
VU Research Portal

JavaScript Dead Code Identification, Elimination, and Empirical Assessment

Malavolta, Ivano; Nirghin, Kishan; Scoccia, Gian Luca; Romano, Simone; Lombardi,
Salvatore; Scanniello, Giuseppe; Lago, Patricia

published in
IEEE Transactions on Software Engineering
2023

DOI (link to publisher)
10.1109/TSE.2023.3267848

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
Malavolta, I., Nirghin, K., Scoccia, G. L., Romano, S., Lombardi, S., Scanniello, G., & Lago, P. (2023).
JavaScript Dead Code Identification, Elimination, and Empirical Assessment. IEEE Transactions on Software
Engineering, 49(7), 3692-3714. Advance online publication. https://doi.org/10.1109/TSE.2023.3267848

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 09. Feb. 2024

https://doi.org/10.1109/TSE.2023.3267848
https://research.vu.nl/en/publications/a4e10774-eb17-4d6d-8d2b-f2f0d29f75a5
https://doi.org/10.1109/TSE.2023.3267848

3692 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

JavaScript Dead Code Identification, Elimination, and
Empirical Assessment

Ivano Malavolta , Member, IEEE, Kishan Nirghin , Gian Luca Scoccia , Simone Romano ,
Salvatore Lombardi , Giuseppe Scanniello , Member, IEEE, and Patricia Lago , Senior Member, IEEE

Abstract—Web apps are built by using a combination of HTML,
CSS, and JavaScript. While building modern web apps, it is com-
mon practice to make use of third-party libraries and frameworks,
as to improve developers’ productivity and code quality. Alongside
these benefits, the adoption of such libraries results in the introduc-
tion of JavaScript dead code, i.e., code implementing unused func-
tionalities. The costs for downloading and parsing dead code can
negatively contribute to the loading time and resource usage of web
apps. The goal of our study is two-fold. First, we present Lacuna, an
approach for automatically detecting and eliminating JavaScript
dead code from web apps. The proposed approach supports both
static and dynamic analyses, it is extensible and can be applied
to any JavaScript code base, without imposing constraints on the
coding style or on the use of specific JavaScript constructs. Second,
by leveraging Lacuna we conduct an experiment to empirically
evaluate the run-time overhead of JavaScript dead code in terms
of energy consumption, performance, network usage, and resource
usage in the context of mobile web apps. We applied Lacuna
four times on 30 mobile web apps independently developed by
third-party developers, each time eliminating dead code according
to a different optimization level provided by Lacuna. Afterward,
each different version of the web app is executed on an Android
device, while collecting measures to assess the potential run-time
overhead caused by dead code. Experimental results, among others,
highlight that the removal of JavaScript dead code has a positive
impact on the loading time of mobile web apps, while significantly
reducing the number of bytes transferred over the network.

Index Terms—Dead code, JavaScript.

I. INTRODUCTION

W EB apps are built by using a combination of HTML,
CSS, and JavaScript. To increase developers’ produc-

tivity via code reuse, we have been witnessing a proliferation of
third-party libraries and frameworks, ranging from Model-View-
Controller (MVC) frameworks, efficient DOM manipulators,
User-Interface (UI) kits, etc. [1]. This phenomenon is happening

Manuscript received 5 August 2022; revised 5 April 2023; accepted 6 April
2023. Date of publication 25 April 2023; date of current version 18 July 2023.
This work was supported by the European Union’s Horizon 2020 Research and
Innovation Programme under the Marie Skłodowska-Curie Grant 871342 “uDE-
VOPS”. Recommended for acceptance by N. Meng. (Corresponding author:
Ivano Malavolta.)

Ivano Malavolta, Kishan Nirghin, and Patricia Lago are with the Vrije
Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands (e-mail:
i.malavolta@vu.nl; k.j.nirghin@student.vu.nl; p.lago@vu.nl).

Gian Luca Scoccia is with the University of L’Aquila, 67100 L’Aquila, Italy
(e-mail: gianluca.scoccia@univaq.it).

Simone Romano and Giuseppe Scanniello are with the University of Salerno,
84084 Fisciano, Italy (e-mail: sromano@unisa.it; gscanniello@unisa.it).

Salvatore Lombardi is with the University of Basilicata, 85100 Potenza, Italy
(e-mail: salvatore.lombardi@studenti.unibas.it).

Digital Object Identifier 10.1109/TSE.2023.3267848

not only for browser-based web apps, but even for mobile [2] and
desktop software [3]. In addition to the speed-up of the devel-
opment, the use of these libraries and frameworks—which are
usually well tested and maintained—positively affects the qual-
ity of the implemented web-based solutions (or also web apps
from here onwards). Unfortunately, this comes at the price of an
increase in their execution time and higher usage of resources.
For example, given a web app, the used JavaScript framework
could include unused functionalities that are never executed. In
such a context, the code implementing unused functionalities is
known as dead code [4]. Besides the obvious cost of increased
file size and network transfer time, there is an additional hidden
cost to dead code: despite JavaScript dead code never being
executed at run-time, it is still downloaded and parsed by the
JavaScript engine. This overhead can take a significant portion
of the complete execution time of JavaScript code [5]. The
costs for downloading and parsing dead code can negatively
contribute to the loading time and energy consumption of web
apps.

While some approaches have been developed to minimize
this overhead (e.g., lazy parsing1 and script streaming2), dead
code identification and elimination is still an open problem
in web apps [6]. As far as the identification of JavaScript
dead code in web apps, the currently available solutions either:
(i) impose a certain coding style to developers, banning certain
code structures (e.g., object reflection), or (ii) require specific
constructs of the JavaScript specification. An example of the
latter is the use of modules, which allow developers to specify
self-contained namespaces in JavaScript and to conditionally
load them when needed. While modules are certainly useful in
terms of maintainability and code reuse, most web apps today
have not been built with modules in mind [1].

Researchers have investigated the presence of dead code
in web apps. For example, Boomsma et al. [7] reported that,
in a subsystem of an industrial web app written in PHP, the
developers removed 30% of the subsystem’s files because these
files were actually dead code. Eder et al. [8] observed that, in an
industrial web app written in. NET, 25% of methods were dead.
Surprisingly, no empirical studies have been conducted to assess
the effect of JavaScript dead code on Web apps at run-time. For
example, so far, no empirical studies have been conducted to
assess the impact of downloading and parsing the JavaScript

1[Online]. Available: https://v8.dev/blog/preparser
2[Online]. Available: https://v8.dev/blog/v8-release-75

0098-5589 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on February 02,2024 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5773-8346
https://orcid.org/0009-0009-6132-8126
https://orcid.org/0000-0003-3588-2659
https://orcid.org/0000-0003-4880-3622
https://orcid.org/0009-0004-0296-0803
https://orcid.org/0000-0003-0024-7508
https://orcid.org/0000-0002-2234-0845
mailto:i.malavolta@vu.nl
mailto:k.j.nirghin@student.vu.nl
mailto:p.lago@vu.nl
mailto:gianluca.scoccia@univaq.it
mailto:sromano@unisa.it
mailto:gscanniello@unisa.it
mailto:salvatore.lombardi@studenti.unibas.it
https://v8.dev/blog/preparser
https://v8.dev/blog/v8-release-75

MALAVOLTA et al.: JAVASCRIPT DEAD CODE IDENTIFICATION, ELIMINATION, AND EMPIRICAL ASSESSMENT 3693

dead code of a web app. In other words, the common belief is
that there is a cost to pay when JavaScript dead code is present,
but there is no evidence of its extent.

The goal of this paper is two-fold. First, we present Lacuna,
an approach for automatically eliminating JavaScript dead code
from web apps (Section II-B). Second, we empirically evaluate
the run-time overhead of JavaScript dead code in terms of energy
consumption, performance, network usage, and resource usage
in the context of mobile web apps (Section III).

Lacuna: At the core of Lacuna lies the construction of a call
graph Gw of the web app w being analysed; Gw is uni-directed
and represents JavaScript functions as nodes and the caller-callee
relationship between functions as edges. In this context, dead
code elimination consists of the removal of all the (connected)
components inGw that are isolated from the root node represent-
ing the global scope of the web app. The unique characteristic of
Lacuna is its ability to build and iteratively refine Gw by execut-
ing in sequence different program analysis techniques, each with
its own potential support for specific aspects of the JavaScript
language. Lacuna supports any kind of program analyses (both
static and dynamic), provided that they are aimed at building
a call graph of the JavaScript code being analysed. Lacuna
is extensible and independent from the used program analysis
techniques, allowing developers and researchers to build the
combination of analyses that best fits their own needs. Finally,
Lacuna can be applied to any JavaScript-based web app, without
imposing any constraints on the developer on coding style (e.g.,
banning the use of reflection or objects self-inspection) or on the
use of specific JavaScript features (e.g., modules). We exploit
this feature of Lacuna in our experiment, where we assess the
run-time overhead of JavaScript dead code on 30 independently-
developed mobile web apps.

Experiment: The goal of our experiment is to empirically
assess the overhead that JavaScript dead code has when execut-
ing mobile web apps. We scope this experiment in the context
of mobile web apps since (i) web browsers are more used on
mobile devices [9], (ii) the web browser is one of the most
used apps on mobile devices [10], and (iii) mobile devices tend
to have limited processing power, poorer network capacities,
and lesser memory with respect to desktop machines [5]. In
this experiment, we target 30 mobile web apps independently
developed by third-party web developers. The 30 web apps
are divided into two different families: 15 in-the-lab web apps
and 15 in-the-wild web apps. In-the-lab subjects are randomly
sampled from the TodoMVC project [11]. This project contains
different implementations of the “same” Todo web app, each
using a different JavaScript MV* (Model View Anything) frame-
work (e.g., AngularJS, React, Vue.js, etc.). Since all in-the-lab
subjects share the same functionalities, they might negatively
influence the experiment’s external validity, making our results
less generalizable. In order to mitigate this potential bias, we
decided to complement the 15 in-the-lab subjects with 15 ad-
ditional in-the-wild subjects; those subjects are sampled from
the Tranco list [12] and include well-known web apps such
as amazon.com, wikipedia.com, and youtube.com.
We applied Lacuna four times on each of the 30 mobile web
apps, each time eliminating dead code according to a different
optimization level of Lacuna (see Section II-B4). Later, we

executed each different version of the mobile web apps, while
collecting measures where the presence of dead code might
result in run-time overhead for the user experience or for the
(technical, ecological) sustainability of mobile web apps. The
most notable results of this experiment are:
� eliminating JavaScript dead code makes the considered

mobile web apps slightly more energy-efficient across all
Lacuna optimization levels, but this phenomenon is not
statistically significant;

� considered mobile web apps load faster when dead code
is eliminated, especially for the most aggressive optimiza-
tion level of Lacuna (this result is statistically significant,
with a small effect size), however, the measures of first
contentful paint and first paint do not show any notice-
able improvement across the various Lacuna optimization
levels;

� the elimination of JavaScript dead code leads to noticeable
(and statistically significant) differences in terms of the
number of performed HTTP requests only for in-the-lab
subjects;

� the number of transferred bytes (significantly) diminishes
when dead code is eliminated, especially for the most
aggressive optimization level of Lacuna, with small effect
size for in-the-lab subjects and medium effect size for
in-the-wild subjects;

� CPU and memory usage tend to be (significantly) lower
when dead code is eliminated from in-the-wild subjects,
but not for in-the-lab subjects; GPU usage is (significantly)
lower for in-the-lab subjects without JavaScript dead code,
but not for in-the-wild ones.

An initial version of Lacuna was presented at the 2018 IEEE
International Conference on Software Analysis, Evolution and
Reengineering [6]. The first new contributions of this journal
version consist of an in-depth description of the new features
of Lacuna, described in Section II-B6. The current implemen-
tation of Lacuna has been completely redone and it is publicly
available on itHub [13]. Another new contribution of this paper
is the empirical evaluation of Lacuna, for which we designed,
conducted, and reported an experiment about the run-time over-
head of JavaScript dead code in terms of energy consumption,
performance (e.g., page load time), network usage, and resources
usage in the context of mobile web apps. In summary, the main
contributions of this paper are:
� the presentation of Lacuna , an extensible approach for

JavaScript dead code elimination;
� the integration of five new third-party analysis techniques

in Lacuna;
� a completely new and publicly available implementation

of Lacuna in Node.js;
� an experiment on the run-time overhead of JavaScript dead

code on 30 third-party web apps;
� a publicly available replication package [14].
The target audience of the research presented in this paper

consists of (i) web developers and (ii) researchers. Web develop-
ers can use the current implementation of Lacuna for removing
dead code from their web apps, thus making their products
more lightweight in terms of, e.g., network usage, load time,
or energy consumption. Researchers can use Lacuna as a means

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on February 02,2024 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

3694 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

for benchmarking their analysis techniques for JavaScript dead
code elimination.

Paper Structure: The remainder of this paper is organized
as follows. Section II-A provides background information on
dead code, while Section II-B presents our extended version of
Lacuna . In Section III, we introduce the empirical study on
the run-time overhead of JavaScript dead code. The obtained
results are reported in Section IV. A discussion of the obtained
results and the threats to validity of the experiment are presented
in Section V. Finally, Section VI presents related work and
Section VII closes the paper with final remarks.

II. BACKGROUND

In this section, we provide context and discuss preliminary
concepts required in the remainder of our paper. We define
the concept of dead code, discuss related research, provide a
description of the inner workings of Lacuna, and describe the
results of our internal and external evaluations of Lacuna.

A. Dead Code

Dead code is part of the so-called code smells, a series of
indicators and characteristics in the source code of a program
that can possibly indicate a deeper problem. Although dead code
was not considered by Fowler in his original catalog of code
smells [15], it was later introduced in their respective code-smell
catalogs by Brown [16], Wake [17] and Martin [18].

The perspective of these authors towards dead code is that
of refactoring—i.e., dead code removal makes source code
easier to comprehend and maintain [19], [20]. Developers, be-
sides being interested in dead code for refactoring reasons, can
be interested in optimization and energy-efficiency reasons. In
other words, developers do not remove dead code because they
are interested in improving source code comprehensibility and
maintainability, but because they want to make their apps faster
and/or lighter (optimization reason) or less energy-consuming
(energy-efficiency reason). This perspective, that is the one taken
in this paper, has practical implications: if the perspective is of
refactoring, the removal of dead code does not regard external
dependencies (e.g., libraries or framework); if the perspective is
of optimization or energy-efficiency, developers need to remove
dead code from external dependencies as well. Specifically,
we adopt in our paper the optimization and energy-consuming
perspectives when detecting and removing JavaScript dead code.
Accordingly, we are not interested in the benefits, deriving from
dead code removal, in terms of source code comprehensibility
and maintainability; moreover, we remove JavaScript dead code
from external dependencies as well.

A survey among almost 9,300 JavaScript developers rated
code splitting and dead code elimination as the highest-rated
requested features [21]. However, due to the highly-dynamic
and event-based nature of JavaScript, it is hard to completely
and correctly analyze JavaScript source code [22]. The features
of this language pose challenges for analysis tools, making
call-graph construction3 and dead-code removal especially

3A call graph contains nodes that represent functions of the program and edges
between nodes if there exists at least one function call between the corresponding
functions.

difficult. To circumvent these challenges, currently available
tools for the detection and removal of JavaScript dead code tend
to prevent the use of language features (such as reflection) or
require the application to meet certain characteristics. Bundlers
like rollup.js and Webpack perform dead code elimination using
a process known as tree-shaking [23]. This is an effective way
of (partial) dead code elimination. Differently from Lacuna,
tree-shaking requires the use of ECMAScript6 modules, which
are not widely supported at the time of writing [24]. More-
over, it requires developers to meticulously write import and
export statements, as otherwise unused functions might still be
imported. The Google Closure Compiler is a tool that rewrites
JavaScript code to improve download and execution speed. It
analyzes the source code, removes dead code, and rewrites it
to a more optimal form [25]. While the Closure Compiler is
effective for dead code elimination, it requires, differently from
Lacuna a specific coding style. Recently Kupoluyi et al. [26]
propose Muzeel, a black-box approach (to identify and remove
dead code functions in JavaScript libraries) that requires neither
knowledge of the code nor execution traces. To identify dead
code functions, Muzeel performs dynamic analysis through an
user’s emulation implemented in a bot (i.e., browser automated
tool). One of the most remarkable differences with Muzeel is
that Lacuna combines source code analysis and dynamic ap-
proaches to identify dead code functions and this allows saving
computation time to their identification.

The call graph representation of JavaScript programs is the
base of many static analysis tools; not only for the detection of
dead code but also to detect security issues [27]. For example,
Antal et al. [27] compare five widely adopted static tools. In addi-
tion to (Google) Closure Compiler, the authors analyze npm_cg,
WALA, Approximate Call Graph (ACG), and Type Analyzer for
JavaScript tools (TAJS). The authors observe a variance in the
results of these tools (in terms of number, precision, and type
of call edges) and suggest combining their output to get a better
trade-off in the construction of call graphs. Chakraborty et al.
[28] identify different root causes of missed edges in JavaScript
static call graphs and an approach to build call graph representa-
tions of JavaScript programs. The approach works by identifying
the dynamic function data flows relevant to each call edge missed
by the static analysis. In the implementation of Lacuna, we take
advantage of the findings reported in [27], [28] by combining
the results of different static and dynamic analyzers to obtain
a single call graph representation of a JavaScript program (see
Section II-B5)

As compared with past research, Lacuna is based on both
static and dynamic analyses, it can be easily extended, and it can
be applied to any JavaScript code base (e.g., without imposing
constraints on the developers’ coding style). In this paper, we
also present the results of an empirical assessment of the possible
run-time overhead of JavaScript dead code in terms of energy
consumption, performance, network usage, and resource usage
in the context of mobile web apps. The experimental subjects
of our assessment were 30 third-party web apps (e.g., ama-
zon.com, wikipedia.com, and youtube.com) that we
have run on a real Android device.

Running Example: In the remainder of this section, we will
adopt the sample program of Listing 1 as a running example.

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on February 02,2024 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

MALAVOLTA et al.: JAVASCRIPT DEAD CODE IDENTIFICATION, ELIMINATION, AND EMPIRICAL ASSESSMENT 3695

Listing 1: Running Example.

Fig. 1. Workflow of Lacuna.

Three functions compose the example program: functiona (lines
1-5 in Listing 1) is directly invoked from the global scope (line
16) and thus is reachable; function b (lines 7-9) is reachable as
is called from function a after a timeout has expired (lines 2-4);
function c (lines 11-14) is not called by any other function and
thus is unreachable and represents dead code.

B. Lacuna

In this section, we describe the inner workings of Lacuna. The
high-level workflow of Lacuna is outlined in Fig. 1.

Lacuna takes as inputw, the source code of the web app being
analyzed, and l, the desired optimization level. It is important to
note that these are the only input needed by Lacuna, making
it applicable in the context of a wide spectrum of projects,
independently of the used development process or company-
specific practices. In the first phase, namely the Parsing phase,
JavaScript code inside w is detected and parsed, and an initial
Call Graph (CG) is built. The results of this phase are provided as
input to the second phase, Analysis, in which multiple analysis
techniques integrated into Lacuna are executed in parallel and
the results of each of them are merged. Finally, the last phase,
Elimination, is executed. In this phase, dead code is identified

and the corresponding JavaScript source code is optimized ac-
cording to the optimization level l. The final output is w′, an
optimized version ofwwhere the detected dead code is removed.

In the following of this section, we first introduce preliminary
concepts and then the three phases (i.e., Parsing, Analysis, and
Elimination) behind Lacuna. Finally, we provide implementa-
tion details, including used technologies.

1) Preliminary Concepts: All the algorithms adopted in the
parsing, analysis, and elimination phases operate on call graphs.
A call graph G = (V,E) is a uni-directed graph where the set
of nodes V represents JavaScript functions and the set of edges
E represents the caller-callee relationship between functions.
Specifically, an edge eij between the node i and the node j in G
represents the fact that the function i is able to call the function
j. In the context of JavaScript web apps, a call graph always
contains one root node; such a root node corresponds to the
JavaScript global scope, which is always present and executed
when the web app is run in the browser.4

In this context, dead code elimination consists of the removal
of all the (connected) components in G that are isolated from
the root node representing the global scope of the web app.
Due to the highly-dynamic and event-based nature of JavaScript,
the identification of the edges of G is difficult [22], [29], [30].
As explained in Section II-A, currently there is no technique
for building correct and complete call graphs for JavaScript
without imposing any constraints to developers or making strong
assumptions on the usage of the language, e.g., having a com-
plete test suite or prohibiting the use of reflection. To overcome
this challenge, Lacuna leverages a set of external analysis tech-
niques, A. Lacuna considers the included analysis techniques
as black-box components, with the only assumption being that
each analysis technique a ∈ A adheres to the interfaces defined
by Lacuna, meaning that it has to take as input an initial call graph
G0 and the source code of w, and builds its own call graph Ga,
leveraging principles and analysis techniques of choice for the
identification of edges. This allows for the inclusion of analysis
techniques that are either dynamic or static. In Section II-B5,
we will show that this restriction is not limiting and several
existing tools have been integrated into Lacuna with relatively
low effort. Each edge in Ga will be labeled with the analysis
technique that identified it. Thus, in our final call graph, built
from the combination of all graphs Gas, each edge can have
multiple labels to take into account the fact that multiple analysis
techniques can identify the same function call as reachable.

2) Parsing: In the parsing phase, Lacuna performs two main
procedures, Parse and InitializeCG, both described in Algo-
rithm 1. In the first, given as input the source code of the web
app being analyzed w, Lacuna identifies all the JavaScript code
within it by considering (i) all the JavaScript code defined in-line
in all HTML files, (ii) all JavaScript files referenced by the
HTML code by means of the <script > tag, and (iii) all the
JavaScript files inw that are not referenced by any< script>
tag (lines 1-6 in the Algorithm 1). Once all the JavaScript
code related to w has been identified, Lacuna parses it into an

4[Online]. Available: http://www.w3schools.com/js/js_function_invocation.
asp

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on February 02,2024 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

http://www.w3schools.com/js/js_function_invocation.asp
http://www.w3schools.com/js/js_function_invocation.asp

3696 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

Algorithm 1: Parsing Algorithm of Lacuna.

internal representation of all its statements to ease subsequent
steps (lines 7-16). During this step, to enable full analysis and
optimization of w, all the externally hosted JavaScript code will
be downloaded locally (lines 9-11). With the assumption that the
entirety of the program is contained in a single example.js
file, this first phase is trivial for our running example of Listing 1.

Afterward, as part of the InitializeCG procedure, an initial
call graph G0 = (V0, E0) is instantiated. To this end, first, all
function definitions withinw are retrieved, including anonymous
and inline functions, and a node for each identified function
declaration is created inG0 (lines 17-22). Additionally, a starting
node representing the JavaScript global scope is included in G0

to be able to consider also all those functions directly called from
the global scope of the web app (line 23). The G0 call graph of
our running example contains five nodes, namely: the global
node, one node for each a, b, and c functions, and one node for
the inline function defined in the setTimeout call. G0 does
not contain any edge in this phase, they will be added in the next
phase.

3) Analysis: Lacuna’s analysis algorithm is presented in Al-
gorithm 2, once more divided in the Analyze and Merge proce-
dures. The former takes as input the G0 call graph and produces
as output a set of call graphs H . To do so, it executes each a ∈ A
in parallel on G0 and collects each resulting Ga in H (lines

Fig. 2. Call graph of running example constructed by Lacuna.

1-10 in Algorithm 2). During its execution, each a ∈ A performs
the identification of the edges in G0, leveraging its own analysis
principles. For instance, TAJS relies on abstract interpretation,
which approximates the execution of a program (and thus the
identification of edges) by means of monotonic functions [31],
while ACG employs a field-based flow analysis technique, which
statically approximates the flow of data [32]. Let us refer to the
running example of Listing 1, and let us assume, for the sake
of a simpler explanation, that among the analysis techniques
available in Lacuna (see Section II-B5), only the following three
are executed: static, dynamic, and native calls. Each of the
three techniques is executed independently on G0, producing
the set of call graphs H = {Gstatic, Gdynamic, Gnativecalls}.
These techniques, and the other ones available, are explained in
detail in Section II-B5.

After all the analysis techniques have been executed, during
the Merge procedure Lacuna joins the call graph Ga produced
by each analysis technique a into a final call graph Gw. The
strategy applied in this step is the following: (i) each node in G0

is replicated into Gw (line 13), (ii) for each Ga ∈ H we add all
its edges into Gw (lines 14-17), (iii) when adding an edge eij
produced by a technique a, if eij is already in Gw, then we just
add the label a to eij (lines 18-21). The resulting graph Gw is
provided as output.

Fig. 2 shows the merged call graph Gw for our running
example after running the three analysis techniques mentioned
in the previous paragraph. Here, the dynamic analysis identified
the call from the global scope to the function a, the native calls
analysis identified the call froma to the inline function defined in
lines 2-4 of Listing 1 (by considering the call to setTimeout
as a direct function call), and the static analysis identified the
call from the body of the previous function definition to b. No
analysis technique identified any call to function c, so it is
unreachable from global because it has no incoming edges at
all.

4) Elimination: Once all analysis techniques have been ex-
ecuted and the complete Gw is available, the elimination phase
identifies all the nodes in Gw representing dead code. The
algorithm employed by Lacuna in this phase is presented in
Algorithm 3, constituted by the IdentifyAlive and RemoveDead
procedures. The IdentifyAlive procedure identifies alive nodes
in Gw. To do so, it performs a traversal of Gw, starting from

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on February 02,2024 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

MALAVOLTA et al.: JAVASCRIPT DEAD CODE IDENTIFICATION, ELIMINATION, AND EMPIRICAL ASSESSMENT 3697

Algorithm 2: Analysis Algorithm of Lacuna.

the root node global, while keeping track of Gv , the graph of
visited nodes (lines 1-5 in Algorithm 3). Nodes visited during
this traversal are knowingly alive, as (i) there exists a path
of edges in Gw, representing caller-callee relationships, from
the global node to each of these nodes, and (ii) we consider
the global node as always alive since in JavaScript the global
scope is always present and executed. Hence, we consider dead
code each node n in Gw −Gv , a sub-graph of all disconnected
components unreachable from the global node. Nodes in this
sub-graph represent JavaScript functions that are not called by
any other function (or from the global scope) according to all
the different analysis techniques applied in the previous phase.
For our example of Listing 1, almost all nodes would be visited
during the traversal of the graphGw, which starts from the global
node. The sole exception is represented by the node c, which
does not have any incoming edge and thus it is a disconnected
component unreachable from the global node (visible in Fig. 2).

Afterward, in the RemoveDead procedure, Lacuna reconsid-
ers the source code of the web appw and performs removal of the
JavaScript functions corresponding to nodes in Gw −Gv (lines
12-22). This step is performed according to the user-selected
optimization level, among four increasingly aggressive choices.
Fig. 3 provides an example of code optimized with each level.
Available levels are:
� Optimization level 0: Does not perform any optimization

and leaves the source code of the web app intact. This may

Algorithm 3: Elimination Algorithm of Lacuna.

be useful for users to gain insights into which functions may
be dead without actually removing them. Thus resulting
code is the same as the one given as input (Fig. 3(a)).
Information about dead and alive functions is given in
Lacuna log files.

� Optimization level 1: Replaces the function body with
a lazy-loading mechanism that will retrieve the original
function body when called, following the technique sug-
gested by Vazquez et al. [33]. Lazy-loading effectively is
a fall-back that ensures that the application will not break
due to the presence of false positives. For the lazy-loader to
work, a lazy-load server containing all removed function
bodies needs to be running at all times. The lazy-loading
code will make an HTTP request to the server to fetch
the original function body when needed. An example of
performed optimization is shown in Fig. 3(b), where the
original body of the dead function c is replaced by a call
to the lazy loader LazyLoad (line 20), that dynamically
fetches the original function body from the lazy loading
server when invoked (lines 12-16).

� Optimization level 2: Performs a conservative optimiza-
tion, removing the function body while keeping the func-
tion declaration. The rationale for this choice is that in
many cases function declarations are used as expressions
in JavaScript and are used in various contexts in which
complete removal would lead to run-time errors in the
browser. Fig. 3(c) shows an example of code optimized

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on February 02,2024 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

3698 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

Fig. 3. Optimization levels offered by Lacuna: (a) original example code, (b) after applying optimization level 1, (c) after applying optimization level 2 and
(d) after applying optimization level 3.

with this level, where the original function body of c
has been removed (line 18) but references to it have been
preserved (line 22).

� Optimization level 3: Performs an aggressive optimiza-
tion, removing the presumed dead functions entirely. This
elimination strategy maximizes the benefits of dead code
removal. However, it also maximizes adverse effects in the
case of false positives. In Fig. 3(d), we provide an example
of code optimized at level 3, where the dead function c has
been removed entirely (line 17), including references to it
(line 22).

After applying optimizations, w′, the optimized version of
the web app provided as input, is returned as output to the user.
With the exception of optimization level 0, all optimizations are
applied on a copy of the original web appw provided as input. In
our example of Listing 1, the proper optimization, in accordance
with the user-defined optimization level, would be applied only
for the function c.

5) Implementation and Used Technologies: We developed
Lacuna as a Node.js application. To carry out parsing of the input
web app w, we adopt the Esprima [34] parser. Currently, our
implementation comes with eight ready-to-use analyzers, which
have already been integrated into Lacuna. Each is described in
the following:
� Static: A static analyzer based on an approach utilizing

point analysis [35]. It makes use of Esprima, and builds an
approximate call graph, ignoring dynamic properties and
context binding.

� Dynamic: A basic dynamic analyzer for web apps. First,
it instruments the web app by adding logging statements
at the beginning of the body of every function defini-
tion (including anonymous and inline functions). Then,
it runs the web app in a headless browser (namely, in
our implementation, PhantomJS [36]), collects the logging
information, and builds the call graph according to the

functions executed at run-time. It does not provide any
input to the web app while executing it.

� Native calls: An extension of the ACG analyzer,
where we also consider native JavaScript func-
tions (i.e., Array.prototype.map or Func-
tion.prototype.call) when building the call
graph.

� ACG: Our implementation of the field-based call graph
construction algorithm proposed by Feldthaus et al. [32].
It does not consider dynamic properties, and it does not
take arrow functions into account.

� WALA [37]: A static analysis framework for Java and
JavaScript. It builds an intermediate form of the JavaScript
code being analysed, then used as a basis for pointer anal-
ysis and call graph construction. We wrapped the publicly
available implementation [37] in a Lacuna module.

� TAJS: A dataflow analysis technique for JavaScript that
infers type information and call graphs [38]. TAJS per-
forms abstract interpretation using a customization of the
monotone framework [39] tailored to precisely model
JavaScript-specific constructs [40]. We wrapped the Java
implementation [41] in a Lacuna module.

� npm_cg [42]: npm_cg is a tool made to produce call
graphs from JavaScript source code. It comes with a series
of significant limitations: only a single JavaScript file is
considered at a time and only named JavaScript functions
are taken into consideration (thus no arrow functions or
function expressions are considered). Minor modifications
were made to its implementation to integrate it in Lacuna.
The resulting implementation is available in the Lacuna
repository [13] along with a patch file reflecting all changes
made to the original source code.

� Closure Compiler: The Closure Compiler [25] is a tool
from Google for making JavaScript download and run
faster. Instead of compiling from a source language to

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on February 02,2024 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

MALAVOLTA et al.: JAVASCRIPT DEAD CODE IDENTIFICATION, ELIMINATION, AND EMPIRICAL ASSESSMENT 3699

machine code, it compiles from JavaScript to an improved
JavaScript where dead code is removed and live code
is minimized. Behind the curtains, the closure compiler
creates a call graph for its internal representation of the
source code. By default there is no way of outputting
this call graph, therefore some modifications were made
to output the call graph. The resulting implementation is
included in the Lacuna repository [13] along with a patch
file that reflects the changes made to the original source
code.

It is worth mentioning that the Static, Dynamic, WALA ana-
lyzers were already integrated into the previous version of La-
cuna [6]. On the other hand, we integrated ACG, TAJS, npm_cg,
and Closure Compiler into Lacuna because these analyzers were
empirically assessed in the comparative study by Antal et al.
[27], who concluded that combining more analyzers, rather than
using them individually, can lead to more accurate JavaScript
call graphs. Finally, we included Native calls since it is an
extension of ACG.

6) Novel Features and Extensions: An initial version of La-
cuna was presented at the 2018 IEEE International Conference
on Software Analysis, Evolution, and Reengineering [6]. With
respect to the previous paper, novel features of Lacuna presented
in this journal version include:
� The new subsystem for the removal of dead code according

to four different optimization levels, previously described
in Section II-B4;

� The support for externally hosted JavaScript code. Ex-
ternally hosted JavaScript files are now downloaded lo-
cally during the parsing phase, as to enable a correct and
complete analysis of the application under scrutiny. This
enables the analysis of web apps partially hosted on a public
Content Delivery Network (CDN);

� The support for JavaScript code embedded into non-
JavaScript files—i.e., the HTML files of the web app under
analysis are now considered during the parsing phase, to
identify JavaScript code referenced or embedded by them;

� The integration of five new third-party analysis techniques
into Lacuna, namely ACG [32], TAJS [38], npm_cg [42],
Native calls, and Closure Compiler [25];

� Improvements to the JavaScript call graph representation.
Specifically, in the new version of Lacuna, each call graph
node (i.e., code function) is annotated with a number of
supplemental information (e.g., source file name, starting
code line, ending code line) to allow for easier integration
of the output of different analysis techniques;

� The new version of Lacuna is made available as a stand-
alone NodeJS module, which can be imported into any
NodeJS project. This allows for easier integration of La-
cuna into a development pipeline.

7) Correctness, Completeness, and Accuracy of Lacuna: We
empirically assessed Lacuna in terms of correctness, complete-
ness, and accuracy of the detected JavaScript dead functions. To
do so, we replicated our previous experiment [6] on a wider
dataset and by considering more instances of Lacuna—each
instance either uses a single analyzer to build JavaScript call
graphs or a combination of analyzers. The dataset of this

experiment consists of 39 web apps developed by independent
web developers in the context of the TodoMVC project—as
compared to our previous experiment on Lacuna [6], we included
10 more web apps. Later, for each web app, we built the ground
truth (i.e., we determined which functions are actually dead or
alive), executed each instance of Lacuna on it, and then gathered
the functions detected as dead by that instance. In total, we ran
127 different instances of Lacuna, each instance integrated one
to seven analyzers—in our previous experiment on Lacuna [6],
we ran three instances of Lacuna only: Static, Dynamic, and
their combination. The analyzers we executed in this replicated
experiment are those listed in Section II-B5 with the exception of
WALA.5 Finally, we quantified the correctness, completeness,
and accuracy of the detected JavaScript dead functions by using
the precision, recall, and F-score measures from the Information
Retrieval (IR) field [43]. The results of this experiment suggest
that: (i) combining two or more analyzers leads to improvements
in terms of correctness, completeness, and accuracy of the
detected JavaScript dead functions and (ii) the best instance
of Lacuna is the one based on the joint use of Dynamic and
TAJS. This instance allows achieving the highest accuracy level
(average F-score = 87.9%) so well balancing correctness (av-
erage precision = 82.5%) and completeness (average recall =
97.2%). While F-score is a trade-off measure between precision
and recall, the average values of precision and recall reported
above can be interpreted as follows: on average, 82.5% of the
functions this instance of Lacuna detects as dead are correct (i.e.,
on average, only 17.5% of the functions are wrongly detected as
dead); on the other hand, this instance of Lacuna detects 97.2%
of all the dead functions available in a web app (i.e., on average, it
misses less than 3% of the dead functions available in a web app).
It is important to note that having a precision of 82.5% might
be acceptable for many projects, but it might be not enough for
some other projects (e.g., those where the incorrectly removed
dead code performs critical functionalities of the web app); in the
latter case we suggest to the users of Lacuna to adopt optimiza-
tion level 1, where the body of incorrectly-removed functions is
lazily loaded and executed from a server [33]. We also suggest
the users of Lacuna to experiment with other combinations of
analyzers, which might lead to a precision-recall combination
which is better fitting the requirements of their project and
organization. For example, in our experiment the combination
of the Dynamic, Closure Compiler npm_cg, TAJS, and ACG
lead to a higher precision (88.1%) than the one obtained via
the Dynamic-TAJS combination (82.5%); however, the higher
precision came with a high cost in terms of recall, which was only
54.3%, thus leading to a much lower F-score (64.8%). Thanks
to the extensible architecture of Lacuna, in those cases where
already-existing analyzers do not perform well, developers can
still integrate in Lacuna a new analyzer with their own project-
or organization-specific algorithms for building more accurate
call graphs. Nevertheless, at the time of writing, as we will report

5When executing the WALA analyzer on the selected web apps, it turned
out to be too slow—the execution times of WALA were even greater than 20
minutes for most of the web apps. Therefore, we discarded WALA (including
any combination with other analyzers) from this experiment.

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on February 02,2024 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

3700 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

TABLE I
AVERAGE VALUES REGARDING THE CORRECTNESS, COMPLETENESS, AND

ACCURACY OF THE OLD LACUNA VERSION—THE VALUES ARE THOSE

REPORTED IN THE PREVIOUS LACUNA PAPER [6]

in Section II-B8, the aggregated F-score values achieved by
Lacuna with the Dynamic-TAJS combination are the highest
when compared to those of other state-of-the-art approaches.

Finally, to give an idea about the impact of the improve-
ments to Lacuna, we summarize in Table I, the average values
of the F-score, precision, and recall measures reported in the
previous Lacuna paper [6], where three instances of the old
Lacuna version were studied (i.e., Static, Dynamic, and their
combination). It is easy to grasp that the new Lacuna version,
based on the combination of Dynamic and TAJS, lead to im-
provements in terms of correctness, completeness, and accuracy
of the detected JavaScript dead functions. For details about
the replicated experiment briefly described in this section, we
redirect the interested reader to our online appendix, which can
be found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TSE.2023.3267848 [44].

8) External Evaluation of Lacuna: Before focusing on the
assessment of the run-time overhead of JavaScript dead code,
it is important to be reasonably confident that Lacuna is the
right instrument for the detection and removal of JavaScript dead
code. We carried out a small-scale experiment to evaluate Lacuna
against state-of-the-art tools that are currently able to detect (and
remove, in some cases) JavaScript dead code. In this section, we
report the results of such an experiment.

We first identify an initial set of analysis tools that are cur-
rently able to detect JavaScript dead code. This step is carried
out by: (i) performing a lightweight search on Google Scholar,
and (ii) by analysing the scientific publications cited and citing
the studies we already identified as related to our work (see
Section VI). This activity leads to the following 6 promising
tools: Qiong et al. [45], UFFRemover [33], JSLIM [46], Muzeel
[47], Goel et al. [48], Google LightHouse.6 Three researchers
assessed the applicability of each potentially-usable tool (e.g.,
a functioning implementation of the tool must be publicly
available). This analysis led to the identification of two tools
that are usable in our study: UFFRemover and Muzeel. For
the sake of space, the details of such analysis are included in
the replication package of the study. The main distinguishing
factors of the selected tools with respect to Lacuna are: (i)
both UFFRemover and Muzeel detect dead code via dynamic
analysis, whereas Lacuna can combine static and dynamic anal-
yses; (ii) UFFRemover performs a preliminary static analysis to
identify required JavaScript modules and to instrument them for
logging the JavaScript functions executed during the dynamic
analysis; (iii) the dynamic analysis of UFFRemover can execute

6[Online]. Available: https://developer.chrome.com/docs/lighthouse/
performance/unused-javascript

TABLE II
DESCRIPTIVE STATISTICS FOR THE EXTERNAL EVALUATION OF LACUNA

AGAINST MUZEEL, UFFREM. (L), AND UFFREM. (I)

various parts of the web app under analysis by executing test
cases (if available) or via (user-defined) interaction scripts; (iv)
Muzeel complements the initial loading of the web app with
the emulation of all possible interactions within the web app
(interaction points are identified during a preliminary pass via
dynamic analysis); (v) Lacuna is a meta-tool, i.e., it allows the
integration of additional 3rd-party analyzers in its pipeline; and
(vi) Lacuna is the only tool supporting different optimization
levels, where one of them – level 1 – is the one provided by
UFFRemover [33].

We execute the UFFRemover and Muzeel tools on all the
39 TodoMVC web apps we used for the internal evaluation of
Lacuna; for the sake of completeness, we execute two different
configurations of UFFRemover, where the first one focusses
exclusively on the initial load of the analysed web app (we call it
UFFRemover (L)) and the second one is considering (scripted)
interaction scenarios covering all functionalities of the analysed
web app (we call it UFFRemover (I)). Finally, we consider the
outputs of the three tools (i.e., Muzeel, UFFRemover (L), and
UFFRemover (I)) over all 39 TodoMVC apps, we compute their
precision, recall, and F-score, and finally we compare them
against the same metrics we collected for the Dynamic-TAJS
instance of Lacuna (see Section II-B7).

Table II shows the descriptive statistics for the external
evaluation of Lacuna against Muzeel, UFFRemover (L), and
UFFRemover (I). UFFRemover (I) is the tool with the high-
est precision (mean=0.949). This result is expected since the
interaction scripts we developed for interacting with the sub-
jects are covering all primary functionalities of the analysed
TodoMVC web apps; this result is also highlighted by the fact
that the median precision of UFFRemover (I) is 1, i.e., the tool
correctly identifies all dead functions as dead for at least 50%
of the subjects. UFFRemover (L) (mean=0.877) and Lacuna
(mean=0.825) perform similarly in terms of average precision;
we conjecture that this result is primarily due to the fact that
UFFRemover’s detection algorithm executed on only the page
loading phase of the subject is the same as the Dynamic analyzer
of Lacuna (we trace the small difference in terms of precision to

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on February 02,2024 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TSE.2023.3267848
http://doi.ieeecomputersociety.org/10.1109/TSE.2023.3267848
https://developer.chrome.com/docs/lighthouse/performance/unused-javascript
https://developer.chrome.com/docs/lighthouse/performance/unused-javascript

MALAVOLTA et al.: JAVASCRIPT DEAD CODE IDENTIFICATION, ELIMINATION, AND EMPIRICAL ASSESSMENT 3701

the fact that the two tools use a different library for parsing the
JavaScript code, which might have lead to some functions not
been detected by the parser).

Lacuna is the tool with the highest recall (mean=0.972),
followed by UFFRemover (L) (mean=0.833), UFFRemover
(I) (mean=0.791), and Muzeel (mean=0.685). As described
in Section II-B7, having a high recall is fundamental for our
experiment on its overhead at run-time (see Section III) since
a high recall makes us reasonably confident that (on average)
Lacuna is able to detect 97.2% of all dead functions in a given
web app. We conjecture that Lacuna is performing better than
all the other tools since our Dynamic-TAJS instance of Lacuna
includes also a static analysis component in it, allowing our tool
to reach parts of the Javascript call graph that is not reached via
either (i) the pure dynamic analysis performed by UFFRemover
(L) and UFFRemover (I) or (ii) the dynamic analysis combined
with the traversal of the event listeners statically-identified by
Muzeel.

When looking at the F-score combined metric, Lacuna is
again the tool performing better (mean=0.879), followed by UF-
FRemover (I) (mean=0.810), UFFRemover (L) (mean=0.801),
and finally Muzeel (mean=0.594). The fact that Lacuna is the
most accurate tool overall (i.e., it has the highest F-score) makes
us reasonably confident in using it for detecting and removing
JavaScript dead code in the subjects used when assessing the
run-time overhead of JavaScript dead code (see next section).

III. EXPERIMENT ON THE RUN-TIME OVERHEAD OF

JAVASCRIPT DEAD CODE

In this section, we describe the main aspects of the design
of the experiment on the run-time overhead of JavaScript dead
code. This experiment has been designed and conducted by
following well-known guidelines for experimentation and data
analysis in empirical software engineering [49], [50], [51], [52],
[53]. We refer the reader to the replication package of the
experiment [14] for further details on the experiment execution,
used tools, and collected data. The replication package contains
all the information for independent verification and replication
of the study, namely: (i) the Python scripts for executing the
experiment, (ii) the raw data measures collected during the
execution of the experiment, and (iii) the R scripts for analysing
the collected data, and (iv) a detailed guide for replicating the
experiment.

A. Goal and Research Questions

In this context, we use Lacuna to eliminate dead code from
the subjects of the experiment according to the four optimization
levels of Lacuna (see Section II-B4). By following the GQM
(Goal-Question-Metric) template [54], the goal of this experi-
ment is formulated as:

Analyze the presence of JavaScript dead code for the purpose of
empirically assessing its run-time overhead with respect to energy
consumption, performance, network usage, and resources usage from
the point of view of researchers, developers, and users in the context
of mobile web apps.

The goal presented above is achieved by answering the four
research questions listed below. The main motivation for having
the four research questions is to investigate the overall overhead
that JavaScript dead code can have on mobile web apps at
run-time. We define a research question for each of the main
perspectives under which having a run-time overhead might
be relevant either for the user experience or for the (technical,
ecological) sustainability of mobile web apps.

RQ1. What is the overhead of JavaScript dead code on the energy
consumption of mobile web apps?

It is known that mobile web apps consume different amounts
of energy while being loaded [55], [56] and that improving
their energy efficiency might lead to consistent savings in terms
of electricity [57]. So, answering RQ1 will help both web
developers and researchers understand to what extent removing
JavaScript dead code might be a useful instrument for improving
mobile web apps from the perspective of energy consumption.

RQ2. What is the overhead of JavaScript dead code on the perfor-
mance of mobile web apps?

For what concerns RQ2, the performance of mobile web apps
is a crucial factor for their success. Users expect mobile web
apps to load within a reasonable time [58]; having mobile web
apps with poor performance can potentially impact profits and/or
lead to users’ abandonment, especially on mobile devices where
hardware and connectivity are constrained [59]. By answering
RQ2 we aim to objectively assess to what extent the removal
of JavaScript dead code might support (i) web developers in
improving the performance of their mobile web apps and (ii) re-
searchers in better understanding the relationship between the
presence of (dead) JavaScript code and the performance of
mobile web apps.

RQ3. What is the overhead of JavaScript dead code on the network
usage of mobile web apps?

It has been empirically confirmed that networking is the most
relevant bottleneck for mobile web apps [5]. Also, the network
conditions under which a mobile device operates can be limited
depending on factors such as the network coverage at a specific
location, the connectivity subscription of the user, the type of
cellular network supported by the mobile device (e.g., 4 G, 5 G),
etc. So, reducing the amount of network traffic required by a
mobile web app to fully load is a relevant factor for improving
its performance or even its loading itself. By answering RQ3 we
aim at getting empirical evidence about the impact of JavaScript
dead code and the network traffic required to load a mobile web
app. Such results support both web developers and researchers
in understanding if removing JavaScript dead code is a viable
tool for reducing the requirements of mobile web apps in terms
of network traffic.

RQ4. What is the overhead of JavaScript dead code on the resources
usage of mobile web apps?

Mobile devices tend to have limited hardware resources, such
as CPUs, GPUs, and memory. Also, the browser engine shares
such resources with other apps running on the user’s device
and, when such resources are getting abused, the device might

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on February 02,2024 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

3702 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

become slow and the operating system might even decide to
forcibly shutdown some of the running apps to free resources for
the other ones. By answering RQ4 we aim to empirically assess
to what extent the presence of JavaScript dead code impacts the
usage of hardware resources of the mobile device. Our results
can support web developers and researchers in understanding if
removing JavaScript dead code might help to reduce the number
of resources needed to run a mobile web app, thus leading to an
overall better user experience for their users.

B. Subjects Selection and Planning

For this experiment, we consider a total of 30 web apps that
have been independently developed by third-party web devel-
opers. The 30 web apps are divided into two different families:
15 in-the-lab web apps and 15 in-the-wild web apps.

The 15 in-the-lab subjects were randomly sampled from the
TodoMVC project. This project aims to help developers to
choose the MV* framework more suitable for structuring and
organizing their JavaScript Web apps. To that end, TodoMVC
consists of different implementations of the “same” Todo web
app, each of which uses a different MV* framework, so that de-
velopers can inspect the codebase and then compare the different
MV* frameworks. The Todo app is a manager for to-do lists,
which includes the following features: (i) adding a to-do item,
(ii) removing a to-do item, (ii) modifying an existing to-do item,
and (iv) marking a to-do item as completed. We refer to each
sampled web app as the name of the used MV* framework. The
sampled in-the-lab subjects are listed in Table III.

Despite the in-the-lab web apps allowing us to study a large
and heterogeneous set of MV* frameworks that real-world
JavaScript Web apps can rely on, they share the same function-
alities. This might negatively influence the external validity of
the experiment, making our results less generalizable. In order
to mitigate this potential bias, we decided to complement the 15
in-the-lab subjects with 15 additional in-the-wild subjects. The
subjects are sampled from the Tranco list [12], which aggregates
the rankings from the lists provided by Alexa, Umbrella, Majes-
tic, and Quantcast. Starting from the first 150 web apps in the
Tranco list, we iteratively download and manually analyze each
candidate web app against a set of selection criteria we defined
a priori, reaching a final set of 15 web apps satisfying all the
selection criteria. The selection criteria, their rationale, and the
results of their application are reported below:

S1 – The web app should not redirect to another domain.
The rationale for this criterion is that there are mobile web
apps that redirect the user to a different domain, such as Apple
(aaplimg.com → apple.com) and Twitter (t.co → twitter.com);
these pages could redirect to duplicate domains within the list or
domains that are not part of the Tranco list at all. The application
of S1 led to the identification of 24 web apps redirecting to
another domain, which were discarded from the initial 150 web
apps.

S2 – The web app must be accessible without user authenti-
cation. The rationale for this criterion is that there are mobile
web apps in which the actual page content is available for
authenticated users only, such as Twitter and Instagram. After

TABLE III
NUMBER OF DEAD FUNCTIONS DETECTED BY LACUNA FOR EACH SUBJECT

applying this criterion we identified 8 web apps requiring user
authentication, leading to a set of 118 potentially-usable web
apps.

S3 – Lacuna must be able to successfully remove JavaScript
dead code from the web app without errors. The rationale for
this criterion is that we need to be sure that for each subject
of the experiment, we can successfully run Lacuna to obtain its
dead-code-free version for all Lacuna optimization levels. When
applying Lacuna to the 118 selected web apps we encountered
two main situations where it was not successful: (i) 96 web
apps included external JavaScript scripts we did not manage to
properly download locally on our server (i.e., some scripts were
imported dynamically and the browser blocked their request due
to Cross-Origin Resource Sharing errors, the HTML code of
the web app was referencing scripts which were not available
anymore at the referenced URLs, etc.) and (ii) for 7 web apps
TAJS failed since at the time of executing the experiment it did
not support the following ES6 features: the let keyword, arrow
functions, and template literals.

The 15 selected in-the-wild subjects resulting from this pro-
cedure are listed in Table III. These subjects are heterogeneous
from different perspectives (e.g., application domain, function-
alities, size, amount of JavaScript code), making them good can-
didates for complementing the in-the-lab subjects and achieving
more generalizable results in our experiment.

Once we obtain the final set of 30 individual subjects, we
apply Lacuna four times to each of them, each time with a
different optimization level (OL-0 as the baseline, then OL-1,
OL-2, OL-3). This leads to have four versions for each web apps.
In Table III, we report the number of functions detected as dead
by Lacuna when it is executed on each web app—it is worth

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on February 02,2024 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

aaplimg.com
apple.com
t.co
twitter.com

MALAVOLTA et al.: JAVASCRIPT DEAD CODE IDENTIFICATION, ELIMINATION, AND EMPIRICAL ASSESSMENT 3703

recalling that such a number is the same across the different
Lacuna optimization levels.

Regardless of the web app and optimization level, we config-
ured Lacuna so that it combined the results of two third-party
analysis techniques: Dynamic and TAJS. This design choice was
taken empirically. That is, we performed a preparatory experi-
ment thanks to which we concluded that the best configuration
of Lacuna was the one based on the joint use of Dynamic and
TAJS (see Section II-B7).

C. Variables and Statistical Hypotheses

This experiment has the same independent variable for all
research questions, i.e., the Lacuna optimization level applied
to each of the subjects. According to the currently avail-
able dead code elimination procedure of Lacuna described in
Section II-B4, this variable has four levels: OL-0, OL-1, OL-2,
and OL-4.

All dependent variables are measured in the time frame
between the first GET request issued by the browser to the
server hosting the currently-measured web app and the web app’s
page load time. The dependent variables of this experiment are
described below:
� Energy (RQ1): The energy consumed by the mobile device

to load the web app in mJ (milli-joule). Energy values are
computed by following a sampling-based approach widely
used in software engineering studies [60], [61], [62], [63],
that is: (i) sampling the instantaneous power consumed
by the browser app running on the Android device (in
microWatts) (ii) applying the E = P × t formula, where
P is the measured power and t is the page load time of the
web app (see next dependent variable), and (iii) solving the
integral ofP over t (in our case by applying the trapezoidal
method [64]).

� Page load time (RQ2): The timestamp in milliseconds (ms)
in which the web app is fully loaded in the browser [65].
More specifically, page load time is defined as the time
from the start of a user-initiated page request (the initial
GET request issued by the browser in our case) to the time
the entire page content is loaded, including all dependent
resources like CSS stylesheets, JavaScript code, or images;
this time is collected by recording the timestamp in which
the load event is fired by the browser engine.

� First contentful paint (RQ2): The timestamp in millisec-
onds when the browser first renders any text, image, non-
white canvas, or SVG of the web app [65]. Intuitively, it
is the first time when the user can start consuming the
content of the web app. According to the Paint Timing
W3C specification [66], the First contentful paint metric
and the First paint one (see below) complement Page load
time since they provide a user-oriented assessment of the
performance of the web app.

� First paint (RQ2): The timestamp in milliseconds when the
browser renders the first pixels to the screen of the mobile
device, rendering anything that is visually different from
what was on the screen prior to navigation [65]. Intuitively,
it is the time when the user is aware that “something is

happening” in the browser after they decided to navigate
to the URL of the mobile web app.

� HTTP requests (RQ3): The number of HTTP(S) requests
issued by the browser engine while loading the currently-
measured web app. We include this variable since our
RQ3 is concerning the overhead of JavaScript dead code
in terms of network usage, mainly due to the additional
network traffic caused by either the additional JavaScript
files retrieved by the web app (even if they are not executed
since they contain dead code).

� Transferred bytes (RQ3): The sum of the size, in kilobytes
(Kb), of the payloads of all HTTP(S) requests issued by the
browser engine while loading the currently-measured web
app. Similarly to the previous variable, we are measuring
the number of transferred bytes in order to quantify how
much additional (and unused) JavaScript code is trans-
ferred from the servers to the web app when dealing with
JavaScript dead code.

� CPU usage (RQ4): The average of the percentage of CPU
consumed while loading the currently-measured web app.
We include this variable since RQ4 deals with the overhead
imposed by JavaScript dead code in terms of computational
resources, which are typically the processor, GPU, and
memory (see the description of the next two dependent
variables).

� GPU usage (RQ4): The average of the percentage of GPU
consumed while loading the currently-measured web app.
Similarly to the previous variable, we include this vari-
able in order to measure what is the added overhead of
JavaScript dead code in terms of GPU usage.

� Memory usage (RQ4): The average amount of mem-
ory consumed by the Android device while loading the
currently-measured web app in megabytes (Mb). Similarly
to CPU usage, we include this variable in order to measure
what is the memory overhead imposed by JavaScript dead
code.

For each dependent variable listed above and each family of
subjects (i.e., in-the-lab versus in-the-wild ones), we formulate
the following parameterized null hypothesis:

H0var : There is no statistically significant difference in the values
of the dependent variable var (e.g., energy, page load time, etc.)
between the optimization levels of Lacuna.

The alternative hypothesis for H0var (i.e., H1var) admits
that there is a statistically significant difference. For example, if
H0energy is rejected, we can accept the alternative hypothesis
H1energy stating that there is a statistically significant differ-
ence in the values of energy between the optimization levels of
Lacuna.

D. Experiment Execution

In Fig. 4, we present the measurement infrastructure for
running the experiment. The experiment involves two main
hardware nodes: a laptop acting as a base station and an Android
smartphone for running and measuring the subjects. The laptop
has an Intel Core i7-4710HQ processor, 12 Gb of memory,
and runs Ubuntu 20.04 as the operating system. The Android

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on February 02,2024 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

3704 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

Fig. 4. Measurement infrastructure.

device is an LG G2 smartphone with a Qualcomm MSM8974
Snapdragon 800 processor, 2 Gb of memory, a 5.2” LCD display,
and running Android 6.0.1 operating system. The main rationale
for using two separate hardware nodes is to keep the Android
device as lightweight as possible, so as to not influence the
measurements [67], [68]. As shown in the right-hand side of
the figure, the Android device is running only two apps: (i) the
Google Chrome browser, which is used for loading the web apps
and (ii) Trepn, a software-based profiler for Android devices.
Trepn is widely used in empirical studies on energy-efficient
software [69], [70], [71] and it has been reported as sufficiently
accurate with respect to hardware power measurement (e.g., the
Monsoon Power Monitor), with an error margin of 99% [72].
Trepn supports also the collection of the CPU, GPU, and memory
usage.

The laptop and the Android device are connected to the same
WiFi network. To reduce as much as possible the influence of the
network conditions on the experiment, the WiFi network does
not have any other connected devices.

All four versions of each of the 30 subjects of the experi-
ment are hosted on the laptop and served via a dedicated Web
server. To collect the values of the HTTP requests and Trans-
ferred bytes dependent variables, all HTTP(S) traffic between
the smartphone and the laptop passes through an instance of
mitmproxy [73], which records all HTTP(S) requests and locally
stores them the form of network logs.

The experiment is orchestrated via Android Runner, a frame-
work for defining and executing measurement-based exper-
iments targeting Android (web) apps [67]. Android Runner
allows us to define the experiment in a descriptive manner via a
JSON file and then it automatically takes care of the complete ex-
ecution of the experiment. Specifically, for each experiment run,
Android Runner uses the Android Debug Bridge tool (ADB [74])
to interact with the smartphone, e.g., to collect Android system

logs, to activate/deactivate the profiling features of Trepn, to
instruct the Google Chrome app on the smartphone to load the
currently-measured subject, to enable/disable the USB charging
of the smartphone, etc.. For this experiment, we use two plugins
of the Android Runner tool: (i) Trepn, for collecting data via the
Trepn profiler and (ii) PerfumeJS, to collect web performance
metrics via the Perfume.js library [75], such as the page load
time, first contentful paint, and first paint.

In order to mitigate possible threats to the internal validity
of the experiment and to facilitate its replicability, we take the
following precautions while executing it: (i) the measurement
of each experiment trial (i.e., a subject-OL pair) is repeated 20
times, leading to a total of 2,400 individual runs (i.e., 4 treat-
ments x 30 subjects x 20 repetitions), (ii) the order of execution
of the 2,400 experiment runs is randomized, (iii) between each
run the smartphone and the laptop remain idle for 2 minutes so
to take into account tail energy usage [76], (iv) the Chrome app
is cleared before each run so to reset its cache, persisted data,
and configuration, and (v) the USB charging of the smartphone
is disabled during the execution of each run.

E. Data Analysis

We first perform a data exploration step where we inspect and
get an overview of the collected data via box plots and summary
tables. In this step, we also check if the assumption that in-the-lab
and in-the-wild subjects exhibit different values holds for the
considered metrics. Since normality of the collected data is the
underlying assumption of parametric statistical tests [49], as part
of the data exploration step, we check if the distribution of the
data collected for each dependent variable follows a normal dis-
tribution, both globally and between in-the-lab and in-the-wild
subjects. We assess normality by means of three complementary
methods: (i) by applying the Shapiro-Wilk statistical test with
α = 0.05, (ii) by producing and visually analysing the density
plots of every dependent variable, and (iii) by producing and
visually analysing QQ-plots.

We anticipate that all the collected data do not follow a normal
distribution. Based on this fact, in our statistical analysis, we
apply non-parametric statistical tests and effect size measures.
Specifically, for each dependent variable and each family of
subjects (i.e., in-the-lab and in-the-wild) we do the following:

1) We apply the Kruskal-Wallis test (with α = 0.05), a non-
parametric test for testing whether the collected mea-
sures come from populations with identical distributions;
the application of this test gives an initial indication
about whether the Lacuna optimization levels lead to
statistically-different differences in terms of, e.g., energy
consumption, memory usage, etc.

2) If the p-value of the Kruskal-Wallis test is not greater than
α, then we assess the magnitude of the detected differences
by applying the Eta squared effect size measure based
on the H-statistic [77]. Eta squared is a non-parametric
effect size measure compatible with the Kruskal-Wallis
statistical test [77]. The values of the obtained effect size
measures are interpreted according to threshold values
commonly used in the literature, namely:η2 < 0.06 (small

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on February 02,2024 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

MALAVOLTA et al.: JAVASCRIPT DEAD CODE IDENTIFICATION, ELIMINATION, AND EMPIRICAL ASSESSMENT 3705

effect - S), 0.06 ≤ η2 < 0.14 (moderate effect - M), and
η2 ≥ 0.14 (large effect - L).

3) Having a statistically significant result for the Kruskal-
Wallis test also allows us to investigate which pairs of
optimization level exhibit statistically-significant differ-
ences. We do so by applying the Dunn Test as post-hoc
analysis [78] to each pair of optimization level. Since we
are applying multiple statistical tests, to reduce the chance
of Type-I error we adjust the obtained p-values via the
Benjamini-Hochberg correction [79].

IV. RESULTS

In this section, we present the results of the experiment.

A. Data Exploration

Table IV gives an overview of the measures we collected
for all dependent variables across all in-the-wild and in-the-lab
subjects. We observe that the measures collected for in-the-lab
subjects tend to have different central values (i.e., mean and
median) with respect to those collected from in-the-wild sub-
jects; this phenomenon is especially prominent for page load
time, first contentful paint, first paint, HTTP requests, transferred
bytes, CPU usage, and memory usage. Also, when the central
values are different, in-the-wild subjects tend to consistently
perform worse with respect to in-the-lab subjects; for example,
the average page load time of in-the-wild subjects is 4.229 s,
whereas it is 1.137 s for in-the-lab subjects. The differences in the
obtained measures for in-the-lab and in-the-wild subjects further
validate our design choice of considering the type of subject as a
blocking factor for our experiment. Indeed, we expected such a
kind of difference since the purpose and context in which those
two families of subjects are developed are completely different;
in-the-lab subjects have a relatively small size (both in terms
of provided features and source code) and are developed on a
voluntary basis, whereas in-the-wild subjects are fully-fledged
web apps developed either by (i) companies like Google or
Amazon or (ii) large-scale organizations like the Wikimedia
Foundation.

The collected data for each dependent variable exhibits values
within the expected ranges. For example, energy consumption
is between 343.39 mJ and 1,819.67 mJ, which are acceptable
values if we consider that the average page load time of the mea-
sured subjects is relatively short (i.e., 2.6 seconds). Overall, there
is a high relative variance in the data, especially for network-
related variables (i.e., HTTP requests and transferred bytes)
for in-the-wild subjects and memory usage for all subjects, but
also for performance-related metrics (i.e., page load time, first
contentful paint, and first paint) for in-the-wild subjects. Such
variance is not a surprise if we consider that the time span in
which measures are collected is relatively short (it raises the
chances of having outlier values) and that we are including
in-the-wild subjects in the experiment.

The Shapiro-Wilk normality test reveals that all the data ex-
hibit a non-normal distribution. This result is further confirmed
visually via density plots and QQ-plots (all available in the
replication package of this study). Since the normality of the

TABLE IV
DESCRIPTIVE STATISTICS OF THE COLLECTED MEASURES FOR ALL DEPENDENT

VARIABLES (SD=STANDARD DEVIATION, CV=COEFFICIENT OF VARIATION)

data is one of the assumptions of the ANOVA statistical test, we
resort to the Kruskal-Wallis test as a non-parametric statistical
test in the remainder of our data analysis procedure.

In the next sections, we analyze the data related to each
research question of the experiment.

B. Overhead on Energy Consumption (RQ1)

As shown on the left-hand side of Fig. 5, eliminating
JavaScript dead code from the in-the-lab subjects results in
slightly more energy-efficient web apps. Indeed, the median
energy consumption of the original web apps (OL-0 in Lacuna) is
1,406.35 mJ, against 1,367.59 mJ, 1,374.34 mJ, and 1,370.83 mJ
for the other Lacuna optimization levels. However, this result is
not statistically significant (p-value: 0.268, see the first row of
Table V).

The results are similar for in-the-wild subjects, with the excep-
tion that the median energy consumption remains approximately
the same for the OL-1 and OL-3 Lacuna optimization levels.

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on February 02,2024 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

3706 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

Fig. 5. Energy consumed by the mobile device (the red dashed line represents
the median value for the original web apps (OL-0)).

TABLE V
RESULTS OF THE STATISTICAL ANALYSIS FOR ALL RQS – THE (*) SYMBOL

DENOTES CASES WITH STATISTICALLY-SIGNIFICANT DIFFERENCES AMONG

OPTIMIZATION LEVELS

The energy consumption of the OL-2 optimization level is even
slightly higher than that of the others, but still without statistical
significance; we speculate that this result is due to the intrinsic
variability of the experiment execution.

Overall, the obtained p-values do not allow us to reject
H0energy for both in-the-lab and in-the-wild subjects, so we
cannot claim that different Lacuna optimization levels have an
impact on the energy consumption of in-the-lab or in-the-wild
web apps.

C. Overhead on Performance (RQ2)

Eliminating JavaScript dead code from the web apps leads to
an improvement in the page load time (see Fig. 6. This result
is statistically significant for both in-the-lab and in-the-wild
subjects, with a p-value of 4.7 × 10−9 for in-the-lab subjects
and a p-value of 0.039 for in-the-wild subjects (see Table V).

Fig. 6. Page load time of the web apps.

Given the obtained p-values, we can reject H0page load time for
both families of web apps, allowing us to claim that different
Lacuna optimization levels have an impact on the page load
time of web apps (both in-the-lab and in-the-wild). However,
our effect size estimation reveals that the effect of JavaScript
dead code elimination on page load time is small (S) for both of
them (see Table V).

Having a statistically-significant result for the Kruskal-Wallis
test on page load times means that we can investigate which
Lacuna optimization level leads to statistically-significant dif-
ferences with respect to the original web app and the other
optimization levels. As shown in the first two rows in Table VI,
completely eliminating the JavaScript functions identified as
dead code (i.e., OL-3) leads to a statistically-significant dif-
ference for both in-the-lab and in-the-wild subjects. This dif-
ference is also visually highlighted in the box plots in Fig. 6,
where OL-3 tends to have lower values with respect to the
others. Other statistically-significant pairs of optimization levels
are OL-1→OL-3 and OL-2→OL-3 for in-the-lab subjects; this
result can be seen as an indication that, in the context of in-the-
lab subjects, having an approach with different strategies for
eliminating JavaScript dead code paid off in terms of page load
time and that having a more comprehensive (but risky) strategy
for dead code elimination leads to significantly better results in
terms of page load time.

Differently from page load time, the measures of first con-
tentful paint (Fig. 7) and first paint (Fig. 8) do not show any
noticeable improvement across the various Lacuna optimization
levels. As shown in Table V, we obtained p-values higher than
our significance threshold for both first contentful paint and first
paint, thus we cannot reject the corresponding null hypotheses
for both families of subjects. That is, we cannot claim that
different Lacuna optimization levels impact differently the time
of the first contentful paint and first paint of web apps (both
in-the-lab and in-the-wild subjects).

D. Overhead on Network Usage (RQ3)

As shown in Fig. 9 and Table V, the elimination of JavaScript
dead code leads to noticeable (and statistically significant,
p-value: 1.48 × 10−40) differences in terms of the number

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on February 02,2024 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

MALAVOLTA et al.: JAVASCRIPT DEAD CODE IDENTIFICATION, ELIMINATION, AND EMPIRICAL ASSESSMENT 3707

TABLE VI
PAIRWISE COMPARISON ACROSS LACUNA OPTIMIZATION LEVELS FOR VARIABLES WITH STATISTICALLY-SIGNIFICANT DIFFERENCES - THE (*) SYMBOL DENOTES

CASES WITH STATISTICALLY-SIGNIFICANT DIFFERENCES (WITH BENJAMINI-HOCHBERG CORRECTION)

Fig. 7. First contentful paint of the web apps.

Fig. 8. First paint of the web apps.

of HTTP requests only for in-the-lab subjects. Moreover, by
looking at Table VI, it can be noticed that such differences
are statistically significant for all pairs involving the OL-3
optimization level of Lacuna. In any case, the observed effect
size is 0.155, i.e., small. The situation is different for in-the-wild
subjects, where we do not observe any relevant difference among
the various Lacuna optimization levels. Summing up, only for
in-the-lab subjects (not for in-the-wild ones) we can reject
H0HTTP˜requests stating that the number of HTTP requests
is not the same across different Lacuna optimization levels.

Fig. 9. Number of HTTP requests.

Fig. 10. Bytes transferred over the network.

The amount of transferred bytes is considerably lesser when
the various Lacuna optimization levels are applied to both in-the-
lab and in-the-wild subjects (see Fig. 10). The differences in the
transferred bytes are statistically significant for both in-the-lab
subjects (p-value: 2x10−14, effect size: 0.054 – small) and in-the-
wild subjects (p-value: 2.19x10−20, effect size: 0.077 – moder-
ate). So, we can reject H0transferred˜bytes for both families of
subjects, allowing us to claim that different Lacuna optimization
levels have an impact on the transferred bytes from the server to
the client web apps (both in-the-lab and in-the-wild). As shown
in Table VI, the observed differences are statistically significant
for almost all pairs of Lacuna optimization levels.

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on February 02,2024 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

3708 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

Fig. 11. CPU usage of the mobile device.

Fig. 12. GPU usage of the mobile device.

E. Overhead on Resources Usage (RQ4)

The CPU usage remains stable for in-the-lab subjects (left-
hand side of Fig. 11), with an average close to 58% and a p-value
of 0.552. Differently, the CPU usage for in-the-wild subjects
is reduced when applying Lacuna (p-value: 135x 10−9), with
statistically-significant results for all pairs of optimization levels,
but not for the OL-0→ OL-1 one. The obtained p-values tell us
that we cannot reject H0cpu˜usage for in-the-lab subjects, but
we can reject such a null hypothesis for in-the-wild subjects—
i.e., there is a difference in the percentage of CPU usage across
different Lacuna optimization levels when considering in-the-
wild subjects.

The scenario is more stable when considering GPU usage (see
Fig. 12, with an average close to 25% and 24% for in-the-lab
and in-the-wild subjects, respectively. The application of the
Kruskal-Wallis test reveals a statistically-significant difference
only for in-the-lab subjects (p-value: 0.002 in Table V) and
the OL-1→OL-3 and the OL-2→OL-3 pairs of optimization
levels. So, we can reject H0gpu˜usage for in-the-lab web apps
(i.e., different Lacuna optimization levels impact differently
the percentage of GPU usage), but we cannot reject the same
hypothesis for in-the-wild ones.

Fig. 13. Memory usage of the mobile device.

Memory usage remains relatively stable for in-the-lab sub-
jects (see Fig. 13), whereas it exhibits an observable improve-
ment when considering in-the-wild subjects, with a statistically-
relevant difference (p-value: 0.0159 in the last row of Table V),
further confirmed for the OL-0→OL-3 and the OL-1→OL-3
pairs of optimization levels (see the last row of Table VI). Given
the obtained p-values, we cannot reject H0memory˜usage for
in-the-wild web apps (i.e., there is a difference in the memory
usage of the web apps across different Lacuna optimization
levels), but we can reject the same null hypothesis for in-the-lab
web apps.

Despite the observed statistical differences, the effect size for
CPU usage, GPU usage, and memory usage remains small (see
Table V).

F. Impact of Dead Function Removal

In the following, we present the results of a further analy-
sis to study the potential correlations between the number of
dead functions detected by Lacuna and the improvements due
to the elimination of these functions (i.e., by applying OL-1,
OL-2, OL-3, respectively) in terms of energy consumption,
performance, network usage, and resources usage. To do so,
we run a correlation test between the number of dead functions
detected by Lacuna and the saving achieved after applying each
Lacuna optimization level (except for OL-0) with respect to each
measure listed in Section III-C. In particular, given a measure
and an optimization level (except for OL-0), the saving on each
subject is computed by averaging the 20 measurements for OL-0
(i.e., no optimization) and then subtracting the average of the 20
measurements for the considered optimization level. We use the
Kendall correlation coefficient because to apply such a test it is
not required that the data are normally distributed. Moreover, by
averaging the data, we meet the data independence assumption.
If the p-value of the correlation test is not greater than α = 0.05,
then there is a statistically-significant correlation. In this case,
we then report the Kendall correlation coefficient (Tau), which
provides an indication of how strong a statistically-significant
correlation is. The values of this correlation coefficient are
interpreted according to threshold values commonly used in the

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on February 02,2024 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

MALAVOLTA et al.: JAVASCRIPT DEAD CODE IDENTIFICATION, ELIMINATION, AND EMPIRICAL ASSESSMENT 3709

TABLE VII
RESULTS OF THE FURTHER ANALYSIS – THE (*) SYMBOL DENOTES

STATISTICALLY-SIGNIFICANT CORRELATIONS

literature, namely: |τ | < 0.1 (no correlation), 0.1 ≤ |τ | < 0.4
(weak correlation - W), 0.4 ≤ |τ | < 0.7 (moderate correlation -
M), and |τ | ≥ 0.7 (strong correlation - S).

In Table VII, we show the results of this further analysis. For
most of the measures, we cannot show there are statistically-
significant correlations with respect to the number of dead func-
tions Lacuna detected. Among the most important outcomes,
there is that in terms of network usage. In particular, we find posi-
tive, moderate, and statistically-significant correlations between
the number of dead functions and the number of transferred bytes
for all optimization levels (p-values ranging from 2.94x10−6

to 4.11x10−4, correlation coefficients ranging from 0.456 to
0.603). That is, regardless of the Lacuna optimization level,
when the number of dead functions increases, the saving on
transferred bytes tends to increase as well.

The other statistically-significant correlations regard the sav-
ing in terms of performance (i.e., page load time) and resources
usage (i.e., CPU usage). In particular, we have a positive and
statistically-significant correlation between the number of dead
functions and saving on page load time when applying OL-3
(p-value: 0.009, correlation coefficient: 0.336 – weak). That is,
as the number of dead functions removed with OL-3 increases,
the saving on page load time tends to increase. Finally, we find a
positive, weak, and statistically-significant correlation between
the number of dead functions and saving on CPU usage when
applying OL-2 (p-value: 0.022, correlation coefficient: 0.295).
That is, the more the number of dead functions removed after
applying OL-2, the higher the saving on CPU usage.

V. DISCUSSION

In this section, we discuss the obtained results in terms of
implications from the perspectives of users, researchers, and
web developers. We conclude the section by presenting possible
threats that could affect the validity of the obtained results,
including countermeasures we applied for mitigating them.

A. Implications

We observed that page load time is significantly lower when
JavaScript dead code is completely removed (i.e., Lacuna opti-
mization level 3) whatever the family of web apps is. Taking
into account that users tend to abandon a web app when it
takes too much time to load pages [59], we can postulate that
our outcome has practical implications from the perspective of
users. For example, users could appreciate the page load time
of mobile web apps without dead code, thus positively affecting
the user experience7 of these web apps. This outcome has also
implications from the perspective of researchers because they
could be interested in studying to what extent the user experience
is affected by the presence, or not, of dead code in a given mobile
web app. From the web developer perspective, it could be rele-
vant to integrate a tool, like Lacuna, in the user experience design
process since the presence of dead code could significantly affect
page load time, possibly affecting user experience.

Regardless of the family of web apps, the amount of trans-
ferred bytes from the server to the client is significantly less when
the various Lacuna optimization levels are applied, especially
when using optimization level 3. That is, we provide evidence
that removing JavaScript dead code is effective in reducing the
network transfer of web apps. We can postulate that this out-
come is relevant for users and web developers since transferring
fewer bytes is definitely valuable when the network is either a
scarce resource (e.g., due to low available bandwidth) or under-
paid/limited subscription plans (i.e., for 4 G/5 G connectivity).
Web developers could find this outcome interesting also because
a small earn in the transferring of bytes from the Cloud to a
single client reflects in a large earn (in terms of transferred bytes)
when millions of clients are connected to the Cloud. Researchers
could be interested in studying to what extent the mentioned
earn affects the end-to-end energy consumption, i.e., the total
energy needed to transfer bytes from the Cloud to the clients,
including the consumption of network devices (e.g., switches
and routers). This proposed line of research aims at deepening
the results of RQ1, where we could not find evidence that the
removal of JavaScript dead code affects the energy consumption
of mobile devices (i.e., when considering the client side only).

As for the number of HTTP requests and CPU, GPU, and
memory usage, we observed mixed outcomes between in-the-
lab and in-the-wild web apps—e.g., we found that different
Lacuna optimization levels have an impact on the number of
HTTP requests when considering in-the-lab web apps, but not
when considering in-the-wild ones. This suggests the possible
existence of moderating variables that can diminish or hamper

7The overall experience of a person using a mobile web app, a website, or a
computer application, especially in terms of how easy or pleasing it is to use.

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on February 02,2024 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

3710 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

the impact of the Lacuna optimization levels on HTTP requests
and CPU, GPU, and memory usage. This could be relevant
to researchers, who could plan and execute further studies on
such moderating variables (also by exploiting our replication
package [14]).

Finally, by manually inspecting the source code of the sub-
jects, we conjecture that the emerging results for HTTP requests
and transferred bytes are due to the fact that web developers tend
to statically import and declare JavaScript scripts in their web
apps. Specifically, the vast majority of imported/declared scripts
are still requested by the browser engine, even though they
contain less source code and have a smaller transfer size (due
to the dead code being eliminated). This observation highlights
the importance of the bundling technique, where the number of
HTTP requests made to the server is reduced by merging mul-
tiple JavaScript files; we advise web developers to use existing
tools for bundling the JavaScript code of their web apps, such
as Webpack [80], gulp-bundle [81], and Browserify [82].

B. Threats to Validity

We discuss the threats to validity according to Cook and
Campbell’s categorization [83].

1) Construct Validity: We mitigated potential construct va-
lidity threats by following well-known guidelines for experi-
mentation in empirical software engineering [49], [50], [51],
[52], [53] and by defining all details related to the design of the
experiment (e.g., the goal, research questions, tools, variables,
statistical, analysis procedures) before starting its execution.

2) Conclusion Validity: Since all the collected data do not
follow a normal distribution, we utilized non-parametric tests.
Additionally, we perform the Benjamini-Hochberg correction
procedure to account for potential Type-I errors. Finally, we
provide a publicly available replication package for independent
verification of our findings.

3) Internal Validity: A possible threat to the internal validity
of the experiment comes from the “maturation” of test subjects,
leading them to behave differently across different experiment
runs. To mitigate this possible threat, the following precautions
have been adopted: (i) the measurement for each experiment trial
(i.e., a subject-OL pair) has been repeated 20 times; (ii) the order
of execution of the experiment runs has been randomized; (iii)
the Chrome app has been cleared and reset before each run so to
clean its cache, persisted data, and configuration; (iv) the USB
charging of the smartphone is disabled during the execution of
each run; (v) between each run the smartphone and the laptop
remain idle for 2 minutes to take into account for tail energy
usage [76]. Another potential threat to the internal validity
comes from the usage of a software power profiler rather than
a hardware measurement tool, potentially introducing errors in
the measurements. However, the accuracy of the Trepn power
profiler has been reported to be close to 99% [72]

4) External Validity: To ensure that our experimental sub-
jects are representative of real-world web apps, in-the-lab sub-
jects have been complemented with in-the-wild subjects. The
latter have been sampled from the Tranco list, and constitute a
sample of popular real-world websites that are heterogeneous

from different perspectives (e.g., application domain, function-
alities, size). At the same time, the sample of in-the-lab subjects
constitutes a varied set of JavaScript development frameworks.
Another potential threat to the external validity comes from the
usage of a single smartphone device, equipped with an older An-
droid version, for the experiment execution, potentially harming
the generalizability of obtained results. This was a forced choice,
as the Trepn power profiler does not support newer Android
versions. Nonetheless, Trepn is widely used in empirical studies
on energy-efficient software [69], [70], [71] which provides
confidence in the generalizability of its measurements. Finally,
the results of our experiment are obtained by integrating into
Lacuna two analyzers: Dynamic and TAJS. The experiment
results cannot hold if we use other analyzers for call graph
constructions. However, this is true for any choice of analyzer/s
to be integrated into Lacuna. Since the experiment on the run-
time overhead of JavaScript dead code is very expensive—i.e.,
4 optimization levels x 30 subjects x 20 repetitions, in total
2,400 experiment runs—, it is unfeasible to test all the 127
configurations of Lacuna (resulting from the combinations of
one to seven analyzers). Therefore, we considered just one
Lacuna configuration (i.e., the one based on the joint use of
Dynamic and TAJS), suggested by the results of the preparatory
experiment (see Section II-B7). This choice, taken empirically,
should allow for maximizing the benefits resulting from the
removal of the dead code.

VI. RELATED WORK

Dead code (also known as unused code [17], unreachable
code [20], and lava flow [16]) has been included in several
code-smell catalogs [16], [17], [18] since it is claimed to have
negative effects on source code comprehensibility and maintain-
ability [20]. Researchers have investigated the claimed effects
of the dead code. For example, Romano et al. [84] conducted
a controlled experiment where part of the participants had to
comprehend and then maintain a Java codebase containing dead
code, while another part had to do the same in a codebase
deprived of dead code. The authors found that dead code hinders
source code comprehensibility, while they could not demon-
strate the negative effects of dead code on source code maintain-
ability. Later, Romano et al. [19] replicated that experiment three
times. The results confirm that dead code penalizes source code
comprehensibility; also, they found that dead code negatively
affects source code maintainability when developers work on
unfamiliar source code. The most important difference between
our paper and those introduced just before is that we focus here
on the detection and elimination of JavaScript dead code from
web apps, while these papers mostly focused on detection and
the study the effect of this smell on Java desktop apps. Eder et al.
[8] conducted a case study on the modifications to dead methods
in an industrial web app developed in. NET. Differently from
us, the authors only considered dynamic information to detect
dead code. In particular, Eder et al. monitored the execution of
methods in a given time frame, and those methods not executed
in a given time frame were considered as dead. In their case
study, these authors observed that 48% of the modifications to

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on February 02,2024 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

MALAVOLTA et al.: JAVASCRIPT DEAD CODE IDENTIFICATION, ELIMINATION, AND EMPIRICAL ASSESSMENT 3711

dead methods were unnecessary (e.g., because dead methods
were removed later). A similar finding was reported by Cassieri
et al. [85] in the context of Java desktop apps hosted on GitHub.
This study is different from ours because the authors studied the
presence of dead code in Java desktop apps and how developers
deal with dead code (e.g., modify and remove it in software
evolution tasks).

Researchers have also proposed dead code detection tech-
niques to support developers who aim to remove dead code for
refactoring reasons. Chen [86] et al. proposed a data model for
C++ software repositories supporting reachability analysis and
dead code detection. Fard and Mesbah [20] presented JSNOSE,
a metric-based technique for detecting smells, including dead
code, in JavaScript code. JSNOSE marks a code block as dead
if the EXEC metric or the RCH one is equal to zero. The EXEC
metric relies on dynamic analysis to count the times a given
code block is executed, while the RCH metric measures, by
leveraging static analysis, the reachability of a given code block.
Boomsma et al. [7] proposed a dynamic technique for detecting
dead code (dead files, in particular) in web apps written in PHP.
This technique monitors the execution of a web app in a given
time span to determine the usage of PHP files. A file is deemed
as dead if it is not used in that period. The authors applied their
technique on a subsystem, allowing the developers to remove
2,740 dead files (i.e., about 30% of the subsystem files). Romano
et al. [87] proposed DUM, a static technique for detecting dead
code (dead methods, in particular) in Java desktop apps, which
is based on a call-graph representation where nodes correspond
to methods while directed edges correspond to caller-callee
relationships. The authors implemented DUM in an Eclipse
plug-in, named DUM-Tool [88]. Romano and Scanniello [89]
explored the use of RTA, an algorithm for call graph construction
that is known to be fast and well approximate virtual method
calls [90], to detect dead code (dead method, in particular) in
Java desktop apps. To this end, they developed a tool, DCF,
and evaluated its performance against the one of JTombstone,
CodePro AnalytiX, and DUM-Tool. The results of this eval-
uation show that DCF outperforms the other tools in terms of
precision and f-measure of the detected dead methods. As for the
recall, DCF is comparable to DUM-Tool. Alabwaini et al. [91]
proposed a model, based on program slicing, for automatically
removing dead code. In particular, they applied a program slicing
technique to identify the slices of a program—any code involved
in a slice was considered alive. The slices were then merged and
any code not involved in a slice was discarded because it was
considered dead. The research discussed just before approaches
dead code from a refactoring perspective, while we are interested
to evaluate the run-time overhead of JavaScript dead code in
terms of energy consumption, performance, network usage, and
resource usage in the context of web apps.

Researchers have also investigated dead code detection by
taking an optimization perspective. Sunitha and Kumar [92] pro-
posed a technique that combines copy propagation and dead code
elimination by using hash-based value numbering to avoid exe-
cuting unnecessary code—e.g., instructions that compute values
not used in any execution path starting from them. Karer et al.
[93] conceived a dead code elimination technique for Java apps

based on two steps. First, they converted Java source code into an
SSA form—in this form, each variable is assigned exactly once
statically. Second, they identified DU-chains to find variables
with a definition but without any use during program execution.
The found variables are then removed since they are considered
dead. Kim et al. [94] proposed a technique to efficiently remove
dead code in SSA forms, hence obtaining faster and lighter
Java bytecode. Wang et al. [95] conceived a framework for
detecting dead code based on the LLVM compiler infrastruc-
ture. The framework consists of three steps. It first translates
the source code of the program into an LLVM intermediate
representation, then a symbolic execution technique is applied to
generate test cases. Finally, the framework combines static and
dynamic slicing—the program is analyzed dynamically through
the generated test cases—to detect dead code (in particular,
dead statements). The proposed framework can be applied to
programs written in any programming language as long as it
is supported by the LLVM compiler infrastructure. The authors
showed that, on five C programs, their framework detected, on
average, about 94% of dead statements. Differently from these
papers, we present here evidence also about how the presence
of JavaScript dead code impacts web apps on Android devices
in terms of energy efficiency, loading time, number and payload
of HTTP requests, CPU, and memory usage. Vázquez et al. [33]
proposed a technique called UFFRemover, based on dynamic
analysis, to aid developers in identifying and then removing dead
functions from the dependencies of JavaScript apps. On the other
hand, Lacuna supports both static and dynamic analyses and it
is also extensible. Vázquez et al. first gathered execution traces
of the app being analyzed—for this purpose, the app can be
run via its tests in the development environment or via user-app
interactions in the production environment—so as to identify
the functions that do not belong to any execution trace. These
functions are then suggested to developers for removal because
they are deemed dead. The authors applied their technique to 22
JavaScript apps and found that around 70% of the functions in
the dependencies were dead.

In summary, we contribute in this paper to advance the state of
the art on JavaScript dead code identification and elimination in
several ways. We can summarize our most important contribu-
tions as follows: (i) we designed and implemented an extensible
approach for JavaScript dead code elimination on which third-
party analysis techniques can be reused and integrated and (ii) we
provide evidence about how JavaScript dead code impacts web
apps on Android devices in terms of energy efficiency (slight
positive impact), loading time (statistically-significant positive
impact), number and payload of HTTP requests (statistically-
significant positive impact), CPU and memory usage (mixed
results).

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present Lacuna, an approach for automat-
ically eliminating JavaScript dead code from web apps. By
building on Lacuna, we conducted an empirical evaluation of
the run-time overhead of JavaScript dead code in terms of
energy consumption, performance, network usage, and resource

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on February 02,2024 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

3712 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

usage in the context of 30 third-party web apps running on a
real Android smartphone. The obtained results lead to relevant
implications for users, researchers, and web developers.

As future work, we are planning to extend the formalization
of the CG so as to distinguish (and treat differently) between
edges that are surely navigated at run-time (e.g., those identified
via dynamic analysis) and those that are navigated with a certain
probability (e.g., those identified by a static analyzer). We will
also expand the CG with the notion of JavaScript module to
distinguish between internal, imported, and exported functions
and treat them differently while building the CG. Finally, we will
integrate additional analysis techniques and tools into Lacuna.

ACKNOWLEDGMENTS

We would like to thank Christos Petalotis and Luka Krumpak,
both students of the Vrije Universiteit Amsterdam, for their
invaluable help in the external evaluation of Lacuna.

REFERENCES

[1] The State of JavaScript Survey, Mar. 2022. Accessed: Mar. 09, 2022.
[Online]. Available: https://stateofjs.com

[2] I. Malavolta, S. Ruberto, T. Soru, and V. Terragni, “Hybrid mobile apps
in the google play store: An exploratory investigation,” in Proc. 2nd ACM
Int. Conf. Mobile Softw. Eng. Syst., 2015, pp. 56–59.

[3] G. L. Scoccia and M. Autili, “Web frameworks for desktop apps: An
exploratory study,” in Proc. IEEE/ACM 14th Int. Symp. Empir. Softw. Eng.
Meas., 2020, pp. 1–6.

[4] H. Xi, “Dead code elimination through dependent types,” in Proc. Int.
Symp. Practical Aspects Declarative Lang., Springer, 1999, pp. 228–242.

[5] J. Nejati and A. Balasubramanian, “An in-depth study of mobile browser
performance,” in Proc. 25th Int. Conf. World Wide Web, 2016, pp. 1305–
1315.

[6] N. G. Obbink, I. Malavolta, G. L. Scoccia, and P. Lago, “An extensible
approach for taming the challenges of JavaScript dead code elimination,”
in Proc. IEEE 25th Int. Conf. Softw. Anal., Evol. Reengineering, 2018,
pp. 291–401.

[7] H. Boomsma, B. V. Hostnet, and H. G. Gross, “Dead code elimination
for web systems written in PHP: Lessons learned from an industry case,”
in Proc. 28th Int. Conf. Softw. Maintenance, 2012, pp. 511–515.

[8] S. Eder, M. Junker, E. Jurgens, B. Hauptmann, R. Vaas, and K.-H.
Prommer, “How much does unused code matter for maintenance?,”
in Proc. 34th Int. Conf. Softw. Eng., 2012, pp. 1102–1111.

[9] Desktop vs Mobile vs Tablet Market Share Worldwide |Statcounter Global
Stats, Dec. 2021. Accessed: Dec. 15, 2021. [Online]. Available: https:
//gs.statcounter.com/platform-market-share/desktop-mobile-tablet

[10] Y. Ma, X. Liu, S. Zhang, R. Xiang, Y. Liu, and T. Xie, “Measurement and
analysis of mobile web cache performance,” in Proc. 24th Int. Conf. World
Wide Web, 2015, pp. 691–701.

[11] TodoMVC, Oct. 2022. Accessed: Jul. 27, 2022. [Online]. Available: https:
//todomvc.com

[12] V. L. Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński, and
W. Joosen, “Tranco: A research-oriented top sites ranking hardened against
manipulation,” 2018, arXiv:1806.01156.

[13] S2-group, Lacuna implementation, Jul. 2022. Accessed: Jul. 27, 2022.
[Online]. Available: https://github.com/S2-group/Lacuna

[14] S2-group, Lacuna evaluation, Jul. 2022. Accessed: Jul. 27, 2022. [Online].
Available: https://github.com/S2-group/Lacuna-evaluation

[15] M. Fowler, Refactoring: Improving the Design of Existing Code. Reading,
MA, USA: Addison-Wesley, 2018.

[16] W. H. Brown, R. C. Malveau, H. W. S. McCormick, and T. J. Mowbray,
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis,
1st ed. New York, NY, USA: Wiley, 1998.

[17] W. C. Wake, Refactoring Workbook, 1st ed. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2003.

[18] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship,
1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2008.

[19] S. Romano, C. Vendome, G. Scanniello, and D. Poshyvanyk, “A multi-
study investigation into dead code,” IEEE Trans. Softw. Eng., vol. 46, no. 1,
pp. 71–99, Jan. 2020.

[20] A. M. Fard and A. Mesbah, “JSNOSE: Detecting JavaScript code smells,”
in Proc. Int. Work. Conf. Source Code Anal. Manipulation, 2013, pp. 116–
125.

[21] S. Greif, “The state of JavaScript 2017,” 2017. [Online]. Available: https:
//stateofjs.com/2017/introduction

[22] G. Richards, S. Lebresne, B. Burg, and J. Vitek, “An analysis of the
dynamic behavior of JavaScript programs,” ACM Sigplan Notices, vol. 45,
no. 6, pp. 1–12, 2010.

[23] Tree shaking. 2022. [Online]. Available: https://developer.mozilla.org/en-
US/docs/Glossary/Tree_shaking

[24] Es6 modules support. 2022. [Online]. Available: https://caniuse.com/
?search=ES6%20modules

[25] Closure Compiler - Google Developers, Mar. 2022. Accessed: Jul.
27, 2022. [Online]. Available: https://developers.google.com/closure/
compiler

[26] J. Kupoluyi et al., “Muzeel: Assessing the impact of JavaScript dead code
elimination on mobile web performance,” in Proc. ACM Internet Meas.
Conf., 2022, pp. 335–348.

[27] G. Antal, P. Hegedus, Z. Tóth, R. Ferenc, and T. Gyimóthy, “[Re-
search paper] static JavaScript call graphs: A comparative study,” in
Proc. IEEE Int. Work. Conf. Source Code Anal. Manipulation, 2018,
pp. 177–186.

[28] M. Chakraborty, R. Olivares, M. Sridharan, and B. Hassanshahi,
“Automatic root cause quantification for missing edges in JavaScript
call graphs,” in Proc. Eur. Conf. Object-Oriented Program., 2022,
pp. 3:1–3:28.

[29] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner, “Staged information
flow for JavaScript,” ACM Sigplan Notices, vol. 44, no. 6, pp. 50–62,
2009.

[30] S. H. Jensen, P. A. Jonsson, and A. Moller, “Remedying the eval that men
do,” in Proc. oInt. Symp. Softw. Testing Anal., 2012, pp. 34–44.

[31] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points,” in Proc. 4th ACM SIGACT-SIGPLAN Symp. Princ. Program.
Lang., 1977, pp. 238–252.

[32] A. Feldthaus, M. Schafer, M. Sridharan, J. Dolby, and F. Tip, “Efficient
construction of approximate call graphs for JavaScript IDE services,” in
Proc. 35th Int. Conf. Softw. Eng., 2013, pp. 752–761.

[33] H. C. Vázquez, A. Bergel, S. Vidal, J. D. Pace, and C. Marcos, “Slim-
ming JavaScript applications: An approach for removing unused func-
tions from JavaScript libraries,” Inf. Softw. Technol., vol. 107, pp. 18–29,
2019.

[34] Esprima. Jun. 2021. Accessed: Jul. 27, 2022. [Online]. Available: https:
//esprima.org

[35] A. Feldthaus, T. Millstein, A. Møller, M. Schäfer, and F. Tip, “Tool-
supported refactoring for JavaScript,” in Proc. ACM Int. Conf. Object
Oriented Program. Syst. Lang. Appl., 2011, pp. 119–138.

[36] PhantomJS - Scriptable Headless Browser, Feb. 2020 Accessed: Jul.
27, 2022. [Online]. Available: https://phantomjs.org

[37] wala, WALA, Jul. 2022. Accessed: Jul. 27, 2022. [Online]. Available:
https://github.com/wala/WALA

[38] S. H. Jensen, A. Moller, and P. Thiemann, “Type analysis for JavaScript,”
in Proc. Int. Statist. Anal. Symp., Springer, 2009, pp. 238–255.

[39] J. B. Kam and J. D. Ullman, “Monotone data flow analysis frameworks,”
Acta Informatica, vol. 7, no. 3, pp. 305–317, 1977.

[40] S. H. Jensen, A. Møller, and P. Thiemann, “Interprocedural analysis
with lazy propagation,” in Proc. Int. Statist. Anal. Symp., Springer, 2010,
pp. 320–339.

[41] cs-au dk, TAJS, Jul. 2022. Accessed: Jul. 27, 2022. [Online]. Available:
https://github.com/cs-au-dk/TAJS

[42] gunar, callgraph, Jul. 2022. Accessed: Jul. 27, 2022. [Online]. Available:
https://github.com/gunar/callgraph

[43] C. D. Manning, P. Raghavan, and H. Schutze, Introduction to Information
Retrieval. New York, NY, USA: Cambridge Univ. Press, 2008.

[44] S2-group, Online appendix, Jul. 2022. Accessed: Jul. 27, 2022.
[Online]. Available: https://github.com/S2-group/Lacuna-evaluation/
blob/main/Experiment%20on%20Lacuna%20performance%20-
%20online%20appendix.pdf

[45] G. Qiong and W. Li, “An optimization method of JavaScript redundant
code elimination based on hybrid analysis technique,” in Proc. IEEE
17th Int. Comput. Conf. Wavelet Act. Media Technol. Inf. Process., 2020,
pp. 300–305.

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on February 02,2024 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

https://stateofjs.com
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
https://todomvc.com
https://todomvc.com
https://github.com/S2-group/Lacuna
https://github.com/S2-group/Lacuna-evaluation
https://stateofjs.com/2017/introduction
https://stateofjs.com/2017/introduction
https://developer.mozilla.org/en-US/docs/Glossary/Tree_shaking
https://developer.mozilla.org/en-US/docs/Glossary/Tree_shaking
https://caniuse.com/{?}search=ES6%20modules
https://caniuse.com/{?}search=ES6%20modules
https://developers.google.com/closure/compiler
https://developers.google.com/closure/compiler
https://esprima.org
https://esprima.org
https://phantomjs.org
https://github.com/wala/WALA
https://github.com/cs-au-dk/TAJS
https://github.com/gunar/callgraph
https://github.com/S2-group/Lacuna-evaluation/blob/main/Experiment%20on%20Lacuna%20performance%20-%20online%20appendix.pdf
https://github.com/S2-group/Lacuna-evaluation/blob/main/Experiment%20on%20Lacuna%20performance%20-%20online%20appendix.pdf
https://github.com/S2-group/Lacuna-evaluation/blob/main/Experiment%20on%20Lacuna%20performance%20-%20online%20appendix.pdf

MALAVOLTA et al.: JAVASCRIPT DEAD CODE IDENTIFICATION, ELIMINATION, AND EMPIRICAL ASSESSMENT 3713

[46] R. Ye, L. Liu, S. Hu, F. Zhu, J. Yang, and F. Wang, “JSLIM: Reducing the
known vulnerabilities of JavaScript application by debloating,” in Proc.
Emerg. Inf. Secur. Appl.: 2nd Int. Symp., Copenhagen, Denmark, Springer,
2022, pp. 128–143.

[47] J. Kupoluyi et al., “Muzeel: Assessing the impact of JavaScript dead code
elimination on mobile web performance,” in Proc. 22nd ACM Internet
Meas. Conf., 2022, pp. 335–348.

[48] U. Goel and M. Steiner, “System to identify and elide superfluous
JavaScript code for faster webpage loads,” 2020, arXiv:2003.07396.

[49] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and A. Wessln,
Experimentation in Software Engineering. Berlin, Germany: Springer,
2012.

[50] N. Juristo and A. M. Moreno, Basics of Software Engineering Experimen-
tation. Berlin, Germany: Springer Science & Business Media, 2013.

[51] T. Dybå, V. B. Kampenes, and D. I. Sjøberg, “A systematic review of
statistical power in software engineering experiments,” Inf. Softw. Technol.,
vol. 48, no. 8, pp. 745–755, 2006.

[52] F. Shull, J. Singer, and D. I. Sjøberg, Guide to Advanced Empirical
Software Engineering. Berlin, Germany: Springer, 2007.

[53] F. G. de Oliveira Neto, R. Torkar, R. Feldt, L. Gren, C. A. Furia, and
Z. Huang, “Evolution of statistical analysis in empirical software engi-
neering research: Current state and steps forward,” J. Syst. Softw., vol. 156,
pp. 246–267, 2019.

[54] V. R. Basili and H. D. Rombach, “The TAME project: Towards
improvement-oriented software environments,” IEEE Trans. Softw. Eng.,
vol. 14, no. 6, pp. 758–773, 1988.

[55] D. Li, S. Hao, J. Gui, and W. G. Halfond, “An empirical study of the
energy consumption of Android applications,” in Proc. IEEE Int. Conf.
Softw. Maintenance Evol., 2014, pp. 121–130.

[56] L. Baresi, W. G. Griswold, G. A. Lewis, M. Autili, I. Malavolta, and
C. Julien, “Trends and challenges for software engineering in the mobile
domain,” IEEE Softw., vol. 38, no. 1, pp. 88–96, Jan./Feb. 2020.

[57] R. Verdecchia, P. Lago, C. Ebert, and C. De Vries, “Green IT and green
software,” IEEE Softw., vol. 38, no. 6, pp. 7–15, Nov./Dec. 2021.

[58] M. Caulo, R. Francese, G. Scanniello, and G. Tortora, “Implications on
the migration from ionic to Android,” in Proc. Product-Focused Softw.
Process Improvement, Springer, 2021, pp. 3–19.

[59] K. Chan Jong Chu et al., “Investigating the correlation between perfor-
mance scores and energy consumption of mobile web apps,” in Proc. Int.
Conf. Eval. Assessment Softw. Eng., 2020, pp. 190–199.

[60] A. Banerjee, L. K. Chong, C. Ballabriga, and A. Roychoudhury, “Energy-
patch: Repairing resource leaks to improve energy-efficiency of Android
apps,” IEEE Trans. Softw. Eng., vol. 44, no. 5, pp. 470–490, May 2018.

[61] S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Estimating mobile
application energy consumption using program analysis,” in Proc. IEEE
35th Int. Conf. Softw. Eng., 2013, pp. 92–101.

[62] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell, and
S. Romansky, “Greenminer: A hardware based mining software reposito-
ries software energy consumption framework,” in Proc. 11th Work. Conf.
Mining Softw. Repositories, 2014, pp. 12–21.

[63] E. A. Santos, C. McLean, C. Solinas, and A. Hindle, “How does docker
affect energy consumption? Evaluating workloads in and out of docker
containers,” J. Syst. Softw., vol. 146, pp. 14–25, 2018.

[64] S. Linge and H. P. Langtangen, Computing Integrals. Cham, Switzerland:
Springer, 2016, pp. 55–93. [Online]. Available: https://doi.org/10.1007/
978--3-319-32428-9_3

[65] MDN Web Docs Glossary: Definitions of Web-related terms | MDN,
May, 2022. Accessed: Jul. 27, 2022. [Online]. Available: https://developer.
mozilla.org/en-US/docs/Glossary

[66] “Paint timing 1,” Feb. 2021, Accessed: Jan. 04, 2022. Online]. Available:
https://w3c.github.io/paint-timing/#first-contentful-paint

[67] I. Malavolta et al., “A framework for the automatic execution of
measurement-based experiments on Android devices,” in Proc. IEEE/ACM
35th Int. Conf. Automated Softw. Eng. Workshops, 2020, pp. 61–66. [On-
line]. Available: http://www.ivanomalavolta.com/files/papers/A_Mobile_
2020.pdf

[68] P. K. D. Pramanik et al., “Power consumption analysis, measurement,
management, and issues: A state-of-the-art review of smartphone battery
and energy usage,” IEEE Access, vol. 7, pp. 182113–182172, 2019.

[69] I. Malavolta, G. Procaccianti, P. Noorland, and P. Vukmirović, “Assessing
the impact of service workers on the energy efficiency of progressive web
apps,” in Proc. IEEE/ACM 4th Int. Conf. Mobile Softw. Eng. Syst., 2017,
pp. 35–45.

[70] M. Couto, J. Saraiva, and J. P. Fernandes, “Energy refactorings for android
in the large and in the wild,” in Proc. IEEE 27th Int. Conf. Softw. Anal.,
Evol. Reengineering, 2020, pp. 217–228.

[71] Y. Hu, J. Yan, D. Yan, Q. Lu, and J. Yan, “Lightweight energy consumption
analysis and prediction for Android applications,” Sci. Comput. Program.,
vol. 162, pp. 132–147, 2018.

[72] M. A. Hoque, M. Siekkinen, K. N. Khan, Y. Xiao, and S. Tarkoma,
“Modeling, profiling, and debugging the energy consumption of
mobile devices,” ACM Comput. Surv., vol. 48, no. 3, pp. 1–40,
2015.

[73] Mitmproxy - An interactive HTTPS proxy, Jul. 2022. Accessed: Jul.
27, 2022. [Online]. Available: https://mitmproxy.org

[74] Android Debug Bridge (adb) | Android Developers, Mar. 2022 [Accessed:
Jul. 27, 2022. [Online]. Available: https://developer.android.com/studio/
command-line/adb

[75] L. Zizzamia, Perfume.js - Page speed monitoring, Feb. 2022. Accessed:
Jul. 27, 2022. [Online]. Available: https://zizzamia.github.io/perfume

[76] D. Li, S. Hao, W. G. Halfond, and R. Govindan, “Calculating source line
level energy information for Android applications,” in Proc. Int. Symp.
Softw. Testing Anal., 2013, pp. 78–89.

[77] M. Tomczak and E. Tomczak, “The need to report effect size estimates
revisited. an overview of some recommended measures of effect size,”
Trends Sport Sci., vol. 1, no. 21, pp. 19–25, 2014.

[78] O. J. Dunn, “Multiple comparisons among means,” J. Amer. Statist. Assoc.,
vol. 56, no. 293, pp. 52–64, 1961.

[79] D. Thissen, L. Steinberg, and D. Kuang, “Quick and easy implementation
of the Benjamini-Hochberg procedure for controlling the false positive rate
in multiple comparisons,” J. Educ. Behav. Statist., vol. 27, no. 1, pp. 77–83,
2002.

[80] webpack, Jul. 2022. Accessed: Jul. 27, 2022. [Online]. Available: https:
//webpack.js.org

[81] gulp-bundle, Jul. 2022 Accessed: Jul. 27, 2022. [Online]. Available: https:
//www.npmjs.com/package/gulp-bundle

[82] Browserify, Dec. 2021, Accessed: Jul. 27, 2022. [Online]. Available: https:
//browserify.org

[83] D. T. Campbell and T. D. Cook, Quasi-Experimentation: Design and
Analysis Issues for Field Settings. Skokie, IL, USA: Rand McNally,
1979.

[84] S. Romano, C. Vendome, G. Scanniello, and D. Poshyvanyk, “Are un-
reachable methods harmful? results from a controlled experiment,” in Proc.
IEEE Int. Conf. Prog. Comprehension, 2016, pp. 1–10.

[85] P. Cassieri, S. Romano, G. Scanniello, G. Tortora, and D. Caivano, “Do
developers modify dead methods during the maintenance of Java desktop
applications?,” in Proc. Int. Conf. Eval. Assessment Softw. Eng., 2022,
pp. 120–129.

[86] Y.-F. Chen, E. R. Gansner, and E. Koutsofios, “A C++ data model sup-
porting reachability analysis and dead code detection,” IEEE Trans. Softw.
Eng., vol. 24, no. 9, pp. 682–694, Sep. 1998.

[87] S. Romano, G. Scanniello, C. Sartiani, and M. Risi, “A graph-based
approach to detect unreachable methods in Java software,” in Proc. 31st
Symp. Appl. Comput., 2016, pp. 1538–1541.

[88] S. Romano and G. Scanniello, “Dum-tool,” in Proc. 31st Int. Conf. Softw.
Maintenance Evol., 2015, pp. 339–341.

[89] S. Romano and G. Scanniello, “Exploring the use of rapid type analysis for
detecting the dead method smell in Java code,” in Proc. 44th EUROMICRO
Conf. Softw. Eng. Adv. Appl., 2018, pp. 167–174.

[90] F. Tip and J. Palsberg, “Scalable propagation-based call graph construction
algorithms,” in Proc. Conf. Object-Oriented Program., Syst., Lang., Appl.,
2000, pp. 281–293.

[91] N. Alabwaini, A. Aldaàje, T. Jaber, M. Abdallah, and A. A. Tamimi, “Using
program slicing to detect the dead code,” in Proc. Int. Conf. Comput. Sci.
Inf. Technol., 2018, pp. 230–233.

[92] K. V. N. Sunitha and V. V. Kumar, “A new technique for copy propagation
and dead code elimination using hash based value numbering,” in Proc.
Int. Conf. Adv. Comput. Commun., 2006, pp. 601–604.

[93] H. H. Karer and P. B. Soni, “Dead code elimination technique in eclipse
compiler for Java,” in Proc. Int. Conf. Control, Instrum., Commun. Comput.
Technol., 2015, pp. 275–278.

[94] K. Kim, J. Kim, and W. Yoo, “Dead code elimination in CTOC,” in Proc.
Int. Conf. Softw. Eng. Res., Manage. Appl., 2007, pp. 584–588.

[95] X. Wang, Y. Zhang, L. Zhao, and X. Chen, “Dead code detection method
based on program slicing,” in Proc. Int. Conf. Cyber-Enabled Distrib.
Comput. Knowl. Discov., 2017, pp. 155–158.

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on February 02,2024 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1007/978--3-319-32428-9_3
https://doi.org/10.1007/978--3-319-32428-9_3
https://developer.mozilla.org/en-US/docs/Glossary
https://developer.mozilla.org/en-US/docs/Glossary
https://w3c.github.io/paint-timing/#first-contentful-paint
http://www.ivanomalavolta.com/files/papers/A_Mobile_2020.pdf
http://www.ivanomalavolta.com/files/papers/A_Mobile_2020.pdf
https://mitmproxy.org
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://zizzamia.github.io/perfume
https://webpack.js.org
https://webpack.js.org
https://www.npmjs.com/package/gulp-bundle
https://www.npmjs.com/package/gulp-bundle
https://browserify.org
https://browserify.org

3714 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

Ivano Malavolta (Member, IEEE) received the PhD degree in computer science
from the University of L’Aquila, in 2012. He is associate professor and direc-
tor of the Network Institute, Vrije Universiteit Amsterdam, The Netherlands.
His research focuses on software engineering, with a special emphasis on
green software, software architecture, mobile software development, robotics
software. He applies empirical methods to assess practices and trends in the
field of software engineering. He authored more than 100 scientific articles in
international journals and peer-reviewed international conference proceedings.
He is program committee member and reviewer of international conferences and
journals in the software engineering field. He is a member of ACM, VERSEN,
and Amsterdam Data Science.

Kishan Nirghin received the MSc degree in computer science with a strong pas-
sion for software engineering. Their research focuses on developing large scale
software systems using distributed systems and high-performance computing.
With extensive experience in multiple programming languages and software
development tools, Kishan excels in building efficient and scalable software
systems. As an enthusiastic mentor and teacher, he is dedicated to inspiring the
next generation of software engineers.

Gian Luca Scoccia received the PhD degree from the Gran Sasso Science
Institute, Italy, in 2019. He is an assistant professor with the Gran Sasso Science
Institute in L’Aquila, Italy. His research focuses on the privacy and security
of mobile apps, mining of software repositories, and program analysis. From
2019 to 2023 he was a post-doc researcher with the Department of Information
Engineering, Computer Science and Mathematics of the University of L’Aquila.

Simone Romano received the PhD degree in computer science and mathematics
from the University of Salento, Italy (in collaboration with the University of
Basilicata, Italy), in July 2018. He is an assistant professor with the University
of Salerno, Italy. His main research interests fall into software engineering
and include agile development, software refactoring, testing, maintenance, and
visualization, human factors in software engineering, and empirical software
engineering. He has served in the organization and has been a program committee
member of several international conferences/workshops in the field of software
engineering.

Salvatore Lombardi received the bachelor’s degree in computer science from
the University of Basilicata, in 2021. He is currently working toward the MS
degree in computer engineering with the University of Pisa. His primary research
interests lie in the domains of software engineering, mobile computing, and
cybersecurity. These areas have been the focus of his academic pursuits, and
he is particularly interested in exploring their intersection to develop innovative
solutions to real-world problems.

Giuseppe Scanniello (Member, IEEE) is an associate professor with the Uni-
versity of Salerno. His research focuses on software engineering, with a special
emphasis on software maintenance and evolution, software migration, secure
software engineering and cybersecurity, software architecture, mobile software
development, agile development, software refactoring, testing, maintenance,
software visualization, human factors in software engineering, and empirical
software engineering. He applies empirical methods and instruments to assess
practices and trends in the field of software engineering. He authored more than
200 scientific articles in international journals and peer-reviewed international
conference proceedings. He has also served in the organising and as member
of the Program Committees and Expert Review Panel of several international
conferences, including the ACM/IEEE International Conference on Software
Engineering, ACM/IEEE International Conference on Automated Software
Engineering, ACM Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, the IEEE International
Conference on Software Maintenance and Evolution, the ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement, the
Conference on Software Maintenance, Reengineering and Reverse Engineering,
the IEEE/ACM Conference on Program Comprehension, and many others. He is
a member of the editorial board of ACM Transactions on Software Engineering
and Methodology (ACM TOSEM) and of the International Journal of Systems
& Software and he is also a member of the Review Board for the Empirical
Software Engineering Journal and has been a member of the ACM Transactions
on Software Engineering and Methodology Board of Distinguished Reviewers.

Patricia Lago (Senior_Member, IEEE) received the master’s degree in computer
science from the University of Pisa, and the PhD degree in control and computer
engineering from Politecnico di Torino, both in Italy. She is full professor with
Vrije Universiteit Amsterdam, The Netherlands, where she founded the Software
and Sustainability research group with the Computer Science Department. Her
passion in research is to create software engineering knowledge that makes
software better, smarter, and more sustainable. Her research focuses primarily on
software architecture design and decision making, software quality assessment,
and software sustainability. She is the recipient of an Honorary Doctorate with
NTNU, Norway, for her contribution to the field of software sustainability, and
of the 2023 IEEE CS TCSE New Directions Award. She has published more
than 250 articles in all major scientific conferences and journals of her field. She
is a senior member of ACM. More info at: www.patricialago.nl.

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on February 02,2024 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

www.patricialago.nl

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

