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Abstract

The insecurities of public-key infrastructure on the Internet have been the focus of research for over a

decade. The extensive presence of broken, weak, and vulnerable cryptographic keys has been repeatedly

emphasized by many studies. Analyzing the security implications of cryptographic keys’ vulnerabilities,

several studies noted the presence of public key reuse. While the phenomenon of private key sharing was

extensively studied, the prevalence of public key sharing on the Internet remains largely unknown. This work

performs a large-scale analysis of public key reuse within the PKI ecosystem. This study investigates the

presence and distribution of duplicate X.509 certificates and reused RSA public keys across a large collection

containing over 315 million certificates and over 13 million SSH keys collected over several years. This

work analyzes the cryptographic weaknesses of duplicate certificates and reused keys and investigates the

reasons and sources of reuse. The results reveal that certificate and key sharing are common and persistent.

The findings show over 10 million certificates and 17 million public keys are reused across time and shared

between the collections. Observations show keys with non-compliant cryptographic elements stay available

for an extended period of time.

The widespread adoption of Android apps has led to increasing concerns about the reuse of digital

certificates. Android app developers frequently depend on digital certificates to sign their applications, and

users place their trust in an app when they recognize the owner provided by the same certificate. Although

the presence of cryptographic misuse has been acknowledged by several studies, its extent and characteristics

are not well understood. This study performs a detailed analysis of code-signing certificate reuse across the

Android ecosystem and malware binaries on a collection of over 19 million certificates and over 9 million

keys extracted from PE files and Android applications collected over several years. The results reveal that

despite the growing nature of the Android ecosystem, the misuse of cryptographic elements is common and

persistent. The findings uncover several issues and enable us to provide a series of applicable solutions to the

seen security flaws.
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1 Introduction

Cryptography plays a crucial role in modern communications and applications, ensuring the secure and

confidential exchange of sensitive information. The underlying system that enables these functionalities is

Public Key Infrastructure (PKI). PKI is a system that manages digital certificates and cryptographic keys

and establishes trust between participating parties by associating a public key with an entity and enabling the

verification of their identity. The trusted Certificates Authority (CA) plays a vital role in this infrastructure

issuing certificates to software vendors and attesting to their identity.

In 2021, Github revoked RSA keys, generated by the vulnerable GitKraken client’s library that created

duplicate SSH authentication keys [29]. In 2018, Infineon released a security patch to update the vulnerable

Trusted Platform Module in its microcontrollers responsible for generating vulnerable RSA keys [51].

The sad state of public key infrastructure on the Internet has been the focus of security research for over

a decade. In 2011 Holz et al. [33] investigating the deployed X.509 certificates for TLS/SSL certification

pointed out that infrastructure is broken, i.e., only one out of five certificates can be counted as valid, and

many include cryptographically weak keys.

The presence of broken, weak, and vulnerable cryptographic keys on the Internet has been extensively

investigated by a number of studies from different points of view. Some studies traced back the problem to

weak random number generators and the lack of entropy [15,21,31], while others claimed a simple misuse of

keys [20], and the improper implementation of cryptographic libraries as the main reasons [7, 18,43,50,66].

Network appliances and services rely on certificates and keys to facilitate secure communication, code sign-

ing, authentication, and other security-related functionality. However, mishandling or misuse of certificates

or keys poses a significant threat to the overall security of the PKI ecosystem.

Weaknesses in RSA keys allow for faster factorization, i.e., one can efficiently compute the corresponding

private keys undermining the security of communication [27, 31]. When keys are reused across different

devices and organizations, it exposes the corresponding private key, which can be exploited by attackers.

This enables attackers to leverage benign certificates to sign malicious software or impersonate legitimate

companies. Consequently, an attacker who gains access to the private key or is able to regenerate it (e.g.,

in case of vulnerable and weak public keys) can access encrypted content and/or intercept secured network

traffic.

Misuse of cryptographic algorithms and a combination of implementation decisions made in software

libraries can lead to distinguishable patterns and consequently can be leveraged in identifying a probable

origin of a key, e.g., an originating library, its specific version, and operating system [10, 37, 51, 66]. The
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public key reuse was initially observed by Heninger et al. [31] in a small study of 6.2 million SSH keys and

5.8 million TLS certificates, and later confirmed by Cangialosi [11]. Although the phenomenon of private key

sharing with web hosting providers was extensively explored by Cangialosi et al. [11] and Liu et al. [45], the

prevalence of public key reuse across domains remains largely unknown.

Instances of compromised certificates and keys within the PKI ecosystem are not uncommon. The infa-

mous Stuxnet worm and Diqu malware were signed with legitimate digital certificates [23,60]. The study by

Kim et al. [41] demonstrated that malware uses valid certificates to evade anti-virus programs and bypass

system protection mechanisms. Kang et al. [39] showed that analyzing the serial numbers of certificates can

potentially reveal indicators of Android malware. While these examples provide evidence of valid digital

certificates being misused, it remains unclear whether this phenomenon is limited to a specific domain and

what the broader security implications are.

Digital certificates and keys are essential components that enable secure communication, code signing,

authentication, secure storage of sensitive information, and other security-related features within hosts and

applications. However, the improper use or mishandling of these certificates and keys poses a substantial risk

to the overall security of the ecosystem.

1.1 Motivation

This study represents the most extensive measurement analysis of public RSA key reuse on the Internet to

date. The collection comprises 84 million unique RSA keys, which is 15 times greater than the set used

previously in a seminal study conducted by Heninger et al. [31]. This study conducts the lifespan analysis

of the use of certificates over time and determines the reused certificates and keys across different devices,

organizations, and domains. The analysis shows that 6.5% (10,110,361) of TLS certificates are shared across

sets. This work finds a considerable amount of certificates that are reused to sign malware while still being

served in communication by different hosts. The observations show that 28% of the certificates used in

malicious binaries are also used by Android apps. This emphasizes the existing reuse of keys for different

purposes and across domains.

This study investigates the cryptographic characteristics of these reused certificates. Through the anal-

ysis, a multitude of security issues is uncovered. These problems include an alarming number of weak and

factorable keys, keys susceptible to the ROCA attack [51], and the use of deprecated and non-compliant

signature algorithms. To delve deeper into the underlying causes of these vulnerabilities, IPv4 addresses

that serve the reused TLS certificates have been scanned. The findings indicate that the majority of reused

certificates are associated with embedded network devices running operating systems derived from Linux and

BSD distributions. These certificates are primarily utilized by devices manufactured by a small number of

companies and have been in active use for an extensive period. For instance, it is observed that 48,794 IP

addresses, identified as routers, have been serving 950 distinct certificates for over two decades. Alongside
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duplicate certificates, it is discovered 14,862,767 identical RSA public keys that appear in multiple distinct

TLS certificates. 44% of these shared keys can be considered weak.

The current study traces the reused keys found in distinct certificates back to their origins. The investi-

gation reveals that these keys are primarily generated by only a couple of versions of OpenSSL and GnuTLS

libraries associated with a history of issues related to random number generation implementation.

As a complementary investigation for the observations, a systematic study is conducted to measure and

characterize the use of compromised digital certificates by focusing on Android applications (apps) and

Windows executable files.

One of the challenges in this context is to collect compromised certificates and keys, as there is no official

service that provides a list of all compromised certificates. To overcome this problem, a complementary set

of Android apps is collected to extract their corresponding digital certificates. This study analyzes the reuse

of these deemed to be compromised certificates among the apps.

The findings show that certificate reuse is more pervasive and widespread than previously observed, 48%

of the collected certificates (over 9 million) are reused across the collected sets of APK and malicious binary

files. Among them, 40% of the certificates used to sign malware binaries are also reused in Android malicious

apps for various purposes. In other words, these certificates are extensively reused in malware across domains.

Although using the same certificate for signing multiple Android apps is generally discouraged by Google,

it is observed that this practice is commonly ignored by both benign and malicious apps. For example, 59%

benign apps in the collections were signed with duplicate certificates. At the same time, it was discovered

that 9,931 unique certificates were employed to sign 142,579 malicious and 84,922 benign apps.

While the study highlights the persistent weaknesses and vulnerabilities in certificates and RSA keys

within the PKI ecosystem, we have also provided practical solutions to mitigate these issues and enhance the

overall security of PKI.

1.2 Contribution

This research study offers the following contributions:

• This study conducts the most comprehensive and the largest Internet-wide scan and analysis of TLS/SSL

certificates and RSA keys across domains.

• This study conducts the most comprehensive and largest analysis of cryptographic elements across

Android applications.

• This study measures and characterizes the extent of TLS/SSL certificates and RSA public key sharing

across domains on a diverse set of over 314 million valid certificates and 13 million SSH keys collected

from multiple sources over a period of several years (up to nine years in some cases).
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• This study measures and characterizes the extent of code-signing certificates and RSA public keys

sharing across APKs and malware binaries on a diverse set of over 19 million valid certificates and over

9 million reused keys collected from multiple sources over a period of several years (up to eleven years

in some cases).

• The findings emphasize the need for robust mechanisms for the detection and analysis of duplicate

and weak certificates and keys. To facilitate this analysis, a correlation platform is implemented to

determine duplicate keys and detect TLS certificates and RSA keys’ weaknesses. This platform and

the resulting duplicate keys are publicly available: https://key-explorer.com/.

• To facilitate analysis of cryptographic reuse, the set of reused certificates is made publicly available.

• Based on the analysis, a set of recommendations is provided to help security practitioners improve

overall cryptographic security.

1.3 Thesis Structure

This thesis is organized as follows:

• Chapter 1 (Introduction) presents an overview of the research, emphasizing its significance, the driving

motivation behind it, and the specific contributions it makes to the scientific field.

• Chapter 2 (Background) offers a concise introduction to fundamental cryptography concepts. Addi-

tionally, it provides brief explanations of the protocols, executable files, and Android applications that

are central to the discussions within this study.

• Chapter 3 (Related Work) provides a brief literature review that examines several studies focused

on network scanning, vulnerabilities in RSA keys, the certificate reuse phenomenon, and misuse of

cryptographic APIs.

• Chapter 4 (Methodology) outlines the process of data collection, tools used for parsing, systematic

reuse detection, and analysis of reuse as the key steps of the proposed approach.

• Chapter 5 (Measuring the propagation of RSA keys) extensively describes the findings regarding the

examination of certificates and RSA keys, along with an analysis of the prevalence of sharing these

cryptographic components across various elements of the PKI ecosystem.

• Chapter 6 (Measuring malicious cryptographic reuse in Android applications) provides complementary

results regarding the cryptographic reuse phenomenon across malicious binaries and Android apps.

• Chapter 7 (Discussion and Recommendations) delves into the implications of the findings, outlines the

observations, and provides recommendations based on the research. Additionally, novel and captivating

research prospects are proposed that can utilize the approach to broaden the scope of the study.

4
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2 Background

This chapter presents a brief introduction to fundamental cryptography concepts and provides concise

explanations of the communication protocols, Android applications, and executable files crucial to the dis-

cussions in this study. This knowledge is crucial for understanding the discussions in this study.

2.1 Overview

The presence of vulnerable and weak cryptographic elements has a number of critical security implications.

If a certificate or the corresponding cryptographic key is vulnerable, the encrypted content and/or secured

network traffic can be accessible by an insider attacker (or an external attacker with access to a compromised

machine inside the network) who has access to the private key or is able to regenerate it. In spite of

the strong mathematical foundations of cryptographic algorithms, several studies highlighted weaknesses in

practical implementations of cryptographic protocols which rarely relate to the fundamental aspects of the

algorithm’s theoretic design.

This study focuses on the analysis and measurement of the presence and distribution of cryptographic

materials in different host-based sources, malware executable files, and Android apps. This work explores

the weak keys, the cryptographic reuse phenomenon, hosting environments of shared certificates and keys,

along with malicious cryptographic reuse in Android apps, to this end, first, it is needed to take a look at

some general terms.

2.2 Cryptographic Infrastructure

2.2.1 Public Key Infrastructure (PKI)

PKI is a framework of technologies, policies, and procedures that manages digital certificates and crypto-

graphic keys. It is used for securing communication, verifying the identities of users and entities, and ensuring

the integrity and confidentiality of data in a networked environment. PKI involves the use of asymmetric

cryptography, which utilizes pairs of keys: a public key and a private key. The public key is widely distributed

and used for encryption and verifying digital signatures, while the private key is kept secret and is used for

decryption and creating digital signatures. Some of the related concepts and functionalities of PKI are:

• Key pair generation: A user or entity generates a pair of cryptographic keys – a public key and a
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corresponding private key. The public key can be shared openly, while the private key is kept secret.

• CA: A trusted third-party organization known as a CA issues digital certificates. These certificates

contain the public key and information about the owner, and they are digitally signed by the CA to

verify their authenticity.

• Certificate Distribution: The digital certificates are distributed to users or entities. When someone

wants to communicate securely or verify the identity of another party, they use the recipient’s public

key from the certificate.

• Encryption and digital signatures: Public keys are used for encrypting sensitive information and veri-

fying digital signatures. Data encrypted with a recipient’s public key can only be decrypted with their

private key, ensuring confidentiality. Digital signatures are created with the sender’s private key and

can be verified using their public key, ensuring the integrity and authenticity of the sender’s message.

• Revocation and renewal : Certificates have a limited validity period. If a private key is compromised or

lost, the certificate must be revoked. Certificate Revocation Lists (CRLs) or Online Certificate Status

Protocol (OCSP) services are used to check the validity status of certificates. Certificates can also be

renewed when they expire.

2.2.2 Digital certificates

Digital certificates serve as an attestation of the identity of a certificate’s owner (e.g., hostname, organization)

bound to its public key. The X.509 format [8] is one of the most widely used standards for digital certificates

that, in addition to the public key and owner’s identity, contains a period during which the certificate is

considered valid, and a digital signature of the issuing CA. In order to verify a certificate, a client needs

to obtain a chain of certificates including a presented leaf certificate, intermediate certificates, and finally,

a root certificate. In a web’s PKI, when a server presents a leaf certificate, it is expected to include the

certificate chain as well. A client then can verify each certificate along the chain using the included CAs’

digital signatures. In general, certificates can be used for specific purposes listed in their extension fields.

Extensions: The usage or purpose of a certificate can be optionally listed in Key Usage or Extended

Key Usage extension fields in a certificate such as digital signature, key encipherment, data encipherment,

key agreement, TLS web server authentication, code signing, email protection, etc. Meanwhile, Basic Con-

straints provides structural information, including whether a certificate can act as a CA. These extensions

enable certificate verifiers to assess suitability for cryptographic operations and enforce robust security mea-

sures. Starting from 2008, certificate extensions have been categorized as either critical or non-critical. If

a certificate-using system encounters critical extensions or information it cannot handle, it must reject the

certificate. On the other hand, non-critical extensions can be disregarded if they are unrecognized, but they

should be processed if they are recognized [8].
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Figure 2.1: X.509 certificate layout.

Signature algorithm: is a cryptographic method used to sign a piece of data and to calculate its hash

with a certain hash function. Generally, each public key certificate requires a default signature algorithm

from a list of allowed algorithms such as sha256WithRSAEncryption.

An example of an X.509 certificate is given in Figure 2.1. In addition to the certificate layout, it also shows

a fingerprint, which is a hash of a certificate in binary format. Typically, digital certificates are compared

based on these fingerprints.

Digital certificates can be categorized based on the environment they are used for:

• TLS/SSL Certificates: Used to secure communications between web browsers and servers, ensuring

data encryption and verifying the authenticity of websites.

• Code Signing : Used to verify the authenticity and integrity of software and code.

• Email Security : Used for digitally signing and encrypting email messages.

• Digital Signatures: Used for signing digital documents to prove their authenticity and integrity.

• User Authentication: Used in systems like VPNs or remote access to verify user identities.

2.2.3 RSA algorithm

This work focuses on the RSA keys [38] as this is arguably the most popular cryptographic system utilized

on the Internet today. RSA is an asymmetric cryptographic algorithm that leverages the fact that while

the multiplication of large prime numbers may not be computationally intensive, the factorization of large

prime numbers is significantly more complex. An RSA public key is a pair of values (n, e). It is generated

based on two prime numbers p and q used to calculate the modulus n, i.e., n = p ∗ q. Here ϕ(n) is equal to

(p− 1)(q − 1) and the public key’s exponent e is selected at random but it should be between 1 and ϕ(n) so

that e ∈ 1, 2, ..., ϕ(n)− 1 and the e and ϕ(n) should be co-prime numbers, therefore, GCD(e, ϕ(n)) is equal
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to 1 so that e and n are relatively prime. As a result, an RSA public key Pubk = (e, n) is represented by an

exponent e and a modulus n. RSA public key size is measured by the length of the key’s modulus in bits [53].

2.2.4 Cryptogrphic libraries

These libraries are software packages that include features and methods for secure data protection and

communication. They are frequently employed to carry out cryptographic processes such as certificate and key

generation, encryption, and decryption. Many different cryptographic methods, key management systems,

and protocols are frequently included in these libraries. OpenSSL, GnuTLS, Bouncy Castle, Libsodium, and

Crypto++ are a few well-known cryptography libraries.

2.2.5 Keystore

Android provides a hardware keystore facility for managing cryptographic keys. Keystores are utilized for

encryption, decryption, TLS/SSL communication, and digital signing within the app, ensuring data integrity

and user authentication. These keystores are typically stored in the app’s assets or res/raw folder. Differ-

ent cryptographic frameworks may use formats such as JKS and BKS, with standard extensions including

keystore, jks, and bks.

Java KeyStore (JKS) and Bouncy Castle KeyStore (BKS)

A JKS is a standard format for securely storing cryptographic keys and certificates in Java applications.

Protected with a password, JKS files hold private keys and their corresponding public key certificates. BKS

is an alternative format offered by the Bouncy Castle library, providing a wider range of algorithms and

cryptographic capabilities for Java-based applications.

Pretty Good Privacy (PGP) and GNU Privacy Guard (GPG)

PGP is a cryptographic technology for secure communication. GPG, often seen as an alternative to PGP,

is an open-source implementation of the OpenPGP standard. Both are widely used for securing email and

data encryption. The standard extensions for such files include pgp, asc, sig, gpg, pubkey pgp, seckey pgp,

and secring pgp.

2.3 Communication protocols

2.3.1 TLS/SSL

Transport Layer Security (TLS) [59] and its predecessor Secure Sockets Layer (SSL) are cryptographic proto-

cols that secure point-to-point communication over networks to a number of application layer protocols such

as HTTPS, DNS, SMTPS, IMAPS, etc. A TLS/SSL connection is initiated with a TLS handshake when a
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client requests a secure connection. At this stage, a server presents its digital certificate that allows it to

authenticate it to the client. Further verification of the server’s identity is performed by a client.

2.3.2 Secure Shell (SSH)

SSH protocol [46] is a cryptographic communication protocol that establishes secure remote access to comput-

ers and servers over a network. The SSH host runs an SSH server, which listens for incoming SSH connection

requests from clients to start a secure session by exchanging the supported cryptographic algorithms available

to both parties and the server then sends its public key to the client to authenticate its identity.

2.4 Android Package Kit (APK)

An APK file acts as a bundle containing all the necessary components and resources of an Android application,

including the compiled code, assets, resources, cryptographic files (e.g., digital certificates, keys), etc. In

Android applications, digital certificates and keys are used for various purposes:

1. Integrity and authenticity of the APK : The Android apps have to be signed, using unique digital

certificates, before distribution. This mechanism not only ensures the integrity of the application but

also provides Google, as the official market, with confidence that the owner’s identity has been verified.

However, Android apps can be self-signed by the owner, or signed with a verified third-party certificate.

There are two ways to create a key pair for signing apps.1 The first involves using embedded manager

tools in the development environment, such as Android Studio (apksigner, jarsigner) or Microsoft

Visual Studio (archive manager), to automatically generate a keystore (a secure storage container where

applications store and manage cryptographic keys and certificates) and a certificate with the identity

information of the app’s owner. Alternatively, developers can configure a personalized cryptographic key

pair to create a custom key, allowing them to define their preferred signature and digest algorithms and

key size. While this approach provides greater flexibility, it may also allow for weaker configurations.

In the end, the cryptographic key pair, along with the owner’s identity information, forms a signing

certificate used to sign the APK file and consequently perform APK validation during installation.

To achieve this, Android supports different APK signature schemes, such as v1 (JAR signing), v2

(introduced in Android 7.0), v3 (introduced in Android 9), and v4 (introduced in Android 11). Android

signature mechanism is backward-compatible, and a v4 signature requires a complementary v2 or v3

signature (Figure 2.2).

2. Data protection and privacy : Cryptographic keys are employed to encrypt sensitive data within Android

apps, safeguarding user information, passwords, and app-specific data from unauthorized access.

1https://developer.android.com/studio/publish/app-signing
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Figure 2.2: APK validation process [56]

3. Authentication: Android applications that integrate with external services or APIs may use authenti-

cation and authorization services, e.g., OAuth. These credentials are used to authenticate the app and

obtain access tokens for accessing protected resources.

2.5 Portable Executable (PE)

Like APKs, other software applications, including executable files, utilize digital certificates and cryptographic

keys to ensure data integrity and authentication. PE serves as the standard format for Windows executables

(.exe) and dynamic link libraries (.dll). Microsoft code-signing technologies, Authenticode and SignTool,

are widely used for code signing and digital signature verification of Windows executable files, including

PE (.exe), dynamic link libraries (.dll), installers (.msi), and other file types. Authenticode identifies the

publisher of Authenticode-signed software and verifies that the software has not been tampered with since

it was signed and published. SignTool, on the other hand, allows developers to sign their applications with

a digital certificate to ensure their authenticity and integrity. Then, this digital signature can be verified by

Windows during installation or execution, providing users with details of file origins.
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3 Related Work

This chapter provides a concise overview of previous related works, which have been categorized into

network scanning, weak keys, reused certificates and keys, and misuse of cryptographic APIs subsections.

Examining the breadth of research in these areas makes this study gain valuable insights into the magnitude

of the problem and the potential solutions that can be employed to safeguard the PKI ecosystem.

3.1 Overview

The study centers around digital certificates and keys derived from communication protocols and file sources.

Its focus is on TLS/SSL and SSH protocols while the file collection is based on malicious PE binaries

and Android application packages that use RSA keys. Cryptographic components, such as certificates and

keys, are essential for ensuring the confidentiality, integrity, and authenticity of data and communication.

However, these components are not immune to compromises. The vulnerabilities arise due to various factors,

including errors in implementation, misconfigurations, mishandling, or improper parameter choices during

their deployment.

To gather comprehensive data, this study utilized large-scale network scanning. This approach allowed

the study not only to collect the necessary information but also to gain valuable insights into the hosting

environments of these certificates and keys.

3.2 Network scanning

Over the past years, Internet-wide scanning has become a widely adopted practice, extensively utilized by the

security, networking, and Internet measurement communities. Its effectiveness in uncovering vulnerabilities in

cryptographic protocols like TLS, SSH, SMTP, Web PKI, and IoT devices has been demonstrated in several

academic works. This type of scanning has become a common practice, providing valuable data that aids in

understanding the prevalence and distribution of cryptographic components in diverse hosting environments.

Within the scope of the project, it also explores prior research that leveraged large-scale network scanning

techniques to identify and collect data pertaining to digital certificates and keys. Reviewing these works aims

to gain a comprehensive insight into the significance of network scanning and its role in the research context.

Several works attempted to introduce network scanning tools for Internet-wide studies among which

ZMap [19] is one the most popular optimized to perform fast network scans on entire IPv4 addresses. In

11



2016, Khattak et al. [40] used a network scanning method to investigate censorship issues. They analyzed

1,727,138 pairs of HTTP requests and responses. These pairs consist of requests from users who make use

of Tor, a traffic-routing browser bundle for enhanced privacy, alongside non-Tor users. They assessed Tor

filtering by employing ZMap probing, conducting tests from both Tor exit nodes and control (non-Tor) nodes

to observe variations in their access to remote addresses. The researchers measured that at least 1.3 million

addresses in the IPv4 address space along with 3.67% of the Alexa top 1,000 websites either block or offer

degraded service to Tor users.

Mirian et al. [49] analyzed the security of industrial control systems (IDS) by examining devices exposed

on the public Internet by implementing network scans on the IPv4 address space. They found over 60,000

vulnerable devices using the SCADA protocols, which are a set of communication standards used to monitor

and control the communication between hardware and software components in IDS. These devices were

originally intended for closed and serial systems but then opened to support long-distance communication.

Aviram et al. [3] presented DROWN 1 (Decrypting RSA using Obsolete and Weakened Encryption) which

is a cross-protocol attack on TLS that uses a server supporting SSLv2 to decrypt TLS connections. They

showed DROWN attack can decrypt a TLS 1.2 handshake using 2048-bit RSA. By performing Internet-wide

IPv4 scans using ZMap on eight different ports (HTTPS, SMTP, POP3, IMAP, SMTPS, SMTP, IMAPS,

POP3S), they investigated the security level of TLS connection which uses a server supporting SSLv2.

Attempting three complete handshakes with different versions of TLS/SSL protocol in each connection, they

found that 33% of all HTTPS servers and 22% of those with browser-trusted certificates are vulnerable to

the protocol-level attack due to widespread key and certificate reuse for different protocol versions.

Amann et al. [2] investigated technologies applied to strengthen and improve the TLS and the web PKI

such as Certificate Transparency (CT) which makes the CA system auditable; HTTP-based extensions that

harden the HTTPS posture of a domain; SCSV downgrade prevention which protects protocol downgrade;

and DNS-based extensions which control the certificate issuance and pinning. They combined the active

and passive measurements over the Internet. In the case of active measurement, they targeted 193 million

domain names instead of active IP address scanning in order to reduce bias from accidentally connected

embedded devices hosting web servers. Among a total of 193 million registered domain names, merely

28.4 million domains (14.7%) yielded successful HTTP responses with a status code of 200. They then

were able to extract around 12 million certificates corresponding to these domains. Their study revealed a

correlation between the ease of deployment, risks to website availability, and the implementation status of

technologies. Easily deployable and low-risk technologies like CT and SCSV showed higher adoption rates,

whereas technologies demanding more effort or carrying higher risks tended to have lower adoption rates.

1https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2016-0800
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3.3 Weak keys

In real-world scenarios, the reliability of an encryption algorithm relies on the strength of the cryptographic

key. However, vulnerabilities in the generation or management of RSA keys can result in the presence of

weak RSA keys, posing a significant risk to the overall security of the encryption system. Weak RSA keys

are keys that are susceptible to various cryptographic vulnerabilities. To address this issue, researchers have

dedicated efforts to understand, identify, and mitigate the impact of weak RSA keys. This subsection reviews

a collection of related works and studies conducted in this domain, exploring the techniques utilized to

detect and analyze weak RSA keys. Focusing on studies that have concentrated on identifying cryptographic

keys with inherent vulnerabilities aims to assess the security risks associated with specific cryptographic

algorithms and pave the way for the development of stronger alternatives to enhance encryption system

security effectively.

In 2012, Heninger et al. [31] studied the presence of vulnerable keys across the Internet by analyzing 6.2

million SSH keys and 5.8 million TLS certificates collected in the wild. Their results showed at least 5.57%

of TLS hosts and 9.6% of SSH hosts used vulnerable duplicate keys, underscoring the critical need to address

these widespread security risks. Similar results were obtained by Lenstra et al. [42] on the analysis of 11.7

million public RSA keys. The later study performed by Gasser et al. [27] on 56.4 million SSH keys confirmed

that the amount of vulnerable keys is declining. While Heninger et al. [31] were able to factor keys for 0.03%

of SSH hosts, Gasser et al. [27] found that 0.013%-0.016% SSH hosts use factorable keys.

Later in 2013, Durumeric et al. [19] evaluated the HTTPS ecosystem against vulnerabilities of RSA

keys by performing 110 Internet-wide scans over 14 months. They specifically focused on Debian weak key

vulnerability [6] and weak and shared public keys. They found that 44,600 unique certificates corresponding

to factorable RSA keys served on 51,000 hosts, which showed a 20% decrease compared to previously reported

statistics by Heninger et al. [31] but still is more than 25% of HTTPS servers supporting these weak keys.

Several other studies examined the weaknesses of TLS certificates. In 2016, Chung et al. [14] showed

that on average, 65% of SSL certificates advertised in each IPv4 scan are invalid. Using a set of over 80

million certificates, they found that most invalid certificates originated from a few types of end-user devices

associated with a few Autonomous Systems. A concurrent study by Samarasinghe et al. [61], albeit on a

smaller scale, analyzed certificates obtained from 299,858 devices. Similar to others, the researchers found a

presence of small keys (4% were 512-bit and 768-bit keys) and a use of deprecated RC4 stream cipher (37%).

In 2021, Hue et al. [35] assessed TLS authentication on 3,637 domains in a WPA2-Enterprise ecosystem

with X.509 certificates. They found security issues like weak algorithms, expired certificates, and possible

key reuse. They reported that 5.9% of leaf certificates had short RSA moduli, and 12% used the SHA1-RSA

algorithm.

Several studies showed vulnerabilities of cryptographic keys in both protocols and files are due to improper

use of libraries or inherited from their weaknesses, for example, random number generators (RNGs). Heninger
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et al. [31] confirmed that limited sources for generating appropriate randomness in memory-constrained

devices (such as routers, and smart cards). In 2008, a bug in the OpenSSL library made predictable generated

random numbers. A follow-up by Yilek et al. [69] confirmed the spread of keys affected by the bug even after

six months of disclosure. Slow industry response to the cryptographic bugs was also noted by Hastings et

al. [30] which suggests that one of the main causes behind the majority of factored RSA keys may be related

to RNG issues.

The various weaknesses in cryptographic keys were later used to attribute keys to the corresponding

libraries that generated them. Svenda et al. [66] performed the technical analysis of over 60 million newly

generated keys from 22 open and closed-source libraries and from 16 distinct smart card vendors, revealing

that various security lapses allow attributing keys to the libraries that generated them based solely on the

properties of RSA public keys.

Branca et al. [10] took a step further showing that it is feasible to accurately (with 95% accuracy) attribute

RSA keys to individual library versions based on their moduli. By analyzing over 6.5 million keys generated

by 43 cryptographic library versions they found that with just a few moduli characteristics, an individual

key can be attributed to the specific library that created it. They also explored the attribution of SSH keys

from publicly facing IPv4 addresses and by 95% accuracy distinguished corresponding libraries of RSA keys.

3.4 Reused certificates and keys

In the realm of web PKI, the phenomenon of certificate and key reuse has emerged as a legitimate scenario,

but it also raises concerns about potential vulnerabilities that could be exploited by attackers to compromise

security measures. This paper focuses on exploring the technical aspects related to reused certificates and

keys. To gain deeper insights into the proposed strategies and detection mechanisms, existing literature

and research are reviewed in this subsection. Investigating research efforts that have explored the reuse

of cryptographic components across various systems or services reveals the severe security implications, as

compromising one instance could lead to unauthorized access to multiple entities. Examining these findings

aims to enhance the understanding of the risks associated with certificate and key reuse and identify potential

solutions to mitigate such security threats effectively.

Host-based environments

In parallel to their other study, Durumeric et al. [17] reported an unexpected observation using their previously

collected data. They attempted to collect the corresponding certificate chain as well as the leaf X.509

certificate, after completion of each TLS handshake. They showed out of 1,832 browser-trusted signing

certificates, 380 certificates shared their public key with another browser-trusted certificate, forming 136

groups of “sibling” CA certificates.

In 2015, the Shodan company [54], which is a search engine for Internet-connected devices, identified
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250,000 routers and 150,000 networking equipment devices, primarily located in Spain, Taiwan, and China,

that possessed identical SSH keys. These keys appear to be pre-configured with a single operating sys-

tem image before deployment. This phenomenon makes these devices open to attackers who discover the

corresponding SSH private key.

Felsch et al. [24] demonstrated that the key reuse in IPSec protocol can lead to cross-protocol authentica-

tion bypasses since in practice just a single RSA key pair together with an encryption and signing certificate

is used to configure different versions of the Internet Key Exchange (IKE) protocol. They observed this case

in network equipment such as Clavister and ZyXEL devices. They also showed that their Huawei test device

reuses its RSA key pair even for SSH host identification, which further exposes such key pair.

Moreover, Holz et al. [32] investigated the security of standard Internet messaging infrastructure on

protocols of electronic mail (SMTP, IMAP, POP3) and instant chat (XMPP, IRC). They explored the key

and certificate reuse in messaging ecosystem and compared it to their similar prior work on the web PKI [33].

They showed that out of encountered 6,398 certificates, 1,096 (17%) were seen on more than one IP address.

They also investigated the reuse of self-signed certificates and explained if these certificates are created

purposefully for a single server or service, they should not occur on too many hosts. Hence, they assumed

that these were default certificates shipped with the software.

Further looking at the shared TLS certificates, Costin et al. [15] analyzing firmware images were able

to extract 109 private RSA keys from 428 firmware images enabling them to identify approximately 35,000

active online devices on the Internet that were utilizing the same self-signed certificate. They also employed

the fingerprint matching of SSL certificates and found that embedded certificates of devices were reused

interchangeably and even among different vendors.

Springall et al. [64] conducted an analysis of the security of the FTPS protocol and revealed that only

793,000 unique certificates were utilized among the 3.4 million servers supporting FTPS. This pattern was

attributed to hosting providers using shared SSL certificates and embedded device manufacturers deploying

identical certificates across all their devices.

The study by Frustaci et al. [25] investigated the “trust ecosystem” of social IoT devices with the aim of

highlighting critical security and privacy concerns. The researchers provided a taxonomic analysis based on

the three key layers of the IoT system model: perception, transportation, and application levels. Within the

perception layer, they identified shared cryptographic keys as the primary security risk.

Izhikevich et al. [36] identified server certificates belonging to IoT interfaces on unexpected ports and

showed TLS services on unassigned ports are 1.17 times more likely to have a certificate with a known

private key than on assigned ports, highlighting a concerning security issue. Their scan of unassigned ports

showed that over twice as many certificates have a known private key compared to the previously reported

spread of cryptographic elements investigated by Hastings et al. [30] and Heninger et al. [31]. They found

that on 23% of scanned ports, public keys are more commonly shared on ports other than the expected port

443. In the case of TLS hosts using wireless devices, they observed that 40% of these hosts on port 8081 were
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using the same OpenSSL Test Certificate and 39% of them on port 58000 were utilizing the same self-signed

certificate, all with a known private key. Their result demonstrated that a significant fraction of services

are located on non-standard ports which frequently exhibit weaker security measures compared to those on

standard ports.

Files-based environments

The implication of shared certificates in digitally signed malware has been studied by Kim et al. [41]. Their

introduced threat model centers on the vulnerabilities found within the code-signing PKI. These techniques

allowed them to study threats that breach the trust encoded in the Windows code-signing PKI.

They showed that to evade anti-virus programs and bypass system protection mechanisms malware is

often signed with valid certificates. They found that 88.8% of the signed malware families rely on a single

certificate. Additionally, their analysis revealed that out of 153,853 signed malware samples over 40% were

found to contain malformed digital signatures and reused certificates. This enables adversaries to employ

the Microsoft Authenticode, which is the prevalent code signing standard on Windows, a signature from a

legitimate sample to bypass antivirus detection.

Kang et al. [39] introduced AndroTracker, a tool that makes use of serial numbers of certificates to detect

possible Android malware. Generally, for distributing an application, the creator signs it with their private

key and its corresponding certificate. In this study, they tracked the reuse of certificates among 55,000

malicious and benign applications. They found that 70% of the malicious applications are using 4% of the

total number of signing certificates used for the overall applications.

In 2023, Hageman et al. [28] conducted a study by crawling various markets, including Google Play

Store, APKMonk, APKMirror, Baidu, and Tencent. They discovered that Android applications developed

by different authors often share signing certificates. This phenomenon was attributed to the increasing use

of app-building frameworks and software developers, which likely contributed to the generation of shared

certificates among developers. Their analysis of certificate reuse revealed that a small portion of certificates

(ranging from 1.2% on Google Play to 4.9% on Tencent) are used by multiple developer names. Despite their

limited number, these certificates account for a significant proportion of market entries, ranging from 15.2%

on Google Play to 22.6% on Tencent.

3.5 Misuse of cryptographic APIs

In the context of software development, cryptographic Application Programming Interfaces (APIs) play a

key role in ensuring secure communication, data protection, and authentication. However, the improper

usage or implementation of these APIs can pose a significant threat to system integrity and lead to security

implications. Over the past decade, researchers have conducted several studies to explore the misuse of

cryptographic APIs in Android applications, shedding light on potential vulnerabilities and challenges in
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this domain. By analyzing their findings and methodologies, valuable insights are gained into the risks

associated with the improper utilization or misconfiguration of cryptographic APIs. Understanding these

cases is essential to analyze the overall security of the PKI ecosystem and to develop best practices for secure

API implementation in order to safeguard sensitive data effectively.

The vast majority of the prior approaches use verification-based analysis that offers assurances for the cor-

rect implementation of cryptographic primitives. For example, the static analysis frameworks CryptoLint [20]

and BinSight [50] perform analysis of cryptographic misuse at scale.

By focusing on the Google Play marketplace, CryptoLint [20] found that a significant number of Android

applications, specifically 88% out of 11,748 analyzed, had at least one mistake in their usage of cryptographic

APIs. The researchers specifically explored the utilization of cryptographic primitives through static analysis

of symmetric encryption and its associated securing rules. The findings outlined that many applications

did not adhere to best practices and guidelines when employing cryptographic APIs, which consequently

compromised the overall security of these applications.

BinSight [50] in its follow-up analysis showed that cryptographic API misuse originated in third-party

libraries. Specifically, they observed that 90% of 132,000 Android apps violated at least one call-site to Java

cryptographic API guidelines. Researchers found that the use of deprecated cipher modes decreased over the

years, but libraries increasingly relied on static encryption keys. However, applications did not show much

interest in adopting static keys.

Similarly, Gao et al. [26] found that 96% of the analyzed 8 million APKs from the AndroZoo [1] dataset

exhibited some crypto-API misuses. They presented the distribution of cryptographic misuse in APKs, indi-

cating that most applications typically have between 2 to 9 instances of misuse cases. They also investigated

the update rate at the crypto-API usage in newer versions of 600,000 applications and discovered that over

95% of the misused cases are not touched by app developers during the evolution of Android apps.

K-Hunt [43] focused on weak and insecure cryptographic keys by analyzing executable binaries and lever-

aging the properties of crypto operations. It identifies the memory buffers where crypto keys are stored,

tracks their origin and propagation, and identifies insecure keys, including deterministically generated keys,

insecurely negotiated keys, and recoverable keys.

Following the same idea, CRYLOGGER [55] employed dynamic analysis for the detection of cryptographic

misuse in Android apps. Similar to CryptoLint and BinSight, CRYLOGGER explored the correctness of

cryptographic API calls based on the defined rules (e.g., constant keys, and weak passwords). The analysis

of 1,780 Android apps from the Google Play Store showed that crypto misuses can be detected dynamically

by supporting a large number of rules.

Wickert et al. [68] focused on the severity of crypto misuses especially in two Java libraries, the Java

Cryptography Architecture (JCA) and Bouncy Castle (BC). Their study of 936 open-source Android apps

showed that 88% of their collected apps failed to use cryptographic APIs securely and nearly half the misuses

(42.78%) are of high severity. For example, 29.05% of the applications continue to utilize SSL, TLS 1.0, or
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TLS 1.1, which could potentially make them vulnerable to remote exploitation.

Numerous studies explored more generic detection of cryptographic misuses. Li et al. [44] conducted a

large-scale analysis of API misuse based on bug-fixing commits from GitHub projects, 51.7% of which were

related to API misuses. Zhang et al. [71] proposed LibExtractor to detect potentially malicious libraries and

identify malware families based on their digital certificates. They observed 99.65% of the 206,572 certificates

collected from malware samples are self-signed.

CryptoGuard [57] detected cryptographic misuse in Java programs including 6,181 Android apps. Similar

to other studies, CryptoGuard discovered that around 95% of discovered vulnerabilities, such as hardcoded

and predictable passwords, originate from libraries that are packaged with the application code.

Zhang et al. [70] have proposed CryptoREX, a framework to identify cryptographic misuse of IoT devices.

Analyzing 521 firmware images with 165 pre-defined cryptographic APIs, CryptoREX showed that 24.2% of

firmware images violate at least one misuse rule.

Braga et al. [9] conducted an analysis of cryptography misuse in cryptography-based security and crypto-

graphic programming using contributions from software developers on online forums. Their study employed

a data mining technique to identify the impact of complex architectures on developers, leading to confusion

and the persistence of recurring errors in cryptographic programming.

Chatzikonstantinou et al. [12] conducted an assessment of the cryptographic security of 49 Android

applications. They categorized cryptographic weaknesses into four groups: use of weak cryptography, weak

implementations, use of weak keys, and use of weak cryptographic parameters. The study revealed that

nearly 88% of the applications exhibited some form of misuse, while the remaining applications did not

utilize cryptography during the analysis.

3.6 The perspective

Similar to previous research, this study also examines weaknesses in RSA public keys. However, unlike

studies that concentrate on a specific area of RSA key usage, the study investigates the prevalence of shared

certificates and key usage across diverse domains on a much larger scale.

The approach goes beyond only relying on real-time data collection and active network scanning; addi-

tionally, a substantial dataset gathered over the years is leveraged, covering more than 314 million certificates

and 13 million SSH keys. This extensive dataset offers a more comprehensive and macroscopic view of key

usage on the Internet, allowing the approach to highlight the persistence of specific vulnerabilities and im-

plementation errors over time. By adopting this approach, this work can provide valuable insights into the

long-term implications of cryptographic practices and better understand the security landscape of crypto-

graphic components.

This study undertakes a comprehensive investigation into the properties of certificates and RSA keys,

along with the environment where shared cryptographic elements are hosted. Additionally, exploring the
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libraries responsible for generating vulnerable keys is performed to understand the origins and implications

of potential security weaknesses.

Moreover, the existing approaches within the Android ecosystem primarily concentrate on examining

whether cryptographic functionality implemented by the cryptographic libraries embedded in Android is

correct and how it has evolved over time, with their primary focus on benign applications. In contrast, the

investigation focuses on the reuse of certificates, including malicious certificates.

Building on the pioneering work of Kim et al. [41], which explored the presence of PE files signed by

malicious certificates, this study extends this analysis further. The research delves into the scope and at-

tributes of malicious certificates across domains encompassing Windows binaries and Android apps, including

both malicious and benign applications. By broadening the scope of the analysis, this work aims to gain

a comprehensive understanding of the prevalence and implications of certificate reuse in different contexts,

shedding light on potential security risks and challenges in cryptographic practices across various platforms.
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4 Methodology

This chapter outlines the planned approach for carrying out this research. Our focus lies in gathering

data from various sources, extracting certificates and keys, thoroughly analyzing how they are reused in the

PKI ecosystem, and specifically investigating instances of malicious reuse within the context of Android.

4.1 Overview

The flow of our study is illustrated in Figure 4.1, comprising four key steps: data collection, parsing, reuse

detection, and analysis of reuse.

Initially, we gather data from various sources, ensuring a diverse and comprehensive dataset. Next, the

collected data undergoes a meticulous parsing process, extracting critical cryptographic information, primar-

ily certificates, and keys. Subsequently, we conduct a systematic reuse detection process to identify instances

of cryptographic component reuse within the PKI ecosystem and pinpoint potential security vulnerabili-

ties. Lastly, our analysis extends to in-depth investigations of malicious reuse within the Android context,

providing valuable insights into the security implications of cryptographic component reuse in this specific

domain.
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Decode

Retrieve public keys

Filter RSA keys
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of certificates based on
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Selection of certificates
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Figure 4.1: The flow of the analysis.

4.2 Data Collection

To ensure the completeness of our measurement study, digital certificates and RSA keys were collected from

six different sources, covering a period of several years. It is included host-based repositories namely TLS/SSL

certificates, the Rapid7 dataset, the SBA set, and SSH keys among these sources. Additionally, we incor-

porated file-based collections, namely certificates and keys from malware binaries and Android applications.
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During the data collection process, there was no overlap between collected TLS/SSL, Rapid7, and SBA

datasets in terms of IP addresses and protocols tested per port.

4.2.1 TLS/SSL certificates

To collect TLS/SSL certificates, 10 million series of pseudo-random integers are generated and interpreted as

IPv4 addresses. This ensured a uniform distribution of hosts. These IP addresses were contacted on ports

21 (FTP), 443 (HTTPS), 465 (SMTPS), 993 (IMAPS), and 995 (POP3) to determine the listening hosts. If

a host replied, acknowledging our connection (syn-ack packet), we further connected to it using TLS/SSL

protocol to obtain a certificate. Several scans in 2013 have been made for collecting certificates using SSL2,

SSL3, SSL231, TLS 1, TLS 1.1 protocols. For each successful connection of TLS/SSL, we collected a main

certificate and discarded the chain of certificates.

4.2.2 Rapid7 certificates

An additional collection of SSL certificates is obtained from Rapid7.2 It includes weekly scans collected by

Rapid7 from October 2013 to September 2015, during August 2019, and during the period from September

2020 to July 2021. In addition to X.509 certificates, this retrieved set contains a collection of metadata,

e.g., time of collection, IP address, protocol and port, and the X.509 certificate’s fingerprint. Among all

certificates only the leaf certificate were kept and the chain of certificates were discarded. The certificates

from 2013 to 2015 were retrieved from Rapid7 in the past without the corresponding IP addresses. Note that

this set is no longer available from the Rapid7 set in its entirety.

4.2.3 SBA certificates

In this analysis, the subset of certificates offered for analysis by Mayer et al. [47] is also used. The email

ecosystem makes wide use of certificates for the secure transmission of messages. The SBA set contains the

certificates retrieved over StartTLS protocol from SMTP servers on port 25 during a period of April 2015 -

August 2015.3

4.2.4 SSH keys

To collect SSH keys, the public IPv4 space is scanned during May-September, 2021 by utilizing ZMap to

perform a single-packet host discovery. Each host discovered by ZMap is contacted again on ports 22, 23,

2222, 4444, 5000, and 10001 using the ssh-keyscan tool4 collecting SSH banner and their public SSH RSA

1The OpenSSL header file dealing with the combined use of the SSLv2 and SSLv3 protocols
2https://opendata.rapid7.com/sonar.ssl/
3The original set is now only available throughWayback machine: https://web.archive.org/web/20160307162719/https://scans.io/study/sba-

email. Due to a site problem, we were never able to download the whole set.
4https://man.openbsd.org/ssh-keyscan.1
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key. In addition to the cryptographic material from RSA keys, key collection time, an IP address, and a port

are recorded. Using ssh-keyscan, both the public key and server header from the connection were collected.

4.2.5 Malware certificates

To explore certificates from binaries, a set of 40,270,387 malicious files in PE (Microsoft Windows Portable

Executable) format were collected from VX underground’s APT collection5 and VirusShare repository6 from

2012 to 2021.

4.2.6 APKs certificates

• Original set: The data collection efforts were extended by crawling several legitimate Android markets,

namely Google Play Store, 1Mobile Market, SlideME, Xiaomi, Nduo.cn, Mob.org, Anzhi, F-Droid, and

ApkGalaxy, to collect APK files. This extensive data collection process spanned from September 2020

to October 2020.

• Complementary set: The main analysis results encouraged the approach to collect more APKs for fur-

ther investigation on malicious reuse of cryptographic elements. To ensure a robust dataset, Android

APK files from several Android app distribution platforms were collected including Google’s official

market called Google Play Store, and Chinese app stores primarily focused on Chinese users such as

Xiaomi and Anzhi; free open-source repositories for Android apps such as F-Droid and AndroidAPKs-

Free; markets focused on game apps such as Mob.org; several unofficial repositories such as APKPure,

Appvn, AppsApk, SlideME, Uptodown, APKGOD, Apkmaza, and CracksHash; and stores allowing a

direct download of apps such as AndroGalaxy, and 1Mobile Market. Also apps from malware reposito-

ries VirusShare and VirusTotal were collected. By utilizing a combination of these sources, this study

aimed to gather a representative sample of Android APK files, encompassing benign used by different

categories of users and malicious apps. The complementary set included benign applications collected

between 2017 and 2023 and thus presumably following the most recent standards and malicious apps

from 2012 to 2022.

4.3 Parsing

The Android apps were unpacked to obtain and verify signature schemes, package integrity, and package

manifest using “apksigner” and AAPT2 (Android Asset Packaging Tool) included in Android Studio SDK

build tools and APK parser3.7 Then, we analyzed for the presence of cryptographic keys, i.e., files with

standard extensions such as rsa, pem, crt, and cer. These certificate files are typically used to sign APK files,

5https://vx-underground.org/apts.html
6https://virusshare.com
7https://github.com/itomsu/apk parse3
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i.e., to identify the owner of an Android app. We were primarily interested in keys used for code signing,

hence, we did not decompile .dex files to extract hard-coded keys.

Malware binaries were parsed using GoLang’s sigtool8, which is a PE package designed to extract digital

signatures from signed PE files. The certificates used for signing code are contained in the “Attribute

certificate” section of PE files in DER format.

To maintain consistency, we converted the extracted certificates and keys from APKs and binaries into

the PEM format. Subsequently, along with the host-based certificates and keys, we parsed and extracted the

cryptographic information from all these sources using Python cryptographic libraries namely PyOpenSSL,

Cryptography, Pyasn1, PyJKS, and Paramiko; keytool9 and CERT Keyfinder10.

While parsing data from our sets, we found that a significant number of IP addresses presented invalid

or incomplete certificates. Furthermore, not all the certificates and keys collected from files are parsable due

to corrupted formats, password protections, or outdated (no longer supported by libraries) standards.

We thus discarded all invalid, incomplete, or unparsable certificates and keys. Among the collected keys,

approximately 97.8% were RSA keys. As a result, we further filtered non-RSA keys. For our analysis, we re-

tained RSA public keys, i.e., their modulus and exponent, the information extracted from their corresponding

certificates, and the IP addresses (when available).

4.4 Reuse detection

To determine the potential key reuse across our sets, we proceed to perform a pairwise comparison of RSA

certificates based on their fingerprints (also referred to as thumbprints), i.e., the SHA-1 hash of the certificate

in DER binary format. In addition to matching certificates, we perform a pairwise comparison of valid RSA

keys from all sets irrespective of whether their corresponding certificates are shared or not.

For shared certificates, we retrieve available IP addresses. Since the Rapid7 scans from 2013 to 2015 had

no associated IP address or port information, further analysis of the certificates was performed based on the

IP information for the matching certificates retrieved from the other sets. For each of these IP addresses, we

performed a DNS query to retrieve the corresponding PTR records, which provide us with a domain name

associated with an IP address. We also map an IP to ASN and retrieve WHOIS contacts using the Team

Cymru service.11

4.5 Analysis of reuse

In the next step of the analysis, our focus shifts exclusively to shared certificates and RSA public keys.

We thoroughly examined shared certificates from multiple perspectives, including the reuse of certificates

8https://github.com/doowon/sigtool
9https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html

10https://github.com/CERTCC/keyfinder
11https://team-cymru.com/community-services/ip-asn-mapping/
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over time and for different purposes. Additionally, we investigated signature algorithms and explored the

environments where these certificates were utilized. Furthermore, we conducted an in-depth investigation of

key reuse, particularly vulnerable keys.

The observations during shared certificates analysis encouraged us to expand our approach and collect

a larger set for APKs, we refer to them as complementary set, to measure and characterize the extent of

compromised certificates and key reuse across Android apps and malware binaries. To this end, we analyzed

a broader collection of Android apps and for each of the apps, we extracted all cryptographic elements such

as digital certificates, and public and private keys that were included in the Android application packages.

During the process of unpacking the APKs, we observed the presence of files that did not match any of the

standard extensions, yet appeared to contain digital certificates and keys. We thus parsed the remaining files

using the Linux file command to identify hidden files that previously had standard cryptographic extensions

that were later changed.

In order to assess the reuse within the complementary data, we conducted similar reuse detection with a

pairwise analysis of the collected certificates using their fingerprints, i.e., the SHA-1 hash of the certificates.

Along with matching certificates, we also compared valid RSA keys.

In the context of the experimental analysis, it is essential to highlight that handling and processing

the extensive dataset pose significant challenges. Parsing such large volumes of data is a time-consuming

operation that demands substantial memory resources, making it resource-intensive. To address this, we

developed custom parsers to efficiently parse the certificates and RSA keys. Once parsed, all the data, which

amounts to over 4 terabytes, was loaded into a PostgreSQL 14.912 database.

Querying such a substantial amount of data comes with a high computational cost. PostgreSQL uses an

arbitrary unit to measure the cost of queries, and for instance, one of our primary queries, which involves

pairwise comparisons to identify reused certificates, is estimated to execute a sequence of 14 functions. These

functions include grouping, aggregation, filtering, gathering of merged results, various sorting operations, and

sequential scans, all of which incur significant computational expenses.

All our parsers are implemented in Python and are publicly available in our GitHub repository: https:

//github.com/thecyberlab/RSA-keys-analysis.

4.6 Summary

In the methodology section, our research approach involved a series of well-defined steps. Firstly, we col-

lected certificates and keys from six diverse sources, ensuring a comprehensive and representative dataset

for analysis. Next, the collected data, comprising Android applications, malware binaries, and host-based

certificates, underwent thorough parsing and processing to extract essential cryptographic information, laying

12PostgreSQL 14.9 (Ubuntu 14.9-0ubuntu0.22.04.1) on x86 64-pc-linux-gnu, compiled by gcc (Ubuntu 11.4.0-1ubuntu12̃2.04)
11.4.0, 64-bit
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the groundwork for subsequent analyses.

Subsequently, we employed a systematic reuse detection process to identify instances of shared certificates

and RSA keys, allowing us to gain insights into the prevalence and implications of cryptographic component

reuse. The identified shared certificates and RSA keys were then subjected to in-depth analysis, enabling us to

make observations and uncover practices that informed our approach’s direction. These observations further

motivated us to explore the phenomenon of malicious cryptographic reuse within the Android ecosystem,

leading to a deeper understanding of potential security risks and vulnerabilities in cryptographic practices

on the platform.
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5 Measuring the propagation of RSA keys

This chapter conducts a comprehensive examination of certificates and RSA keys along with an analysis of

the prevalence of sharing of these cryptographic components across various components of the PKI ecosystem,

including hosting environments, executable files, and Android APKs.

5.1 Overview

The propagation of certificates and RSA keys across the PKI ecosystem is a less-explored phenomenon raising

concerns about the efficacy of existing security protocols. We endeavor to identify the reasons behind this

duplication, and regardless of the cause, the presence of duplicates raises red flags, casting doubt on the

overall security of the PKI ecosystem.

Section 5.2 gives details of our collected data from various sources. In section 5.3 the general findings about

weak and vulnerable keys along with the presence of legacy certificates are discussed. Section 5.4 reviews

the presence of the shared certificates by taking a deeper look into their characteristics as well as hosting

environments. Section 5.5 takes a deeper look at the phenomenon of shared RSA keys in distinct certificates

by measuring their weakness and vulnerabilities along with exploring the libraries that are responsible for

generating such keys. Finally, section 5.6 summarizes our findings in this section.

5.2 Collected Data

The details of the collected data are provided in Table 5.1. The dataset comprises data from six various

sources, including 863,872 TLS/SSL certificates from a set of generated specific IP addresses, 295,063,780

certificates from the Rapid7 dataset, and 202,381 certificates from the SBA dataset, resulting in 296,130,033

certificates from host-based sources along with an additional 13,681,145 SSH keys gathered from 10,435,118

IP addresses.

Additionally, we gathered a substantial dataset of 18,081,501 certificates, as digital signatures, from

40,270,387 malware binaries.

In the case of Android APKs, we initially collected 80,000 APK files, out of which 79,652 were successfully

decompressed. Generally, Google installation requirements enforce apps to be signed for distribution through

the official Google Play application.1 Therefore, we expected all Android developers to follow this security

1https://developer.android.com/google/play/requirements/target-sdk
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Table 5.1: The summary of collected certificates and keys

Datasets Collection period Responsive
hosts/ col-
lected files

Collected
certificates
and keys

All valid certifi-
cates

Valid RSA certifi-
cates & keys

Unique RSA
keys

Collected
TLS/SSL

8/2013-11/2013 1,675,040 IPs 863,872 certs 863,871 (100%) 863,500 certs 863,500 (100%)

Collected
SSH

5/2021-9/2021 10,435,118 IPs 13,681,145
keys

n/a 13,681,145 keys 9,747,793
(71.25%)

Rapid7
10/2013-09/2015,
8/2019, 9/2020-7/2021

99,910,085 IPs 295,063,780
certs

234,865,702
(79.6%)

135,823,576 certs 104,904,586
(77.24%)

Malware 2012-2021 40,270,387 files 18,081,501
certs

18,081,501 (100%) 18,081,489 certs 41,282 (0.23%)

Android
APKs

9/2020-10/2020 72,508 APKs 118,743 certs 29,247 (24.63%) 29,247 certs 29,247 (100%)

SBA 4/2015 - 9/2015 n/a 202,381 certs 202,381 (100%) 202,378 certs 121,990
(60.28%)

Total - - 314,330,277
certs
13,681,145
keys

254,042,702
(77.45%)

168,681,335 keys
155,000,190 certs

115,708,398∗

(68.60%)

* not deduplicated across sets

practice, but only 72,508 APKs had at least one cryptographic content. We were able to extract 118,743

certificates from these files which formed our original set for Android APKs.

The combination of certificates collected from malware binaries and APKs resulted in a total of 18,200,244

certificates from file-based sources.

In total, 314,330,277 certificates and 13,681,145 keys were collected for analysis. However, not all the

certificates and keys are parsable due to corrupted formats, password protections, or outdated standards.

Also, considering the fact that our focus in this study is on RSA certificates, after the filtering process, out

of 314,330,277 certificates, we extracted 155,000,190 valid certificates containing RSA keys. Overall, we were

left with 168,681,335 valid RSA keys for our analysis.

5.3 Initial Analysis

We observed that there is a significant amount of duplication across certificates and keys used on the Internet.

The highest amount of duplication is present in our Malware collection where almost all keys (99%) found in

binaries were also seen in other sets. Around 29% of keys served by SSH hosts and 43% of Rapid7 certificates

are duplicates.

Some aspects of the key or certificate reuse phenomenon were noted by previous studies. For example,

Heninger et al’s [31] study conducted in 2011-2012 on a smaller scale (12.8 million TLS hosts and 10.2

million SSH hosts) showed that 61% of TLS hosts and 65% of SSH hosts serve the same key as other hosts.

It appears that the usage of repeated keys has decreased since that time, yet remains a considerable issue.

To understand the current state of the PKI ecosystem, we investigate the strength of collected keys and

certificates individually.
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Table 5.2: RSA public key size

Key size
range
(bits)

Frequency
Total Total Unique SSL/TSL SSH Rapid7 Malware Android

APKs
SBA

0-1023 4,203,348
(2.49%)

582,823 (0.69%) 9,539 (1.12%) 0 (0.00%) 581,173
(0.78%)

1,126 (3.05%) 10 (0.03%) 240 (0.20%)

1024-2047 47,050,256
(27.89%)

26,223,521
(30.98%)

385,044
(45.30%)

225,357
(2.31%)

25,958,127
(34.65%)

10,554
(28.61%)

9,544
(32.68%)

26,356
(21.69%)

2048-4095 111,732,314
(66.24%)

55,309,352
(65.33%)

444,259
(52.26%)

9,468,431
(97.13%)

45,892,172
(61.26%)

24,405
(66.15%)

18,767
(64.25%)

89,481
(73.64%)

4096-8191 5,684,453 (3.37%) 2,536,655 (3.00%) 11,111 (1.31%) 53,539
(0.55%)

2,480,086
(3.31%)

802 (2.17%) 885 (3.03%) 5,395
(4.44%)

8192-up 10,964 (0.01%) 6,603 (0.01%) 64 (0.01%) 466 (0.005%) 6,122 (0.01%) 8 (0.02%) 2 (0.01%) 38 (0.03%)
Total 168,681,335 84,658,954

(50.19%)
850,017 9,747,793 74,917,680 36,895 29,208 121,510

5.3.1 Weak key size

We analyzed the strength of the collected RSA keys based on their modulus length. Table 5.2 shows the wide

presence of weak keys across collections.

Among the collected keys, 30% (51,253,604) of keys are less than 2048 bits in length. They are considered

cryptographically weak, and should not be used for cryptographic protections. For example, NIST-compliant

RSA keys are required to have a length greater or equal to 2048 bits [4, 5].

NIST also recommended deprecating signing certificates that contained RSA keys shorter than 1024 bits

by the end of 2013. However, across all our scans, 2.49% (4,203,348) of keys are less than 1024 bits in length

and thus have deprecated status. While some of these keys are found in the TLS/SSL set collected in 2013

and the Rapid7 set partially covering 2013, many come from sets collected more recently (in 2019-2021)

indicating that legacy keys are still widely in use.

Among these weak keys, 445,900 (0.26%) are 512-bit RSA keys. Only a portion of these keys (119,612)

in our sets is associated with an IP address, so we can see that 119,612 TLS hosts serve these vulnerable

RSA keys. As a comparison, in 2012 Heninger et al. [31] showed that 123,038 TLS hosts were using 512-bit

keys, which reveals that the numbers have not decreased over time. Since we do not have the corresponding

host information for 326,288 keys, it is likely that the actual number of TLS hosts using 512-bit keys is

significantly underestimated.

5.3.2 Breakable RSA keys

Besides the weaknesses examined related to the modulus of keys, we explore other vulnerabilities that lead to

breaking an RSA key such as weak exponents, the ROCA vulnerability, and factorable GCD. The summary

of these experiments is given in Table 5.3.

Weak exponent

Out of all collected keys, 28 RSA keys have an exponent equal to one, and 42 keys have an even exponent.

The exponent is supposed to be a large coprime number, preferably equal to 65537 as recommended by NIST.
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In the cases when e = 1, deriving a private key is trivial, hence, the corresponding public key is considered

weak. When an even exponent is used, by calculating the square root of the ciphertext, it is potentially

possible to retrieve the original plaintext without possessing the private key.

ROCA

We have also tested collected keys for the Return of Coppersmith’s Attack (ROCA), a security vulnerability

that affects the cryptographic keys generated by a specific type of hardware RNG called Infineon RSA

library [51]. The cryptographic key originated from the Infineon RSA library allows an attacker to exploit

the weak prime numbers generated by the faulty implementation using Coppersmith’s algorithm. To test the

gathered keys for this vulnerability, we have used the ROCA detection tool.2 Results show that 231 keys in

our all collected data were vulnerable to ROCA.

GCD-Factorable

One of the threats to the RSA cryptosystem is the possibility of factorizing modulus to decompose it to p and

q values, and consequently to compute the private key. Theoretically, such factorization is computationally

intensive and should be unfeasible for sufficiently large p and q numbers. Yet in practice, the occurrence of

weak keys is more common which makes the factorization possible in some cases. Studies by Heninger et

al. [31] and Gasser et al. [27] measured the spread of weak factorable keys in 2012 and 2014.

To determine the presence of weak factorable keys, we used the Fastgcd3 tool, which was originally

developed by Heninger et al. [31]. The tool performs a pairwise computation of GCDs of all moduli to

determine if any of them share a prime number with any other modulus, in which case, a computation

of the corresponding private key is straightforward. In our study, the GCD’s computation was performed

on 141,098,520 unique moduli extracted from the collected certificates and keys. We were able to find

divisors for 185,731 (0.13%) moduli that were present in 793,694 keys in our sets, i.e., we could factor the

moduli corresponding to 793,694 keys (Table 5.3). This is considerably higher (80 times) than the numbers

reported by the previous studies, e.g., Heninger et al. [31] reported finding divisors for 2,314 out of 11,170,883

moduli. Since our coverage is significantly larger than the previous studies, we believe our results are more

representative of the security state of the RSA keys.

5.3.3 Use of certificates over time

The presence of legacy devices with legacy certificates on the Internet can partially provide an explanation

of key weaknesses. We therefore also analyzed the lifetime of our collected certificates. To explore the use of

certificates across time, we grouped all certificates based on the time of their collection. Within each time

interval, we discarded duplicates based on their fingerprints and checked the presence of the remaining unique

2https://github.com/crocs-muni/roca
3https://factorable.net/resources.html
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Table 5.3: Factorable RSA keys

Heninger et al. [31]
SSH hosts using factorable RSA
keys

0.03%

TLS hosts using factorable RSA
keys

0.5%

Gasser et al. [27]
SSH hosts using factorable RSA
keys

0.013%-0.016%

Our results:
Factorization analysis:
GCD factorable moduli 185,731 (0.13%)
Total impacted RSA keys 793,694 (0.47%)
Total impacted certificates 792,246 (0.31%)
Total impacted hosts 35,700
Key dataset:
TLS/SSL 3,923
SSH 1,448
Rapid7 786,293
Malware 2,030
Android APKs 0
SBA 0

Key size
0-1023 14,279
1024-2047 769,986
2048-4095 9,327
4096-8191 98
8192-up 4

ROCA vulnerability (keys) 231

Exponent = 1 28

Exponent = even number 42

certificates in other time intervals. Figure 5.1 shows the frequency of distinct certificates seen across different

time ranges.

The certificates appearing in earlier time ranges (2013 - 2015) are rarely seen at later times. This

is generally expected as some of the older certificates will become obsolete due to evolving cryptographic

standards and would require organizations to generate new keys and the corresponding certificates to comply

with the new rules and recommendations. For example, the introduction of SHA-3 in 2015, and consequently,

the requirement to phase out certificate chains with SHA-1 by 2017 naturally led to the certificates being

reissued.

The drastic shift is clearly visible in recent years. The overwhelming majority (77-90%) of certificates

collected in 2020 and 2021 were encountered across multiple time ranges between 2013 to 2015. This fact

suggests that organizations are not replacing their certificates as frequently as expected. Many of these

certificates are shared between our sets, we thus focus specifically on the shared RSA certificates and keys.
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Figure 5.1: The use of distinct certificates across time.

5.4 The shared RSA certificates

Out of 155,000,190 valid RSA certificates, 10,110,361 (6.5%) are shared across the collected datasets (Ta-

ble 5.4).

Table 5.4: The shared RSA certificates

Datasets Total shared
Unique shared in
each set**

Certificates shared with other sets
Collected
TLS/SSL

Rapid7 Malware SBA
Android
APKs

Collected
TLS/SSL

752,029 (7.44%) 752,029 (100%) * 751,993 0 3,948 1

Rapid7 863,792 (8.54%) 863,284 (99.94%) 752,309 * 491 114,733 227

Malware 8,302,431 (82.12%) 377 (<0.01%) 0 8,299,100 * 0 2,338,672

SBA 191,919 (1.90%) 114,734 (59.78%) 17,496 191,879 0 * 0

Android APKs 190 (<0.01%) 190 (100%) 1 187 58 0 *

Total 10,110,361 1,730,614 863,323 (8.54%) are distinct across sets

** duplicates within a set are removed, across sets retained

There are common scenarios where certificates can be potentially shared across multiple hosts and do-

mains. A certificate may belong to an organization that serves this certificate across any IP addresses that

belong to it. Conversely, a certificate may come from a third-party hosting provider supporting multiple

clients. Historically, an SSL certificate was issued to a host/domain name indicated in the “Common Name”

field within the “Subject” field of the certificate, establishing a one-to-one mapping between a certificate

and a host. With the growing prevalence of website hosting, in 2000 [58], certificates were permitted to

encompass more than one domain name, enabling the utilization of a single certificate across multiple hosts

through the use of the “Subject Alternative Name” extension. This development led to providers commonly

employing custom certificates that encompass multiple domains or organizations within a single certificate.

These certificates could be served from a single IP address belonging to a hosting provider, by using wildcard

certificates.4

4In RFC 2818, section 3.1 allows for wildcard character * which is considered to match any single domain name.
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In the following subsections, we look at the various aspects of the certificate reuse phenomenon.

5.4.1 Reuse of certificates over time

The vast majority of all shared certificates are shared between the Rapid7 set and other sets. A large

cluster of SSL certificates is seen in our collected TLS/SSL and Rapid7 set. The presence of these shared

certificates is not surprising. Both sets overlap in time (the year 2013), hence, they may potentially include

certificates obtained from the same hosts. However, further timeline analysis of these shared certificates shows

a significant time gap, i.e., the fingerprint of certificates found in TLS/SSL set match certificates collected

by Rapid7 during 2019-2021 (Figure 5.1). This implies that many certificates have been reused by different

hosts for 7-8 years.

For example, out of the certificates that were analyzed, 58 have been consistently used since 2013 and

have appeared a total of 6,873 times across our datasets. Interestingly, 31 of them were self-signed with the

sha1WithRSAEncryption signature algorithm and were issued by GlobalSign, one of the largest CAs, which

is a part of the CA/B (Certification Authority/Browser) Forum, an industry organization that establishes

the rules and governs the issuance and management of digital certificates. An analysis of key usage extension

fields indicates that these 58 certificates are intended for various purposes including internal CA use (29

certificates), browser use (6 certificates), device authentication use (16 certificates), and authentication for

firewall and security gateways (7 certificates).

Over time, the validity period of certificates varied according to their usage. For example, in cases when

renewing certificates was not feasible, RFC 5280 [8] released in 2008 allowed CAs to issue certificates with

no expiration date. However, the validity of certificates has since been significantly shortened.

In 2017, the CA/B Forum established the maximum validity of certificates to two years (825 days).

Prior to this, the maximum validity was three years for most certificates. In 2022, the CA/B Forum set

the maximum validity period of a TLS certificate to 398 days.5 In March 2023, Google announced that

the maximum certificate validity will be soon reduced to 90 days for all publicly trusted TLS certificates.

While recommendations leading to shorter certificate validity emphasize the idea of regularly rotating keys

to enhance security and mitigate the potential impact of key compromise, the CA/B Forum guidelines do

not affect already issued certificates, effectively facilitating the reuse of legacy certificates.

Further investigation revealed that one of these consistently used certificates has been shared 5,989 times,

4 times in the Rapid7 set and 5,985 times in the Malware set. This is a CA signing certificate distributed by

GlobalSign, i.e., this certificate can be only used by a CA to sign other certificates and CRLs. The presence

of these non-compliant certificates within the PKI ecosystem is puzzling and dangerous, considering that CA

certificates serve as the foundation of trust in the PKI ecosystem. Such incidents underscore the growing

concerns to investigate the situation of shared certificates and keys deeper.

5https://cabforum.org/wp-content/uploads/CA-Browser-Forum-BR-1.8.4.pdf
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5.4.2 Reuse of certificates for different purposes

While the overlap between the collected TLS/SSL set and Rapid7 is expected, the other cases reveal worrisome

patterns. For example, we observed that 28% (2,338,672) of certificates used in malicious binaries can also

be found in Android apps (Table 5.4). There have been reports of malicious binaries signed with valid

certificates [13, 41] in the past. The reappearance of this problem in Android apps that were collected in

2020, and are supposed to be legitimate, indicates that this phenomenon may be more widespread than

initially believed.

We also identified a considerable amount of certificates shared between malware and the Rapid7 sets,

i.e., with almost all certificates collected from malware binaries (99.9%) found in the Rapid7 set containing

TLS/SSL certificates.

Although both types of certificates are integral to the PKI ecosystem, they have different purposes. The

code signing mechanism allows authentication software publisher, while an SSL certificate serves to verify

the identity of a server. Typically, the purpose of the certificate can be specified in the “Key Usage” and

“Extended Key Usage” fields of the certificate. Certificates issued for one purpose should not be used for

different usage (e.g., a TLS certificate cannot be used to sign code). However, the overlap shows that at some

point these malicious certificates were used for both purposes.

5.4.3 Weak signatures algorithms

Valid digital certificates must be signed by the certification authority that issued them. While RFC 3279 [34]

and its subsequent versions permit the use of any public key signature algorithm in conjunction with a

one-way hash function, NIST recommends appropriate hash functions based on the algorithm’s strengths.

To examine the cryptographic algorithms utilized by the certificate issuer to produce their digital signa-

tures, we extracted the object identifiers (OID) of the cipher algorithms from the digital signature section of

the certificates. For ease of interpretation, we resolved the OIDs into their corresponding algorithm names.

For instance, the OID 1.2.840.113549.1.1.5 was translated to sha1WithRSAEncryption.

The list of the observed signature algorithms in shared certificates is shown in Table 5.5. The table lists

a total of 10,110,361 certificates that were associated with 863,323 unique fingerprints (Table 5.4).

We discovered that the use of obsolete algorithms among certificates is overwhelmingly high.

The vast majority of the shared certificates (> 9 million) are signed using the RSA algorithm with SHA-

1 and MD5 hashing. Both have not been recommended for use. NIST deprecated the use of SHA-1 in

2011 and disallowed its use for digital signatures in 2013 [52]. Although our TLS/SSL set was collected at

the end of 2013, the total number of these certificates (863,871) is several times smaller than the observed

number of certificates with the use of SHA-1 algorithm (e.g., dsaWithSHA1, ecdsa-with-SHA1, sha1WithRSA,

sha1WithRSAEncryption).

Similarly, the MD5 hashing algorithm has been considered broken, and unacceptable for use in digital
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Table 5.5: Signature algorithms seen in shared certificates

Signature algorithm Total shared Unique certificate
sha1WithRSAEncryption 8,986,133 770291 (8.57%)
md5WithRSAEncryption 536,080 62830 (11.72%)
sha256WithRSAEncryption 275,416 26451 (9.60%)
sha384WithRSAEncryption 272,627 27 (0.01%)
md2WithRSAEncryption 32,644 15 (0.05%)
sha1WithRSA 5,646 2818 (49.91%)
sha512WithRSAEncryption 1,635 801 (48.99%)
rsaEncryption 116 58 (50.00%)
dsaWithSHA1 20 10 (50.00%)
rsassaPss 20 10 (50.00%)
ecdsa-with-SHA256 8 4 (50.00%)
shaWithRSAEncryption 4 2 (50.00%)
ecdsa-with-SHA1 4 2 (50.00%)
ecdsa-with-SHA512 4 2 (50.00%)
GOST R 34.11-94 with GOST R 34.10-2001 2 1 (50.00%)
sha224WithRSAEncryption 2 1 (50.00%)
Total 10,110,361 863,323 (8.54%)

signatures since 2008 [16,65]. Yet, over 500,000 shared certificates using MD5 hashing are still in use. Out of

these certificates, the Malware set accounted for the largest proportion, i.e., 75.87% of certificates, followed

by Rapid7 (11.73%), TLS/SSL (10.90%), and the SBA dataset (1.50%).

To our surprise, we noticed that roughly 32,000 shared certificates were signed with the MD2 hashing

algorithm, which was deprecated in 2011 [67], and thus should not have been present in any of our collections.

Unexpectedly, we also found a certificate, shared two times, that uses GOST hashing functions as the

signature algorithm which based on RFC 4491 [62] was a valid algorithm for PKI and CRL profile but has

been removed from the OpenSSL family of libraries in 2016.6

Our numbers indicate that the use of stronger signature algorithms (e.g., SHA-256, SHA-512) is barely

noticeable (∼3%) among the shared certificates. We note that in 2015, NIST recommended the minimum

use of SHA-256 for any application of hash functions requiring interoperability7, and in 2020, NIST made

it a requirement for all certificates to be signed with an approved signature algorithm and hash algorithm,

such as SHA-256) [63].

5.4.4 Who uses shared certificates

We identified 863,323 unique certificates across all sets (Table 5.4), linked to 29,937,166 reachable IP ad-

dresses. While not every shared certificate is linked to an IP address in our sets, all corresponding IP

addresses are unique.

The majority of these hosts are mainly linked to a single distinct shared certificate, meaning that most

hosts in our sets use the same certificate as another host. Out of the total, 17,785,693 addresses (59.41%)

utilize a single certificate, while 12,151,473 IP addresses (40.59%) are connected to multiple distinct shared

certificates, as illustrated in Figure 5.2.

By focusing our attention on the IP addresses associated with 13 or more certificates, we found a total of

6https://www.openssl.org/news/changelog.txt
7https://csrc.nist.gov/Projects/Hash-Functions/NIST-Policy-on-Hash-Functions
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228 distinct certificates duplicated 4,122,199 times and issued by a variety of organizations.

Figure 5.2: The distribution of shared certificates among IP addresses.

To further understand what devices and applications are associated with shared certificates, we scanned

IP addresses that share certificates using the nmap application between December 2021 to February 2022.

Out of 29,937,166 IP addresses that share certificates, 1,557,199 IP addresses replied with a valid response

to the nmap scan.

Due to the time gap between collection and analysis, we took a step to validate certificates. To unambigu-

ously match an IP address to the corresponding certificate, we initiated a TLS/SSL connection with the IP

addresses of the shared certificates. We requested their current certificate and matched their fingerprint with

the one we have stored in our records. This step ensured that the host/organization using the IP address is

the same and our further analysis is relevant. 51.32% (5,188,895) of shared certificates were validated. Our

further analysis focuses on IP addresses with validated certificates.

For the majority of these 1,557,199 hosts, nmap was able to identify the operating system (OS) (89.62%

hosts) and the device type (88.24% hosts). The remaining cases were categorized as “None” since nmap

could not provide any information on the hosts’ software or hardware. The summary of the nmap scan is

given in Table 5.6.

Table 5.6: The summary of nmap scan

Total shared certificate 10,110,361
Validated shared certificates 5,188,895 (51.32%)
Total IP addresses 29,937,166
Hosts with valid nmap response 1,557,199

Fingerprinted OS
Hosts with validated certificates 1,395,662 (89.62%)
None 161,537

Fingerprinted device
Hosts with validated certificates 1,374,178 (88.24%)
None 183,021

Our scan discovered 169 distinct operating systems within 1,395,662 hosts that served shared certificates.

We investigated the top 20 OSs based on the frequency of responded IP addresses (Table 5.7).

The certificates are predominantly shared by embedded network devices including routers, mobile phones,
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Table 5.7: The top 20 operating systems seen in hosts sharing certificates

OS Name
Released
Year IP frequency

Unique
shared certs

Key Size Signature

≥2048 bits <2048 bits Strong∗ Weak

Linux 3.18 2014 721,818 (51.72%) 7,970 5,847 (73.36%) 2,123 (26.64%) 502 (6.30%) 7,468 (93.70%)

ZyXEL ZyWALL 70 firewall

(ZyNOS 3.65)
2008 173,036 (12.40%) 4,232 2,532 (59.83%) 1,700 (40.17%) 150 (3.54%) 4,082 (96.46%)

Aerohive HiveOS 6.8 2018 136,509 (9.78%) 2,053 1,278 (62.25%) 775 (37.75%) 115 (5.60%) 1,938 (94.40%)

Linux 3.13 2014 59,597 (4.27%) 1,107 737 (66.58%) 370 (33.42%) 136 (12.29%) 971 (87.71%)

iPXE 1.0.0+ 2010 56,355 (4.04%) 965 629 (65.18%) 336 (34.82%) 64 (6.63%) 901 (93.37%)

Linux 2.6.32 2009 55,700 (3.99%) 1,309 976 (74.56%) 333 (25.44%) 72 (5.50%) 1,237 (94.50%)

Efficient Networks 5930 ADSL router 2002 43,924 (3.15%) 868 495 (57.03%) 373 (42.97%) 64 (7.37%) 804 (92.63%)

D-Link DWL-624+ or DWL-2000AP

or TRENDnet TEW-432BRP WAP
2005-2007 19,926 (1.43%) 750 429 (57.20%) 321 (42.80%) 62 (8.27%) 688 (91.73%)

Panasonic BL-C210A webcam 2009 13,463 (0.96%) 140 104 (74.29%) 36 (25.71%) 35 (25.00%) 105 (75.00%)

Juniper Networks SSG 20 firewall 2006 10,397 (0.74%) 146 94 (64.38%) 52 (35.62%) 35 (23.97%) 111 (76.03%)

Apple iOS 8.0 - 8.1 (Darwin 14.0.0) 2014 9,070 (0.65%) 387 264 (68.22%) 123 (31.78%) 49 (12.66%) 338 (87.34%)

Canon i-SENSYS MF5490dn printer 2008 7,235 (0.52%) 109 78 (71.56%) 31 (28.44%) 33 (30.28%) 76 (69.72%)

Linux 2.6.18 - 2.6.22 2006-2007 7,048 (0.50%) 264 171 (64.77%) 93 (35.23%) 49 (18.56%) 215 (81.44%)

Vivint alarm panel (Linux 2.6.21) ukn. 4,889 (0.35%) 174 106 (60.92%) 68 (39.08%) 35 (20.11%) 139 (79.89%)

Cisco 7200 router (IOS 12.4) 2005 4,870 (0.35%) 82 73 (89.02%) 9 (10.98%) 38 (46.34%) 44 (53.66%)

Panasonic WV-SP300

or WV-SF330 webcam
2010-2011 4,868 (0.35%) 72 63 (87.50%) 9 (12.50%) 32 (44.44%) 40 (55.56%)

Microsoft Windows Server 2012 R2 2012 4,868 (0.35%) 168 110 (65.48%) 58 (34.52%) 42 (25.00%) 126 (75.00%)

Epson UB-E02 print server ukn. 4,756 (0.34%) 334 168 (50.30%) 166 (49.70%) 37 (11.08%) 297 (88.92%)

Moxa NPort 5610 terminal server ukn. 4,540 (0.33%) 154 102 (66.23%) 52 (33.77%) 34 (22.08%) 120 (77.92%)

Linux 4.9 2016 4,040 (0.29%) 82 69 (84.15%) 13 (15.85%) 37 (45.12%) 45 (54.88%)

Total - 1,346,909 (96.51%) 21,366 14,325 (67.05%) 7,041 (32.95%) 1,621 (7.59%) 19,745 (92.41%)

“*” Strong: signature algorithm is either sha256WithRSAEncryption, sha384WithRSAEncryption, or sha512WithRSAEncryption

printers, and firewalls with the majority of them using OS derived from Linux and BSD distributions.

Linux 3.18 OS, released in 2014, is found to be the most common OS serving shared certificates by the

majority of hosts. Google and other vendors seem to be utilizing Linux 3.18 on numerous Android-based

devices. Some Chromebooks are also operating on the same kernel version as part of Chrome OS. We further

investigated the device types of IP addresses associated with this OS and not surprisingly all matched devices

are categorized as general-purpose computing systems.

Apart from Linux kernels, the rest of the operating systems indicate network-connected devices, such as

HiveOS, SSG firewall, wireless and ADSL routers, webcams, printers, printer servers, terminal servers, and

home security controllers, which have embedded computing capabilities and can be remotely managed and

monitored. Most of these devices come from a handful of manufacturers: ZyXEL Communications Corpora-

tion, Aerohive Networks, IPEX Group, Siemens, D-Link Corporation, TRENDnet, Panasonic Corporation,

Juniper Networks, Apple, Canon, Vivint Smart Home, Cisco Systems, Microsoft Corporation, Epson Corpo-

ration, and Moxa.

We have also seen a large number of certificates shared over an extended period of time. Devices identified
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as the “Efficient Networks 5930 ADSL router” released in 2002 and the “Cisco 7200 router” released in 2005

are among the oldest seen in our scan, pointing that these shared certificates have been actively used for over

two decades.

To validate these observations, we delved deeper into the certificates’ validity periods. Our investigation

revealed certificates with notably extended validity periods, starting from their manufacturing date and

spanning up even to an impressive 50 years. There are a total number of 48,794 IP addresses and 950 distinct

certificates associated with these older systems. It appears these instances are indicative of factory-default

certificates being in use.

We also analyzed our shared certificates for the presence of certificates generated with default param-

eters by looking at certificates generated by Linux and BSD systems that still use so-called “Sneak Oil”

certificate generation scripts, for automatically generating self-signed certificates. We found that 381 certifi-

cates were associated with systems that used default configuration options to establish encrypted TLS/SSL

communications.

With the legacy status of the devices, we anticipated finding outdated cryptographic settings and discov-

ered that around 33% (7,041) of these certificates relied on weak RSA keys with key lengths less than 2048.

However, the vast majority of certificates (92.41%) were signed with weak signature algorithms that were in-

troduced before sha256WithRSAEncryption, including md5WithRSAEncryption and sha1WithRSAEncryption

present in our set (Table 5.7).

We conducted a similar analysis to identify the hardware hosting the shared certificates which confirmed

our conclusions (Table 5.8).

5.5 The shared RSA keys

In the previous section, we delved deeper into the phenomenon of shared certificates, yet, we were surprised

to discover that multiple distinct certificates were serving identical public keys, i.e., identical modulus and/or

exponent. Therefore, we decided to not only match certificates but also conduct a pairwise comparison of

valid RSA keys across all sets.

We found that 10.16% (17,141,441) of all keys are shared across sets, and 87% (14,862,767) of these

duplicate keys (116,868 distinct) appear in distinct certificates (Table 5.9).

5.5.1 Vulnerable keys

In our initial analysis (Section 5.3), we discussed several weaknesses associated with all RSA keys, here we

specifically examine weaknesses of the shared keys.
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Table 5.8: Key properties of devices seen in shared certificates

Device Name IP frequency
Unique
shared certs

Key Size Signature
≥2048 bits <2048 bits Strong* Weak

general purpose 868,432 (63.20%) 9,703 7,001 (72.15%) 2,702 (27.85%) 578 (5.96%) 9,125 (94.04%)

firewall 189,588 (13.80%) 4,398 2,631 (59.82%) 1,767 (40.18%) 159 (3.62%) 4,239 (96.38%)

WAP 140,013 (10.19%) 2,123 1,299 (61.19%) 824 (38.81%) 118 (5.56%) 2,005 (94.44%)

specialized 61670 (4.49%) 1,057 671 (63.48%) 386 (36.52%) 66 (6.24%) 991 (93.76%)

broadband router 46349 (3.37%) 887 501 (56.48%) 386 (43.52%) 65 (7.33%) 822 (92.67%)

webcam 18339 (1.33%) 156 118 (75.64%) 38 (24.36%) 38 (24.36%) 118 (75.64%)

phone 9321 (0.68%) 398 270 (67.84%) 128 (32.16%) 50 (12.56%) 348 (87.44%)

printer 7618 (0.55%) 135 91 (67.41%) 44 (32.59%) 36 (26.67%) 99 (73.33%)

router 5731 (0.42%) 104 78 (75.00%) 26 (25.00%) 38 (36.54%) 66 (63.46%)

print server 4756 (0.35%) 334 168 (50.30%) 166 (49.70%) 37 (11.08%) 297 (88.92%)

terminal server 4545 (0.33%) 156 103 (66.03%) 53 (33.97%) 35 (22.44%) 121 (77.56%)

load balancer 3549 (0.26%) 117 80 (68.38%) 37 (31.62%) 40 (34.19%) 77 (65.81%)

VoIP adapter 3325 (0.24%) 185 117 (63.24%) 68 (36.76%) 43 (23.24%) 142 (76.76%)

switch 3062 (0.22%) 91 66 (72.53%) 25 (27.47%) 24 (26.37%) 67 (73.63%)

proxy server 2933 (0.21%) 118 82 (69.49%) 36 (30.51%) 36 (30.51%) 82 (69.49%)

media device 1565 (0.11%) 157 98 (62.42%) 59 (37.58%) 35 (22.29%) 122 (77.71%)

storage-misc 1496 (0.11%) 330 190 (57.58%) 140 (42.42%) 30 (9.09%) 300 (90.91%)

terminal 1111 (0.08%) 79 65 (82.28%) 14 (17.72%) 30 (37.97%) 49 (62.03%)

VoIP phone 413 (0.03%) 105 51 (48.57%) 54 (51.43%) 27 (25.71%) 78 (74.29%)

remote management 349 (0.03%) 48 41 (85.42%) 7 (14.58%) 24 (50.00%) 24 (50.00%)

bridge 13 (<0.01%) 5 5 (100.00%) 0 (0.00%) 5 (100.00%) 0 (0.00%)

Total 1,374,178 20,686 13,726 (66.35%) 6,960 (33.65%) 1,514 (7.32%) 19,172 (92.68%)

“*” Strong: signature algorithm is either sha256WithRSAEncryption, sha384WithRSAEncryption, or sha512WithRSAEncryption

Weak key size

Our analysis found that 44% (6,595,972) of shared keys can be considered weak, i.e., with key length < 2048

bits (Table 5.11). This can be interpreted as a strong indicator of the association of duplicate keys with their

perceived vulnerability level.

ROCA

We identified one shared key vulnerable to ROCA vulnerability. The key was duplicated 16 times in the

Rapid7 dataset with 3 different signature algorithms, i.e., md5WithRSAEncryption, sha1WithRSAEncryption,

and sha256WithRSAEncryption. However, our cursory check revealed different issuers and owners corre-

sponding to these certificates.

GCD-Factorable

Among the 793,694 factored RSA keys, 191,236 are duplicate keys that appear in distinct certificates. As

expected, almost all of these factored keys are less than 2048 bits in length (Table 5.10). Interestingly,

duplicate keys retrieved from SSH hosts, malware executables, and Android apps, appear to be noticeably

absent from GCD factorable keys, i.e., we were able to factor only 12 SSH keys and none of the Android or

malware keys.
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Table 5.9: The shared RSA keys

Shared keys found in distinct certificates

Datasets Total num-
ber of
shared keys

Unique
shared in
each set**

Shared
keys with
distinct cer-
tificates

Unique
shared keys
with distinct
certificates**

Collected
TLS/SSL

Collected
SSH

Rapid7 Malware SBA
Android
APKs

Collected
TLS/SSL

767,709 754,324
(98.26%)

123,582 110,197
(89.17%)

* 48 123,581 11 805 0

Collected
SSH

195,107 169,851
(87.06%)

3,961 2,502 (63.17%) 1,039 * 3,961 0 2 0

Rapid7 7,619,478 1,034,226
(13.57%)

6,556,755 116,867 (1.78%) 6,528,028 8,519 * 898 38,279 594

Malware 8,366,724 320
(<0.01%)

8,165,826 145 (<0.01%) 133 0 8,157,286 * 0 2,899,636

SBA 192,210 114,492
(59.57%)

12,524 4,593 (36.67%) 4,657 3 12,523 0 * 0

Android
APKs

213 196
(92.02%)

119 102 (85.71%) 0 0 117 58 0 *

Total 17,141,441 1,034,263
(6.03%)***

14,862,767
(86.71%)

234,406 (1.58%) 116,868 keys (0.79%) are distinct across sets

∗∗ duplicates within a set are removed, across sets retained
∗ ∗ ∗ distinct across sets

Table 5.10: GCD-factorable shared RSA keys

Impacted distinct shared keys 3,182
Impacted shared keys 191,236

Dataset
SSL/TSL 3,856
SSH 12
Rapid7 187,368
Malware 0
Android APKs 0
SBA 0

Key size
0-1023 327
1024-2047 190,884
2048-4095 25

5.5.2 Sources of duplicate keys

The majority of the keys are shared between Collected TLS/SSL and Rapid7 sets. To limit the impact

of a potential key compromise, organizations use different keys for distinct purposes when they need more

than one certificate. However, in some cases, for example, for consistency in single sign-on mechanisms

using the SAML8, load-balanced environments, multi-domain SSL certificates, and shared hosting situations,

organizations may prefer or need to use the same key for different certificates, provided that the certificates

are related in terms of the owner.

To understand the reasons behind duplicate keys in our collections, we analyzed the “Subject” field in

selected certificates and subsequently parsed the “Organization” field of these shared keys. We observe that

only 7,060 (6.04%) out of 116,868 distinct keys have the same or related organization information. Hence,

hosting situations appear to be responsible for only a small amount of duplicate keys.

8Security Assertion Markup Language
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Our observations in Table 5.11 also point out that around 99% of unique weak keys are associated with

both Rapid7 (100%) and our own collected TLS/SSL (98.42%) datasets.

Table 5.11: Shared RSA public key size

Key
size
range(bits)

Frequency
Total Total Unique SSL/TSL SSH Rapid7 Malware SBA Android

APKs

0-1023 832,184
(5.59%)

2,193 (0.26%) 2,182 0 2,193 4 9 0

1024-2047 5,763,788
(38.78%)

35,583 (0.62%) 35,000 208 35,583 36 408 15

2048-4095 8,110,887
(54.57%)

76,695 (0.95%) 71,097 2,245 76,694 92 3,733 80

4096-8191 155,860
(1.05%)

2,383 (1.53%) 1,907 49 2,383 13 440 7

8192-up 48
(<0.01%)

14 (29.17%) 11 0 14 0 3 0

Total 14,862,767 116,868 (0.79%) 110,197 2,502 116,867 145 4,593 102

Interestingly, duplicate keys retrieved from SSH hosts, malware executables, and Android apps, appear

to be compliant with NIST regulations (Table 5.11). When it comes to SSH keys, it is common for clients to

be updated, which means that the majority of SSH keys should adhere to current standards. Similarly, keys

associated with software compilation, such as malware executables and Android APKs, require compatibility

with current standards due to compiler prerequisites. Consequently, these keys are more likely to be stronger.

The most commonly shared key that we could identify in our sets has been seen 3,454,586 times in the

Rapid7 set. This key is associated with 3,454,586 distinct TLS certificates, mostly belonging to the same

organization, Lancom Systems. We have different records for these certificates. They were served by 11

distinct IPs, and classified once by nmap as a “general purpose” device served by Microsoft Windows Server

2008 SP2. This key is weak, its key modulus length is 1024 bits. The associated certificates were signed with

the sha1WithRSAEncryption algorithm, but our TLS scan showed this key still is being served in certificates

for an extended period of time despite its obvious weaknesses.

Another source of concern is the presence of shared keys between web (Rapid7 and Collected TLS/SSL)

and file (Malware and Android APKs) datasets. For example, most RSA keys found in malware samples

are served by TLS hosts, and 49% (2,899,636) of keys used by Android apps are used to sign malware. This

suggests that corresponding private keys could be within the reach of malware authors or attackers. This

presence of shared keys points towards a broader issue within the PKI ecosystem.

5.5.3 Key generators

Duplicated keys, where the same cryptographic key is generated more than once, serve as a warning sign and

raise concerns about the security of the key generation process. Consequently, any similar keys produced

using the same library should be viewed as questionable. It suggests a lack of proper security measures during

key generation, making the generated keys unreliable and vulnerable to exploitation.
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To identify the origin of the shared RSA keys, we have adopted an approach for a fine-grained RSA

key origin attribution proposed by Branca et al. [10]. The approach is based on spatial characteristics of

RSA moduli associated with different library implementations, consequently, allowing for accurate origin

attribution.

We have retrained the Random Forest model using their generated set of 6.5 million RSA keys which

contains details on the type and version of potential libraries used to generate each key. We utilized this

model to deduce the libraries and their versions responsible for generating the shared RSA keys. The resulting

set of 17,141,441 public keys contains 1,034,263 distinct RSA moduli. We retraced each modulus back to the

original keys to confirm the corresponding dataset (see Table 5.12).

Table 5.12: Predicted libraries per dataset

Library
Number
of moduli

Affected
keys

Frequency

TLS/SSL SSH Rapid7 Malware SBA
Android
APKs

OpenSSL 1.1.x 1,002,727 17,004,035 744,543 189,405 7,534,379 8,350,100 185,408 200

GnuTLS 3.6.x 20,989 99,343 15,474 3,794 58,950 16,607 4,509 9

GnuTLS 2.2.x 10,451 37,440 7,623 1,891 25,632 17 2,273 4

OpenSSL 1.0.x 94 619 67 17 515 0 20 0

GnuTLS 3.1.x 1 2 1 0 1 0 0 0

GnuTLS 2.1.x 1 2 1 0 1 0 0 0

Total 1,034,263 17,141,441 767,709 195,107 7,619,478 8,366,724 192,210 213

.x stands for all minor versions

We found that the shared keys were predominantly generated by OpenSSL (97%) and GnuTLS (3%)

libraries. This is not surprising as OpenSSL is the most widely used open-source cryptographic library

installed by default in many Linux kernel-based systems.

The problems with low entropy pool affecting the generation of RSA key prime numbers in OpenSSL 1.0.0

on Linux-based systems were discovered by Heninger et al. [31]. This is again not surprising as OpenSSL

library versions 1.0 and 1.1 have a history of issues related to random number generation implementations

(e.g., CVE-2015-0285 9, CVE-2015-3216 10, CVE-2019-1549 11). However, only a few versions of OpenSSL

and GnuTLS libraries appear to be responsible for duplicate keys (Table 5.13). For example, the OpenSSL

1.1.x library generated around 97% of duplicate keys. As expected (based on Tables 5.2 and 5.7), more than

half of these keys are on the upper end of the key numerical range, i.e., 57% (9,735,163) of OpenSSL 1.1.x

keys have a length 2048 bits or more. This appears to be common among all affected keys.

Although OpenSSL release notes of the 1.1.1 version state that the random number generator was com-

pletely rewritten to address this problem, the presence of weak moduli in a considerable percentage of our

shared keys suggests that conditions may persist and be related to the issues of the aforementioned entropy

pool. It is worth mentioning that there are 189,405 SSH keys that our analysis predicts were likely generated

9http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-0285
10http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-3216
11http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2019-1549
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Table 5.13: Predicted libraries per modulus

Library
Number
of moduli

Affected keys
Modulus size range (bits)

0-1023 1024-2047 2048-4095 4096-8191 8192-up

OpenSSL 1.1.x 1,002,727 17,004,035 824,147 6,444,725 9,556,530 178,406 227

GnuTLS 3.6.x 20,989 99,343 14,987 34,218 42,968 7,170 0

GnuTLS 2.2.x 10,451 37,440 5,834 14,747 16,505 354 0

OpenSSL 1.0.x 94 619 294 182 135 8 0

GnuTLS 3.1.x 1 2 0 2 0 0 0

GnuTLS 2.1.x 1 2 0 0 2 0 0

Total 1,034,263 17,141,441 845,262 6,493,874 9,616,140 185,938 227

.x stands for all minor versions

using older versions of the OpenSSL library. This observation underscores not only the continued usage of

outdated cryptographic libraries used in web protocols as well as libraries targeted at infrastructure services

such as SSH (Table 5.12).

5.5.4 Certificates with shared keys

Furthermore, to identify legacy public key material, we started from 116,868 distinct public keys that we

identified to be shared across all sets, this allowed us to detect 14,895,604 certificates that 14,444,022 (96.97%)

certificates were linked to either SHA-1 (e.g. sha1WithRSAEncryption, sha1WithRSA) or MD5 hashing

algorithms, both of which are no longer supposed to be used for general or browsing purposes, according to

NIST recommendations [48].

Also, out of 14,895,604 certificates, a total of 35,571 certificates were found to be using non-standard

OIDs as signature algorithms, as shown in table 5.14.

Table 5.14: Unresolvable signature algorithms seen in certificates with shared keys

Signature algorithm Total certificates

1.2.840.113549.1.60.21 26,449

1.2.840.113549.1.60.20 8,613

1.2.840.113549.1.60.27 473

1.2.840.113549.1.60.26 29

1.2.840.113549.1.60.29 3

1.2.832.113549.1.1.4 1

1.2.840.113037.1.1.5 1

1.2.840.113548.1.1.5 1

1.2.840.114573.1.1.5 1

Total 35,571

We also observed that out of 35,571 certificates corresponding to 15,714 keys, 138 keys have been found

to be related to 6,114 certificates, collected after 2017, related to hosting companies (OVH, GoDaddy.com,

Inc., GANDI SAS), security devices (Fortinet Ltd., SonicWALL), wireless appliances (Ruckus Wireless,

Inc., D-LINK), storage appliances (EMC Corporation), SSL libraries using custom formats (AlphaSSL),

companies related to EV and DV certificate validation schemes (DigiCert Inc), and collaboration servers

(Zimbra Collaboration Server).
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5.6 Conclusion

This chapter highlighted various significant findings that emerged from our comprehensive analysis and

investigation. By gathering a wide range of more than 254 million valid certificates and nearly 170 million

RSA keys from various sources throughout several years, we were able to analyze the weak and vulnerable

RSA keys.

We examined the cryptographic features of certificates and keys along with validating their persistence

in network devices over an extended period regardless of their intended purpose of use. We measured the

weakness of RSA keys by their key size along with known vulnerabilities leading to key factorization.

Upon observing the wide presence of duplicated certificates across different sources, we tracked back these

certificates to the original hosts from which the certificates were collected. To gain further information on

the corresponding network sources, we performed an application security scan using nmap, which enabled us

to gather network stack and application stack details. This comprehensive approach allowed us to outline the

technical characteristics associated with the services and devices hosting these certificates. We discovered the

persistence of weak RSA keys and deprecated signature algorithms especially in legacy embedded network

devices relying on shared certificates.

During our analysis, we noted multiple distinct certificates using the same public keys. We investigated

not only the presence of vulnerable keys within these shared ones but also their generation process. Using

machine learning techniques, we managed to uncover the foundational libraries utilized in producing these

keys, thereby raising concerns about the security of the generation procedure of these keys.

These observations collectively contribute to a deeper understanding of cryptographic reuse issues within

the study context. Although browser vendors tend to follow the latest standards of cryptographic elements,

we showed that deprecated hashing algorithms and non-compliant key sizes are still widespread in embedded

network devices. The RSA keys found in malware samples are currently served by TLS hosts and Android

apps. Known vulnerabilities remain unpatched on still accessible devices and files.
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6 Measuring malicious cryptographic reuse in Android

applications

This chapter analyzes the cryptographic file structure and the characteristics of cryptographic compo-

nents in Android apps along with measuring the compromised trust arising from the reuse of cryptographic

components in malicious binaries across various Android apps.

6.1 Overview

While there might be some justifiable cases for inadequate cryptographic settings in certain apps, numerous

instances present significant risks to both users and app owners. Our investigation highlights the extent

of certificate reuse in Android apps, revealing the prevalent presence of compromised certificates, which

necessitates prioritizing the enhancement of cryptographic structures within Android apps to bolster security

measures.

Section 6.2 gives details of our collected data from various sources. In section 6.3 the initial analysis is

discussed. Section 6.4 reviews the general findings about cryptographic files in Android applications and

compares the presence of these elements between benign and malicious applications. Section 6.5 takes a

deeper look at the phenomenon of malicious reuse of certificates by examining their characteristics and

purpose of usage, along with shared RSA public keys and non-encrypted private keys. Finally, section 6.6

summarizes our findings in this section.

6.2 Collected Data

The insights gained from our analysis of shared certificates and keys (Sections 5.4 and 5.5) motivated us to

broaden our approach and gather a larger dataset of APKs.

For our complementary set of APKs, we collected a total of 714,616 APK files summarized in Table 6.1.

From this set, 672,463 were found to be valid, i.e., parsable by the official Android tool, AAPT2, which verifies

package correctness and integrity. Surprisingly, 1,190 apps did not contain any cryptographic components,

which was unexpected due to Google installation requirements.

Overall, we were left with 671,273 applications containing cryptographic elements for our analysis. Al-

though benign apps were collected from legitimate sources, we verified them using VirusTotal service and
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Table 6.1: The summary of collected Android APKs

Source Collection Period #APKs Valid APKs #APKs with crypto
AndroGalaxy 2017 - 2019 7,462 6,845 6,839
AndroidAPKsFree 2020 1,333 1,316 1,312
Anzhi Market 2017, 2020 5,894 5,842 5,840
APKGOD 2020 4,690 4,046 4,044
Apkmaza 2020 111 109 109
APKPure 2020, 2021, 2023 109,216 109,048 108,512
AppsApk 2020 6,146 5,848 5,845
Appvn 2020 33,986 33,311 33,304
CracksHash 2021, 2022 3,486 3,469 3,461
F-Droid 2020 7,073 7,065 7,065
Google Play Store 2020, 2023 5,468 5,283 5,222
1Mobile Market 2020 1,370 1,370 1,370
Mob.org 2020 1,147 1,141 1,141
SlideME 2020 18,052 18,049 18,049
Uptodown 2020 59,717 56,819 56,686
VirusShare 2012 - 2023 440,106 411,629 411,214
VirusTotal 2020, 2021 8,160 98 85
Xiaomi 2020 1,199 1,175 1,175
Total - 714,616 672,463 671,273

Malshare and VirusShare hashes. We gathered 3,266,932 hash values of malicious binaries from the Malshare

Daily Digest1 (covering the period from September 2017 to July 2023) along with 40,894,458 hash values of

the malware samples provided by VirusShare.2 We further matched our benign set against these hashes. As

a result, 247 APK files from benign sources were detected as malicious. As a result, we were left with a set

of 259,677 benign apps and 411,596 malicious APK files.

6.3 Initial Analysis

In our complementary study, the collected cryptographic files were parsed to identify the presence of certifi-

cates and keys. In cases where APK files included the signing certificate within the signature block rather

than a distinct cryptographic file, we also extracted those certificates.

After filtering only RSA certificates and keys, we obtained 789,117 certificates and 802,117 public keys

distributed across 411,596 malicious Android apps and 778,260 certificates and 793,980 public keys extracted

from 259,677 benign apps (Table 6.2). Parsing 40,270,387 malware binary files, we identified 18,081,489 RSA

certificates and their corresponding public keys. Overall, we derived 19,648,866 certificates for our analysis

(Tables 6.3).

Table 6.2: Summary of RSA certificates and public keys from APK files

Source
Certificate Public key

Total In files In signature block Total From certificates In files

Malicious APK 789,117 789,117 0 802,117 789,117 13,000

Benign APK 778,260 778,044 216 793,980 778,260 15,720

Total ∗ 1,567,377 1,567,161 216 1,596,097 1,567,377 28,720
∗

duplicates within sets are removed, across sets retained

1https://malshare.com/daily/
2https://virusshare.com/hashes
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Table 6.3: Shared Certificates

Source
Total

Certificates
Unique

Certificates
Unique shared

per set**
Shared across

Total
Malware
binaries

Malicious
APKs

Benign
APKs

Malware
binaries

18,081,489 41,282 194 421,175 * 166,844 254,331

Malicious
APKs

789,117 146,329 11,234 5,224,399 4,629,047 * 595,352

Benign
APKs

778,260 135,895 11,213 3,766,525 3,256,951 509,574 *

Total 19,648,866 323,506 22,641 9,412,099 11,251 (0.12%) are distinct across sets

∗∗ duplicates within a set are removed, across sets retained

In the absence of an official repository providing a comprehensive list of compromised certificates, we

focused on the certificates associated with instances of PE files and APKs that were officially reported

as malicious. We consider these certificates to be compromised (as the adversary likely has access to the

corresponding private key), and in short, we refer to them as malicious certificates.

6.4 Cryptographic file formats

Out of 671,273 APKs analyzed, we discovered 2,376,721 files that may contain cryptographic components

indicating digital certificates and keys (Table 6.4).

Table 6.4: Summary of parsable cryptographic files in apps

Category Unique Total Benign apps Malicious apps

All files 1,216,354 2,376,721 1,246,846 (52.46%) 1,129,875 (47.54%)

Files containing certificate(s) 646,176 826,674 294,323 (35.60%) 532,351 (64.40%)

Files containing public key(s) 2,150 28,872 15,764 (54.60%) 13,108 (45.40%)

Files containing private key(s) 500 1,604 425 (26.50%) 1,179 (73.50%)

APKs typically incorporate a range of cryptographic components, utilizing diverse encryption algorithms,

each serving specific purposes. Cryptographic file formats can exhibit varying configurations of cryptographic

elements. As our analysis showed, cryptographic components may appear in file formats not related to

cryptographic extensions, hence we parsed all collected files.

We discovered that not all of the initially identified file extensions within our collected APKs reflected

the actual content of the file, i.e., many appeared to be renamed. This phenomenon typically happens when

the original file extensions are changed, potentially to disguise or obfuscate the file content. Overall, out of

2,376,721 crypto-related files, 1,433,458 have been found renamed. The summary of renaming instances is

presented in Table 6.5, where we can clearly observe two major recurring patterns.

Files containing certificates and keys (i.e., with file extensions appkey, pubkey pgp, and seckey pgp, along

with others like pem, jks, exe, key, der, and csr) are commonly stripped of their original extensions (showed

as <None>) or changed to pose as innocuous extensions. For example, a large number of files containing

pgp keys were renamed to appear as image files, i.e., with png and jpg extensions.
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Table 6.5: The summary of renamed file extensions

Renamed
extensions

Total files Unique
Malicious APK Benign APK

Most frequent original extensions
Total Unique Total Unique

exe 979,127 240,857 272,002 78,253 707,125 178,900 .dll, .temp, .binary, <None>, .so

seckey pgp 217,462 145,336 110,759 74,191 106,703 68,564 .enc, .bin, .png, .html, .lhs

pubkey pgp 139,184 89,700 84,809 55,307 83,998 55,969 .enc, .html, .png, <None>, .jpg

appkey 87,072 56,615 55,186 35,092 5,253 2,170 <None>

pem 10,116 1,244 4,863 562 2,263 911 <None>, .0, .jpg, .cer, .txt

jks 389 138 250 88 139 60 <None>, .jilin, .pro, .ts, .keystore

key 56 31 27 12 29 20 <None>, .txt, .mqtt, .dat

der 16 5 10 1 6 4 <None>, .pk, .ab, .split4

bks 13 1 9 1 4 1 <None>

cer 7 1 0 0 7 1 <None>

pfx 7 2 3 1 4 1 <None>

crt 6 2 4 1 2 1 <None>

keystore 2 1 2 1 0 0 <None>

csr 1 1 1 1 0 0 <None>

Total 1,433,458 533,934 527,925 243,511 905,533 306,602 .dll, .enc, <None>, .png, .bin

Among the 104,044 files without extensions, 87,072 were identified as being in the “appkey” format.

While the remaining formats were distributed randomly throughout the apps’ file structures, the “appkey”

files were specifically located either in the “assets” or the “assets/res” folders. Generally, the application

key is the signature of the public key certificate of the private key, that is used to sign the APK, stored in

a text format. Devices should only accept updates from an app when its signature matches the installed

app’s signature as a secure process. Another visible pattern is the renaming of Windows executables from

exe extension to dll extension. This practice can help evade security measures and mislead users or analysts

by disguising standalone executables.

Malicious apps appear to have fewer certificates in general, 817,479 in 411,596 apps, compared to benign

apps, 820,997 in 259,677 apps. Having fewer certificates can help malicious apps avoid detection and maintain

a low profile in their malicious activities. Similar behavior has been observed with public keys (see Table 6.6).

On the other hand, more private keys have been seen in malicious apps, (1,174 compared to 423) which

may be necessary to facilitate the decryption of encrypted malware data (e.g., in ransomware cases).

A clear difference between these two sets is in the use of jks and bks files. While both are keystore formats,

the use of bks format is more popular in malicious apps due to the fact that this keystore format supports a

wider range of algorithms and cryptographic capabilities compared to jks.

6.5 Reused certificates

Out of 19,648,866 RSA certificates, 9,412,099 (48%) are reused across the collected sets of APK and malicious

PE files, with 11,251 of them being unique instances. As the results in Table 6.3 show, there is significant

duplication of certificates within and across sets. Even more interesting is the presence of significant overlap

between sets, which highlights the extensive reuse of certificates between benign apps and malware, including

malicious apps and binaries. We will explore each of these aspects further.
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Table 6.6: File formats containing cryptographic elements

Identified
extensions

Total Unique Parsable
Benign APK Malicious APK

Certificates
Public
Keys

Private
Keys

Certificates
Public
Keys

Private
Keys

aes 19,671 5,439 0 0 0 0 0 0 0

appkey 87,073 56,616 0 0 0 0 0 0 0

asc 6,008 5,169 1 0 0 1 0 0 0

bks 24,399 2,296 2,082 43,421 0 0 185,912 0 0

ca-bundle 3 2 2 6 0 0 0 0 0

cer 80,199 3,563 3,357 8,183 3 2 76,250 32 12

cert 2,338 150 87 78 0 0 95 0 0

crt 14,711 2,842 2,655 52,713 3 2 22,066 21 7

csr 431 274 0 0 0 0 0 0 0

der 18,137 763 715 1,654 603 27 9,079 282 47

dsa 6,076 6,040 0 0 0 0 0 0 0

ec 2 2 0 0 0 0 0 0 0

exe 980,685 241,893 0 0 0 0 0 0 0

gpg 91 89 0 0 0 0 0 0 0

jks 6,615 347 63 325,104 0 0 53,310 0 0

kdb 58 16 0 0 0 0 0 0 0

kdbx 57 20 0 0 0 0 0 0 0

key 9,912 827 206 7 158 95 6 253 227

keystore 1,102 385 17 0 3 0 0 37 0

ovpn 3,417 3,274 3,211 2,369 2 60 1,034 0 32

p12 2,310 717 4 0 0 0 0 1 4

p7b 89 22 14 244 0 0 104 0 0

p7m 13 10 0 0 0 0 0 0 0

p7s 1 1 0 0 0 0 0 0 0

pem 52,447 5,045 4,807 130,326 14,898 236 59,774 12,361 842

pfx 6,340 1,330 1 0 0 0 4 0 0

pgp 5 3 0 0 0 0 0 0 0

pkcs11 1 1 0 0 0 0 0 0 0

pkcs12 34 10 0 0 0 0 0 0 0

ppk 55 40 0 0 0 0 0 0 0

priv 3 1 1 0 0 0 0 0 3

private 34 4 0 0 0 0 0 0 0

pub 6,716 5,468 35 0 64 0 2 24 0

pubkey pgp 139,184 89,700 0 0 0 0 0 0 0

public 52 8 4 18 2 0 5 0 0

rsa 666,428 632,089 631,852 256,874 1 0 409,837 0 0

sec 582 291 0 0 0 0 0 0 0

seckey pgp 217,462 145,336 0 0 0 0 0 0 0

sig 23,395 6,416 3 0 5 0 1 0 0

sign 290 166 0 0 0 0 0 0 0

signature 281 68 0 0 0 0 0 0 0

spc 14 10 0 0 0 0 0 0 0

Total 2,376,721 1,216,354 649,117 820,997 15,742 423 817,479 13,011 1,174
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6.5.1 Reuse of signing certificates from malware binaries

Out of a total of 18,081,489 signing certificates extracted from malware binaries, 2% (421,175) were found

to be reused in our collected set of APKs. To our surprise, only 3 of these certificates have been used for

signing malicious apps, the rest were widely used for other purposes.

Around 60% (254,331) of these compromised certificates were reused in benign apps and as we saw in

other instances of reuses, these certificates were heavily duplicated, where only 156 were unique. These apps

are present in our Google Play Store and alternative market collections indicating that this reuse practice

has been continuing over time.

In our analysis, we found that 40% (166,844) of the certificates found in malware binaries are also reused

in Android malicious apps. The use of signed malware is not a new phenomenon, numerous sources reported

that legitimate certificates are readily available for purchase in underground markets.3 The previous study

by Kim et al. [41] showed the use of legitimate certificates to sign malicious Windows binaries. However,

our latest findings demonstrate that this practice is even more pervasive and widespread than previously

observed. These certificates are being employed in malware across various domains and are extensively used.

During our investigation, we found 45 benign apps that were reported by Malshare and VirusShare as

malware samples due to the contained cryptographic content. These benign apps appeared in both the official

Google Play Store and alternative markets over several years (2019 to 2023). Further investigation revealed a

total of 11 unique certificates were embedded in these apps. These files were flagged as malicious by multiple

vendors and reported by VirusTotal. A pairwise match of certificates disclosed the usage of such certificates

for signing 1,993 apps including 1,920 malicious apps and 73 benign apps.

6.5.2 Reuse of APK Signing Certificates

APKs are structured files that can include a signing digital certificate as a cryptographic file introduced in

either a stand-alone META-INF file or included inside a signature block, depending on the version of the

signature scheme. We parsed each APK to identify the presence of all signing certificates. As a result,

out of 671,273 valid APKs, the majority (668,392) were digitally signed, while < 1% (2,881) lacked signing

certificates, including 2,134 malicious apps, and 747 benign apps.

During this process, we discovered that the “jarsigner” tool treats a significant number of 594,971 (89%)

signed apps as unsigned, issuing warnings due to deprecated signature algorithms and weak key sizes included

in the signing certificate.

Out of 258,930 digitally signed benign apps, 59% (153,294) apps were signed with 25,135 certificates

indicating significant reuse of certificates among benign apps. Using the same certificate for multiple Android

applications is generally discouraged. Reusing certificates makes it challenging to determine the true source

3https://cyware.com/news/certificate-authorities-duped-to-sell-legitimate-digital-certificates-that-can-spread-malware-
bcf63b15
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and verify the integrity of the application. If one app signed with a shared certificate becomes compromised,

it can have significant implications for the security of all other apps that utilize the same signing certificate.

However, there are instances where a developer might reuse a certificate, for example, for different versions

of their application or to facilitate communication between apps that belong to the same organization. A

closer manual analysis of reused benign certificates showed that these legitimate cases are only responsible for

a small portion of reuse. For example, one certificate has been used 6 times to sign apps belonging to Amazon

Mobile LLC (Amazon Prime Video, Amazon Shopping, and Amazon Music). Similarly, another certificate

has been used 4 times to sign apps published by Microsoft Corporation (Microsoft 365 and Microsoft Teams).

Yet, our findings show that not all signing certificate reuse cases are related to developers following these

legitimate practices.

Surprisingly, 9,931 unique certificates have been employed to sign 142,579 malicious apps, 34% of total

411,596 apps, while at the same time, these certificates have been also used to sign 84,922 benign apps,

32% of 259,677 apps. These benign apps were collected from all sets, excluding the SlideMe market which

appeared to repackage and sign all posted apps with its market’s certificate.

In November 2022, several platform certificates have been discovered to be used for signing malware.4 The

so-called platform certificates are used to sign the system Android apps, and thus give elevated privileges to

apps signed with these certificates. Hence, if a malicious application is signed with such platform certificates,

the Android OS will treat the malicious app with the same elevated access as a legitimate system app.

Surprisingly, we found 332 apps in our collected set signed with 5 of the reported leaked platform certificates,

within both our benign and malicious set of APKs, corresponding to apps released in 2023 and present in

Google Play Store, and in sets dating as back as 2014.

The most shared default signing certificates are shown in Table 6.7. The most widely used certificate is

the default certificate of Android Studio, used in 12,639 benign and 34,291 malicious apps. This certificate,

also known as “testkey”, is one of the four key pairs that are generated by the Android team in the Android

Open Source Project (AOSP) and are located in the “release-keys” folder. The other three pairs (“platform”,

“shared”, and “media”) are used to sign 911 benign apps and 1,482 malicious apps in total. However, it

is crucial for developers to avoid using these default keys since they are publicly known. When multiple

apps are signed with such certificates, they often gain a privileged position, granting them special access to

those apps. As a result, if a malicious app is signed with the same certificate, it may gain elevated access to

sensitive resources that would otherwise be inaccessible.

We also discovered 18,049 apps signed with a certificate associated with the SlideMe market. It appears

that this certificate has been used to replace the original signing certificate in order to publish apps in the

market. Another case of certificate reuse involves a service provider named “Qbiki Networks”. The provider

enables customers to create mobile apps with minimal coding and signs these apps on their behalf. This

case was initially reported by Fahl et al. [22] back in 2014. Interestingly, after several years we still observe

4https://bugs.chromium.org/p/apvi/issues/detail?id=100
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Table 6.7: Use of known and default certificates in apps

Certificate SHA-1 Name
Total
APKs

Benign
APKs

Malicious
APKs

Apps’ Sources

61ED377E85D386A8DFEE6B864BD85B0BFAA5AF81 testkey 46,930 12,639 34,291

AndroGalaxy, AndroidAPKsFree,

Anzhi Market, APKGOD, Apkmaza,

APKPure, AppsApk, Appvn, CracksHash,

Uptodown, VirusShare, VirusTotal, Xiaomi

27196E386B875E76ADF700E7EA84E4C6EEE33DFA platform 1,230 9 1,221 APKPure, Appvn, Uptodown, VirusShare

5B368CFF2DA2686996BC95EAC190EAA4F5630FE5 shared 927 781 146
AndroGalaxy, Anzhi Market, APKPure,

Appvn, Uptodown, VirusShare

B79DF4A82E90B57EA76525AB7037AB238A42F5D3 media 236 121 115
AndroGalaxy, APKGOD, Appvn,

Uptodown, VirusShare

C0DE76E80C8F1BFEDAC64231B9582DF0EBC4F19E SlideME 18,049 18,049 0 SlideME

9EDF7FE12ED2A2472FB07DF1E398D1039B9D2F5D
Qbiki

Networks
1,590 1,441 149

AndroidAPKsFree, APKPure, Appvn,

Google Play Store, 1Mobile Market,

Mob.org, Uptodown, VirusShare

Total - 68,962 33,040 35,922 -

a similar situation in 1,590 apps in our benign and malicious sets containing apps from 2014 to 2022. The

practice of certificate reuse by customers of the Qbiki Networks seems to persist over time.

We were able to detect the presence of a total of 68,962 apps signed with these known key pairs (Table 6.7).

6.5.3 Reuse beyond signing certificate

Another concern in this context is the reuse of signing certificates for other purposes beyond their intended

use. Signing certificates are meant to verify the authenticity and integrity of specific software applications or

digital documents.

We further examined the reuse of signing certificates for other operations. As a result, we found 297

unique signing certificates reused within 70,077 apps, including 20,758 benign and 49,319 malicious apps.

The CAs define the purpose of the keys when issuing digital certificates through designated fields known

as Key Usage, Extended Key Usage, and Basic Constraints. These extensions provide additional insights into

permitted cryptographic operations and the intended purposes of the associated public key such as digital

signature, key encipherment, client authentication, or code signing. These extensions enable certificate

verifiers to assess the suitability of cryptographic operations and enforce robust security measures.

In other words, keys designated for signing code cannot be reused for other purposes. Yet, as our results

show the key purpose does not appear to be properly verified.

Out of 9,412,099 reused certificates, 202,997 certificates were found to be lacking any extensions, i.e.,

theoretically should not have been signed by CAs. Out of the remaining certificates, 5,605,334 certificates

have at least one of the extensions which means at least some constraints have been declared regarding their

usage.

The extension characteristics of all reused certificates are summarized in Table 6.8. The results indicate
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Table 6.8: Indented purposes of reused certificates

Characteristic Unique Total
APK
signing
certificate

Across sources
Benign
APKs

Malicious
APKs

Malware
binaries

Key Usage 940 5,188,368 1,731 393,917 291,290 4,503,161

Digital Signature 524 852,104 1,731 98,494 73,862 679,748

Certificate Sign 568 5,179,277 0 390,262 285,865 4,503,150

Key Encipherment 342 22,210 10 9,938 6,143 6,129

Data Encipherment 31 1,774 0 832 942 0

Key Agreement 24 14,766 0 6,462 2,182 6,122

Extended Key Usage 492 810,480 1,954 16,205 15,983 778,292

Code Signing 116 764,571 1,834 1,672 2,777 760,122

TLS Web Client Authentication 373 43,911 55 4,322 11,263 28,326

TLS Web Server Authentication 374 56,568 0 14,851 13,389 28,328

Time Stamping 21 99,501 0 1,218 854 97,429

E-mail Protection 22 12,535 0 1,346 1,025 10,164

Microsoft Commercial Code Signing 12 168 0 42 126 0

Basic Constraints 1,322 5,591,123 63,589 458,363 376,025 4,756,735

CA: True 962 5,587,165 63,285 458,363 372,079 4,756,723

CA: False 360 7,384 304 3,426 3,946 12

that the absence of proper configurations and clear constraints for a signing certificate can result in the same

certificate being reused across multiple domains.

Surprisingly, 5,179,277 certificates were labeled with “Certificate Sign” in their extensions, allowing them

to sign other certificates and create a certificate hierarchy. Such certificates enable the certificate holders to

act as trusted entities, issuing and signing certificates for subordinate authorities or entities. These certificates

typically belong to CAs, and the presence of these 4,503,150 certificates in malware binaries raises concerns.

We have only extracted code-signing certificates from malicious binary files, hence, the presence of these

privileged certificates in signing malicious apps suggests potential unauthorized certificate use.

Starting from 2008, certificate extensions have been categorized as either critical or non-critical. If a

certificate-using system encounters critical extensions or information it cannot handle, it must reject the

certificate. On the other hand, non-critical extensions can be disregarded if they are unrecognized, but they

should be processed if they are recognized [8]. To ensure backward compatibility between applications and

older versions of Android, applications may decide to implement a custom SDK overwrite that forcefully

disables the verification of certificate extensions flagged as critical. Our analysis showed that malicious apps

tend to use key extensions flagged as critical more often than benign apps. Out of 4,730,060 certificates set

as critical, the vast majority (4,160,892) belongs to malware binaries, 245,592 to malicious apps, and 323,576

to benign apps.

Thus it appears that malware not only uses privileged certificates (i.e., the certificates issued to allow the

signing of other certificates) but also commonly requests certificate verification to fit the target profile.

In the context of APKs and PE files, the presence of the CA flag set to True in the Basic Constraints

extension indicates that the certificate is associated with a CA, signifying it as a trusted organization that has

verified and signed the application or software from the vendor or developer. On the other hand, Android does
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not mandate apps to be signed by a CA and does not currently perform CA verification. It also provides code

signing using self-signed certificates that developers can generate without external assistance or permission.

However, a self-signed CA certificate implies that the owner of an APK file assumes the role of a certificate

authority and has the authority to issue, validate, and sign other certificates for various purposes.

Out of 5,587,165 reused certificates found to be flagged as CA, we discovered 2,869,140 are self-signed

distributed as 2,106,072 in malware binaries, 450,346 in benign apps, and 312,722 in malicious apps.

These findings highlight the significant reuse of signing certificates in the ecosystem of Android applica-

tions.

6.5.4 Public keys present in reused certificates

We conducted a deeper analysis of the key strength of the reused cryptographic elements found in our set to

gain insights into the level of protection they offered. Table 6.9 presents the distribution of key size ranges

for the public keys extracted from the reused certificates.

Table 6.9: Public key size of reused certificates

Key Size Unique Keys Total Keys Benign APK Malicious APK Malware binaries

0-1023 9 728 649 47 32

1024-2047 4,540 731,740 306,780 325,600 99,360

2048-4095 6,294 8,208,281 3,256,459 4,665,343 286,479

4096-8191 287 471,348 202,636 233,408 35304

8192-up 1 2 1 1 0

Total 11,131 9,412,099 3,766,525 5,224,399 421,175

Among the reused keys, 732,468 (8%) are less than 2048 bits in length. They are considered cryptograph-

ically weak and should not be used for cryptographic protections. For example, NIST-compliant RSA keys

are required to have a length greater or equal to 2048 bits [5]. NIST also recommended deprecating signing

certificates that contained RSA keys of 1024 bits by the end of 2013. However, across all our scans, 528

signing certificates were found using a deprecated public key with a length of less than 1024 bits.

During our analysis, we encountered 1,597 private keys, out of which only 418 are unique. The presence

of unencrypted and reused private keys in apps is concerning. Depending on the intended usage, the presence

of these shared private keys opens up the possibility for misuse, allowing to decrypting of protected data or

hijacking another app identity.

Out of these 418 unique private keys, we successfully reconstructed 251 RSA public keys, and by pairwise

comparison with our existing collections, 34 shared public keys and 29 shared certificates were found to

be matched to these private keys. Overall, 563 certificates and 1,108 public keys were found in 819 apps,

distributed as 617 malicious apps and 202 benign apps, dated from 2012 to 2023.
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6.6 Conclusion

This chapter highlighted the significant prevalence of compromised certificates being reused across Android

apps and malicious binaries. By collecting a wide range of more than 700,00 apps from official and alternative

markets, we were able to analyze the compromised reuse of code-signing certificates.

Our investigation focused on the file structure of Android applications, particularly examining file formats

that may contain cryptographic content. Intriguingly, we found about half of the files had extensions that were

renamed. We compared malicious and benign apps in terms of their cryptographic elements and discovered

that malicious apps tend to have fewer certificates helping them to evade detection.

Our analysis revealed that 48% (9,412,099) of certificates extracted from malware binaries and our com-

plementary set of Android APKs are reused across these two domains. These certificates were reused not

only for signing a benign or malicious app but also for purposes beyond code-signing which confirms our

previous findings for shared certificates across multiple domains. We observed inadequate context-relevant

extensions with unspecified usage can cause this extensive reuse phenomenon. Following the same idea from

the previous chapter, we examined the strength of public keys corresponding to shared certificates.

Furthermore, we observed a significant number of signed apps (89%) are treated as unsigned by verification

tools due to deprecated settings of their code-signing certificate. We encountered a wide number of apps signed

with Android default keys and discovered leaked platform certificates. We were also able to spot benign apps

containing known malicious samples. Furthermore, we identified unencrypted private keys embedded in apps,

which enabled us to derive their public key and locate the corresponding certificates.

These observations, taken as a whole, serve to enhance our comprehension of the practice of reusing code-

signing certificates in the context of file-based sources. While there are valid reasons to argue that certain

applications might not require robust cryptographic settings, such as when they lack critical or identifiable

information, the compromised use of an application’s identity still gives rise to security concerns in the

majority of scenarios.
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7 Discussion and Recommendations

This chapter discusses our findings offering valuable insights into the security landscape surrounding

cryptographic practices in both PKI and Android environments. In light of our research, we propose several

recommendations to enhance the security of cryptographic components in these ecosystems to ensure the

integrity of cryptographic key usage.

7.1 Discussion

The presence of duplicated cryptographic keys is an alarming indicator when it deviates from established

security guidelines. It implies a potential absence of adequate security protocols. during the key generation

and management, resulting in unreliable keys prone to exploitation. This duplication may stem from various

reasons, e.g., errors in the key generation algorithm or weaknesses in the underlying library used for key

generation. Regardless of the cause, the presence of duplicates raises red flags and casts doubt on the overall

security of the PKI ecosystem. The results derived through our analysis shed light on:

The persistently weak state of RSA keys

Our analysis extends over a considerable length of time, spanning up to nine years in certain datasets

(Rapid7 and Malware) which gives us a unique historical view of RSA key security. While numerous previous

studies have suggested improvements in the quality of RSA keys, our analysis reveals a different outcome.

For example, we factored 185,731 unique moduli corresponding to 793,694 RSA keys (181,784 unique). In

2012, Heninger et al. [31] reported finding divisors for 2,314 moduli for 16,717 distinct public keys, and in

2016, Hastings et al. [30] factored 313,000 RSA keys.

Despite conducting our analysis almost 10 years after the initial report, we still observed significantly

higher numbers, which is a disheartening outcome. The comprehensive and large-scale nature of our study,

however, gives a more realistic view security state of the PKI ecosystem.

Shared RSA keys are weak

We found that 87% (14,862,767) shared keys appear in distinct certificates, out of which we found that

44% (6,595,972) are weak in terms of key length and 1.3% were factored due to weak prime number selection.

We also found that these shared keys were predominantly generated using outdated and vulnerable libraries,

resulting in indicating inherently weak and vulnerable keys. We also noticed that 92% (19,172) of all shared

certificates among devices were found to be non-compliant with the NIST standards.
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TLS certificates are widely reused for different purposes

Aside from the presence of vulnerable cryptographic attributes, another factor contributing to the weak-

nesses in the PKI is the utilization of certificates beyond their intended scope. Certificates issued for a specific

purpose should not be used for any other usage. In reality, the certificates are being used interchangeably.

Almost all certificates found in malicious binaries, 8,299,100 (99.9%), were served by TLS hosts in the Rapid7

set. 2,338,672 (28%) of certificates used in malicious binaries are also used for signing Android apps.

Overwhelmingly high use of obsolete algorithms among shared certificates

95% (9,560,681) of the shared certificates are signed using deprecated hashing algorithms, which were

already considered obsolete by the time of our certificate collection. Such a significant presence of non-

compliant certificates points to the bigger problem within the PKI ecosystem.

Weak hashing algorithms can undermine the integrity and authenticity of TLS certificates and allow

attackers to create fraudulent certificates leading to impersonation and unauthorized access. It becomes easier

for attackers to tamper with the certificate data without detection. This compromises the trustworthiness

of the certificates and opens the door to various security risks, such as man-in-the-middle attacks or the

interception of sensitive information. Finally, weak hashing algorithms hinder the long-term security and

validity of TLS certificates. As cryptographic attacks evolve and computational power increases, weak hashing

algorithms become even more susceptible to brute-force and collision attacks.

The shared certificates are predominantly used by legacy embedded network devices

Many shared certificates appear to be served by legacy devices. Over half of validated shared certificates

(55%) come from devices that pre-date our data collection period. The rest are served by devices released in

2014. All these certificates are currently in use and this fact emphasizes the lack of oversight regarding the

certificates that have been already issued.

7.2 Observations and Recommendations

Our analysis highlights several observations that underline the existing problems and enables us to propose

the following potential countermeasures:

Public key-relevant improvements

While the solution to the weak key situation appears to be simple—enforcing strong key generation—many

cryptographic libraries, such as OpenSSL, still allow for the generation of weak keys essentially weakening the

PKI environment. On a different note, even though the certificate community (CA/B Forum) appears to be

moving towards reduced longevity of certificates, the lack of enforcement for revocation of legacy certificates

and re-issuance for devices using them leads to continued use of these certificates and consequently weakens
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the security of the PKI. We suggest the adoption of current cryptographic parameters as suggested by NIST

would ensure wide compatibility.

Adequate context-relevant extensions

We suggest defining context-relevant extensions with careful use of CA and critical flags to diminish the

likelihood of potential certificate reuse for various purposes and in multiple domains. More specifically,

• Specified/non-generic certificates: Our analysis shows that only 5,605,334 (28.5%) certificates in our

large-scale collection are well-defined. Without well-defined certificate extensions, relying parties have

limited insight into the intended or recommended use of the certificate. This makes it challenging

to enforce appropriate security measures and determine whether the certificate is suitable for specific

operations or applications.

• Non-CA signing certificates: 4,756,723 (26.3%) certificates of malware binaries along with 63,285

(4.03%) signing certificates in APKs are set to be CA. If a signing certificate is designated in this

way, it inherits the elevated and arguably unnecessary authority to issue new certificates. This practice

can be followed in specific scenarios where a trusted organization requires the capability to generate

new certificates autonomously, such as within secure corporate networks or controlled environments.

However, caution should be exercised, especially in publicly distributed applications, where assigning

such authority could lead to potential security vulnerabilities and exploitation by malicious actors. For

instance, if a malicious actor gains control over a signing certificate with CA privileges, they could

potentially create compromised certificates, enabling man-in-the-middle attacks and data interception.

Careful consideration is essential to create a balance between operational convenience and maintaining

a robust security posture.

• Mandated purpose-related extensions: Only 4,730,060 (24%) certificates mandate verifiers to process

the purpose-related components of certificates. If a verifier lacks support for critical extensions, it can

safely ignore such extensions without affecting the overall validation process. Properly setting critical

flags enhances the certificate’s reliability while allowing for graceful handling of unsupported extensions

by verifiers.

Use of prevention mechanisms

Implementing prevention mechanisms is a beneficial security practice that minimizes risks. It may serve

as a simple solution to vet apps, such as:

• Avoiding the use of default or publicly known certificates: 49,323 apps in our set were signed with

Android’s default certificate and 19,639 apps were signed with publicly known certificates.

• Use of reported malicious and compromised samples: 1,993 benign apps in our set contain malicious

files, and 332 apps were affected by the use of compromised platform certificates. Our analysis relied
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Algorithm 1 An algorithm for verifying signing certificate

1: Step 1: ▷ Save hash value while creating the signing certificate
2: ExpectedAppKey← signature of signing key pair
3: Step 2: ▷ Hard-coded validation procedure
4: procedure OnStart
5: package manager← AndroidPackageManager
6: package info← package manager.GetPackageInfo()
7: received app key← package info.GetSignature()
8: if ExpectedAppKey <> received app key then return false
9: end if
10: Signature verified. return true
11: end procedure

on publicly available information that is readily available to any developer.

• Avoid using not-protected private keys: We were able to extract 1,597 private keys from malicious

and benign apps, and consequently 1,108 public keys and 563 certificates. In Android application

development, it is advised not to package unencrypted private keys in APK files and refrain from

including the signer certificate’s private key within the APK. Securely storing private keys in trusted

environments, such as servers or hardware security modules, with limited access during the signing

process is essential to enhance app security and safeguard cryptographic assets.

Validate expectations

It holds true that upon publishing an application through an official marketplace, the marketplace assumes

responsibility for tasks such as identity verification and the update process. In the case of Android applications

that are self-signed, the Android operating system takes charge of signature verification. When a user

downloads an update for an application, the Android runtime compares the signature of the new version

with that of the original. If the signatures align, the Android runtime proceeds with the installation of

the update. However, it is always considered a safe approach to incorporate a more customized verification

process to address potential unforeseen security issues.

• Embedded validation procedures: Apart from considering all the settings and configurations of keys

and certificates, an APK certificate should be further verified. We propose to use a set of steps in

Algorithm 1 to guide app certificate validation.

To begin, developers should retrieve the hash value of the expected code-signing certificate. Subse-

quently, within the initial procedure of the application, incorporate a check that involves programmat-

ically calculating the hash value of the current signing certificate. Finally, a successful match from

comparing the calculated hash value with the expected hash value obtained earlier indicates that the

app is signed with the expected certificate and can proceed to run. Otherwise, it suggests a potential

security breach or tampering. This process enhances app security by validating certificate authentic-

ity and thwarting unauthorized modifications. It also guards against impersonation and enables swift

breach detection for timely mitigation.

This process serves as a strong protection by providing an added layer of protection through the
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validation of an APK’s authenticity and integrity. It prevents unauthorized modifications to the app

and reduces the risk of running a compromised version with a potentially harmful or altered certificate.

This mechanism ensures early detection of any discrepancies in the signing certificate, maintaining its

integrity and alignment with the expected attributes.

• Use of tools: The “jarsigner” tool used to verify signing certificates can give the “security risk” warning

due to the use of deprecated signature algorithms, weak key sizes, and self-signed entries. This tool

also informs if the Extended Key Usage extension allows the certificate to be used for code signing.

Using such tools is encouraged to evaluate the signing certificate in order to reduce the risk of malicious

modifications during distribution.

Use of our proposed platform

The analysis conducted in our study highlights the extent of sharing certificates and keys across the PKI

ecosystem. While individual CAs may not have a comprehensive view of the Internet, our developed platform

can be utilized for identifying instances of certificate reuse.

Moreover, Owners and issuers of certificates and keys should give careful attention to the excessive use

of duplicated keys. Our study provides a valuable tool for identifying vulnerabilities in cryptographic imple-

mentations, and we hope it will be utilized by the owners and issuers of the certificates and keys.

7.3 Conclusion

Digital certificates play a crucial role in the security of network communications and application developments,

but there are hosting organizations and application developers who prioritize convenience over security. While

there are legitimate scenarios for the reuse of cryptographic components, in numerous instances, it poses

substantial risks to users and app owners.

Our contributions encompass a comprehensive and extensive endeavor in the context of Internet security.

We have conducted a broad analysis of TLS/SSL certificates and RSA keys, spanning domains and platforms.

In the realm of domains, we embarked on the most comprehensive scan, measuring and characterizing the

distribution of TLS/SSL certificates and RSA public key sharing. This exhaustive investigation covered

over 314 million valid certificates and 13 million SSH keys, carefully collected from diverse sources over an

extended period, some spanning up to nine years. Similarly, in the realm of Android applications, our analysis

extended to over 19 million certificates and 9 million reused keys found across APKs and malware binaries,

gathered from various sources over as many as eleven years.

Our findings emphasize the critical necessity for robust mechanisms to identify and analyze duplicate and

weak certificates and keys. To facilitate such essential analysis, we have developed a correlation platform

capable of pinpointing duplicate keys and identifying vulnerabilities within TLS certificates and RSA keys.

We have made this platform, openly accessible to the public through https://key-explorer.com/. Moreover,
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to further enable the analysis of cryptographic reuse, we have made the set of reused certificates available to

the public.

7.4 Future Work

Derived from our analysis, we offer a set of interesting research paths intended to empower security practi-

tioners in elevating the overall cryptographic security landscape. Our work highlights how important it is

to continue observing and keep working on making the digital world safer. We hope that this research will

urge organizations and developers to reassess the current security practices. Prioritizing certificate security

is crucial for safeguarding their data, hosting platform, apps, and users. As a result, the approach outlined

here opens the door to potential research endeavors:

• Assessing the context of all reused certificates: This study revealed a noteworthy quantity of

certificates and keys that had been reused, with potential associations to IP addresses, domain names,

and organizations. As a next step, examining the context of each reused certificate could be a promising

direction to explore.

• Developing a policy engine: This study has demonstrated that the absence of certificates with

contextually relevant definitions creates opportunities to be compromised. To address this issue, the

proposal to develop a policy engine capable of interpreting the specific needs of a given environment

while adhering to the latest NIST recommendations and recommending optimal certificate settings

offers a promising avenue for diminishing certificate misuse.

• Enhancing certificate inventory management for Android apps: Similar to how browser policies

evaluate digital certificates for authenticity on websites, Android devices can improve the capability

to authenticate the credibility and dependability of certificates presented by apps. This validation

procedure guarantees that the certificates used to sign the apps align with essential minimum criteria

and characteristics.

• Analyzing the traits of compromised certificates: This work showed extensive reuse of certificates

within malware binaries. Consequently, due to the lack of an established point of reference for querying

compromised certificates and keys, giving attention to looking closely at the characteristics of these

certificates would be a new path to explore. This exploration can uncover potential recurring patterns,

offering insights that can contribute to the development of a precise detection platform.
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