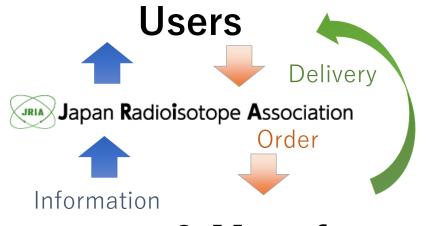
Status of the short-lived radioisotope supplying platform in Japan

Hiroki KANDA*, Takashi NAKANO, Mitsuhiro FUKUDA Research Center for Nuclear Physics, Osaka University, Japan

Demand for radio isotopes

- Industry: non-destructive testing,
- Chemistry: tracer, nuclear chemistry, synthesis of nuclear chemicals/medicine
- Biology, Agriculture: tracer, radiobiology
- Medicine: probes for diagnosis, cancer therapy

Increasing demand especially in the field of nuclear medicine


www.bayer.com

www.hcp.novartis.com

Supply of radioisotopes in Japan

- Commercial supply
 - Unified trades via JRIA

Importers & Manufacturers

 Private communications / Self production

JRAM

- JRIA RadioActive Material
 - portal site for scientific/safety information and supply of radioactive materials
 - promotion of the use of radioactive materials
- Information
 - Usage/Guides for experiments
 - Liaison with experts of experiments
 - News
- Supply
 - 6 importers/4 domestic manufacturers
 - Agent for ready-made and order-made RIs to manufacturers
 - 71 Nuclides

shortest life: F-18 109 minutes longest life: I-129 1.57x10⁷ years

H-3	Se-75	I-129
C-14	Rb-81/Kr-81m	I-131
F-18	Rb-86	Cs-134
Na-22	Sr-85	Cs-137
P-32	Sr-89	Ba-133
P-33	Sr-90	Ce-139
S-35	Y-88	Ce-144
CI-36	Y-90	Pm-147
Ca-45	Zr-89	Eu-152
Cr-51	Zr-95	Eu-154
Mn-54	Nb-95	Gd-153
Fe-55	Mo-99	Lu-177
Fe-59	Tc-99	Hg-203
Co-56	Ru-106	TI-201
Co-57	Ag-110m	TI-204
Co-58	Cd-109	Pb-210
Co-60	In-111	Bi-207
Ni-63	In-114m	Po-210
Cu-64	Sn-113	Np-237
Cu-67	Sb-124	Am-241
Zn-65	Sb-125	Am-243
Ga-67	I-123	Cm-244
Ge-68	I-124	Cf-252
Ge-68/Ga-68	I-125	

Commercial RI supply

Advantage

- Market mechanism
 - Widely used RIs can be easily procured (ex. F-18)
 - Import from the whole world
- Many kinds of chemical forms
 - RI materials are tools for the science
 - ← Easiness of use of RIs

Disadvantage

- Market mechanism
 - Less frequently used RIs are difficult to be purchased (e.g. Co-56, very high price!)
 - Supply depends on the world situation (e.g. Ru-103 from Russia or Mo-99 due to the eruption of the volcano)

Our aim

The short-lived-RI supplying platform was organized to assist the research subjects supported by MEXT/JSPS KAKENHI by supplying short-lived RIs regularly and stably, and by giving technical assistance for safe RI treatment.

- Supply of short-lived RIs which cannot be purchased from JRIA.
- Stable supply of RIs by all-Japan accelerator consortium consisting of high-performance accelerator facilities.
- Unification of contact office at RCNP as a core of collaborative use and research to improve convenience and to increase users.
- Supporting basic research in a various field, based on the peer-review system on the scientific merit and impact

The platform started from FY2016 supported by Grants-in-Aid for Scientific Research on Innovative area 16H02678 It continued after FY2022 supported by Grants-in-Aid for Transformative Research Area 22H03924

Accelerator Facilities for RI production

- 6 accelerator facilities in Japan
 - Almost all the cyclotron facilities for external scientific use: RCNP, RIBF, CYRIC, and QST
 - The most intense electron linac in ELPH
 - → Covering many kinds of nuclides and stable supply

Supply of	RCNP	RIBF	CYRIC	ELPH	QST- QMS	QST- Takasaki
Positron-emitting RIs	Possible	Possible	OK	Possible	OK	OK
Single-photon emitting RIs	OK	Possible	2-4-75	OK	OK	-
Beta-emitting RIs	Possible	Possible	Possible	Possible	OK	-
Alpha-emitting RIs	OK	OK	Possible	-	OK	OK
Neutron-rich RIs	-	-	-	OK	-	-
Heavy-element RIs	-	OK	-	-	-	-

Process of RI supply

Example of available RIs

Flow chart of application to supply

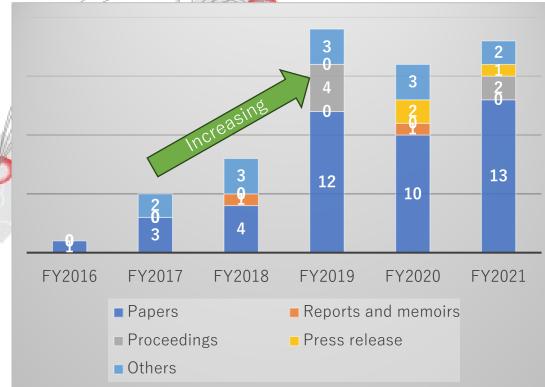
Nuclide	Chemical form	Facility
Be-7	Chloride	RIKEN
C-11	Various compounds	CYRIC
0-15	H ₂ O	CYRIC
F-18	F-(NaF), FDG, etc.	CYRIC
Mg-28	In metal, Chloride	RIKEN
K-42	Any form	ELPH
K-42, 43	Mixed solution	ELPH
K-43	Any form	ELPH
Sc-44m	In metal	RCNP
Co-56	In metal, Chloride	RCNP, RIKEN

	Nuclide	Chemical form	Facility	
	Cu-67	Chloride	RIKEN, ELPH	
	Zr-88	In Yttrium metal	RIKEN, RCNP	
	Y-90	Any form	RCNP	
	Mo-99	Any form	RCNP	
	Ag-111	In metal	RIBF	
	Cs-136	Any form	ELPH	
	Lu-177	Any form	RCNP	
	Pt-191	Any form	RCNP	
h	Au-195	Any form	RCNP	
-	At-211	Any form	RCNP, RIKEN, QST Takasaki	

Other nuclides can be supplied upon consultation

Technical Training Course

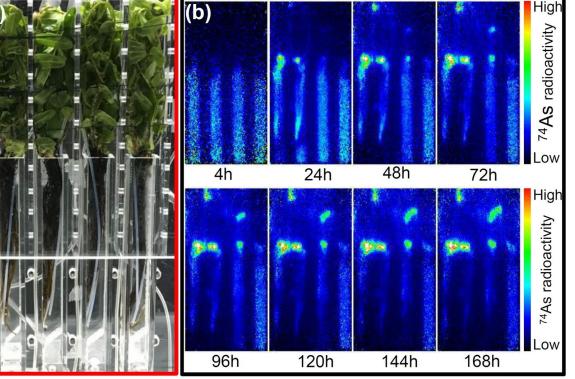
- Opened twice a year at CYRIC and RCNP
- Lectures on the basic and the state-of-the-art research with RIs
- Technique of treatment of the non-sealed RIs and measurement of the radiation


Stats

Number of approved research programs

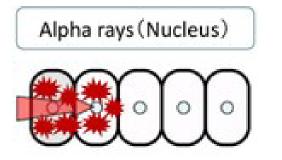
Many "Repeaters"

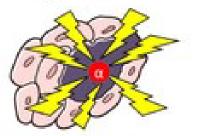
Number of publications



Significant result: PETIS for analysis of arsenic dynamics in plant

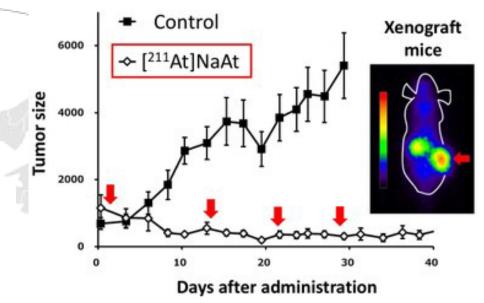
- A kind of plant can accumulate the toxic element arsenic
- Positron emitting As-74 supplied from our platform and PETIS revealed the mechanism of Arsenic accumulation in Pteris vittata
- → Phytoremediation of Arsenic contaminated soil and water by Pteris vittata


https://www.tohoku.ac.jp/japanese/2021/07/press20210709-01-moeji.html


DOI:10.1038/s41598-021-91374-1

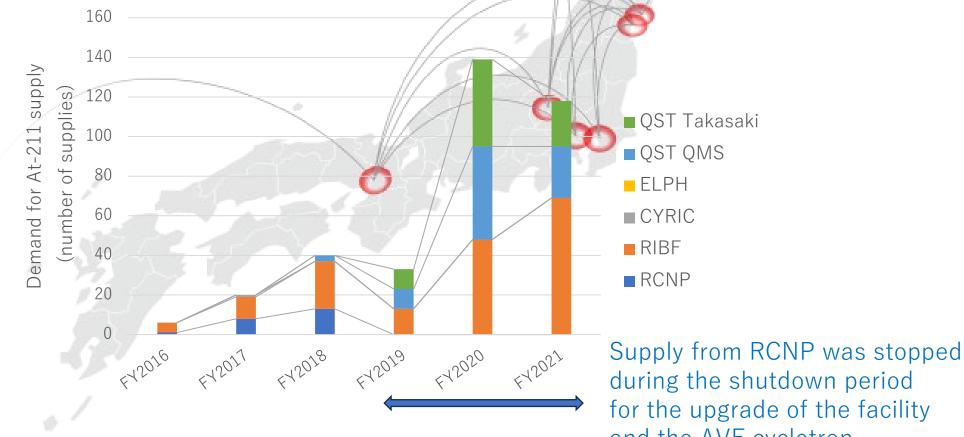
Significant result: Astatine-211 for TAT

 Targeted Alpha Therapy (TAT) is emerging as the next generation cancer treatment



- Short range
- High energy transfer

- Excellent treatment effect in cancer
- Small damage in the surrounding tissue

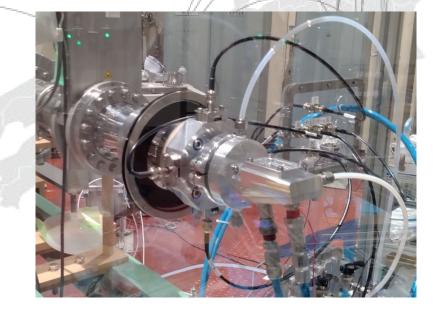

- Sodium Astatide [At-211] works as sodium iodide symporter to thyroid cancer
- It showed significant reduction of the tumor site for iodine-refractory thyroid cancer

Clinical test of [²¹¹At]NaAt (TAH-1005) for human is underway at Osaka University Hospital with At-211 supplied by RIBF, RIKEN.

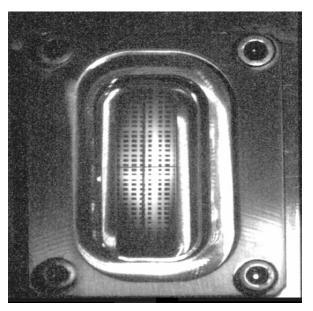
Emerging demand for At-211

- Demand for At-211 is increasing
- Other facilities, mainly RIBF, backed up the At-211 production and supply during the shutdown period of RCNP
- Increasing supplying capacity is urgent matter of importance

during the shutdown period for the upgrade of the facility and the AVF cyclotron 12


¹¹ ICI @ Saskatoon, Saskatchewan

At-211 production at RCNP


- The upgrade of AVF cyclotron and the beam irradiation system for increasing the beam intensity was completed and the beam commissioning started in FY2022
- A slant target and beam wobbler moderate heat dissipation to accept intense beams
- The current of the ${}^{4}\text{He}^{2+}$ beam reached 8 eµA by June 2023
- Stable production and supply of At-211 is expected for the clinical test at Osaka University Hospital

Beam course for RI production

Target station

Beam spot at the target position 13

26 Jul. 2023

11 ICI @ Saskatoon, Saskatchewan

Summary

- Six accelerator facilities: RCNP, RIBF, CYRIC, ELPH, QST-QMS, and QST-Takasaki formed "Supply platform for short-lived RI" in order to support the basic research in a various research field using RIs
- We have continued supporting scientific research with RI supply and technical assistance from FY2016
- Significant results to be published are increasing in recent years
- Demand for At-211 is greatly increasing. We attempt to increase our supplying capacity.
- [²¹¹At]NaAt (TAH-1005) is one of the most significant results and it is under clinical test at Osaka University Hospital.