

BERKELEY LAB

Status and inspection of isotopic decay data for normalization

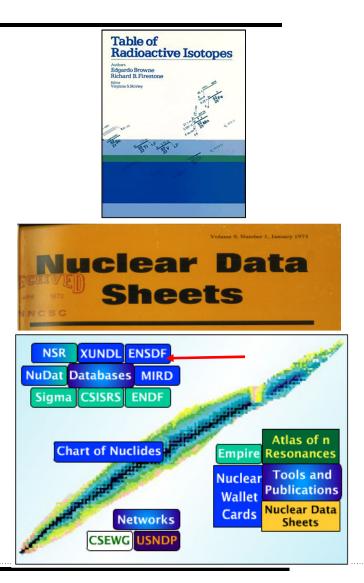
M. Shamsuzzoha Basunia

11th ICI Conference, Saskatoon, Canada, July 23-27, 2023

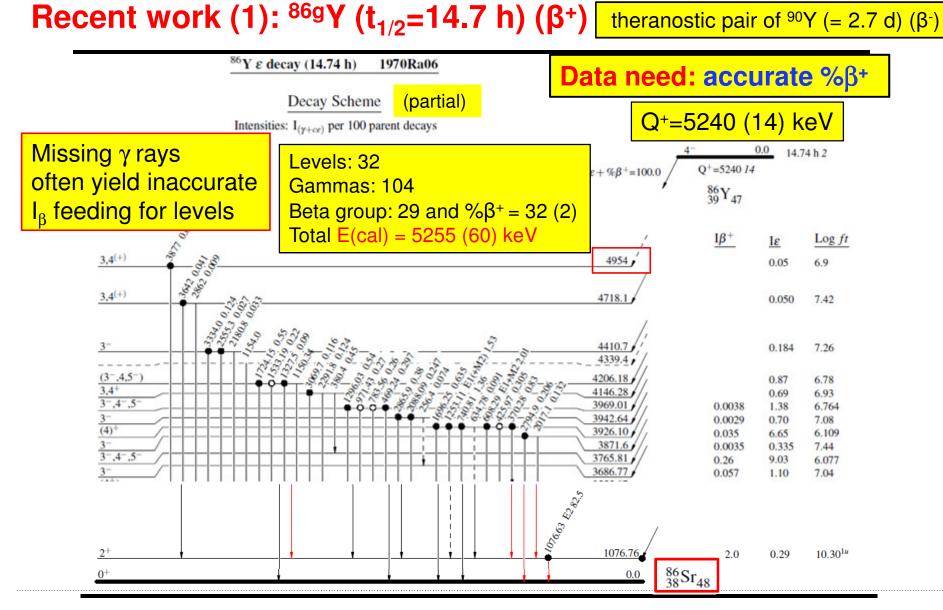
Outline:

- □ Motivation
- Decay data
 - Table of Radioactive Isotopes, ENSDF, DDEP, etc.
- Recent work
- □ Research opportunities
- Decay data dissemination/retrieval
- □ Summary

Motivation


- Accurate and precise isotopic decay (α, β, γ, etc.) data are important for applied and basic sciences.
- Decay data normalization
 - Provides radiation emission probabilities
- Several methods have been used to normalize the decay scheme
 - Measured emission probability P_{γ} , P_{β} -, $P_{\beta+}$, or I_{511} , I_{x-ray}
 - Also from a complete γ -decay scheme (g.s. β -feeding is known)
 - ✓ Parent, daughter properties
 - ✓ Level energy, spin and parity (J^{π}), half-life (t_{1/2}), etc.
 - < α, β, γ, γ-multipolarity, mixing ratio (δ), conversion coefficient (α), etc.

It is important to check the normalization by more than one method



Decay data

- Table of Radioactive Isotopes (1986) a product of LBNL compilation of nuclear data since 1940s - initiated by Prof. Glenn Seaborg
- Nuclear Data Sheets/ENSDF similar effort since mid 1940's at Clinton Lab/ORNL by Prof. Katherine Way (Nuclear Data Sheets since 1966)
- Currently more than 3,200 experimental decay data sets available in the Evaluated Nuclear Structure Data File (ENSDF)
- Decay Data Evaluation Project (DDEP) at LNHB, France - since mid 1995s

Recent work (2): ^{86g}Y

PHYSICAL REVIEW C **102**, 034316 (2020) State-of-the-art γ-ray assay of ⁸⁶Y for medical imaging

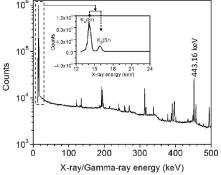
A. C. Gula[®],^{1,2} E. A. McCutchan,² C. J. Lister,³ J. P. Greene[®],⁴ S. Zhu[®],^{2,4} P. A. Ellison,⁵ R. J. Nickles,⁵ M. P. Carpenter,⁴ Suzanne V. Smith,⁶ and A. A. Sonzogni²

¹Department of Physics Computer Science, Houghton College, Houghton, New York 14744, USA ²National Nuclear Data Center, Brookhaven National Laboratory, Upton, New York 11973, USA

A 27.6 MBq source of ⁸⁶Y was produced at the University of Wisconsin and assayed with the Gammasphere array at Argonne National Laboratory. Over 200 γ -ray transitions were identified, more than double that which was previously known. The positron emission probability inferred from the present level scheme leads to 27.9(12)%, an important (\approx 14%) reduction with respect to the previously recommended value.

Molecules 2022, 27, 768

MDPI


Article

Positron Emission Intensity in the Decay of ^{86g}Y for Use in Dosimetry Studies

M. Shuza Uddin ^{1,2}^(D), Syed M. Qaim ^{1,*}, Bernhard Scholten ¹^(D), M. Shamsuzzoha Basunia ³, Lee A. Bernstein ^{3,4}^(D), Ingo Spahn ¹^(D) and Bernd Neumaier ¹^(D)

In this work, an ^{86g}Y source of high radionuclidic purity was prepared and the positron emission intensity per 100 decay of the parent (hereafter "positron emission intensity") was determined by measuring the 511 keV annihilation γ -ray using high-resolution HPGe detector. The total source activity was obtained from known γ -ray emission probabilities. The electron capture (EC) intensity was also determined as an additional check by measuring the K_a and K_b X-rays of energies 14.1 and 15.8 keV, respectively, using a low energy HPGe detector. From those measurements, normalized values of 27.2 ± 2.0% for β^+ -emission and 72.8 ± 2.0% for *EC* were deduced. These results are in excellent agreement with values recently reported in the literature based on a detailed decay scheme study.

Forschungszentrum Jülich, Jülich, Germany

Equations and features:

Several methods have been used to normalize the decay scheme

- 511 (annihilation) and x-ray measurements provide opportunities for independent check
- For cases: $\%\beta^+ + \%\epsilon$ (EC) = 100

$$\beta^{+} = \frac{A_{0}(\beta^{+})}{A_{0}(\beta^{+}) + A_{0}(EC)}$$
From 100 (independent)
$$\beta^{+} = \frac{A_{0}(\beta^{+})}{A_{0}} = \frac{CPS_{511 \ keV \ \gamma - ray/2 \cdot \varepsilon}}{CPS_{\gamma - ray}/l_{\gamma} \cdot \varepsilon}$$
From known %l_γ (dependent)
$$EC = \frac{A_{0}(EC)}{A_{0}} = \frac{CPS_{X - ray}/\varepsilon \cdot FY \cdot P_{K}}{CPS_{\gamma - ray}/l_{\gamma} \cdot \varepsilon}$$

 $\begin{array}{l} \mathsf{A}_{0}(activity), \ \mathsf{CPS}(count/s), \\ \epsilon(detector \ efficiency), \\ \mathsf{I}_{\gamma}(emission \ probability), \ \mathsf{Pk}(capture \ from \ k-shell), \\ \mathsf{FY}(fluorescence \ yield) \end{array}$

Results: ^{86g}Y

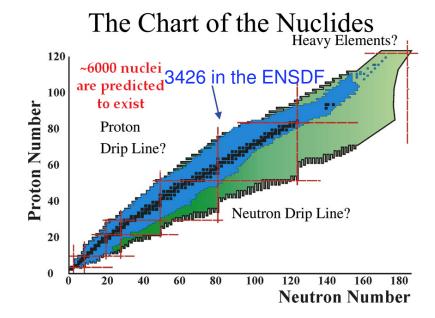
From two samples:

$\%\beta^+ = 27.1 \pm 1.9$ and $\%\epsilon = 72.6 \pm 5.2$

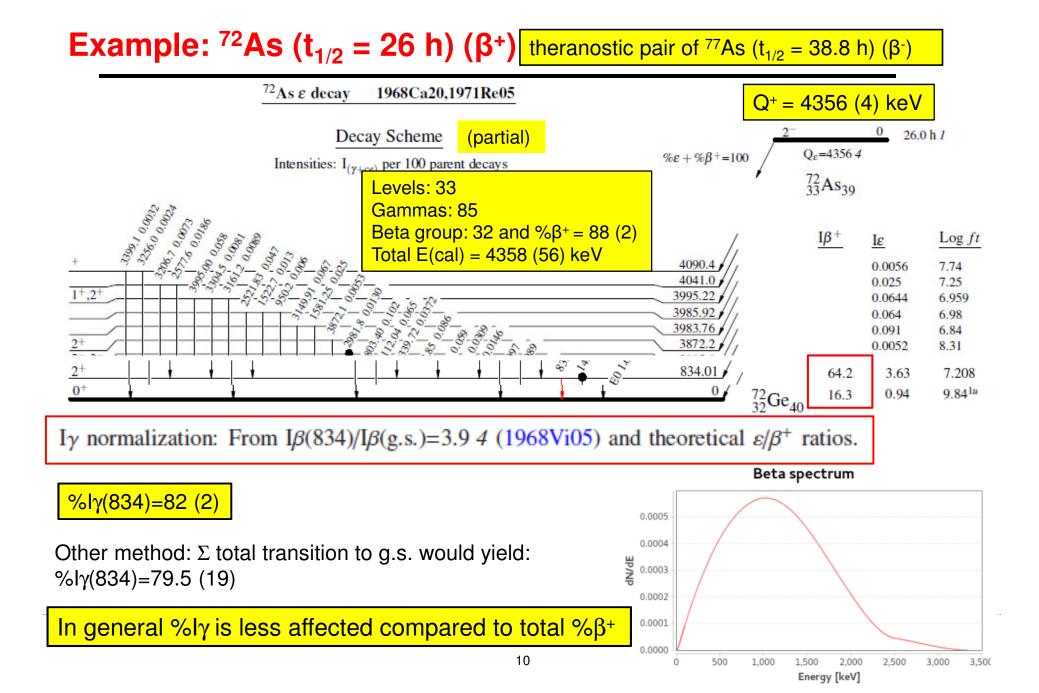
Using %Ιγ (1076.6)	Using %lγ (443.1)	For 100
72.4	73.5	72.0
71.7	73.3	72.9

- Average (of 2 values for 100) = 72.5 Average (of 4 values using $\% I\gamma$) = 72.7
- •

Consistency between independent and dependent approaches


Uncertainty: Propagated uncertainties of peak area, in-flight ٠ annihilation, detector efficiency, x-ray attenuation, fluorescence yield, electron capture from k-shell, etc.

Research opportunities:


For radioisotopes: $\%\beta^+ + \%\epsilon = 100$

- Total %β⁺ by 511 (annihilation) and xray measurements provides independent data
- 511 and x-ray measurements provide opportunities for checking %lγ or confirming any assumptions, if used
- More than 3,200 decay datasets in the ENSDF
 - About 2,400 represent β⁻ and β⁺+EC decay, about 1920 are normalized
 - We checked a group of applied isotopes to benefit from 511 and x-ray measurements

First step for further studies

Decay data dissemination/retrieval:

Sometimes published results take time to get to the ENSDF database and would miss in retrieval through web applications (like NuDAT and LiveChart)

PHYSICAL REVIEW C 92, 044330 (2015)

2015Ch57

Precise absolute γ -ray and β^- -decay branching intensities in the decay of $^{67}_{29}$ Cu

J. Chen,^{1,*} F. G. Kondev,^{1,†} I. Ahmad,² M. P. Carpenter,² J. P. Greene,² R. V. F. Janssens,² S. Zhu,² D. Ehst,¹ V. Makarashvili,¹ D. Rotsch,¹ and N. A. Smith¹

Precision measurement of relative γ -ray intensities from the decay of ⁶¹Cu

D.L. Bleuel^{a,*}, L.A. Bernstein^{b,c}, R.A. Marsh^a, J.T. Morrell^c, B. Rusnak^a, A.S. Voyles^c

^a Lawrence Livermore National Laboratory, Livermore, CA 94551, USA ^b Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

^c University of California, Berkeley, CA 94720, USA

2021BI04 - Appl.Radiat.Isot. 170, 109625 (2021)

Resolution of a discrepancy in the γ -ray emission probability from the β decay of ¹³⁷Ce^g

M. S. Basunia^(D),¹ J. T. Morrell^(D),² M. S. Uddin,³ A. S. Voyles^(D),^{1,2} C. D. Nesaraja^(D),⁴ L. A. Bernstein^(D),^{1,2} E. Browne,¹ M. J. Martin,⁴ and S. M. Qaim^(D)

2020Ba30 - Phys.Rev. C 101, 064619

Check literature, the XUNDL database at nndc.bnl.gov or contact database manager or nuclear structure data evaluator

Summary:

- Accurate and precise isotopic decay data are important for applied and basic sciences
- We have determined %β⁺ (⁸⁶Y(14.7 h)) = 27.2 ± 2.0 by measuring 511-keV annihilation radiation and x-rays. Excellent agreement with the value (27.9 ± 1.2) deduced using the latest decay scheme (2020Gu18)
- Several methods have been used to normalize the decay scheme
 - 511 (annihilation) and x-ray measurements provide opportunities for independent check for cases: $\%\beta^+ + \%\epsilon = 100$
 - We plan to continue measurements with 511 and x-rays
- For the latest decay data please check the literature, the XUNDL database or contact the ENSDF database manager or any nuclear structure evaluators

Collaborators:

□ Forschungszentrum Jülich, Germany

Syed M. Qaim Bernhard Scholten Ingo Spahn and Bernd Neumaier

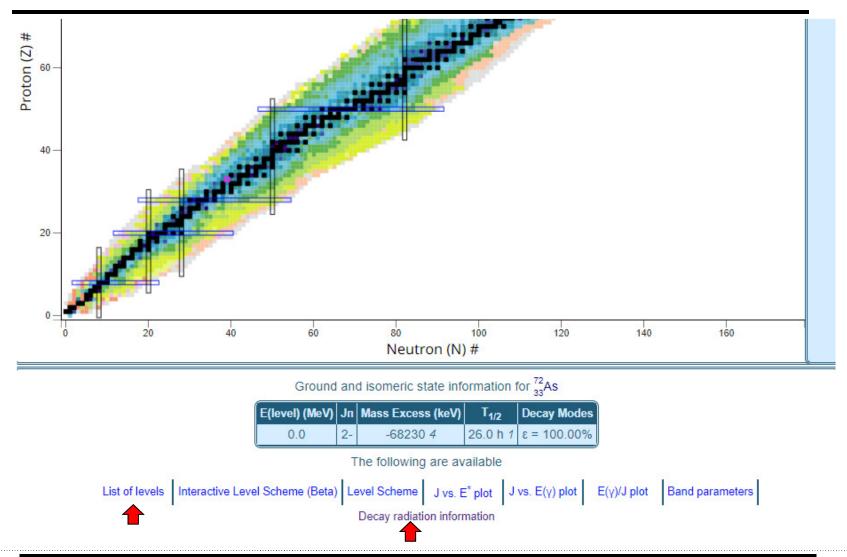
Lawrence Berkeley National Laboratory, USA

M. Shasmuzzoha Basunia Lee A. Bernstein Aaron M. Hurst and Andrew S. Voyles

Bangladesh Atomic Energy Commission, Bangladesh

Md. Shuza Uddin

Thank you for your attention


The research at LBNL was supported by the U.S. Department of Energy Isotope Program, managed by the Office of Science for Isotope R&D and Production, carried out under Lawrence Berkeley National Laboratory (Contract No. DE-AC02-05CH11231)

Back-up slides

Retrieval using NuDat:

Retrieval using NuDat:

Dataset #1:				
Authors: D. Abriola,	, A.A. Sonzogni <u>Cit</u>	<u>ation</u> :Nuclear Data She	ets 111,1 (2010)	
Parent Parent F Nucleus E(level)			S Q-value Daughte (keV) Nucleus	3
72 33As 0	2- 26.0 h 1	ε: 100 % 4	356 4 72 32Ge	Decay ENSD Scheme file
<u>Beta+</u> :				
Energy (keV)	End-point energy (keV)	Intensity (%)	Dose (MeV/Bq-s)	
107.2 17	240 4	0.00126 % 14	1.35E-6 15	
131.7 17	298 4	0.0066 % 4	8.7E-6 5	
167.5 17 ?	384 4	5E-4 % 5	8E-7 <i>8</i>	
170.5 17	391 4	0.0203 % 10	3.46E-5 17	
171.9 17	394 4	0.063 % 3	1.08E-4 5	
250.5 17 ?	580 4	0.008 % <i>8</i>	1.9E-5 19	
353.4 18	819 4	0.466 % 18	0.00165 6	
402.3 18	932 4	0.170 % 10	6.8E-4 4	
551.6 18	1269 4	0.032 % 10	1.8E-4 6	
730.5 18	1606 4	0.056 % 14	4.1E-4 10	

