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Abstract

The focus of this thesis is on the interplay between Higgs bundles and topological recursion. Our interests

lie in the relationship between quantum curves and the quantization of Hitchin spectral curves, and also the

relationship between Eynard-Orantin differentials and the geometry of the Hitchin moduli space.

We give an overview of existing results in the literature on quantum curves, covering the necessary ma-

terial to construct a quantum curve from a meromorphic SL(2,C)-Hitchin spectral curve. Starting from the

quantum curve, we offer a new perspective on the quantization that includes the spectral correspondence

and C∗-action. We view the quantization as a procedure that happens on the spectral curve, rather than the

base. This idea frames quantization around the tautological section, rather than the Higgs field.

Previous works relating meromorphic Higgs bundles to topological recursion have considered non-singular

models to allow the recursion to be done on a smooth Riemann surface. In this thesis, we start from an

L-twisted Higgs bundle. By studying the deformation theory of the L-twisted moduli space, we interpret L

as meromorphic data on a subbundle of an ordinary Higgs bundle. We encode this meromorphic data as a

b-structure on the base Riemann surface and spectral curve. We then propose a so-called twisted recursion

on the spectral curve, where the Eynard-Orantin differentials live in the twisted cotangent bundle. We show

that the g = 0 twisted Eynard-Orantin differentials compute the Taylor expansion of the period matrix of a

Hitchin spectral curve, mirroring a result for ordinary Higgs bundles and topological recursion. In particular,

this shows that the geometry of the spectral curve is independent of the ambient space in which it resides.
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1 Introduction

1.1 Higgs bundles

Discovered by Hitchin [64, 65], Higgs bundles have proven to be a powerful tool and rich subject of research. A

Higgs bundle is a pair (E , ϕ), where E is a holomorphic vector bundle with a one-form valued endomorphism ϕ ∈

H0(EndE ⊗K), called a Higgs field. Appearing initially as solutions to a dimensionally-reduced version of the self-

dual Yang-Mills equations, they can be generalized by allowing ϕ to have poles (cf. [16, 34, 87]) or by allowing ϕ to

take values in another holomorphic line bundle L (cf. [81, 83]). Under sufficient stability conditions, we can consider

the moduli space of Higgs bundles

ML
X =

{
stable L-twisted Higgs bundles

}
conjugation

.

The moduli space of Higgs bundles ML
X contains rich geometry, as it is a completely integrable Hamiltonian system,

and admits a hyperkähler structure in the ordinary (L = K) setting.

1.2 Topological recursion and quantum curves

Topological recursion, originally introduced in [26,42,44], is a recursive formula that associates to a spectral curve S,

which is a complex algebraic curve arising as the spectrum of a matrix-valued function with additional conditions, a

family of multi-differentials Wg,n. These Eynard-Orantin differentials are built out of canonical geometric data of the

spectral curve and its embedding into the cotangent bundle of a base curve KX by

• W0,1 is a meromorphic 1-form on S (typically chosen to be the tautological section of KX); and

• W0,2(z1, z2) = B(z1, z2),

with the remaining terms of 2g − 2 + n ≥ 0, being defined recursively by

Wg,n+1(z0, z) =
∑
p∈R

Resz=pKp(z0, z)

Wg−1,n+2(z, σp(z), z) +

′∑
g1+g2=g
I∪J=z

Wg1,|I|+1(z, I)Wg2,|J|+1(σp(z), J)


where the prime signifies summation excluding the cases (g1, I) or (g2, J) = (0, 0).

Topological recursion was developed in the context of matrix models and random matrix theory, but has since

shown close ties to problems and fundamental structures in enumerative geometry. From this recursion procedure, it

is possible to recover many known invariants: Weil-Peterson volumes (Mirzakhani’s recursion) [43,76], Hurwitz num-

bers [21,41,58], Virasoro constraints for two-dimensional gravity [29], and Tutte’s enumeration of maps [1,37]. There

are conjectures that topological recursion is also related to knot invariants [18, 28]. As such, topological recursion

1



sheds light on a myriad of deep and mysterious connections between topology, algebraic and differential geometry,

representation theory, combinatorics, and physics.

Based on intuition arising from matrix model theory [10,11], there is a connection between topological recursion,

and the theory of PDEs and quantization through a conjecture that topological recursion is able to reconstruct the

Wentzel-Kramers-Brillouin (WKB) solution for Schrödinger-type differential equations called quantum curves. This

quantum curve is thought of as a quantization of the spectral curve, using the usual map sending coordinates (x, y)

to operators (x, ℏ d
dx

). Its WKB solution ψ is constructed using the Wg,n arising from topological recursion on that

spectral curve by the equation

ψ(z;β) = exp
[1

ℏ
∑

2g+n−1≥0

ℏ2g+n−1

n!

∫ z

β

· · ·
∫ z

β

(
Wg,n(z1, ..., zn)− δg,0δn,0

dx(z1)dx(z2)

(x(z1)− x(z2))2

)]
,

where β is a simple pole of x. This was verified for a small class of genus-zero spectral curves in various contexts

in [11,20,32,34,36] and for a larger breadth in [19]. In general, the quantum curve is not a straightforward quantization

and can have ℏ correction terms.

Theorem 1.2.1 (Bouchard-Eynard, [19]). If S is an admissible spectral curve, then ψ(z;β) satisfies the following

differential equation: [
D1D2 . . .Dr−1

p0(x)

x⌊αr⌋
Dr +D1D2 . . . Dr−2

p1(x)

x⌊αr−1⌋
Dr−1

+ · · ·+ pr−1(x)

x⌊α1⌋
D1 +

pr(x)

x⌊α0⌋
− ℏC1D1D2 . . . Dr−2

x⌊αr−1⌋

x⌊αr−2⌋

− ℏC2D1D2 . . . Dr−3
x⌊αr−2⌋

x⌊αr−3⌋
− · · · − ℏCr−1

x⌊α1⌋

x⌊α0⌋

]
ψ(z;β) = 0 (1.2.1)

1.3 Connections between Higgs bundles and topological recursion

From the Higgs field, we can produce a Hitchin spectral curve by looking at the zero locus of its characteristic equation

(when interpreted correctly). When this spectral curve satisfies the correct properties, it becomes a candidate curve on

which to apply topological recursion. Recent work has been done to understand the relationship between topological

recursion and Higgs bundles. Dumitrescu-Mulase [32–35] have looked at generalizing topological recursion to a larger

class of Hitchin spectral curves and the quantization of these spectral curves, while Baraglia-Huang [6], Bertola-

Korotkin [12] and Chaimanwong et al. [25] have investigated the relationship between topological recursion on Hitchin

spectral curves and geometric properties of the moduli space of Higgs bundles.

1.3.1 Quantum curves

In ordinary topological recursion, the spectral curve is a local covering of P1. Hitchin spectral curves are globally

defined objects. A suitable definition of a quantum curve for a Hitchin spectral curve needs to include the global

structure. In this setting, Dumitrescu-Mulase [35] define the quantum curve of a Higgs bundle on a Riemann surface

X as a Rees D-module whose semi-classic limit is the Hitchin spectral curve. This produces a collection of differential

operators on a cover of X.

2



If we restrict to SL(2,C)-Higgs bundles (possibly meromorphic), we can view the quantization of Hitchin spectral

curves in two ways. If we equip X with a projective coordinate system and spin structure K
1
2 , we can produce

from a Hitchin section-type Higgs bundle (E , ϕ) an oper (E ,∇). This oper gives rise to a Rees D-module, which is,

in particular, a quantum curve. On the other hand, starting from a spectral curve S (or non-singular model S̃, if

necessary), we can define a global topological recursion. These two viewpoints are related by the following theorem.

Theorem 1.3.1 (WKB analysis for SL(2,C)-quantum curves, [35]). The PDE topological recursion (5.3.5) with an

appropriate choice of initial data provides an all-order WKB analysis for the generator (5.3.6) of the Rees DX-module

E(q) on a small neighbourhood in X of each zero or pole of q of odd order, i.e. we can use the PDE topological

recursion to construct a solution to

Pα(xα, ℏ)ψα(xα, ℏ) =

[(
ℏ d

dxα

)2

− qα

]
ψα(xα, ℏ) = 0 (1.3.1)

of the form

ψα(xα, ℏ) = exp

(
∞∑
m=0

ℏm−1Sm(xα)

)
. (1.3.2)

1.3.2 Geometry of Hitchin moduli spaces

The complex integrable system structure of the ordinary Hitchin moduli space MX gives rise to a special Kähler

structure on the Hitchin base. This special Kähler structure can be written in terms of the period matrix of the

spectral curve at the point in the Hitchin base. The special Kähler metric combines with a metric along the fibres

of the moduli space to produce the semi-flat metric on the regular locus of MX . This can be thought of as an

approximation of the complete hyperkähler metric. Baraglia-Huang [6] show that the Taylor series expansion of

the period matrix (and by extension, information about the hyperkähler metric) about a point in the base can be

computed using the g = 0 Eynard-Orantin differentials on the Hitchin spectral curve associated to that point.

Theorem 1.3.2 (Baraglia-Huang, [6]).

∂i1∂i2 . . . ∂im−2τim−1im = −
(
i

2π

)m−1 ∫
pi1∈bi1

· · ·
∫
pm∈bim

W0,m(p1, ..., pm) (1.3.3)

1.4 Results

1.4.1 Quantization of Hitchin spectral curves

We consider the quantization of SL(2,C)-co-Higgs bundles on P1, with the Higgs field having the form

ϕ =

0 α

1 0

 : E → E ⊗O(2), (1.4.1)

where α ∈ H0(EndE ⊗O(4)) is a quadratic vector field.

From the viewpoint of topological recursion, we can produce a quantization using the data of the spectral curve,

i.e. the quantum curve. We use this as motivation to interpret the quantization of Higgs bundles as a procedure on

3



Hitchin spectral curves. We view the tautological section η as both a classical and quantum object. As a classical

object, it acts by multiplication on sections of the spectral line bundle Q. As a quantum object, we view it as the

differential operator ℏ d
dx

. By studying the spectral correspondence and C∗-action in the classical picture, we produce

quantum analogues.

Classical (in ϕ) Classical (in η) Quantum

action multiplication (OX -linear) multiplication (OS-linear) momentum (C-linear)

operator Higgs field ϕ tautological section η momentum ℏ d
dx

sheaf O(E) O(Q) L2(Q)

spectrum η2 − α = 0 η2 − α = 0 ℏ2 d2

dx2
− α = 0

C∗-fixed point ϕ =

0 0

1 0

 α = 0 ψ ∈ L2(Q) with ℏ2 d2

dx2
ψ = 0

1.4.2 Geometry of L-twisted Hitchin spectral curves

Notable changes occur when considering L-twisted Higgs bundles in lieu of ordinary Higgs bundles. In the twisted

moduli space, the Hitchin base and the fibres of the moduli space no longer have the same dimension. This means

we cannot view the Hitchin base as the space of deformation of the spectral curve as was done in the L = K setting.

In the ordinary setting, the tautological section η (which is used to define Hitchin spectral curves) is related to the

canonical symplectic structure on the cotangent bundle, however in the twisted setting, there is no longer a canonical

symplectic structure, and so η is viewed purely as an algebraic object valued in π∗L. The lack of a canonical sym-

plectic structure also removes a “nice” canonical coordinate system in which to work.

We study the hypercohomology of stable L-twisted Higgs bundles (E , ϕ) on a Riemann surface X with spectral

curve S given by the two double complexes

D = (δ,∧ϕ),

D′ = (∧ϕ, δ),

where ∧ϕ is the differential coming from the Higgs field, and δ is the Čech differential. We find a suitable expression

for the tangent space of the fibres,

T(E,ϕ)ML
X(r, d) ∼= TQJac(S)× Th(E,ϕ)B

= H1

(
r−1⊕
i=0

L−i

)
× B.

We then define a so-called effective base, which is dual to TQJac(S).

Definition 1.4.1. We call Beff := H0
(⊕r−1

i=0 L
i ⊗K

)
the effective Hitchin base.

Choosing a section s ∈ H0(X,K∗ ⊗ L), we reframe our L-twisted Higgs bundle as a K(Z)-valued Higgs bundle,

where Z is the zero-divisor of s. This imposes the structure of b-geometry onto X and S, and thus a log-symplectic

structure. In this b-geometric picture, we define the twisted Eynard-Orantin invariants (for suitably defined B̂ and

modified Kp below).
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Definition 1.4.2. The L-twisted Eynard-Orantin differentials Wg,n are meromorphic sections of the n-th exte-

rior tensor product KS(Z)⊠n, i.e. multi-b-differentials, defined as follows:

The initial conditions of the recursion are given by:

W0,1(z) = y(z)
dx(z)

x(z)
(1.4.2)

W0,2(z1, z2) = B̂(z1, z2). (1.4.3)

For all g, n ∈ N and 2g − 2 + n ≥ 0, define Wg,n recursively by

Wg,n+1(z0, z) =
∑
p∈R

Resz=pKp(z0, z)

Wg−1,n+2(z, σp(z), z) +

′∑
g1+g2=g
I∪J=z

Wg1,|I|+1(z, I)Wg2,|J|+1(σp(z), J)

 (1.4.4)

where the prime signifies summation excluding the cases (g1, I) or (g2, J) = (0, 0).

We argue that local computations of the twisted Eynard-Orantin differentials mirror the L = K setting, so the

twisted differentials satisfy the same properties as the ordinary ones. In particular, they also satisfy a variational

formula.

Theorem 1.4.3 (Variational Formula for twisted-E-O invariants). For g + k > 1,

δiWg,k(p1, ..., pk) = − 1

2πi

∫
p∈bi

Wg,k+1(p, p1, ..., pk), (1.4.5)

where the cycle bi is chosen so that it contains no ramification points.

Using this variational formula, we prove that the g = 0 twisted Eynard-Orantin differentials compute the Taylor

expansion of the period matrix of S in the image of the effective Hitchin base.

Theorem 1.4.4.

∂i1∂i2 . . . ∂im−2τim−1im = −
(
i

2π

)m−1 ∫
pi1∈bi1

· · ·
∫
pm∈bim

W0,m(p1, ..., pm) (1.4.6)

1.5 Overview

In this thesis, we will begin by reviewing the foundational theory required to engage in the later chapters. In Chapter

2, we review the theory of Riemann surfaces and algebraic curves over the complex numbers, with emphasis on the

properties of holomorphic vector bundles. In Chapter 3, we review basic properties of Higgs bundles. We approach

this topic in both the usual case and the L-twisted case. We then introduce the Eynard-Orantin topological recursion

in Chapter 4, and explicitly produce a quantum curve for the Airy spectral curve. This sets the stage for the general

theorem relating spectral curves to WKB solutions in the kernel of the associated quantum curve. In Chapter 5,

we highlight some of the work of Dumitrescu-Mulase on topological recursion for Hitchin spectral curves and their

relationship to deformations of complex structures on bundles supported on the projective line. We use this as a

starting point to incorporate and interpret the spectral correspondence and C∗-action in the quantum curve framework.

In Chapter 6, we study the deformation of the L-twisted moduli space, and define a “twisted” version of topological
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recursion, showing that the relationship between topological recursion and the geometry of the spectral curves does

not depend on the space in which the spectral curve lives. Finally, in Chapter 7, we discuss the further aims of the

thesis work, which includes a further dive into the geometry of the L-twisted setting, the development of an invariant

recursion that exploits tautological geometric features of spectral curves to produce recursion kernels, the inclusion

of the L-twisted picture from the viewpoint of quantum Airy structures (in the sense of Kontsevich-Soibelman [70])

and questions related to condensed matter physics, namely the theory of topological materials.
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2 Holomorphic vector bundles on Riemann surfaces

Riemann surfaces are the main setting of the following exposition. We will be concerned chiefly with structures

on, and equations written in, holomorphic vector bundles on such surfaces. In this chapter we recall some necessary

definitions, state some useful theorems, and prove a few facts that will be used throughout the thesis. A standard

textbook on Riemann surfaces will contain the majority of information and proofs of the theorems. For the purpose

of this exposition, [47] and [67] were used. For the most part, we will assume the reader is aware of basic definitions

surrounding complex manifolds, smooth bundles on such manifolds, and sheaves over such manifolds. Differential-

geometric notions such as one-forms and vector fields are also assumed.

2.1 Basic notions

Recall that a Riemann surface X is a one-dimensional complex manifold. For us, X will always be smooth, compact,

and connected. Equivalently, X can be regarded as a non-singular, connected, projective algebraic curve over C. We

will tend to prefer the Riemann surface point of view, but we will use the words surface and curve interchangeably

when there is no confusion. To a Riemann surface X we can associate a fundamental topological, numerical invariant

other than its dimension. This is the genus g ∈ N, which is roughly speaking the number of “holes” in X. This

is a complete topological invariant, meaning that, up to homeomorphism, X is classified by g. Below, we give an

alternative definition for g that is more rigorous.

A rank m holomorphic vector bundle E on X is a holomorphic structure, meaning an integrable ∂-operator on a

smooth rank 2m real bundle E on X. Here, the operator is a C-linear, OX -Leibnizian functional

∂E : Γ(E)→ Γ(E ⊗ Ω0,1(X)),

where OX is the sheaf of C-valued functions on X, Γ(E) is the infinite-dimensional affine space of smooth sections of

E, and Ω0,1(X) is the bundle of anti-holomorphic one-forms on X with regards to the integrable complex structure

with which X comes equipped as a complex manifold. The integrability of the holomorphic structure is precisely

∂
2
E = 0, which can be thought of as a “flatness” condition. Roughly speaking the structure picks out which sections

are “holomorphic”: these are the sections in ker(∂E).

Note that the number m did not enter the discussion of the ∂-operators definition of a holomorphic bundle. The

number m is built into the definition of a real bundle, as half the dimension of its fibre, which is isomorphic as a vector

space to R2m. Alternatively, we can pose a definition for E in which the emergence of the fibres is made plain. For

this, we suppose that X is decorated by a covering of open sets {Uα}. Then we can describe E as a complex manifold

with a holomorphic projection π : E → X that satisfies the following properties:
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1. for all z ∈ X, π−1(z) is an m-dimensional complex vector space,

2. all z ∈ X have a neighbourhood U such that

ϕUα : π−1(Uα)→ Uα × Cm

is a homeomorphism. The map ϕUα is called a trivialization.

3. ϕUβ ◦ ϕ
−1
Uα

: (z, w) 7→ (z, gαβ(z)w) where gαβ : Uα ∩ Uβ → GL(m,C) is holomorphic.

The map gαβ is called a transition function. We will mostly prefer the open covering point of view in what follows

(except that the ∂ point of view will be used later to define the Hitchin equations).

Throughout, Hi refers to the i-th Čech cohomology of a sheaf on the specified Riemann surface. Given a sheaf S

of vector spaces on X and a locally finite covering {Uα}α∈A by open sets we can define the Čech complex

C(Uα,S) = C0 δ0→ C1 δ1→ C2 δ2→ . . . (2.1.1)

as follows. The n-th cochain group is defined as

Cn =
∏

(α0,...,αn∈An+1)

S(Uα0 ∩ · · · ∩ Uαn). (2.1.2)

Elements of C0 look like {fα} ∈ S(Uα), elements of C1 look like {fα,β} ∈ S(Uα ∩ Uβ) and so on. The boundary

operator δn : Cn → Cn+1 is defined by

(δnf)α0...αn =
∑
i

(−1)ifα0...α̂i...αn |Uα0∩···∩Uαn+1
. (2.1.3)

The map δ0 looks like {fα} 7→ {fα|Uα∩Uβ−fβ |Uα∩Uβ ∈ S(Uα∩Uβ)}, the map δ1 looks like {fαβ} 7→ {fβγ−fαγ+fαβ ∈

S(Uα ∩Uβ ∩Uγ)}, continuing in a similar fashion as an alternating sum. Due to this alternating sum, we have δ2 = 0.

With that, the Čech cohomology groups are given by

Hn(X,S) =
ker(δn)

im(δn−1)
. (2.1.4)

In particular, H0(X,S) is the vector space of global sections of the sheaf. When S is a holomorphic vector bundle

on X, which is equivalent to S being locally free, H0(X,S) is the vector space of global holomorphic sections. By

hn(X,S) we mean the complex dimension of the corresponding cohomology.

A holomorphic line bundle, denoted L, is the special case of a rank 1 holomorphic vector bundle. Isomorphism

classes of line bundles on a Riemann surface are classified by the group cohomology H1(X,O∗), where O∗ is the sheaf

of non-vanishing holomorphic functions on X. (The Čech cohomology for a sheaf of groups is defined in the same

way as for a sheaf of vector spaces, except that δn is defined using the group operations.) This group sits in the short

exact sequence

0→ Cg

Z2g
→ H1(X,O∗)→ Z→ 0, (2.1.5)

known as the Euler exact sequence. We can assign to a line bundle L an integer invariant called the degree of L,

denoted degL, which is the image of [L] ∈ H1(X,O∗) inside of Z. This definition does not always allow the degree

to be easily computed. A more practical way to understand the degree is that it is the number of zeros of a generic
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section s ∈ H0(X,L). From a rank m vector bundle E , we can produce a line bundle det(E) =
∧m E , which is the line

bundle whose transition functions are det(gαβ). The notion of degree can be extended to vector bundles by defining

the degree of E by deg(E) := deg(det(E)).

A (integral) divisor D on X is a finite linear combination of points in X with integer coefficients. The degree of

a divisor is the sum of its coefficients. On a compact Riemann surface the set of all divisors is the free abelian group

on points of X under addition. To a divisor D we can associate a line bundle LD whose generic sections have zeros

at points of D with positive coefficients or poles at points of D with negative coefficients.

The holomorphic cotangent bundle Ω1,0(X) of X, also referred to as the canonical bundle, is an important line

bundle that will be used throughout. We will use the notation KX := Ω1,0(X) when we need to be clear about the

base Riemann surface, and K when there is no ambiguity.

Definition 2.1.1. Let X be a compact Riemann surface. The genus of X is the number g := h0(X,K).

In other words, we define the genus to be the maximum number of linearly independent holomorphic one-forms

on X. Meromorphic sections of K, that is, one-forms that are holomorphic away from a divisor of points are familiar

from complex analysis, as per:

Theorem 2.1.2 (Residue Theorem). If X is a compact Riemann surface, a1, ..., an ∈ X distinct points, then for all

holomorphic one-forms ω on X\{a1, ..., an} we have

n∑
k=1

Resak (ω) = 0. (2.1.6)

We can equip a holomorphic vector bundle E on X with

2.2 Covering spaces

Consider a non-constant holomorphic map between two compact Riemann surfaces f : X → Y . At each point x ∈ X,

the branching degree of f at x, denoted v(f, x), is defined to be the multiplicity with which f takes the value f(x) at

x. The branching order of f at x is

b(f, x) := (v(f, x)− 1), (2.2.1)

and the branching order of f is

b(f) :=
∑
x

b(f, x). (2.2.2)

Because X is compact, v(f, x) ̸= 1 for only finitely many terms. The sum then only contains finitely many terms,

meaning that b(f) is well-defined. The branching order is counting the number of times different sheets are coming

together, including the multiplicity of the sheets. Points on X where the sheets come together, and are therefore

not locally invertible, are called branch points or ramification points; their images in Y are called branch values or

ramification values. The ramification divisor of f is R =
∑
x b(f, x)[x].

We can now relate the genus of the two Riemann surfaces using the following classical theorem:
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Theorem 2.2.1 (Riemann-Hurwitz Formula). If f : X → Y is an n-sheeted holomorphic branched cover of compact

Riemann surfaces X and Y with branching order b, and gX and gY denote the genus of X and Y , then:

gX =
b

2
+ n(gY − 1) + 1. (2.2.3)

2.3 Properties of holomorphic bundles

The Riemann sphere P1 is a Riemann surface that will be of particular interest in the proceeding work. We prove a

few useful facts about bundles on P1 that will be used later on.

Proposition 2.3.1.

h0(P1,K) = 0

Proof. Let U0 = P1\{∞}, U1 = P1\{0}. A section of K looks like f(z)dz on U0 and f(z̃)dz̃ on U1, where f0, f1 are

holomorphic on C. The two one-forms need to agree on the overlap U0∩U1, where the coordinate changes as z̃ = z−1,

and so

dz̃ = −z−2dz. (2.3.1)

Equality of the one-forms means that we have

f0(z)dz = −z−2f1(z−1)dz. (2.3.2)

Expanding each side into a power series

∞∑
n=0

anz
ndz = −z−2

∞∑
n=0

bnz
−ndz

= −
∞∑
n=0

bmz
−(n+2)dz

= −
∞∑
n=2

bm−2z
−ndz.

Comparing coefficients of powers of z it is clear that an = bn = 0 for all n because the left-hand side only has positive

powers of z and the right-hand side only has negative powers of z. Therefore there are no non-zero global sections of

K.

Following Definition (2.1.1), Proposition (2.3.1) says that P1 is genus zero, which is the expected result when

thinking about the genus as the number of “holes”.

We are also interested in line bundles on P1 that are not K. We construct a line bundle on P1 as follows. Consider

P1 with U0 and U1 as in the proof above. Define a line bundle O(n) on P1 by its transition function on the overlap

U0 ∩ U1 = C∗,

g01 = zn. (2.3.3)

A section of this line bundle is given by s0, s1 on U0, U1. The sections are related by

s0(z) = zns1(z̃) (2.3.4)
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on the overlap. Expanding each side as a power series and relating z to z̃ by z̃ = z−1 yields

∞∑
k=0

akz
k = zn

∞∑
k=0

bkz
−k

=

∞∑
k=0

bkz
n−k.

Equating coefficients of power of z yields a polynomial of the form

s(z) =

n∑
k=0

akz
k. (2.3.5)

This means that sections of O(n) are given by degree n polynomials.

Thinking about K in the context of these O(n) line bundles, we see from comparing Equation (2.3.2) and Equation

(2.3.4) that as line bundles K = O(−2). It turns out to be true that all vector bundles on P1 are related to O(n)-type

bundles. This fact is the Birkhoff-Grothendieck theorem, which is stated and proved below.

Theorem 2.3.2 (Birkhoff-Grothendieck Theorem). If E is a rank m holomorphic vector bundle over P1, then:

E ∼= O(a1)⊕ · · · ⊕ O(am), (2.3.6)

for some numbers ai ∈ Z, unique up to permutation.

Remark. There are modern, relatively algebraic proofs of this theorem that utilize properties of exact sequences of

vector bundles. A proof of this form can be found in [67]. Instead, we employ a rather elementary proof, found in [63],

utilizing only ideas from linear algebra.

Proof. Let E be a rank m holomorphic vector bundle over P1. Covering P1 with the usual charts U0 and U1, we have

that the change of coordinates on the intersection is z̃ = z−1, and that, up to isomorphism, E|Ui
∼= Ui × Cm with

transition function g01 : U0 ∩U1 → GL(m,C) a polynomial matrix. This means that the two pieces of E can be glued

together as

(z, w) 7→ (z−1, g01(z, z−1)w). (2.3.7)

Because g01(z, z−1) is an invertible matrix for all z ̸= 0, z−1 ̸= 0, we must have that

det(g01(z, z−1)) = zn, (2.3.8)

for some n ∈ Z. A vector bundle automorphism of U0 × Cm is a map of the form (z, w) 7→ (z,A(z)w) where

A(z) ∈ GL(m,C) is a polynomial matrix. Similarly, an automorphism of U1 × Cm is given by an invertible matrix

B(z−1). This means that trivializations of E|Ui are given by such vector bundle automorphisms. It follows from this

idea that isomorphism classes of rank m vector bundles on P1 are given by equivalence classes of invertible matrices

g01(z, z−1) with det(g01) = zn for some n ∈ Z. The equivalence is given by g01(z, z−1) ∼ g̃01(z, z−1) iff there exists

invertible polynomial matrices A(z), B(z−1) with constant determinant such that

g̃01(z, z−1) = B(z−1)g01(z, z−1)A(z). (2.3.9)

The vector bundle O(a1)⊕· · ·⊕O(am) is defined by the transition function g01(z, z−1) = diag(za1 , . . . , zam). This

means that it is sufficient to show there are polynomial matrices A(z) and B(z−1) such that

B(z−1)g01(z, z−1)A(z) = diag(za1 , . . . , zam), (2.3.10)
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and the ai are uniquely determined by g01.

Before proving (2.3.10), we adopt the notation D(a1, . . . , am) = diag(za1 , . . . , zam), and will suppose that

a1 ≥ a2 ≥ · · · ≥ am. (2.3.11)

We first prove uniqueness. Suppose that there are two matrices D(a1, . . . , am) and D(a′1, . . . , a
′
m) that are equiv-

alent to g01. This means that D(a1, . . . , am) and D(a′1, . . . , a
′
m) are equivalent, meaning there are matrices A(z) and

B(z−1) such that

B(z−1)D(a1, . . . , am) = D(a′1, . . . , a
′
m)A(z). (2.3.12)

For a matrix A, denote by A
i1...ik
j1...jk

the minor obtained by taking the determinant of the submatrix of A obtained

by removing all rows and columns indexed in {1, . . . ,m}\{i1, . . . , ik} and {1, . . . ,m}\{j1, . . . , jk} respectively. For

two matrices A and B, the product has minors given by

(AB)
i1...ik
j1...jk

=
∑

r1<···<rk

Ai1...ikr1...rkB
r1...rk
j1...jk

. (2.3.13)

We want to apply (2.3.13) to (2.3.12). As D is a diagonal matrix, the only term in the sum of that would be

non-zero is a term of the form D
i1,...,ik
i1,...,ik

, as anything else would produce a row of zeroes. Applied to the left-hand side

of (2.3.12),

(B(z−1)D(a1, . . . , am))1,2,...,ki1,...,ik
=

∑
r1<···<rk

B1,2,...k
r1...rk (z−1)D

r1...rk
i1...ik

(a1, . . . , am)

= B1,2,...k
r1...rk (z−1)D

i1...ik
i1...ik

(a1, . . . , am)

= B1,2,...k
i1...ik

(z−1)zai1+···+aik . (2.3.14)

A similar computation can be done for the right-hand side. Putting them together we have

B1,2,...k
i1...ik

(z−1)zai1+···+aik = za
′
1+···+a′2A1,2,...k

i1...ik
(z) (2.3.15)

for all i1 < · · · < ik.

Because A(z) is an invertible matrix, there must be some i1, . . . , ik such that

A1,2,...k
i1...ik

(z) ̸= 0. (2.3.16)

The left-hand side of (2.3.15) has degree ≤ ai1 + · · · + aik , while the right-hand side has degree ≥ a′1 + · · · + a′k.

Equality of both sides means that

ai1 + · · ·+ aik ≥ a
′
1 + · · ·+ a′k. (2.3.17)

By our choice ordering, (2.3.11), we have then a1 + · · ·+ ak ≥ a′1 + · · ·+ a′k for all k. If we multiply (2.3.12) by A−1

on the right and B−1 on the left we can repeat this argument and get a′1 + · · ·+ a′k ≥ a1 + · · ·+ ak for all k. Together

these results yield that for all i = 1, ...,m, ai = a′i, proving the uniqueness of D(a1, . . . , am).

We now prove the existence. We can multiply g01(z, z−1) with by a suitable power zk to obtain a matrix G(z) that

contains no negative powers of z. Utilizing column operations, in the form of a matrix A(z), we can make G11 ̸= 0
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and G1i = 0 for i = 2, . . . ,m.

Because det(g01) = zn, we must have that G11 = zn1 for some positive integer n1. Let G2 denote the lower-right

(m − 1) × (m − 1) submatrix of G. We can prove existence by induction on the size of the matrix. The base case

m = 1 is trivially true. In this fashion we supposed that there are matrices A2(z) and B2(z−1) such that

C(z) =

1 0

0 B2

G
1 0

0 A2

 =


zn1 0 . . . 0

c2 zn2 0

... 0
. . .

cm znm

 , (2.3.18)

where n1, . . . , nm are positive integers (n1 the same as above), and ci = ci(z, z
−1) are polynomials. By performing row

operations using a suitable matrix B(z−1), it is possible to use the first row to make the ci into a polynomial of only z.

Consider all polynomial matrices of the form (2.3.18) up to conjugation of eigenvalues. We can choose one for

which k1 is maximal because k2, . . . , km ≥ 0, by construction, and k1 ≤ deg(detG(z)). We claim that k1 ≥ ki for

i = 2, . . . ,m. Suppose that k1 < ki for some i. A suitable row operation, again a matrix B(z−1), lets us subtract a

multiple of the first row from the i-th row to yield a matrix with ci = zk1+1c(z). Interchanging the first and i-th row

we have a matrix G(z) with greatest common divisor in the first row as zk
′
1 , where k′1 ≥ k1 + 1 > k1. If we repeat

the procedure above to this new matrix we arrive at a contradiction because we assumed that k1 was maximal. This

means that we have k1 ≥ ki for i = 2, . . . ,m. Using column operations of the form A(z) we can make it so that

deg(ci) ≤ ki by subtracting the 2-nd,...,m-th column from the first one. Because k1 ≥ ki ≥ deg(ci), we can use row

operations B(z−1) to find a suitable multiple of sk1 that equals ci, and subtraction to make c2 = · · · = cm = 0. This

proves that there are integers k1, . . . , km, and matrices A(z) and B(z−1), obtained by the column and row operations

from above, such that

B(z−1)zng01(z, z−1)A(z) = diag(zk1 , . . . , zkm). (2.3.19)

Multiplying by z−n yields (2.3.10), with ai = ki − n, and completes the proof.

We highlight here a few properties of holomorphic bundles in general that will be of use later on:

Let E , Ẽ be holomorphic vector bundles on X with transition functions gαβ(E) and gαβ(Ẽ), sections s ∈ H0(X, E) and

s̃ ∈ H0(X, Ẽ), and f : X̃ → X a holomorphic map.

1. Define the dual bundle E−1 := E∗. It has transition functions gαβ(E∗) = gαβ(E)−1. The dual bundle has degree

deg(E∗) = −deg(E).

2. Define the tensor product E ⊗ Ẽ by its transition functions gαβ(E ⊗ Ẽ) = gαβ(E)⊗ gαβ(Ẽ). A section of E ⊗ Ẽ

looks like s⊗ s̃. The tensor product has degree

deg(E ⊗ Ẽ) = deg(E)rank(Ẽ) + rank(E) deg(Ẽ). (2.3.20)

3. We can form the homomorphism bundle Hom(E , Ẽ) ∼= E∗ ⊗ Ẽ . Holomorphic homomorphisms between vector

bundles are holomorphic sections of E∗ ⊗ Ẽ .
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4. Define the pullback of E on X by

f∗E := {(x, q) ∈ E × X̃ : π(x) = f(q)}. (2.3.21)

It has transition functions gαβ ◦ f . A section of f∗E is a holomorphic map s : X̃ → E such that π ◦ s = f .

2.4 Finiteness theorems

There are two classic “finiteness” theorems that will prove to be useful when dealing with vector bundles on Riemann

surfaces:

Theorem 2.4.1 (Serre Duality). If E is a holomorphic vector bundle on a compact Riemann surface X, then:

H1(X, E) ∼= H0(X,K ⊗ E∗)∗. (2.4.1)

Theorem 2.4.2 (Riemann-Roch Theorem). If E is a holomorphic vector bundle over a compact Riemann surface X

of genus g, then:

dimH0(X, E)− dimH1(X, E) = deg E + rkE(1− g). (2.4.2)

2.5 Direct image sheaves

In later chapters, we will be interested in the situation where we push forward a line bundle on a ramified r-sheeted

cover to the base Riemann surface. In other words, let f : Y → X be a holomorphic map between Riemann surfaces

X and Y with deg f = r, and let L be a holomorphic line bundle on Y . We want to understand the object we that

get on X by pushing forward L via the covering map f by studying the direct image sheaf.

Definition 2.5.1. Let S a sheaf on Y . The direct image sheaf f∗S on X is defined by

(f∗S)(U) := S(f−1(U)),

on each open set U on X.

For our purposes, we will mainly be interested in the setting where S = L. Following from the definition, we have the

following facts about the direct image sheaf:

(1) H0(X, f∗L) = H0(Y,L),

(2) For V a holomorphic vector bundle on X,

f∗O(L⊗ f∗V ) ∼= O(f∗L ⊗ V ).

We will show the push forward of L is a vector bundle on X, and compute its rank and degree in terms of f, L,

and the genera of X and Y . To begin we prove that the pushfoward is in fact a vector bundle, and compute its rank.
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Proposition 2.5.2. If f : Y → X a holomorphic map between Riemann surfaces, L is a holomorphic line bundle on

Y , then f∗L is a rank r holomorphic vector bundle on X, where r = deg f .

Proof. To prove this we need to show that f∗O(L) is a locally-free sheaf, i.e. we need to show that for each point

x ∈ X, there is a neighbourhood U of x such that

f∗O(L)(U) ∼=
r⊕
i=1

O(U).

There are two cases that we need to be considered: x is a regular (unbranched) value, and x is a branch value.

Figure 2.1: A line bundle L on Y being pushed forward to a vector bundle on X.

Suppose x is a regular value. In this case, the preimage f−1(x) consists of r distinct points, and f ′ ̸= 0 at all of

the points in this preimage. This means that there are r disjoint open sets Ui ⊂ Y , one around in each point in the

preimage, so that f−1(U) =
⊕r

i=1 Ui. On each Ui, f is a holomorphic diffeomorphism , and thus

f∗O(L)(U) = O(L)(f−1(U)) =

r⊕
i=1

O(Ui).

Suppose x is a branch value. In this case, the preimage f−1(x) consists of less than r distinct points, as some

number of sheets are coming together. Around a branch point, there is a number k, and local neighbourhoods U ⊂ Y ,

x ∈ V ⊂ X, where f looks like that map z → zk, and is a w = zk local coordinate on U . A section of L over V is

a local holomorphic function whose Taylor expansion around 0 can be written as h(z) =
∑∞
i=0 aiz

i. To understand

how this section gets pushed forward to U , we need to write h(z) in terms of the local coordinate w. We do this as

follows:

h(z) =

∞∑
i=0

aiz
i

=

k−1∑
p=0

∞∑
q=0

aqk+pz
qk+p

=

k−1∑
p=0

∞∑
q=0

aqk+pz
pzqk

=

k−1∑
p=0

zphq(z
k)

= h0(w) + zh1(w) + · · ·+ zk−1hk−1(w),
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where hq(w) =
∑∞
q=0 aqk+pw

q. From this last expression, we see that a local section on U is a combination of k local

holomorphic functions in w. The total multiplicity of branch points satisfies

∑
z∈f−1(x)

kz = deg(f) = r,

which means that by taking the direct sum across all points in f−1(x), we have

f∗O(L)(U) =
⊕

z∈f−1(x)

(⊕kzi=1O(U)) =

r⊕
i=1

O(U).

Now that we have shown that E = f∗L is a vector bundle, we compute its degree. Let gX and gY be the genera

for X and Y respectively.

Proposition 2.5.3.

degE = degL+ (1− gY )− deg f(1− gX) (2.5.1)

Proof. We first recall the following fact about vector bundles. If V is a vector bundle on X, then for a sufficiently

large integer n,

H0(X,V ⊗ (M∗)n) = 0,

where M is a choice of ample line bundle on X with degM = 0.

We apply this to the vector bundle V ∗ ⊗KX , and use Serre duality to find that

H1(X,V ⊗Mn)∗ ∼= H0(X,V ∗ ⊗KX ⊗ (M∗)n) = 0.

This means that for large enough n, we have

H1(Y,L ⊗ f∗Mn) = 0,

H1(X, f∗L ⊗Mn) = 0.

We can plug this into a Riemann-Roch computation to get

dimH0(Y,L ⊗ f∗Mn) = degL+ rn+ (1− gY )

dimH0(X, f∗L ⊗Mn) = deg f∗L+ rn+ r(1− g)

Using facts (1) and (2) about the direct image sheaf, these dimensions must equal, and so we have

degE = degL+ (1− gY )− deg f(1− gX).
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2.6 The prime form and fundamental differentials

In order to define and study topological recursion in later chapters, we will need to make use of certain fundamental

differentials on a Riemann surface and their properties. Such objects are studied in depth in [46,78].

Let X be a Riemann surface of genus g. Choose a symplectic basis ⟨A1, ..., Ag, B1, ..., Bg⟩ for H1(X,Z)1. Let

v1, . . . , vg be a basis of holomorphic differentials, normalized by∫
Aj

vi = δij . (2.6.1)

With respect to the symplectic basis, the period matrix τ of X is given by

τij =

∫
Bj

vi. (2.6.2)

We can identify the Jacobian of X as Jac(X) = Pic0(X), which is isomorphic to Picg−1(X). The theta divisor Θ of

Picg−1(X) is defined by

Θ = {L ∈ Picg−1(X)|dimH1(X,L) > 0}.

Consider the diagram

Jac(X)

X ×X

X X

δ

π1 π2

where πj denotes projection onto the jth component, and

δ : X ×X ∋ (p, q) 7−→ p− q ∈ Jac(X).

Definition 2.6.1. The prime form E(z1, z2) is defined as a holomorphic section

E(p, q) ∈ H0
(
X ×X,π1(K)−

1
2 ⊗ π2(K)−

1
2 ⊗ δ∗(Θ)

)
where we choose Riemann’s spin structure (or the Szegö kernel) K

1
2 , which has a unique global section up to the

constant multiplication ( [46] Theorem 1.1).

The prime form satisfies the following properties:

• E(p, q) vanishes to first order along the diagonal ∆ ∈ X ×X, and is otherwise nonzero.

• E(p, q) = −E(q, p).

• Let z be a local coordinate on X. This means that dz(p) gives a local trivialization of K around p. At a point

q near to p, δ∗(Θ) is also trivialized around (p, q) ∈ X ×X with local expression

E(z(p), z(q)) =
z(p)− z(q)√
dz(p) ·

√
dz(q)

(
1 +O((z(p)− z(q))2)

)
. (2.6.3)

1 [19] call a Riemann surface together with such a symplectic basis a Torelli surface.
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Definition 2.6.2. The fundamental normalized differential of the second kind (or Bergman kernel)

B(z1, z2) = d1d2 logE(z1, z2) ∈ H0(X ×X,π∗
1(K)⊗ π∗

2(K)⊗O(2∆)) (2.6.4)

is the unique bi-linear meromorphic differential on X ×X that satisfies the following:

• It is symmetric: B(z1, z2) = B(z2, z1).

• It is holomorphic everywhere except for a double pole at z1 = z2 and can be expanded in a neighbourhood of the

diagonal as

B(z1, z2) =
dz1dz2

(z1 − z2)2
+O(1)dz1dz2. (2.6.5)

• It is normalized on A-cycles: ∮
z1∈Ai

B(z1, z2) = 0 (2.6.6)

for i = 1, ..., g.

• The integrals along B-cycles are given by:∮
z1∈Bj

B(z1, z2) = 2πivj(z2) (2.6.7)

for i = 1, ..., g.

Definition 2.6.3. The normalized differential of the third kind (or normalized Cauchy kernel)

ωa−b(z) = dz log
E(a, z)

E(b, z)
=

∫ a

b

B(t, z) (2.6.8)

is the unique meromorphic differential on X satisfying;

• It is holomorphic except for z = a and z = b.

• It is normalized on A-cycles: ∮
z∈Ai

ω(z) = 0 (2.6.9)

for i = 1, ..., g.

• It has a simple pole at z = a with residue 1 and at z = b with residue −1.
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3 Higgs bundles

3.1 Hitchin equations

Given their name by Simpson [93], the objects we now call “Higgs bundles” were first introduced by Hitchin in [64,65]

as solutions of the self-dual dimensionally-reduced Yang-Mills equations, called the Hitchin equations, on a compact

Riemann surface X. They play a key role in mathematical physics as a bridge between gauge theory and integrable

systems. Our interest in studying Higgs bundles comes from their relation to spectral curves. A Higgs bundle is a

holomorphic vector bundle with a K-valued endomorphism. Locally, this endomorphism looks like a matrix, so we

can look at its characteristic equation. This generates a spectral curve from a Higgs bundle.

Definition 3.1.1. Let E be a Hermitian vector bundle over a Riemann surface X with unitary connection A, and

ϕ : E → E ⊗K be a smooth linear map. The Hitchin equations are

F0(A) + ϕ ∧ ϕ∗ = 0

∂Aϕ = 0,

where F0(A) is the trace-free curvature of A, and ∂A : C∞(E) → Ω0,1(E) is the holomorphic structure on E obtained

by taking the (0, 1)-part of A.

Definition 3.1.2. (cf. [65]) A Higgs bundle is a pair (E , ϕ), where E is a holomorphic vector bundle on a Riemann

surface X and ϕ : E → E ⊗K is a global holomorphic map. The map ϕ is called a Higgs field. The rank and degree

of (E , ϕ) are the rank and degree of E respectively.

There is a striking similarity between a Higgs bundle (E , ϕ) and a solution (A, ϕ) of the Hitchin equations. A

natural question is to ask which Higgs bundles correspond to solutions of the Hitchin equations. The answer is

precisely the stable Higgs bundles.

Definition 3.1.3. Let E be a holomorphic vector bundle on a Riemann surface X. The slope of E is

µ(E) :=
deg(E)

rk(E)
. (3.1.1)

Definition 3.1.4. A Higgs bundle (E , ϕ) is stable if

µ(U) < µ(E) (3.1.2)

for all subbundles 0 ⊊ U ⊊ E satisfying ϕ(U) ⊆ U⊗K, and semi-stable if equality is permitted in the slope condition.

The equivalence between stable Higgs bundles and solutions to the Hitchin equations is an instance of the Hitchin-

Kobayashi theorem (Theorem 4.3 of [65]). It depends on Uhlenbeck-Yau weak compactness arguments. As these
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would require a significant detour to motivate, we omit the proof.

Before we can make sense of the relationship between Higgs bundles and solutions to the Hitchin equations, we

first want to know what kinds of Riemann surfaces have stable Higgs bundles. For genus 0 Riemann surfaces, i.e.

X = P1, we have the following result:

Proposition 3.1.5. All rank r ≥ 2 Higgs bundles (E , ϕ) on P1 are unstable.

Proof. Because we are dealing with P1 we have that K = O(−2), and by the Birkhoff-Grothendieck Theorem 2.3.2,

we have that E can be written as E = ⊕ri=1O(ai), for some ai.

The Higgs bundle ϕ is given by a matrix with components

(ϕ)ij = ϕij : O(ai)→ O(aj)⊗O(−2). (3.1.3)

Let a := maxi{ai}. For every i we have

H0 (O(a)∗ ⊗O(ai)⊗O(−2)) = H0(O(ai − a− 2)). (3.1.4)

By the choice of a we have

a ≥ ai ⇒ ai − a ≤ 0

⇒ ai − a− 2 ≤ −2,

and so

dimH0 (O(a)∗ ⊗O(ai)⊗O(−2)) = 0 (3.1.5)

for all i. This means that the column corresponding to a is a column of zeros and thus

ϕ : O(a)→ O(ai)⊗O(−2) (3.1.6)

is the zero map. This shows that O(a) is a ϕ-invariant subbundle of E with deg(O(a)) = a and rk(O(a)) = 1.

Comparing the slopes yields

µ(E) =

∑r
i=1 ai

r

≤
∑r
i=1 a

r

=
ra

r

= a

= µ(O(a))

meaning that (E , ϕ) is not stable.

A similar result can be proved for genus 1 Riemann surfaces. This means the only Riemann surfaces that admit

stable Higgs bundles have genus g ≥ 2. The simplest examples of such Higgs bundles are given when ϕ = 0. In this

setting, the Hitchin equations reduce to F (A) = 0, whose solutions are flat unitary connections. These objects are
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already well studied, and a famous result of Narasimhan-Seshadri relates flat unitary connections to stable holomorphic

bundles [80]. In particular, the moduli space of stable holomorphic bundles has positive dimension 3g − 3 when the

rank is 2 and g > 1. The Hitchin-Kobayashi correspondence can be regarded as a generalization of Narasimhan-

Seshadri to the non-unitary case. The non-unitary case arises precisely when ϕ ̸= 0. An example in rank 2 of a stable

Higgs bundle with ϕ ̸= 0 is given by E = K ⊕O with Higgs field given by

ϕ =

0 α

1 0

 . (3.1.7)

The 1 can be interpreted as the identity endomorphism as the bottom left entry of ϕ is a map

K → O⊗K = K.

The section α is a non-zero element of H0(X,O ⊗K ⊗K) = H0(X,K2), called a quadratic differential. The form of

ϕ prevents the existence of a proper invariant subbundle U , and therefore the Higgs bundle is automatically stable.

Note that α ̸= 0 necessitates that degK > 0, which forces g to be at least 2.

The dimension of H0(X,K2) over C is 3g− 3, which can be computed via Riemann-Roch and Serre duality. This

entails that this example generates a (3g−3)-dimensional family of stable Higgs bundles, none of which are equivalent

to one another as −α is the determinant of the Higgs field and so no two choices of α give Higgs bundles that are

isomorphic under change of basis in E . This indicates that for genus 2 or larger, the moduli space of rank 2 Higgs

bundles is at least (3g−3)-dimensional. (In fact, it is (6g−6)-dimensional. The fact that this is twice 3g−3, which is

the dimension of the moduli space of stable bundles, is no coincidence. This will be borne out in calculations below.)

3.1.1 Twisted Higgs bundles

Riemann surfaces of genus 0 and 1 are of interest across of variety of problems, with P1 playing an important role

later on in this thesis. While they do not admit stable Higgs bundles, we can modify the definition of a Higgs bundle

to allow for stable bundles. There are two natural ways of doing this. We can drop the holomorphic condition on the

Higgs field and allow our Higgs bundle to have a Higgs fields with poles. This leads to meromorphic Higgs bundles,

or, with more initial data, parabolic Higgs bundles. More generally, we can replace K with another holomorphic line

bundle L on X, producing twisted Higgs bundles. More formally:

Definition 3.1.6. (cf. [34,87]) Let D be a divisor on X. A meromorphic Higgs bundle with poles at D is a pair

(E , ϕ), where E is a holomorphic vector bundle on a Riemann surface X and ϕ : E → E⊗K(D), where K(D) = K⊗D.

Definition 3.1.7. (cf. [81, 83]) Let L be a holomorphic line bundle on a Riemann surface X. An L-twisted Higgs

bundle on X is a pair (E , ϕ), where E is a holomorphic vector bundle, and ϕ : E → E ⊗ L.

Remark 3.1.8. When working with L-twisted Higgs bundles, we will only be considering the case where degL >

degK.

Later in the thesis, we will be particularly interested in twisted Higgs bundle with L = K∗.

Definition 3.1.9. (cf. [82,83]) A co-Higgs bundle is a K∗-twisted Higgs bundle.
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Such Higgs bundles come up in the study of generalized complex geometry as co-Higgs bundles [84], in the study

of quiver varieties [88, 89], in the study of monodromy of the Hitchin map [7], and in the study of representations of

fundamental groups of compact Kähler manifolds [54].

A natural question to ask is if there is an analogous set of Hitchin equations (Definition 3.1.1) associated to an

L-twisted Higgs bundle. We can suitably modify the Hitchin equations in the following way. The second equation,

∂Aϕ = 0

says that the Higgs field needs to be holomorphic with respect to the connection A, a condition that can be considered

with no necessary change. The first equation,

F0(A) + ϕ ∧ ϕ∗ = 0,

makes sense because both summands are endomorphism-valued two-forms. In the twisted setting, ϕ is a section of

End(E)⊗L, so in order to make sense of the first equation, we need to choose a section s ∈ H0(K ⊗L∗), with which

to multiply ϕ. Like this, we can modify the first equation as

F0(A) + sϕ ∧ (sϕ)∗ = F0(A) + |s|2ϕ ∧ ϕ∗ = 0.

We can also easily modify our notion of stability to this setting.

Definition 3.1.10. An L-twisted Higgs bundle (E , ϕ) is stable if

µ(U) < µ(E) (3.1.8)

for all subbundles 0 ⊊ U ⊊ E satisfying ϕ(U) ⊆ U ⊗L, and semi-stable if equality is permitted in the slope condition.

3.2 Moduli space of Higgs bundles

For this section we follow the treatment in [86]. The correspondence between solutions to the Hitchin equations and

ordinary Higgs bundles descends to the level of moduli spaces, where we have an equivalence between two moduli

spaces. The space of solutions yields a gauge-theoretic moduli space given by the space of solutions (A, ϕ) taken up to

gauge equivalence. It has the structure of a smooth, non-compact manifold, which can be interpreted as an infinite-

dimensional hyperkähler quotient. This endows the moduli space with a hyperkähler structure. On the Higgs bundle

side, the algebro-geometric moduli space is formed by quotienting the space of stable pairs (E , ϕ) by the conjugation

action of holomorphic automorphisms of E . This quotient has the structure of a non-singular, quasi-projective variety

and can be interpreted as a geometric-invariant theory quotient, with stability condition given by the stability for

Higgs bundles as above. This equivalence extends to the meromorphic and L-twisted setting; however, we lose some

properties in the interim, such as the hyperkälher structure.

The main object of interest for us is the Higgs bundle moduli space, although when necessary, we will appeal to

this correspondence to benefit from properties of the gauge-theoretic interpretation. We will start by considering the

larger class of L-twisted Higgs bundles, and study some properties of the L = K case in a later subsection. More

formally, we define the moduli space of L-twisted Higgs bundles:

22



Definition 3.2.1. Fix r, d coprime. The moduli space of rank r, degree d L-twisted Higgs bundles,ML
X(r, d),

is defined by the quotient

ML
X(r, d) =

{stable rank r, degree d L-twisted Higgs bundles (E , ϕ)}
∼ , (3.2.1)

where the equivalence relation is given by conjugation: (E , ϕ) ∼ (E ′, ϕ′) iff there exists an invertible bundle map

ψ : E → E ′ such that ϕ′ = ψ−1ϕψ.

Remark 3.2.2. The coprime condition guarantees that ML
X(r, d) is a smooth manifold.

Remark. We will often simplify this notation by writing ML
X , or when working in the L = K setting by writing

MX .

An important tool for studying ML
X(r, d) is the Hitchin map:

Definition 3.2.3. The Hitchin map

H :ML
X(r, d)→ B =

r⊕
i=1

H0(X,Li) (3.2.2)

is defined by sending an isomorphism class of a Higgs bundle (E , ϕ) to the r-tuple of coefficients of the characteristic

polynomial of ϕ. The affine space B is called the Hitchin base.

Definition 3.2.4. The nilpotent cone is the fiber of the Hitchin map above 0 ∈ B, i.e. H−1(0).

Our first step in studying ML
X is to know its dimension. A result of Hitchin (in the L = K case) and Nitsure (in

the general case) tells us that the dimension of the moduli space is given by:

Proposition 3.2.5. ( [65,81])

• For degL > degK: dimML
X(r, d) = r2 degL+ 1.

• For L = K: dimMX(r, d) = r2(2g − 2) + 2.

In a later subsection we will argue briefly why this is true for the L = K case, and we will prove the result for the

degL > degK case in Chapter 6 when studying the deformation theory of the L-twisted moduli space.

3.2.1 Spectral correspondence

We want to understand now how ML
X looks. We will do this by studying the fibres of the Hitchin map. A result of

Hitchin [65] and Nitsure [81] shows that the Hitchin map is proper, meaning that ML
X is fibred by compact subvari-

eties, called Hitchin fibres, which can be shown to be tori.

Given a line bundle L on a Riemann surface X, the tautological section η is defined as follows. Let (x, y) be

local coordinates on Tot(L), where x is the base coordinate and y is the fiber coordinate of Tot(L), with projection

π : L → X. The pullback bundle π∗L has attached to a point (x, y(x)) a copy of the fibre Lx. This bundle has a

natural section, η, defined by η(x, y(x)) = y(x) ∈ (π∗L)y = Lx.

Definition 3.2.6. Let a = (a1, . . . , ar) ∈ B. The spectral curve Sa associated to a is the zero locus of the polynomial

det(η − π∗ϕ) = ηr + a1η
r−1 + · · ·+ ar. (3.2.3)
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Remark. When (E , ϕ) is a Higgs bundle such that H([E , ϕ]) = a, then we will say that the spectral curve is associated

to (E , ϕ).

It can be shown that the Hitchin fibres are precisely Jacobians of the respective spectral curves, by identifying

eigenspaces of a given ϕ with holomorphic line bundles on the spectral curve. In other words, the Hitchin fibration

is globally a torus fibration and, in fact, is a completely integrable Hamiltonian system whose Poisson structure is

induced from the open dense embedding of the cotangent bundle of the moduli space of bundles and whose Hamilto-

nians are the real and imaginary components of the Hitchin map [64]. This integrable system has attracted immense

interest in both mathematics and physics, as every classical integrable system is believed to be an instance, limit, or

modification of the Hitchin system (cf. for instance [31]). Rather than do justice to integrability in the framework of

Higgs bundles, we will just argue that the fibres are in fact Jacobians of the respective spectral curves.

Figure 3.1: Generic fibres of ML
X are tori. There is a locus of degenerate singular tori.

For a generic choice of a ∈ B, the spectral curve Sa is an r : 1 branched cover of X living inside of Tot(L). We

can restrict the bundle projection map π : Tot(L) → X to Sa to get a map π : Sa → X. Let Q be a line bundle on

Sa. On this line bundle, the tautological section can be seen as acting by

η|Sa :Q → Q⊗ π∗L

s 7→ s · y.

By Proposition 2.5.2, the direct image E = π∗Q is a rank r vector bundle over X. The tautological section pushes

forward to a linear map E → E ⊗L, an L-twisted Higgs field for E . Thus, from the data of a line bundle Q on Sa, we

can produce an L-twisted Higgs bundle on X. To see this in the other direction, the Hitchin map sends a Higgs field

(E , ϕ) to an r-tuple of spectral data a ∈ B. From this data, we can produce a spectral curve Sa, which, by Definition

3.2.6, is the spectrum of the ϕ, having r distinct eigenvalues generically over x ∈ X in correspondence to Sa being

a branched r : 1 cover of X (i.e. branched points correspond to repeated eigenvalues). The eigenspaces of ϕ are

generically 1-dimensional, and form a line bundle over Sa.

What we have shown thus far is the spectral correspondence [8, 30, 31, 65]: an isomorphism class of holomorphic

line bundles [Q] on Sa is equivalent to the data of an isomorphism class of Higgs bundles [(E , ϕ)] on X. It then follows
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that a generic fiber H−1(a) is isomorphic to the Jacobian variety of the spectral curve Sa. By Proposition 2.5.3, this

is not the space of degree 0 line bundles, but rather the degree is given by

degL̃ = d− (1− gSa) + r(1− g).

3.2.2 C∗-action

Our description up to this point is not enough to fully understand the topology of the moduli space because of the

presence of special degenerate fibers. To continue the investigation, we appeal to the correspondence between the

gauge-theoretic and algebro-geometric pictures. Studying the gauge-theoretic moduli space, we could employ Morse-

Bott theory on a symplectic leaf that contains the nilpotent cone (given that the whole of the moduli space is not

naturally Kähler when L ≇ K), and justifying that the (rational) cohomology of the leaf coincides with that of the

whole moduli space. Here, we must study the critical points of the height function f(E , ϕ) = 1
2
||ϕ||2, the L2-norm on

the moduli space. On the algebro-geometric side, we can employ Bia lynicki-Birula theory [13] and study the fixed

points for the algebraic group action

λ.(E , ϕ) = (E , λ · ϕ)

of C∗. These two points of view come together by the following facts:

• the fixed points of the C∗-action are fixed points of U(1) ⊂ C∗

λ.(E , ϕ) = (E , eiλ · ϕ)

• the height function f is a moment map for the U(1)-action, and the fixed points of the U(1)-action are critical

points of f .

What is fortunate about the Bia lynicki-Birula approach is that there is no need to appeal to a Kähler structure.

A theorem of Frankel [48] tells us that f is a nondegenerate perfect Morse-Bott function, and so the Poincaŕe

polynomial of MX(r, d) is given by

P [MX(r, d)](t) =
∑
i∈I

tβ(Ci)P [Ci](t), (3.2.4)

where Ci are the critical subvarieties of f , and β(Ci) is the Morse index of Ci, i.e. the rank of the subbundle of the

normal bundle on which the Hessian of f is negative definite. This tells us that the topology of the moduli space is

contained in this fixed locus.

We now focus our attention on the set of fixed points of the U(1)-action, which we denote byMX(r, d)U(1). Stable

Higgs bundles are fixed iff there exists an automorphism Aλ of E such that

AλϕA
−1
λ = eiλϕ (3.2.5)

for all λ ∈ [0, 2π), i.e there is a change of basis that undoes the U(1)-action.
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We would like to develop a better description of the fixed points. Let (E , ϕ) ∈ MX(r, d)U(1) with Aλ the one-

parameter family of automorphisms that satisfy (3.2.5). There is a limiting endomorphism Λ that generates the family

Aλ infinitesimally,

Λ := Dλ(Aλ)|λ=0,

where Dλ is a suitably-defined derivative. This limiting endomorphism interacts with the Higgs field in the following

way:

Lemma 3.2.7. [Λ, ϕ] = iϕ.

Proof. We start with (3.2.5) and apply Dλ(·)|λ=0 to both sides.

On the right-hand side, we have

Dλ(eiλϕ)|λ=0 = ieiλϕ|λ=0 = iϕ.

On the left-hand side, we have

Dλ(AλϕA
−1
λ ) = Dλ(Aλ)ϕA−1

λ |λ=0 +AλϕDλ(A−1
λ )|λ=0

= Dλ(Aλ)ϕA−1
λ |λ=0 +Aλϕ(−1)Dλ(Aλ)A−2

λ |λ=0

= Λϕ− ϕΛ

= [Λ, ϕ],

where we use the definition of Λ, and the fact that A0 is the identity map.

Returning to the gauge-theoretic viewpoint, for a pair (A, ϕ) that satisfy the Hitchin equations, we have that the

∂-operator induced by A, denoted ∂A, satisfies

∂AΛ = 0.

In this way, we have that E decomposes into a direct sum of eigenspaces B1, . . . ,Bn of Λ,

E = ⊕nk=1Bk.

These eigenspaces are in fact holomorphic subbundles of E , and the corresponding eigenvalues s1, . . . , sn of Λ are

global holomorphic functions on X. Applying both sides of Lemma 3.2.7 to some Bk, we find that

Λ(ϕBk) = (sk + 1)(ϕBk).

The image of Bk under ϕ is then a subbundle of the eigenbundle for eigenvalue sk + i. This means we can re-index

(as needed) and group the eigenspaces into sequences with eigenvalues sk, sk + i, sk + 2i, . . . , terminating when the

image of an eigenbundle under ϕ is zero (i.e. when we have reached the last eigenbundle). There cannot be multiple,

disconnected sequences for a fixed point, as that would violate the stability condition. This means that for a fixed

point of the U(1)-action, (E , ϕ) ∈MX(r, d)U(1), there is a number n such that E = ⊕nk=1Bk, and

B1
ϕ1−→ B2 ⊗ L

ϕ2−→ . . .
ϕn−1−−−→ Bn ⊗ L⊗n−1 ϕn−−→ 0,

where ϕk := ϕ|Bk is not identically zero for k < n. A Higgs bundle satisfying this description is called a holomorphic

chain, cf. [2,3,22,53]. In the case when L = K, these can be regarded as complex variations of Hodge structures [92].
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With this description, we can write a fixed point in a basis of sections where ϕ looks like:

ϕ =



0 0 · · · 0 0

ϕ1 0 · · · 0 0

0 ϕ2 · · · 0 0

. . .

0 0 · · · ϕn−1 0


. (3.2.6)

This local matrix description of ϕ is nilpotent, and since every fixed point can be written in this form, they all live in

the nilpotent cone (Definition 3.2.4).

Notably, not all points within the nilpotent cone are fixed points of the action. Only those that can be written in

the form of (3.2.6) are fixed. Regardless, the topological information of MX(r, d) is contained within the nilpotent

cone.

We can also think of the fixed points of this action as L-twisted representations of A-type quivers, with lengths

and labels determined by partitions of r and d:

•r1,d1 → •r2,d2 → · · · → •rn,dn .

Such a representation is called a quiver bundle, cf. [56, 57,85,88,90].

3.2.3 L = K moduli space

We wish to restrict now to the L = K case and take an opportunity to look specifically at the ordinary Higgs bundle

moduli space, MX(r, d). We will start by looking at the Hitchin base B, aiming to show that

dimB = r2(g − 1) + 1. (3.2.7)

We begin by applying Serre duality to the h1(Kn) terms.

h1(Kn) = h0(K ⊗ (Kn)∗)

= h0(K ⊗ (K∗)n)

= h0((K∗)n−1)

= 0

Because deg(Kn) = (2g− 2)n, we know that (K∗)n−1 has degree (2− 2g)(n− 1) < 0, meaning that h1(Kn) vanishes.

Applying the Riemann-Roch theorem for n > 1:

h0(Kn) = degKn + rkKn(1− g)

= (2g − 2)n+ (1− g)

= (2n)g − 2n+ 1− g

= (2n− 1)g − (2n− 1)

= (g − 1)(2n− 1).
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Putting it all together we get that

h0(Kn) =


g n = 1

(g − 1)(2n− 1) n ≥ 2

Now that we know the dimension of each homology group, we can sum them together to get the dimension of the

Hitchin base.

dimB =

r∑
i=1

h0(Ki)

=

r∑
i=2

h0(Ki) + h0(K)

=

r∑
i=2

(g − 1)(2i− 1) + g

= (g − 1)

r∑
i=2

(2i− 1) + g

= (g − 1)

(
2

r∑
i=2

i−
r∑
i=2

1

)
+ g

= (g − 1)

(
2(
r(r + 1)

2
− 1)− r + 1

)
+ g

= (g − 1)(r2 + r − 2− r + 1) + g

= (g − 1)(r2 − 1) + g

= r2(g − 1)− (g − 1) + g

= r2(g − 1) + 1.

Using the deformation theory of sheaves, we can argue that the tangent space to the moduli space of stable bundles

at any point E is isomorphic to H1(X,End(E)), which by Riemann-Roch also has dimension r2(g − 1) + 1. By Serre

duality, the cotangent space is, therefore, H0(X,End(E) ⊗ K), which is the space of possible Higgs fields for E . In

other words,MX(r, d) contains the cotangent bundle to the moduli space of stable bundles. This containment is open

and dense, and so the dimension of MX(r, d) is 2r2(g − 1) + 2.

From this, it turns out that the dimension of MX(r, d) is twice the dimension of both the Hitchin base and the

moduli space of stable bundles. These two different fibrations are related by what is called “hyperkähler rotation” —

we will not discuss this feature here.

Example 3.2.8. Returning to the example E = K ⊕O with Higgs field given by

ϕ =

0 α

1 0

 , (3.2.8)
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the Hitchin map sends ϕ to η2 − α ∈ H0(X,K2). These Higgs bundles form the Hitchin section, a locus of Higgs

bundles that intersects the Hitchin fibres at exactly one point each, as for every element of B there is only one Higgs

field with the above form.

Remark 3.2.9. It is possible to reformulate Example 3.2.8 with a different Higgs bundles, E = K
1
2 ⊕ K− 1

2 with

Higgs field

ϕ =

0 α

1 0

 , (3.2.9)

where K
1
2 is a choice of holomorphic square root of K (there are 22g such choices). The Higgs field has similar

properties to the example above, in particular η − detϕ ∈ H0(X,K2). The main difference between these examples

is the degree of the Higgs bundle. The degree of E = K ⊕O is 2g − 2, while the degree of E = K
1
2 ⊕K− 1

2 is 0.

3.2.4 SL(r,C)-Higgs bundles

Until now, we have been considering the situation where the structure group for E is GL(r,C). There is often a

preference to fix the determinant of the Higgs bundle, with the convention being to either let det E = P for some fixed

line bundle P, or det E = OX specifically. For our purposes, we will consider the latter. Fixing the determinant takes

us from the GL(r,C) setting to the SL(r,C) setting.

Definition 3.2.10. Let L be a holomorphic line bundle on a Riemann surface X. An SL(r,C)-Higgs bundle on X

is a pair (E , ϕ), where E is a holomorphic vector bundle with det E = OX , and ϕ : E → E ⊗ L such that tr(ϕ) = 0.

The moduli space of SL(r,C)-Higgs bundlesML,0
X is a subvariety ofML

X . The restricted Hitchin map onML,0
X (r, d)

has codomain B0 :=
⊕r

i=2H
0(X,Li) since trϕ belongs to H0(X,L). In particular, the nilpotent cones of ML,0

X and

ML
X are coincident, as Higgs bundles in the nilpotent cone have, by definition, trace-free Higgs fields even in the

GL(r,C) case. The dimension of ML,0
X is degL(r2 − 1).
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4 Topological recursion

4.1 Matrix models

A main concern in random matrix theory is the statistical behaviour of the spectrum of a matrix, particularly in a

large N limit. For most “nice” cases, the density of eigenvalues converges to a continuous density function, referred

to as the equilibrium measure. This equilibrium measure has compact support and takes the form of a complex al-

gebraic function. This means that to a sufficiently “nice” random matrix model, we can associate an algebraic curve S.

Two classic examples that demonstrate this are the Wigner semi-circle distribution, which is the equilibrium

measure for eigenvalues of a Gaussian random matrix given by

ρ(x)dx =
1

2π

√
4− x2χ[−2,2]dx, (4.1.1)

and the Marchenko-Pastur distribution, which describes the asymptotic behaviour of M×N Gaussian random matrices

given by

ρ(x)dx =
N

2πMσ2

√
M
N
σ4 − M2

N2 σ4 − (x− σ2)2

x
χ[a,b]dx, (4.1.2)

where σ2 is the variance, and a, b are the roots of term in the square-root.

It is known (cf. for instance [39]) that understanding the algebraic curve S associated to an equilibrium measure

is enough to understand the asymptotic expansion of all expectation values to all orders. In the large N limit, the

expectation value of a multi-resolvent, the joint probability of n-eigenvalues, can be expanded as

⟨(Tr
1

x1 −M
) . . . (Tr

1

xn −M
)⟩ ∼

∞∑
g=0

N2−2g−nWg,n(x1, ..., xn).

Understanding the Wg,n is what is necessary to compute all correlation functions of the matrix model. The Wg,n are

differential forms defined recursively on 2− 2g − n, satisfying a relation

Wg,n+1 ∼Wg−1,n+2 +
∑

g1+g2=g
|I∪J|=n

Wg1,|I|+1Wg2,|J|+1,

and depend only on the information of S.

4.2 Eynard-Orantin differentials

A natural question to ask is “what happens when we compute these Wg,n for a spectral curve, an algebraic curve

arising as the spectrum of an arbitrary matrix-valued function?” This defines a family of invariants {Wg,n} of the

curve called the Eynard-Orantin differentials.

30



Definition 4.2.1. A spectral curve is a triple (S, x, y) where S is a compact Riemann surface, and x, y : S → P1.

We can view a spectral curve S as an r : 1 cover of P1 with covering map x : S → P1. Viewing x as the local

coordinate on S and y as the fiber coordinate of T ∗P1, the spectral curve is defined by

{(x, y) : P (x, y) = yr +

r∑
i=1

fi(x)yr−i = 0}. (4.2.1)

Remark. If we have a rank r Higgs bundle (E , ϕ) on P1, we can think of (4.2.1) as a local expression of (3.2.3)

In this section, we are interested in spectral curves of the form

P (x, y) = y2 − f(x) = 0, (4.2.2)

and we consider an affine coordinate z around p on S. The topological recursion lives on

KS

S T ∗P1

P1

x π

where π|S = x.

We will impose an additional condition on the ramification points of our spectral curve. While it is possible to be

general, we will only be interested in this specific case.

Definition 4.2.2. A good spectral curve over P1 is a spectral curve as above, with only simple ramification points

and the additional condition that zeroes of dx and dy do not coincide.

For the remainder of this section, we will be exclusively interested in good spectral curves, and will refer to them

as spectral curves.

The ramification divisor R of a spectral curve consists of points where f(x) has zeroes or poles. For the spectral

curves that we are considering, these are points where zeroes of dx or poles of x are order 2 or greater. Around each

ramification point p ∈ R, there is a local involution σp that fixes the ramification point and exchanges nearby points

between the sheets (see Figure 4.1).

The Bergman kernel (Definition 2.6.2) plays an important role in the definition of the Eynard-Orantin invariants.

As such, we need to choose a symplectic basis ⟨A1, ..., Ag̃, B1, ..., Bg̃⟩ for H1(X,Z).

Definition 4.2.3. Let p ∈ R. The recursion kernel at p is a meromorphic section of KS ⊠K∗
S defined by

Kp(z0, z) =

∫ z
t=α

B(t, z0)

(y(z)− y(σp(z))dx(z)
(4.2.3)

where α is an arbitrary base point, and B is the Bergman kernel.
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Figure 4.1: Local picture of a spectral curve S on P1.

Remark. The term 1
dx(z)

is acting as a contraction operation with the vector field ( dx
dz

)−1 ∂
∂z

. In this way the

“division” acts by killing terms of the form dx(z) in the numerator.

Definition 4.2.4. The Eynard-Orantin differentials Wg,n are meromorphic sections of the n-th exterior tensor

product K⊠n
S , i.e. multi-differentials, defined as follows:

The initial conditions of the recursion are given by:

• W0,1 is a meromorphic 1-form on S.1

• W0,2(z1, z2) = B(z1, z2).

For all g, n ∈ N and 2g − 2 + n ≥ 0, define Wg,n recursively by

Wg,n+1(z0, z) =
∑
p∈R

Resz=pKp(z0, z)

Wg−1,n+2(z, σp(z), z) +

′∑
g1+g2=g
I∪J=z

Wg1,|I|+1(z, I)Wg2,|J|+1(σp(z), J)

 (4.2.4)

where the prime signifies summation excluding the cases (g1, I) or (g2, J) = (0, 0).

The terms with k = 2g + n− 1 ≥ 2 are called stable differentials.

When performing computations in a later section of this thesis, it will be convenient to compress the recursion

term (i.e., the terms in the square brackets) into a single term for ease of bookkeeping. As such, we have the following

notation:

R2Wg,n+1(z, σp(z), z) := Wg−1,n+2(z, σp(z), z) +

′∑
g1+g2=g
I∪J=z

Wg1,|I|+1(z, I)Wg2,|J|+1(σp(z), J) (4.2.5)

= Wg−1,n+2(z, σp(z), z) +
∑
stable

Wg1,|I|+1(z, I)Wg2,|J|+1(σp(z), J) (4.2.6)

+
n∑
i=1

W0,2(z, zi)Wg,n(σp(z), z\{zi}) +W0,2(σp(z), zi)Wg,n(z, z\{zi}).

To illustrate the general form of the Eynard-Orantin differentials, we compute the first few.

1The choice of W0,1 is related to the geometric problem that one is studying. In the original formulation [42], W0,1 is taken
to be 0. In many other examples, including the Airy spectral curve, it is taken to be ydx.
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k = 1 :

W0,2(z1, z2) = B(z1, z2) (4.2.7)

k = 2 :

W0,3(z0, z1, z2) =
∑
p∈R

Resz=pKp(z0, z)[W0,2(z, z1)W0,2(σp(z), z2) +W0,2(σp(z), z1)W0,2(z, z2)] (4.2.8)

W1,1(z0) =
∑
p∈R

Resz=pKp(z0, z)W0,2(σp(z), z) (4.2.9)

k = 3 :

W0,4(z0, z1, z2, z3) =
∑
p∈R

Resz=pKp(z0, z)× (4.2.10)

[W0,3(z, z1, z2)W0,2(σp(z), z3) +W0,3(σp(z), z1, z2)W0,2(z, z3)

W0,3(z, z2, z3)W0,2(σp(z), z1) +W0,3(σp(z), z2, z3)W0,2(z, z1)

W0,3(z, z1, z3)W0,2(σp(z), z2) +W0,3(σp(z), z1, z3)W0,2(z, z2))]

W1,2(z0, z1) =
∑
p∈R

Resz=pKp(z0, z)[W0,3(z, σp(z), z1) +W1,1(z)W0,2(σp(z), z1) +W1,1(σp(z))W0,2(z, z1)] (4.2.11)

The Wg,n’s satisfy three properties that will be used in future computations.

1. Symmetry

For any σij ∈ S2 (a map that swaps i and j), the differentials satisfy:

Wg,n(σij(z)) = Wg,n(z) (4.2.12)

2. Location of poles

If a stable differential has a pole then it must be at a ramification point.

3. Stable differentials are odd

The differentials Wg,n satisfy

Wg,n(z1, ..., zn) +Wg,n(−z1, ..., zn) = 0 (4.2.13)

for (g, n) ̸= (0, 2). By symmetry, this property extends to all arguments.

The differential W0,2 satisfies a different property,

W0,2(z1, z2) +W0,2(−z1, z2) =
dx(z1)dx(z2)

(x(z1)− x(z2))2
. (4.2.14)

4.3 Airy spectral curve

To better understand the methods of doing the recursion, it is helpful to work through an example. The Airy spectral

is a classic example of a spectral curve for topological recursion which is related to Witten-Kontsevich intersection
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numbers.

The Airy spectral curve S is the spectral curve over P1 given by the local expression

y2 − x = 0. (4.3.1)

We would like to start by identifying the ramification points of this curve. We want to view this curve as living inside

of the cotangent bundle of P1, recalling that KP1 = O(−2). Thinking in this way, we have that y2 and x are sections

of O(−4). Let U0 and U1 be the charts around 0 and∞ on the base P1. Viewing (4.3.1) as being written in coordinate

chart U0, we expect that the defining equation for S will have a pole of order 5 at ∞ in U1 (because -4 = 1 - 5). The

spectral curve has two ramification points, one coming from the simple zero at x = 0 ∈ P1, and the other coming from

a pole of order 5 at x =∞ ∈ P1. This means that S is a double cover of P1 with two ramification points, both with

multiplicity 2. By the Riemann-Hurwitz formula, we have

gS =
b

2
− n(gP1 − 1) + 1

=
2

2
− 2(0− 1) + 1

= 0,

and so the genus of S is 0, meaning that this is a covering of P1 by P1.

We also want a defining equation for S in the U1 chart. Let u = 1
x

be the coordinate on U1. Because we are

viewing x as a section of O(−4), there is a section s1(u) on U1 such that on the intersection U0 ∩U1, x and s1(u) are

related by

x = x−4s1(u).

For this relation to make sense, we must have that s1( 1
x

) = x5 on the intersection, and thus on U1 we have

s1(u) = u−5. (4.3.2)

On U1, the spectral curve is still a double cover, so we can find a local vertical coordinate w so that the spectral curve

is defined by

w2 − u−5 = 0. (4.3.3)

Written in this coordinate chart, we can clearly see the pole of order 5 at x =∞ (u = 0).

We now want to find local expressions for the components of topological recursion in terms of parametrizations

on the spectral curve. Starting in the chart U0, the spectral curve can be parametrized by

x(z) = z2,

y(z) = z.

In this parametrization, the ramification points are at z = 0,∞. Around both of these ramification points we have a

Galois involution given by

σp(z) = −z. (4.3.4)
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As we saw in Proposition 2.3.1, there are no holomorphic one-forms on P1. This means that in our coordinate chart,

the Bergman kernel for the spectral curve S = P1 is given by

B(z1, z2) =
dz1dz2

(z1 − z2)2
. (4.3.5)

With the information of x(z), y(z), and B(z1, z2), the recursion kernel can be computed by

Kp(z0, z) =

∫ z
t=α

B(t, z0)

(y(z)− y(σp(z)))dx(z)

=

∫ z
t=α

dtdz0
(t−z0)2

(z − (−z))2zdz

=
1

4z2dz

−dz0
t− z0

∣∣∣z
t=a

= − dz0
4z2dz

[ 1

z − z0
− 1

α− z0

]
. (4.3.6)

We will choose our W0,1 to be the canonical one-form ydx on T ∗P1. In the local coordinate z, we can write W0,1(z)

as

W0,1(z) = y(z)dx(z) = zd(z2) = 2z2dz. (4.3.7)

To better understand the remaining Wg,n, we compute the k = 2 differentials of the recursion, W0,3 and W1,1.

W0,3(z0, z1, z2) =
∑
p∈R

Resz=pKp(z0, z)[W0,2(z, z1)W0,2(−z, z2) +W0,2(−z, z1)W0,2(z, z2)]

= −dz0Resz=0
1

4z2dz

( 1

z − z0
− 1

α− z0

)[ dzdz1
(z − z1)2

−dzdz2
(z + z2)2

+
−dzdz1

(z + z1)2
dzdz2

(z − z2)2

]
= −dz0 lim

z→0

∂

∂z

(
z2

1

4z2dz

( 1

z − z0
− 1

α− z0

)[ dzdz1
(z − z1)2

−dzdz2
(z + z2)2

+
−dzdz1

(z + z1)2
dzdz2

(z − z2)2

])
= −dz0 lim

z→0

∂

∂z

( 1

4dz

( 1

z − z0
− 1

α− z0

)[ dzdz1
(z − z1)2

−dzdz2
(z + z2)2

+
−dzdz1

(z + z1)2
dzdz2

(z − z2)2

])
We can see that only one term, coming from Kp, contributes a pole at z = 0. Differentiating the round bracketed

terms results in

∂

∂z

( 1

z − z0
− 1

α− z0

)∣∣∣
z=0

=
−1

(z − z0)2

∣∣∣
z=0

=
−1

z20
,

while the derivative of the second term vanishes when evaluated at z = 0,

∂

∂z

[
1

(z − z1)2
1

(z + z2)2
+

1

(z + z1)2
1

(z − z2)2

] ∣∣∣∣∣
z=0

=

=

[
−2

(z − z1)3(z + z2)2
+

−2

(z − z1)2(z + z2)3
+

−2

(z + z1)3(z − z2)2
+

−2

(z + z1)2(z − z2)3

] ∣∣∣∣∣
z=0

=
−2

(−z1)3z22
+

−2

(−z1)2z32
+

−2

z31(−z2)2
+

−2

z21(−z2)3

= 0.
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By the above computation of the derivatives, we see that only one term of the product rule derivative remains,

and so we can proceed with computing W0,3.

W0,3(z0, z1, z2) = −dz0 lim
z→0

∂

∂z

( 1

4dz

( 1

z − z0
− 1

α− z0

)[ dzdz1
(z − z1)2

−dzdz2
(z + z2)2

+
−dzdz1

(z + z1)2
dzdz2

(z − z2)2

])
=
dz0
4

[
dz1

(z − z1)2
dz2

(z + z2)2
+

dz1
(z + z1)2

dz2
(z − z2)2

] ∣∣∣∣∣
z=0

∂

∂z

(
1

z − z0
− 1

α− z0

) ∣∣∣∣∣
z=0

=
dz0
4

[ dz1
(−z1)2

dz2
(z2)2

+
dz1

(z1)2
dz2

(−z2)2

](−1

z20

)
=
−dz0
4z20

[2dz1dz2
z21z

2
2

]
=
−dz0dz1dz2

2z20z
2
1z

2
2

(4.3.8)

It is clear that W0,3 is symmetric and odd, and only has poles at zi = 0, which is a ramification point. This serves

as a good example of the properties of stable forms mentioned above

The W1,1 differential also has a pole at z = 0 contributed only by the Kp term. By expanding the bracketed term

into a Laurent series, we can easily pick out the coefficient of z−1.

W1,1(z0) =
∑
p∈R

Resz=pKp(z0, z)W0,2(−z, z)

= −dz0Resz=0
1

4z2dz

[ 1

z − z0
− 1

α− z0

] d(−z)dz
((−z)− z)2

= −dz0Resz=0
1

4z2dz

[ 1

z − z0
− 1

α− z0

]−dz2
4z2

= dz0Resz=0
1

16z4

[ 1

z − z0
− 1

α− z0

]
dz

=
dz0
16

Resz=0
1

z4

[
− 1

z0
− z

z20
− z2

z30
− z3

z40
− · · · − 1

α− z0

]
dz

=
dz0
16

Resz=0

[
− 1

z0z4
− 1

z20z
3
− 1

z30z
2
− 1

z40z
− · · · − 1

(α− z0)z4

]
dz

=
−dz0
16z40

4.3.1 Airy and WKB

We will take a small digression to briefly review the Wentzel-Kramers-Brillouin (WKB) method and show how it

relates to topological recursion for the Airy spectral curve. The WKB method is used for finding a solution to a linear

differential equation whose highest order derivative is multiplied by a small parameter [23, 72, 96]. We wish to apply

the WKB method to a second-order differential equation with potential V (x) given by[
ℏ2 d

2

dx2
− V (x)

]
ψ(x) = 0 (4.3.9)

where ℏ is a small parameter. Consider an ansatz of the form

ψ(x) = exp
(1

ℏ

∞∑
k=0

ℏkSk(x)
)
. (4.3.10)
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Computing both the first and second derivative of ψ yields:

d

dx
ψ(x) = exp

(1

ℏ

∞∑
k=0

ℏkSk(x)
)
·
(1

ℏ

∞∑
k=0

ℏkS′
k(x)

)
= ψ(x)

(1

ℏ

∞∑
k=0

ℏkS′
k(x)

)
,

d2

dx2
ψ(x) = exp

(1

ℏ

∞∑
k=0

ℏkSk(x)
)
·
(1

ℏ

∞∑
k=0

ℏkS′
k(x)

)2
+ exp

(1

ℏ

∞∑
k=0

ℏkSk(x)
)
·
(1

ℏ

∞∑
k=0

ℏkS′′
k (x)

)
= ψ(x)

[(1

ℏ

∞∑
k=0

ℏkS′′
k (x)

)
+
(1

ℏ

∞∑
k=0

ℏkS′
k(x)

)2]
.

We then plug the ansatz into the differential equation (4.3.9) and gather terms by powers of ℏ.

0 =
[
ℏ2 d

2

dx2
− V (x)

]
ψ(x)

=

(
ℏ2
[(1

ℏ

∞∑
k=0

ℏkS′′
k (x)

)
+
(1

ℏ

∞∑
k=0

ℏkS′
k(x)

)2]
− V (x)

)
ψ(x)

=

( ∞∑
k=0

ℏk+1S′′
k (x) +

( ∞∑
k=0

ℏkS′
k(x)

)2
− V (x)

)
ψ(x)

=

( ∞∑
k=0

ℏk+1S′′
k (x) +

( ∞∑
l=0

ℏlS′
l(x)

)( ∞∑
m=0

ℏmS′
m(x)

)
− V (x)

)
ψ(x)

=

( ∞∑
k=0

ℏk+1S′′
k (x) +

( ∞∑
l=0

∞∑
m=0

ℏl+mS′
l(x)S′

m(x)
)
− V (x)

)
ψ(x)

=

( ∞∑
k=1

ℏkS′′
k−1(x) +

( ∞∑
k=1

k∑
m=0

ℏkS′
k−m(x)S′

m(x)
)
− V (x)

)
ψ(x)

=

( ∞∑
k=1

ℏk
[
S′′
k−1(x) +

k∑
m=0

S′
k−m(x)S′

m(x)
]

+ S′
0(x)2 − V (x)

)
ψ(x)

Comparing terms in powers of ℏ yields the following recursion relation on the coefficients

S′
0(x)2 − V (x) = 0, (4.3.11)

S′′
k−1(x) +

k∑
m=0

S′
k−m(x)S′

m(x) = 0. (4.3.12)

Computing the coefficients for k = 0, 1, 2:

k = 0

S′
0(x) = V (x)1/2 (4.3.13)

k = 1

0 = S′′
0 (x) +

1∑
m=0

S′
m(x)S′

1−m(x)

= S′′
0 (x) + S′

0(x)S′
1(x) + S′

1(x)S′
0(x)

= S′′
0 (x) + 2S′

0(x)S′
1(x)

⇒ S′
1(x) =

−S′′
0 (x)

2S′
0(x)

(4.3.14)
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k = 2

0 = S′′
1 (x) +

2∑
m=0

S′
m(x)S′

2−m(x)

= S′′
1 (x) + S′

0(x)S′
2(x) + S′

1(x)2 + S′
2(x)S′

0(x)

= S′′
1 (x) + 2S′

0(x)S′
2(x) + S′

1(x)2

⇒ S′
2(x) =

−(S′′
1 (x) + S′

1(x)2)

2S′
0(x)

(4.3.15)

We would like to use the relations above with the following differential equation:

[
ℏ2 d

2

dx2
− x
]
ψ(x) = 0 (4.3.16)

Using equations (4.3.13), (4.3.14), and (4.3.15), we have that the first three WKB coefficients are

S′
0(x) =

√
V (x)

=
√
x, (4.3.17)

S′
1(x) =

−S′′
0 (x)

2S′
0(x)

=
− 1

2
x−

1
2

2
√
x

=
−1

4x
, (4.3.18)

S′
2(x) =

−(S′′
1 (x) + S′

1(x)2)

2S′
0(x)

=

(
1

4x2
+ (−1

4x
)2
)

2
√
x

=

(
1

4x2
+ 1

16x2

)
2
√
x

=
− 5

16x2

2
√
x

=
−5

32x
5
2

. (4.3.19)

We would like to compare these results to the Wg,n’s that we computed for the Airy spectral curve. Gather terms

having the same k = 2g + n − 1 with some particular coefficients, and integrate each component n times to yield a

function.
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∫ z

∞
W0,1(z) =

∫ z

∞
y(z)dx(z)

=

∫ z

∞
z(2zdz)

=

∫ z

∞
2z2dz

=
2

3
z3

=
2

3
x

3
2 (4.3.20)

−1

2!

∫ z

∞

∫ z

∞
W0,2(−z1, z2) =

1

2

∫ z

∞

∫ z

∞

dz1dz2
(z1 + z2)2

=
−1

2

∫ z

∞

dz2
(z + z2)

=
−1

2
log(2z)

=
−1

2
log(2x

1
2 )

=
−1

4
log(x) (4.3.21)

1

3!

∫ z

∞

∫ z

∞

∫ z

∞
W0,3(z0, z1, z2) +

1

1!

∫ z

∞
W1,1(z0) =

1

6

∫ z

∞

∫ z

∞

∫ z

∞

−dz0dz1dz2
2z20z

2
1z

2
2

+

∫ z

∞

−dz0
16z40

=
1

12z

∫ z

∞

∫ z

∞

dz1dz2
z21z

2
2

+
1

48z3

=
−1

12z2

∫ z

∞

dz2
z22

+
1

48z3

=
1

12z3
+

1

48z3

=
5

48z3

=
5

48x
3
2

(4.3.22)

Remark. In each of these terms we ignore the infinite constant, in the spirit of renormalization.

Comparing these integrals to the (suggestively labeled) S′
k’s computed above, we see that the S′

k are the derivatives

of the corresponding Wg,n integrals. This suggests that there is a relationship between the Eynard-Orantin differentials

and the WKB coefficients. The map,

x→ x̂ = x, (4.3.23)

y → ŷ = ℏ d

dx
, (4.3.24)

takes the Airy spectral curve to the differential operator ℏ2 d2

dx2
− x in (4.3.16), called the Airy quantum curve. This

further suggests that we might be able to produce a WKB solution to a differential equation from the data of

topological recursion which is the “quantization” of the initial spectral curve. Specifically, integrating a suitable linear

combination of differentials for a specific k = 2g+n− 1 is proportional to the WKB coefficients Sk. One might ask if

such a relationship always exists. We will show that the relationship is at least true for the Airy spectral curve, and

address the general query in the next section.
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4.3.2 Topological recursion for Airy spectral curve

In this section, we use the topological recursion to compute a WKB solution for the Airy quantum curve. The process

involves roughly four steps:

• compute the Wg,n using residues;

• integrate the Wg,n;

• specialization (set all variables zi = z);

• produce a “wave-function”.

Theorem 4.3.1. (Eynard-Orantin, [42]) If 2g + n− 1 ≥ 1, then

Wg,n+1(z0, z)

dz0
=

1

4z20dz
2
0

(
Wg−1,n+2(z0,−z0, z) +

′∑
g1+g2=g
I∪J=z

Wg1,|I|+1(z0, I)Wg2,|J|+1(−z0, J)
)

+

n∑
i=1

dzi

(
1

4z2i dzi

[
1

z1 − z0
+

1

z1 + z0

]
Wg,n(−zi, z\{zi})

)
(4.3.25)

Proof. The first step of computing this residue is to apply the Residue theorem. The residue at z = 0 becomes a sum

over residues at non-branch points.

Wg,n+1(z0, z) = −Resz=0
dz0

4z2dz

[ 1

z − z0
+

1

α− z0

]
R(2)Wg,n+1(z,−z, z)

=
∑

poles Q/∈R

Resz=Q
dz0

4z2dz

[ 1

z − z0
+

1

α− z0

]
R(2)Wg,n+1(z,−z, z)

=
∑

poles Q/∈R

Resz=Q
dz0

4z2dz

[ 1

z − z0︸ ︷︷ ︸
pole at z0

+
1

α− z0

](
Wg−1,n+2(z,−z, z)︸ ︷︷ ︸

pole at 0

+
∑
stable

Wg1,|I|+1(z, I)Wg2,|J|+1(−z, J)︸ ︷︷ ︸
pole at 0

+

n∑
i=1

W0,2(z, zi)Wg,n(−z, z\{zi})︸ ︷︷ ︸
pole at z = zi

+W0,2(−z, zi)Wg,n(z, z\{zi})
)

︸ ︷︷ ︸
pole at z = −zi

The terms in the square brackets has a single pole at z = z0. Stable forms can only have poles at ramification

points, so all stable forms in the above expressions can only have poles at 0. The remaining W0,2 terms have poles at

z = ±zi

W0,2(z, zi) =
dzdzi

(z − zi)2
,

W0,2(−z, zi) =
−dzdzi

(z + zi)2
.

At z = z0, only the 1
z−z0

term contributes to the residue with Resz=z0

(
1

z−z0

)
= 1
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Resz=z0
dz0

4z2dz

[ 1

z − z0
+

1

α− z0

]
R2Wg,n+1(z,−z, z)

= lim
z→z0

(z − z0)
dz0

4z2dz

[ 1

z − z0
+

1

α− z0

]
R2Wg,n+1(z,−z, z)

= lim
z→z0

dz0
4z2dz

(
Wg−1,n+2(z,−z, z) +

′∑
g1+g2=g, I∪J=z

Wg1,|I|+1(z, I)Wg2,|J|+1(−z, J)
)

=
1

4z20dz0

(
Wg−1,n+2(z0,−z0, z) +

′∑
g1+g2=g,I∪J=z

Wg1, |I|+1(z0, I)Wg2,|J|+1(−z0, J)
)

Remark. The last line of this computation involves a slight abuse of notation. The R2Wg,n+1(z,−z, z) terms are

(n+ 2)-differentials, and K(z0, z) is a one-differential, which come together in (4.2.4) to form an (n+ 3)-differential.

Taking the residue and the 1
dz

term together reduces the (n+ 3)-differential into an (n+ 1)-differential. The notation

1
dz0

is a shorthand way of denoting the removal of a one-differential and evaluation z = z0.

At z = ±zi, only the W0,2(±z, zi) term contributes to the residue.

Resz=±zi
dz0

4z2dz

[ 1

z − z0
+

1

α− z0

]
W0,2(±z, zi)Wg,n(∓z, z\{zi}) =

= lim
z→±zi

d

dz

(
(zi ∓ z)2

dz0
4z2dz

[ 1

z − z0
+

1

α− z0

] ±dzdzi
(zi ∓ z)2

Wg,n(∓z, z\{zi})
)

= lim
z→±zi

d

dz

(±dz0dzi
4z2

[ 1

z − z0
+

1

α− z0

]
Wg,n(∓z, z\{zi})

)
= dzi

( ∓1

4z2i dzi

[ 1

z0 ∓ zi

]
Wg,n(−zi, z\{zi})

)
dz0

Adding both of these residues together yields:

dzi

( 1

4z2i dzi

[ 1

zi − z0
+

1

zi + z0

]
Wg,n(−zi, z\{zi})

)
dz0,

where the z0 − zi term comes from z = zi and the z0 − zi term comes from z = −zi.

The theorem then follows by summing over the poles and dividing by dz0.

Corollary 4.3.2. If 2g + n− 1 ≥ 0, then2

Wg−1,n+2(−z0, z0, z)

dx(z0)2
−

∑
g1+g2=g
I∪J=z

(Wg1,|I|+1(−z0, I)

dx(z0)

)(Wg2,|J|+1(−z0, J)

dx(z0)

)

+

n∑
i=1

(( dx(zi)

(x(z0)− x(zi))2

)Wg,n(−z0, z\{zi})
dx(z0)

− dzi
( 1

x(z0)− x(zi)

Wg,n(−zi, z\{zi})
dx(zi)

))
= 0.

If (g, n) = (0, 0), then

W0,1(−z0)

dx(z0)

W0,1(−z0)

dx(z0)
− x(z0) = 0. (4.3.26)

2Our version of this corollary differs from the analogous one in Eynard-Orantin [42]. We suspect that their calculation
contains two sign errors, which we have rectified here. Correcting these is essential to establishing the validity of further results
in the literature.
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Proof. We begin by considering the 2g + n− 1 ≥ 0 case. In the final steps of the recursion, we want to set all of the

zi to be equal, but the W0,2(z1, z2) terms are problematic because

lim
z1→z2

W0,2(z1, z2) =∞.

However, if we negate one of the entries, it removes this problem,

W0,2(−z, z) =
d(−z)dz

(−z − z)2

=
−dzdz
(−2z)2

=
−dz2

4z2
.

As such, we would like to replace all instances of W0,2(z1, z2) with W0,2(−z1, z2) using (4.2.14), which we verify is

W0,2(z1, z2) +W0,2(−z1, z2) =
dz1dz2

(z1 − z2)2
− dz1dz2

(z1 + z2)2

=
(z1 + z2)2 − (z1 − z2)2

(z1 − z2)2(z1 + z2)2
dz1dz2

=
z21 + 2z1z2 + z22 − z21 + 2z1z2 − z22

(z21 − z22)2
dz1dz2

=
4z1z2dz1dz2
(z21 − z22)2

=
(2z1dz1)(2z2dz2)

(z21 − z22)2

=
dx(z1)dx(z2)

(x(z1)− x(z2))2
.

For (g1, |I|) = (0, 1) and (g2, |J |) = (g, n− 1),

Wg1,|I|+1(z0, I)Wg2,|J|+1(−z0, J) = W0,2(z0, zi)Wg,n(−z0, z\{zi})

=
(
−W0,2(−z0, zi) +

dx(z0)dx(zi)

(x(z0)− x(zi))2

)
Wg,n(−z0, z\{zi})

= −W0,2(−z0, zi)Wg,n(−z0, z\{zi}) +
dx(z0)dx(zi)

(x(z0)− x(zi))2
Wg,n(−z0, z\{zi}).

Recalling that all stable forms Wg,n are odd in all arguments, we have that the remaining terms, which are of the

form (g1, |I|) ̸= (0, 1), (g2, |J |) ̸= (0, 1), satisfy

Wg1,|I|+1(z0, I)Wg2,|J|+1(−z0, J) = Wg1,|I|+1(−z0, I)Wg2,|J|+1(−z0, J).

Putting all of this together, we get:

′∑
g1+g2=g
I∪J=z

Wg1,|I|+1(z0, I)Wg2,|J|+1(−z0, J) = −
′∑

g1+g2=g
I∪J=z

Wg1,|I|+1(−z0, I)Wg2,|J|+1(−z0, J)

+

n∑
i=1

dx(z0)dx(zi)

(x(z0)− x(zi))2
Wg,n(−z0, z\{zi}). (4.3.27)

Moreover, recall that

W0,1(−z0) = y(−z0)dx(−z0)

= −z0dx(−z0)

= −z0dx(z0).
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Combining the above calculation with the fact that stable forms are odd, we can make the following observation

Wg,n+1(z0, z)

dz0
=
−Wg,n+1(−z0, z)

dz0

=
−2z0Wg,n+1(−z0, z)

2z0dz0

= −2z0
Wg,n+1(−z0, z)

dx(z0)

= 2
W0,1(−z0)

dx(z0)

Wg,n+1(−z0, z)

dx(z0)
. (4.3.28)

Combining (4.3.27) and (4.3.28) we get a sum over all g and n,∑
g1+g2=g
I∪J=z

Wg1,|I|+1(−z0, I)

dx(z0)

Wg2,|J|+1(−z0, J)

dx(z0)
. (4.3.29)

The last term in theorem 4.3.1 can be simplified as

1

4z2i dzi

[ 1

zi − z0
+

1

zi + z0

]
=

1

4z2i dzi

[ zi + z0 + zi − z0
(zi − z0)(zi + z0)

]
=

1

4z2i dzi

[ 2zi
z2i − z20

]
=

1

2zidzi

[ 1

z2i − z20

]
=

1

dx(zi)

[ 1

x(zi)− x(z0)

]
=
−1

dx(zi)

[ 1

x(z0)− x(zi)

]
.

Starting from Theorem 4.3.1 and taking all of this together we have

Wg,n+1(z0, z)

dz0

thm 4.3.1︷︸︸︷
=

1

4z20dz
2
0

(
Wg−1,n+2(z0,−z0, z) +

′∑
g1+g2=g
I∪J=z

Wg1,|I|+1(z0, I)Wg2,|J|+1(−z0, J)
)

+

n∑
i=1

dzi

( 1

4z2i dzi

[ 1

z1 − z0
+

1

z1 + z0

]
Wg,n(−zi, z\{zi})

)
=

1

4z20dz
2
0

( n∑
i=1

dx(z0)dx(zi)

(x(z0)− x(zi))2
Wg,n(−z0, z\{zi})

)

+
1

4z20dz
2
0

(
Wg−1,n+2(z0,−z0, z)−

′∑
g1+g2=g
I∪J=z

Wg1,|I|+1(−z0, I)Wg2,|J|+1(−z0, J)
)

+

n∑
i=1

dzi

( −1

dx(zi)

[ 1

x(z0)− x(zi)

]
Wg,n(−zi, z\{zi})

)
=

n∑
i=1

dx(zi)

(x(z0)− x(zi))2
Wg,n(−z0, z\{zi})

dx(z0)

+
Wg−1,n+2(z0,−z0, z)

dx(z0)2
−

′∑
g1+g2=g
I∪J=z

Wg1,|I|+1(−z0, I)

dx(z0)

Wg2,|J|+1(−z0, J)

dx(z0)

−
n∑
i=1

dzi

( 1

(x(z0)− x(zi))

Wg,n(−zi, z\{zi})
dx(zi)

)
.
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Gathering everything to one side and using (4.3.29) finishes this part of the proof.

For (g, n) = (0, 0) we can easily compute

W0,1(−z0)

dx(z0)

W0,1(−z0)

dx(z0)
=
y(−z0)dx(−z0)

dx(z0)

y(−z0)dx(−z0)

dx(z0)

= (−z0)(−z0)

= z20

= x(z0).

Definition 4.3.3. Define

Gg,n+1(z0, z) :=

∫ z1

∞
· · ·
∫ zn

∞
Wg,n+1(−z0, z1, ..., zn) (4.3.30)

where the integration is along a path with a base point at z =∞ to the marked point zi in each coordinate except for

z0.

In the second part of the recursion procedure, we integrate the Wg,n and adapt our previous result to the Gg,n.

As the differentials only have poles at z = 0, the integrals converge and the Gg,n are well-defined.

Lemma 4.3.4. If 2g + n− 1 ≥ 0, then( ∂

∂x(zn+1)

Gg−1,n+2(z0, z, zn+1)

dx(z0)

)
zn+1=z0

−
∑

g1+g2=g
|I|+|J|=z

(Gg1,|I|+1(z0, I)

dx(z0)

)(Gg2,|J|+1(z0, J)

dx(z0)

)

+

n∑
i=1

1

x(z0)− x(zi)

(Gg,n(z0, z\{zi})
dx(z0)

− Gg,n(zi, z\{zi})
dx(zi)

)
= 0 (4.3.31)

If (g, n) = (0, 0), then
G0,1(z0)

dx(z0)

G0,1(z0)

dx(z0)
− x(z0) = 0 (4.3.32)

Proof. Each term in (4.3.31) is obtained from Corollary 4.3.2 by integrating over z1, . . . , zn. The first term of this

lemma is obtained from the first term of the corollary by

∂

∂x(zn+1)

Gg−1,n+2(z0, z, zn+1)

dx(z0)
|zn+1=z0

=
∂

∂x(zn+1)

(∫ z1

∞
· · ·
∫ zn+1

∞

Wg−1,n+2(−z0, z, zn+1)

dx(z0)

)
|zn+1=z0 ,

=

∫ z1

∞
· · ·
∫ zn

∞

Wg−1,n+2(−z0, z, zn+1)

dx(z0)dzn+1

dzn+1

dx(zn+1)
|zn+1=z0 (fundamental theorem of calculus),

=

∫ z1

∞
· · ·
∫ zn

∞

Wg−1,n+2(−z0, z, z0)

dx(z0)2
(evaluate zn+1 = z0),

=

∫ z1

∞
· · ·
∫ zn

∞

Wg−1,n+2(−z0, z0, z)

dx(z0)2
(symmetry of Wg,n).
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The second term is obtained from the Wg1,|I|+1(−z0, I)Wg2,|J|+1(−z0, J) terms by applying the definition of

Gg,n+1.

Gg1,|I|+1(z0, I)Gg2,|J|+1(z0, J) =
(∫
· · ·
∫
Wg1,|I|+1(−z0, I)

)(∫
· · ·
∫
Wg2,|J|+1(−z0, J)

)
=

∫
· · ·
∫
Wg1,|I|+1(−z0, I)Wg2,|J|+1(−z0, J)

The final term is obtained in part by integrating the last terms of the previous corollary.∫ z1

∞
· · ·
∫ zn

∞

Wg,n(−z0, z\{zi})
dx(z0)

dx(zi)

(x(z0)− x(zi))2

=

∫ z1

∞
· · ·
∫ zn

∞

∫ zi

∞

Wg,n(−z0, z\{zi})
dx(z0)

dx(zi)

(x(z0)− x(zi))2

=

∫ z1

∞
· · ·
∫ zn

∞︸ ︷︷ ︸
no zi integral

Wg,n(−z0, z\{zi})
dx(z0)

1

x(z0)− x(zi)

=
1

x(z0)− x(zi)

Gg,n(z0, z\{zi})
dx(z0)

∫ z1

∞
· · ·
∫ zn

∞
dzi

( 1

x(z0)− x(zi)

Wg,n(−zi, z\{zi})
dx(zi)

)
=

∫ z1

∞
· · ·
∫ zn

∞

∫ zi

∞
dzi

( 1

x(z0)− x(zi)

Wg,n(−zi, z\{zi})
dx(zi)

)
=

∫ z1

∞
· · ·
∫ zn

∞︸ ︷︷ ︸
no zi integral

( 1

x(z0)− x(zi)

Wg,n(−zi, z\{zi})
dx(zi)

)

=
1

x(z0)− x(zi)

Gg,n(zi, z\{zi})
dx(zi)

For the (g, n) = (0, 0) case we have that W0,1(−z0) = G0,1(z0), so (4.3.32) follows directly from the previous

corollary.

Definition 4.3.5. The partial specialization of Gg,n+1(z0, z) is

Ĝg,n+1(z0, z) = Gg,n+1(z0, z, . . . , z), (4.3.33)

and the full specialization is

Ĝg,n+1(z, z). (4.3.34)

Proposition 4.3.6. If 2g + n− 1 ≥ 0, then:( ∂

∂x(zn+1)

Gg−1,n+2(z0, z, zn+1)

dx(z0)

)
z0=z

...
zn+1=z

=
1

n+ 1

( ∂

∂x(z0)

Ĝg−1,n+2(z0, z)

dx(z0)

)
z0=z

(4.3.35)

Proof. Let zi = zi(z) for all zi except z0. Using the chain rule, we have

∂

∂x(z)

Gg−1,n+2(z0, z, zn+1)

dx(z0)
=

n+1∑
i=1

( ∂

∂zi

Gg−1,n+2(z0, z, zn+1)

dx(z0)

) ∂zi
∂x(z)

=

n+1∑
i=1

( ∂

∂x(zi)

Gg−1,n+2(z0, z, zn+1)

dx(z0)

)∂x(zi)

∂zi

∂zi
∂x(z)

=

n+1∑
i=1

( ∂

∂x(zi)

Gg−1,n+2(z0, z, zn+1)

dx(z0)

)∂x(zi)

∂x(z)
.
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Letting zi = z for all zi except z0,

∂

∂x(z)

Gg−1,n+2(z0, z, . . . , z)

dx(z0)
=

n+1∑
i=1

( ∂

∂x(zi)

Gg−1,n+2(z0, z, zn+1)

dx(z0)

)∣∣∣∣∣ z1=z...
zn+1=z

.

The Gg,n+1 inherit symmetry in the last n components from the Wg,n+1, meaning that the derivatives are sym-

metric after taking z1 = · · · = zn = z. For all i ̸= 0 the derivative terms are all equal,

( ∂

∂x(zi)

Gg−1,n+2(z0, z, zn+1)

dx(z0)

)∣∣∣∣∣ z1=z...
zn+1=z

=
( ∂

∂x(zn+1)

Gg−1,n+2(z0, z, zn+1)

dx(z0)

)∣∣∣∣∣ z1=z...
zn+1=z

,

and so the sum becomes

∂

∂x(z)

Gg−1,n+2(z0, z, . . . , z)

dx(z0)
= (n+ 1)

( ∂

∂x(zn+1)

Gg−1,n+2(z0, z, zn+1)

dx(z0)

)∣∣∣∣∣ z1=z...
zn+1=z

.

The proof is finished by setting z0 = z in the above expression.

We now adapt lemma 4.3.4 to our partial specialization.

Lemma 4.3.7. If 2g + n− 1 ≥ 0, then:

− 1

n+ 1

( ∂

∂x(z)

Ĝg−1,n+2(z0, z)

dx(z0)

)
|z0=z (4.3.36)

+
∑

g1+g2=g

n∑
m=0

n!

m!(n−m)!

Ĝg1,m+1(z, z)

dx(z)

Ĝg2,n−m+1(z, z)

dx(z)
(4.3.37)

− n
( ∂

∂x(z0)

Ĝg,n(z0, z)

dx(z0)

)
|z0=z = 0 (4.3.38)

If (g, n) = (0, 0), then:
G0,1(z)

dx(z)

G0,1(z)

dx(z)
− x(z) = 0

Proof. We prove this lemma by applying partial specialization to Lemma 4.3.4.

The first term of follows immediately from proposition 4.3.6.

For the second term, we note that when all zi = z, only the size of I and J matter. This means we need to count

the number of ways to partition the variables z1, . . . , zn into intervals of size |I| and |J |, which is

(
n

|I|

)
=

n!

(|I|)!(n− |I|)! . (4.3.39)

Denoting |I| = m, we have that

∑
g1+g2=g
|I|+|J|=z

(Gg1,|I|+1(z0, I)

dx(z0)

)(Gg2,|J|+1(z0, J)

dx(z0)

)

=
∑

g1+g2=g

n∑
m=0

n!

m!(n−m)!

Ĝg1,m+1(z, z)

dx(z)

Ĝg2,n−m+1(z, z)

dx(z)
,
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which is the second term in the lemma.

We begin the final term by taking a limit zi → z0 of each individual summand.

lim
zi→z0

1

x(z0)− x(zi)

(Gg,n(z0, z\{zi})
dx(z0)

− Gg,n(zi, z\{zi})
dx(zi)

)
= lim
zi→z0

1

x′(z0)(zi − z0)

(Gg,n(zi, z\{zi})
dx(zi)

− Gg,n(z0, z\{zi})
dx(z0)

)
=

∂

∂x(z0)

(Gg,n(z0, z\{zi})
dx(z0)

)
.

Setting all zi = z and putting this term back into the sum yields

n
( ∂

∂x(z0)

Gg,n(z0, z, . . . , z)

dx(z0)

)
|z0=z. (4.3.40)

This proves the first part of the lemma.

The (g, n) = (0, 0) case follows immediately from Lemma 4.3.4 by setting z0 = z.

Definition 4.3.8. Define

ξ1(z′, z) := −
∞∑

g,n=0

ℏ2g+n

n!

Ĝg,n+1(z′, z)

dx(z′)
(4.3.41)

Proposition 4.3.9.

ℏ d

dx(z)
ξ1(z, z) = −

∑
2g+n−1≥0

[ ℏ2g+n

(n+ 1)!

( ∂

∂x(z)

Ĝg−1,n+2(z0, z)

dx(z0)

)
|z0=z +

ℏ2g+n

(n− 1)!

( ∂

∂x(z0)

Ĝg,n(z0, z)

dx(z0)

)
|z0=z

]
Proof. We begin by writing the sum in a more convenient form

−ℏ
∑

2g+n−1≥0

[ℏ2(g−1)+(n+1)

(n+ 1)!

( ∂

∂x(z)

Ĝg−1,n+2(z0, z)

dx(z0)

)
|z0=z +

ℏ2g+n−1

(n− 1)!

( ∂

∂x(z0)

Ĝg,n(z0, z)

dx(z0)

)
|z0=z

]
.

Reindexing the first term in the summation by g − 1→ g and n+ 2→ n, the sum becomes

−ℏ
∑

2g+n−1≥0

ℏ2g+n−1

(n− 1)!

( ∂

∂x(z)

Ĝg,n(z0, z)

dx(z0)

)
|z0=z +

( ∂

∂x(z0)

Ĝg,n(z0, z)

dx(z0)

)∣∣∣∣∣
z0=z

 .
To finish, observe that

d

dx(z)

Ĝg,n(z, z)

dx(z)
=
( ∂

∂x(z0)

Ĝg,n(z0, z)

dx(z0)

)
|z0=z +

( ∂

∂x(z)

Ĝg,n(z0, z)

dx(z)

)
|z0=z. (4.3.42)

We can substitute this into the square brackets in the above expression and conclude that this term is the derivative

of ξ1.

Lemma 4.3.10.

ℏ d

dx(z)
ξ1(z, z) + ξ1(z, z)2 − x(z) = 0 (4.3.43)

Proof. We begin by applying Proposition 4.3.9 to Lemma 4.3.7. We take the first and last term of Lemma 4.3.7,

multiply by ℏ2g+n

n!
and sum over g and n. We can then change the sum over g, n = 0 to a sum 2g − n + 1 ≥ 0, as

terms where g or n are negative are 0.
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−
∞∑

g,n=0

ℏ2g+n

(n+ 1)!

( ∂

∂x(z)

Ĝg−1,n+2(z0, z)

dx(z0)

)
|z0=z +

ℏ2g+n

(n− 1)!

( ∂

∂x(z0)

Ĝg,n(z0, z)

dx(z0)

)
|z0=z

= −
∑

2g+n−1≥0

ℏ2g+n

(n+ 1)!

( ∂

∂x(z)

Ĝg−1,n+2(z0, z)

dx(z0)

)
|z0=z +

ℏ2g+n

(n− 1)!

( ∂

∂x(z0)

Ĝg,n(z0, z)

dx(z0)

)
|z0=z

This expression is exactly the right-hand side of Proposition 4.3.9, so it is equal to

ℏ d

dx(z)
ξ1(z, z).

Now, we expand the ξ21 and try to relate it to Lemma 4.3.7.

ξ1(z, z)2 =
(
−

∞∑
g,n=0

ℏ2g+n

n!

Ĝg,n+1(z, z)

dx(z)

)2
=

∞∑
g1,m=0
g2,k=0

ℏ2(g1+g2)+(m+k)

m!k!

Ĝg1,m+1(z, z)

dx(z)

Ĝg2,k+1(z, z)

dx(z)

=

∞∑
g,n=0

∑
g1+g2=g

n∑
m=0

ℏ2g+n

m!(n−m)!

Ĝg1,m+1(z, z)

dx(z)

Ĝg2,n−m+1(z, z)

dx(z)

=

∞∑
g,n=0

ℏ2g+n

n!

∑
g1+g2=g

n∑
m=0

n!

m!(n−m)!

Ĝg1,m+1(z, z)

dx(z)

Ĝg2,n−m+1(z, z)

dx(z)

The last term in the expression can be split into two pieces: (g, n) = (0, 0) and 2g + n− 1 ≥ 0.

The 2g+n−1 ≥ 0 term is the second term of Lemma 4.3.7 multiplied by ℏ2g+n

n!
and summed over g and n, exactly

as was done in the above computation. Using Lemma 4.3.7 we have that the sum of this term and ℏ d
dx(z)

ξ1(z, z)

equate to 0.

The (g, n) = (0, 0) is equal to x(z), following the last statement of Lemma 4.3.7, and is thus killed by the remaining

−x(z), concluding the lemma.

We can now define the wave-function. We expect this wave-function to be in the kernel of the quantum curve.

Definition 4.3.11. The perturbative wave-function is defined by

ψ(z) = exp
[1

ℏ
∑

2g+n−1≥0

ℏ2g+n−1

n!

∫ z

∞
· · ·
∫ z

∞

(
Wg,n(z1, ..., zn)− δg,0δn,0

dx(z1)dx(z2)

(x(z1)− x(z2))2

)]
. (4.3.44)

Define

ψ1(z′, z) := ψ(z)ξ1(z′, z) (4.3.45)

Proposition 4.3.12.

ℏ d

dx(z)
ψ(z) = ψ1(z, z) (4.3.46)

Proof. Evaluating the derivative yields

d

dx(z)
ψ(z) =

ψ(z)

x′(z)

[ d
dz

1

ℏ
∑

2g+n−1≥0

ℏ2g+n−1

n!

∫ z

∞
· · ·
∫ z

∞

(
Wg,n(z1, ..., zn)− δg,0δn,0

dx(z1)dx(z2)

(x(z1)− x(z2))2

)]
.
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Suppose that the integration bounds zi = zi(z). Applying the chain rule and the fundamental theorem of calculus

to the integral term, we get

1

x′(z)

d

dz

(∫ z1(z)

∞
· · ·
∫ zn(z)

∞
Wg,n(z1, ..., zn)− δg,0δn,0

dx(z1)dx(z2)

(x(z1)− x(z2))2

)
=

1

x′(z)

n∑
i=1

1

dzi

(∫ z1(z)

∞
. . .

∫̂ zi(z)

∞
· · ·
∫ zn(z)

∞
Wg,n(z1, ..., zn)− δg,0δn,0

dx(z1)dx(z2)

(x(z1)− x(z2))2

)
.

Using the symmetry of the Wg,n, zi can be moved into the first coordinate and then by picking up a minus sign,

because Wg,n is odd, it can be made into −zi,

= − 1

x′(z)

n∑
i=1

1

dzi

(∫ z1(z)

∞
. . .

∫̂ zi(z)

∞
· · ·
∫ zn(z)

∞
Wg,n(−zi, z1, ..., zn)

)
= − 1

x′(z)

n∑
i=1

Ĝg,n(zi, z)

dzi
.

Setting zi(z) = z, we get from the above expression that the derivative of the integral is

−nĜg,n(z, z)

dx(z)
. (4.3.47)

Substituting this expression back into square brackets yields ξ1(z, z), and so the proof is complete.

Corollary 4.3.13.

ℏ2 d
2

dx2
ψ(z) = ψ1(z, z)ξ1(z, z) + ℏψ(z)

d

dx
ξ1(z, z) (4.3.48)

Proof. The proof follows from a simple computation employing the above proposition.

ℏ2 d
2

dx2
ψ(z) = ℏ d

dx

(
ℏ d

dx
ψ(z)

)
= ℏ d

dx
(ψ(z)ξ1(z))

= ℏ
( d
dx
ψ(z)

)
ξ1(z, z) + ℏψ(z)

d

dx
ξ1(z, z)

= ℏψ1(z, z)ξ1(z, z) + ℏψ(z)
d

dx
ξ1(z, z)

Theorem 4.3.14. (Bouchard-Eynard, [19])(
ℏ2 d2

dx(z)2
− x(z)

)
ψ(z) = 0 (4.3.49)

Proof. We begin by multiplying Lemma 4.3.10 by ψ(z),

0 = ℏψ(z)
d

dx(z)
ξ1(z, z) + ψ(z)ξ1(z, z)2 − ψ(z)x(z)

= ℏψ(z)
d

dx(z)
ξ1(z, z) + ψ1(z, z)ξ1(z, z)− ψ(z)x(z).
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Applying Corollary 4.3.13 to the first two terms completes the proof,

0 = ℏ2 d
2

dx2
ψ(z)− ψ(z)x(z). (4.3.50)

As per our preliminary observations, Theorem 4.3.14 shows that from the information of topological recursion, we

were able to produce a WKB solution to a “quantization” of the initial Airy spectral curve.

4.4 Topological recursion and WKB

The previous example of the Airy spectral suggests that there is a relationship between topological recursion and the

WKB solution to a differential equation. In [19], they provide conditions on a spectral curve for which topological

recursion recovers WKB solutions. This section will explore these conditions and the relationship between topological

recursion and WKB.

Let S be a spectral curve defined by

P (x, y) = p0(x)yr + p1(x)yr−1 + · · ·+ pr−1(x)y + pr(x)

=

r∑
i=0

pr−1(x)yi = 0. (4.4.1)

For m = 2, ..., r define

Pm(x, y) =

m−1∑
k=1

pm−1−k(x)yk. (4.4.2)

When r = 2 we have only one term of this type

P2(x, y) = p0(x)y. (4.4.3)

We can expand the fi(x) terms and consider P (x, y) as a sum of monomials

P (x, y) =
∑

(i,j)∈A

αijx
iyj = 0, (4.4.4)

where A ⊂ N2 is the set of indices such that αij ̸= 0.

Definition 4.4.1. The Newton polygon ∆S of P (x, y) is the convex hull of A.

For a Newton polygon ∆S , we can define two terms:

αm = inf{a|(a,m) ∈ ∆} (4.4.5)

βm = sup{a|(a,m) ∈ ∆}. (4.4.6)

Using these terms, we can compute the number of integer points in ∆ by

integer points in ∆S =

r−1∑
i=1

(⌈βi⌉ − ⌊αi⌋ − 1) (4.4.7)

A useful theorem involving the interior integer points is Baker’s formula:
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Theorem 4.4.2 (Baker’s Formula). If S is a spectral curve with Newton polygon ∆S, then:

gS ≤
r−1∑
i=1

(⌈βi⌉ − ⌊αi⌋ − 1) (4.4.8)

Definition 4.4.3. A spectral curve is admissible if it satisfies:

1. ∆S has no interior integer points

2. if (0, 0) is on S, then S is smooth at (0, 0)

Using Baker’s formula, the first condition is equivalent to the spectral curve having genus zero.

Admissible spectral curves can be classified. They are given by P (x, y) = 0 that are either:

1. linear in x

2. have a Newton polygon given by the convex hull of {(0, 0), (2, 0), (0, 2)}

3. such that they can be obtained from (1) or (2) by a transformation

(x, y) 7→ (xayb, xcyd), (4.4.9)

with ad− bc = 1 together with a rescaling of x and y to get a irreducible polynomial.

Admissible spectral curves are the ones for which topological recursion recovers a WKB solution. This solution is

the perturbative wave-function from Definition 4.3.11, but with more generic integration bounds.

Definition 4.4.4. Let β be a simple pole of x. Define

ψ(z;β) = exp
[1

ℏ
∑

2g+n−1≥0

ℏ2g+n−1

n!

∫ z

β

· · ·
∫ z

β

(
Wg,n(z1, ..., zn)− δg,0δn,0

dx(z1)dx(z2)

(x(z1)− x(z2))2

)]
.

The differential equation that kills ψ is a quantization of P (x, y) = 0, called a quantum curve. A first näıve

attempt to quantize P (x, y) = 0 would be to take the usual quantization map, taking coordinates (x, y) to differential

operators (x̂, ŷ) defined by

x→ x̂ = x, (4.4.10)

y → ŷ = ℏ d

dx
, (4.4.11)

and consider the differential operator defined by P (x̂, ŷ) as the quantized spectral curve. The problem with the näıve

attempt is that the operator variables are non-commutative; they satisfy the commutation relation [ŷ, x̂] = ℏ. This

means that adding to P (x, y) a term of the form xy−yx leaves the spectral curve unchanged (x and y are commutative

coordinate variables) but changes the quantized spectral curve to P (x̂, ŷ) + ℏ. This suggests that the definition of the

quantized spectral curve needs to be more general.

Definition 4.4.5. A quantum curve P̂ of a spectral curve S is a rank d linear differential operator in x such that

after normal ordering (i.e. x̂ to the left of ŷ), it has the form

P̂ (x̂, ŷ; ℏ) = P (x̂, ŷ) +
∑
n≥1

ℏnP̃n(x̂, ŷ), (4.4.12)

where the P̃n(x̂, ŷ) are differential operators in x of rank at most d− 1.

A quantum curve is simple if there are only finitely many ℏ terms.
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A theorem of [19] allows us to compute quantum curves, particularly the P̃n terms. To begin, we need to define

two terms that are present in the theorem.

Definition 4.4.6. Define for k = 1, ..., r − 1 and i = 1, ...r

Ck = lim
z1→β

Pk+1(x(z1), y(z1))

x(z1)⌊αr−k⌋+1
, (4.4.13)

Di = ℏ x⌊αi⌋

x⌊αi−1⌋
d

dx
. (4.4.14)

We can now state the main quantum curve theorem of this section.

Theorem 4.4.7. (Bouchard-Eynard, [19]) If S is an admissible spectral curve, then ψ(z;β) satisfies the following

differential equation: [
D1D2 . . .Dr−1

p0(x)

x⌊αr⌋
Dr +D1D2 . . . Dr−2

p1(x)

x⌊αr−1⌋
Dr−1

+ · · ·+ pr−1(x)

x⌊α1⌋
D1 +

pr(x)

x⌊α0⌋
− ℏC1D1D2 . . . Dr−2

x⌊αr−1⌋

x⌊αr−2⌋

− ℏC2D1D2 . . . Dr−3
x⌊αr−2⌋

x⌊αr−3⌋
− · · · − ℏCr−1

x⌊α1⌋

x⌊α0⌋

]
ψ(z;β) = 0 (4.4.15)

After normal ordering, this differential equation is equivalent to (4.4.12).

4.4.1 Example: Airy spectral curve

We saw in Section 4.3.2 that applying topological recursion to the Airy spectral curve y2− x = 0 recovered the WKB

solution to the differential equation
(
ℏ2 d2

dx(z)2
− x(z)

)
ψ(z) = 0. We can check if Theorem 4.4.7 yields the same result

for the Airy spectral curve.

We first verify that the Airy spectral curve,

P (x, y) = y2 − x = 0, (4.4.16)

with parametrization x = z2 and y = z, is an admissible spectral curve. From this equation, we observe that

p0(x) = 1,

p1(x) = 0,

p2(x) = −x.

The only non-zero αij are α0,2 = 1 and α1,0 = −1. The Newton polygon is the convex hull of {(1, 0), (0, 2)}, that is,

the line segment joining (1, 0) and (0, 2). This set clearly has no interior integer points. The origin is a point on the

curve; however ∇P (0, 0) = (−1, 0) ̸= (0, 0), so the curve is smooth at the origin. This means that the Airy spectral

curve is an admissible spectral curve.

For the sake of matching the situation in the previous section, we will choose β = ∞. Theorem 4.4.7 says that

ϕ(z) from (4.3.11) satisfies the equation[
D1

p0(x)

x⌊α2⌋
D2 +

p1(x)

x⌊α1⌋
D1 +

p2(x)

x⌊α0⌋
− ℏC1

x⌊α1⌋

x⌊α0⌋

]
ψ(z) = 0. (4.4.17)
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To understand whether this is the same as (4.3.49), we need to compute the Di’s and C1. From the Newton

polygon, we have that ⌊α0⌋ = 1, ⌊α1⌋ = ⌊α2⌋ = 0. Computing each Di we get

D1 = ℏx
⌊α1⌋

x⌊α0⌋
d

dx
= ℏ 1

x

d

dx
,

D2 = ℏx
⌊α2⌋

x⌊α1⌋
d

dx
= ℏ d

dx
.

To compute C1, recall that we have p0(x) = 1, p1(x) = 0 and p2(x) = −x. This means that P2(x, y) = p0(x)y = y,

and

C1 = lim
z1→∞

P2(x, y)

x⌊α2−1⌋+1

= lim
z1→∞

y

x

= lim
z1→∞

z1
z21

= 0. (4.4.18)

Putting this all back into (4.4.17) yields

0 =
[
ℏ 1

x

d

dx
(ℏ d

dx
) + 0 +

−x
x
− 0
]
ψ(z)

=
[ 1

x
ℏ2 d

2

dx2
− 1
]
ψ(z).

Rearranging terms in the bracket gives the expected differential equation[
ℏ2 d

2

dx2
− x
]
ψ(z) = 0. (4.4.19)

4.4.2 Another example

To highlight the problem with the “näıve” quantization and the need for the correction terms in Definition 4.4.5, we

consider the following spectral curve,

P (x, y) = 4y2 − x2 + 4 = 0. (4.4.20)

Again, we would like to apply Theorem 4.4.7 to this curve.

A parametrization for this curve is given by

(x, y) = (z +
1

z
,

1

2
(z − 1

z
)).

With this parametrization, x has two poles at z = 0,∞. The non-zero αij terms are α0,2 = 4, α2,0 = −1, and α0,0 = 4.

The Newton polygon is the triangle with vertices at (0, 0), (2, 0), and (0, 2). The interior of this shape contains no

integer points. The point (0, 0) is not a solution of P (x, y) = 0, so the smoothness condition does not apply to this

curve. Hence, (4.4.20) defines an admissible spectral curve.

Applying Theorem 4.4.7, we get the following quantum curve[
D1

p0(x)

x⌊α2⌋
D2 +

p1(x)

x⌊α1⌋
D1 +

p2(x)

x⌊α0⌋
− ℏC1

x⌊α1⌋

x⌊α0⌋

]
ψ(z;β) = 0. (4.4.21)

We need to compute the Di’s and C1 in order to understand this equation. From the Newton polygon, we have

that ⌊α0⌋ = ⌊α1⌋ = ⌊α2⌋ = 0, and so

D1 = D2 = ℏ d

dx
. (4.4.22)

53



In (4.4.20), we have p0(x) = 4, p1(x) = 0, and p2(x) = −x2 + 4. This means that P2(x, y) = 4y. Computing C1

we get

C1 = lim
z1→β

P2(x, y)

x⌊α2−1⌋+1

= lim
z1→β

4y

x

= lim
z1→β

4( 1
2
(z1 − 1

z1
))

z1 + 1
z1

= lim
z1→β

2(z21 − 1)

z21 + 1
. (4.4.23)

We have a choice of β = 0,∞. Both will yield a different limit, but more importantly, neither choice of β will result

in C1 = 0 as we have C1(β = 0) = −2 and C1(β =∞) = 2.

Gathering everything together we get,

0 =
[
ℏ d

dx
(4(ℏ d

dx
)) + 0 +−x2 + 4− ℏC1

]
ψ(z;β)

=
[
4ℏ2 d

2

dx2
− x2 + 4− ℏC1

]
ψ(z;β).

Choosing the pole β = 0, [
4ℏ2 d

2

dx2
− x2 + 4 + 2ℏ

]
ψ(z; 0) = 0. (4.4.24)

Choosing the pole β =∞, [
4ℏ2 d

2

dx2
− x2 + 4− 2ℏ

]
ψ(z;∞) = 0. (4.4.25)

Both choices for β present non-trivial quantizations of the spectral curve. The first three terms of both of the above

expressions correspond to the “näıve” quantization, but an ℏ-correction term was necessary to quantize the curve in

such a way that it is compatible with topological recursion.
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5 Quantization of Hitchin spectral curves

In this chapter, we will discuss how topological recursion relates to Higgs bundles in the context of quantization of

Hitchin spectral curves. Sections 5.1 to 5.4 largely follow Dumitrescu-Mulase [35] and their development of quantum

curves for Higgs bundles and the relation to WKB analysis. Many technical details will be omitted in this document,

and we refer the reader to [35] for further details. Once we have established a suitable notion for quantization, we

will revisit the Airy spectral curve in the context of Higgs bundles. We will finish this chapter by highlighting some

new interpretations of the quantum curve which incorporate the spectral correspondence and the C∗-action.

5.1 Quantum curves for Higgs bundles

5.1.1 Rees D-modules

Let X be a Riemann surface, and

D =

n∑
j=1

mjpj

where mj > 0 be an effective divisor on X. We want to define a quantum curve for the Hitchin spectral curve of a

meromorphic Higgs bundle with poles at D.

Definition 5.1.1. The compactified cotangent bundle of X is a ruled surface defined by

T ∗X := P(K ⊕OX) = Proj

(
∞⊕
n=0

(K−n · I0 ⊕K−n+1 · I ⊕ · · · ⊕K0 · In)

)
, (5.1.1)

where I represents 1 ∈ OX being considered as a degree 1 element.

The divisor at infinity

X∞ := P(K ⊕ {0}) (5.1.2)

is reduced in the ruled surface and supported on the subset P(K ⊕ OX)\T ∗X. The tautologocal section η on T ∗X

extends to a meromorphic 1-form on T ∗X with simple poles along X∞. The divisor of η in T ∗X is given by

(η) = X0 −X∞ (5.1.3)

where X0 is the zero section in T ∗X.

For a meromorphic Higgs bundle (E , ϕ) with poles at D, the Higgs field is holomorphic on X\supp(D). We can

then define the divisor of zeros of the characteristic polynomial on T ∗(X\supp(D))

S0 = {det(η − π∗(ϕ|X\supp(D))) = 0}. (5.1.4)

The spectral curve S of (E , ϕ) is the closure of S0 with respect to the compactification

T ∗(X\supp(D)) ⊂ T ∗X. (5.1.5)
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The sheaf DX of differential operators on X is the subalgebra of C-linear endomorphism algebra EndC(OX )

generated by the anti-canonical sheaf K−1 and the structure sheaf OX , where K−1 acts on OX as holomorphic vector

fields, and OX acts on itself by multiplication. In local coordinates, an element of DX can be written

P (x) =

r∑
l=0

al(x)

(
d

dx

)r−l
,

where al(x) ∈ OX , for some r ≥ 0. Fixing an r, we have a filtration of DX by the order of differential operators

FrDX =

{
r∑
l=0

al(x)

(
d

dx

)r−l
|al(x) ∈ OX

}
.

We want to understand the relationship between the geometry of T ∗X and DX . Let grmDX = FmDX\Fm−1DX .

We first note that

Spec

(
∞⊕
m=0

grmDX

)
= Spec

(
∞⊕
m=0

K−m

)
= T ∗X. (5.1.6)

By writing I = 1 ∈ H0(X,DX), we then have

T ∗X = Proj

(
∞⊕
m=0

(
grmDX · I0 ⊕ grm−1DX · I ⊕ grm−2DX · I⊗2 ⊕ · · · ⊕ gr0DX · I⊗m

))
.

The Rees ring D̃X is defined by

D̃X :=

∞⊕
r=0

ℏrFrDX ⊂ C[[ℏ]]⊗C DX . (5.1.7)

Similarly to (5.1.1), in local coordinates, an element of DX can be written as

P (x, ℏ) =

r∑
l=0

al(x, ℏ)

(
ℏ d

dx

)r−l
. (5.1.8)

Definition 5.1.2. The Rees construction

M̃ =

∞⊕
r=0

ℏrFrM (5.1.9)

associated with a filtered DX-module (F•,M) is a Rees D-module if it satisfies the compatibility condition

FaDX · FbM⊂ Fa+bM. (5.1.10)

A left DX -module E on X is naturally an OX -module with a C-linear integrable (i.e. flat) connection ∇ : E →

K ⊗OX E. The construction is as follows:

∇ : E
α−→ DC ⊗OX E

∇D⊗id−−−−−→ (K ⊗OX DX)⊗OX E
β⊗id−−−→ K ⊗OX E (5.1.11)

where

• α is the natural inclusion v 7→ 1⊗ v ∈ DC ⊗OX E,

• ∇D : DX → K ⊗OX DX is the connection defined by the C-linear left-multiplication operation of K−1 on DX

satisfying

∇D(f · P ) = f · ∇D(P ) + df · P ∈ K ⊗OX DX (5.1.12)

for f ∈ OX and P ∈ DX ,

• β is the canonical right DX -module structure in K defined by the Lie derivative of vector fields.
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In a local neighbourhood with coordinate x, we can write (5.1.12) in the following way. Let P ′ = [ d
dx
, P ] +P · d

dx
,

and define

∇ d
dx

(P ) := P · d
dx

+ P ′.

Equation (5.1.12) takes the form

∇ d
dx

(f · P ) = f · ∇ d
dx

(P ) +
df

dx
· P.

The connection ∇ is integrable because d2 = 0. Note that there is no reason for E to be coherent as an OX -module.

Conversely, if an algebraic vector bundle E on X of rank r admits a holomorphic connection ∇ : E → K ⊗OX E ,

then E acquires the structure of a DX -module. This is because ∇ is automatically flat, and the covariant derivative

∇Y for Y ∈ K−1 satisfies

∇Y (fv) = f∇Y (v) + Y (f)v (5.1.13)

for f ∈ OX and v ∈ E . A repeated application of this covariant derivative makes E a DX -module. The fact that every

DX -module on a curve is principal implies that for every point p ∈ X, there is an open neighbourhood p ∈ U ⊂ C

and a linear differential operator P of order r on U , called a generator, such that E|U ∼= DU\DUP . Thus on an open

curve U , a holomorphic connection in a vector bundle of rank r gives rise to a differential operator of order r. The

converse is true if DU\DUP is OU -coherent.

Definition 5.1.3. A formal ℏ-connection on a vector bundle E → X is a C[[ℏ]]-linear homomorphism

∇ℏ : C[[ℏ]]⊗ E → C[[ℏ]]⊗K ⊗OX E

such that

∇ℏ(f · v) = f∇ℏ(v) + ℏdf ⊗ v, (5.1.14)

where f ∈ OX ⊗ C[[ℏ]] and v ∈ C[[ℏ]]⊗ E.

A priori, we are not assuming any form of holomorphic dependence of an ℏ-connection on ℏ. When considering

the holomorphic dependence of a quantum curve with respect to the quantization parameter ℏ, we need to use a

particular ℏ-deformation family of vector bundles.

Remark 5.1.4. The classical limit of a formal ℏ-connection is the evaluation ℏ = 0 of ∇ℏ, which is simply an

OX -module homomorphism

∇0 : E → K ⊗OX E ,

i.e., a holomorphic Higgs field on E .

Remark 5.1.5. An OX ⊗ C[[ℏ]]-coherent D̃X -module is equivalent to a vector bundle over X equipped with an

ℏ-connection.

To motivate the definition of a quantum curve, we begin by studying the semi-classical limit of a differential

operator. In analysis, the semi-classical limit of a differential operator P (x, ℏ) of (5.1.8) is a function S0(x) defined

by the equation

lim
ℏ→0

(
e−

1
ℏS0(x)P (x, ℏ)e

1
ℏS0(x)

)
=

r∑
l=0

al(x, 0)(S′
0(x))r−l, (5.1.15)
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where S0(x) ∈ OX(U). The equation

lim
ℏ→0

(
e−

1
ℏS0(x)P (x, ℏ)e

1
ℏS0(x)

)
= 0 (5.1.16)

determines the WKB asymptotic expansion

ψ(x, ℏ) = exp

(
∞∑
m=0

ℏm−1Sm(x)

)
(5.1.17)

of a solution ψ(x, ℏ) to the differential equation

P (x, ℏ)ψ(x, ℏ) = 0

on U . Note that the WKB expansion for ψ is not meant to be a convergent series in ℏ.

Since dS0(x) is a local section of T ∗X on U , y = S′
0(x) gives a local trivialization of T ∗X|U , with y ∈ T ∗

xX a fiber

coordinate. Combining Equations (5.1.15) and (5.1.16) in local coordinates, we get the equation

r∑
l=0

al(x, 0)yr−l = 0 (5.1.18)

of a curve in T ∗X|U .

Definition 5.1.6. Let U ⊂ X be a local coordinate neigbourhood with coordinate x such that T ∗X is trivial over U

with fiber coordinate y. The semi-classical limit of a local section

P (x, ℏ) =

r∑
l=0

al(x, ℏ)

(
ℏ d

dx

)r−l
of the Rees ring D̃X of the sheaf of differential operators DX on U is the holomorphic function

r∑
l=0

al(x, 0)yr−l = 0

defined on T ∗X|U .

Definition 5.1.7. Suppose a Rees D̃X-module M̃ globally defined on X is written as

M̂(U) = D̃X(U)\D̃X(U)PU (5.1.19)

on every coordinate neighbourhood U ⊂ X with a differential operator PU of the form (5.1.8). Using this local

expression for PU , we construct a meromorphic function

pU (x, y) =

r∑
l=0

al(x, 0)yr−l (5.1.20)

on T ∗X|U , where y is the fiber coordinate of T ∗X, which is trivialized on U . Define

SU = {pU (x, y) = 0}. (5.1.21)

If the SU ’s glue together to form a spectral curve S ⊂ T ∗X, then we call S the semi-classical limit of the Rees

D̃X-module.

Remark 5.1.8. For the local equation (5.1.20) to be consistent globally on X, the coefficients al(x, 0) need to satisfy

al(x, 0) ∈ Γ(U,K⊗l). (5.1.22)
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Definition 5.1.9. A quantum curve associated with the spectral curve S ∈ T ∗X of a holomorphic Higgs bundle on

a Riemann surface X is a Rees D̃X-module E whose semi-classical limit is S.

A main interest of this thesis is to work with twisted objects, particularly on P1. We know from Proposition 2.3.1

that there are no non-trivial holomorphic one-forms on P1, which means there are also no non-trivial holomorphic

connections either. We want to extend the work done above to define a quantum curve to include meromorphic

connections so that we may work with twisted objects on P1.

Definition 5.1.10. A C-linear homomorphism

∇ : E → K(D)⊗OX E

is said to be a meromorphic connection with poles along an effective divisor D if

∇(f · v) = f∇(v) + df ⊗ v

for every f ∈ OC and v ∈ E.

Define

OX(∗D) := lim
→
OX(mD),

E(∗D) := E ⊗OX OX(∗D).

A meromorphic connection ∇ extends to

∇ : E(∗D)→ K(∗D)⊗OX E(∗D).

Because ∇ is holomorphic on X\supp(D), it induces a DX\supp(D)-module structure in E|X\supp(D). The DX -module

direct image Ẽ = j∗(E|X\supp(D)) associated with the open inclusion map j : X\supp(D) → X is then naturally

isomorphic to

Ẽ = j∗(E|X\supp(D)) ∼= E(∗D) (5.1.23)

as a DX -module.

Definition 5.1.11. The above isomorphism is called the meromorphic extension of the DX\supp(D)-module E|X\supp(D).

Let x be a local coordinate of X around a pole pj ∈ supp(D). If a generator P̃ of Ẽ near x = 0 has a local

expression

P̃

(
x,

d

dx

)
= xk

r∑
l=0

bl(x)

(
x
d

dx

)r−l
(5.1.24)

around pj with locally defined holomorphic functions bl, b0(0) ̸= 0, and an integer k ∈ Z, then P̃ has a regular singular

point at pj . Otherwise, pj is an irregular singular point of P̃ .

Definition 5.1.12. Let (E , ϕ) be a meromorphic Higgs bundle on a Riemann surface X of any genus with poles along

an effective divisor D, and S ⊂ T ∗X its spectral curve. A quantum curve associated with S is the meromorphic

extension of a Rees D̃X-module E on X\supp(D) such that the complex topology closure of its semi-classical limit

S0 ⊂ T ∗X|X\supp(D) in the compactified cotangent bundle T ∗X agrees with S.
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5.1.2 SL(r,C)-opers

We can construct a quantization of Hitchin spectral curves using a particular choice of isomorphism between a Hitchin

section and the moduli of opers. The quantum deformation parameter ℏ is a formal parameter in WKB analysis.

Since we will be using the PDE recursion (5.3.5) for the analysis of quantum curves, it plays the role of a formal

parameter for the asymptotic expansion. This point of view motivates the definition of quantum curves as Rees D-

modules in the previous section. The quantum curves appearing in the quantization of Hitchin spectral curves always

depend holomorphically on ℏ. Therefore, a more geometric setup is needed to deal with this holomorphic dependence.

The purpose of this subsection is to explain holomorphic ℏ-connections as quantum curves, and a possible geometric

interpretation of ℏ. The key concept is opers, in the sense of Beilinson-Drinfeld [9], although we will focus solely on

SL(r,C)-opers for r ≥ 2.

For most of what follows, let X be a Riemann of genus g ≥ 2.

Definition 5.1.13. (cf. [61]) A complex projective coordinate system is a coordinate neighbourhood covering

X =
⋃
α

Uα

with a local coordinate xα of Uα such that for every Uα ∩ Uβ, we have a Möbius coordinate transformation

xα =
aαβxβ + bαβ
cαβxβ + dαβ

(5.1.25)

where aαβ bαβ

cαβ dαβ

 ∈ SL(2,C).

Remark. Later on we will be dealing with differential equations on X, so we will assume that each coordinate

neighbourhood Uα is simply connected.

Fix a projective coordinate system on X. Taking the exterior derivative of (5.1.25), we have

dxα =
aαβdαβ − bαβcαβ
(cαβxαβ + dαβ)2

dxβ

=
1

(cαβxαβ + dαβ)2
dxβ .

In these coordinates, the transition function for K is given by the cocycle

{(cαβxαβ + dαβ)2}

on Uα ∩Uβ . Also fix a spin structure on X, i.e. a holomorphic vector bundle K
1
2 such that (K

1
2 )⊗2 ∼= K. Let {ξαβ}

denote the 1-cocycle corresponding to K
1
2 . We have that

ξαβ = ±(cαβxβ + dαβ). (5.1.26)

The choice of ± here is an element of H1(X,Z/2Z) = (Z/2Z)2g, indicating that there are 22g possible choices for the

spin structure.

The use of a projective coordinate structure plays a significant role in the proofs of several important theorems

in this subsection, specifically the main fact that ∂2
βξαβ = 0. This simple property plays an essential role in our

construction of global connections on X.
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Remark 5.1.14. For the remainder of this subsection, we will be working with SL(r,C) Higgs bundles and connec-

tions. We will use the notationM0
X to denote the moduli space of SL(r,C)-Higgs bundles on X, andM0

deR to denote

the moduli space of SL(r,C)-connections on X, i.e. pairs (E ,∇) of an irreducible holomorphic SL(r,C)-connection

∇ : E → E ⊗K acting on a vector bundle E .

For an SL(r,C)-Higgs bundle, the Hitchin base is

B0 =

r⊕
l=2

H0(X,Kl). (5.1.27)

With the choice of spin structure K
1
2 , we have a natural section κ : B0 ↪→ M0

X defined by utilizing Konstant’s

principal three-dimensional subgroup (TDS) [71] as follows.

Let

q = (q2, q3, . . . , qr) ∈ B

be an arbitrary point of the Hitchin base. Define

X− := [
√
si−1δi−1,j ]ij =



0 0 · · · 0 0
√
s1 0

0
√
s2 0

...
. . .

...

0 0 · · · √sr−1 0


,

X+ := XT
− , (5.1.28)

H := [X+, X−],

where si := i(r− i). Note that the matrix H is diagonal with (i, i)-entry Hi,i = si− si−1 = r−2i+ 1. The Lie algebra

⟨X+, X−, H⟩ ∼= sl(2,C) is the Lie algebra of the principal TDS in SL(r,C).

Define a Higgs bundle (E0, ϕ(q)) consisting of a vector bundle

E0 :=
(
K

1
2

)⊗H
=

r⊕
i=1

(
K

1
2

)⊗(r−2i+1)

(5.1.29)

and a Higgs field

ϕ(q) := X− +

r∑
l=2

qlX
l−1
+ . (5.1.30)

Lemma 5.1.15. (E0, ϕ(q)) is a stable SL(r,C)-Higgs bundle. The Hitchin section is defined by

κ : B ∋ q 7→ (E0, ϕ(q)) ∈MX , (5.1.31)

which gives a biholomorphic map between B and κ(B) ⊂MX .

Remark 5.1.16. This is a generalization of the Hitchin section we discussed in Example 3.2.9. If we choose a rank

2 bundle E0 = K
1
2 ⊕K− 1

2 , we have that

X− =

0 0

1 0

 .
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For a point q ∈ B0 = H0(X,K2), and the Higgs field (5.1.31) is

ϕ(q) =

0 q

1 0

 ,
which is exactly the Higgs bundle from Example 3.2.9.

Proof. First, note that X− : E0 → E0 ⊗K is a globally defined End0(E0)-valued one-form, since it is a collection of

constant maps
√
si :

(
K

1
2

)⊗(r−2i+1) =−→
(
K

1
2

)⊗(r−2(i+1)+1)

⊗K. (5.1.32)

Similarly, since Xl−1
+ is an upper-diagonal matrix with non-zero entries along the (l − 1)-th upper diagonal, we have

ql :
(
K

1
2

)⊗(r−2i+1)

→
(
K

1
2

)⊗(r−2i+1+2l)

=
(
K

1
2

)⊗(r−2(i−l+1)+1)

⊗K.

This means that ϕ(q) : E0 → E0 ⊗K is globally defined as a Higgs field on E0. The pair (E0, ϕ(q)) is stable because

no subbundle of E0 is invariant under ϕ(q), unless q = 0. When q = 0, the invariant subbundles all have positive

degrees, since g ≥ 2.

To define ℏ-connections which depend holomorphically on ℏ, we need to construct a one-parameter holomorphic

family of deformations of vector bundles

Eℏ E

X × {ℏ} X ×H1(X,K)

and a C-linear first-order differential operator

ℏ∇ℏ : Eℏ → Eℏ ⊗K

depending holomorphically on ℏ ∈ H1(X,K).

Definition 5.1.17. A filtered extension of the vector bundle E0 parametrized by ℏ ∈ H1(X,K) is a one-parameter

family of filtered holomorphic vector bundles (F•
ℏ , E′ℏ) on X with a trivialized determinant det(Eℏ) ∼= OX satisfying

the following conditions:

• F•
ℏ is a filtration of Eℏ

0 = Frℏ ⊂ Fr−1
ℏ ⊂ · · · ⊂ F0

ℏ = Eℏ. (5.1.33)

• The term Fr−1
ℏ is given by

Fr−1
ℏ =

(
K

1
2

)⊗(r−1)

. (5.1.34)

• For every i = 1, 2, . . . , r − 1, there is an OX-module isomorphism

F iℏ/F i+1
ℏ −→ (F i−1

ℏ /F iℏ)⊗K. (5.1.35)

Remark 5.1.18. Because we need to identify a deformation parameter ℏ and extension class, we make the natural

identification

Ext1(E,F ) = H1(X,E∗ ⊗ F ) (5.1.36)
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for every pair of vector bundles E and F . We also identify Ext(E,F ) as the class of extensions

0→ F → V → E → 0

of E by a vector bundle V . These identifications are done by a choice of projective coordinate system on X as below.

Proposition 5.1.19. For every choice of spin structure K
1
2 and a non-zero element ℏ ∈ H1(X,K), there is a unique

non-trivial filtered extension (F•
ℏ , E′ℏ) of E.

Proof. We will only consider the r = 2 case here, and refer the reader to [35] for the full proof. We have that

ℏ ∈ H1(X,K) = Ext1(E,F ) ∼= C,

and so there is a unique extension

0→ K
1
2 → Eℏ → K− 1

2 → 0 (5.1.37)

corresponding to ℏ. We also have that

K
1
2 −→

(
Eℏ/K

1
2

)
⊗K,

which proves that it is a filtered extension. Note that as a rank 2 vector bundle, there is an isomorphism

Eℏ ∼=

 E1 ℏ ̸= 0

E0 ℏ = 0.
(5.1.38)

Definition 5.1.20. A point (E ,∇) ∈MdeR is an SL(r,C)-oper if the following conditions are satisfied:

Filtration: there is a filtration F• by vector subbundles

0 = Fr ⊂ Fr−1 ⊂ · · · ⊂ F0 = E . (5.1.39)

Griffiths transversality: the connection respects the filtration:

∇|Fi : F i → F i−1 ⊗K, i = 1, . . . r. (5.1.40)

Grading condition: the connection induces OX-module isomorphisms

∇ : F i/F i+1 ∼−→
(
F i−1/F i

)
⊗K i = 1, . . . , r − 1. (5.1.41)

The projective coordinate system on X serves two purposes. It will allow us to define differential operators globally

on X, and to give a concrete ℏ ∈ H1(X,K)-dependence in the filtered extensions. For example, the extension Eℏ of

(E0, ϕ(q)) (5.1.37) is given by a system of transition functions

Eℏ ←→

{ξαβ ℏσαβ

0 ξ−1
αβ

} (5.1.42)

on each Uα ∩ Uβ . The cocycle condition for the transition functions translates into a condition

σαβ = ξαβσβγ + σαβξ
−1
βγ . (5.1.43)

The application of the exterior derivative d to the cocycle condition ξαγ = ξαβξβγ yields

dξαγ
dxγ

dxγ =
dξαβ
dxβ

dxβξβγ + ξαβ
dξβγ
dxγ

dxγ .
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Noticing that

ξ2αβ =
dxβ
dxα

, (5.1.44)

we have

σαβ :=
dξαβ
dxβ

= ∂βξαβ (5.1.45)

solves (5.1.43). Note thatξαβ ℏσαβ

0 ξ−1
αβ

 = exp

log ξαβ

1 0

0 −1

 exp

ℏ∂β log ξαβ

0 1

0 0

.
In the multiplicative sense, the extension class is determined by ∂β log ξαβ .

Lemma 5.1.21. The extension class σαβ of (5.1.45) defined a non-trivial extension (5.1.37).

The class {σαβ} of (5.1.45) gives a natural isomorphism H1(X,K) ∼= C. We identify the deformation parameter

ℏ ∈ C with the cohomology class {ℏσαβ} ∈ H1(X,K) = C. Let q = (q2, . . . , qr) ∈ B0. We trivialize the line bundle

K⊗l with respect to the projective coordinate chart X =
⋃
α Uα and write each ql as {(ql)α} that satisfy the transition

relation

(ql)α = (ql)βξ
2l
αβ . (5.1.46)

The transition function for the vector bundle E0 is given by

ξHαβ = exp (H log ξαβ). (5.1.47)

Because X− : E0 → E0 ⊗ K is a global Higgs field, its local expression {X−dxα} with respect to the projective

coordinate system satisfies the transition relation

X−dxα = exp (H log ξαβ)X−dxβ exp (−H log ξαβ) (5.1.48)

on every Uα ∩ Uβ . The same relation holds for the Higgs field ϕ(q)

ϕ(q)dxα = exp (H log ξαβ)ϕ(q)dxβ exp (−H log ξαβ). (5.1.49)

Theorem 5.1.22 (Construction of SL(r,C)-opers). On each Uαβ, define a transition function by

fℏ
αβ := exp (H log ξαβ) exp (ℏ∂β log ξαβX+). (5.1.50)

where ∂β = d
dxβ

, and ℏ∂β log ξαβ ∈ H1(X,K). Then:

• the collection {fℏ
αβ} satisfies the cocycle condition

fℏ
αβf

ℏ
βγ = fℏ

αγ , (5.1.51)

and thus defines a holomophic bundle on X. It is, in fact, the filtered extension Eℏ from Proposition (5.1.19).

• the locally defined differential operator

∇ℏ
α(0) := d+

1

ℏ
X−dxα (5.1.52)

for every ℏ ̸= 0 forms a holomorphic connection on Eℏ, i.e.

1

ℏ
X−dxα =

1

ℏ
fℏ
αβX−dxβ

(
fℏ
αβ

)−1

− dfℏ
αβ ·

(
fℏ
αβ

)−1

. (5.1.53)
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• every point (E0, ϕ(q)) ∈ κ(B) ⊂MX of the Hitchin section gives rise to a one-parameter family of SL(r,C)-opers

(Eℏ,∇ℏ(q)) ∈MdeR. In other words, the locally defined differential operator

∇ℏ
α(q) := d+

1

ℏ
ϕα(q)dxα (5.1.54)

for every ℏ ̸= 0 determines a global holomorphic connection

∇ℏ
α(q) = fℏ

αβ∇ℏ
β(q)

(
fℏ
αβ

)−1

(5.1.55)

on Eℏ satisfying Definition (5.1.20).

• Deligne’s ℏ-connection (
Eℏ, ℏ∇ℏ(q)

)
(5.1.56)

interpolates the Higgs bundle and the oper, i.e. at ℏ = 0 the Deligne connection gives the Higgs bundle (E0, ϕ(q)),

and at ℏ = 1 it gives the SL(r,C)-oper (E1,∇1(q)).

• After a suitable gauge transformation depending on ℏ, the ℏ→ 0 limit of the oper ∇ℏ(q) exists and is equal to

∇ℏ=1(0).

Remark 5.1.23. In the proof of the theorem (see [35]), the projective coordinate system is essential for the global

connection (5.1.55) to make sense.

From the Theorem 5.1.22, we obtain the following theorem.

Theorem 5.1.24 (Biholomorphic quantization of Hitchin spectral curves). Let X be a compact Riemann surface of

genus g ≥ 2 with a chosen projective coordinate system subordinating its complex structure. For a fixed spin structure

K
1
2 , we have a Hitchin section κ(B) ∈ MX of (5.1.31). Denote by Op ∈ MdeR the moduli space of SL(r,C)-opers

with the condition that the second term of the filtration is given by Fr−1 = K
r−1
2 . Then the map

(E0, ϕ(q))
γ7−→ (Eℏ,∇ℏ(q)) ∈ Op (5.1.57)

evaluated at ℏ = 1 is a biholomorphic map with respect to the natural complex structures induced from the ambient

spaces.

The biholomorphic quantization (5.1.57) is also C∗-equivariant. The oper corresponding to the C∗-action λ.(E0, ϕ) =

(E0, λϕ) ∈ κ(B) is d+ λ
ℏϕ(q).

A holomorphic connection on a compact Riemann surface X is automatically flat, so it defines a D-module over

X. We next show that for a fixed projective coordinate system on X, the ℏ-connection ℏ∇ℏ(q) defines a family of

Rees D-modules over X parametrized by B0, such that the semi-classical limit of the family agrees with the family of

spectral curves over B0.

Fix a projective coordinate system on X. To calculate the semi-classical limit, let us trivialize Eℏ over each simply

connected neigbourhood Uα with coordinate xα of the projective coordinate system. A flat section Ψα of Eℏ over Uα
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is a solution of

ℏ∇ℏ
α(q)Ψα := (ℏd+ ϕα(q))



ψr−1

ψr−2

...

ψ1

ψ


α

= 0, (5.1.58)

with an appropriately unknown function ψ. Because Ψα = fℏ
αβΨβ , the function ψ on Uα satisfies the transition

relation

(ψ)α = ξ−r+1
αβ (ψ)β ,

meaning that ψ is a local section of K− r−1
2 . There are r linearly independent solutions of (5.1.58) because q2, . . . , qr

are represented by holomorphic functions on Uα. The entries of Xl
+ are given by the formula

Xl
+ =

[
s(l)ij

]
(5.1.59)

where

s
(l)
ij = δi+1,j

√
sisi+1 · · · si+l−1. (5.1.60)

This means that (5.1.58) is equivalent to

0 =
√
sr−k−1ψk+1 + ℏψ′

k +
√
sr−kq2ψk−1 (5.1.61)

+
√
sr−ksr−k+1q3ψk−2 + · · ·+√sr−ksr−k+1 · · · sr−1qk+1ψ

=
√
sk+1ψk+1 + ℏψ′

k +
√
skq2ψk−1 +

√
sksk−1q3ψk−1 + · · ·+√sksk−1 · · · s1qk+1ψ

for k = 0, 1, . . . , r − 1, where sk = sr−k. Note that ϕ(q) given by Equation (5.1.30) takes the form

ϕ(q) =



0
√
sr−1q2

√
sr−2sr−1q3 . . . . . .

√
s2s3 · · · sr−1qr−1

√
s1s2 · · · sr−1qr

√
sr−1 0

√
sr−2q2 . . . . . .

√
s2s3 · · · sr−2qr−2

√
s1s2 · · · sr−2qr−1

√
sr−2 0

. . . . . .
√
s2s3 · · · sr−3qr−3

√
s1s2 · · · sr−3qr−2

. . .
. . .

. . .
...

...
√
s3 0

√
s2q2

√
s1s2q3

√
s2 0

√
sqq2

√
s1 0


.

By solving (5.1.61) for k = 0, 1, . . . , r − 2 recursively, we obtain an expression of ψk as a linear combination of

ψ = ψ0, ℏψ′ = ℏ d

dxα
ψ, . . . hkψ(k) = ℏk dk

dxkα
ψ,

with coefficients in differential polynomials of q2, q3, . . . , qk. For example,

ψ1 = − 1√
s1

ℏψ′,

ψ2 =
1√
s1s2

(ℏ2ψ′′ − s1q2ψ),

ψ3 =
1√

s1s2s3

(
−ℏ3ψ′′′ + ℏ(s1 + s2)q2ψ

′ + (ℏs1q′2 − s1s2q3)ψ
)
.
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Because ψ1 is proportional to ψ′, inductively, we can show that the linear combination expression of ψk by derivatives

of ψ′ does not contain the (k − 1)-th order derivative of ψ. For k = r − 1, Equation (5.1.61) is a differential equation

ℏψ′
r−1 +

√
s1q2ψr−2 +

√
s1s2q3ψr−3 + · · ·+√s1s2 . . . sr−1qrψ = 0, (5.1.62)

which is an order r differential equation for ψ ∈ K− r−1
2 . Because we are using a fixed projective coordinate system,

the connection ∇ℏ(q) takes the same form on each coordinate neighbourhood Uα, so the shape of the differential

equation (5.1.62) as an equation for ψ ∈ K− r−1
2 is again, the same on every coordinate neighbourhood. The shape of

this equation is what we usually refer to as the quantum curve of the spectral curve det(η + ϕ(q)) = 0.

Theorem 5.1.25 (Quantization of holomorphic data). Let X be a compact Riemann surface of genus g ≥ 2 with a

chosen projective coordinate system subordinating its complex structure and spin structure K
1
2 . Let E(q) denote the

Rees D-module (Eℏ, ℏ∇ℏ(q)) associated with the oper (5.1.57). Then the semi-classical limit of E(q) is the spectral

curve σ∗S ⊂ T ∗X of −ϕ(q) defined by the equation det(η + ϕ(q)) = 0, where σ is the involution of T ∗X defined by

fiberwise multiplication by −1.

The equation (5.1.58) (and thus (5.1.62) as well) is equivalent to a single ordinary differential equation or order r

Pα(xα, ℏ;q)ψ = 0, (5.1.63)

where Pα(xα, ℏ;q) is the generator of the Rees D-module (Eℏ, ℏ∇ℏ(q)). The shape of Pα(xα, ℏ;q) is non-trivial, and

is not simply obtained from the näıve quantization x 7→ x and y 7→ ℏ d
dx

. In particular, the Pα(xα, ℏ;q) can contain

various derivatives of the qi’s in the form of ℏjq(j)i which do not appear in det(η + ϕ(q)) = 0. This coincides with

Theorem 4.4.7 and what we saw for the case of quantum curves in classical topological recursion.

For every ℏ ∈ H1(X,K), the ℏ-connection (Eℏ, ℏ∇ℏ(q)) of (5.1.56) defines a global Rees DX -module structure

in Eℏ. Thus, we have a universal family EX of Rees DX -modules on X with a fixed spin strucutre and projective

coordinate system:

EX (Eℏ, ℏ∇ℏ(q))

X × B ×H1(X,K) X × {q} × {ℏ}⊃

⊃

The universal family SC of spectral curves is defined over X × B.

P(K ⊕OX) SX (det(η − ϕ(q))0

X × B X × {q}⊃

⊃ ⊃

The semi-classical limit is thus a map of families.

EX SX

X × B ×H1(X,K) X × B
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The construction of the SL(r,C)-oper from a Hitchin section (5.1.54) using the projective coordinate system does

not restrict to a holomorphic Higgs field ϕ(q). This means there is a generalization of Theorem 5.1.25 to the case of

meromorphic Higgs bundles.

Let X be a Riemann surface of any genus with a chosen projective coordinate system subordinating its complex

structure, and spin structure K
1
2 . Let D be an effective divisor on C and

q ∈ B(D) :=

r⊕
l=2

H0(X,K(D)⊗l). (5.1.64)

We can use equations (5.1.29) and (5.1.30) to define a meromorphic Higgs bundle (E0, ϕ(q)), and (5.1.54) to define a

meromorphic oper (Eℏ,∇ℏ(q)). This meromorphic oper defines a meromorphic Rees D-module

E(q) =
(
Eℏ, ℏ∇ℏ(q)

)
.

Theorem 5.1.26 (Quantization of meromorphic data). The semi-classical limit of E(q) is the spectral curve

{det(η + ϕ(q)) = 0} ⊂ T ∗X. (5.1.65)

Example 5.1.27. Here we list some examples of characteristic polynomials and differential operators Pα(xα, ℏ; q) for

r = 2, 3, 4 to highlight the non-trivial nature of the quantization. For the purposes of later sections, the r = 2 example

will be of most importance to us.

• r = 2

det(y + ϕ(q)) = y2 − q2 (5.1.66)

Pα(xα, ℏ; q) =

(
ℏ d

dxα

)2

− q2 (5.1.67)

• r = 3

det(y + ϕ(q)) = y3 − 4q2y + 4q3

Pα(xα, ℏ; q) =

(
ℏ d

dxα

)3

− 4q2

(
ℏ d

dxα

)
+ 4q3 − 2ℏq′2

• r = 4

det(y + ϕ(q)) = y4 − 10q2 + 24q3y − 35q4 + 9q22

Pα(xα, ℏ; q) =

(
ℏ d

dxα

)4

− 10q2

(
ℏ d

dxα

)2

+ (24q3 − 10ℏq′2)

(
ℏ d

dxα

)
− 36q4 + 9q22 + 3ℏ2q′′2 − 12ℏq′3.

5.2 Non-singular models of singular spectral curves

As described in the previous section, the quantization applies to all Hitchin spectral curves, regardless of any assump-

tions on smoothness. Topological recursion, however, requires a smooth spectral curve to be defined. One approach to

defining topological recursion for a singular spectral curve, is to consider a non-singular model. In this section, we re-

view the systematic construction of the non-singular models of singular SL(2,C)-Hitchin spectral curves from [34,35].

This process involves constructing a canonical blow-up space Bl(T ∗X) in which the non-singular model S̃ is realized
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as a smooth divisor.

Let X be a Riemann surface of genus g ≥ 0 with a fixed projective structure. Fix stable meromorphic SL(2,C)

Higgs bundle (E0, ϕ(q)) with poles along D, an effective divisor on X, where

q = − det(ϕ(q)) ∈ H0(X,K(D)⊗2) (5.2.1)

is a meromorphic quadratic differential with poles along D. The spectral curve of this Higgs bundle lives in the

compactified cotangent bundle,

S = {η2 − π∗(q) = 0} ⊂ T ∗X. (5.2.2)

Recall that Pic(T ∗X) is generated by the zero section X0 ⊂ T ∗X and the fibres of the projection map π : T ∗X →

X. Because the spectral curve is a double cover of X, as a divisor it is expressed as

S = 2X0 +

a∑
j=1

π∗(pj) ∈ Pic(T ∗X), (5.2.3)

where
∑a
j=1 π

∗(pj) ∈ Pica(X) is a divisor on X of degree a. As an element of the Néron-Severi group

NS(T ∗X) = Pic(T ∗X)/Pic0(T ∗X),

it is given by

S = 2X0 + aF ∈ NS(T ∗X),

for a typical fiber class F . Because the intersection F ·X∞ = 1, we have a = S ·X∞ in NS(T ∗X). From the genus

formula

pa(S) =
1

2
S · (S +KT∗X) + 1

and

KT∗X = −2X0 + (4g − 2)F ∈ NS(T ∗X), (5.2.4)

the arithmetic genus of S is

pa(S) = 4g − 3 + a, (5.2.5)

where a is the number of intersections of S and X∞.

Definition 5.2.1. The discriminant divisor of the spectral curve is a divisor on X defined by

∆ := (q)0 − (q)∞, (5.2.6)

where

(q)0 =

m∑
i=1

miri (5.2.7)

(q)∞ =

n∑
j=1

njpj , (5.2.8)

and mi, nj > 0 and ri, pj ∈ X. Because q is a meromorphic section of K⊗2,

deg ∆ =

m∑
i=1

mi −
n∑
j=1

nj = 4g − 4. (5.2.9)
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Theorem 5.2.2. Define

δ = |{i | mi ≡ 1 mod 2}|+ |{j | nj ≡ 1 mod 2}|. (5.2.10)

The geometric genus of S is given by

pg(S) = 2g − 1 +
1

2
δ. (5.2.11)

Note that (5.2.9) implies δ ≡ 0 mod 2.

We need to construct the normalization ν : S̃ → S in a canonical way through a sequence of blow-ups of the

ambient space T ∗X. This is done because we need to construct differential forms on S̃ that reflect the geometry of

S ↪→ T ∗X.

Definition 5.2.3. The blow-up space Bl(T ∗X) is defined by blowing up T ∗X in the following way:

• At each ri of (5.2.7), blow up ri ∈ S ∩X0 ⊂ T ∗X a total of ⌊mi
2
⌋ times.

• At each pj of (5.2.8), blow up at the intersection S ∩ π−1(pj) ⊂ X∞ a total of ⌊nj

2
⌋ times

S̃ Bl(T ∗X)

S T ∗X

X

ĩ

π̃

ν ν

π

i

π

Theorem 5.2.4. In the blow-up space Bl(T ∗X), we have the following:

• The proper transform S̃ of the spectral curve S by the birational morphism ν : Bl(T ∗X) → T ∗X is a smooth

curve with a holomorphic map π̃ = π ◦ ν : S̃ → X.

• The Galois action σ : S → S lifts to an involution of S̃, and the morphism π̃ : S̃ → X is a Galois covering with

Galois group Gal(S̃/X) = ⟨σ̃⟩ ∼= Z/2Z.

S̃ S

X

S̃ S

σ̃ σ

ν

ν

π

π

5.3 Topological recursion and WKB analysis for Hitchin spectral

curves

So far, we have constructed a quantization of a Hitchin spectral curve to a quantum curve through the construction

of an ℏ-family of opers. As we saw in Section 4.4, ordinary topological recursion provides a method to produce a

quantum curve, and a WKB expansion of the solution. We will see later in this section that these two ideas come

together in the following way: topological recursion of the non-singular Hitchin spectral curve provides WKB analysis
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of the quantum curve constructed through ℏ-families of opers for meromorphic SL(2,C)) Higgs bundles.

The topological recursion developed in Chapter 4 is a local formulation. If we wish to use a Hitchin spectral curve

as a component for the recursion, we start to pass into a more global picture. The tautological section η is a globally

defined object, and the ramification divisor R is no longer just a chosen set of points, it is the eigenvalues of the

Higgs field. We will only be concerned with topological recursion for degree 2 covers (such as those that arise from

SL(2,C)-Higgs bundles. The definition below is suitable for higher degree covers that have only simple ramifications.

Let π̃ : S̃ → X be a degree 2 non-singular cover of a Riemann surface X (not necessarily arising from a Higgs

bundle). Denote by R, the ramification divisor of π. The cover is a Galois covering with Galois group Z/2Z = ⟨σ̃⟩,

whose fixed point divisor is R. Choose a spin structure on S such that

dimH0(S̃,K
1
2

S̃
) = 1, (5.3.1)

and a symplectic basis ⟨A1, ..., Ag̃, B1, ..., Bg̃⟩ for H1(S̃,Z).

Definition 5.3.1. The Eynard-Orantin differentials Wg,n are meromorphic sections of the n-th exterior tensor

product K⊠n defined as follows:

• W0,1 is a meromorphic 1-form on S̃ prescribed according to the geometric setting.

• W0,2 is given by

W0,2(z1, z2) = B(z1, z2). (5.3.2)

For all g, n ∈ N and 2g − 2 + n ≥ 0, define Wg,n recursively by

Wg,n+1(z0, z) =
∑
p∈R

Resz=p
ωz−σ̃(z)(z1)

Ω(z)

Wg−1,n+2(z, σp(z), z) +

′∑
g1+g2=g
I∪J=z

Wg1,|I|+1(z, I)Wg2,|J|+1(σp(z), J)

 (5.3.3)

where ω is the normalized Cauchy kernel (Definition 2.6.3), Ω = W0,1 − σ∗W0,1, and the prime signifies summation

excluding the cases (g1, I) or (g2, J) = (0, 0).

Remark 5.3.2. As one might expect, this definition is remarkably similar to Definition 4.2.4. The major difference is

that the components going into the definition, such as the spectral curve and the recursion kernel, have been defined

in a coordinate-independent global manner. Nevertheless, it is important to remark that the recursion is inherently

a local procedure, as it is built around the data of residues at the ramification points of the spectral curve. On

local coordinate charts, where we can express S as the zero locus of a polynomial, this definition coincides with the

topological recursion of Chatper 4.

Remark 5.3.3. When we have a non-singular Hitchin spectral curve S, we let S̃ = S, σ̃ = σ, the involution of T ∗X

defined by fiberwise multiplication by −1, and W0,1 = η.

There is another recursion related to the recursion for the Wg,n. This recursion on free energies is a recursion of

differential equations rather than of multi-forms. In applications related to enumerative geometry, these free energies

can be viewed as generating functions for numerous invariants, depending on choices of the spectral curve and W0,1.

We will not delve into this interpretation, but rather define the free energies and the related recursion as it plays an

important role in Theorem 5.3.7.
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Definition 5.3.4. The free energy of type (g, n) is a function Fg,n(z1, . . . , zn) defined on the universal covering Un

of S̃n such that

d1 · · · dnFg,n = Wg,n. (5.3.4)

Definition 5.3.5. The PDE topological recursion is the following partial differential equation for all (g, n) subject

to 2g − 2 + n ≥ 2:

d1Fg,n(z) =

n∑
j=2

[
ωzj−σ̃(zj)(z1)

Ω(z1)
d1Fg,n−1(z[ĵ])−

ωzj−σ̃(zj)(z1)

Ω(zj)
· djFg,n−1(z[1̂])

]
(5.3.5)

+
1

Ω(z1)
du1du2

Fg−1,n+1(u1, u2, z[1̂]) +

′∑
g1+g2=g
I∪J=z [1̂]

Fg1,|I|+1(u1, zI)Fg2,|J|+1(u2, zJ)


∣∣∣∣∣u1=z1
u2=z1

,

where the prime notation is the same as above, and z[ĵ] denotes dropping the j-th component of the vector z.

Remark 5.3.6. The PDE recursion is in fact a coordinate-free equation given in terms of exterior derivatives and

contractions. The use of the z is to keep track of which factor of Un the operations are taking place.

Let (E0, ϕ(q)) be a meromorphic SL(2,C)-Higgs bundle, with meromorphic quadratic differential q ∈ H0(X,K(D)⊗2)

having poles along an effective divisor D on a curve X with arbitrary genus. Fix a spin structure K
1
2 and projective

coordinate system on X. This gives rise to a Rees DX -module E(q) = (Eℏ, ℏ∇ℏ(q)) which is generated by the single

differential operator

Pα(xα, ℏ) =

(
ℏ d

dxα

)2

− qα (5.3.6)

on each projective coordinate neighbourhood Uα. By Theorem (5.1.26), E is the quantization of the (possibly singular)

spectral curve

S = {η2 − q = 0} ⊂ T ∗X. (5.3.7)

Theorem 5.3.7 (WKB analysis for SL(2,C)-quantum curves). The PDE topological recursion (5.3.5) with an appro-

priate choice of initial data provides an all-order WKB analysis for the generator (5.3.6) of the Rees DX-module E(q)

on a small neighbourhood in X of each zero or pole of q of odd order, i.e. we can use the PDE topological recursion

to construct a solution to

Pα(xα, ℏ)ψα(xα, ℏ) =

[(
ℏ d

dxα

)2

− qα

]
ψα(xα, ℏ) = 0 (5.3.8)

of the form

ψα(xα, ℏ) = exp

(
∞∑
m=0

ℏm−1Sm(xα)

)
. (5.3.9)

5.4 Revisiting the Airy spectral curve

We would like to apply the theory that was developed in the previous sections to the Airy spectral curve. This will

allow us to revisit an example that we treated in classical topological recursion in this new framework, and give us a

launching point for the next section.

Consider now the meromorphic Higgs bundle (E , ϕ) on P1 given by

E = K
1
2 ⊕K− 1

2 = O(−1)⊕O(1) (5.4.1)
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with Higgs field ϕ : E → E ⊗K(m)

ϕ =

ϕ11 ϕ12

ϕ21 ϕ22

 , (5.4.2)

where m ≥ 0. The components of ϕ are given by

ϕ11 : O(1)→ O(1)⊗K(m) ∈ H0(P1,K(m)),

ϕ12 : O(−1)→ O(1)⊗K(m) ∈ H0(P1,O(2)⊗K(m)),

ϕ21 : O(1)→ O(−1)⊗K(m) ∈ H0(P1,O(−2)⊗K(m)),

ϕ22 : O(−1)→ O(−1)⊗K(m) ∈ H0(P1,K(m)).

For now, let us consider the case m = 4. Recall that on P1, K = O(−2). With this choice of m, we have

K(4) = O(−2)⊗O(4) = O(2) = K∗.

This means we are working with a co-Higgs bundle on P1. A natural place to begin is the Hitchin section,

ϕ =

0 α

1 0

 : E → E ⊗K(4). (5.4.3)

The map 1 is a section in

H0(P1,O(−2)⊗K(4)) = H0(P1,O(−2)⊗O(2)) = H0(P1,O) = C,

and α is a section in

H0(P1,O(2)⊗K(4)) = H0(P1,O(2)⊗O(2)) = H0(P1,O(4)).

In our previous treatment of rank-2 Hitchin sections (Example 3.2.9), α was a section of K2, a quadratic differential,

however, in our current example α is a section of O(4) = K−2, a quadratic vector field.

We may give some geometric meaning to ℏ by viewing it as a deformation parameter for extensions of holomorphic

line bundles. This means that we consider

ℏ ∈ Ext1(O(1),O(−1)) ∼= H1(P1, (O(−1))∗ ⊗O(1)) ∼= C, (5.4.4)

where the last equality follows from an application of Serre duality. In this way, we can view ℏ both as a complex

number, which we expect from usual quantum theory, as well as a local differential. The fact that Ext1(O(1),O(−1))

is 1-dimensional is precisely why we study this example over other choices of parabolic Higgs bundles, as there is a

unique parameter ℏ rather than a number of independent parameters. The choice of a specific value of ℏ defines an

extension

0→ O(−1)→ Eℏ → O(1)→ 0, (5.4.5)

where

Eℏ ∼=

 O(−1)⊕O(1) ℏ = 0

O ⊕O ℏ ̸= 0.
(5.4.6)
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Note that Eℏ ∼= Eℏ′ , whenever ℏ, ℏ′ ̸= 0, and so choices of ℏ only affect the bundle projectively. This lets us

identify ℏ ̸= 0 with ℏ = 1, if and when it is convenient to us. When ℏ ̸= 0, the bundle type changes to a globally,

holomorphically trivial one, and now have the Higgs bundle Eℏ = O ⊕O with Higgs field

ϕℏ =

 0 αℏ

1ℏ 0

 , (5.4.7)

the components of which both live in H0(P1,O(2)). This new Higgs field ϕℏ can be written in terms of the Higgs field

on O(−1)⊕O(1) and the data of the extension. The extension can be broken down as

O

O(−1) ⊕ O(1)

O
κℏ

κℏ
1

α

where the dashed line indicates the action of the Higgs field ϕ. The map κℏ = ℏz− a, for some a ∈ C∗, is a section in

H0(P1,O(1)). This can be thought of as a meromorphic decomposition of ℏ = 1, namely 1 = κℏκ
−1
ℏ . To make sense

of the entries of ϕℏ in terms of κℏ, α, and 1, we must have that

1ℏ = κℏ1κℏ = κ2
ℏ ∈ H0(P1,O(1)⊗O ⊗O(1)) = H0(P1,O(2)),

αℏ = κ−1
ℏ ακ−1

ℏ = κ−2
ℏ α ∈ H0(P1,O(−1)⊗O(4)⊗O(−1)) = H0(P1,O(2)).

The new Higgs field is then a transformation of the old one given by

ϕℏ =

 0 κ−2
ℏ α

κ2
ℏ 0

 . (5.4.8)

The quantization (5.1.56) of the Higgs bundle (E , ϕ) is the ℏ-Deligne connection ℏ∇ℏ on Eℏ, where

∇ℏ = d+
1

ℏ
ϕ : Eℏ → Eℏ ⊗K(4). (5.4.9)

We will demonstrate the connection to topological recursion of Hitchin spectral curves by reconstructing the Airy

quantum curve from the Higgs bundle (E0, ϕ).

The spectral curve of our Higgs field (5.4.3) is

S = {det(η − π∗ϕ) = η2 − α = 0}. (5.4.10)

The quadratic vector field α ∈ H0(P1,O(4)) has 4 zeroes. Equivalently, α is determined by a polynomial of degree 4

in an affine chart x on P1. We can choose α so that it has a simple zero at x = 0 and a zero of order 3 at infinity

(i.e. in the complement of the chart). In local coordinates, the tautological section η becomes y, α becomes x in the

neighbourhood U0 on P1, and S is given by the familiar local expression

y2 − x = 0.
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Notably, because S ⊂ Tot(K(4)) instead of T ∗X, the local expression on the U1 chart will be different than our

previous Airy example.

The quantization of (E , ϕ(α)) is the meromorphic oper

∇ℏ = d+
1

ℏ
ϕ(α). (5.4.11)

On U0, assume that there exists an analytic function in x, ψ(x, ℏ), that satisfies the differential equation induced by

the oper in the following way:

ℏ∇ℏ(α)

−ℏ dψdx
ψ

 = 0, (5.4.12)

for every ℏ ̸= 0. It then follows that ψ(x, ℏ) satisfies the Airy-Schrödinger equation(
ℏ2 d

2

dx2
− x
)
ψ(x, ℏ) = 0. (5.4.13)

On the coordinate chart U0, the quantum curve associated with S is

P (x, ℏ) :=

(
ℏ d

dx

)2

− x. (5.4.14)

Remark 5.4.1. To add some depth, we observe that we have directly transformed the Higgs field, which by Cayley-

Hamilton must satisfy the polynomial equation given by its characteristic equation, into a differential operator mod-

elled on that polynomial with distinguished solutions. From this point of view, there has been a swapping of roles:

at first, the “classical” equation was the characteristic polynomial — i.e. the spectral curve — and its matrix-valued

solution was the Higgs field ϕ, while the quantum equation is the non-trivial deformation of the Higgs field arising

from the ℏ-deformation of the holomorphic structure on the bundle and its solution is a wave-function produced by the

deformation of the spectral curve induced by topological recursion. In simpler terms, the classical equation becomes

the quantum solution, and the classical solution becomes the quantum equation. What is fascinating is the underlying

connection between deformations of holomorphic structures and quantum parameters. The Airy example suggests

that ℏ serves as a local coordinate on the moduli space of Higgs bundles1. The fact that there may be more than one

linearly independent ℏ parameter, depending on the size of the extension class of E0, is interesting to us.

5.5 New interpretation

While a lot of work has gone into studying quantization of Higgs bundles and quantum curves, no treatment of the

topic has examined how the spectral correspondence and C∗-action fit into the quantization. In this section, we look

to introduce a new perspective on the quantization of Hitchin systems on P1 which includes these. In this section we

will consider only SL(2,C)-co-Higgs bundles on P1. In this setting, a Higgs field has the form

ϕ =

0 α

1 0

 : E → E ⊗O(2), (5.5.1)

1Or, more appropriately, on the moduli space of Deligne-Hitchin λ-connections, which is the moduli space of non-abelian
Hodge theory [55].
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where α ∈ H0(EndE ⊗O(4)) is a quadratic vector field.

The heart of this interpretation is to view the quantization as a procedure on the spectral curve. This idea aligns

with the quantum curve arising from topological recursion. Specifically, the data that goes into the recursion is the

data of the spectral curve. The tautological section is an object that lives naturally on the spectral curve. Because

we are working with co-Higgs bundle, η can be viewed naturally as a vector field. We want to take advantage of these

two points of view of η and view, the tautological section as living two lives: a classical life as a π∗K∗-valued section,

and a quantum life as the operator ℏ d
dx

.

5.5.1 Spectral Correspondence

As outlined in Section 3.2.1, the spectral correspondence relates a line bundle Q on a spectral curve S, to a Higgs

bundle (E , ϕ) on X. In the classical picture, the tautological section η acts on the spectral line bundle by multiplication

on O(Q),

η|Sa :Q → Q⊗ π∗L

s 7→ s · y.

Starting from (E , ϕ), we produce its spectral curve

S = {η2 − π∗α = 0}.

As we have seen, this gives rise to a quantum curve

P (x, ℏ) =

(
ℏ d

dx

)2

− π∗α (5.5.2)

on each projective coordinate neighbourhood. In the quantum picture, we want to view η = ℏ d
dx

. If we want to

preserve the action of η on the spectral line bundle, then the sheaf of sections of the spectral line bundle O(Q) needs

to manifest as an object on which η = ℏ d
dx

can act. It makes sense then to consider that in the quantum picture, η

acts by differentiation on smooth sections of the spectral line bundle, C∞(Q) (or possibly square-integrable sections

L2(Q) if we want to keep in line with usual quantum theories).

We also want to consider how the Higgs field fits into this picture. In the classical picture, the Higgs field is

produced from η by pushing it forward under the direct image E = π∗Q. On the quantum side, this would involve

pushing forward a differential operator to an object on the X. This produces a spectral network (cf. [52]), which is

roughly a collection of trajectories on X that capture the behaviour of the spectral curve.

5.5.2 C∗-action

The C∗-action on the Higgs bundle

λ.(E , ϕ) = (E , λ · ϕ)
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for λ ∈ C∗, lifts to an action on the spectral line bundle. Because the C∗-action acts only on the Higgs field by

multiplication by λ, it lifts to Q as

C∗ ×Q → Q

(λ, v) 7→ λv,

in other words, rescaling eigenvectors v of ϕ.

As was remarked in Section 3.2.2, fixed points of the C∗-action have the form (3.2.6). In our setting, a fixed point

is a Higgs field with α = 0,

ϕ =

0 0

1 0

 . (5.5.3)

The spectral curve is then given by

S = {η2 = 0}, (5.5.4)

meaning that it is ramified over all points. At a ramification point of the spectral curve, there are two copies of the

spectral fibre coinciding. The multiplication action of the tautological section maps the first fibre to the second, and

the second to zero (see Figure 5.1). This can be seen in the form of the Higgs field, as ϕ maps (1, 0) to (0, 1), and

(0, 1) to (0, 0).

Figure 5.1: Action of the tautological section η on the spectral line bundle Q.

Applying Theorem 5.3.7 to the spectral in the U0 coordinate system, we get the quantum curve

P (x, ℏ) =

(
ℏ d

dx

)2

. (5.5.5)

We again want to capture the essence of the classical picture in the quantum setting. We will consider fixed-points

as solutions ψ to the equation

ℏ2 d
2

dx2
ψ = 0.

Observe that if we scale ψ by λ ∈ C∗, then it is still a solution because this is a homogenous equation. Moreover, if

we consider solutions to (5.5.2) for a generic α, they will not be invariant under this action.

In summary, we are seeking to replace the Higgs field-focused picture of quantization given by
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Classical Quantum

action multiplication (OX -linear) differentiation (C-linear)

operator Higgs field ϕ momentum ℏ d
dx

sheaf O(E) L2(Q)

spectrum λ2 − α = 0 ℏ2 d2

dx2
− α = 0

C∗-fixed point ϕ =

0 0

1 0

 ψ ∈ L2(Q) with ℏ2 d2

dx2
ψ = 0

with a tautological section-focused viewpoint given by

Classical Quantum

action multiplication (OS-linear) differentiation (C-linear)

operator tautological section η momentum ℏ d
dx

sheaf O(Q) L2(Q)

spectrum λ2 − α = 0 ℏ2 d2

dx2
− α = 0

C∗-fixed point α = 0 ψ ∈ L2(Q) with ℏ2 d2

dx2
ψ = 0

We also want to understand what happens when we start on the quantum side and let ℏ → 0. We would expect

that this returns us to the classic picture, however, that does not appear to be the case. In the limit ℏ → 0, the

tautological section on the quantum side also goes to 0. The direct image will be (E , 0), rather than the expected

(E , ϕ). We can give a rough comparison of this tautological quantization to the quantization of Higgs bundle via

Deligne ℏ connections (5.1.56) (see Figure 5.2). Observe that the tautological quantization maps all connections to

the (E , 0), the quantization by Deligne ℏ-connections maps a connection ℏ∇ℏ = ℏd+ ϕ to (E , ϕ). While we have not

remarked on non-abelian Hodge theory in this paper, we do note that it is also a method for producing Higgs bundles

from flat connections to Higgs bundles.

Figure 5.2: A depiction of the three procedures for producing a Higgs bundle from a flat connection.
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6 Geometry of Hitchin spectral curves

6.1 Insights on an L-twisted topological recursion

The Dumitrescu-Mulase picture outlined in Chapter 5 fits into the larger scope of L-twisted Higgs bundles, which

are adaptable to all Riemann surfaces — in fact, all complex manifolds — without having to introduce punctures or

special divisors. Notably, Dumitrescu-Mulase circumvent the meromorphic data when discussing topological recursion

by defining the recursion on a non-singular model for the Hitchin spectral curve. To our knowledge, twisted Higgs

bundles have not been explored in the context of topological recursion. Our interest in them is due to the potential

they have for formulating a more invariant version of topological recursion and revealing intricacies that might oth-

erwise not be clear in the already explored cases.

To this end, let (E , ϕ) be an L-twisted Higgs bundle on a Riemann surface X. The characteristic polynomial of ϕ

gives rise to a spectral curve S ⊂ Tot(L) with equation

η⊗r +

r∑
i=1

piη
⊗(r−i) = 0. (6.1.1)

We can proceed in a näıve way by reframing topological recursion for Hitchin spectral curves in the L-twisted setting

by replacing the appropriate objects with their L-twisted versions. This L-twisted recursion will take place in the

diagram

KS

S Tot(L)

X

π|S π

with a Galois involution σ of S, and ramification divisor R of π.

As the Bergman kernel B depends only on the Riemann surface S, we choose W0,2 = B. In the L-twisted setting,

the recursion kernel at p ∈ R,

Kp =
ωz−σ(z)

(η − σ∗η)
(6.1.2)

is a section of (π∗L|S)∗⊗KS . Using the recursion formula (5.3.3) gives rise to L-twisted Eynard-Orantin differentials,

WL
g,n ∈ Γ(((π∗L|S)∗ ⊗KS)⊠2g+n−2 ⊗Kn

S ). (6.1.3)
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A notable observation made apparent in the twisted case is the (π∗L|S)∗ ⊗KS part of the differentials coming from

the recursion kernel. From this observation, it is clear that the recursion kernel introduces the geometry of Tot(L) into

the recursion. In the original formulation of topological recursion, the recursion kernel (4.2.3) introduces the geome-

try of T ∗P1 through the canonical one-form ydx in the denominator, although it does not appear as obviously when

looking at where the Wg,n’s live, as the embedding of S into KX made KS = π∗KX |S , and so the two terms cancel out.

With this näıve approach to framing an L-twisted topological recursion, we have already revealed something

about the Wg,n that was not present in the regular case. A potentially interesting result of this generalization is a

relationship between the L-twisted Eynard-Ortantin differentials and the hyperkähler structure on the moduli space

of Higgs bundles. While the moduli space of ordinary Higgs bundles in genus g ≥ 2 possesses a canonical holomorphic

symplectic structure (which derives from the hyperkähler structure), moduli spaces of Higgs bundles with twists have

Poisson structures that come in a family, no element of which is necessarily canonical. The component of WL
g,n in

π∗L−1|S ⊗KS defines a Poisson structure on a moduli space of π∗L−1|S-twisted Higgs bundles defined on the spec-

tral curve. This observation begs two important questions: in the ordinary topological recursion, the holomorphic

symplectic form may be encoded in the Eynard-Orantin differentials (a partial result to this effect may already be

present in the work of [6], who extract the so-called Donagi-Markman cubic from the differentials); and that Higgs

bundles defined on the spectral curve itself may be relevant to topological recursion.

These observations serve as a reason to explore the näıve L-twisted topological recursion. To validate the frame-

work that is being developed, we could appeal to one of the three main areas to which topological recursion has

been applied: enumerative geometry, quantum curves, or the geometry of the Hitchin moduli space. Any of these

areas would prove meaningful and interesting for this framework, but as the main interest of this section lies in the

relationship between Higgs bundles and topological recursion, we will choose the latter and study the relationship

between L-twisted Hitchin spectral curves and L-twisted topological recursion.

6.2 L = K Hitchin moduli space

With our goal being to validate a framework for twisted topological recursion, we want to understand how (ordinary)

topological recursion relates to the geometry of the (ordinary) Hitchin moduli space. In this section, we briefly go

through the main results of [6], which we will seek to replicate in some capacity in the L-twisted setting in subsequent

sections.

In the L = K case, the moduli space of Higgs bundles MX admits a complete hyperkähler metric [65]. This

metric can be studied by studying a second related hyperkähler metric, called the semi-flat metric, defined over

the regular locus of the Hitchin fibration H : Mreg
X → Breg (i.e. the locus containing non-singular fibres of H).

A theorem of Hitchin [66] says that under a set of mild assumptions, Breg admits a special Kähler structure. The

special Kähler metric on Breg can be combined with a metric along the fibers to produce the semi-flat metric [24,50,66].

On Breg, we can define a local conjugate coordinate system {z1, . . . , zgS} and {w1, . . . , wgS}, where S is the spectral
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curve associated to a point in Breg, by

zi =

∫
Ai

θ, (6.2.1)

wj =

∫
Bj

θ, (6.2.2)

where θ is the canonical one-form on S, and ⟨A1, ..., Ag, B1, ..., Bg⟩ for H1(X,Z) is a symplectic basis. With respect

to the special coordinate system {zi}, the Kähler form ω can be written as

ω =
i

2
Im(τij)dz

i ∧ dz̄j , (6.2.3)

where τij is the period matrix of the spectral curve. This means that the Kähler metric on Breg, and therefore the

semi-flat metric on MX , can be written in terms of the period matrices τij of spectral curves through (6.2.3).

We can apply the topological recursion for Hitchin spectral curves defined in Chapter 5 to spectral curves associated

to Breg. In this setting, the variational formula for the Eynard-Orantin invariants [42] provides a relationship between

derivatives of the period matrix τij about a point b ∈ Breg and the g = 0 invariants W0.n of the spectral Sb associated

to the point b.

Theorem 6.2.1 (Baraglia-Huang).

∂i1∂i2 . . . ∂im−2τim−1im = −
(
i

2π

)m−1 ∫
pi1∈bi1

· · ·
∫
pm∈bim

W0,m(p1, ..., pm) (6.2.4)

This formula shows that the g = 0 invariants for the spectral curve Sb compute the Taylor series expansion of the

period matrix about b ∈ Breg, and by extension of what was said above, the semi-flat metric onMreg
X . Notably, The-

orem 6.2.1 states that the data of single spectral curve is enough to understand the geometry of nearby spectral curves.

In the L ≠ K setting, the moduli spaceML
X is no longer hyperkähler, so we cannot expect to make claims relating

the g = 0 invariants to a hyperkähler metric on the moduli, however, we can (and will) seek to find an analogy for

Theorem 6.2.1.

There are two concerns that impede our ability to immediately replicate this result. Firstly, in our twisted setting,

the dimension of ML
X is not twice the dimension of the Hitchin base B. This means that the base and fibres of the

moduli space no longer have the same dimension. In fact, the dimension of the base is larger than that of the fibres, so

we can no longer view Breg as the deformation space of spectral curves. Secondly, in the K-case, we have a canonical

coordinate system on T ∗X given by the natural symplectic structure, which allows for many computations to be

simplified, and relates the tautological section to the geometry of the total space. Without imposing a symplectic

structure on Tot(L), and thus limiting our breadth of line bundles, we need to find a sufficiently natural choice of

coordinate system for Tot(L). We seek to address these concerns in the next section by studying more in-depth the

L-twisted moduli space.

6.3 Deformation theory of the L-twisted moduli space

With our attention focused on L-twisted Higgs bundle, we want to better understand the moduli space ML
X . In

this section, we will intiate a thorough examination of the deformation theory ML
X by studying its hypercohomology
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(cf. [59, pp. 438-447]).

On a Riemann surface X, an L-twisted Higgs field satisfies

ϕ ∧ ϕ = 0 ∈ H0(X,End(E)⊗ ∧2L).

There is a natural complex of sheaves associated to a Higgs bundle (E , ϕ) given by

End(E)
−∧ϕ−−−→ End(E)⊗ L −∧ϕ−−−→ End(E)⊗ ∧2L −∧ϕ−−−→ . . . , (6.3.1)

where − ∧ ϕ acts by the Lie bracket. Because ϕ ∧ ϕ = 0, we have that − ∧ ϕ is a differential, meaning we can use

it to define cohomologies on End(E)⊗i L. In this way, we have two cohomology theories, the cohomology of sheaves

arising from the Čech complex, and the above theory arising from the Higgs field.

We consider the hypercohomology associated to a stable L-twisted Higgs bundle (E , ϕ) on a Riemann surface X

given by the two double complexes

D = (δ,∧ϕ),

D′ = (∧ϕ, δ),

where ∧ϕ is the differential coming from the Higgs field, and δ is the Čech differential.

We start by computing the hypercohomology with the complex D. The hypercohomology fits into the short exact

sequence

D : 0→ E1,0 → H1 → E0,1 → 0, (6.3.2)

where

E1,0 =
kerH0(EndE ⊗ L)

∧ϕ−−→ H0(EndE ⊗ L⊗2)

imH0(EndE)
∧ϕ−−→ H0(EndE ⊗ L)

,

E0,1 = kerH1(EndE)
∧ϕ−−→ H1(EndE ⊗ L).

Here, H1 = T(E,ϕ)ML
X(r, d) is the tangent space to the moduli space of rank r, degree d, L-twisted Higgs bundles.

This is a short exact sequence around H1 because of vanishing due to stability and dimensionality (X is a curve and

rkL = 1).

To determine H1, we first need to better understand E1,0 and E0,1. We start by looking at E0,1. Using Serre

Duality, we compute the dimension of H1(EndE ⊗ L) as

h1(EndE ⊗ L) = h0(K ⊗ EndE ⊗ L∗) = 0, (6.3.3)

which vanishes because degL > degK. This means E0,1 = H1(EndE) = UX(r, d), which is the moduli space of stable

bundles on X. Its dimension is then

dimE0,1 = dimUX(r, d) = r2(g − 1) + 1. (6.3.4)
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Turning our attention to E1,0, observe that

E1,0 =
H0(EndE ⊗ L)

im(∧ϕ)
.

The map ∧ϕ has kernel generated by 1 when acting on H0(EndE), as stability implies simplicity. Thus we have

dimE1,0 = h0(EndE ⊗ L)− h0(EndE) + 1.

To handle the first term, h0(EndE ⊗ L), we apply Riemann-Roch and Serre Duality, recalling from (6.3.3) that

h1(EndE ⊗ L) = 0,

h0(EndE ⊗ L) = deg(EndE ⊗ L) + rk(EndE ⊗ L)(1− g)− h1(EndE ⊗ L)

= r2 degL+ r2(1− g).

For the second term, h0(EndE), if we assume that E is stable as a vector bundle (which is generically true), then

h0(EndE) = 1. We compute the dimE1,0 as

dimE1,0 = h0(EndE ⊗ L)− h0(EndE) + 1

= r2 degL+ r2(1− g)− 1 + 1

= r2 degL+ r2(1− g). (6.3.5)

Combining (6.3.4) and (6.3.5), the dimension of H1 is

dimH1 = r2 degL+ r2(1− g) + r2(g − 1) + 1 = r2 degL+ 1.

Because H1 = T(E,ϕ)ML
X(r, d), we conclude that the dimension of ML

X(r, d) is

dimML
X(r, d) = r2 degL+ 1, (6.3.6)

which agrees with the calculations from [81].

Denote by L, the bundle over Ux(r, d) whose fibre at E is H0(EndE ⊗ L). By the fact that (E , ϕ) is stable for all

ϕ ∈ H0(EndE ⊗ L), and Aut(E) acts trivially on H0(EndE ⊗ L), we have an injection Tot (L) ↪→ ML
X(r, d) that is

open and dense (as their dimensions equal). In other words, ML
X(r, d) is the completion of L under stability, and

T(E,ϕ)ML
X(r, d) ∼= T(E,ϕ)L

∼= H0(EndE ⊗ L)︸ ︷︷ ︸
LE

×H1(EndE)︸ ︷︷ ︸
TEUX (r,d)

, (6.3.7)

whenever E is a stable bundle. This means that L is the L-twisted analogue of T ∗UX(r, d).

Remark 6.3.1. The dimension of ML
X(r, d) is actually independent of the stability of E1. If we do not assume that

E is stable, then

dimH1 = h0(EndE ⊗ L)− h0(EndE) + 1 + h1(EndE)

= r2 degL+ r2(1− g) + 1− (h0(EndE)− h1(EndE))

= r2 degL+ 1 + r2(1− g)− r2(1− g)

= r2 degL+ 1.

1The importance of stability in the previous calculations was to reveal the relationship to L.
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We now consider the hypercohomology of D′. We have the same type of short exact sequence as (6.3.2), with E1,0

and E0,1 now given by

E1,0 = H1
(

ker(EndE ∧ϕ−−→ EndE ⊗ L)
)
,

E0,1 = H0

(
EndE ⊗ L

im(∧ϕ)

)
.

Suppose that (E , ϕ) is not only stable but also regular, which means that ker(∧ϕ) is minimally generated, i.e.

ker(∧ϕ) is a rank r subsheaf of EndE — this is actually a generic property. Consider the compositions ϕ⊗i : E →

E ⊗ L⊗i. Note that

ϕi ∈ Hom(E , E ⊗ Li) = Hom(L−i, E∗ ⊗ E)

and so

ϕi : L−1 → End(E).

Notice that

ϕi ∧ ϕ = [ϕi, ϕ] = 0,

so we have ϕ0, ϕ1, . . . , ϕr−1 ∈ ker(∧ϕ), and in fact, they generate the sheaf ker(∧ϕ), meaning that

ker(∧ϕ) = O ⊕ L−1 ⊕ · · · ⊕ L−(r−1).

The sheaf EndE⊗L
im(∧ϕ) is the cokernel of ∧ϕ. Starting from the exact sequence

0→ ker∧ϕ ϕi

−→ EndE ∧ϕ−−→ EndE ⊗ L → coker ∧ ϕ→ 0,

we dualize the sequence to obtain

0→ (coker ∧ ϕ)∗ → EndE ⊗ L−1 ϕ∗∧−−−→ EndE → (ker∧ϕ)∗ → 0,

and tensor by L to return to the original sequence

0→ (coker ∧ ϕ)∗ ⊗ L → EndE → EndE ⊗ L → (ker∧ϕ)∗ ⊗ L → 0 (6.3.8)

and so, we see that

coker ∧ ϕ = (ker∧ϕ)∗ = L ⊕ L2 ⊕ · · · ⊕ Lr.

This provides a different splitting of H1 as

H1 = H1

(
r−1⊕
i=0

L−i

)
×H0

(
r⊕
i=1

Li
)
. (6.3.9)

This splitting is induced by the derivative of the Hitchin map,

H :ML
X(r, d)→ B,

where B = H0
(⊕r

i=1 L
i
)
. Recall from Section 3.2.1, that ML

X is fibred by Jacobians of spectral curves. In other

words, (6.3.9) tells us that

T(E,ϕ)ML
X(r, d) ∼= TQJac(S)× TH(E,ϕ)B

= H1

(
r−1⊕
i=0

L−i

)
× B,
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where S is the spectral curve of (E , ϕ), and Q is the spectral line bundle. In particular, the tangent space to a Hitchin

fiber over the regular locus (call this Breg) is ∼= H1
(⊕r−1

i=0 L
−i), and the genus of the spectral curve is given by

gS = dim Jac(S) =

r−1∑
i=0

h1(X,Li).

Serre duality on X pairs TMJac(S) ∼= H1
(⊕r−1

i=0 L
−i) with H0

(⊕r−1
i=0 L

i ⊗K
)
. We can map this space to a

subvariety B̃ ⊂ B by a choice of section s ∈ H0(X,K∗ ⊗ L)\{0}, which acts by multiplication. Recall that in the

L = K setting, the Hitchin base has the same dimension as fibres. The vector space H0
(⊕r−1

i=0 L
i ⊗K

)
is fulfilling

this role in the L-twisted picture.

Definition 6.3.2. We call Beff := H0
(⊕r−1

i=0 L
i ⊗K

)
the effective Hitchin base.

By duality,

dimBeff = dim Jac(S) = gs,

which means h−1(Beff ) is a moduli space of L-twisted Higgs bundles in which the fibre and base are equidimensional.

In particular, when L = K, s ∈ H0(K∗ ⊗K)\{0} is a nonzero multiple of the identity, and Beff = B.

Example 6.3.3. Consider the situation where X = P1, r = 2, d = −1, L = O(2). The moduli space has dimension

dimMO(2)

P1 (2,−1) = 22deg(O(2)) + 1 = 22(2) + 1 = 9.

The Hitchin base is

B = H0(O(2))⊕H0(O(4)) ∼= C8,

and so the moduli space is fibred by 1-dimensional (elliptic) fibres.

The effective Hitchin base, on the other hand, is

Beff = H0(O(−2))⊕H0(O(2)⊗O(−2)) ∼= C,

which has the same dimension as the fibre, and which is also that of the moduli space of elliptic curves.

To see Beff in B, we need to choose an s ∈ H0(O(−2)∗ ⊗O(2))\0 = H0(O(4))\0. Given a Higgs bundle (E, ϕ),

there is a canonical choice; in this case: s = detϕ. With this choice of s, Beff is embedded as the line

B̃ = {(0, c detϕ) | c ∈ C} ⊂ B.

The effective Hitchin base Beff serves as a moduli space of deformations spectral curves and can be related to the

period data as follows.

Let π : Tot(L)→ X be the natural projection. The derivative of π|S is

dπ : TS → π∗TX ∈ Hom(π∗K,KS),

where K = KX . Note that π∗s : π∗K → π∗L, so if η is the tautological section in H0(S, π∗L), then we have that

(π∗s)−1η is a (meromorphic) section of π∗K. We can define a meromorphic 1-form on S by

Θ = dπ((π∗s)−1η) ∈ H0(S,KS). (6.3.10)

85



Figure 6.1: Beff mapped into B by s = detϕ.

Definition 6.3.4. The meromorphic 1-form Θ is called the twisted canonical 1-form.

If {a1, b1, . . . , agS , bgS} is a basis for H1(S,Z), then {Re
∫
ai(bi)

Θ, Im
∫
ai(bi)

Θ} form local (singular) coordinates

on Beff . We may choose a basis ω1, . . . , ωgs of H0(S,KS) so that
∫
ai
ωj = δij , and τ =

[ ∫
bi
ωj
]

is the gS × gS period

matrix. Define λi = Re
∫
ai

Θ + iIm
∫
ai

Θ.

Definition 6.3.5. We refer to the collection of derivatives
∂τjk
∂λi

as the twisted Donagi-Markman cubic.

The spectral curve S itself is a divisor in Tot(L), and the normal bundle of a divisor is given by the line bundle

associated to the divisor, which in this case is π∗Lr (since S is the zero locus of a degree-r polynomial in η ∈

H0(S, π∗L)). By adjunction,

KS = KTot(L)|S ⊗NS = KTot(L)|S ⊗ π∗Lr.

We remark that in the L = K setting, KTot(K)
∼= OTot(K) ⇒ KS = π∗Kr.

Note (cf. [8]) that

π∗OS ∼= O ⊕ L−1 ⊕ · · · ⊕ L−(r−1).

Tensoring with Lr, we have

π∗OS ⊗ Lr ∼= L ⊕ L2 ⊕ · · · ⊕ Lr.

Looking at cohomology

H0(X,π∗OS ⊗ Lr) ∼=
r⊕
i=1

H0(X,Li)

H0(S,OS ⊗ π∗Lr) ∼= B

H0(S, π∗Lr) ∼= B,

by properties of the direct image functor from Section 2.5.

In other words, deformations of (E , ϕ) in the normal direction to S correspond to deformations along the full

Hitchin base, while first-order deformations of S correspond to deformations along the effective Hitchin base.
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6.4 Geometry of b-manifolds

We take a brief digression to discuss the language of b-manifolds. This will prove to be a useful tool when working

with Higgs bundles in the twisted setting. These ideas were pioneered in [75] in the context of differential operators

on manifolds with boundary. The category of b-manifolds was further developed in [60], [77] in a more general setting

in order to study so-called log-symplectic structures. Our interest in b-geometry is the basic language of b-manifolds,

and their b-tangent and b-cotangent bundles, so we will focus on the concepts of b-geometry most relevant to our

needs, following [60].

Definition 6.4.1. A b-manifold is a pair (M,Z), where M is an oriented manifold and Z is an oriented co-

dimension one submanifold of M . A b-map is a smooth map f : (M1, Z1) → (M2, Z2) such that f−1(Z2) = Z1, and

f is transverse to Z2, i.e.

Tf(p)M2
= Im(dpf) + Tf(p)Z2,

for all p ∈ Z1.

Remark 6.4.2. When the setting is clear, we will write M in place of (M,Z) for convenience.

Definition 6.4.3. Let (M,Z) be a b-manifold. A b-vector field on M is a vector that is tangent to Z for all p ∈ Z.

Denote the set of b-vector fields by bX(M).

An “ordinary” vector field X ∈ X(M) is a b-vector field on (M,Z) iff for all p ∈ Z, there is a neighbourhood

(U, x1, . . . , xn) where Z ∩ U is defined by x1 = 0 and

X|U = f1x1
∂

∂x1
+ f2

∂

∂x2
+ · · ·+ fn

∂

∂xn

for a unique collection of smooth functions f1, . . . , fn ∈ C∞(U). This makes bX(M) a locally free C∞(M)-module

with local bases given by

{ ∂

∂x1
, . . . ,

∂

∂xn

}
away from Z,{

x1
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn

}
near to Z.

An application of the Serre-Swan theorem (c.f. [94] Proposition 7.6.5) tells us that the set of b-vectors are sections

of a vector bundle on M .

Definition 6.4.4. Let (M,Z) be a b-manifold. The b-tangent bundle of M , denoted bTM , is the vector bundle

whose sections are bX(M).

Starting with a b-vector field v on M , if we take the restriction of v to Z, we get a vector field v|Z which is tangent

to Z for all p ∈ Z. Hence, v|Z defines a tangent vector field on Z. Using this restriction, we have a morphism of

C∞(Z)-modules Γ(bTM |Z)→ Γ(TZ), which is induced by a vector bundle isomorphism

bTM |Z → TZ.
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The kernel of this isomorphism is a line bundle with a canonical non-trivial section w, call the normal b-vector

field of M . In local coordinates, the vector field w can be written in a coordinate independent way as

w = x1
∂

∂x1
,

where {x1 = 0} locally defines Z.

At points p ∈ M\Z, the b-tangent space at p coincides with the usual tangent space, and at points p ∈ Z, there

is a surjective map

bTpM → TpZ

whose kernel is spanned by wp, the normal b-vector field at p. So we can write

bTpM =

TpM p ∈M\Z

TpZ ⊕ span{x1 ∂
∂x1
|p} p ∈ Z

.

Remark 6.4.5. As an ordinary vector field, x1
∂
∂x1

vanishes along Z; however, it is non-vanishing when viewed as a

b-vector field. Around Z, we can think of x1
∂
∂x1

as a formal object from the view point of b-geometry.

Definition 6.4.6. Let (M,Z) be a b-manifold. The b-cotangent bundle is the vector bundle bT ∗M dual to bTM .

At points p ∈M\Z, we have that bT ∗
pM = (bTpM)∗ = (TpM)∗ = T ∗

pM coincides with the usual cotangent space.

At points p ∈ Z, the dual of the map for b-tangent spaces above gives us an embedding

T ∗
p →b T ∗

pM

whose image is {l ∈ (bTpM)∗|l(wp) = 0}.

Let {x1, . . . , xn} be coordinates around p such that Z is locally defined by {x1 = 0}. Consider the one-form dx1
x1

.

At points away from Z, dx1
x1

is a well-defined one-form. The pairing of µ with any b-vector field extends smoothly

over Z because

⟨f1x1
∂

∂x1
+ f2

∂

∂x2
+ · · ·+ fn

∂

∂xn
,
dx1
x1
⟩ = f1.

This means dx1
x1

can be extended over Z as a section of bT ∗M . We will denote this section as dx1
x1

, viewed as a

formal object around Z in a similar manner as with the b-tangent spaces around Z. Moreover, as dx1
x1

(wp) = 1 for

p ∈ Z, we know that dx1
x1

/∈ {l ∈ (bTpM)∗|l(wp) = 0}, and so we can write

bT ∗
pM =

T
∗
pM p ∈M\Z

T ∗
pZ ⊕ span{ dx1x1 |p} p ∈ Z

.

Definition 6.4.7. Denote by bΩk(M) the space of b-de Rham k-forms, i.e. sections of
∧k (bT ∗M

)
.

We can see that bΩk(M) sits inside the usual space of k-forms in the following way. Let µ ∈ Ω(M) be a k-form.

We interpret it as a section of
∧k (bT ∗M

)
by

• at p ∈M\Z

µp ∈
k∧(

T ∗
pM

)
=

k∧(
bT ∗
pM

)
,
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• at p ∈ Z

µp = (i∗µ)p ∈
k∧(

T ∗
pZ
)
⊂

k∧(
bT ∗
pM

)
,

where i : Z →M is the inclusion map. For a fixed defining function f , i.e. a b-map f : (M,Z)→ (R, 0), we can write

a b-de Rham k-form ω ∈b Ωk(M) as

ω = α ∧ df
f

+ β (6.4.1)

for some α ∈ Ωk−1(M) and β ∈ Ωk(M). While α and β themselves are not unique, their values at every p ∈ Z are

unique. This decomposition of b-de Rham k-forms (6.4.1) allows us to extend the exterior derivative to bΩ(M) by

defining its action on ω ∈ bΩk(M) by

dω = dα ∧ df
f

+ dβ. (6.4.2)

This operation is well-defined, and extends smoothly over M as a section of
∧k+1 (bT ∗). Moreover, because the usual

exterior derivative satisfies d2 = 0, it is clear by (6.4.2) that the extended exterior derivative also satisfies d2 = 0, so

we can form the complex of b-forms, the b-de Rham complex

0→ bΩ0(M)
d−→ bΩ1(M)

d−→ bΩ2(M)
d−→ · · · → 0. (6.4.3)

We can define the notion of symplectic in the b-category, and introduce a particular example that will be useful

to us.

Definition 6.4.8. Let (M,Z) be a 2n-dimensional b-manifold. A b-symplectic form on M is a b-form ω ∈ bΩ2(M)

that is closed and non-degenerate, i.e. dω = 0 and for all p ∈M , ω|p is of maximal rank as an element of Λ(bT ∗
pM).

Remark 6.4.9. Given a symplectic manifold M , the cotangent bundle TM carries a natural symplectic structure.

In the b-setting we can also define a natural b-symplectic structure on the b-cotangent bundle of a b-manifold.

Let (M,Z) be a b-manifold. Let {x1, . . . , xn} be local coordinates on M such that Z is defined by {x1 = 0},

{y1, . . . , yn} fiber coordinates on bT ∗M . The canonical one-form is given by

θ = y1
dx1
x1

+

n∑
i=2

yidxi, (6.4.4)

and the corresponding b-symplectic form on bT ∗
pM is given by

ω = dθ = dy1 ∧
dx1
x1

+

n∑
i=2

dyi ∧ dxi.

6.5 Variations of spectral curves

Let (E , ϕ) be an L-twisted Higgs bundle on a Riemann surface X such that deg(L) > deg(K), with spectral curve S.

From our work studying the deformation theory of ML
X in Section 6.3, associated to (E , ϕ), we can choose a section

s ∈ H0(X,K ⊗ L)\{0} which maps Beff to B̃ ⊂ B, and from it produce the twisted canonical one-form Θ on KS .

The chosen section s ∈ H0(X,K∗ ⊗ L)\{0} defines a divisor in Z ⊂ X, namely the divisor of zeroes of s. We

want to restrict for now to the case where s has distinct zeroes. This gives us a relationship L ∼= K(Z). We can view

X together with the divisor Z as a b-manifold (X,Z). Because S lives naturally inside of K(Z), it inherits a natural
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divisor given by S ∩ π∗(Z) and thus also carries the structure of a b-manifold which we will denote as (S, π∗(Z))

(see Figure 6.2). The projection map π restricted to S can be viewed as a map of b-manifolds with derivative

dπ : TS(π∗(Z))→ π∗(TX(Z)) ∈ Hom(π∗(K(Z)),KS(π∗(Z))), where KS denotes the canonical bundle of S. In this

formulation, we have that the twisted canonical one-form is given by Θ := dπ(θ), where θ is the canonical one-form for

the log-symplectic structure on K(Z), and Θ is, in particular, the canonical one-form for the log-symplectic structure

on KS(π∗(Z)).

Figure 6.2: Spectral curve S inside of K(Z).

Let Zregeff = {(x, b) ∈ T ∗X(Z)× B̃reg : pb(x) = 0} be the universal moduli space of spectral curves, where pb(x) is

the degree r polynomial with coefficients b1, . . . , br. The space Zregeff is equipped with two maps: q : Zregeff → B̃
reg the

projection onto the second component and j : Zregeff → T ∗X(Z) which maps a spectral curve {pb(x) = 0} to its image

in T ∗X(Z).

Zregeff

S ⊂ T ∗X(Z) B̃reg ⊃ U ∋ b

X

j q

π

For all b ∈ B̃reg we can choose an open neighbourhood U of b such that in local coordinates Zregeff |U ∼= U × S,

where S is the spectral curve viewed as a topological surface with a family of b-complex structures I(t) that vary

in U ⊂ B̃reg. The composition map π̃ = π ◦ j : Zregeff → X corresponds to a family of maps πt : S → X that is

holomorphic with respect to the complex structure I(t). Let ∂ ∈ TbU be a tangent vector. If we differentiate the

condition that πt is holomorphic with respect to I(t), we get

π∗(κ(∂)) = ∂Y, (6.5.1)

where κ(∂) = − i
2
∂I is the Kodaira-Spencer class of the deformation I, and Y = π̃∗(∂) ∈ H0(S, π∗TX(Z)), where we

have lifted ∂ to a vector field on S by assigning to each point on S the vector ∂.

Let D =
∑
a(v(π, a) − 1)[a] be the divisor of ramification points on S. Define W = Y

π̃∗
∈ H0(S, TS(Z))(D) a

b-vector field on S with poles along D, where we are viewing 1
π∗

as a section of TS(Z)⊗ π∗(T ∗X)(Z) that is dual to

π∗. From (6.5.1), we have

κ(∂) = ∂̄W. (6.5.2)
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The b-vector field W depends on both the choice of ∂ and the choice of local differentiable trivialization U . When we

wish to show the dependence on ∂ we will write W (∂).

Fix a (1, 0)-vector field ∂ on Bregeff . Define the vector field δ ∈ H0(Zregeff , TZ
reg
eff )(D) as the unique lift of ∂ to

Zregeff\D (i.e. q∗(δ) = ∂) such that π̃∗(δ) = 0 (i.e. π̃ is constant along integral curves of δ). In a local differentiable

trivialization Zregeff |U = U × S, we can write

δ = ∂ −W (∂). (6.5.3)

We are interested in differentiating objects on Zregeff by δ. Let V = χ(∂) be the normal vector field corresponding

to ∂ .

Proposition 6.5.1. The variation of θ with respect to δ is independent of the trivialization of Zregeff , and is given by

δθ = iV̂ dθ|S . (6.5.4)

Proof. Choose a local differentiable trivialization Zregeff |U = U×S. Define two lifts of V to T (T ∗X(Z)) by Ṽ = j∗(∂) ∈

H0(S, T (T ∗X(Z)) and V̂ = j∗(δ) ∈ H0(S, T (T ∗X(Z)))(D). We will start by applying π∗ to both b-vector fields. The

vector field δ satisfies π̃∗(δ) = 0, and so we have that π∗V̂ = π∗(j∗(δ)) = π̃∗δ = 0. The map j∗ : T (U × S)(Z) →

T (S)(Z) restricted to TS(Z) acts as the identity map, so V̂ = j∗(δ) = j∗(∂ − W ) = j∗(∂) − j∗(W ) = Ṽ − W .

Applying ∂̄ to π∗(Ṽ ) = π∗(W ) yields π∗(∂̄Ṽ ) = π∗(∂̄W ) = π∗κ. The map π∗ : TS(Z) → π∗TX(Z) is generically

an isomorphism, meaning that κ = ∂̄W = ∂̄V . From this, we can say that V̂ is a meromorphic b−vector field, i.e.

∂̄V̂ = 0 with extra poles at the ramification points of π. In the local differentiable trivialization Zregeff , flowing along

the vector field ∂ produces a family of spectral curves. Pushing forward ∂ to T ∗X(Z), this family of spectral curves

is obtained by flowing along Ṽ = j∗(∂). Varying θ, which is an object S, by the ∂ is then given by ∂θ = LṼ θ|S . We

can understand the variation of δ on θ by

δθ = ∂θ − LW θ = LṼ−W θ|S = LV̂ θ|S = ιV̂ dθ|S + d(ιV̂ θ)|S . (6.5.5)

We can claim that ιV̂ θ is a holomorphic one-form. There are two potential areas of concern: the b-geometry, and

the poles of V̂ . The interior product of a b-vector field with θ eliminates terms of the form dx
x

, i.e. eliminating poles

that would occur along Z. The canonical one-form θ vanishes at the ramification points with order at least that of π∗

which eliminates poles coming from V̂ . This means that ιV̂ θ is indeed a holomorphic one-form, and so in particular

it is constant on S, and thus d(ιV̂ θ)|S = 0.

We interpret the term ιV̂ dθ|S as being a one-form on S, i.e. taking in only tangent vectors to S. In this way, any

S-tangential component of V̂ will vanish when a tangent vector in S is inserted into the resultant one-form, and so

only the S-normal component of V̂ will contribute to a nonzero term. Because V̂ is a lift of V to T (T ∗X(Z)), this

normal component is V , and so we have ιV̂ dθ|S = ιV dθ|S .

Let ξ ∈ H0(T ∗X(Z), T (T ∗X(Z))) be the the vector field generating the C∗-action on T ∗X(Z). In local coordinates

(x, y), were x is the local coordinate on X and y is the y is the fiber coordinate (i.e. thinking of (x, y) as (x, y dx
x

)),

we have that ξ = y ∂
∂y

.
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Lemma 6.5.2. If V, V̂ are as in the above proposition, then

V̂ =
α

θ
ξ, (6.5.6)

where α = ιV dθ|S.

Proof. Recall from the proof above that V̂ is a lift of V that satisfies π∗(V̂ ) = 0. Because ker(π∗)∩TS(Z) is generically

zero, we have that V̂ is characterized by these two conditions. Let V ∗ = α
θ
ξ. By uniqueness, it is sufficient to show

that V ∗ satisfies two properties: V ∗ is a lift of V to T (T ∗X(Z))(D), and π∗(V ∗) = 0.

We have that π∗(V ∗) = 0 for free because ξ is a vector field on T ∗X in the cotangent fiber direction, i.e. ξ ∈ ker(π∗).

To check that V ∗ ∈ H0(S, T (T ∗X(Z))(D)) we need to check the bundle in which each component of V ∗ lives.

For terms in the “numerator”, we have ξ ∈ H0(T ∗X(Z), T (T ∗X(Z))), α = ιV dθ|S ∈ H0(S, T ∗(T ∗S(Z))). In the “de-

moninator”, we are viewing 1
θ

as the dual vector field to θ, i.e. satisfying θ( 1
θ
) = 1. In a local frame with coordinates

(x, y) on T ∗X(Z) where we have θ = y dx
x

, we must have that 1
θ

= 1
y
x ∂
∂x

. This local insight tells us that while 1
θ

lives

in the dual bundle to θ, it has poles at zeros of θ, which occur along the ramification divisor D. In this way we have

1
θ
∈ H0(T ∗X(Z), T (T ∗X(Z)))(D). Putting it all together (and restricting to S ∈ T ∗X(Z) where necessary), we see

that V ∗ ∈ H0(S, T (T ∗X(Z)))(D).

We need now to check that V ∗ is a lift of V . We can do this by showing that

ιV ∗dθ|S = ιV dθ|S .

First observe that in a local frame of T ∗X(Z) with coordinates (x, y), we have that

θ(ξ) = y
dx

x
(y

∂

∂y
) = 0,

and

ιξdθ = (dy ∧ dx
x

)(y
∂

∂y
)

= y
dx

x

= θ.

Computing ιV ∗dθ|S we have

ιV ∗dθ|S =
α

θ|S
ιξdθ|S

=
α

θ|S
θ|S

= α = ιV dθ|S ,

which shows that V ∗ is a lift of V .

We have thus shown that V ∗ satisfies the same properties as V̂ , and so by uniqueness we have V̂ = V ∗ = α
θ
ξ.
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We want to use the vector field δ to differentiate the Bergman kernel, and the twisted analogues of the Eynard-

Orantin differentials. This will produce twisted analogues of certain variational formulas [6, 42]. We first need to

adapt these objects to the b-geometric framework.

Choose a symplectic basis ⟨A1, ..., Ag, B1, ..., Bg⟩ for H1(S,Z) such that none of the cycles intersect with Z. The

spectral curve comes equipped with a Bergman kernel B(z1, z2) as in Definition (2.6.2). When we make the association

L ∼= K(Z), and S is realized as the b-manifold (S, π∗Z), we can impose the b-strucutre onto B. The local expression

changes near to images of the divisor Z in S × S, being written as a bilinear b-form, i.e. on (S, π∗Z) we view

B ∈ KS(Z)⊗KS(Z). As an example, near a point (p, q) ∈ Z × U , for some neighbourhood U away from Z, we have

B(z1, z2) =

dz1
z1
dz2

(z1 − z2)2
+O(1)

dz1
z1

dz2.

Such a local expression makes plain the fact that B is not a symmetric differential. While this causes no inherent

problem for defining B, it will become a problem when we try to define the Eynard-Orantin differentials in this

setting. Specifically, the symmetry of the Wg,n’s come from the symmetry of B. We will remedy this considering a

symmetrized version of B in this setting.

Definition 6.5.3. Define B̂(z1, z2) := 1
2

(B(z1, z2) +B(z2, z1)).

Notably, away from Z, we can choose a coordinate system U such that B̂|U = B|U .

Let v1, . . . , vg be a basis of holomorphic differentials, normalized by∫
Aj

vi = δij . (6.5.7)

We can impose the b-structure onto the vi, which notably does not affect their normalization over the Ai-cycles. From

the properties of the ordinary Bergman kernel on S, we have that the symmertrized Bergman kernel on (S, π∗Z) is

related to the differentials by ∫
z1∈Bj

B̂(z1, z2) = 2πivj(z2), (6.5.8)

and the period matrix τ by ∫
z1∈Bj

∫
z2∈Bk

B̂(z1, z2) = τij . (6.5.9)

We now want to differentiate B̂ with respect to the vector field δ, we obtain a twisted version of the Rauch

Variational Formula.

Theorem 6.5.4 (Twisted-Rauch Variational Formula). If ∂ ∈ B̃reg, p, q ∈ S\D are distinct points, then

δB̂(p, q) = −
∑
a∈D

Resu→a
δθB̂(u, p)B̂(u, q)

dx(u)dy(u)
(6.5.10)

Proof. Choose a local differentiable trivialization Zregeff |U = U × S so that δ = ∂ −W . By Theorem 6.5.1, we know

that δ is independent of the choice of trivialization, we can choose the trivialization to be beneficial to us as we see

fit. In particular we will choose the trivialization so that W vanishes in a neighbourhood of p and q. Applying δ to

B̂ in the trivialization we have

δB̂(p, q) = ∂B̂(p, q)− LW (p)B̂(p, q)− LW (q)B̂(p, q) = ∂B̂(p, q)
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In this trivialization, and choosing κ = ∂W = 0, the Bergman kernel satisfies the variational formula [45, pg. 57]

∂B̂(p, q) =
1

2πi

∑
a

∫
u∈γa

W (u)B̂(u, p)B̂(u, q), (6.5.11)

where the sum is taken over all poles of W (u)B̂(u, p)B̂(u, q), specifically, a is a ramification point of π (poles of

W ), a = p (pole of B̂(u, p)), or a = q (pole of B̂(u, q)), and γa is a contour around a. Because W vanishes in a

neighbourhood of p and q, there will be no residue contribution, and we can therefore consider the sum to be over

ramification points of π. Choosing the contours γa to be sufficiently small, we can ensure that the interiors do not

contain any zeros of s, and thus need not be concerned with residues coming from Z.

In a coordinate chart around a ramification point of π, we can write W = −(δθ)ζ +W ′, where ζ = 1
dydx

and W ′

is smooth. Using this decomposition for W , we have

δB̂(p, q) = ∂B̂(p, q)

=
1

2πi

∑
a

∫
u∈γa

(−(δΘ)ζ +W ′)B̂(u, p)B̂(u, q)

= −
∑
a

Resu→a(δΘ)(u)ζ(u)B̂(u, p)B̂(u, q)

= −
∑
a

Resu→a
(δΘ)(u)B̂(u, p)B̂(u, q)

dx(u)dy(u)

6.6 Twisted topological recursion

We next want to define a twisted version of the Eynard-Orantin differentials. Continuing with the näıve approach,

we will define the necessary objects as living in K(Z) instead of K.

Definition 6.6.1. Let p ∈ R. The L-twisted recursion kernel (associated to s) at p is a meromorphic section of

KS(Z) ⊠KS(Z)∗ defined by

Kp(z0, z) =

∫ z
t=α

B̂(t, z0)

(y(z)− y(σp(z))
dx(z)
x(z)

(6.6.1)

where α is an arbitrary base point.

Definition 6.6.2. The L-twisted Eynard-Orantin differentials (associated to s) Wg,n are meromorphic sections

of the n-th exterior tensor product KS(Z)⊠n, i.e. multi-b-differentials, defined as follows:

The initial conditions of the recursion are given by:

W0,1(z) = y(z)
dx(z)

x(z)
(6.6.2)

W0,2(z1, z2) = B̂(z1, z2). (6.6.3)

For all g, n ∈ N and 2g − 2 + n ≥ 0, define Wg,n recursively by

94



Wg,n+1(z0, z) =
∑
p∈R

Resz=pKp(z0, z)

Wg−1,n+2(z, σp(z), z) +

′∑
g1+g2=g
I∪J=z

Wg1,|I|+1(z, I)Wg2,|J|+1(σp(z), J)

 (6.6.4)

where the prime signifies summation excluding the cases (g1, I) or (g2, J) = (0, 0).

Remark 6.6.3. In the ordinary setting, the Eynard-Orantin differentials satisfy a suite of useful properties, most

notably that they are symmetric differentials. It turns out that the twisted Eynard-Orantin differentials satisfy the

same suite of properties. This is largely because the structure of the recursion revolves around local data, i.e. the

residues. The choices made to keep zeroes of s ∈ H0(X,K∗ ⊗ L) away from ramification points and the symplectic

basis of cycles means that the local computations in the recursion do not see the b-structure, although the differentials

themselves are b-objects. This observation means that there is, in principle, a family of collections of twisted Eynard-

Orantin differentials, parametrized by the choice of s. That said, they will all live in different spaces, as the divisor Z

depends on s. For each collection of twisted Eynard-Orantin differentials in this family, the proofs of these properties

in [42, Appendix A] hold because they depend only on the recursion structure and local computations around the

residues.

Let (λ1, ..., λgS ) be the local singular coordinates on Beff , ∂i := ∂
∂λi

, and δi := δ(∂i).

Theorem 6.6.4 (Variational Formula for twisted-E-O invariants). For g + k > 1,

δiWg,k(p1, ..., pk) = − 1

2πi

∫
p∈bi

Wg,k+1(p, p1, ..., pk), (6.6.5)

where the cycle bi is chosen so that it contains no ramification points.

Proof. This theorem is essentially the same as Theorem 5.1 of [42], but in the twisted setting. The original proof

only relies on the Rauch variational formula and the diagrammatic representation of Wg,n. We proved an analogous

form the Rauch variational formula in Theorem 6.5.4. The diagrammatic representation relies on only the properties

of the differentials and the recursion formula, both of which are unchanged in the twisted setting.

To better understand how this variational formula relates to the topology of the twisted setting, let us apply the

variational formula to W0,2(p1.p2) = B̂(p1, p2),

δiB̂(p1, p2) = δiW0,2(p1, p2) = − 1

2πi

∫
p∈bi

W0,3(p, p1, p2). (6.6.6)

Integrating the left hand side twice then yields

∫
p1∈bj

∫
p2∈bk

δiB̂(p1, p2) = ∂i

∫
p1∈bj

∫
p2∈bk

B̂(p1, p2)

= 2πi∂iτjk

= 2πicijk,
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written more cleanly

cijk =
1

2πi

∫
p1∈bj

∫
p2∈bk

δiB̂(p1, p2).

Utilizing (6.6.6), we have a relationship between the twisted Donagi-Markman cubic and W0,3 given by

cijk = −
(

1

2πi

)2 ∫
p1∈bj

∫
p2∈bk

∫
p∈bi

W0,3(p, p1, p2). (6.6.7)

We can continue the computation on the right-hand side by adapting a lemma from [42, Appendix A]. The proof

of this lemma again only depends on the properties of twisted Eynard-Orantin differentials.

Lemma 6.6.5.

W0,3(p, p1.p2) =
∑
a

Resq→a
B(p, q)B(p1, q)B(p2, q)

dx(q)dy(q)
(6.6.8)

where the sum is taken over ramification points a of the spectral curve.

From this lemma we obtain

cijk = −
(

1

2πi

)2∑
a

∫
p1∈bj

∫
p2∈bk

∫
p∈bi

Resq→a
B(p, q)B(p1, q)B(p2, q)

dx(q)dy(q)

= −2πi
∑
a

Resq→a
vi(q)vj(q)vk(q)

dx(q)dy(q)
.

This proves a local analogue of the residue formula for the Donagi-Markman cubic as presented in Baralgia-Huang.

Lemma 6.6.6 (Local residue formula for the twisted Donagi-Markman cubic).

cijk = 2πi
∑
a

Resq→a
vi(q)vj(q)vk(q)

dx(q)dy(q)

We want to return our attention back to (6.6.7). We can continue this process of applying the variational formula

to W0,2 multiple times with different choices of δi and obtain:

Theorem 6.6.7.

∂i1∂i2 . . . ∂im−2τim−1im = −
(
i

2π

)m−1 ∫
pi1∈bi1

· · ·
∫
pm∈bim

W0,m(p1, ..., pm). (6.6.9)

We can interpret this theorem in the following way. The Higgs bundle (E , ϕ) produces a spectral curve S. This

spectral curve lives over a point b ∈ B̃reg, the image of the deformation space of spectral curves inside of the Hitchin

base induced by the chosen section s ∈ H0(X,K∗⊗L). The g = 0 twisted Eynard-Orantin variants compute the Taylor

series expansion of the period matrix at the point b. This means that with the information of a single spectral curve S,

we can use the twisted Eynard-Orantin invariants to understand local deformations of S through their period matrices.

It is worth noting that while the coordinates λi depend on s, this result would hold for any s that does not have

zeros along the symplectic basis of cycles. This aligns with the observation in Remark 6.6.3, as the variational formula

only depends on local data away from the zeroes of s. While Theorem (6.6.7) will hold for any choice of s compatible

with the symplectic basis of cycles, we have to be careful about the interpretation between various choices of s. The

period matrix is an inherent object on S, depending only on the choice of symplectic basis, regardless of where or how

we view S as residing. It makes sense, then, that choices of s should not change the period matrix — this is true, as we
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write the period matrix in terms of W0,2 = B̂ by (6.5.9), for any compatible s. The information of the Taylor series,

however, gives information about how the period matrix changes with respect to coordinates on B̃reg, which does, a

priori, depend on s (it has also not been addressed in the case of the twisted invariants). This dependence on s is a

subtly that has not been addressed. In principle, deformations are controlled by the effective Hitchin base Beff , which

is independent of s, rather than B̃. We would like to say that the full interpretation of Theorem 6.6.7 is independent

of s, however, without further understanding the dependence of B̃ on s, we leave this statement as a conjecture for now.
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7 Next steps

7.1 Further perspectives on L-twisted Hitchin geometry

The comments at the end of Section 6.6 suggest that we need to better understand the relationship between the

various choices of s ∈ H0(X,K∗ ⊗L) and the geometry of the spectral curve. To study this dependence, we consider

the vector bundle over H0(X,K∗ ⊗ L) with fibres B (see Figure 7.1). Because H0(X,K∗ ⊗ L) is a vector space, this

is just the trivial bundle B ×H0(X,K∗ ⊗ L).

Figure 7.1: Vector bundle over H0(X,K∗ ⊗ L) whose fibres are B (in blue). Each fibre has a

distinguished subspace B̃s (in red). For a chosen Higgs bundle, there is a constant section given by
the characteristic coefficients (in green).

Let (E , ϕ) be an L-twisted Higgs bundle with spectral curve S. Choose a symplectic basis ⟨A1, ..., Ag, B1, ..., Bg⟩

for H1(S,Z). There is a natural constant section on this vector bundle associated to (E , ϕ), which assigns to each

point in the base the characteristic coefficients of the Higgs field in the fibre. In each fibre, there is also an identified

subspace given by B̃s, the image of Beff under multiplication by s inside of B. Recall from Section 6.3 that Beff , and

by extension B̃s, is the space of deformations of the spectral curve. Away from the point s ≡ 0 where dim B̃s = 0, the

dimension of each B̃s is equal, although they do not define the same subspaces. Notably, the constant section defined

by (E , ϕ) need not intersect the identified subspace in the fibre. There is a subset of points in the base whose zeroes

intersect the symplectic cycles. We will call this set the incompatible locus. Away from the incompatible locus (i.e.,
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along points in the base whose zeroes do not intersect the symplectic cycles) we can, in a holomorphic way, identify

S with a point on B̃s, which describes S with “zero deformations”. Like this, we have a natural section on the base

minus the incompatible locus coming from S.

To determine the dependence on s, we need to understand three subsets of H0(X,K∗⊗L): the incompatible locus,

the set of sections with non-distinct zeroes, and the set of sections whose zeroes overlap with ramification points of S.

Removing these subsets from H0(X,K∗ ⊗ L) will yield a space of sections that are suitable for the constructions in

Chapter 6. The topology of this space will determine which sections are “equivalent”, in the sense that we can move

from one to another by moving zeroes of s without crossing any of the noted subsets above. We can then look at a

slightly weakened version of the conjecture made at the end of the previous chapter: the interpretation of Theorem

6.6.7 holds on equivalence classes of sections.

There are also two directions that we can proceed to further investigate this vector bundle:

1. How do sections that pass through the identified subspaces in the fibres correspond to spectral curves? For

example, can a section defined over only part of H0(X,K∗ ⊗L) define a incompatible locus, and thus produce

a set of cycles on S? Can it make that set of cycles a symplectic basis?

2. We can pull this bundle back onto itself. The tautological section on this pullback bundle contains the infor-

mation of all spectral curves. Can we use this to construct a universal spectral curve, which contains all the

important data of spectral curves? Suppose we have an L-twisted Higgs bundle (E , ϕ). Does this universal

spectral curve see the properties of the spectral curve that are invariant under choices of s? (Or compatible

choices of s?)

Remark 7.1.1. It is important to bring attention to an additional choice that was made at the beginning of Section

6.5, specifically, only choosing s to have distinct zeroes. This choice was made to ensure that we could work in the

context of b-geometry, and that our Higgs fields only have simple poles. If we dropped this condition, we would

be entering the setting of bk-geometry [91] and wild Higgs bundles [14, 15, 49]. Assuming that we could carry out

similar calculations in this setting, it would open up a larger class of sections in H0(X,K∗ ⊗L), which correspond to

situations where we allow zeroes to cross as we wary s. We will not investigate these ideas here, but wish to bring

attention to them as a further direction of generalization.

7.2 Tautological recursion

Even though the tautological section appears in topological recursion, it is effectively a recursion built out of only the

data of a spectral curve S. In fact, our arguments in Section 6.6 suggest that there are scenarios where the ambient

space does not play a role in the interpretation of the Eynard-Orantin differentials. When we start with an L-twisted

Higgs bundle, the tautological section on Tot(L) is a natural object that comes with it. We can ask if it is possible to

build a meaningful recursion out of the tautological section without appealing to the geometry of the spectral curve.

We now have the opportunity to fashion a fully invariant, tautological recursion, on a rank 2, L-twisted Higgs bundle

by recognizing that:

99



• the choice of a quadratic section α of a holomorphic line bundle L on a Riemann surface X generates a canonical

L-twisted Higgs bundle in the Hitchin section of the corresponding moduli space;

• the tautological section of the pullback of L can be used as the seed W0,1;

• the pullback of the preceding pullback generates a second tautological section whose square is a fully holomorphic

replacement for the Bergman kernel as W0,2.

This initiates a geometric process by which Higgs bundles of Hitchin section-type are produced successively over

spaces of higher dimension. These spaces correspond to products of α’s spectral curve with itself, reconstructing the

product in Eynard-Orantin recursion. The limit of this process is a rank 2 Higgs bundle on an infinite-dimensional

manifold.

To start the process, let (E1, ϕ1) be the L-twisted Higgs bundle on X given by E1 = O ⊕ L with Higgs field

ϕ1 =

0 α

1 0

 : E1 → E1 ⊗ L. (7.2.1)

The characteristic equation of the Higgs bundle defines a spectral curve S is given by

S = {η21 − π∗
1(α) = 0}, (7.2.2)

where π1 : Tot(L)→ X, and η1 ∈ Γ(π∗
1L) is the tautological section. On the spectral curve S, we can define another

twisted Higgs bundle by E2 = OS ⊕ π∗
1L|S with Higgs field

ϕ2 =

 0 η21 + π∗
1α

1π∗
1L|S 0

 : E2 → E2 ⊗ π∗
1L. (7.2.3)

Again, this will produce a spectral curve defined by the equation

η22 + π∗
2

(
η21 + π∗

1(α)
)

= 0, (7.2.4)

where π2 : Tot(π∗
1L) → X, and η2 ∈ Γ(π∗

2π
∗
1L) is the tautological section, and η1 is being viewed as a coordinate on

S ⊂ Tot(L). We can continue this process, each time defining a new rank 2 twisted Higgs bundle branched precisely

over the spectral cover of the previous Higgs bundle. At the kth step of this process, we will have the Higgs bundle

Ek = OSk−1 ⊕ (π∗)k−1L|Sk−1 with Higgs field

ϕk =

 0 η2k−1 + π∗(η2k−2 + π∗(· · ·+ π∗α)
)

1(π∗)k−1L 0

 : Ek → Ek ⊗ π∗
k−1 . . . π

∗
1L, (7.2.5)

where Sk is the k-fold Cartesian product of S with itself.

We may regard the formal limit (E∞, ϕ∞) as a rank 2 Higgs bundle of Hitchin section-type on the formal variety

S∞, which is an infinite-dimensional product of algebraic curves. Its spectrum is a double cover of S∞ branched over

the series in infinitely many variables corresponding to the upper-right corner of ϕ∞. If we turn on an ℏ-deformation

of the holomorphic structure on E∞ — it is worth noting that there are now infinitely many such deformations that

are linearly independent — then ϕ∞ deforms into a Hitchin oper, ∇∞
ℏ on S∞, which induces an Airy-Schrödinger

equation whose potential is a series in infinitely many variables. We expect that the various ℏ directions give rise to
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a hierarchy of equations, in the same spirit as the KdV hierarchy, that move through non-trivial bundle types and

terminate with the oper on the trivial bundle over S∞.

We want to understand the relationship between this limiting Higgs bundle, our proposed tautological recursion,

and solutions to Schrödinger equations in infinitely many variables. This may be related to other scenarios involving

infinitely many variables, such as Toda flows in infinitely many variables, cf. [27].1

7.3 Quantum Airy structures

The stable Eynard-Orantin differentials, Wg,n with 2g + n − 1 > 1, are symmetric, meaning that they live in some

symmetric power Symn(V ) of an infinite vector space V of meromorphic forms. The initial conditions of topological

recursion, W0,1 and W0,2, are special among the differentials. The form W0,1 only appears in defining the recursion

kernel K and is given canonically by the tautological section η, and the differential W0,2 is not a true symmetric

differential. Quantum Airy structures, formulated by Kontsevich-Soibleman [70], and studied in [4, 17, 25, 40], are

generalization of Eynard-Orantin topological recursion where the initial data of the recursion procedure is replaced by

four tensors, (A,B,C,D), defined on various tensor powers of a vector space V , where A is roughly W0,3, D is W1,1,

and B and C can be computed recursively, such that all elements of the recursion naturally live in some Symn(V ).

The quantum Airy approach encodes the same information as Eynard-Orantin topological recursion, in particular, the

data of a spectral curve can be used to produce a corresponding quantum Airy structure. From this new perspective,

topological recursion does not rely on a spectral curve, but rather the vector space V , which can be taken as finite

or infinite-dimensional. Topological recursion now acts as a case of deformation quantization, giving a wave function

of a deformation quantization module corresponding to a quadratic Lagrangian manifold (possibly singular) in V ⊕V ∗.

The motivation for the definition of a quantum Airy structure begins with a classical Airy structure. A classical

Airy structure is given by only three tensors (A,B,C). It is shown in [4,70] to be equivalent to the Lagrangian variety

mentioned above.

Let V be an n-dimensional vector space over C with ordered basis y1, . . . , yn. On the dual space V ∗ denote

by x1, . . . , xn the dual coordinates. The vector space W := T ∗V ∗ = V ⊕ V ∗ has a symplectic structure whose

corresponding Poisson bracket is given by

{yi, xj} = δij

{xi, xj} = 0

{yi.yj} = 0

in coordinates on W . Denote Sym≤2W := Sym0W ⊕ Sym1(W )⊕ Sym2(W ) the Lie algebra of polynomial function

on W ∗ of degree ≤ 2 with the Lie algebra structure induced by the Poisson bracket.

1The invocation of Toda is not random as there are relevant connections to certain Schrödinger problems. An intermediary
is the Riccati equation for the Stieltjes function of the orthogonal polynomials [95], which plays a fundamental role in the
Bouchard-Eynard reconstruction of WKB solutions.
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Definition 7.3.1. A classical Airy structure on V is a collection of polynomials Hi ∈ Sym≤2W of the form

Hi = yi −
1

2

∑
ab

Aiabxaxb −
∑
ab

Biabxayb −
1

2

∑
ab

Ciabyayb (7.3.1)

such that ⊕1≤i≤nC ·Hi is Lie subalgebra of Sym2(W ), i.e.

{Hi, Hj} =
∑
a

gaijHa (7.3.2)

In a coordinate-free form, the coefficients can be defined by three tensors:

1. A ∈ Hom(V ⊗3,C) defined by A(ei ⊗ ej ⊗ ek) = Aijk,

2. B ∈ Hom(V ⊗2, V ) defined by A(ei ⊗ ej) = Bijaea,

3. C ∈ Hom(V, V ⊗2) defined by C(ei) = Ciabea ⊗ eb,

subject to constraints imposed by (7.3.2).

Let V be a vector space over C with basis (ei)i∈I and dual basis (xi)i∈I . Consider the Weyl algebra

Wℏ
V = C[ℏ]⟨(xi, ∂i)i∈I⟩/⟨[∂i, xi] = ℏ⟩, (7.3.3)

where ∂i = ∂
∂xi

.

Definition 7.3.2. A quantum Airy structure on V is a sequence L = (Li)i∈I of elements of Wℏ
V of the form

Li = ℏ∂i −
1

2

∑
ab

Aiabxaxb − ℏ
∑
ab

Biabxa∂b −
ℏ2

2

∑
ab

2Ciab∂a∂b − ℏDi (7.3.4)

where ℏ is a formal parameter, Aijk, B
i
jk, C

i
jk and Di are scalars, such that the collection of Li spans a Lie subalgebra

of Wℏ
V , i.e.

[Li, Lj ] = ℏ
∑
a

faijLa. (7.3.5)

In analogy to classical Airy structures, the coefficients can be defined in a coordinate-free form by four tensors:

1. A ∈ Hom(V ⊗3,C) defined by A(ei ⊗ ej ⊗ ek) = Aijk,

2. B ∈ Hom(V ⊗2, V ) defined by A(ei ⊗ ej) = Bijaea,

3. C ∈ Hom(V, V ⊗2) defined by C(ei) = Ciabea ⊗ eb,

4. D ∈ Hom(V,C) defined by (ei) = Di.

The Lie algebra condition (7.3.5) imposes strong constraints on (A,B,C,D), which happen to be necessary and suffi-

cient conditions for a sequence L of the form (7.3.4) to be a quantum Airy structure. Contained in these constraints

are a set of constraints on (A,B,C), which coincide with the constraints imposed on a classical Airy structure by

(7.3.2). This means that a quantum Airy structure is a classical Airy structure together with D and some additional

constraints.
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The differentials Li act on V as differential operators. The Lie algebra condition is a sufficient condition for the

existence of a function Z on V which is a common solution to LiZ = 0. Such a Z is uniquely given by the formal

series

Z = exp
(∑
g≥0
n≥1

ℏg−1

n!

∑
i1,...,in∈I

Fg,n(i1, . . . , in)xi1 . . . xin

)
(7.3.6)

where the Fg.n are scalars that are invariant under permutation of the ik such that F0,1(i) = F0,2 = 0 for all i, j. The

coefficients are given in terms of (A,B,C,D) by

F0,3(i, j, k) = Aijk, (7.3.7)

F1,1(i) = Di, (7.3.8)

and for 2g − 2 + n ≥ 2, they are defined recursively by

Fg,n(i1, ..., in) =

n∑
m=2

Bi1imaFg,n−1(a, i2, ..., ˆim, ..., in)

+
1

2
Ci1ab

(
Fg−1,n+2(a, b, i2, ..., in) +

∑
g1+g2=g

J1∪J2={k1,...,kn}

Fg1,|J1|+1(a, J1)Fg2,|J2|+1(b, J2)
)
. (7.3.9)

It is shown in [38], that the Wg,n can be decomposed over a family of one-forms with some coefficients ωg,n. The

connection between topological recursion and quantum Airy structures is that the Fg,n produced by a quantum Airy

structure as above are the same as the coefficients ωg,n arising from the Eynard-Orantin differentials.

Quantum Airy structures have already shown themselves to be a generalization of topological recursion. We

would like to investigate how (or if) L-twisted topological recursion fits into the current framework of quantum Airy

structures. There are also two other natural directions to investigate in regards to quantum Airy structures. The first

is asking how this picture generalizes when the initial data is a vector bundle instead of a vector space. The second is

to allow the Li to be differential operators of degree ≥ 2. The latter has been studied in [17] in the context of vector

spaces, but we wish to simultaneously extend the set up to vector bundles and to a Z-grading, thereby transforming

a truncation of a Fock space into a complete Z-graded Fock sheaf.

7.4 Topological materials

Perhaps the most ambitious direction concerns applications of topological recursion and Higgs bundles to condensed

matter physics. Higgs bundles have enjoyed numerous applications to classical integrable systems [31,65,67] as well as

high energy physics via string theory and mirror symmetry [5,62]. Recent work has related the theory of topological

materials, specifically the band structure, to Higgs bundles [68].

The theory of topological materials is studied via electric band structure (cf. for instance [51, 97]). Electrons are

arranged in a real d-dimensional lattice, to which is associated a reciprocal lattice in momentum space. The system is

described by a Bloch Hamiltonian H(k), a periodic Hermitian operator in momentum space defined on the Brillouin

zone, the primitive cell of the momentum lattice, acting on a Hilbert space Hk. The evolution of the eigen-energies
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En(k) of the Bloch Hamiltonian defines the band structure (see Figure 7.2). The existence of a gap between energy

bands dictates whether the material is an insulator or a metal. Electron states of a gap system cannot be excited by

a small perturbation of the system, such as the introduction of an electric field, and thus no current can be created.

Classically, these are classified by the symmetries of the system. However, it has become evident that the topological

information of the band structure leads to a more robust breadth of materials: topological insulators, semi-metals,

topological superconductors, etc.

Figure 7.2: Band structure of metal and insulator.

The mathematics of such a quantum material can be roughly broken down as follows: The periodicity of H(k)

gives the Brillouin zone (BZ) the topology of a d-dimensional torus T d. For each k ∈ BZ, the Hamiltonian is act-

ing on a Hilbert space Hk. The collection of spaces Hk forms a finite rank “Hilbert bundle” H on the base space

BZ. In this setting, the Hamiltonian H(k) acts as a Higgs field for the bundle, and together, they form what we

might term a “Hilbert-Higgs” bundle over BZ. The energy functions En(k) are the spectral data of H(k), that is to

say, the spectral curve and the corresponding eigenvectors form the spectral line bundle. The question of topological

information of the band structure is now asking for topological properties of the spectral line bundle, such as its degree.

Advancements in the theory of topological materials, both experimental [69] and theoretical [68, 73, 74, 79] have

led to the notion of hyperbolic band theory. This is a generalization of band theory, where the classic Euclidean

Brouillon zone is replaced with representations of a hyperbolic crystal lattice. In [68], it is shown that there are two

Higgs bundles associated to hyperbolic band theory: one arising as the moduli space of crystal lattices, the other as

parametrizing the complex crystal momenta. The simple case where these structures are applied to 2D Euclidean

crystals admits a meromorphic Higgs bundle. We can apply the framework from Chapter 5 to these meromorphic

Higgs fields to produce a quantum curve. A natural question is how such a quantum curve relates to the original

Hamiltonian. If they coincide, then this procedure could potentially provide a means of reconstructing a physical

lattice model for a particular Schrödinger equation from the information of a (complex) Brillouin zone in momentum

space. If they do not coincide, then what is the physical meaning of the quantum curve for the given material?
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(2017), 845–908.

[20] Bouchard, V., Hernández Serrano, D., Liu, X., and Mulase, M. Mirror symmetry for orbifold Hurwitz

numbers. J. Differential Geom. 98, 3 (2014), 375–423.

[21] Bouchard, V., and Mariño, M. Hurwitz numbers, matrix models and enumerative geometry. In From

Hodge theory to integrability and TQFT tt*-geometry, vol. 78 of Proc. Sympos. Pure Math. Amer. Math. Soc.,

Providence, RI, 2008, pp. 263–283.
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