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Abstract

The growing demand for renewable energy resources (RER) has led to increased

integration of inverter-based resources (IBRs), into existing power distribution and

transmission networks. However, RER locations are often not ideally suited for direct

integration, necessitating a restructuring of the grid from a traditional radial network

to a more complex mesh network topology. This transition presents challenges in

terms of protection and coordination, as IBRs exhibit atypical responses to power

system anomalies compared to conventional synchronous generation.

To address these challenges and support existing power system protection infras-

tructure, this work explores the incorporation of machine learning algorithms. Specif-

ically, an optimized convolutional neural network (CNN) is developed for real-time

application in power system protection schemes. The focus is on prioritizing key per-

formance metrics such as recall, specificity, speed, and the reduction of computational

resources required for effective protection.

The machine learning model is trained to differentiate between healthy system

dynamics and hazardous conditions, such as faults, in the presence of IBRs. By

analyzing data retrieved from an IEEE 34-bus 24kV distribution network, the model’s

application is demonstrated and its performance is evaluated.

A photovoltaic (PV) source was incorporated into the IEEE 34-bus distribution

feeder model at the end of the feeder. By adding a PV source at the end of the

feeder, IBR characteristics, such as its response to system anomalies can be monitored

through the model.

Once the modified IEEE 34-bus distribution feeder model with the PV source

was set up, various system anomalies were simulated to create a diverse dataset for

training the machine learning (ML) model. These anomalies included; load rejection

- a sudden and complete removal of load from the distribution network, simulating

a scenario where a significant portion of the load disconnects from the grid, load

addition - a sudden and significant increase in load demand, representing a scenario
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where new loads are connected to the grid, islanding - a scenario where the distribution

feeder becomes electrically isolated from the main grid, with the PV source acting as a

microgrid and supplying power to the local loads, and various types of faults, such as

short-circuits or ground faults, occurring at different locations along the distribution

line.

To create a diverse dataset, model parameters were varied through 50 different

iterations of each simulated anomaly scenario. These parameters included the PV

system’s capacity, the location of the anomaly on the feeder, the severity and duration

of the anomaly, and other relevant grid parameters.

For each iteration and anomaly scenario, the responses of the system were recorded,

including voltage levels, current flows, and other relevant synchorphasors at the PV

source’s point of common coupling (PCC). These responses formed the dataset for

training the ML model.

The accumulated dataset was then used to train the various ML models, including

the optimized convolutional neural network (CNN), to identify patterns and hidden

characteristics in the data corresponding to different system anomalies. The training

process involved feeding the model with input data from the various iterations and

scenarios, along with corresponding labels indicating the type of anomaly present.

By exposing the ML model to diverse scenarios and varying parameters, the model

learns to generalize its understanding of system dynamics and accurately distinguish

between healthy system states and hazardous conditions. The models in this work

were specifically trained to recognize the various fault characteristics on the system.

The trained model’s ability to process time-series data and recognize anomalies from

the accumulated dataset enhances power system protection infrastructure’s capability

to respond rapidly and accurately to various grid disturbances, ensuring the reliable

and stable operation of the distribution network, especially in the presence of PV and

other IBRs.

The results show that the optimized CNN outperforms traditional machine learn-
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ing models used in time-series data analysis. The model’s speed and reliability make

it an effective tool for identifying hidden characteristics in power system data without

the need for extensive manual analysis or rigid programming of existing protection

relays. This capability is particularly valuable as power grids integrate a higher pen-

etration of IBRs, where traditional protection infrastructure may not fully account

for their unique responses.

The successful integration of the optimized CNN into power system protection

infrastructure enhances the grid’s ability to detect and respond to anomalies, such

as faults, in a more efficient and accurate manner. By leveraging machine learning

techniques, power system operators can better adapt to the challenges posed by the

increasing presence of IBRs and ensure the continued stability and reliability of the

distribution network.
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Chapter 1

Introduction

1.1 Background

The deployment of distributed energy resources (DERs) is increasing. These

sources are integrated into the distribution grid throughout the system. Introducing

DERs into a system quickly converts the traditional radial network to a mesh net-

work topology. Power distribution groups must significantly restructure protection

schemes. Due to the physics and intermittency of renewable sources, these DERs

often rely on power inverters to tie into the distribution grid, adding an increased

concern to system protection and reliability.

Traditional generation had been mainly composed of rotating machines called

synchronous generators. Sources reliant on inverters are often referred to as inverter-

based resources (IBRs). The physics behind synchronous generators and IBRs are

fundamentally different. This is apparent in the short-circuit characteristics of the

inverters and their response to faults. Synchronous generator fault characteristics are

defined by their high-magnitude current, dictated by the source parameters and the

impedance of the short-circuit path to ground. In contrast, IBRs typically produce

low-magnitude short-circuit currents, limited by the power electronics of the inverters

as a means of self-preservation. These characteristics are defined by the inverter

manufacturer and largely undisclosed - leading to inconsistencies in the response

between the various IBRs integrated into a distribution grid.
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Traditional distribution feeders are set up as radial feeders with a single source of

fault current. Because of this, overcurrent (OC) protection was predominantly used

for fault detection and mitigation. OC protection devices will monitor feeder current

and operate a fault-clearing device such as a circuit breaker (CB) or recloser once the

current exceeds a predefined value. This operation will be triggered after a predefined

period of time in order to coordinate with other protection devices on the system in

an attempt to protect system infrastructure, the public and the environment while

mitigating the number of affected loads. When distributed generation is connected

through a distribution system, another source of fault current is introduced. In the

case of a ground fault, a second source will create a parallel path to ground, partially

offsetting the original source fault current contribution - directly affecting the response

of the original OC protection equipment [1].

As power systems begin to integrate high levels of IBRs, traditional infrastructure

can be unreliable during anomalies in the network. The difference in power delivery

characteristics between synchronous generators and IBRs as well as the inconsistencies

between IBRs themselves not only make traditional protection equipment ineffective

but require new types of protection methods that can effectively accommodate the

inconsistencies between all types of distributed RERs.

The objective of the research work reported in this thesis is to deal with the mod-

ified power system topology and the dynamic characteristics of IBRs during transient

conditions through the development and application of a deep learning algorithm op-

timized for mitigating the effects of harmful system anomalies. As standard industry

design and implementation of IBRs is developed, machine learning models can be

applied to monitor electrical distribution system health and react as needed during

grid abnormalities such as faults.

Machine learning models have been developed to analyze time-series data. These

models can be trained to continuously monitor system data and recognize the differ-

ence between typical system characteristics and anomalies such as the occurrence of

a fault on the power system [2]. Implementing this type of algorithm into existing
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protection schemes can increase the reliability and effectiveness of most overcurrent

and overvoltage protection. In this work, a convolutional neural network model is

developed to reduce the speed and computational resources required to recognize

harmful system abnormalities and effectively incorporate a deep learning algorithm

into power system protection schemes.

1.2 Inverter-Based Resource Transient Characteristics & Pro-

tection

1.2.1 DER Overcurrent Characteristics

Traditional distribution feeders are set up as radial feeders with a single source of

fault current. Because of this, overcurrent (OC) protection was predominantly used

for fault detection and mitigation. OC protection devices will monitor feeder current

and operate a fault-clearing device such as a circuit breaker (CB) or recloser once the

current exceeds a predefined value. This operation will be triggered after a predefined

period of time in order to coordinate with other protection devices on the system in

an attempt to protect system infrastructure, the public and the environment while

mitigating the number of affected loads. When distributed generation is connected

through a distribution system, another source of fault current is introduced. In the

case of a ground fault, a second source will create a parallel path to ground, partially

offsetting the original source fault current contribution - directly affecting the response

of the original OC protection equipment.

Synchronous Generators

Synchronous generators’ equivalent Thevenin circuit can be effectively represented

and modelled as a voltage source in series with a relatively low impedance in com-

parison to the impedance of the distribution network. During a fault event, the fault

current level and characteristics are defined by the generator capacity, the generator

impedance and the impedance of the distribution network between the generator and

the fault location. When a fault occurs in the distribution network, the synchronous
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generator’s low internal impedance produces a significant fault current.

Protection relays take advantage of the characteristics of synchronous genera-

tor sources during overcurrent events to effectively protect the distribution network.

Overcurrent protection relays monitor the current flowing through the protected cir-

cuit and are set to operate when the current exceeds a predefined threshold. Due to

the severity of the OC events produced by the synchronous generators, the operation

threshold can in most cases be clearly defined in order to differentiate between fault

OC events and other system anomalies.

The low internal impedance of synchronous generators ensures that they con-

tribute a substantial amount of fault current during fault events. This characteristic

is advantageous for overcurrent protection, as the relays can clearly differentiate be-

tween fault conditions and other system anomalies, they can quickly detect and ini-

tiate the isolation process, minimizing potential damage to equipment and ensuring

the safety and stability of the distribution network. These characteristics also ease

the coordination of the various protection relays in the distribution network, ensuring

that the nearest relay to the fault location operates first while allowing downstream

relays enough time to clear the fault without causing unnecessary tripping. This co-

ordinated protection strategy helps maintain the integrity of the distribution system

while effectively handling overcurrent events from synchronous generator sources.

Inverter-Based Resources

IBRs have considerably different fault characteristics than conventional synchronous

generators. Reports on IBRs characterize their fault current response as a low-

magnitude, positive-sequence contribution and as negligible sources of negative- and

zero-sequence current regardless of the fault type. The short-circuit currents are typ-

ically limited to 1.2 per unit (pu) by the inverter controller in order to protect the

electronics [3]. However, the initial transient current can be as high as 2.5 pu for 1/4

to 2 cycles before it is reduced by the controller to the limited output within the first

6 cycles [4].
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Unlike conventional synchronous generators, these sources are not represented as

a voltage source. A photovoltaic (PV) inverter, will regulate its DC voltage to achieve

the maximum power at the specific irradiance level on the panels. Through power

and current control loops, the inverter will regulate the output current in order to

maintain the maximum power generation [5]. In other words, as the interconnection

voltage fluctuates, the inverter will vary the output current to the maximum power

output - therefore operating as a voltage-controlled current source. This specific mode

of control is referred to as maximum power point tracking (MPPT).

PV inverters can typically be grouped into two operating modes - DC voltage

control and maximum power point tracking (MPPT) control. In DC voltage control

mode, the inverter’s booster converter maintains the DC voltage so that the voltage

source converter (VSC) can control the active power on the DC link. This mode

of operation is utilized when the reactive power output of the inverter is a priority.

In MPPT control mode, the maximum real power yield is taken from the PV array.

Since small independent power producer (IPP) commercial compensation is depen-

dent on the amount of real power injected into the utility, IPPs will typically operate

their inverters in MPPT control mode to optimize the real power output. Operating

at near unity power factor by limiting the reactive power output, can produce drasti-

cally different characteristics when compared to synchronous generators or inverters

operating in DC voltage control mode [1]. Furthermore, the various inverter operat-

ing modes can have a significant effect on the expected fault current produced by an

IBR.

IEEE 1547 introduced ride-through requirements for IBRs [6]. These require-

ments force IBRs to inject reactive power into the system for voltage support. This

standardization provides helpful metrics for protection engineers carrying out system

protection studies and creating protection schemes. During fault conditions, the re-

duced system voltage will cause the inverter controls to increase the current regulator

target output in order to maintain constant power. The transient response of IBR in

system fault scenarios is driven by the inverter control schemes. The first considera-
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tion these control schemes prioritize is to manage and maintain current magnitudes

within the thermal withstand capability of the internal power electronics. As the

power electronic devices used in inverters are sensitive to overcurrent beyond their

rated values, these devices can fail if exposed to overcurrent levels several times their

rated values for less than a cycle. Modern inverters will therefore recognize the tran-

sient conditions and limit the current to a sustainable output.

Reference [7] discusses the various levels of system protection that are impacted

by introducing distributed IBRs. This list includes line distance protection, memory-

polarized zero sequence directional protection, negative sequence-based directional

ground fault protection, negative sequence overcurrent elements, pilot protection, line

current differential (LCD), rate of change of frequency (ROCOF) and power swing

protection.

Although PV inverters will typically act as a current source, in severe transient

overvoltage conditions, the inverter controller can become saturated [5]. The output

of the inverter is then determined by the DC voltage, causing the inverter to momen-

tarily act as a voltage source, adding further complexity to the distribution system

protection scheme.

1.2.2 Transient Overvoltage Concerns

The increase in DER introduces a growing concern for TOV and a need for re-

structuring TOV mitigation practices. Distribution surge arresters are applied to

mitigate lighting strikes overvoltages. Arresters are therefore sized to have a mini-

mum rating above the ground fault overvoltage (GFOV) magnitude [8]. Other voltage

causes in distribution networks include ferroresonance, load rejection, loss of ground

and transformer inrush.

When a significant load is isolated from the system and there is no substantial

load to sink the current, load rejection overvoltage (LROV) conditions may occur

until the abnormality is recognized and the inverters are shut down by protective

devices. LROV is a balanced positive sequence overvoltage that is independent of the
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system grounding.

Transformer inrush can also lead to overvoltages. These inrushes can often sat-

urate the power transformer’s iron core, leading to resonance with the distribution

system’s capacitance.

GFOV is an unbalanced overvoltage dependent on the system grounding and how

much the system neutral shifts during a fault. During ground fault conditions, the

voltage on the unfaulted phases increases while the faulted phase voltage moves to

the potential at the system neutral.

In DER networks, transmission source transformers acting as ground sources will

be isolated from the system during ground faults on the sub-transmission system.

When distribution source transformers that typically act as a source to the LV side

backfeed into the transmission system, they will act as an ungrounded source during

GF conditions, resulting in loss of ground overvoltage conditions.

Although the mitigation of overvoltages is often dependent on physical system

characteristics, differentiating between the various causes of overvoltage is a useful

metric to react accordingly while meeting operating standards defined by IEEE. One

such mitigation strategy is the connection of zero-sequence ground sources. How-

ever, without implementing these strategies in a calculated approach, this leads to

system concerns such as ground fault relaying desensitization. Similar concerns are

inherent with techniques utilized to mitigate the various problems resulting from the

integration of DERs.

1.2.3 Industry Requirements

As the implementation of DERs in distribution networks increases, more specif-

ically IBRs, standards such as IEEE 1547 have been developed to standardize the

response of IBRs developed by independent manufacturers. These standards estab-

lish minimum requirements for the system protection and control schemes and the

responsibility of both the utility and the IPP. The IEEE Standard for Interconnection
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and Interoperability of Distributed Energy Resouces with Associated Electric Power

Systems Interfaces, reference [6], is one such standard that defines the technical re-

quirements of IBRs. This standard defines the reactive power injection requirements,

IBR response to abnormal conditions and power quality requirements required to

maintain distribution network reliability.

To contribute to the stability of the interconnected system, IEEE 1547-18 defines

the required characteristics and capabilities for the various applications of DER.

Normal Performance Categories:

Category A - The minimum performance capabilities needed for Area EPS volt-

age regulation and are reasonably attainable by all state-of-the-art DER technologies.

This level of performance is deemed adequate for applications where the DER pene-

tration in the distribution system is lower, and where the DER power output is not

subject to frequent large variations.

Category B - Covers all requirements within Category A and specifies supple-

mental capabilities needed to adequately integrate the DER in local Area EPS where

the DER penetration is higher or where the DER power output is subject to frequent

large variations.

Abnormal Performance Categories:

Category I - The minimal bulk power system (BPS) reliability needs and is

reasonably attainable by all DER technologies that are in common usage today.

Category II - Performance covers all BPS reliability needs and coordinates with

the existing BPS reliability standard, NERC PRC-024-2 [B26], developed to avoid

adverse tripping of bulk system generators during system disturbances. Additional

voltage ride-through capability is specified for DERs, beyond mandatory voltage ride-

through defined by NERC PRC-024-2 [B26], to account for the potential for fault-

induced delayed voltage recovery on the distribution system, due to distribution load

characteristics.

8



Category III - Provides the highest disturbance ride-through capabilities, in-

tended to address integration issues such as power quality and system overloads

caused by DER tripping in local Area EPS with very high DER penetration lev-

els. This category also provides increased bulk power system security by further

reducing the potential loss of DER during bulk system events. These requirements

are based on the California Rule 21 [B4] Smart Inverter requirements.

As implied by these performance categories, as the penetration of DERs increases,

the system requirements for voltage regulation and power quality during normal op-

eration increase and the burden abnormal conditions have on the resources is also

exacerbated.

1.3 Research Objectives

The increasing deployment of DERs is resulting in a transformation of traditional

radial network topologies into mesh network configurations. These DERs, often IBRs

relying on power inverters to connect to the distribution grid, pose new challenges to

system protection and reliability due to their unique physics and intermittency. IBRs

exhibit low-magnitude short-circuit currents, unlike synchronous generators, making

traditional overcurrent protection methods less effective. Therefore, the need for

new protection methods, especially utilizing machine learning algorithms, becomes

essential to address system anomalies and ensure grid stability.

Deep learning models, particularly CNNs, have recently been deployed in research

and have proven effective in analyzing time-series data; recognizing anomalies in var-

ious domains. By harnessing the intrinsic capabilities of these ML structures, these

models can continuously monitor electrical distribution system health, including fault

occurrences, and react promptly to grid abnormalities. Implementing such algorithms

into existing protection schemes has the potential to improve the reliability and ef-

fectiveness of overcurrent and overvoltage protection, critical for accommodating the

inconsistencies among distributed IBRs and other types of DERs.
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The development of a convolutional neural network model specifically tailored for

power system protection will also contribute to reducing the computational resources

required for anomaly recognition, making it more feasible to incorporate deep learning

algorithms into real-world power distribution systems.

In summary, this research aims to contribute to the protection of diverse power

systems in the context of increasing DER integration by developing and applying an

optimized deep learning algorithm, particularly a CNN model, capable of efficiently

mitigating the effects of harmful system anomalies. The particular research objectives

of this thesis are as follows:

1. Review existing Convolutional Neural Network (CNN) structures and their

suitability for time-series data diagnostics.

2. Develop an optimized CNN model structure tailored for effective time-series

data diagnostics in the context of power system anomalies, considering the modified

power system topology and dynamic characteristics of IBRs during transient condi-

tions.

3. Evaluate the effectiveness of optimized CNN model structures compared to

common machine learning models for enhancing power system protection schemes,

with a focus on fault recognition.

1.4 Related Work

Over the years, there has been a growing interest in applying machine learning

techniques to analyze electrical signal time series data sets. The earliest works ex-

plored the use of model architectures such as Artificial Neural Networks (ANNs),

Support Vector Machines (SVMs), and Learning Vector Quantization (LVQ) for this

purpose. However, models often struggled with hidden feature extraction, necessitat-

ing expert/manual feature extraction techniques like Fast Fourier Transform (FFT)

to assist the models.

Several studies demonstrated the potential of ANN, SVM, and LVQ models for

10



fault diagnosis and protection in power systems. ANN-based schemes were proposed

for fault location in transmission lines [9], and intelligent backup decisions in HVDC

systems [10]. SVM combined with wavelet analysis was applied to diagnose faults in

three-phase PWM inverters [11]. LVQ structures have shown advantages over SVM

models in similar applications [12], references [13] and [14] demonstrate these benefits

for use in fault diagnosis in three-phase induction motors and power transformers.

In works utilizing RNN model architectures such as LSTM and GRU, researchers

have demonstrated their suitability for time series data analysis. RNNs have the

ability to capture temporal dependencies making them well-suited for tasks such as

fault detection, load forecasting, and system modelling. By integrating RNNs into

online prediction models, they have demonstrated the ability to provide insights into

system stability during both steady-state and transient conditions.

One of the earliest works utilizing an LSTM, reference [15], addressed the chal-

lenge of learning to store information over extended time intervals using recurrent

backpropagation. As research in RNNs progressed, researchers explored more so-

phisticated units with gating mechanisms. Reference [16] compared LSTM and the

recently proposed Gated Recurrent Unit (GRU) on music and speech signal modelling

tasks. Other research, such as reference [17] explored the application of recurrent neu-

ral networks to model reduction with memory effect in power system equations. The

proposed approach, inspired by the Mori-Zwanzig theory, demonstrated good per-

formance in short-term prediction and long-term statistical properties. Both LSTM

and GRU units outperformed traditional models utilizing tanh activation functions,

showcasing the benefits of gating mechanisms in capturing temporal dependencies. In

other research, reference [18] introduced the RNN Encoder-Decoder model, consist-

ing of two RNNs for sequence encoding and decoding. The proposed model improved

the performance of statistical machine translation systems by learning meaningful

representations of linguistic phrases.

In recent years, further improvements have been made to RNN models for specific

power system analysis tasks. Reference [19] introduced novel Deep Recurrent Neural
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Network (DRNN) models employing LSTM for fault detection, classification, and

location prediction in large-scale power systems. The use of sequential deep learning

allowed the models to make reliable decisions based on PMU data. Other research,

reference [20], proposed an LSTM-based framework for short-term load forecasting for

individual residential energy consumers, demonstrating LSTMs’ ability to outperform

other algorithms, highlighting its potential for future grid planning and operation.

Although RNNs structure provides inherent benefits for analyzing time series data,

the utilization of Convolutional Neural Networks (CNNs) has also gained significant

attention in power system diagnostics [21]. The traditional use of CNN models de-

ploys deep structures that allow the recognition of minute features for classifying

inputs. However, these deep models are not suitable for applications requiring fast

inference times due to the computational burden of the model. With that said, shal-

low models often struggle with hidden feature extraction. Therefore, researchers have

incorporated the implementation of expert/manual feature extraction techniques like

Fast Fourier Transform (FFT) to assist these models and effectively reduce their com-

putational burden. Recent works have demonstrated the effectiveness of such CNNs

in fault diagnosis and classification utilized for system-level [22] or component-specific

application [2] [23] when utilizing application-specific optimizations.

With the appropriate data processing, CNNs have the ability to efficiently process

multivariate time series data making them well-suited for power system applications

where numerous signals need simultaneous analysis. For example, reference [24] uti-

lizes a stacked auto-encoder to extract features during the data processing stage.

Similarly, reference [25] explores domain adaptation techniques using deep models

for fault diagnosis, focusing on adapting CNN-based fault diagnosis models to new

and diverse datasets, improving the generalizability of the models. Furthermore, ad-

vancements in CNN model architectures, such as utilizing wide-area kernels [23] and

product quantization [2], have contributed to improved accuracy and reduced model

loss, ensuring reliable fault recognition and diagnosis. These methods increase the

prediction accuracy and reduce the high computational burden of training that is
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characteristic of CNN networks.

The literature demonstrates a steady progression in the application of machine

learning techniques for time series data diagnostics in power systems. From the early

works utilizing shallow models to the recent focus on RNNs and the significant benefits

of CNN models, these works highlight the potential of deep learning in enhancing

power system reliability and fault detection capabilities. Although the use of deep

learning models, particularly CNNs, has shown promising results, certain challenges

and concerns remain. Real-time application of these models in power systems requires

careful consideration due to the high computational burden involved, which may

hinder immediate responses to critical faults.

1.5 Thesis Organization

The thesis is organized into six distinct sections, each addressing a specific as-

pect of the research on the application of machine learning models for power system

protection on distribution networks with high penetrations of IBRs.

Chapter 1 provides an overview of the research, focusing on the impact of high

penetrations of IBRs on electrical distribution networks. It explores the fundamental

differences between traditional synchronous generators and IBRs concerning the con-

trol and transient characteristics of each resource. The introduction sets the context

for the research, highlighting the challenges faced when integrating IBRs and the need

for novel protection methods supplemented by machine learning algorithms.

Chapter 2 is a comprehensive review of various machine learning model structures.

The discussion covers Support Vector Machines (SVM), Learning Vector Quantization

(LVQ), and Recurrent Neural Networks (RNNs). However, the primary focus is on

Convolutional Neural Network (CNN) model structures. The chapter delves into the

various layers and parameters utilized in CNNs, providing a basis for selecting the

most suitable model for time-series data diagnostics in the subsequent chapters.

Chapter 3 details the electromagnetic transient modelling and analysis process
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used in the research. It describes the utilization of the IEEE-34 bus distribution

network as a test system, providing its structural and parameter definitions. Addi-

tionally, the chapter breaks down the IBR/solar plant model used in the simulations

and explains the configuration and iterations carried out using the PSCAD simulation

tool. The results obtained from the simulations are also presented and analyzed.

Chapter 4 is dedicated to the development of the CNN model for time-series data

feature extraction. It outlines the specific requirements for the CNN model, including

the input data structure and preprocessing steps. The chapter delves into the CNN

model’s architecture, detailing the various layers and hyperparameters used for opti-

mization to ensure its suitability for effectively diagnosing power system anomalies.

Chapter 5 focuses on testing the machine learning models, particularly the CNN

model, and presenting the results. It discusses the different test structures used to

evaluate the model’s performance. The chapter explores the optimization procedures

involving hyperparameter tuning and layer modifications to enhance the model’s ef-

fectiveness. The model’s performance is thoroughly reviewed and compared to other

machine learning model structures, such as SVM and RNNs.

In the final chapter, Chapter 6, the thesis draws conclusions based on the research

findings and the performance of the CNN model for time-series data diagnostics.

It highlights the contributions of the research in addressing the challenges posed by

high-penetrations of IBRs in electrical distribution networks and the potential benefits

of integrating deep learning algorithms into power system protection. The chapter

concludes with suggestions for future work, identifying areas for further investigation

and potential improvements to the developed model and methodologies.
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Chapter 2

Machine Learning Models

Although IBR transient characteristics are atypical when compared to conventional

synchronous generation, their respective response to various system anomalies is con-

sistent and can be recognized with tuned protection equipment. The tuning required

may contradict typical protection scheme parameters, leading to miscoordination and

nuisance tripping. Not all methods can be consistently relied on to adequately pro-

tect heavily integrated IBR systems due to newly introduced overvoltage concerns

and inconsistent fault current characteristics.

Due to the rapid development of machine learning research, the concepts are

widely used in power systems. These data-driven prediction methods treat the evalu-

ation of transient power system data as a pattern classification problem. The health

of the system can be generalized as a binary classification - zero (0) meaning healthy

system data and one (1) meaning undesirable system status. The structure of pattern

classification problems includes a data pre-processing layer, feature selection layer, of-

fline training and online rule extraction [26].

The main advantage of machine-learning methods is that these models do not

require a predefined threshold and set points to adequately identify system anoma-

lies. Artificial neural networks (ANN), support vector machine (SVM), learning vec-

tor quantization (LVQ), k-nearest neighbour (KNN) and recurrent neural networks

(RNN) are several popular data-driven methods that have been utilized in power
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system applications. These models have shallow architectures that are traditionally

limited to one hidden layer.

2.1 Learning Vector Quantization (LVQ)

Learning Vector Quantization (LVQ), is an ANN structure and a supervised vec-

tor quantization technique used to classify input vectors [12]. LVQs are a competitive

learning model that is well-suited for discrete classifications. These models approx-

imate the class distributions of input vectors by utilizing trained prototypes. These

prototypes are trained through unsupervised vector quantization that produces a set

of representative vectors used to classify input data.

Basic LVQs assign one prototype for each number of classes in a problem. Dur-

ing training, the Euclidean distance between data points and each of the initialized

prototypes is calculated to identify the prototype with the smallest distance. If the

closest prototype belongs to the same class as the input data point, the prototype

is adjusted, moving it closer to the data point. If the closest prototype belongs to a

different class than the data point, the prototype is moved away from the input data

point.

The architecture of a basic LVQ network is shown in the below figure. LVQ

structures consist of an input layer, a Kohonen layer and an output layer [13]. In the

input layer, neurons are connected to each neuron on the subsequent Kohonen layer

through a weighted filter. The output layer neurons are then connected to a specific

group of Kohonen layer neurons and used to classify the input vector.

The weights of the filters between the Kohonen layer and the output neurons are

either zero (0) or one (1) - representing the Kohonen layer neurons that affect the

specific output layer neurons. As described in references [27] and [14], a basic LVQ

network can be represented by the below equations.

Continuous input vectors:

X = (x1, x2, · · · , xM) (2.1)
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Figure 2.1: LVQ Basic Architecture

Connection weights vectors between the input layer and the Kohonen layer:

W 1 = (w1
1, w

1
2, · · · , w1

p)w
1
i = (w1

i1, w
1
i2, · · · , w1

iM) (2.2)

where i = 1, 2, · · · , p.

Connection weights vectors between the Kohonen layer and the output layer:

W 2 = (w2
1, w

2
2, · · · , w2

p)w
2
i = (w2

i1, w
2
i2, · · · , w2

iM) (2.3)

where k = 1, 2, · · · , N , and

W 2
kr =

1 r ∈ k

0 r ̸∈ k

(2.4)

Suppose the training mode results as follows:

{x1, t1}, {x2, t2}, · · · , {xQ, tQ} (2.5)

where tj(j = 1, 2, · · · , Q)

The hidden layer is calculated as follows:

V = W 1X (2.6)

17



Then the output vector is:

T = W 2V (2.7)

To train the network, W 1 can be adjusted as follows:

For every input vector, the network will give a classification result. If the result

of the classification is correct, the connection weights values can be corrected by 2.8.

w1
i (t+ 1) = w1

i (t) + α(t)(x(t)− w1
i (t)) (2.8)

If the result of the classification is false, the connection weights values can be

corrected by 2.9.

w1
i (t+ 1) = w1

i (t)− α(t)(x(t)− w1
i (t)) (2.9)

Where x(t) is the input, α is the scalar gain, α ∈ (0, 1), which is decreasing in time

and w1
i (t) is the connection weights value of the wth neuron at t time.

The advantage of LVQ is that it creates prototypes that are easy to interpret and

that they can be applied to multi-class classification in a natural way [28].

2.2 Support Vector Machine (SVM)

Similar to LVQ models, SVMs utilize prototypes denoted as support vectors. This

also utilizes supervised vector quantization. However, unlike LVQ, the support vectors

of SVMs define a boundary between the input vectors of the various classes. Rather

than attempt to define a prototype vector as close as possible to the input vectors

of each class like in LVQ, SVMs attempt to define vectors with as large of a margin

between the separate classes as possible

A support vector machine (SVM), also referred to as support vector classification

(SVC), is a non-probabilistic binary classifier. SVMs produce a representation of

the input vectors as points in space, mapped so that the examples of the separate

categories are divided by a clear gap that is as wide as possible. The goal of the SVM

classifier is to maximize the gap between groups of outputs. New input vectors are
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then mapped into that same space and predicted to belong to a category based on

the region where they fall. Therefore, these algorithms are recognized as a pattern

recognition method.

As SVMs were originally designed for binary classification [29], these algorithms

have naturally been used in power system fault detection [11]. As mentioned, the

objective of an SVM is to establish a separating boundary around support vectors

used to identify the binary classification of the input data. These boundaries are

separated from the respective input vector classes, by a maximum distance that is

calculated using training data. The maximum separation is defined by solving the

following equations, as defined by reference [11]. The Lagrange multipliers {αi}Ni=1

are determined, by solving 2.10 with the defined constraints.

W (α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjK(xi, xj) (2.10)

where W (α) is subject to:
N∑
i=1

αiyi = 0 (2.11)

0 ≤ αi ≤ C, i = (1, 2, · · · , N) (2.12)

where αi is a Lagrande multiplier, (xi, yi) is a training data set in which xi is the input

vectors and yi is the output classification ϵ{−1, 1} and C is a constant to balance

algorithm performance and the generalization.

K(x, xi) = [(x • xi) + 1]d (2.13)

where K(x, xi) is a polynomial kernel function that performs an inner product of

the input vector and support vector that performs the non-linear mapping into the

feature space and d defines the order of the polynomial that controls the complexity

of the classification boundary [30].

and a separating function can be defined as:

f(x) = sign

 N∑
i=1

αiyiK(xi, x)− b

 (2.14)
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Figure 2.2: SVM Basic Architecture

where N is the number of support vectors xi, x is the input vector and b is a bias

term.

By solving the decision function f(x), the SVM predicts the class label of the

input vector x based on the output sign. If the value of f(x) is positive, the predicted

class label is true, and if the value of f(x) is negative, the predicted class label is

false.

2.3 Recurrent Neural Network (RNN)

A Recurrent Neural Network (RNN) is a neural network with recurrent connec-

tions that effectively handles time series data. These networks utilize recurrent con-

nections to link values in a neural network to themselves. These links create a de-

pendency on the respective values from the previous time step, creating a memory of
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the prior input, and influencing the output from the current input. RNNs also share

weight parameters between the individual model layers before they are adjusted in

the backpropagation stage.

Backpropagation is an algorithm utilized by RNNs and other neural networks.

This stage updates the randomly initialized parameters/weights based on the output

error through a technique called gradient descent [31].

A one-layer RNN with an input time series dataset, xt, can be represented using

equations 2.15 and 2.16, where ht are the hidden layer values and yt are the output

values at time step t [17]. Note, multi-layer RNNs are created by feeding the output

of yt into another RNN.

ht = α(Wht−1 + Uxt) (2.15)

yt = α(V ht) (2.16)

Where U and W are the weight metrices, V is the projection matrix, and α are the

respective non-linear activation functions.

RNNs utilize the same group parameters for all time steps. This allows RNNs to

learn information in a long time series without introducing a significant number of

parameters.

Training RNNs is similar to training regular feed-forward neural networks such

as CNNs. However, RNNs consider the gradient through the time direction. For

example, the gradient of yt with respect to hs, where s < t. These networks are

trained utilizing the back-propagation through time (BPTT) method. In this back-

propagation method, as the model is trained by calculating the errors from the output

layer to the input layer, the errors are summed at each time step. This varies from

traditional back-propagation, where the errors are not summed, as parameters are

not traditionally shared across the model layers.

These networks are susceptible to concerns with exploding gradients and vanishing
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gradients. Gradients are defined as the slope of the loss function along the error curve

produced when training the model. Vanishing gradient occurs when the gradient is

too small and continues to decrease through training, causing the weight parameters

to near zero, leading them to have an insignificant effect on the layer output [20]. Ex-

ploding gradient refers to the opposite effect, where weight parameters exponentially

increase.

2.3.1 Long Short-Term Memory (LSTM) Network

To solve the gradient problems, Long Short-Term Memory (LSTM) RNNs were

developed [15]. LSTM networks group nodes into a cell containing four gates that

produce two outputs - a hidden vector, h, and a memory vector, m. The four gates

include an input gate, gu, output gate, go, forget gate, gf and a cell state gate, gc.

Each gate is defined by equations 2.17 through 2.20 [19] [32].

gu = σ(W uht−1 + Uuxt) (2.17)

go = σ(W oht−1 + U oxt) (2.18)

gf = ϕ(W fht−1 + U fxt) (2.19)

gc = σ(W cht−1 + U cxt) (2.20)

Where W and U are the recurrent weight matrices and the projection matrices,

ϕ represents the tanh activation function and σ represents the sigmoid activation

function.

The resultant output vectors can be described as:

mt = gf ⊙mt−1 + gu ⊙ gc (2.21)

ht = ϕ(go ⊙mt) (2.22)

Where ⊙ is the element-wise multiplication of the respective matrices.
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Figure 2.3: LSTM Block Structure

2.3.2 Gated Recurrent Unit (GRU) Network

Similar to the LSTM model, a Gated Recurrent Unit (GRU) model was later

proposed by Cho [18] to solve the vanishing gradient problem, utilizing a reduced

gating structure and a single output vector, ht. The GRU cell is structured with two

gates - an update gate, zt, and a reset gate, rt defined as equations 2.23 and 2.24. The

resultant output vector, ht, is then defined as equation 2.25 [32]. Although the GRU

network utilizes a simplified LSTM structure, certain applications show improved

results when utilizing a GRU model [16].

zt = σ(Wzxt + Uzht−1) (2.23)

rt = σ(Wrxt + Urht−1) (2.24)

Where xt is the input vector at time step t, W are the trainable weight matrices

for the update and reset gates, and U are the respective trainable recurrent weight

matrices.

ht = (1− zt)⊙ ht−1 + zt ⊙ ϕ(Whxt + Uh(rt ⊙ ht−1) (2.25)

Where ⊙ is the element-wise multiplication of the respective matrices.
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Figure 2.4: CNN Basic Architecture

2.4 Convolutional Neural Network (CNN)

Deep networks such as convolutional neural network (CNN) models typically have

several hidden layers of various types. Deep networks can approximate the class of

compositional functions with the same accuracy as shallow networks but with an expo-

nentially lower number of training parameters as well as VC-dimension (the number

of training examples that are needed in order to train, compute or approximate a

specific target function) [33].

A CNN is a multi-stage neural network which consists of filter stages and one

classification stage [34]. The filter stages are used to extract features from the inputs,

which typically contain four types of layers - the convolution layer, batch normal-

ization layer, activation layer and the pooling layer. The classification stage is a

multi-layer prediction composed of one or more fully-connected layers.

The CNN training process is composed of two processes - forward propagation

and backward propagation. In forward propagation, the model receives the input

data, processes the information and generates an output. In backward propagation,

the model calculates the error from the previous forward propagation and updates

the parameters of the network.

One advantage of convolutional networks is the ease with which they can be

implemented in hardware and require significantly less data to train an accurate and
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reliable model. However, these networks can be prone to several problems that will

reduce efficacy if they are not structured appropriately.

Vanishing and Exploding Gradient

Vanishing and exploding gradient problems are issues that can arise during the

training of neural networks such as CNNs. Both the vanishing and exploding gradient

hinder the training of CNNs by impeding the convergence of the network’s weights.

Vanishing gradient occurs when the gradients calculated during the backpropa-

gation stage diminish rapidly as they propagate from the output layers to the input

layers. This significantly reduces the error correction in the weights of the earlier

layers, impeding their ability to effectively contribute to the model output. This re-

duces the network’s ability to learn complex patterns as the lower layers are unable to

extract meaningful features for the input data. This problem is prevalent in activa-

tion functions that have near-zero derivatives such as sigmoid and hyperbolic tangent

functions.

Exploding gradient is the opposite of the vanishing gradient problem. It occurs

when the gradients calculated during backpropagation become extremely large as they

propagate through the network. This leads to large weight updates and instability

during training, making it difficult for the network to converge to an optimal solution.

Models are more susceptible to exploding gradient when activation functions with

steep derivatives, such as ReLU, are utilized.

These concerns are mitigated through the application of activation functions with

suitable derivatives and through normalization techniques that assist in stabilizing

training while expediting model convergence [35].

Internal Covariate Shift

Internal covariate shift refers to the changing distribution of each respective layer’s

inputs during the learning process due to the varying outputs of the previous layer.

25



As the parameters of the preceding layers change through backpropagation there is

a shift in the weights for inputs to subsequent layers. Model’s susceptible to internal

covariate shifts require reduced gradients during training, reducing the learning speed

of the model [36].

As the distribution of weights and resulting inputs to each layer change, the gradi-

ents calculated based on the current distribution may not be suitable for updating the

parameters in an optimal manner. This can result in slower convergence, vanishing

gradients, or difficulty in training deep networks.

For these models, careful parameter initialization is required as it can also lead

to the saturation of activation functions [37]. When the input distribution to a

layer becomes heavily weighted, sigmoid and hyperbolic tangent activation functions

can saturate. This saturation causes the activation functions to push the respective

outputs toward the extremes of the function’s range, where the gradient becomes

close to zero, also known as the diminishing gradient phenomenon.

Internal Covariate Shift highlights the need for normalization techniques in CNNs.

Normalization will stabilize the distribution of inputs to each layer by normalizing

them across multiple sets of data inputs.

Overfitting

Overfitting refers to the phenomenon where the network effectively memorizes the

data utilized for training, including the noise or irrelevant patterns in the dataset,

rather than capturing the underlying general patterns. This is caused by factors

such as insufficient data, excessive model complexity and ineffective regularization

techniques intended to prevent the network from overcompensating for the training

data set [38].

When the available training data is limited, the network may not encounter enough

diverse examples to generalize the layer weights to adequately identify the underlying

patterns. This concern is exacerbated when the respective model has a large number
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of layers or neurons. Complex models with an increased number of parameters enable

them to closely fit the training data.

Techniques utilized for mitigating overfitting issues include expanding the size of

the training data set with diverse, representative data. This can be accommodated

through data augmentation techniques used to artificially increase the size and diver-

sity of the training data set by applying random transformations to the existing data.

Another common mitigating measure is the implementation of an early-stopping al-

gorithm. Training a CNN involves iterating over multiple epochs. Early stopping

is a technique where the training process is halted before convergence, based on a

predefined metric.

2.4.1 Convolution Layer

The convolution layer convolves the input vectors with filter kernals before going

through an activation function to generate the output features. Each filter uses the

same kernel to extract the local feature of the input vector. This is referred to as

weight sharing. One filter corresponds to one frame in the next layer and the number

of frames corresponds to the layer depth. The convolution process can be described

as shown below.

yl(i,j) = W l
i •X l(rj) =

w∑
j′=0

W l
i (j

′
)X l(j+j

′
) (2.26)

whereW l
i is used to denote the weights of the i-th filter kernel in layer l, X l(rj) denotes

the j-th local region in the convolution layer l, w is the width of the kernel, W l
i (j

′
)

denotes the j-th weight of the kernel and the notation • denotes the dot product

between the kernel and the local regions.

2.4.2 Batch Normalization

The batch normalization layer is a technique introduced in CNN models to re-

duce the shift of internal covariance, accelerate the training process and mitigate the

susceptibility to vanishing and exploding gradient problems [39] [40]. In some appli-

cations, the introduction of batch normalization can make the use of dropout layers
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unnecessary [36].

Batch normalization will typically follow a convolution layer or fully-connected

layer and ahead of the activation layer. For a q-dimension input to the l-th batch

normalization layer, yl = (yl(1), · · · , yl(q)). The output of the batch normalization

layer can be described as shown below.

ŷl(i,j) =
yl(i,j) − µB√

σ2
B + ϵ

(2.27)

where µB = E[yl(i,j)], σ2
B = V ar[yl(i,j)] and ϵ is a numerical stability constant.

zl(i,j) = W l(i)ŷl(i,j) + βl(i) (2.28)

where W l(i) are the respective model weights and βl(i) are the learned biases of the

respective neurons.

2.4.3 Activation Function

The activation function is placed at the end of the convolution and fully connected

layers. The most common activation functions can be grouped as either a ridge, radial

or fold function. Specific activation functions are selected depending on the desired

output and model requirements. The three activation functions utilized in this work

are the sigmoid, rectified linear unit and hyperbolic tangent functions as depicted in

Figure 2.5.

Sigmoid

The sigmoid activation function is typically used at the end of the model when

the desired result is a binary output [41]. This function is described below by 2.29.

α(zl(i,j)) = Sigmoid(zl(i,j)) =
1

1 + e−zl(i,j)
(2.29)

Rectified Linear Unit (ReLU)

The ReLu activation function, described by 2.30, typically follows the convolution

layer. This is a non-saturating function that does not suffer from the vanishing
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(a) Sigmoid (b) ReLU

(c) TanH

Figure 2.5: Activation Functions

gradient problem [42]. This function accelerates the convergence of neural networks

during the back-propagation stage of model training.

α(zl(i,j)) = ReLu(zl(i,j)) = max{0, zl(i,j)} =

0, z < 0

z, z ≥ 0

(2.30)

Hyperbolic Tangent (TanH)

The hyperbolic tangent (tanh) function is defined as 2.31. This is a zero-centred

function, symmetric around the origin, with outputs ranging from -1 to 1. Tanh is

a preferred function when negative input values play a signification role in dataset

classification [43].

α(zl(i,j)) = tanh(zl(i,j)) = 2Sigmoid(2zl(i,j))− 1 = 1− 2

e2zl(i,j) + 1
(2.31)
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2.4.4 Pooling Layer

Pooling layers are designed to reduce the dimensionality of the features, speed up

the training and improve the robustness of the extracted features. This operation is a

static attribute in the neural network, containing no parameters [23]. The operation

will not change the depth of the input data. However, the dimension of each output

is reduced. Pooling layers are typically added after a convolution layer in CNN

architectures. Pooling is utilized as a down-sampling operation to reduce the spatial

size of the features and parameters of the network. The most common pooling layer

is the max-pooling layer. This layer performs the local max operation over the input

features to reduce the parameters and obtain location-invariant features [34]. This

transformation function can be described by 2.32.

pl(i,j) = max(j−1)w+1≥t≥jw{αl(i,j)} (2.32)

where αl(i,j) denotes the value of the t-th neuron in the i-th frame of layer l, w is the

width of the pooling region and t ∈ [(j − 1)w + 1, jw].

2.4.5 Fully Connected Layer

In a fully connected layer, each neuron or node is connected to every neuron in the

preceding layer, forming a dense set of connections. This layer is a traditional neural

network that serves as a bridge between the preceding layers and the output layer,

generating an output based on the features previously extracted from the preceding

network layers.

Fully connected layers can only receive 1-D vectors. Therefore, prior to the fully

connected layer, a flattening operation is typically required to convert the feature

maps of the previous layers into an appropriate array.

This layer performs two operations on the incoming data - a linear transformation

and a non-linear transformation (activation function). The linear transformation

of the input data is carried out by computing a weighted sum of the inputs. The

weighted sum is calculated by multiplying each input value with its corresponding
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weight and summing up the results. The linear transformation is then passed through

an activation function, such as the sigmoid, hyperbolic tangent (tanh), or rectified

linear unit (ReLU). This introduces non-linear elements, enabling the network to

capture non-linear relationships between the inputs and the outputs.

A simple representation of these layers can be described by 2.33, utilizing the

sigmoid activation function for demonstration purposes.

Output(X) = Sigmoid(W T •X +B) (2.33)

As suggested, fully connected layers are introduced in the later stages of neural

networks, where they can capture high-level features and learn complex representa-

tions. For this reason, these layers are also utilized as the output layer in neural

network models for final derivations.

2.4.6 Flatten Layer

The flatten layer is used to transform multi-dimensional input data into a one-

dimensional array. The flatten layer is typically applied after convolutional or recur-

rent layers, which produce output tensors with multiple dimensions.

The flatten layer does not introduce any trainable parameters. Rather, the flat-

tening process preserves the batch dimension while merging all the other dimensions

into a one-dimensional vector. Each element of the output vector corresponds to

a specific feature or attribute of the input data. This allows the subsequent fully

connected layers to process the data and learn complex relationships. The flatten

layer is an important step in preparing the input for further processing and making

predictions in the network.

2.4.7 Dropout Layer

Dropout is a technique utilized to improve model generalization by preventing

overfitting, increase regularization by preventing the network from relying heavily on

specific neurons and inject uncertainty into the input data to improve the model’s
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ability to handle noisy inputs [34]. This is accomplished by randomly deactivating

neurons and their connections during a model’s training stage.

This technique can be added to many layers of a model, including the convolution

layer. As convolution layers have significantly fewer parameters than a fully connected

layer, it may seem unnecessary. However, dropout applied to a higher layer will have

an effect on all subsequent layers [44].

Care must be taken when utilizing dropout and selecting the dropout rate as

improper application can lead to suboptimal results. For example, applying dropout

to recurrent connections in RNN networks can disrupt the temporal dependencies

and reduce the model’s ability to capture sequential information [45].

If z(l) denotes the vector of inputs into layer l, the feed-forward operation of a

standard CNN can be described by 2.34. When a dropout layer has been introduced,

the typical feed-forward operation becomes 2.35 [44].

z
(l+1)
i = W

(l+1)
i X l + b

(l+1)
i (2.34)

z
(l+1)
i = W

(l+1)
i X̃ l + b

(l+1)
i (2.35)

X̃ l = r(l) ⊙X l (2.36)

r
(l)
j ∼ Bernoulli(p) (2.37)

Where W l and bl are the hidden layer weights and biases at layer l, X l is the layer

input vector, ⊙ denotes an element-wise multiplication and r(l) is a vector of Bernoulli

random binary variables with p designating the probability of each variable being 1.

By carrying out an element-wise multiplication of the Bernoulli vector r, as de-

scribed in 2.36, a percentage of the input vector variables are set to 0, effectively

removing that amount of random inputs from the model layer.

2.5 Summary

This chapter introduced various machine learning models that have been previ-

ously implemented for time-series data classification applications, including Learning
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Vector Quantization (LVQ), Support Vector Machines (SVM), Recurrent Neural Net-

works (RNN) with a focus on Long Short-Term Memory (LSTM) and Gated Recur-

rent Unit (GRU), and Convolutional Neural Networks (CNN). This chapter lays the

foundation for the subsequent experimentation and optimization of CNN models in

the context of time-series data classification for power system protection and control.

The chapter began with an overview of LVQ, which is a supervised learning al-

gorithm traditionally used for classification tasks. The general structure of LVQ

involves training prototypes for each class and adjusting them to minimize the clas-

sification error. LVQ models are particularly suitable for tasks where interpretability

and transparency are essential.

Next, SVM, a supervised learning algorithm for classification and regression tasks,

was introduced. SVM aims to find the optimal hyperplane that best separates classes

in a high-dimensional feature space. The general structure of SVM involves mapping

the data into higher dimensions using a kernel function and maximizing the distance

between the various data input types to achieve effective classification.

RNNmodels are also discussed, with a focus on LSTM and GRU, both of which are

specialized RNN architectures designed to overcome the vanishing gradient problem

in traditional RNNs. LSTM and GRU models introduce gating mechanisms to retain

previous time-step information and utilizing it for future input characterization.

The central focus of the chapter was on CNNs, traditionally deep learning archi-

tectures widely used for image recognition. The purpose and utilization of each of the

essential layers in CNNs were discussed, providing a preface for how CNNs ability to

learn hierarchical representations have the potential to be well-suited for time-series

data analysis and classification tasks.
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Chapter 3

Electromagnetic Transient Modeling and

Analysis

3.1 Electromagnetic Transient Simulations

Electromagnetic Transient (EMT) modelling is a crucial tool for studying the

transient behaviour of electrical power systems, including the integration of renew-

able energy resources like photovoltaics [46]. EMT studies provide valuable insights

into system characteristics and performance, allowing the optimization of control

and protection strategies that is not possible with fundamental frequency positive

sequence (RMS) models.

EMT models utilize computational techniques in the time-domain to analyze the

dynamic behaviour of electrical power systems and devices. These simulations model

the transient response of the system to sudden changes or disturbances, considering

the time-varying behaviour of voltages, currents, and electromagnetic fields.

Renewable energy resources, such as PV, can significantly impact power system

dynamics due to their intermittent nature and variability in inverter control philoso-

phies. EMT simulations play a crucial role in understanding and mitigating the

impact of PV and other IBR DG integration on the grid. For example, EMT sim-

ulations are used to investigate the behaviour of PV systems during faults, such as

short circuits or other disturbances in the power system; they consider the response
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of supporting infrastructure on this distribution grid such as voltage regulators; and

they are able to effectively model real-world fluctuations in power quality parameters

due to harmonics.

Therefore, these simulations are employed in this research through Power Systems

Computer Aided Design (PSCAD) software, to study the transient phenomena that

occur during various events, such as load rejection, switching operations and faults

while integrating photovoltaic resources. These simulations provide valuable insights

into the magnitudes and phase angles of the system’s electrical phasor quantities,

allowing for the extraction of the data required for the assessment of power system

characteristics by ML models in real time.

3.2 IEEE 34-Bus Feeder Model

An IEEE 34-bus test feeder model initially developed by PSCAD, was utilized

for this research, as depicted in Figure 3.1. This model represents an actual radial

distribution system in Arizona operating at a nominal voltage of 24.94 kV, which is a

common configuration for medium-voltage distribution networks in North America.

It includes various types of components such as step-down transformers, voltage regu-

lators, shunt capacitors and diverse load characteristics from residential, commercial,

and industrial consumers. This diversity allows for a realistic representation of the

power consumption patterns observed in real distribution systems and the analysis of

unbalanced conditions. The model consists of multiple feeders with different lengths,

which introduces variations in the impedance and voltage drop along the distribution

lines. This reflects the inherent characteristics of distribution systems, where line

losses and voltage drops can vary due to varying line lengths.

The IEEE 34 Bus model is particularly suitable for modelling the integration of

DERs, such as PV due to the feeder lengths and diversity in load and feeder char-

acteristics. Its size makes it computationally efficient while still providing sufficient

complexity to capture the dynamics of a distribution system [47]. This scalability

makes it suitable for studying the impact of DER integration without excessive com-
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Figure 3.1: IEEE 34 Bus Feeder

putational burden. The incorporation of residential, commercial, and industrial loads

reflects the diversity of electricity consumption in real systems. This provides insights

into the interaction between PV resources and various load types.

3.2.1 Distribution Feeder Characteristics

The IEEE 34-bus distribution system PSCAD model includes five aluminum con-

ductor steel reinforced (ACSR) conductor overhead line configurations, as described

below.

Table 3.1: IEEE 34-Bus System Modelled Overhead Line Configurations

Identifier Phasing Phase Conductor Neutral Conductor

300 BACN 1/0 1/0

301 BACN #2 6/1 #2 6/1

302 AN #4 6/1 #4 6/1

303 BN #4 6/1 #4 6/1

304 BN #2 6/1 #2 6/1

3.2.2 System Loads

The base IEEE 34-bus feeder model utilizes two categories of system loads de-

scribed as spot loads and distributed loads. Spot loads are individual loads connected

at a specific location in the distribution system. These represent localized points of
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Table 3.2: IEEE 34-Bus System Modelled Line Segments

Node A Node B Length [ft] Config. Type Node A Node B Length [ft] Config. Type

800 802 2580 300 834 842 280 301

802 806 1730 300 836 840 860 301

806 808 32230 300 836 862 280 301

808 810 5804 303 842 844 1350 301

808 812 37500 300 844 846 3640 301

812 814 29730 300 846 848 530 301

814 850 10 301 850 816 310 301

816 818 1710 302 852 832 10 301

816 824 10210 301 854 856 23330 303

818 820 48150 302 854 852 36830 301

820 822 13740 302 858 864 1620 302

824 826 3030 303 858 834 5830 301

824 828 840 301 860 836 2680 301

828 830 20440 301 862 838 4860 304

830 854 520 301 888 890 10560 300

832 858 4900 301 860 836 2680 301

832 888 0 XFM-1 862 838 4860 304

834 860 2020 301 888 890 10560 300

demand, typically associated with commercial and industrial facilities. Distributed

loads refer to loads that are distributed across a segment of a distribution feeder.

These loads are comprised of multiple smaller loads that do not have a significant

individual effect on the system but contribute to the overall system demand.

Each load is further defined by its load type. Although these specifications are

dependent on the available information of the actual system, these details help to de-

fine the load’s specific characteristics, increasing the accuracy of the model’s transient

characteristics. Wye (Y) connected loads connect each phase to a common neutral

and are often grounded at the neutral. In a delta (D) connection, each phase is

connected in a closed loop without a neutral connection.

3.2.3 Shunt Capacitors

Shunt capacitors provide reactive power compensation and voltage regulation

for distribution feeders, contributing to improved power factor and voltage stabil-
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Table 3.3: IEEE 34-Bus System Modelled Spot Loads

Node
Load

Type

Phase-A

[kW]

Phase-A

[kVAR]

Phase-B

[kW]

Phase-B

[kVAR]

Phase-C

[kW]

Phase-C

[kVAR]

860 Y-PQ 20 16 20 16 20 16

840 Y-I 9 7 9 7 9 7

844 Y-Z 135 105 135 105 135 105

848 D-PQ 20 16 20 16 20 16

890 D-I 150 75 150 75 150 75

830 D-Z 10 5 10 5 25 10

Table 3.4: IEEE 34-Bus System Modelled Distributed Loads

Node-A Node-B
Load

Type

Phase-A

[kW]

Phase-A

[kVAR]

Phase-B

[kW]

Phase-B

[kVAR]

Phase-C

[kW]

Phase-C

[kVAR]

802 806 Y-PQ 0 0 30 15 25 14

808 810 Y-I 0 0 16 8 0 0

818 820 Y-Z 34 17 0 0 0 0

820 822 Y-PQ 135 70 0 0 0 0

816 824 D-I 0 0 5 2 0 0

824 826 Y-I 0 0 40 20 0 0

824 828 Y-PQ 0 0 0 0 4 2

828 830 Y-PQ 7 3 0 0 0 0

854 856 Y-PQ 0 0 4 2 0 0

832 858 D-Z 7 3 2 1 6 3

858 864 Y-PQ 2 1 0 0 0 0

858 834 D-PQ 4 2 15 8 13 7

834 860 D-Z 16 8 20 10 110 55

860 836 D-PQ 30 15 10 6 42 22

836 840 D-I 18 9 22 11 0 0

862 838 Y-PQ 0 0 28 14 0 0

842 844 Y-PQ 9 5 0 0 0 0

844 846 Y-PQ 0 0 25 12 20 11

846 848 Y-PQ 0 0 23 11 0 0

ity. When significant system demand is comprised of inductive loads, connecting

capacitors in parallel generates reactive power, improving the system’s power factor.

This compensation reduces the burden on the power supply by increasing efficiency

and allowing for better utilization of the power supply’s capacity. Shunt capacitors
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assist in voltage regulation by injecting reactive power into the system as the load

on the feeder varies. By compensating for reactive power losses and voltage drops,

capacitors help stabilize and regulate the voltage profile of the system.

As reactive loads, shunt capacitors can have a significant impact on the system’s

transient characteristics and response to various power system events. For instance,

during load rejection events, when a significant load is suddenly disconnected from

the system, shunt capacitors can help mitigate voltage sags and stabilize the voltage

profile. As the load is removed, the capacitors continue to inject reactive power, com-

pensating for the sudden drop in demand and helping to maintain voltage stability.

During a fault, the capacitors discharge their stored potential energy, contributing to

a higher fault current.

Table 3.5: IEEE 34-Bus System Modelled Shunt Capacitors

Node
Phase-A

[kVAR]

Phase-B

[kVAR]

Phase-C

[kVAR]

844 100 100 100

848 150 150 150

3.2.4 Regulator Data

The IEEE 34-bus feeder model includes two voltage regulators, as defined below.

Like shunt capacitors, voltage regulators are installed at specific points in the distri-

bution feeder to maintain system voltages within a defined range as significant loads

and long distribution lines cause system voltages to drop.

Table 3.6: IEEE 34-Bus System Modelled Regulators

Regulator Node Connection
Bandwidth

[V]

PT

Ratio

Phase

R Setting

Phase

X Setting

Setpoint

[V]

1 814 3PH LG 2 120 2.7 1.6 120

2 852 3PH LG 2 120 2.5 1.5 124
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3.3 Distributed Inverter-Based Resource

A solar farm model developed by PSCAD is introduced into the IEEE 34-bus

system at node 848. Node 848 was selected as the distribution grid point of integration

as it would be a strong integration point candidate in the actual system to assist

with voltage fluctuations and power quality concerns at the end of the distribution

line. This voltage support improves the voltage profile, enhances voltage regulation,

and minimizes voltage deviations experienced by connected loads toward the end

of the feeder. Although not considered in this research, placing the DER at node

848 could also increase system resilience to unplanned system events by providing

localized generation capacity, reducing reliance on the primary generation sources.

By having a distributed energy resource local to the end-of-line loads, the system

could potentially ride-through disruptions or outages in the transmission network

and continue to supply power to nearby critical loads.

Integration at this location will also best demonstrate the transient characteristics

of DER. Modelling the DER at node 848 best represents the transient characteristics

of the DER. As the grid is weakest at this point in the feeder, the transient behaviour

and response of the DER during unplanned events will have a greater effect on the

surrounding feeder. Therefore, modelling the DER at node 848 allows for an accen-

tuated analysis of the DER’s dynamic performance, response to disturbances and

interaction with the grid.

3.3.1 PV Model Definition

The PV model developed by PSCAD is comprised of 5 major components includ-

ing the PV array, the power plant controller, the boost converter and the DC-AC

inverter. A scaling component is also introduced to augment the number of parallel

DC-AC inverters.

The PV array is the solar farm generation source, consisting of multiple photo-

voltaic modules or solar panels. These modules absorb sunlight (irradiation) and
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convert it into direct current (DC) electricity through the photovoltaic effect. The

power output of the PV array is a function of two parameters, the irradiation and

the ambient temperature. Although not considered in this research, these parameters

may be adjusted to vary the model output and characteristics for specific irradiation

and temperature conditions. In this thesis, the PV array irradiation and tempera-

ture parameters are set to 1000 W/m2 and 28°C respectively to maximize the power

output of the PV array.

The power plant controller is implemented in a basic form to monitor the output

of the solar farm and the distribution network conditions at the point of common

coupling (PCC). Based on the measured voltage, active power and reactive power

output and the mode of operation it adjusts the active and reactive power references

for the inverters in the solar farm. The power plant controller model can also detect

low and high-voltage ride-through condition setpoints, simulating the power stability

requirements of IEEE Std 1547-2018.

The power plant controller model’s three modes of operation include POC voltage

mode, fixed reactive power and power factor control. In POC voltage mode, the

PV inverter controller adjusts the active power output of the PV system based on

a predefined DC voltage limit or curve. The voltage reference curve or maximum

power point tracking (MPPT) curve defines the desired relationship between the grid

voltage and the active power output. The controller continuously monitors the grid

voltage and compares it to the voltage MPPT curve. Based on this comparison, the

MPPT algorithm varies the DC input voltage of the inverter to find the optimal point

on the current-voltage (I-V) curve of the PV array. This ensures that the PV system

operates at its maximum power efficiency. In fixed reactive power mode, the PV

inverter controller adjusts the reactive power output of the PV system to maintain a

predetermined level of reactive power injection. The controller continuously monitors

the grid’s reactive power demand and adjusts the inverter’s output to supply the

fixed level of reactive power required. In power factor control mode, also referred

to as volt/var control, the PV inverter controller adjusts the power factor of the PV
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system’s output to achieve a desired value. This control strategy regulates the feeder

voltage level and power factor by adjusting the reactive power output of the inverter.

The boost converter, also known as the DC-DC converter, modulates the PV

controller output while operating in both MPPT and DC voltage control modes. This

element converts the DC power generated by the PV array to a higher voltage DC

level defined by the controller, enabling the optimization of the power transmission

from the PV array to the DC-AC inverter.

The DC-AC Inverter is the main power electronic component, responsible for

converting the DC power generated by the PV array into the AC voltage suitable

for grid connection and distribution. The inverter performs the conversion through

power electronic devices, such as insulated gate bipolar transistors (IGBTs) or silicon

carbide (SiC) devices.

3.3.2 Step-Up Distribution Transformer

Systems integrating DERs require effective grounding to avoid severe overvoltage

during ground fault conditions. Since inverter neutrals are typically designed for sens-

ing purposes and not rated for carrying ground fault currents, utilities will require a

separate zero-sequence source for PV systems to assist with ground fault mitigation

required by IEEE Std 1547-2018 [8]. This zero-sequence source is typically intro-

duced through a zig-zag grounding transformer or through a specific interconnection

transformer grounding configuration such as wye grounded-delta. These transform-

ers typically require a level of derating, introduced from normal distribution network

imbalances. System zero-sequence return current on the feeder due to imbalances will

result in a zero-sequence voltage imposed on the wye side of the transformer. On the

delta side, this zero-sequence voltage will result in a circulating current through the

delta loop that is a function of the transformer zero sequence impedance.

As the focus of this thesis is on the IBR transient characteristics and the ML

models’ ability to recognize these conditions, a YGyg interconnection transformer was

utilized at the distribution network PCC to not restrict these attributes. In practice,
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a YGd grounding configuration would likely be introduced as a zero-sequence current

source to limit overvoltage conditions. This transformer would also incorporate an

impedance on the transformer neutral to balance the amount of zero-sequence current

divided between the transformers and the overvoltage severity during ground faults,

preventing ground fault relaying desensitization [5].

3.4 PSCAD Simulations

A minimum number of samples are required to prevent overtraining of the deep

learning model. Overtraining occurs when the model becomes too familiarized with

the training data and becomes specifically fitted for the training data set. As the

model becomes more closely fitted for the training data, its performance with other

data sets will begin to deteriorate. Overtraining can be expected when the training

set size is smaller than ten times the number of connections of the network [48].

To retrieve large, diverse and accurate data sets to effectively train the ML model

and prevent overfitting, simulations were performed under a full range of network

parameters and operating conditions. Variables included PV DER capacity, the in-

verter control methodology and the distribution feeder system demand. Utilizing an

iterative process carried out by a Python script, combinations of these variables are

simulated and data is retrieved for 48 unique runtime events. These events, detailed in

Table 3.10, demonstrate various system anomalies resulting in transient fluctuations

in power system attributes.

Two specific PV inverter control scenarios, as seen in Table 3.7, were simulated

to capture the variances in differing DERs controller responses to unplanned events.

These specific control types were utilized due to their robust capabilities with the

diverse combinations of the modelled system attributes and simulated conditions.

To simulate the effect the DER/load ratio has on the system’s transient char-

acteristics, the demand of spot load 844 is also varied between iterations. The load

capacity is shown in Table 3.9. As the load size is increased, transients such as voltage
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Figure 3.2: Modified IEEE 34 Bus Feeder

fluctuations to load rejection events are exacerbated, while OV transient conditions

are mitigated during system islanding and ground fault events.

Lastly, the PV farm capacities listed in Table 3.8 are also cycled. The sizes of

the solar farm are varied to simulate the variance of transient conditions between a

strong and weak grid system [49].

Table 3.7: PSCAD Model Iterations - PV System Control Scenarios

PV Control

Type

Reactive

Power Control

Active

Power Control

1 POC Voltage DC Voltage

2 POC Voltage MPPT

Table 3.8: PSCAD Model Iterations - PV Size Scenarios

PV Size
Inverter

Quantity

Inverter Capacity

[kW]

Total Capacity

[MW]

1 2 250 0.5

2 4 250 1.0

3 8 250 2.0

4 12 250 3.0

5 20 250 5.0
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Table 3.9: PSCAD Model Iterations - Load Demand Scenarios

Load 844

Demand

Active Power

[MW/Phase]

Reactive Power

[MVAR/Phase]

Total Demand

[MVA]

1 0.135 0.105 0.513

2 0.270 0.210 1.026

3 0.540 0.420 2.052

4 0.810 0.630 3.078

5 1.350 1.050 5.131

Table 3.10: PSCAD Runtime Events

Event Time [s] Type Node Action Event Time [s] Type Node Action

1 2.500 Load Energization 844 Close Breaker 25 15.583 AG Fault 848 Remove Fault

2 3.500 Utility Islanding 800 Open Breaker 26 16.583 BG Fault 848 Apply Fault

3 3.667 Utility Synchronization 800 Close Breaker 27 16.666 BG Fault 848 Remove Fault

4 4.667 AG Fault 800 Apply Fault 28 17.666 CB Fault 848 Apply Fault

5 4.750 AG Fault 800 Remove Fault 29 17.750 CB Fault 848 Remove Fault

6 5.750 BG Fault 800 Apply Fault 30 18.750 ABG Fault 848 Apply Fault

7 5.833 BG Fault 800 Remove Fault 31 18.833 ABG Fault 848 Remove Fault

8 6.833 CB Fault 800 Apply Fault 32 19.833 ACG Fault 848 Apply Fault

9 6.917 CB Fault 800 Remove Fault 33 19.916 ACG Fault 848 Remove Fault

10 7.917 ABG Fault 800 Apply Fault 34 20.916 BCG Fault 848 Apply Fault

11 8.000 ABG Fault 800 Remove Fault 35 21.000 BCG Fault 848 Remove Fault

12 9.000 ACG Fault 800 Apply Fault 36 22.000 ABCG Fault 848 Apply Fault

13 9.083 ACG Fault 800 Remove Fault 37 22.083 ABCG Fault 848 Remove Fault

14 10.083 BCG Fault 800 Apply Fault 38 23.083 AB Fault 848 Apply Fault

15 10.167 BCG Fault 800 Remove Fault 39 23.166 AB Fault 848 Remove Fault

16 11.167 ABCG Fault 800 Apply Fault 40 24.166 AC Fault 848 Apply Fault

17 11.250 ABCG Fault 800 Remove Fault 41 24.249 AC Fault 848 Remove Fault

18 12.250 AB Fault 800 Apply Fault 42 25.249 BC Fault 848 Apply Fault

19 12.333 AB Fault 800 Remove Fault 43 25.333 BC Fault 848 Remove Fault

20 13.333 ACG Fault 800 Apply Fault 44 26.333 AG Fault 838 Apply Fault

21 13.416 ACG Fault 800 Remove Fault 45 26.416 AG Fault 838 Remove Fault

22 14.416 BCG Fault 800 Apply Fault 46 27.416 BG Fault 822 Apply Fault

23 14.500 BCG Fault 800 Remove Fault 47 27.499 BG Fault 822 Remove Fault

24 15.500 AG Fault 848 Apply Fault 48 28.499 Load Rejection 844 Open Breaker

3.4.1 Simulation Results

The events simulated in Table 3.10 are intended to provide a diverse collection

of transient conditions for the ML model to consider. This includes events such as

significant load connections and load rejections that may lead to severe fluctuations
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in the distribution system synchrophasors. It is essential for the ML model to differ-

entiate between system operating anomalies such as these and more severe transients

from unplanned events such as faults. Three such anomalies are demonstrated in

Figure 3.3; including a load connection, load rejection and an utility islanding event.

During a load connection event, as described in Figure 3.3(a), the phase voltage

magnitude at the IBR may experience a significant sag. Conversely, during this period

there is an influx of current flowing from the inverter-based resource to the load.

During a load rejection event, as described in Figure 3.3(b), the phase voltage

magnitude of the IBR may exhibit a spike that exceeds acceptable distribution system

levels. The sudden disconnection of a large load can cause a temporary voltage rise

due to the inductive nature of the grid. The phase current magnitude during a load

rejection event depends on the behaviour of the inverter. In some cases, the inverter

may limit the output current. However, if the inverter is not designed with specific

current-limiting features, the phase current may rise temporarily before stabilizing.

It is important to note that the behaviour of an inverter-based resource can vary

depending on the specific control strategies and protection schemes implemented in

the system. The characteristics described provide a general overview of the phase

voltage and current behaviour during these events however these characteristics are

significantly influenced by the specific design and configuration of the IBR.

A utility islanding scenario is also simulated in the PSCAD modelling. Fig-

ure 3.3(c) demonstrates severe transient conditions during this event. In this scenario,

the loss of the utility initiates significant instability in the distribution system and

the system is unable to re-stabilize until the utility is resynchronized. In practice,

these conditions would lead to the de-energization of the entire distribution feeder.

However, in this work, the ML model is trained to differentiate between these island-

ing anomalies and a distribution system fault and not classify these as a triggering

event.

Samples of various fault transient conditions are shown in Figure 3.4. As in Fig-
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ure 3.3, these characteristics have been retrieved from the IBR POC to demonstrate

how the IBR in particular responds to the various event types. During a short-

circuit event, the fault current contribution from inverter-based resources is typically

lower compared to traditional sources. [50] demonstrates that fault current increases

are often greater in the synchronous machine compared to IBRs of similar capacity.

IBRs typically incorporate additional current-limiting features than those modelled

in this work that prevent excessive current flow to protect their internal components.

These additional current limiting features will often result in significantly lower fault

currents than those shown through these simulations.

The results demonstrated in Figure 3.4, with the exception of the line-to-ground

fault in Figure 3.4(b), show IBR fault current contributions higher than those previ-

ously discussed. However, these fault current magnitudes are significantly less than

the magnitudes produced by synchronous generators of comparable capacity.

3.5 Summary

This chapter provides an in-depth exploration of the Electromagnetic Transient

(EMT) modeling utilized to produce the application specific dataset for training and

testing the machine learning models. The chapter begins by introducing the concept

of EMT modeling and its ability to capture the behavior and transient characteristics

of inverter-based DERs.

The IEEE 34-bus test feeder foundational model, based on the widely used bench-

mark model for DER integration studies, is then thoroughly described. The compo-

nents of the test feeder, including transformers, distribution lines, and loads, are

discussed prior to the introduction of the PV source and it’s integration.

A detailed PV model, developed by PSCAD, is introduced. The integration of

this PV model into the IEEE 34-bus test feeder allows for the investigation of its

impact on the system under various operating conditions.

The chapter proceeds with the description of the simulated fault, islanding and
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(a) Load Connection (b) Load Rejection

(c) Utility Islanding

Figure 3.3: System Operating Transients at PCC
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(a) ABC-G Fault (b) A-G Fault

(c) AC Fault (d) AC-G Fault

Figure 3.4: IBR Fault Characteristics
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load connection/rejection events in the IEEE 34-bus test feeder with the integrated

PV model. Throughout 50 model iterations, various system parameters are adjusted

to observe their effects on system behavior and transient responses. These iterations

allow for the extraction of a diverse set of transient events at the PV PCC.

Finally, an overview of the simulated results is presented, summarizing the ob-

served transient voltage and current profiles during the simulated events. These

results provide a visual representation of the input data that may be captured by

online power system PMUs and utilized by machine learning algorithms.
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Chapter 4

CNN Model Adaptation for Time-Series

Data Feature Extraction

Convolutional Neural Networks (CNNs) have emerged as powerful models for various

tasks requiring deep learning algorithms, including image classification, object detec-

tion, and natural language processing [21]. While CNNs were initially developed for

analyzing grid-like data such as images, their application has extended to other do-

mains, including time-series analysis. In this thesis, a CNN model has been optimized

for handling normalized time-series data for real-time power system analysis.

CNN models have demonstrated remarkable performance when applied to nor-

malized time-series datasets [2] [22] [23] [34]. Their ability to automatically learn

hierarchical representations, capture local and global dependencies, and leverage var-

ious architectural extensions makes them well-suited for analyzing time-series data.

By employing the appropriate normalization techniques to preprocess the data, CNN

models can effectively extract meaningful patterns and relationships from time-series

sequences.

Analyzing time-series data poses unique challenges due to its temporal nature, this

typically requires capturing both local patterns and long-term dependencies within

the sequence. Traditionally, recurrent neural networks (RNNs) and their variants,

such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), have

been the primary models for time-series analysis, given their ability to retain the
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information of past data inputs. However, CNN models have emerged as a comple-

mentary or often superior alternative in certain scenarios. Their ability to incorporate

various architectural extensions and techniques enhances their performance on time-

series datasets. For instance, dilated convolutions, which incorporate exponentially

increasing receptive fields, enable CNNs to capture patterns at multiple scales within

the time series. Other techniques, such as the incorporation of residual connections,

attention mechanisms, and skip connections in CNN architectures further enhances

their ability to model past dependencies and attend to relevant temporal information.

4.1 Model Requirements

Reference [51] describes the general procedure for the real-time detection and

classification of power quality disturbances. In their analysis, real-time detection and

classification are divided into four major stages with a total of eight comprehensive

steps. The four major stages identified include the input space, preprocessing, feature

engineering and the decision space; which include the steps, input data preparation,

data preprocessing, transformation, feature extraction, feature selection, detection,

classification and characterization. This scheme is modified for this specific applica-

tion as shown in Figure 4.1. Readers may refer to reference [51] for detailed informa-

tion regarding each particular step not covered in this application.

The input stage in this thesis required the development of the EMT simulation

to retrieve the relevant information required to train the ML models. However, in a

typical application, the data source would be pre-existing PMUs, protection relays

or the local inverter continuously monitoring the distribution system. These devices

inherently carry out the feature engineering required for the application of ML models.

The raw voltage and current inputs are converted to an analog signal through a

sampling process, where the continuous input signals are measured at discrete time

intervals. These samples are then converted from their analog form into digital values

through an analog-to-digital converter (ADC). The devices are then able to transform

the signals from the time domain to the frequency domain through Fourier transform
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Figure 4.1: Real-Time Detection and Classification

techniques. From there, the devices then carry out further computation to extract

features from data such as RMS values, sequential components, harmonic data and

other such metrics. These features are then retrieved as required for the respective

protection functions or for use by external devices.

The work in this thesis applies particularly to the steps pertaining to the decision

space. These steps include the detection and classification of the extracted input

features. Prior to the data entering the model, the respective features require an ad-

ditional stage of preprocessing for the data normalization discussed in the subsequent

sections. Once the data features have been normalized, the ML model will carry out

inference, intrinsically detecting the state of the various features and classifying the

time-series data window. Depending on the application, these steps can be carried

out by a single device or by multiple, as described in Figure 4.1.

The research outlined in reference [23] discussed the importance of selecting the

appropriate feature extraction to detect abnormality characteristics that are early

indicators. It is crucial that the respective ML model can detect these early indicators

in order to meet the clearing times outlined in IEEE 1547 [6]. For instance, Table 4.1,

outlining the required DER response times for abnormal system voltages, requires the
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system DER to clear OVs exceeding 1.20 p.u. of the nominal voltage in 0.16 seconds

(10 cycles).

Table 4.1: IEEE 1547 DER Required Response Times to Abnormal Voltages

Voltage [pu] Clearing Time [s]

1.20 0.16

1.10-1.20 1.0-13.0

0.0-0.88 2-21.0

0.0-0.50 0.16-2.0

This clearing time is further restricted in IEEE 1547 when discussing the power

quality introduced by the DER. This standard specifically states the DER shall not

cause the instantaneous voltage on any portion of the distribution system to exceed

the cumulative duration shown in the below figure - potentially requiring the DER

to remove OV conditions in 1.6 milliseconds. In most applications, OV levels in

this range cannot be mitigated through reactive processes such as protective relaying

in conjunction with high-speed circuit breakers. In practice, it is more appropriate

to mitigate these scenarios through long-term planning of system configurations and

defined equipment parameters. For this reason, the handling of OVs requiring clearing

within a time frame of 1.6 milliseconds is out of the scope of this work.

4.2 Input Feature Data

The extracted data features are retrieved at a sampling rate of 32 samples per

cycle. This represents a typical sampling rate utilized by existing industry protection

relays [52]. To mitigate model latency and effectively isolate the DER from the system

in an acceptable period of time, half-cycle data sets are entered into the model. These

data sets include 16 samples from the voltage and current phasor measurement units

(PMUs), as described in 4.1 through 4.4 as well as the current sequence data, as

described in 4.5. These features are extracted locally to the system’s DER, at the
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PCC.

Imag,ph =


I1a,mag, I2a,mag, · · · , I16a,mag

I1b,mag, I2b,mag, · · · , I16b,mag

I1c,mag, I2c,mag, · · · , I16c,mag

 (4.1)

Iθ,ph =


I1a,θ, I2a,θ, · · · , I16a,θ

I1b,θ, I2b,θ, · · · , I16b,θ

I1c,θ, I2c,θ, · · · , I16c,θ

 (4.2)

Vmag,ph =


V 1
a,mag, V 2

a,mag, · · · , V 16
a,mag

V 1
b,mag, V 2

b,mag, · · · , V 16
b,mag

V 1
c,mag, V 2

c,mag, · · · , V 16
c,mag

 (4.3)

Vθ,ph =


V 1
a,θ, V 2

a,θ, · · · , V 16
a,θ

V 1
b,θ, V 2

b,θ, · · · , V 16
b,θ

V 1
c,θ, V 2

c,θ, · · · , V 16
c,θ

 (4.4)

Imag,seq =


I11,mag, I21,mag, · · · , I161,mag

I12,mag, I22,mag, · · · , I162,mag

I10,mag, I20,mag, · · · , I160,mag

 (4.5)

The resulting dataset window, as seen by the respective ML models, is structured

as described by 4.6.
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Xi =



V 1
a,mag, V 2

a,mag, · · · , V 16
a,mag

V 1
a,θ, V 2

a,θ, · · · , V 16
a,θ

V 1
b,mag, V 2

b,mag, · · · , V 16
b,mag

V 1
b,θ, V 2

b,θ, · · · , V 16
b,θ

V 1
c,mag, V 2

c,mag, · · · , V 16
c,mag

V 1
c,θ, V 2

c,θ, · · · , V 16
c,θ

I1a,mag, I2a,mag, · · · , I16a,mag

I1a,θ, I2a,θ, · · · , I16a,θ

I1b,mag, I2b,mag, · · · , I16b,mag

I1b,θ, I2b,θ, · · · , I16b,θ

I1c,mag, I2c,mag, · · · , I16c,mag

I1c,θ, I2c,θ, · · · , I16c,θ

I11,mag, I21,mag, · · · , I161,mag

I12,mag, I22,mag, · · · , I162,mag

I10,mag, I20,mag, · · · , I160,mag



(4.6)

PMU data analysis provides insight into the characteristics of the respective power

system. In the case of fault analysis, PMUs provide fundamental information through

synchrophasors, pertaining to the location of the disturbance and the classification

of the fault [53]. Synchrophasors refer to the cosine wave magnitude and angle of

system voltages and currents [54]. These waves can be represented as 4.7.

y(t) = Ym cos (w(t) + θ) (4.7)

By utilizing 4.7, the current and voltage vector magnitudes and angles are ex-

tracted. These elements provide electrical characteristics pertaining to an absolute

value in time [55].

Symmetrical/sequence components are brought in to supplement the synchropha-

sor data for their ability to identify real-time system operational characteristics and

fault classification [56].
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4.2.1 Data Normalization

Before training the model, the input data set is normalized. Normalization refers

to the process of transforming data to a common scale or range to facilitate mean-

ingful comparisons and analyses. Normalizing the input data will reduce the model

estimation errors and the calculation time needed in the training process [48]. If scales

are dissimilar for the different features (i.e. voltage and current), the large-scaled fea-

ture data will have a higher contribution to the output error. This will result in

the error reduction algorithm (back-propagation) focusing on the weights of higher

values, neglecting the information from the small valued weights [48]. The type of

input data normalization utilized and its effectiveness has a direct relationship with

the input data characteristics and distribution [57]. The two most common types of

normalization are the min-max method and z-score.

The min-max method will normalize data within the range of (0, 1) or (-1, 1)

based on the maximum and minimum values of the training data subset. The model

structure and respective characteristics should be considered in the determination of

the normalized data range. For example, layer activation functions such as ReLU

performance increases when utilizing a normalized dataset range of (0,1), while the

converse is true for tanh activation functions [43]. This in turn affects the performance

of the weight and bias initializer [58].

Min-max normalization is described in 4.8. This linear transformation equation

maintains all the distance ratios of the original vectors after normalization.

X̂(i,j) =
X(i,j) −Xmin

Xmax −Xmin

(u− l) + l (4.8)

where X̂(i,j) is the normalized data, X(i,j) is the original data, Xmax and Xmin are the

respective maximum and minimum values of X and u and l are the respective upper

and lower values of the new normalized data, X̂(i,j) ∈ [l : u]. The range of normalized

values are typically [u = 1, l = 0] or [u = 1, l = −1].

The z-score method is an ideal normalization method when the input data is nor-

mally distributed and when the data can be effectively characterized with parameters
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such as mean and standard deviation [57]. These attributes are well suited for the

data collected through the PSCAD simulations, as shown in the distribution curve of

the collected data below.

Z-score standardization is described in 4.9. Generally, standardization consists of

subtracting a quantity related to a measure of localization (mean) and dividing by a

measure of the scale (standard deviation). The z-score transforms the original data

to obtain a new distribution with a mean (µ̂) of 0 and a standard deviation (σ̂) of 1.

X̂(i,j) =
X(i,j) − µ

σ
(4.9)

µ̂ =
1

N

N∑
i=1

xi (4.10)

σ̂ =

√√√√ 1

N

N∑
i=1

(xi − µ̂)2 (4.11)

As the min-max normalization and z-score standardization have attributes that

complement the raw input dataset and the traditionally preferred ReLU activation

function, the two normalization methods have been tested and compared.

4.3 Optimized Convolutional Neural-Network

Traditional shallow machine learning algorithms such as SVM and back-propagation

neural networks (BPNNs) have relatively poor complex feature extraction capabili-

ties [59]. This makes it difficult to identify the features hidden in time-series data

monitoring the health and characteristics of complex power systems. To solve this

issue, a traditional CNN model has been restructured to effectively extract features

from time-series data while placing an emphasis on speed and resource requirements.

Several variations of the traditional CNN model have been developed for use with

time-series data classification. Model structures and parameter variations are tested

to quantify the performance of the particular network variances. The three general

CNN structures developed include a basic 2-dimensional (2D) CNN, a 1-dimensional

(1D) CNN and a deep CNN model. The basic 2D CNN is utilized as the base case,
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intended to efficiently classify time-series data windows. The 1D CNN was developed

to mitigate the effect of small 2D convolutional kernels on feature loss. Finally, a

deep CNN model was developed to increase the model’s ability to identify complex

characteristics.

Figure 4.2: 1D Kernel CNN Architecture

4.3.1 Convolution Layers

One of the main strengths of CNNs lies in their ability to automatically learn hi-

erarchical representations from the data. The convolutional layers in a CNN operate

as local filters, capturing local patterns and features by convolving a set of learn-

able filters across the input data. This hierarchical feature extraction enables the

model to learn representations at multiple levels of abstraction, which is crucial for

understanding the complexity present in time-series data.

Model complexity and the effectiveness of the model are often trade-offs. For this

reason, the optimal number of convolution layers is tested to determine the lowest

number of convolution layers that can be utilized while still obtaining acceptable

results. Models with one, two and three convolution layers are examined.

The ith feature map at the lth convolutional layer can be represented by 4.12.

zli = α(W l
i •X(l−1) + bli) (4.12)

Where α denotes the activation function, W l and bl are the hidden layer weight and

bias matrices at layer l, X l is the layer input vector, • denotes a convolution operation.
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Activation Function

A rectified linear unit (ReLU) activation function effectively reduces vanishing

gradient and overfitting problems associated with CNN models [39]. This is notably

apparent in deep neural networks, with a large number of convolutional layers [60].

Conversely, hyperbolic tangent (tanh) functions are typically applied to shallow

models and provide an output range of (−1, 1). As a result, the negative value of

input data is mapped as negative [43], while ReLU functions drive all negative values

to zero. Therefore, if the input data is not appropriately prepared when utilizing

ReLU activation, negative values of input features that may play an intricate role in

the dataset classification can be eliminated.

Initialization Schemes

In the Glorot initialization scheme, biases are initialized at 0 and the weights are

set to a uniform distribution of values with a range proportional to the size of the

number of nodes in the previous layer, as described by 4.13. As shown in [58], this

scheme performs well with the use of sigmoid and tanh activation functions.

W(i,j) ∼ U

[
− 1√

n
,

1√
n

]
(4.13)

Where U [−a, a] is the uniform distribution in the interval (−a, a) and n is the number

of nodes/columns of weights in the previous layer.

However, as suggested by [60], the Glorot activation scheme does not lend itself to

its use with ReLU activation functions, often leading to exploding gradient concerns

in deeper models. [60] proposed a modified Glorot function, suitable for use with

ReLU activations. This initialization function is now referred to as He initialization

and can be described by 4.14.

W(i,j) ∼ σ

[
−
√

2

n
,

√
2

n

]
(4.14)

Where σ is one standard deviation and n is the number of nodes/columns of weights

in the previous layer.
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Kernel Size

For traditional CNN networks utilizing image input arrays, different scales of filters

extract different local features. Large-scale filters may find the symmetric property,

while small-scale filters could find particular characteristics.

Traditional image identification CNNmodels utilize 3×3 convolutional kernels. 3×

3 convolutional kernels reduce the number of model layer parameters when compared

to larger kernel sizes such as 5× 5. For example, a 3× 3 kernel requires 9 parameters

for each respective output element. Whereas, a 5× 5 kernel requires 25 parameters.

This significantly reduces the model training period and inference times. Reduced

kernel sizes also improve the model’s ability to detect patterns irrespective of their

position in the input. As the kernel slides across the input, it convolves with different

patches, allowing the model to learn spatially invariant features. This property is

crucial for recognizing patterns in different parts of a time-series dataset.

When utilizing CNNs for time-series data, different scales of filters allow the ex-

traction of features pertaining to the interaction between the various feature columns

[22]. This is imperative for time-series data in this application, as the array location

of the input feature columns with respect to one another is completely arbitrary. For

these reasons, 3× 3 kernels are utilized for all 2D convolutions in this application.

For the 1D CNN model, a modified wide-area kernel technique, as proposed in

[23], is considered. In this approach, 1D kernels of various lengths are implemented.

Initially, a 3 × 1 kernel is traced along the isolated feature columns. This kernel

is intended to identify the low-level characteristics of each feature/parameter in the

data window. Next, a wide 1 × 15 kernel is convolved across each set of features to

identify system-level patterns. The use of these kernels is depicted in Figure 4.2

4.3.2 Batch Normalization

Previous works, [39] and [40], have shown batch normalization to improve training

speed, prevent overfitting, reduce the effect of gradient explosion and gradient van-

61



ishing effects and increase the model’s robustness to unseen data. The use of batch

normalization in this application is investigated for its training speed and robustness

improvement capabilities.

4.3.3 Dropout

Batch normalization is utilized in lieu of dropout as described in [36], as prelim-

inary training demonstrated minimal susceptibility to overfitting. However, dropout

should be considered in future works to provide increased resilience to imperfec-

tions/noise in the raw data and improve generalization.

4.3.4 Pooling Layer

CNN models can effectively capture both local and global dependencies within

the time-series data. By utilizing pooling operations the CNN can downsample the

learned representations while retaining the most salient features. This downsampling

process allows the model to capture high-level patterns and long-term dependencies

across the time series, effectively integrating information from multiple time steps.

Thus, CNNs can learn to recognize important temporal patterns while being resilient

to noise and irrelevant variations in the data.

Models developed in [23] utilize a global pooling technique to reduce the com-

plexity introduced by traditional pooling operations and bypass the fully connected

output layer. However, global max pooling has some limitations. It is shown in [61]

that implementing global pooling techniques after batch normalization and ReLU

activation layers will reduce the effectiveness of the global pooling classification.

GMP l
c = max(X l−1

c ) (4.15)

Where GMP l
c is the cth feature map of the lth layer after the GMP operation, X l−1

c

is the overall feature map of the cth channel, and c = 1, 2, 3, ..., C, where C is the

number of channels.

Alternatively, a global pooling method considering the average value in a feature
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map was introduced in [62]. The advantage of global average pooling, especially when

utilizing it in place of a fully connected layer, is its ability to categorize feature maps

so the separate generalized features for the input data window can be compared in

the output layer.

GAP l
c = avg(X l−1

c ) (4.16)

Where GAP l
c is the cth feature map of the lth layer after the GAP operation, X l−1

c

is the overall feature map of the cth channel, and c = 1, 2, 3, ..., C, where C is the

number of channels.

Global pooling can also has a low resistance to noise. Since it only considers the

maximum value within each channel, it can be sensitive to outliers. Global pooling

also introduces a low utilization of information when dealing with large-scale data

inputs. This concern is mitigated in this application due to the small input vectors.

A 1D pooling layer is also considered to accommodate the input data structure.

As the characteristics of each feature/column of input data are often independent,

introducing a max pooling layer and combining the respective feature data in an

initial layer may introduce a loss of information [23].

4.3.5 Fully Connected Layer

The fully connected layer, also known as the dense layer, is a key component of

traditional CNNs that follows the convolutional and pooling layers. While convolu-

tional layers focus on extracting local features and preserving spatial relationships,

fully connected layers enable global learning and decision-making.

When introduced, this layer captures high-level global information from the fea-

ture maps generated by the preceding convolutional layers. It performs a matrix

multiplication between the input vector and a set of weights, followed by an element-

wise activation function. This process allows the network to learn complex patterns

and relationships across the entire time-series data window.

As done for the convolutional layer activation functions, the performance of both
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ReLU and TanH activation functions in the fully connected layer are tested for their

use in time-series data applications. These layers are represented by 4.17 and 4.18.

zli = relu(W l
iX

(l−1) + bli) (4.17)

zli = tanh(W l
iX

(l−1) + bli) (4.18)

Where W l and bl are the hidden layer weights and biases at layer l and X l is the layer

input vector.

The incorporation of a fully connected layer also requires the use of a flatten layer.

The flatten layer transforms the multidimensional output of the convolutional layers

into a one-dimensional vector that can be utilized by the fully connected layer. In

this application, the convolutional layers will have a three-dimensional output, yl(i,j),

this will be transformed into the resulting vector described by 4.19.

ŷi∗j∗l×1 = yi×j×l (4.19)

Where yl(i,j) is used to denote the output of the previous convolutional layer, i desig-

nates the number of feature sets, j designated the number of features and l denotes

the number of filters.

4.3.6 Output Layer

The output layer utilizes a sigmoid activation function for binary classification

to identify if an abnormality has been detected, as described in 4.20. The sigmoid

activation function will provide an output within the range of 0 and 1. This range

represents the likelihood that the result is either true, a fault is detected, or false,

the system is healthy. The CNN models trained in this research utilize a threshold of

50%. Therefore, if the model makes a fault-positive prediction greater than or equal

to 50% likelihood, it will classify the input data array as a fault.

Output(X) = Sigmoid(W T •X +B) =

0.5 ≤, a fault is detected

0.5 >, no fault is detected

(4.20)
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4.4 Summary

This chapter delves into the techniques and layers utilized to optimize CNNmodels

for effective time-series data analysis and the modifications made to the traditional

CNN architecture to tailor it to the unique characteristics of time-series data.

This chapter discusses the specific data retrieved from the EMT model simulations

to be utilized for training and testing the adapted CNN and other ML model types. It

outlines the crucial preprocessing steps applied to the power system EMT simulation

data to optimize it’s suitability for training the CNN model.

The adaptation of CNNs for time-series data involves redefining the input data

structure to consider the temporal nature of the data and enable feature extraction

across different time steps which is imperative for capturing temporal patterns present

various IBR transient conditions.
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Chapter 5

Testing & Results

5.1 Resource Definition & Preprocessing

Model training and testing were performed through Amazon Web Services (AWS)

SageMaker application. This application hosts the computations on a remote server

with the user-defined technical specifications. For this research, the model testing

and training were carried out on a general-purpose 2-vCPU and 4-GiB instance with

a TensorFlow 2.6, Python 3.8, CPU-optimized image, on a Python 3 kernel. The

CNN models were developed utilizing Keras-defined layers. Although inference times

would reduce through the use of a large GPU host, this was avoided as the application

would have limited GPU computational capabilities available.

Adaptive moment estimation is utilized as an optimizer for all models with a

learning rate of 0.0001. This optimization is a stochastic gradient descent method

based on adaptive estimation of first-order and second-order moments. The loss

function utilized is binary cross entropy.

During the hyperparameter and CNN model structure optimization testing, an

early stopping algorithm is utilized to prevent overfitting of the model. The early-

stopping algorithm calculates the sensitivity percentage of the validation dataset and

stops the training iterations once the model validation sensitivity does not improve

over 4 consecutive epochs. Once the early-stopping algorithm stops the training, the

training iteration with the best sensitivity performance is selected to maximize model
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results. When training the CNN models, a batch size of 64 data windows is set to

limit the number of batches that are trained without seeing instances of a fault.

Due to the inherent variability of trained models caused by the randomness of

the weight initialization, for model performance validation tests, multiple tests are

carried out for each model configuration.

Prior to training, the input data retrieved from the PSCAD simulations was pre-

processed and stored for repeatability in training. The initial processing stage par-

tially removed data from steady-state conditions through the PSCAD simulations. By

doing so, the severity of the classification imbalances is reduced so the training data

is comprised of 42,012 time steps. Where 38,344 time steps are considered healthy

system representations and 3,668 time steps are during fault conditions from each of

the 50 simulations. The original dataset is then duplicated and separately normalized

through Z-score standardization and min-max normalization so each respective tech-

nique can be tested. As the magnitudes of each feature in the dataset varied, each

feature was normalized separately so features with larger magnitudes did not have an

unintended impact on influencing the ML model characterizations. The feature set

summaries of each normalization technique are shown in Table 5.1 and Table 5.2.

Table 5.1: Z-Score Standardization Dataset Description

Vam Vap Vbm Vbp Vcm Vcp Iam Iap Ibm Ibp Icm Icp I1m I2m I0m

count 42012 42012 42012 42012 42012 42012 42012 42012 42012 42012 42012 42012 42012 42012 42012

mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

std 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

min -3.4901 -2.2579 -9.6509 -12.8086 -13.1514 -2.0194 -6.3242 -3.8423 -1.9458 -20.7022 -3.6516 -8.7331 -3.6270 -1.2060 -0.4221

25% 0.3033 -0.2731 -0.0003 0.0887 -0.0313 -0.2282 -0.0558 0.0088 -0.3037 0.0223 0.2242 -0.2995 0.2284 -0.5938 -0.2997

50% 0.3087 -0.2715 0.0112 0.0914 0.0034 -0.2131 0.1772 0.1029 -0.1912 0.0512 0.2998 -0.2310 0.2626 -0.2003 -0.2990

75% 0.3148 -0.2698 0.0399 0.0933 0.0234 -0.1813 0.4103 0.1736 -0.0787 0.0888 0.3602 -0.1166 0.3409 0.2783 -0.2963

max 0.8414 5.9884 2.3704 1.3163 2.9674 12.4136 7.7506 4.2740 5.2638 2.2938 2.6313 10.0917 2.3000 8.3554 4.8140

Once the data is normalized, it is broken into 16 time-step data windows. Each

window will constitute an input to the ML model that will carry out one inference

per data set window. Each of these windows will contain the full 15 feature set, for

an array size of (16, 15). The final dataset for model training and testing contains

131,250 data windows.
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Table 5.2: Min-Max Normalization Dataset Description

Vam Vap Vbm Vbp Vcm Vcp Iam Iap Ibm Ibp Icm Icp I1m I2m I0m

count 42012 42012 42012 42012 42012 42012 42012 42012 42012 42012 42012 42012 42012 42012 42012

mean 0.6304 0.2752 0.7177 0.9061 0.6424 0.5843 0.0383 0.3295 0.0348 0.9002 0.2695 0.4629 0.2686 0.0302 0.0533

std 0.1806 0.0877 0.0717 0.0707 0.0398 0.0120 0.0028 0.0315 0.0056 0.0432 0.0673 0.0527 0.0693 0.0248 0.1248

min 0.0002 0.0772 0.0259 0.0006 0.1189 0.5601 0.0206 0.2084 0.0239 0.0067 0.0237 0.0023 0.0173 0.0002 0.0006

25% 0.6852 0.2513 0.7177 0.9124 0.6412 0.5816 0.0382 0.3298 0.0331 0.9012 0.2846 0.4471 0.2844 0.0154 0.0159

50% 0.6861 0.2514 0.7185 0.9126 0.6426 0.5817 0.0388 0.3328 0.0337 0.9024 0.2897 0.4507 0.2868 0.0252 0.0160

75% 0.6872 0.2515 0.7206 0.9127 0.6434 0.5821 0.0395 0.3350 0.0344 0.9040 0.2938 0.4567 0.2922 0.0371 0.0163

max 0.7823 0.8004 0.8876 0.9992 0.7606 0.7333 0.0600 0.4642 0.0641 0.9992 0.4466 0.9951 0.4279 0.2375 0.6538

Finally, the structured, normalized dataset is divided into a training dataset and

a testing dataset where 80% is allocated toward training and 20% is allocated toward

testing.

5.2 Model Layer Testing & Confirmation

Reference [63] lists accuracy, availability and data timeliness as critical attributes

when utilizing PMUs for protection and control applications. Data accuracy demands

the synchrophasor measurements, such as phasor measurements, frequency and RO-

COF estimates, and time synchronization, within acceptable errors. Data availability

requires the measurement data to be complete, consistent, and without loss. Data

timeliness refers to the measurement data delivered to their destinations within ac-

ceptable latencies. These same conclusions should be applied to the application of an

ML algorithm utilizing PMU data for grid protection and control.

For this reason, the machine learning models are evaluated and compared using

the metrics of accuracy, precision, sensitivity, availability and timeliness. In binary

classification, an input dataset can be classified as one of two categories - the positive

class and the negative class. As all ML models reviewed in this work utilize a sigmoid

activation function in the output layer, they will produce a continuous output repre-

senting the estimated probability that a respective input will belong in the positive

class. Typically, a model’s classification threshold is set to 0.5. This threshold will

cause any estimate with a probability above 50% to be classified as positive and any
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Figure 5.1: Confusion Matrix Structure

probability less than 50% to be classified as negative.

In binary classification, there are four possible categories for the estimated results.

If an input dataset is positive and it is classified as positive, this result is listed as

a true positive (TP). If an input dataset is negative and it is classified as positive,

this result is listed as a false positive (FP). If an input dataset is negative and it is

classified as positive, this result is listed as a false negative (FN). If an input dataset

is negative and it is classified as negative, this result is listed as a true negative (TN).

These results can be visualized in a matrix referred to as a confusion matrix or a

contingency table, as depicted in Figure 5.1.

ML model performance assessment methods utilize these classification parameters

(TP, TN, FP, FN). These parameters are used to calculate metrics such as accuracy,

sensitivity, specificity and precision [64]. Accuracy, defined by 5.1, measures the

overall correctness of a classification model. It calculates the portion of correctly

classified instances out of the total number of input samples.

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

Sensitivity, defined by 5.2, also known as recall, measures the proportion of the

correctly predicted positive instances out of the actual positive instances. This metric

is useful when it is imperative that a model can effectively identify positive instances.

Sensitivity =
TP

TP + FN
(5.2)

Conversely, specificity, defined by 5.3, measures the proportion of correctly pre-
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dicted negative samples out of the actual number of negative samples.

Specificity =
TN

TN + FP
(5.3)

Precision, defined by 5.4, measures the proportion of correctly predicted posi-

tive instances out of the total number of instances predicted as positive. Therefore,

defining how reliable the model’s positive predictions are.

Precision =
TP

TP + FP
(5.4)

Depending on the dataset, these methods can fail to validate a model’s perfor-

mance when utilizing inappropriate parameters [65]. For example, if accuracy or

precision is utilized to quantify the performance of a model, the metrics will change

if the dataset samples become imbalanced or are more likely to be classified in one

category. As the dataset produced for this work is inherently imbalanced, contain-

ing significantly more instances of healthy-system condition data windows, sensitivity

and specificity are the preferred metrics when analyzing performance in this work.

A receiver operating characteristic (ROC) area curve is a graph that visualizes

the trade-off between true positive rates and false positive rates and is often utilized

for ML performance evaluation [66]. However, research has shown that precision-

sensitivity curve (PRC) area graphs are more suitable for binary classifiers on unbal-

anced data [65]. Therefore, PRC curves have been utilized to visually compare the

respective ML models in this work.

To construct the precision-recall curve, the trained model makes predictions on

a separate set of data allocated for testing. For each input, the model produces a

probability that the input belongs to the fault-positive class. Most binary classifiers,

such as the models developed in this work, utilize a 50% threshold to classify the

input. In this case, predictions with a probability greater than or equal to 0.5 are

classified as fault-positive samples. When creating the PRC the threshold value is

varied and the model’s precision and sensitivity are calculated and plotted.
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Model computational costs are expressed as the memory requirements and the

inference time to execute a model on new data [67]. The number of parameters in

a deep learning model can provide an estimate of its computational cost. Param-

eters represent the number of weights and biases of the model and directly impact

the amount of computation required during training and inference. The higher the

number of parameters, the more computations are typically needed [68].

As this work is more suitable for field implementation on resources with limited

GPU performance, the model size (number of parameters) is used as the model re-

source and speed metric as opposed to FLOPs [69]. The parallel architecture of GPUs

enables them to handle a larger number of FLOPs compared to CPUs. While a CPU

typically has fewer cores, each core is usually more powerful and optimized for sequen-

tial processing. This reflects the results shown in this work, demonstrating limited

inference time performance increases with deeper CNN models and fewer parameters.

5.2.1 LVQ Model

To test the performance of a basic LVQ model in this application, a generalized

LVQ (GLVQ) model is implemented. This specific LVQmodel structure overcomes the

cost/loss function concerns with early LVQ models, discussed in reference [70]. This

revised LVQ model optimizes the margin between the input vectors and respective

prototypes, much like SVM models. However, in the case of GLVQs, the aim is to

increase the difference between the distance from an input vector to the prototype of

its own class and the distance from the prototype of the closest incorrect class. This

difference is referred to as the hypothesis margin. This varies from the goal of SVMs,

which attempt to maximize the separation margin between the input vectors and the

support vector/decision boundary.

The LVQ model in this work assigns one prototype per class and a maximum

number of training iterations of 100. LVQ models require a fixed-length feature

vector representation for each data point. Therefore each 16x15 input data window

(2D array) is arranged in a 1-dimensional array with a resultant vector length of 240
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Figure 5.2: LVQ Model Architecture

floating point integers as shown in Figure 5.2.

5.2.2 SVM Model

Like LVQ models, SVM structures require a fixed-length feature vector represen-

tation for each data point. Therefore each 16x15 input data window (2D array) is

arranged in a 1-dimensional array with a resultant vector length of 240 floating point

integers.

SVM models were trained with linear, rbf and sigmoid kernel types. These kernels

transform the input data window to a higher dimension, allowing the dataset to be

classified into their respective groups.

Linear kernels carry out a standard dot product between the input vectors x and

y. It represents a linear relationship between the data points in the original feature

space.

K(x, y) = xT • y (5.5)
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The Radial Basis Function (RBF) kernel measures the similarity between data

points based on their Euclidean distance in the higher-dimensional space. The pa-

rameter γ controls the width of the Gaussian distribution.

K(x, y) = exp(−γ ∗ ||x− y||2) (5.6)

The sigmoid kernel maps data points to a higher-dimensional space using the

hyperbolic tangent function.

K(x, y) = tanh(α ∗ xT ∗ y + c) (5.7)

The results from training the SVM model with the three kernel types described

in equations 5.5- 5.7 are shown in Table 5.3.

Table 5.3: SVM Performance for Varied Model Kernel Types

Kernel Sensitivity Specificity

RBF 0.9701 0.9993

Linear 0.9752 0.9987

Sigmoid 0.7416 0.9721

5.2.3 LSTM & GRU Model

The LSTM and GRU models are structured from single LSTM and GRU Keras

layers. Each of these respective layers is fed into a fully connected layer with a sigmoid

activation function to produce a probabilistic classification of the input data window.

The LSTM model’s long short-term memory layer, defined by Keras, utilizes the

activation functions defined in Chapter 2. This includes a hyperbolic tangent (tanh)

activation function for the forget gate and hidden vector and a sigmoid activation

function for the input, output and cell state gates.

Similarly, the GRU model’s gated recurrent unit layer, utilized the activation

functions as outlined in Chapter 2. A sigmoid function is utilized for the update and

reset gate. While a hyperbolic tangent function is utilized for the output layer.
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5.2.4 Basic CNN Optimization

Optimization was carried out for a 2D CNN model architecture’s use in time-series

dataset classifications. The optimization goals for all hyperparameters are sensitivity,

specificity and parameters. This optimization process was divided into six separate

stages.

The first stage compares the performance of the model while utilizing the data

preconditioned through Min-Max Normalization and Z-Scare Standardization. As

the layer activation functions and respective initialization methods determine how

the input data will be handled, each normalization technique is tested with each

combination of activation function and initialization method. Each of these CNN

models utilizes one convolution layer with 256 filters and an output layer with 32

filters without the use of batch normalization and max pooling. The results shown

in Table 5.4 demonstrate the best performance is achieved with the z-score standard-

ization dataset.

Table 5.4: Data Normalization Technique Model Performance for Varied Activation

Functions and Initialization Methods

Data Normalization Initialization Activation Function Sensitivity Specificity Epochs Parameters

Min-Max He tanh 0 1 4 1,490,976

Min-Max He relu 0.952 0.996 7 1,490,976

Min-Max Glorot tanh 0.9615 0.9986 16 1,490,976

Min-Max Glorot relu 0.9591 0.9984 15 1,490,976

Z-Score He tanh 0.9725 0.9981 13 1,490,976

Z-Score He relu 0.976 0.9988 20 1,490,976

Z-Score Glorot tanh 0.9761 0.9988 16 1,490,976

Z-Score Glorot relu 0.9721 0.9987 8 1,490,976

The next optimization stage focused on the CNN activation functions perfor-

mance. The two activation functions analyzed are the relu and the tanh functions.

Each activation function was tested with various numbers of convolution layers. The

results of these tests are listed in Table 5.5. As outlined in , the best model perfor-

mance came from the use of the relu activation function with He initialization for
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each number of model convolution layers.

Table 5.5: CNN 2D Convolution Model Varied Activation Function Performance

Conv Layers Data Norm. Initialization Act. Function Sensitivity Specificity Epochs Parameters

1 Z-Score Glorot tanh 0.974 0.9993 21 186,753

1 Z-Score He ReLU 0.9748 0.9992 16 186,753

2 Z-Score Glorot tanh 0.9689 0.9988 8 144,801

2 Z-Score He ReLU 0.9764 0.998 19 144,801

3 Z-Score Glorot tanh 0.9752 0.998 23 111,041

3 Z-Score He ReLU 0.9709 0.9992 12 111,041

The third stage of testing was performed to determine the benefits of utilizing

batch normalization and max pooling. Incorporating batch pooling demonstrated

improved performance while utilized with all other variations in the network structure.

Although max pooling significantly reduces the number of model parameters, it shows

an adverse effect on the sensitivity performance.

Table 5.6: CNN 2D Convolution Model Varied Batch Normalization and Max Pooling

Performance

Batch Norm. Max Pool. Sensitivity Specificity Epochs Parameters

Yes No 0.9768 0.9994 22 145,057

No No 0.9764 0.998 19 144,801

Yes Yes 0.9548 0.9986 28 13,985

No Yes 0.9351 0.9957 10 13,729

The fourth stage was carried out to determine the optimal number of convolution

layers. Utilizing the best-performing activation function and batch normalization the

model was then tested to validate the effect the depth of the model has on model

performance. This testing shows minor improvements in model sensitivity when the

depth of the model increases.

The fifth stage of testing was performed to determine the optimal number of

output layer filters. These results demonstrate the optimal number of output layer

filters is 32.

The sixth stage of testing was performed to determine the performance of the
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Table 5.7: CNN 2D Convolution Model Varied Convolution Layer Performance

Conv. Layers Conv. Filters Output Filters Sensitivity Specificity Epochs Parameters

1 16 32 0.9772 0.9995 19 93,473

1 32 32 0.9768 0.9992 17 186,881

1 64 32 0.9713 0.9985 8 373,697

1 128 32 0.9744 0.9985 8 747,073

1 256 32 0.9744 0.9987 9 1,494,593

2 16 32 0.9792 0.999 18 70,257

2 32 32 0.9776 0.9993 19 145,057

2 64 32 0.9776 0.9992 16 308,481

2 128 32 0.978 0.9996 14 690,625

3 16 32 0.9764 0.9992 25 51,137

3 32 32 0.9799 0.9993 21 111,425

3 64 32 0.9768 0.9993 14 259,649

3 128 32 0.9815 0.9995 28 666,689

Table 5.8: CNN 2D Convolution Model Varied Output Layer Filters

Conv. Filters Output Filters Sensitivity Specificity Epochs Parameters

32 16 0.9764 0.9992 14 65,313

32 32 0.9799 0.9993 21 111,425

32 64 0.978 0.9992 23 203,649

32 128 0.9788 0.9991 16 388,097

model when replacing the fully connected output layer with a global pooling layer.

Reference [23] demonstrates that the use of global pooling layers at the end of a CNN

will greatly reduce model complexity and improve accuracy in some applications. In

this stage, both global max pooling and global average pooling were tested.

Table 5.9: CNN 2D Convolution Model Varied Output Layer Type

Output Layer Sensitivity Specificity Epochs Parameters

Fully Connected 0.9799 0.9993 21 111,425

Global Max Pooling 0.9744 0.999 30 19,233

Global Avg Pooling 0.9654 0.9987 24 19,233

5.2.5 1D CNN Optimization

Utilizing the results from the 2D convolution CNN architecture optimization, the

optimization process for a CNN network utilizing 1D convolution was repeated. Based
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on results published in other works, it is hypothesized that the use of a 1D kernel

in the convolution layers will allow the model to prioritize the relationship between

the combination of input features for each time step. This optimization utilizes five

stages – activation function optimization, kernel padding performance confirmation,

number of time-series convolution filter optimization, number of feature convolution

filter optimization and number of output filter optimization.

The first stage repeats to activation function performance confirmation that was

carried out for the 2D convolution CNN model. The performance of both the relu

and tanh activation functions were tested for use with one, two and three convolution

layers. Based on the results from the 2D convolution CNN model tests, the z-score

standardized dataset was utilized, batch normalization was activated after each con-

volution layer and each convolution layer utilized 32 filters. The results depicted

in Table 5.10 show better sensitivity performance utilizing the relu activation for

two of the three CNN model depths. However, the highest sensitivity performance

demonstrated by the tanh function had the lowest specificity performance.

Table 5.10: CNN 1D Convolution Model Varied Activation Function Performance

Conv. Layers Data Normalization Initialization Activation Function Sensitivity Specificity Epochs Parameters

1 Z-Score He Relu 0.9811 0.9997 31 30,177

1 Z-Score Glorot tanh 0.978 0.9994 18 30,177

2 Z-Score He Relu 0.9827 0.9993 28 31,361

2 Z-Score Glorot tanh 0.9784 0.9994 13 31,361

3 Z-Score He Relu 0.9776 0.999 9 32,545

3 Z-Score Glorot tanh 0.9831 0.9984 26 32,545

The second stage of testing is intended to confirm the performance of the models

using “true” and “same” padding. When carrying out the convolution, true padding

convolves each parameter in the filter with an input parameter before sliding the

kernel. This process is repeated until the last column of the filter matrix reaches

the last column of the input array and the last convolution is carried out. When

utilizing true padding, the resultant array is reduced. This method of convolution

may lead to lost data, or data on the edges of the input array having less impact on

the model characterization. In these cases, the same padding can be utilized so the
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resultant array is the same shape as the input array. The drawback to this method

is an increased number of convolutions and model parameters.

To confirm the performance of the models when utilizing padding, four separate

models were trained to confirm how kernel padding affects each convolution layer.

The results showed that the addition of padding on any convolution layer did not

improve the performance of the model in this application.

Table 5.11: CNN 1D Convolution Model Varied Kernel Padding Performance

Time-Series Padding Feature Padding Sensitivity Specificity Epochs Parameters

Yes Yes 0.9811 0.9973 15 264,833

Yes No 0.9788 0.9994 16 35,457

No Yes 0.9784 0.9995 12 203,393

No No 0.9827 0.9993 28 31,361

The last three stages of tests are carried out to optimize the number of filters

utilized for each convolution stage. A combination of time-series convolution filter

quantities is tested for each number of convolution layers.

Using the results from the previous test, the optimal number of filters for each

model depth is utilized to confirm the optimal number of feature convolution filters.

This process is then repeated for a third time to confirm the optimal number of filters

for the output layer.

Once the optimized hyperparameters for each CNN model depth were determined,

each model was again tested utilizing the same input dataset and trained over the

same number of epochs. The models were trained over 40 epochs. This number of

iterations exceeded the number of epochs required to train the models in all other

prior tests. Through training, the weight of each epoch was saved. After training

was completed, the epoch with the highest sensitivity performance was selected as

the optimized iteration. This ensures that although an excessive number of epochs

were carried out if the model began overfitting the training data, the results would

prioritize the earlier epochs where the test data showed the highest performance.

This process was repeated three times and the average result was utilized for model
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Table 5.12: CNN 1D Convolution Model Time-Series Convolution Varied Filter Quan-

tity Performance

Conv. Layers Time-Series Filters Feature Filters Output Filters Sensitivity Specificity Epochs Parameters

1 16 32 32 0.9764 0.9992 19 22,369

1 32 32 32 0.9776 0.9995 21 30,177

1 64 32 32 0.9792 0.9994 19 45,793

1 128 32 32 0.9831 0.9992 20 77,025

1 256 32 32 0.9803 0.9995 13 139,489

2 16 32 32 0.9803 0.9995 22 21,169

2 32 32 32 0.9851 0.9992 27 31,361

2 64 32 32 0.9835 0.9992 22 56,353

2 128 32 32 0.9835 0.9992 23 124,769

3 16 32 32 0.9788 0.9995 12 19,969

3 32 32 32 0.9866 0.9992 25 32,545

3 64 32 32 0.987 0.9994 26 66,913

3 128 32 32 0.9843 0.9996 14 172,513

Table 5.13: CNN 1D Convolution Model Varied Feature Convolution Filter Quantity

Performance

Conv. Layers Time-Series Filters Feature Filters Output Filters Sensitivity Specificity Epochs Parameters

1 128 16 32 0.9862 0.9996 26 39,057

1 128 32 32 0.9803 0.9993 11 77,025

1 128 64 32 0.9784 0.999 14 152,961

1 128 128 32 0.9827 0.9993 25 304,833

2 32 16 32 0.9744 0.9996 19 17,457

2 32 32 32 0.9862 0.9995 23 31,361

2 32 64 32 0.9772 0.9993 11 59,169

2 32 128 32 0.9807 0.9992 15 114,785

3 64 16 32 0.9855 0.999 27 46,353

3 64 32 32 0.9831 0.9995 22 66,913

3 64 64 32 0.9799 0.9994 12 108,033

3 64 128 32 0.9831 0.9992 14 190,273

performance comparisons.

5.3 Model Performance

The performance of the optimized CNN model architectures presented in this

work is compared to common basic architectures, LVQ and SVM, and several simple

RNN models typically utilized for time-series datasets, LSTM and GRU. The results
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Table 5.14: CNN 1D Convolution Model Varied Output Convolution Filter Quantity

Performance

Conv. Layers Time-Series Filters Feature Filters Output Filters Sensitivity Specificity Epochs Parameters

1 128 16 16 0.9827 0.9994 18 35,441

1 128 16 32 0.9788 0.9991 18 39,057

1 128 16 64 0.9772 0.9993 10 46,289

1 128 16 128 0.9858 0.9994 25 60,753

2 32 32 16 0.9803 0.9993 33 25,185

2 32 32 32 0.9799 0.9996 21 31,361

2 32 32 64 0.9768 0.9994 16 43,713

2 32 32 128 0.9855 0.9995 26 68,417

3 64 32 16 0.9855 0.9994 19 61,761

3 64 32 32 0.978 0.9995 10 66,913

3 64 32 64 0.9819 0.9995 11 77,217

3 64 32 128 0.9831 0.999 16 97,825

Table 5.15: CNN 1D Convolution Model Optimized Performance

Conv. Layers Time-Series Filters Feature Filters Output Filters Sensitivity Specificity Epochs Parameters

1 128 16 32 0.9835 0.9994 40 39,057

1 128 16 32 0.9851 0.9996 40 39,057

1 128 16 32 0.9843 0.9995 40 39,057

Average 0.9843 0.9995 40 39,057

2 32 32 32 0.9843 0.9992 40 31,361

2 32 32 32 0.9847 0.9994 40 31,361

2 32 32 32 0.9835 0.9997 40 31,361

Average 0.9842 0.9994 40 31,361

3 64 32 32 0.9851 0.9993 40 66,913

3 64 32 32 0.9858 0.9993 40 66,913

3 64 32 32 0.9878 0.9991 40 66,913

Average 0.9862 0.9992 40 66,913

of these tests are listed in Table 5.16.

Table 5.16: Model Structure Comparison

Model Sensitivity Specificity Input Data Windows Total Time [s] Inference Time [s]

LVQ 0.7102 0.9933 26,250 0.0277 1.0552× 10−5

SVM 0.9752 0.9987 26,250 3.4922 1.3304× 10−4

LSTM 0.9788 0.9996 26,250 4.9260 1.8766× 10−4

GRU 0.9784 0.9995 26,250 6.5790 2.5063× 10−4

2D CNN 0.9815 0.9995 26,250 19.6206 7.4745× 10−4

3-Layer 1D CNN 0.9878 0.9991 26,250 10.2900 3.9200× 10−4

1-Layer 1D CNN 0.9862 0.9996 26,250 5.1799 1.9733× 10−4
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LVQs demonstrated the worst sensitivity performance compared to all other mod-

els. However, this architecture had a significantly reduced inference speed. Although

LVQs are often considered more interpretable and require fewer parameters to tune

than other architectures, these are not inherently optimized for time-series data.

LVQs operate on fixed-length feature vectors and do not have the ability to cap-

ture complex spatial patterns within the data. These models, treat each data point

independently without considering the temporal ordering or sequence. Therefore, ex-

plicit feature engineering would be required to increase the performance of LVQs and

effectively extract relevant information from the data.

The attributes described for LVQs also apply to SVMs when reviewing their gen-

eral performance with time-series data classification. Both model structures are also

not structured to accommodate the high-dimensional data of the time-series data sets

with multiple time steps and features. This data structure makes the training process

for LVQ and SVM models more challenging.

As expected, the RNN models, LSTM and GRU, performed well with the applica-

tion’s dataset. As these models were specifically developed for use in time-series data

classification, they show some of the best results for both sensitivity and specificity,

with exceptional inference speeds due to the shallow architectures.

The optimized CNN architectures outperformed the other architectures in over-

all accuracy. As expected, the 3-layer 1D convolution CNN model demonstrated

the highest average sensitivity. As CNNs are designed to learn hierarchical features

through the convolutional layers, with the lower layers capturing simple patterns like

edges and textures and the higher layers learning more abstract and complex features,

the increased depth of the CNN increased the model’s ability to consistently extract

complex hidden features from the time-series data window.

However, the added depth increased the computational burden on the CPU image

used for testing these models, increasing the inference time of both the 2D CNN and

2-Layer 1D kernel CNN model. As noted, the resource utilized to carry out these tests
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has a high-performance CPU and is not a GPU as typically implemented with CNN

models. GPUs excel at the fast matrix and vector multiplications required for CNN

training, where they can speed up learning by a factor of 50 and more [71]. Therefore,

if the GPU specifications of the computational resource were to be increased, the

deeper CNN model inference time would increase. Further increasing the performance

of the architecture in these applications.

The 1-layer 1D kernel convolution CNN model demonstrated the highest overall

performance. The exceptional sensitivity, specificity and inference times make it the

best fit for this application.

The inconsistency between the multiple iterations of these CNNs demonstrates

the significance of the initialization and training process of these models.

The PRCs of the top-performing models were plotted and are shown in Figure 5.3.

The optimal model will produce a PRC with as much area under the curve as pos-

sible, indicating that the model is accurately predicting the fault-positive samples

and minimizing the false fault-positive and false fault-negative predictions. As ex-

pected, based on prior results, the 3-layer 1D convolution CNN PRC demonstrates

the model’s accuracy in identifying faults while producing the least number of false

classifications.

5.3.1 Resiliency

As these systems may be susceptible to noise, noise was injected to demonstrate

the 1-layer 1D kernel convolution CNN model’s resiliency and ability to generalize.

The noise was injected into the dataset after the feature engineering stage, as the fea-

ture engineering stage could include filters to remove noise from the original dataset.

More specifically, after the model was trained on the normalized training dataset, the

normalized test dataset was altered by adding random values drawn from a normal

distribution with mean zero and standard deviation of 1 to each data point in the test

dataset. As shown in Table 5.17, the magnitude of the noise was altered to determine

the resiliency of the model.
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(a) Basic LSTM (b) Basic GRU

(c) 3-Layer 2D Convolution CNN (d) 1-Layer 1D Convolution CNN

(e) 3-Layer 1D Convolution CNN

Figure 5.3: Model Precision-Recall Curves
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The results in Table 5.17 demonstrate that the model’s sensitivity is resilient to

a significant amount of induced noise, indicating that the model maintains its ability

to recognize fault conditions. However, the resilience of the precision is fairly poor as

the number of false positive cases drastically increases with the introduction of noise.

Table 5.17: Model Resiliency

Noise Level [%] Accuracy Sensitivity Specificity Precision

0 0.9983 0.9862 0.9996 0.9964

1 0.9765 0.9843 0.9757 0.8127

2 0.941 0.9831 0.9364 0.6239

5 0.908 0.978 0.9005 0.5131

10 0.8817 0.9756 0.8716 0.449

15 0.8557 0.976 0.8428 0.3997

20 0.8413 0.9626 0.8283 0.3755

Although generalization techniques such as batch normalization have been intro-

duced into the model architecture, additional steps can be taken to improve the pre-

cision of the model if noise is prevalent. The generalization and stability of the model

can be improved through techniques including the introduction of augmented data

with noise into the training dataset and regularization techniques such as dropout.

5.4 Summary

This chapter presents a comprehensive summary of the iterative optimization and

testing process for various CNN model structures. Each CNN model structure is

fine-tuned, taking into account different combinations of layers, hyperparameters and

input data preprocessing techniques. This iterative process ensures the exploration

of a wide range of configurations to identify the most effective model architecture for

time-series data analysis in power systems.

The comparison of the optimized CNN structures with traditional LSTM, GRU,

LVQ, and SVM models reveals the superiority transient classification performance of

the CNN models. The CNN models consistently outperformed the traditional models

in sensitivity, demonstrating their ability to effectively capture complex patterns and
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temporal dependencies in time-series data.

One of the key findings is the drastic reduction in inference period achieved by

the optimized CNN model compared to the deeper CNNs. Despite this reduction

in computational time, the optimized CNN model maintains or even improves the

sensitivity and specificity performance compared to the deeper CNN structures.

The proper training techniques adopted for the CNN models enable them to

reach and select optimal training epochs and converge to robust solutions. Over-

all, this chapter validates the effectiveness of the optimized CNN model structures

for time-series transient data analysis. Superior sensitivity performance over tradi-

tional LSTM, GRU, LVQ, and SVM models, coupled with the reduced inference time

for the shallow CNN model, establishes the potential of CNNs in supporting power

system monitoring and protection applications with real-time inference capabilities.
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Chapter 6

Conclusion & Future Works

6.1 Summary

This thesis has successfully demonstrated the efficacy of optimized machine learn-

ing models for real-time time-series data inferences on CPU-based resources. The

experiments confirmed that large and expensive GPUs are not necessary for this ap-

plication, as the models produced reliable and effective results on standard CPUs.

The fastest inference time per input sample was 5.40 × 10−5s, therefore these infer-

ences can be made faster than the time it takes to retrieve the next data window,

showing that they can be continually monitoring systems and acting in real-time. As

this is well within transient and sub-transient time periods, this demonstrates the

model’s ability to be reliably implemented alongside power system protection and

control hardware.

The development and optimization of a 1D convolutional kernel neural network

(CNN) model showcased its superiority over traditional recurrent neural network

(RNN) models for time-series data classification. By analyzing a time-series data win-

dow, the CNN model can utilize the architecture’s inherent ability to recognize hidden

features while considering the temporal transition of each input feature set through

the data window. The optimized CNN’s performance outperformed the LSTM and

GRU model architectures in sensitivity, precision and inference time.

Potential future applications include built-in inverter protection. As the inverter
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characteristics play a key role in the system dynamics during anomalies, incorporat-

ing these models into the inverter themselves will allow a consistent data set to be

developed for model training - mitigating the requirement for site-specific analysis.

6.2 Thesis Contributions

This thesis has demonstrated the effectiveness of optimized machine learning mod-

els for real-time time-series data analysis, showcasing their potential to improve power

system protection and control infrastructure. The optimized 1D convolution CNN

model’s performance has surpassed that of traditional RNN models, making it a

valuable addition to the field of power system protection. The potential future ap-

plications, such as built-in inverter protection and control, further expand the utility

and practicality of these ML models in advancing power system stability and relia-

bility. As the energy landscape continues to evolve with the integration of renewable

resources, the contributions of this research hold immense promise for shaping a more

robust and efficient power grid of the future.

6.3 Future Work

In light of the results obtained from this research, there are several avenues for

future work that can further enhance the application and deployment of these models

in power system protection and control. Key areas for future investigation include:

1. Further characterization of faults and anomalies in power distribution networks.

By structuring the ML models to expand on the binary classification utilized in this

work the model can provide further insights to the end user. This work should go

as far as outlining the limitations of the model and its application in identifying

conditions such as high-impedance faults and remote islanding.

2. The development of a real-time test bench that emulates existing devices and

hardware used in power distribution systems. Ensuring the seamless interoperability

of ML models with existing protection devices is essential for practical implemen-
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tation. Constructing this system in a lab setting will enable the practical imple-

mentation and testing of machine learning models in real-world scenarios, providing

validation of model performance under actual operating conditions and providing

further insight into their integration into existing infrastructure. Research can focus

on integration aspects such as communication protocols and interfaces to enable ML

models to interact with protection hardware effectively.

3. The evaluation of ML models’ performance on various power distribution net-

work structures and characteristics with different grounding sources. This review is

crucial for the broader applicability of the ML models. Investigating the effectiveness

of supplementary layers, such as dropout, in handling network structural variations

will help enhance model generalization and robustness.

4. The incorporation of real-world data sets from multiple power distribution

networks with diverse operational conditions and renewable energy integration while

further exploring data normalization and preprocessing techniques. This will aid in

optimizing the utilization of raw data for the application. Investigating methods

like batch normalization, feature scaling, and time-series normalization can enhance

model training and improve the overall performance of ML models. Real-world data

will further validate the models’ effectiveness in practical applications. This will

enable the identification of potential challenges and fine-tuning of ML models for

real-world deployments.

In conclusion, work in this field holds significant potential to advance power system

protection and control through the incorporation of machine learning models. By

developing real-time test benches, further characterizing system transient conditions,

evaluating models on diverse network structures, optimizing data preprocessing and

considering deployment constraints the stability and reliability of power distribution

systems with inverter-based DERs can be further enhanced.
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Appendix A

PSCAD Network Parameters

Table A.1: Utility Three-Phase Source Parameters

Variable Value Units

Base MVA 12 [MVA]

Base Voltage (L-L RMS) 24.9 [kV]

Base Frequency 60 [Hz]

Voltage Input Time Constant 0.05 [sec]

Infinite Bus Ideal No -

Neg. Seq. Differs from Pos. Seq. No -

Pos. Seq. Impedance 1 [ohm]

Pos. Seq. Phase Angle 80 [deg]

Pos. Seq. Resistance 0.16038 [ohm]

Pos. Seq. Reactance 0.64151 [ohm]

Zero Seq. Impedance 1 [ohm]

Zero Seq. Phase Angle 80 [deg]

Zero Seq. Resistance 0.16977 [ohm]

Zero Seq. Reactance 0.50932 [ohm]
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Table A.2: PV Power Plant Controller Parameters

Variable Value Units

System Frequency 60 [Hz]

Base Voltage (L-L RMS) 24.9 [kV]

Base Inverter Voltage (L-L RMS) 0.65 [kV]

Base DC Voltage 1 [kV]

Base Leakage Inductance of the Inverter 0.1 [pu]

Real Power Ramp Rate 1 [pu/s]

Reactive Power Ramp Rate 1 [pu/s]

Priority P -

Enable VRT Q Offset Disable -

VRT Deadband 0.2 [pu]

Slope of Iq Curve Outside of Deadband 2.5 [pu/pu]

Enable P(f) Mode Disable -

P(f) Deadband 0.4 [Hz]

Slope of P Curve Outside of Deadband 0.45 [pu/Hz]

P(f) Ramp Rate 0.5 [pu/s]

Table A.3: Solar Farm Parameters

Variable Value Units

Reactive Power Control Mode POC Voltage -

HVRT Detection Threshold 1.15 [pu]

LVRT Detection Threshold 0.85 [pu]

Pmax 1 [pu]

Pmin 0 [pu]

Qmax 0.6 [pu]

Qmin -0.6 [pu]
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Table A.4: PV Interconnection Transformer Parameters

Variable Value Units

Transformer Capacity 10 [MVA]

Base Operation Frequency 60 [Hz]

Winding #1 Type WYE -

Winding #2 Type WYE -

Positive Sequence Leakage Reactance 0.025 [pu]

Ideal Transformer Model No -

Eddy Current Losses 0 [pu]

Copper Losses 0.0001 [pu]

Tap Changer on Winding None -

Winding 1 Line to Line voltage (RMS) 24.9 [kV]

Winding 2 Line to Line voltage (RMS) 24.9 [kV]

Saturation Enabled No -

Place Saturation on Winding Middle -

Hysteresis None -

Inrush Decay Time Constant 0 [s]

Time to Release Flux Clipping 0 [s]

Air Core Reactance 0.2 [pu]

Magnetizing Current 2 [%]

Knee Voltage 1.17 [pu]
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