 

posed by these sources. Dealing with this problem, utility grids have to be smarter and forecasting 

technologies have to be sufficiently reliable. Smart grids and forecast models require data for 

performance improvements.  

 

This thesis presented solutions to three different challenges in the renewable energy world 

with keen interests in small-scale PV systems. Although these systems, with respect to installed 

capacities seemingly do not post significant threats compared to commercial or large-scale 

counterparts, the proliferation of these small capacity systems concentrated in distributed networks 

poses an increasing risk of reversed power flow and complicates load predictions. The three 

challenges addressed in this thesis are discussed in chapters 2 to 4. 

 

Chapter 2 presents an approach to solve the eventual problem of performance data 

unavailability for residential PV systems since this data is usually hidden from utility operators 

who only see net-load from residential buildings. The proposed approach involves a simple 

strategy of utility operators setting up web repositories for collecting these data in real- or near 

real-time. The logistics involved in creating such repositories are discussed. Resolutions to 

potential oppositions and challenges are presented alongside the benefits. Case studies of the 

implementation of similar approaches are also discussed to substantiate the claim that the proposed 

approach is practicable and feasible. 

 

In chapter 3, a prediction model for day-ahead regional PV power forecasting is presented. 

The model is specifically relevant for areas where numerical weather predictions of solar 

irradiance are not available. An Artificial neural network that requires only meteorological 
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variables excluding solar irradiance as inputs is used for irradiance predictions. Both machine 

learning-based and physical models are considered for PV power modelling from solar irradiance. 

Case study small-scale PV systems are divided into clusters and representative systems selected 

using k-means clustering and principal component analysis algorithms. The regional power output 

is then modeled from the representative systems using simple linear relationships. The accuracy 

of the proposed significantly improves the status quo. 

 

Chapter 4 presents a novel technique for solar power ramp events extraction and 

characterization. Only significant ramps by adopted ramp definitions are characterized based on 

ramp duration, magnitude and rate. Hence, ramps occurring in both clear-sky periods and the actual 

solar power data are ignored. The technique involves a modification of a data compression 

algorithm – the swinging door algorithm (SDA). Simple empirical and statistical tests are used to 

improve on the identified short comings of the SDA. The accuracy of the proposed modified 

swinging door algorithm (MSDA) was compared to the parent SDA and an already existing 

optimization of the SDA – optimized swinging door algorithm (OpSDA). The MSDA is found to 

accurately extract more ramps and computationally simple to execute. 

5.2 Contributions 

The main contributions of this thesis include: 

1. Proposed an approach for residential PV power data collection to solve the problem of data 

unavailability. 

2. Proposed a model for day-ahead regional scale PV power prediction in regions where solar 

irradiance data is unavailable or has intolerable errors. 

3. Developed a solar power ramp characterization algorithm based on a modified variant of 

the SDA. 

4. Proposed using the natural variability index for the automatic calibration of the tolerance 

of the SDA. 

5.3 Conclusions 

From the course of preparing this thesis, the following conclusions are reached: 
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1. Residential PV systems are increasingly more problematic as they grow in numbers. 

2. The performance of small-scale PV systems is invisible to utility operators. The importance 

of developing a method for collecting the invisible data increases with their proliferation. 

3. It is feasible to create web repository for collecting and documenting performance data in 

real- and near real-time. 

4. Comparatively good accuracy forecasts can be obtained from models that do not require 

irradiance as inputs. 

5. Physical models for modelling power outputs from irradiance data are more accurate than 

available alternatives. 

6. Modifications of the SDA for solar power ramp extraction using basic empirical test could 

improve the status quo of ramp extraction. 

5.4 Suggestions for Future Work 

The following suggestions for future work are recommendations: 

1. A Call for Evidence should be carried out to gather information on implementing the 

proposed web repository creation approach with the aim of reducing public and social 

resistance to implanting the approach. 

2. If available and reliable, a larger sample set of real-world case studies of PV systems 

should be used to train the proposed model. Also, the physical model should be preferred 

for power output modelling. 

3. The proposed ramp detection algorithm should be enhanced to increase its versatility for 

wind power ramp events detection. 

 

 


